33 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    EAO-SLAM: Monocular Semi-Dense Object SLAM Based on Ensemble Data Association

    Get PDF
    Object-level data association and pose estimation play a fundamental role in semantic SLAM, which remain unsolved due to the lack of robust and accurate algorithms. In this work, we propose an ensemble data associate strategy for integrating the parametric and nonparametric statistic tests. By exploiting the nature of different statistics, our method can effectively aggregate the information of different measurements, and thus significantly improve the robustness and accuracy of data association. We then present an accurate object pose estimation framework, in which an outliers-robust centroid and scale estimation algorithm and an object pose initialization algorithm are developed to help improve the optimality of pose estimation results. Furthermore, we build a SLAM system that can generate semi-dense or lightweight object-oriented maps with a monocular camera. Extensive experiments are conducted on three publicly available datasets and a real scenario. The results show that our approach significantly outperforms state-of-the-art techniques in accuracy and robustness. The source code is available on: https://github.com/yanmin-wu/EAO-SLAM.Comment: Accepted to IROS 2020. Project Page: https://yanmin-wu.github.io/project/eaoslam/; Code: https://github.com/yanmin-wu/EAO-SLA

    Enhancing RGB-D SLAM Using Deep Learning

    Get PDF

    Robust and affordable localization and mapping for 3D reconstruction. Application to architecture and construction

    Get PDF
    La localizaci贸n y mapeado simult谩neo a partir de una sola c谩mara en movimiento se conoce como Monocular SLAM. En esta tesis se aborda este problema con c谩maras de bajo coste cuyo principal reto consiste en ser robustos al ruido, blurring y otros artefactos que afectan a la imagen. La aproximaci贸n al problema es discreta, utilizando solo puntos de la imagen significativos para localizar la c谩mara y mapear el entorno. La principal contribuci贸n es una simplificaci贸n del grafo de poses que permite mejorar la precisi贸n en las escenas m谩s habituales, evaluada de forma exhaustiva en 4 datasets. Los resultados del mapeado permiten obtener una reconstrucci贸n 3D de la escena que puede ser utilizada en arquitectura y construcci贸n para Modelar la Informaci贸n del Edificio (BIM). En la segunda parte de la tesis proponemos incorporar dicha informaci贸n en un sistema de visualizaci贸n avanzada usando WebGL que ayude a simplificar la implantaci贸n de la metodolog铆a BIM.Departamento de Inform谩tica (Arquitectura y Tecnolog铆a de Computadores, Ciencias de la Computaci贸n e Inteligencia Artificial, Lenguajes y Sistemas Inform谩ticos)Doctorado en Inform谩tic

    Monocular slam for deformable scenarios.

    Get PDF
    El problema de localizar la posici贸n de un sensor en un mapa incierto que se estima simult谩neamente se conoce como Localizaci贸n y Mapeo Simult谩neo --SLAM--. Es un problema desafiante comparable al paradigma del huevo y la gallina. Para ubicar el sensor necesitamos conocer el mapa, pero para construir el mapa, necesitamos la posici贸n del sensor. Cuando se utiliza un sensor visual, por ejemplo, una c谩mara, se denomina Visual SLAM o VSLAM. Los sensores visuales para SLAM se dividen entre los que proporcionan informaci贸n de profundidad (por ejemplo, c谩maras RGB-D o equipos est茅reo) y los que no (por ejemplo, c谩maras monoculares o c谩maras de eventos). En esta tesis hemos centrado nuestra investigaci贸n en SLAM con c谩maras monoculares.Debido a la falta de percepci贸n de profundidad, el SLAM monocular es intr铆nsecamente m谩s duro en comparaci贸n con el SLAM con sensores de profundidad. Los trabajos estado del arte en VSLAM monocular han asumido normalmente que la escena permanece r铆gida durante toda la secuencia, lo que es una suposici贸n factible para entornos industriales y urbanos. El supuesto de rigidez aporta las restricciones suficientes al problema y permite reconstruir un mapa fiable tras procesar varias im谩genes. En los 煤ltimos a帽os, el inter茅s por el SLAM ha llegado a las 谩reas m茅dicas donde los algoritmos SLAM podr铆an ayudar a orientar al cirujano o localizar la posici贸n de un robot. Sin embargo, a diferencia de los escenarios industriales o urbanos, en secuencias dentro del cuerpo, todo puede deformarse eventualmente y la suposici贸n de rigidez acaba siendo inv谩lida en la pr谩ctica, y por extensi贸n, tambi茅n los algoritmos de SLAM monoculares. Por lo tanto, nuestro objetivo es ampliar los l铆mites de los algoritmos de SLAM y concebir el primer sistema SLAM monocular capaz de hacer frente a la deformaci贸n de la escena.Los sistemas de SLAM actuales calculan la posici贸n de la c谩mara y la estructura del mapa en dos subprocesos concurrentes: la localizaci贸n y el mapeo. La localizaci贸n se encarga de procesar cada imagen para ubicar el sensor de forma continua, en cambio el mapeo se encarga de construir el mapa de la escena. Nosotros hemos adoptado esta estructura y concebimos tanto la localizaci贸n deformable como el mapeo deformable ahora capaces de recuperar la escena incluso con deformaci贸n.Nuestra primera contribuci贸n es la localizaci贸n deformable. La localizaci贸n deformable utiliza la estructura del mapa para recuperar la pose de la c谩mara con una 煤nica imagen. Simult谩neamente, a medida que el mapa se deforma durante la secuencia, tambi茅n recupera la deformaci贸n del mapa para cada fotograma. Hemos propuesto dos familias de localizaci贸n deformable. En el primer algoritmo de localizaci贸n deformable, asumimos que todos los puntos est谩n embebidos en una superficie denominada plantilla. Podemos recuperar la deformaci贸n de la superficie gracias a un modelo de deformaci贸n global que permite estimar la deformaci贸n m谩s probable del objeto. Con nuestro segundo algoritmo de localizaci贸n deformable, demostramos que es posible recuperar la deformaci贸n del mapa sin un modelo de deformaci贸n global, representando el mapa como surfels individuales. Nuestros resultados experimentales mostraron que, recuperando la deformaci贸n del mapa, ambos m茅todos superan tanto en robustez como en precisi贸n a los m茅todos r铆gidos.Nuestra segunda contribuci贸n es la concepci贸n del mapeo deformable. Es el back-end del algoritmo SLAM y procesa un lote de im谩genes para recuperar la estructura del mapa para todas las im谩genes y hacer crecer el mapa ensamblando las observaciones parciales del mismo. Tanto la localizaci贸n deformable como el mapeo que se ejecutan en paralelo y juntos ensamblan el primer SLAM monocular deformable: \emph{DefSLAM}. Una evaluaci贸n ampliada de nuestro m茅todo demostr贸, tanto en secuencias controladas por laboratorio como en secuencias m茅dicas, que nuestro m茅todo procesa con 茅xito secuencias en las que falla el sistema monocular SLAM actual.Nuestra tercera contribuci贸n son dos m茅todos para explotar la informaci贸n fotom茅trica en SLAM monocular deformable. Por un lado, SD-DefSLAM que aprovecha el emparejamiento semi-directo para obtener un emparejamiento mucho m谩s fiable de los puntos del mapa en las nuevas im谩genes, como consecuencia, se demostr贸 que es m谩s robusto y estable en secuencias m茅dicas. Por otro lado, proponemos un m茅todo de Localizaci贸n Deformable Directa y Dispersa en el que usamos un error fotom茅trico directo para rastrear la deformaci贸n de un mapa modelado como un conjunto de surfels 3D desconectados. Podemos recuperar la deformaci贸n de m煤ltiples superficies desconectadas, deformaciones no isom茅tricas o superficies con una topolog铆a cambiante.<br /

    Visual SLAM muuttuvissa ymp盲rist枚iss盲

    Get PDF
    This thesis investigates the problem of Visual Simultaneous Localization and Mapping (vSLAM) in changing environments. The vSLAM problem is to sequentially estimate the pose of a device with mounted cameras in a map generated based on images taken with those cameras. vSLAM algorithms face two main challenges in changing environments: moving objects and temporal appearance changes. Moving objects cause problems in pose estimation if they are mistaken for static objects. Moving objects also cause problems for loop closure detection (LCD), which is the problem of detecting whether a previously visited place has been revisited. A same moving object observed in two different places may cause false loop closures to be detected. Temporal appearance changes such as those brought about by time of day or weather changes cause long-term data association errors for LCD. These cause difficulties in recognizing previously visited places after they have undergone appearance changes. Focus is placed on LCD, which turns out to be the part of vSLAM that changing environment affects the most. In addition, several techniques and algorithms for Visual Place Recognition (VPR) in challenging conditions that could be used in the context of LCD are surveyed and the performance of two state-of-the-art modern VPR algorithms in changing environments is assessed in an experiment in order to measure their applicability for LCD. The most severe performance degrading appearance changes are found to be those caused by change in season and illumination. Several algorithms and techniques that perform well in loop closure related tasks in specific environmental conditions are identified as a result of the survey. Finally, a limited experiment on the Nordland dataset implies that the tested VPR algorithms are usable as is or can be modified for use in long-term LCD. As a part of the experiment, a new simple neighborhood consistency check was also developed, evaluated, and found to be effective at reducing false positives output by the tested VPR algorithms
    corecore