2,584 research outputs found

    Probabilistic communication complexity over the reals

    Full text link
    Deterministic and probabilistic communication protocols are introduced in which parties can exchange the values of polynomials (rather than bits in the usual setting). It is established a sharp lower bound 2n2n on the communication complexity of recognizing the 2n2n-dimensional orthant, on the other hand the probabilistic communication complexity of its recognizing does not exceed 4. A polyhedron and a union of hyperplanes are constructed in \RR^{2n} for which a lower bound n/2n/2 on the probabilistic communication complexity of recognizing each is proved. As a consequence this bound holds also for the EMPTINESS and the KNAPSACK problems

    A localic theory of lower and upper integrals

    Get PDF
    An account of lower and upper integration is given. It is constructive in the sense of geometric logic. If the integrand takes its values in the non-negative lower reals, then its lower integral with respect to a valuation is a lower real. If the integrand takes its values in the non-negative upper reals,then its upper integral with respect to a covaluation and with domain of integration bounded by a compact subspace is an upper real. Spaces of valuations and of covaluations are defined. Riemann and Choquet integrals can be calculated in terms of these lower and upper integrals

    Non-adaptive Measurement-based Quantum Computation and Multi-party Bell Inequalities

    Full text link
    Quantum correlations exhibit behaviour that cannot be resolved with a local hidden variable picture of the world. In quantum information, they are also used as resources for information processing tasks, such as Measurement-based Quantum Computation (MQC). In MQC, universal quantum computation can be achieved via adaptive measurements on a suitable entangled resource state. In this paper, we look at a version of MQC in which we remove the adaptivity of measurements and aim to understand what computational abilities still remain in the resource. We show that there are explicit connections between this model of computation and the question of non-classicality in quantum correlations. We demonstrate this by focussing on deterministic computation of Boolean functions, in which natural generalisations of the Greenberger-Horne-Zeilinger (GHZ) paradox emerge; we then explore probabilistic computation, via which multipartite Bell Inequalities can be defined. We use this correspondence to define families of multi-party Bell inequalities, which we show to have a number of interesting contrasting properties.Comment: 13 pages, 4 figures, final version accepted for publicatio

    Computable de Finetti measures

    Full text link
    We prove a computable version of de Finetti's theorem on exchangeable sequences of real random variables. As a consequence, exchangeable stochastic processes expressed in probabilistic functional programming languages can be automatically rewritten as procedures that do not modify non-local state. Along the way, we prove that a distribution on the unit interval is computable if and only if its moments are uniformly computable.Comment: 32 pages. Final journal version; expanded somewhat, with minor corrections. To appear in Annals of Pure and Applied Logic. Extended abstract appeared in Proceedings of CiE '09, LNCS 5635, pp. 218-23

    Recursive Concurrent Stochastic Games

    Get PDF
    We study Recursive Concurrent Stochastic Games (RCSGs), extending our recent analysis of recursive simple stochastic games to a concurrent setting where the two players choose moves simultaneously and independently at each state. For multi-exit games, our earlier work already showed undecidability for basic questions like termination, thus we focus on the important case of single-exit RCSGs (1-RCSGs). We first characterize the value of a 1-RCSG termination game as the least fixed point solution of a system of nonlinear minimax functional equations, and use it to show PSPACE decidability for the quantitative termination problem. We then give a strategy improvement technique, which we use to show that player 1 (maximizer) has \epsilon-optimal randomized Stackless & Memoryless (r-SM) strategies for all \epsilon > 0, while player 2 (minimizer) has optimal r-SM strategies. Thus, such games are r-SM-determined. These results mirror and generalize in a strong sense the randomized memoryless determinacy results for finite stochastic games, and extend the classic Hoffman-Karp strategy improvement approach from the finite to an infinite state setting. The proofs in our infinite-state setting are very different however, relying on subtle analytic properties of certain power series that arise from studying 1-RCSGs. We show that our upper bounds, even for qualitative (probability 1) termination, can not be improved, even to NP, without a major breakthrough, by giving two reductions: first a P-time reduction from the long-standing square-root sum problem to the quantitative termination decision problem for finite concurrent stochastic games, and then a P-time reduction from the latter problem to the qualitative termination problem for 1-RCSGs.Comment: 21 pages, 2 figure

    Model Checking Probabilistic Pushdown Automata

    Get PDF
    We consider the model checking problem for probabilistic pushdown automata (pPDA) and properties expressible in various probabilistic logics. We start with properties that can be formulated as instances of a generalized random walk problem. We prove that both qualitative and quantitative model checking for this class of properties and pPDA is decidable. Then we show that model checking for the qualitative fragment of the logic PCTL and pPDA is also decidable. Moreover, we develop an error-tolerant model checking algorithm for PCTL and the subclass of stateless pPDA. Finally, we consider the class of omega-regular properties and show that both qualitative and quantitative model checking for pPDA is decidable
    corecore