6,517 research outputs found

    Probabilistic inference on uncertain semantic link network and its application in event identification

    Get PDF
    The Probabilistic Semantic Link Network (P-SLN) is a model for enhancing the ability of Semantic Link Network in representing uncertainty. Probabilistic inference over uncertain semantic links can process the likelihood and consistency of uncertain semantic links. This work develops the P-SLN model by incorporating probabilistic inference rules and consistency constraints. Two probabilistic inference mechanisms are incorporated into the model. The application of probabilistic inference on SLN of events for joint event identification verifies the effectiveness of the proposed model

    Uncertainty in Ontologies: Dempster-Shafer Theory for Data Fusion Applications

    Full text link
    Nowadays ontologies present a growing interest in Data Fusion applications. As a matter of fact, the ontologies are seen as a semantic tool for describing and reasoning about sensor data, objects, relations and general domain theories. In addition, uncertainty is perhaps one of the most important characteristics of the data and information handled by Data Fusion. However, the fundamental nature of ontologies implies that ontologies describe only asserted and veracious facts of the world. Different probabilistic, fuzzy and evidential approaches already exist to fill this gap; this paper recaps the most popular tools. However none of the tools meets exactly our purposes. Therefore, we constructed a Dempster-Shafer ontology that can be imported into any specific domain ontology and that enables us to instantiate it in an uncertain manner. We also developed a Java application that enables reasoning about these uncertain ontological instances.Comment: Workshop on Theory of Belief Functions, Brest: France (2010

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Soft quantification in statistical relational learning

    Get PDF
    We present a new statistical relational learning (SRL) framework that supports reasoning with soft quantifiers, such as "most" and "a few." We define the syntax and the semantics of this language, which we call , and present a most probable explanation inference algorithm for it. To the best of our knowledge, is the first SRL framework that combines soft quantifiers with first-order logic rules for modelling uncertain relational data. Our experimental results for two real-world applications, link prediction in social trust networks and user profiling in social networks, demonstrate that the use of soft quantifiers not only allows for a natural and intuitive formulation of domain knowledge, but also improves inference accuracy

    Proceedings of the 2005 IJCAI Workshop on AI and Autonomic Communications

    Get PDF
    corecore