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Abstract— Object-level data association and pose estimation
play a fundamental role in semantic SLAM, which remain
unsolved due to the lack of robust and accurate algorithms.
In this work, we propose an ensemble data associate strategy
for integrating the parametric and nonparametric statistic tests.
By exploiting the nature of different statistics, our method can
effectively aggregate the information of different measurements,
and thus significantly improve the robustness and accuracy
of data association. We then present an accurate object pose
estimation framework, in which an outliers-robust centroid and
scale estimation algorithm and an object pose initialization
algorithm are developed to help improve the optimality of pose
estimation results. Furthermore, we build a SLAM system that
can generate semi-dense or lightweight object-oriented maps
with a monocular camera. Extensive experiments are conducted
on three publicly available datasets and a real scenario. The
results show that our approach significantly outperforms state-
of-the-art techniques in accuracy and robustness. The source
code is available on https://github.com/yanmin-wu/
EAO-SLAM.

I. INTRODUCTION

Conventional visual SLAM systems have achieved signif-
icant success in robot localization and mapping tasks. More
efforts in recent years are evolved in making SLAM serve
for robot navigation, object manipulation, and environment
representation. Semantic SLAM is a promising technique for
enabling such applications and receives much attention from
the community [1]. In addition to the conventional functions,
semantic SLAM also focuses on a detailed expression of
the environment, e.g., labeling map elements or objects of
interests, to support different high-level applications.

Object SLAM is a typical application of semantic SLAM,
and the goal is to estimate more robust and accurate camera
poses by leveraging the semantic information of in-frame
objects [2]–[4]. In this work, we further extend the content of
object SLAM by enabling it to build lightweight and object-
oriented maps, demonstrated in Fig. 1, in which the objects
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Fig. 1: A lightweight and object-oriented semantic map.

are represented by cubes or quadrics with their locations,
orientations, and scales accurately registered.

The challenges of object SLAM mainly lie in two folds:
1) Existing data association methods [5]–[7] are not robust
or accurate for tackling complex environments that contain
multiple object instances. There are no practical solutions to
systematically address this problem. 2) Object pose estima-
tion is not accurate, especially for monocular object SLAM.
Although some improvements are achieved in recent studies
[8]–[10], they are typically dependent on strict assumptions,
which are hard to fulfill in real-world applications.

In this paper, we propose the EAO-SLAM, a monocular
object SLAM system, to address the data association and
pose estimation problems. Firstly, we integrate the parametric
and nonparametric statistic tests, and the traditional IoU-
based method, to conduct model ensembling for data associ-
ation. Compared with conventional methods, our approach
sufficiently exploits the nature of different statistics, e.g.,
Gaussian and non-Gaussian measurements, hence exhibits
significant advantages in association robustness. For object
pose estimation, we propose a centroid and scale estimation
algorithm and an object pose initialization approach based
on the isolation forest (iForest). The proposed methods are
robust to outliers and exhibit high accuracy, which signifi-
cantly facilitates the joint pose optimization process.

The contributions of this paper are summarized as follows:

• We propose an ensemble data association strategy that
can effectively aggregate different measurements of the
objects to improve association accuracy.

• We propose an object pose estimation framework based
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on iForest, which is robust to outliers and can accurately
estimate the locations, poses, and scales of objects.

• Based on the proposed method, we implement the EAO-
SALM to build lightweight and object-oriented maps.

• We conduct comprehensive experiments and verify the
effectiveness of our proposed methods on publicly avail-
able datasets and the real scenario. The source code of
this work is also released.

II. RELATED WORK

A. Data Association

Data association is an indispensable ingredient for se-
mantic SLAM, which is used to determine whether the
object observed in the current frame is an existing object
in the map. Bowman et al. [5] use a probabilistic method
to model the data association process and leverage the
EM algorithm to find correspondences between observed
landmarks. Subsequent studies [7], [11] further extend the
idea to associate dynamic objects or conduct semantic dense
reconstruction. These methods can achieve high association
accuracy, but can only process a limited number of object
instances. Their efficiency also remains to be improved due
to the expensive EM optimization process [12]. Object track-
ing is another commonly-used approach in data association.
Li et al. [13] propose to project 3D cubes to the image
plane and then leverage the Hungarian tracking algorithm to
conduct association using the projected 2D bounding boxes.
Tracking-based methods perform high runtime efficiency, but
can easily generate incorrect priors in complex environments,
yielding incorrect association results.

In recent studies, more data association approaches are
developed based on maximum shared information. Liu et
al. [14] propose random walk descriptors to represent the
topological relationships between objects, and those with the
maximum number of shared descriptors are regarded as the
same instance. Instead, Yang et al. [8] propose to directly
count the number of matched map points on the detected
objects as association criteria, yielding a much efficient
performance. Grinvald et al. [2] propose to measure the
similarity between semantic labels and Ok et al. [3] propose
to leverage the correlation of hue saturation histogram.
The major drawback of these methods is that the designed
features or descriptors are typically not general or robust
enough and can easily cause incorrect associations.

Weng et al. [15] for the first time propose nonparametric
statistical testing for semantic data association, which can
address the problems in which the statistics do not follow a
Gaussian distribution. Later on, Iqbal et al. [6] also verify
the effectiveness of nonparametric data association. However,
this method cannot address the statistics that follow Gaussian
distributions effectively, hence cannot sufficiently exploit
different measurements in SLAM. Based on this observation,
we combine the parametric and nonparametric methods to
perform model ensembling, which exhibits superior associa-
tion performance in the complex scenarios with the presence
of multiple categories of objects.

B. Object SLAM

Benefiting from deep learning techniques [16], [17], object
detection is robustly integrated into the SLAM framework
for labeling objects of interests in the map. The exploitation
of in-frame objects significantly enlarges the application
scopes of traditional SLAM. Some studies [15], [18], [19]
treat objects as landmarks to estimate camera poses or for
relocalization [13]. Some studies [20] leverage object size to
constrain the scale of monocular SLAM, or remove dynamic
objects to improve pose estimation accuracy [7], [21]. In
recent years, the combination of object SLAM and grasping
[22] has also attracted many interests, and facilitate the
research on autonomous mobile manipulation.

Object models in semantic SLAM can be broadly divided
into three categories: instance-level models, category-specific
models, and general models. The instance-level models [9],
[23] depend on a well-established database that records all
the related objects. The prior information of objects provides
important object-camera constraints for graph optimization.
Since the models need to be known in advance, the ap-
plication scenarios of such methods are limited. There are
also some studies on category-specific models, which focus
on describing category-level features. For example, Parkhiya
et al. [10] and Joshi et al. [19] use the CNN network to
estimate the viewpoint of objects and then project the 3D
line segments onto image planes to align them. The general
model adopts simple geometric elements, e.g., cubes [8],
[13], quadrics [18] and cylinders [10], to represent objects,
which are also the most commonly-used models.

In terms of the joint optimization of camera and object
poses, Frost et al. [20] simply integrate object centroids as
point clouds to the camera pose estimation process. Yang
et al. [8] propose a joint camera-object-point optimization
scheme to construct the pose and scale constraints for graph
optimization. Nicholson et al. [18] propose to project the
quadric onto the image plane and then calculates the scale
error between the projected 2D rectangular and the detected
bounding box. This work also adopts the joint optimization
strategy, but with a novel initialization method, which can
significantly improve the optimality of solutions.

III. SYSTEM OVERVIEW

The proposed object SLAM framework is demonstrated
in Fig. 2, which is developed based on ORB-SLAM2 [24],
and additionally integrates a semantic thread that adopts
YOLOv3 as the object detector. The ensemble data asso-
ciation is implemented in the tracking thread, which com-
bines the information of bounding boxes, semantic labels,
and point clouds. After that, the iForest is leveraged to
eliminate outliers for finding an accurate initialization for
the joint optimization process. The object pose and scale
are then optimized together with the camera pose to build a
lightweight and object-oriented map. In semi-dense mapping
thread, the object map is combined with a semi-dense map
generated by [25] to obtain the a semi-dense semantic map.
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Fig. 2: The architecture of EAO-SLAM system. The main contri-
butions of this work are highlighted with red colors.

IV. ENSEMBLE DATA ASSOCIATION

Throughout this section, the following notations are used:

• P ∈ R3×|P |, Q ∈ R3×|Q| - the point clouds of objects.
• R - the rank (position) of a data point in a sorted list.
• c ∈ R3×1 - the currently observed object centroid.
• C = [c1, c2, . . . , c|C|] ∈ R3×|C| - the history observa-

tions of the centroids of an object. C1, C2 are similar.
• f(·) - the probability function used for statistic test.
• m(·), σ(·) ∈ R3×1 - the mean and variance functions.

A. Nonparametric Test

The nonparametric test is leveraged to process object point
clouds (the red and green points in Fig. 3 (a)), which follows
a non-Gaussian distribution according to our experimental
studies (Section VI-A). Theoretically, if P and Q belong to
the same object, they should follow the same distribution,
i.e., fP = fQ. We use the Wilcoxon Rank-Sum test [26] to
verify whether the null hypothesis holds.

We first concatenate the two point clouds X = [P |Q] =
[x1,x2, . . . ,x|X|] ∈ R3×(|P |+|Q|), and then sort X in three
dimensions respectively. Define WP ∈ R3×1 as follows,

WP =


|X|∑
k=1

R(1{xk ∈ P})−
|P |(|P |+ 1)

2

 , (1)

and WQ is with the same formula. The Mann-Whitney
statistics is W= min(WP ,WQ), which is proved to follow
a Gaussian distribution asymptoticly [26]. Herein, we essen-
tially construct a Gaussian statistics using the non-Gaussian
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Fig. 3: Different Types of Statistics Used for data association.

point clouds. The mean and variance of W is calculated as
follows:

m(W ) = (|P ||Q|)/2, (2)

σ(W ) =
|P ||Q|∆

12
−
|P ||Q|(

∑
i τ

3
i −

∑
i τi)

12(|P |+ |Q|)∆
, (3)

where ∆ = |P |+ |Q|+ 1, and τ ∈ P ∩Q.
To make the null hypothesis stand, W should meet the

following constraints:

f(W ) ≥ f (rr) = f (rl) = α/2, (4)

where α is the significance level, 1 − α is thus the confi-
dence level, and [rl, rr] ≈ [m − s

√
σ,m + s

√
σ ] defines

the confidence region. The scalar s > 0 is defined on a
normalized Gaussian distribution N (s|0, 1)=α. In summary,
if the Mann-Whitney statistics W of two point clouds P and
Q satisfies Eq. (4), they come from the same object and the
data association successes.

B. Single-sample and Double-sample T-test

The single-sample t-test is used to process object centroids
observed in different frames (the stars in Fig. 3 (b)), which
typically follow a Gaussian distribution (Section VI-A).

Suppose the null hypothesis is that C and c are from the
same object, and define t statistics as follows,

t =
m(C)− c
σ(C)/

√
|C|
∼ t(|C| − 1). (5)

To make the null hypothesis stand, t should satisfy:

f(t) ≥ f(tα/2,v) = α/2 (6)

where tα/2,v is the upper α/2 quantile of the t-distribution
of v degrees of freedom, and v =

√
|C| − 1. If t statistics

satisfies (6), c and C comes from the same object.
Due to the strict data association strategy above or the

bad angle of views, some existing objects may be recognized
as new ones. Hence, a double-sample t-test is leveraged to
determine whether to merge the two objects by testing their
historical centroids (the stars in Fig. 3 (c)).

Construct t-statistics for C1 and C2 as follows,

t =
m(C1)−m(C2)

σd
∼ t(|C1|+ |C2| − 2) (7)

σd =

√
(|C1| − 1)σ2

1 + (|C2| − 1)σ2
2

|C1|+ |C2| − 2

(
1

|C1|
+

1

|C2|

)
(8)

where σd is the pooled standard deviation of the two objects.
Similarly, if t satisfies (6), v = |C1|+ |C2|−2, it means that
C1 and C2 belongs to the same object, then we merge them.

4968



1
2

3

4

1

2

3
4
5

6

7
8

(a) (b) (c)

(d) (e)

Fig. 4: Object representation and demonstration of iForest.

V. OBJECT SLAM
Throughout this section, the following notations are used:
• t = [tx, ty, tz]

T - the translation (location) of object
frame in world frame.

• θ = [θr, θy, θp]
T - the rotation of object frame w.r.t.

world frame. R(θ) is matrix representation.
• T = {R(θ), t} - the transformation of object frame

w.r.t. world frame.
• s = [sl, sw, sh]T - half of the side length of a 3D

bounding box, i.e., the scale of an object.
• Po, Pw ∈ R3×8 - the coordinates of eight vertices of a

cube in object and world frame, respectively.
• Qo, Qw ∈ R4×4 - the quadric parameterized by its

semiaxis in object and world frame, respectively, where
Qo = diag

{
s2l , s

2
w, s

2
h,−1

}
.

• α(·) - calculate the angle of line segments.
• K,Tc - the intrinsic and extrinsic parameters of camera.
• p ∈ R3×1 - the coordinates of a point in world frame.
Object Representation: In this work, we leverage the

cubes and quadrics to represent objects, rather than the
complex instance-level or category-level model. For objects
with regular shapes, such as books, keyboards, and chairs,
we use cubes (encoded by its vertices Po) to represent them.
For non-regular objects without an explicit direction, such as
balls, bottles, and cups, the quadric (encoded by its semiaxis
Qo) is used for representation. Here, Po and Qo are expressed
in object frame and only depend on the scale s. To register
these elements to global map, we also need to estimate their
translation t and orientation θ w.r.t. global frame. The cubes
and quadrics in global frame are expressed as follows:

Pw = R(θ)Po + t, (9)

Qw = TQoT
T . (10)

With the assumption that the objects are placed parallel with
the ground, i.e., θr=θp=0, we only need to estimate [θy, t, s]
for a cube and [t, s] for a quadric.

Estimate t and s: Suppose there is an object point cloud
X in global frame, we follow conventions and denote its
mean by t, based on which, the scale can be calculated by
s = (max(X) − min(X))/2. The main challenge here is
that X is typically with many outliers, which can introduce
a large bias to the estimation of t and s. One of our major
contributions in this paper is the development of an outlier-
robust centroid and scale estimation algorithm based on the
iForest [27] to improve the estimation accuracy. The detailed
procedure of our algorithm is presented in Alg. 1.

Algorithm 1 Centroid and Scale Estimation Based on iForest

Input: X - The point cloud of an object, t - The number of
iTrees in iForest, ψ - The subsampling size for an iTree.

Output: F - The iForest, a set of iTrees, t - The origin of
local frame, s - The initial scale of the object.

1: procedure PARAOBJECT(X, t, ψ)
2: F ← BUILDFOREST(X, t, ψ)
3: for point x in X do
4: E(h)← averageDepth(x,F)
5: s← score(E(h), C) . Eq. (11) and (12)
6: if s > 0.6 then . an empirical value
7: remove(x) . remove x from X
8: end if
9: end for

10: t← meanValue(X)
11: s← (max(X) - min(X)) / 2
12: return F , t, s
13: end procedure
14: procedure BUILDFOREST(X, t, ψ)
15: F ← φ
16: l← ceiling(log2 ψ) . maximum times of iterations
17: for i = 1 to t do
18: X(i) ← randomSample(X,ψ)
19: F ← F ∪ BUILDTREE(X(i), 0, l)
20: end for
21: return F
22: end procedure
23: procedure BUILDTREE(X, e, l)
24: if e ≥ l or |X| ≤ 1 then
25: return exNode{|X|} . record the size of X
26: end if
27: i← randomDim(1, 3) . get one dimension
28: q ← randomSpitPoint(X[i])
29: Xl, Xr ← split(X[i], q)
30: L←BUILDTREE(Xl, e+ 1, l) . get child pointer
31: R←BUILDTREE(Xr, e+ 1, l)
32: return inNode{L,R, i, q}
33: end procedure

The key idea of the algorithm is to recursively separate
the data space into a series of isolated data points, and then
take the easily isolated ones as outliers. The philosophy is
that, normal points is typically located more closely and
thus need more steps to isolate, while the outliers usually
scatter sparsely and can be easily isolated with less steps.
As indicated by the algorithm, we first create t isolated trees
(the iForest) using the point cloud of an object (lines 2 and
14-33), and then identify the outliers by counting the path
length of each point x ∈ X (lines 3-9), in which the score
function is defined as follows:

s(x) = 2 exp
−E(h(x))

C
, (11)

C = 2H(|X| − 1)− 2(|X| − 1)

|X|
, (12)
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where C is a normalization parameter, H is a weight
coefficient, and h(x) is the height of point x in isolated tree.
As demonstrated in Fig. 4(d)-(e), the yellow point is isolated
after four steps, thus its path length is 4, and the green point
has a path length of 8. Therefore, the yellow point is more
likely to be an outlier. In our implementation, points with
a score greater than 0.6 are removed, and the remainings
are used to calculate t and s (lines 10-12). Based on s, we
can initially construct the cubics and quadratics in the object
frame, as shown in Fig. 4(a)-(c). s will be further optimized
along with the object and camera poses later on.

Estimate θy: The estimation of θy is divided into two
steps, namely to find a good initial value for θy first and
then conduct numerical optimization based on the initial
value. Since pose estimation is a non-linear process, a
good initialization is very important to help improve the
optimality of the estimation result. Conventional methods
[13] usually neglect the initialization process, which typically
yields inaccurate results.

The details of pose initialization algorithm is presented in
Alg. 2. The inputs are obtained as follows: 1) LSD segments
are extracted from t consecutive image and those falling in
the bounding boxes are assigned to the corresponding objects
(see Fig. 5a); 2) The initial pose of an object is assumed to be
consistent with the global frame, i.e., θ0=0 (see Fig. 5b). In
the algorithm, we first uniformly sample thirty angles within
[−π/2, π/2] (line 2). For each sample, we then evaluate its
score by calculating the accumulated angle errors between
LSD segments Zlsd and the projected 2D edges of 3D edges
Z of the cube (lines 3-12). The error is defined as follows:

e(θ) = ||α(Ẑ(θ))− α(Ẑlsd)||2,
Ẑ(θ) = KTc (R(θ)Z + t) .

(13)

A demonstration of the calculation of e(θ) is visualized in
Fig. 5 (e)-(g). The score function is defined as follows:

Score =
Np

Na
(1 + 0.1(ξ − E(e))), (14)

where Na is the total number of line segments of the object
in the current frame, Np is the number of line segments that
satisfy e < ξ, ξ is a manually defined error threshold (five
degrees here), and E(e) is the average error of these line
segments with e < ξ. After evaluating all the samples, we
choose the one that achieves the highest score as the initial
yaw angle for the following optimization process (line 13).

Algorithm 2 Initialization for Object Pose Estimation

Input: Z1, Z2, . . . , Zt - Line segments detected by LSD in t
consecutive images, θ0 - The initial guess of yaw angel.

Output: θ - The estimation result of yaw angel, e - The
estimation errors.

1: S, E ← φ
2: Θ← sampleAngles(θ0, 30) . see Fig. 5 (b)-(d)
3: for sample θ in Θ do
4: sθ, eθ ← 0
5: for Z in {Z1, Z2, . . . , Zt} do
6: s, e← score(θ, Z) . Eq. (13) and (14)
7: sθ ← sθ + s
8: eθ ← eθ + e
9: end for

10: S ← S ∪ {sθ}
11: E ← E ∪ {eθ}
12: end for
13: θ∗ ← argmax(S)
14: return θ∗, eθ∗

Joint Optimization: After obtaining the initial S and θy ,
we then jointly optimize object and camera poses:

{O, Tc}∗ = argmin
{θy,s}

∑
(e(θ) + e(s)) + argmin

{Tc}

∑
e(p), (15)

where the first term is the object pose error defined in Eq.
(13) and the scale error e(s) defined as the distance between
the projected edges of a cube and their nearest parallel
LSD segments. The second term e(p) is the commonly-sued
reprojection error in traditional SLAM framework.

VI. EXPERIMENTAL RESULTS

A. Distributions of Different Statistics

For data association, the adopted statistics for statistical
testing include the point clouds and their centroids of an
object. To verify our hypothesis about the distributions of
different statistics, we analyze a large amount of data and
visualize their distributions in Fig. 6.

Fig. 6 (a) shows the distributions of the point clouds of
13 objects during the data association in the fr3 long office
sequence. It is obvious that such statistics do not follow a
Gaussian distribution. We can be seen that the distributions
are related to specific characteristics of the objects, and do
not show consistent behaviors. Fig. 6 (b) shows the error
distribution of object centroids in different frames, which
typically follow the Gaussian distribution. This result verifies
the reasonability of applying the nonparametric Wilcoxon
Rank-Sum test for point clouds and t-test for object centroids.

B. Ensemble Data Association Experiments

We compare our method with the commonly-used Inter-
section over Union (IoU) method, nonparametric test (NP),
and t-test. Fig. 7 shows the association results of these
methods in TUM fr3 long office sequence. It can be seen
that some objects are not correctly associated in (a)-(c). Due
to the lack of association information, existing objects are
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Fig. 6: Distributions of different statistics in data association. (a)
position distribution of point clouds in three directions. (b) distance
error distribution of centroids.

often misrecognized as new ones by these methods once the
objects are occluded or disappear in some frames, resulting
in many unassociated objects in the map. In contrast, our
method is much more robust and can effectively address this
problem (see Fig. 7(d)). The results of other sequences are
shown in Table I, and we use the same evaluation metric
as [6], which measures the number of objects that finally
present in the map. The GT represents the ground-truth
object number. As we can see, our method achieves a high
success rate of association, and the number of objects in the
map goes closer to GT, which significantly demonstrates the
effectiveness of the proposed method.

We also compare our method with [6], and the results
are shown in Table II. As is indicated, our method can
significantly outperform [6]. Especially in the TUM dataset,
the number of successfully associated objects by our method
is almost twice than that by [6]. In Microsoft RGBD and
Scenes V2, the advantage is not obvious since the number of
objects is limited there. Reasons of the inaccurate association
of [6] lie in two folds: 1) The method does not exploit
different statistics and only used non-parametric statistics,
thus resulting in many unassociated objects; 2) A clustering
algorithm is leveraged to tackling the problem mentioned
above, which removes most of the candidate objects.

TABLE I: DATA ASSOCIATION RESULTS

IoU IoU+NP IoU+t-test EAO GT
Fr1 desk 62 47 41 14 16
Fr2 desk 83 64 52 22 25
Fr3 office 150 128 130 42 45
Fr3 teddy 32 17 21 6 7

C. Qualitative Assessment of Object Pose Estimation

We superimpose the cubes and quadrics of objects on
semi-dense maps for qualitative evaluation. Fig. 8 is the
3D top view of a keyboard (Fig. 5(a)) where the cube
characterizes its pose. Fig. 8(a) is the initial pose with large
scale error; Fig. 8(b) is the result after using iForest; Fig.
8(c) is the final pose after our joint pose estimation. Fig.
9 presents the pose estimation results of the objects in 14
sequences of the three datasets, in which the objects are
placed randomly and in different directions. As is shown, the
proposed method achieves promising results with a monocu-
lar camera, which demonstrate the effectiveness of our pose
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Fig. 7: Qualitative comparison of data association results. (a) IoU
method. (b) IoU and nonparametric test. (c) IoU and t-test. (d) our
ensemble method.

(a) (b) (c)

Fig. 8: Visualization of the pose estimation.

Fig. 9: Results of object pose estimation. Odd columns: original
RGB images. Even column: estimated object poses.

estimation algorithm. Since the datasets are not specially
designed for object pose estimation, there is no ground truth
for quantitatively evaluate the methods. Here, we compare θy
before initialization (BI), after initialization (AI), and after
joint optimization (JO). As shown in Table III, the original
direction of the object is parallel to the global frame, and
there is a large angle error. After pose initialization, the error
is decreased, and after the joint optimization, the error is
further reduced, which verifies the effectiveness of our pose
estimation algorithm.
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D. Object-Oriented Map Building

Lastly, we build the object-oriented semantic maps based
on the robust data association algorithm, the accurate object
pose estimation algorithm, and a semi-dense mapping sys-
tem. Fig. 10 shows two examples of TUM fr3 long office and
fr2 desk, where (d) and (e) show a semi-dense semantic map
and an object-oriented map, build by EAO-SLAM. Com-
pared with the sparse map of ORB-SLAM2, our maps can
express the environment much better. Moreover, the object-
oriented map shows the superior performance in environment
understanding than the semi-dense map proposed in [25].

The mapping results of other sequences in TUM, Mi-
crosoft RGB-D, and Scenes V2 datasets are shown in Fig.
11. It can be seen that EAO-SLAM can process multiple
classes of objects with different scales and orientations in
complex environments. Inevitably, there are some inaccurate
estimations. For instance, in the fire sequence, the chair is
too large to be well observed by the fast moving camera,
thus yielding an inaccurate estimation. We also conduct
experiment in a real scenario, Fig. 12. It can be seen even the
objects are occluded, they can be accurately estimated, which
further verifies the robustness and accuracy of our system.

VII. CONCLUSION

In this paper, we present the EAO-SLAM system that aims
to build semi-dense or lightweight object-oriented maps.
The system is implemented based on a robust ensemble
data association method and an accurate pose estimation
framework. Extensive experiments show that our proposed
algorithms and SLAM system can build accurate object-
oriented maps with object poses and scales accurately reg-
istered. The methodologies presented in this work further
push the limits of semantic SLAM and will facilitate related
researches on robot navigation, mobile manipulation, and
human-robot interaction.
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TABLE II: QUANTITATIVELY ANALYZED DATA ASSOCIATIONS

Seq
Tum Microsoft RGBD Scenes V2

fr1 desk fr2 desk fr3 long office fr3 teddy Chess Fire Office Pumpkin Heads 01 07 10 13 14

[6] - 11 15 2 5 4 10 4 - 5 - 6 3 4

Ours 14 22 42 6 13 6 21 6 15 7 7 7 3 5
GT 16 23 45 7 16 6 27 6 18 8 7 7 3 6

TABLE III: QUANTITATIVE ANALYSIS OF OBJECT ANGLE ERROR

Seq fr3 long office fr1 desk fr2 desk
Mean

Objects book1 book2 book3 keyboard1 keyboard2 mouse Book1 Book2 Tvmonitor1 Tvmonitor2 keyboard Book1 Book2 mouse

BI 19.2 11.4 16.2 10.3 7.4 11.3 33.5 15.2 32.7 22.5 8.9 15.5 16.9 8.7 16.4

AI 5.3 5.5 6.2 7.2 4.2 6.4 8.6 8.9 6.0 11.4 5.5 3.8 10.1 7.5 6.9

JO 3.1 4.3 5.7 2.5 2.8 4.3 5.4 7.6 8.7 10.2 3.9 5.1 6.4 7.9 5.6

Fig. 10: Different map representations. (a) the RGB images. (b) the sparse map. (c) semi-dense map. (d) our semi-dense semantic map.
(e) our lightweight and object-oriented map. (d) and (e) are build by the proposed EAO-SLAM.

Fig. 11: Results of EAO-SLAM on the three datasets. Top: raw images. Bottom: simi-dense object-oriented map.

Fig. 12: Results of EAO-SLAM in a real scenario. Left and right: raw images. Middle: semi-dense object-oriented map.
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