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Abstract

The problem of localizing the position of a sensor in an uncertain map which is estimated
simultaneously is known as Simultaneous Localization and Mapping –SLAM–. It is a chal-
lenging problem comparable to the egg and chicken paradigm. To locate the sensor we need
to know the map, but to build the map, we require the position of the sensor. When using
a visual sensor, e.g. a camera, it is coined as Visual SLAM or VSLAM. Visual sensors for
SLAM are divided between those which provide depth information (e.g. RGB-D cameras or
stereo rigs) and those which do not (e.g. monocular cameras or event cameras). In this thesis,
we have focused our research on SLAM with monocular cameras.

Due to the lack of depth perception, monocular SLAM is inherently harder compared to the
SLAM with depth sensors. State-of-the-art manuscripts in monocular VSLAM systems have
widely assumed that the scene remains rigid during the entire sequence, which is a feasible
assumption for industrial and human environments. The rigidity assumption constrains the
problem and allows to build a reliable map after processing several images. In the last years,
the interest in SLAM has arrived at medical areas. SLAM algorithms could help to orientate
the surgeon or to locate the position of a robot. However, in contrast, to the industrial or
usual human scenarios, in in-body sequences, everything can deform eventually and the
rigidity assumption rends invalid in practice, and therefore the state-of-the-art monocular
SLAM algorithms do too. Thus, we aim to extend the boundaries of SLAM algorithms and
to conceive the first monocular SLAM system able to cope with the deformation of the scene.

The state-of-the-art SLAM methods in literature compute the position of the camera and
the map of the scene in two concurrent threads: the tracking and the mapping. The tracking
processes every single frame to locate the sensor continuously. In contrast, the mapping is in
charge of building a map of the scene. We have adopted this structure and conceive both the
deformable tracking and the deformable mapping now able to cope with the deformation.

Our first contribution is the deformable tracking. The deformable tracking uses the structure
of the map to recover the camera pose from a single view. Simultaneously, as the map is
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deforming during the sequence, it also recovers the deformation of the map for every frame.
We have proposed two families of deformable tracking. In the first kind of deformable track-
ing, we assume that all the points are embedded in a surface referred to as the template. We
can recover the deformation of the surface thanks to a global deformation model that allows
us to estimate the most likely deformation of the object. With our second kind of deformable
tracking, we prove that it is possible to recover the deformation of the map without a global
deformation model, representing the map as individual surfels. Our experimental results
showed both methods outperform both in robustness and accuracy to the previous rigid
methods recovering the deformation of the map.

Our second contribution is the conception of the deformable mapping. It is the back-end of
the SLAM algorithm and processes a batch of frames to both recover the structure of the
map for each of these frames and to grow the map by assembling the partial observations of
the same. Both deformable tracking and mapping running in parallel and together assemble
the first deformable monocular SLAM: DefSLAM. An extended evaluation of our method
proved, in both laboratory-controlled sequences and medical sequences, that our method
successfully processes sequences where current monocular SLAM systems fail.

As our third contribution are two methods to exploit the photometric information in de-
formable monocular SLAM. On the one hand, SD-DefSLAM, which exploits the semi-direct
matching to obtain a much more reliable tracking of the map points in the new frames. As
a consequence, it was proved to be more robust and stable in medical sequences. On the
other hand, we propose the Direct and Sparse Deformable Tracking in which we use a direct
photometric error to track the deformation of a map modelled as a set of unconnected 3D
surfels. We can recover the deformation of multiple disconnected surfaces, non-isometric
deformations and surfaces with changing topology.



Resumen

El problema de localizar la posición de un sensor en un mapa incierto que se estima si-
multáneamente se conoce como Localización y Mapeo Simultáneo –SLAM–. Es un problema
desafiante comparable al paradigma del huevo y la gallina. Para ubicar el sensor necesitamos
conocer el mapa, pero para construir el mapa, necesitamos la posición del sensor. Cuando se
utiliza un sensor visual, por ejemplo, una cámara, se denomina Visual SLAM o VSLAM.
Los sensores visuales para SLAM se dividen entre los que proporcionan información de
profundidad (por ejemplo, cámaras RGB-D o equipos estéreo) y los que no (por ejemplo,
cámaras monoculares o cámaras de eventos). En esta tesis hemos centrado nuestra investi-
gación en SLAM con cámaras monoculares.

Debido a la falta de percepción de profundidad, el SLAM monocular es intrínsecamente más
duro en comparación con el SLAM con sensores de profundidad. Los trabajos estado del arte
en VSLAM monocular han asumido normalmente que la escena permanece rígida durante
toda la secuencia, lo que es una suposición factible para entornos industriales y urbanos. El
supuesto de rigidez aporta las restricciones suficientes al problema y permite construir un
mapa fiable tras procesar varias imágenes. En los últimos años, el interés por el SLAM ha
llegado a las áreas médicas. Los algoritmos SLAM podrían ayudar a orientar al cirujano o
localizar la posición de un robot. Sin embargo, a diferencia de los escenarios industriales
o urbanos, en secuencias dentro del cuerpo, todo puede deformarse eventualmente y la
suposición de rigidez acaba siendo inválida en la práctica, y por extensión, también los
algoritmos de SLAM monoculares. Por lo tanto, nuestro objetivo es ampliar los límites de los
algoritmos de SLAM y concebir el primer sistema SLAM monocular capaz de hacer frente a
la deformación de la escena.

Los sistemas de SLAM actuales calculan la posición de la cámara y la estructura del mapa
en dos subprocesos concurrentes: la localización y el mapeo. La localización se encarga de
procesar cada imagen para ubicar el sensor de forma continua, en cambio el mapeo se encarga
de construir el mapa de la escena. Nosotros hemos adoptado esta estructura y concebimos
tanto la localización deformable como el mapeo deformable ahora capaces de recuperar la
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escena incluso con deformación.

Nuestra primera contribución es la localización deformable. La localización deformable
utiliza la estructura del mapa para recuperar la pose de la cámara con una única imagen.
Simultáneamente, a medida que el mapa se deforma durante la secuencia, también recupera
la deformación del mapa para cada fotograma. Hemos propuesto dos familias de localización
deformable. En el primer algoritmo de localización deformable, asumimos que todos los
puntos están embebidos en una superficie denominada plantilla. Podemos recuperar la de-
formación de la superficie gracias a un modelo de deformación global que permite estimar
la deformación más probable del objeto. Con nuestro segundo algoritmo de localización
deformable, demostramos que es posible recuperar la deformación del mapa sin un modelo
de deformación global, representando el mapa como surfels individuales. Nuestros resulta-
dos experimentales mostraron que, recuperando la deformación del mapa, ambos métodos
superan tanto en robustez como en precisión a los métodos rígidos.

Nuestra segunda contribución es la concepción del mapeo deformable. Es el back-end
del algoritmo SLAM y procesa un lote de imagenes para recuperar la estructura del mapa
para todas las imagenes y hacer crecer el mapa ensamblando las observaciones parciales
del mismo. Tanto la localización deformable como el mapeo que se ejecutan en paralelo
y juntos ensamblan el primer SLAM monocular deformable: DefSLAM. Una evaluación
ampliada de nuestro método demostró, tanto en secuencias controladas por laboratorio como
en secuencias médicas, que nuestro método procesa con éxito secuencias en las que falla el
sistema monocular SLAM actual.

Nuestra tercera contribución son dos métodos para explotar la información fotométrica en
SLAM monocular deformable. Por un lado, SD-DefSLAM que aprovecha el emparejamiento
semi-directo para obtener un emparejamiento mucho más fiable de los puntos del mapa
en las nuevas imágenes, como consecuencia, se demostró que es más robusto y estable en
secuencias médicas. Por otro lado, proponemos un método de Localización Deformable
Directa y Dispersa en el que usamos un error fotométrico directo para rastrear la deformación
de un mapa modelado como un conjunto de surfels 3D desconectados. Podemos recuperar
la deformación de múltiples superficies desconectadas, deformaciones no isométricas o
superficies con una topología cambiante.
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Chapter 1

Introduction

1.1 Problem statement

In the cave allegory, exposed by Plato in "The Republic" in 400 B.C., humans were only able
to observe shadows of the reality in a wall. With a computer, this allegory gets literal since
only with the input of a sensor, e.g. a camera, the computer has only partial and incomplete
observations of the scene that surrounds it. From this information, the computer must be
able to recover as much information about the environment and itself as possible. There is a
huge range of different information to extract with a computer, e.g. we may want to know
what are the objects in a room, or maybe if it is going to rain by looking at the clouds. In this
dissertation, I am going to focus on the understanding of ”where the sensor is located” and

”how the observed environment is” and what is the more important contribution of this thesis
”how the environment evolves”.

Solving ”where the sensor is located” and ”how the observed environment is” simultane-
ously and sequentially is widely known as SLAM, the acronym for Simultaneous Localization
and Mapping problem. It is the perfect example of the chicken-and-egg paradigm: we need
the structure of the scene to locate our sensor and we need the position of the sensors to
map the scene from its partial observations. If the given sensor works through with visual
perception (e.g. standard monocular cameras, stereo pairs, or event cameras to name the
more frequent), the problem is so-called Visual SLAM. From now on, the structure of the
scene will be referred to as map.

As an example of a SLAM algorithm, given the input of an RGB-D camera that includes
a depth image apart from the normal RGB image, we initialize the map as the point cloud
extracted from the first image. Given this map, we can use it to locate the sensor in the
following images by fitting the prediction of what we should be seeing and the measurements
of what we are actually seeing. After processing some images, we can refine and grow
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Fig. 1.1 Monocular SLAM scheme. The map is initialized from scratch with the first two
frames. The tracking processes the frame to estimate the current camera pose. The mapping
processes some frames, so-called keyframes, to create a map. The map accuracy gets better
as we introduce keyframes with more parallax. Eventually, the camera abandons the initial
zone exploring new areas. We distinguish between those map points observed by the camera
(in red) and those unobserved (in blue).

our intial map with the new RGB-D images since we know the pose of the camera, like
assembling a puzzle. With a refined and bigger map, we can keep performing these two steps
to track our sensor and build the entire map of the scene from partial observations. The step
of localizing the camera is known as tracking, meanwhile, the step of building the map is
known as mapping.

If we cannot observe the depth, like it is the case for monocular cameras, the algorithm
becomes more challenging. We need the position of at least two cameras to initialize the
map that will be used to track the camera (See Fig.1.1). Assuming that the first camera is
the reference camera, the algorithm estimates an initial solution of the pose of the second
camera from scratch. Then, we use the pose of both cameras to roughly recover the map
points by triangulation. This initial map is used to track the sensor position in the next
images, so-called frames. Eventually, we process a batch of some of these frames, so-called
keyframes, to improve the initial map. As a thumb rule, the more parallax the keyframes
have, the better the reconstruction is. Finally, with enough parallax, we recover a map that
we can use to reliably track the sensor. Needless to say, the lack of depth information in the
monocular case entangles substantially the problem. However, trying to solve the SLAM
problem with monocular cameras is not in vain. The power consumption is much smaller, it
is easier to implement in hardware and the miniaturization is almost unlimited.
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Due to its advantages and challenging nature, monocular SLAM problem has drawn
the attention of many good researchers, and incredible advances were made in this area
in the last decades. Almost all the state-of-the-art monocular SLAM algorithms use the
scheme presented in the last paragraph with a tracking and mapping concurrent threads.
Notice, however, that the current versions of the described components can be used only with
the underlying assumption of a rigid world. That means that the scene must remain rigid
during the entire sequence, which is a valid assumption for human scenarios like buildings
or the distribution of a room or a factory. Thanks to the rigidity assumption, multiview
geometry provides enough equations to overconstrain the problem and to compute the map
from matches among keyframes, and also the camera pose from matches between the frame
and the map. That is why in the rigid case, we deal with a well-posed problem.

The astonishing advances of the last years both in computer vision applications and
SLAM brought the interest in many different areas like medical imaging or computer-
assisted surgery. In in-body scenes where surgeons can barely orient themselves after a long
training, the computers have been shown to be extremely helpful. However, in contrast to
human scenarios, one of the main characteristics of the in-body sequences is that everything
can deform eventually. This is an important limitation for the current monocular SLAM
systems since the rigidity assumption is not longer valid for this kind of scenario. Thus,
multiview geometry does not provide enough equations rendering the problem ill-posed.
As a consequence, instead of basing our SLAM algorithms in multiview geometry, we use
Non-Rigid Structure-from-Motion –NRSfM– to provide the theoretical fundamentals for
our algorithms. And this is the goal of this thesis: Conceive a monocular SLAM system
able to work in scenarios where the structure of the scene can deform built on top of NRSfM
techniques.

We aim to expand the boundaries of monocular SLAM to enable the processing of
deformable scenes. As we mentioned before, we have two main functions in a SLAM
algorithm: the tracking, which takes care of recover the pose of the camera given a known
map, and the mapping, in charge of creating that map. Through this manuscript, we present a
tracking and a mapping modules able to process deformation. We coined those modules as
deformable tracking and deformable mapping.

The tracking is the front-end of the SLAM algorithms. It takes as input the stream of
images and processes the current image to estimate the state of the system. In rigid SLAM,
this state is the camera pose since the state of the map is constant. For the deformable case,
the state for each frame is the camera pose and the deformation of the map. The camera pose
is modelled with six DoF –Degrees of Freedom–, three for the translation of the camera and
three DoF for the rotation. When it comes to the map, we need to choose a representation of
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Fig. 1.2 Non-Rigid Surface alignment. It deals with the alignment of parts of the same
surface with different deformations. In deformable SLAM, it is a key part of the deformable
mapping and deals with the alignment of different partial maps observed into a single global
map

the selected scene. It can be reconstructed as a volumetric map or a surface. There are few
objects that are actually a surface, however, the surface of the object is usually the observable
part of the scene. Thus, we represent the map as a surface. In the Chapters 2, 3 and 4 we
represent the map as a mesh, where the estimated map state is the position of the nodes.
The mesh embeds all the map points and is used to incorporate a deformation model with
standard equations from computer graphics and continuum mechanics. In Chapter 5, we
model the surface as disconnected surfels where the map state is the position and orientation
of these surfels.

In addition to recovering the camera pose and the deformation of the map, the tracking
thread performs the automatic data association between frames. There are two main ways to
perform the data association between frames or between the frame and the map. The first
one is the feature-based method and consists in matching interest points through an extractor
and a descriptor. The second consists in optimizing the photometric error, i.e. the difference
between the intensity level of the observation and the prediction. In the deformable tracking
proposed in Chapter 2 and 3, we use a feature-based tracking with ORB matching. We find
this technique fast enough to develop a real-time SLAM and very reliable for well-textured
scenes. In Chapter 4 and Chapter 5, we show the potential of the photometric error compared
with the features methods yielding to more robust and accurate methods of tracking.

The deformable mapping estimates the structure of the map for the deformable tracking.
There are two inherent tasks for the deformable mapping. The first task is to reconstruct
a deforming scene from several monocular views. As aforementioned, when we relax the
rigidity assumption the problem becomes underconstrained. In our deformable mapping
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proposed in Chapter 3, we build this part on top of the NRSfM methods that reconstruct
the structure of the map from a stream of monocular images. We achieve to reconstruct the
map observed in several keyframes by assuming that the map is a smooth surface, locally
isometric and infinitesimally planar.

The second task of the deformable mapping is to grow the map when visiting new zones
of the scene. Once we have obtained the structure of the scene observed for each keyframe,
we need to align partial observations of the map. In contrast to the rigid case, we need to
align partial observations of the map with a different deformation for each keyframe (See Fig.
1.2). The deformable mapping proposed in Chapter 3 estimates incrementally the map of the
scene surface for each keyframe processed and then performs a non-rigid surface alignment
of the observed partial maps in the different keyframes into a bigger map.

Thanks to the union of the deformable tracking and deformable mapping, we conceive
the first monocular SLAM system able to perform exploration in deformable environments:
DefSLAM.

In the next Sections, we contextualize our work wrt. the state-of-the-art SLAM systems
and NRSfM methods for monocular sequences. In the last section, we state the contributions
to the field made within this thesis.

1.2 Visual SLAM

SLAM comprises the reconstruction of a map and the localization of a sensor for each
new measurement. The main goal of SLAM is to bring the localization of the sensor in
scenarios where there is no a prior map available and it needs to be built. The more important
characteristic of a SLAM algorithm is the assumption of sequentiality. SLAM algorithms
do not process an unconnected set of images, they process videos, where each image is
close to the previous one in time and can be related more easily. This is a natural defense
against wrong data association and perceptual aliasing in similar scenes. Another important
characteristic inherited from this assumption is the efficiency of the system. A solution for
the last image will be always close enough to the solution for the new image.

The first real-time monocular SLAM systems (Chiuso et al., 2002, Davison, 2003), were
based in EKF filtering. They evolved to more complete and better engineered EKF systems
(Davison et al., 2007, Civera et al., 2008, Eade and Drummond, 2006). In MonoSLAM
(Davison, 2003, Davison et al., 2007), the algorithm matched a set of specific features
between images, so-called keypoints, to recover the map geometry as a point cloud that
represents the 3D location of the keypoints. Every new frame was processed by the filter to
estimate the map point locations and the camera pose. The depth of the scene is unknown for
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a single view. The structure of the map only becomes observable by using several images
with a certain separation, so-called parallax. The main drawback of these seminal methods
is that they process every single frame for building the map from viewpoints with very
small parallax, with a computational cost quadratic in the map size what severely limits its
scalability. Additionally, the lack of relinearization degrades its performance in the long run.

Klein and Murray (2007) presented the Parallel Tracking And Mapping –PTAM– struc-
ture, that solves the low parallax problem by splitting of the mapping and camera tracking.
The camera tracking is estimated at frame-rate, meanwhile, the map is estimated in parallel
only for a few selected frames, coined as keyframes, with higher parallax. This kind of
structure is especially useful to decouple the camera tracking, that can run in real-time, and
the mapping built on top of more accurate techniques like bundle adjustment (Triggs et al.,
1999) instead of filtering (Strasdat et al., 2012). Due to its advantages, the PTAM structure
has become dominant in the last years and it is used by the current state-of-the-art VSLAM
system (Engel et al., 2014, 2017, Mur-Artal et al., 2015, Campos et al., 2021).

The early SLAM methods were feature-based methods (Davison, 2003, Klein and Murray,
2007). The feature-based matching algorithms have two steps detection and description. In
the detection, the aforementioned keypoints are selected. In the second step, each one of these
keypoints is associated with a repeatable code, so it can be found in other images. Ideally,
both these points and their descriptor are as-invariant-as-possible so they can be tracked
from different points of view. Among all the possible options of features that can be used
for matching for SLAM, the selected one should be fast enough so it does not increase too
much the runtime of the algorithm. This excludes the analytic methods like SIFT, SURF or
AKAZE (Alcantarilla et al., 2011). Binary extractors and descriptors are used preferentially.
ORB-SLAM (Mur-Artal et al., 2015) and its extended versions Campos et al. (2021) use a
FAST-ORB tandem (Rublee et al., 2011) for all the stages of the algorithm what makes it
extremely efficient.

There is another family of SLAM systems which use the photometric error for the
matching, they are the so-called direct methods. Instead of matching keypoints between
images based on the descriptor similarity, they minimize the photometric error (gray level)
between the estimated projection of the point and the current image. The dense direct method
par excellence is DTAM (Newcombe et al., 2011). They use variational optimization to
minimize the gray difference between images to recover the map and use it to track the
camera. The main drawback of this method is the high computational cost. Thanks to the
variational formulation, the computation can be parallelized in the GPU and it is able to
run in real-time. Semi-dense approaches reduce notably the overall cost of the problem by
taking into consideration only the pixels of the image with high gradient (Engel et al., 2014).
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In (Concha and Civera, 2015), a dense reconstruction is obtained with low computational
cost by assuming that the low gradient parts in the images are planes. One of the most
remarkable direct method in terms of accuracy is DSO (Engel et al., 2017) with a direct
sparse photometric bundle adjustment. It recovers the structure of the scene for a sparse set
of points by optimizing directly the photometric error. This work was improved later in DSM
(Zubizarreta et al., 2020) with a revisiting policy over the previously observed keyframes. A
midpoint is the semi-direct methods like SVO (Forster et al., 2014), where the photometric
error is initially used to estimate the matches. Once estimated the matches become fixed and
the computation is performed as a feature-based method.

The first SLAM systems were able to deal with small scenes, but they were prompted to
fail or have a poor performance for larger scenes. All the SLAM systems have a tendency to
accumulate drift in the non-observable variables of the system. In the case of the monocular
SLAM they accumulate drift in translation, rotation and scale (See Fig.1.3). In the works
by Strasdat et al. (2010, 2011), they focus on getting a SLAM able to work on a large scale.
In the first work (Strasdat et al., 2010), the drift is corrected by introducing a loop closure
that performs a Sim(3) pose graph optimization. In the next work (Strasdat et al., 2011), a
covisibility window is used to center the computation of the algorithm only in a local map
instead of the entire map. When the map becomes bigger, global optimization can become
ineffective. Some works have focused on how to perform an efficient update of the map
through incremental smoothing and mapping (iSAM) (Kaess and Dellaert, 2009), or through
novel data structures like Bayesian trees (Kaess et al., 2010).

One essential part to overcome possible tracking failures is the relocalization module.
This module is meant to solve the kidnapped robot problem. The algorithm must be able
to detect if the sensor observing is in the currently available map and where it is located.
There are two parts in this algorithm. The first consists of image retrieval by searching
similar images to the new frame among the current map keyframes. It can be done with a
bag-of-word (Gálvez-López and Tardos, 2012) that describes the image through a vocabulary
of the descriptors or with newer techniques based in deep learning (Arandjelovic et al., 2016).
The image retrieval can get extremely hard under illumination changes like day-and-night
or season changes sequences, e.g. between summer and winter. The second part of the
relocalization consists of, once selected a candidate image, matching between the local map
of that image and the query one and recover the pose of the camera, for example with the
ePnP algorithm (Lepetit et al., 2009).

All the current state-of-the-art SLAM algorithms are based on the assumption that the
map was static from the beginning of the sequence to the end. This assumption can be true
for some sequences in which the map contains rigid parts, but when there are some non-static
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Fig. 1.3 Drift in SLAM. Triangles represent the cameras, dots the map points. Ground
truth in red, estimation in blue. The scale error accumulates proportionally to the travelled
trajectory. The rotation and translation also accumulate drift in the estimation as they are
relative parameters between cameras.

parts the tracking and mapping tend to fail. Although there are mechanisms to weigh less
these parts in the optimization, they always affect the quality of the reconstruction to a greater
or lesser extent. In the work presented by Bescos et al. (2018), it is proposed to remove these
dynamic parts through segmentation to subsequently apply conventional rigid techniques.

There are just a few brave SLAM works that have tackled the challenge of reconstructing
the entire scene even if it is deforming. The first SLAM method able to reconstruct a
deforming map was done by Newcombe et al. (2015). DynamicFusion was the first RGB-D
deformable SLAM developed. They define the dynamics of map with an as-rigid-as-possible
physical model (Sorkine and Alexa, 2007). The map is deformed to fit with the current frame
depth measurements and the camera is estimated wrt. the map shape-at-rest, that they coined
the canonical map. Innmann et al. (2016) proposed a similar approach, but using in addition
the RGB channel to improve the performance. MaskFusion (Runz et al., 2018) uses a rigid
SLAM method to track the camera and DynamicFusion to reconstruct the dynamic parts of
the scene segmented and classified by using semantic information. Another important work
in this line is MISSLAM (Song et al., 2018), Song et al. (2018) extended the DynamicFusion
to work with stereo cameras and it was able to reconstruct maps in in-body scenarios by
using the embedded deformation model. DynamicFusion was the work that inspired this
thesis: we aim to replicate similar results but with an important limitation, we target to use
monocular sequences.
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In our first work (Lamarca and Montiel, 2018a), we propose a deformable tracking able
to cope with deformations given a known map. This work had a pipeline with two stages:
a rigid SLAM to reconstruct the shape-at-rest of the map, and a second stage in which
we use the map to track both the camera and the deformation of the map. In DefSLAM
Lamarca et al. (2020), we presented the deformable mapping to complement the tracking
and conceived the first full monocular Deformable SLAM pipeline. Later in Rodríguez et al.
(2020), we propose to change the feature-based method used in DefSLAM by a photometric
method, obtaining a more robust and stable matching. Finally, we introduce Lamarca et al.
(2021) where we develop a deformable tracking able to cope with local deformations without
assuming a global model, being able to track discontinuous surfaces and non-isometric global
deformations.

1.3 Non-Rigid Structure-from-Motion

The reconstruction of non-rigid scenes and the location of the poses of the camera from
monocular sequences is an underconstrained problem with a large literature in the last
decades. To develop the monocular deformable SLAM, we use as starting point the current
Non-Rigid monocular techniques. For the deformable tracking, we use the Shape-from-
Template –SfT– or Template-based techniques. For the mapping, we based our method on
the NRSfM algorithms. For the sake of simplicity, we have split this section in the related
literature for the deformable tracking and for the deformable mapping.

1.3.1 Deformable Tracking

The deformable tracking aims to recover the deformation of the map and the camera pose.
Given a known camera pose and the initial configuration of the map, the first ambiguity
emerges when the scene can be deformed. If the structure of the scene can be deformed,
multiple configurations can generate the same image. The simplest example is an elastic
body that stretches and moves away, or shrinks and comes closer to the camera. We coined
this ambiguity as the growing map ambiguity. To solve the ambiguity, we need a deformation
model that constrains the map deformation. The family of algorithms that tries to solve this
problem are called template-based or Shape-from-Template techniques. The template is the
shape-at-rest of the map, also called canonical map. The distinctive characteristics between
these algorithms are how to define the original shape (usually a surface) and its deformation
model.
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One of the widest deformation model used is isometry. When a surface is isometric, the
geodesic distance (distance through the surface) between two points is preserved. At an
infinitesimal level, an isometric surface preserves the length of the directional derivatives
and the angle between them. Bartoli et al. (2012) proposed a closed-form solution assuming
isometry. It uses as input a 2D warp between the image, observing the initial shape, and the
target image. They can infer the 3D shape for the target image using the 2D warp. Other
closed-form methods that assume isometry (Moreno-Noguer et al., 2009, Salzmann et al.,
2008) use directly the correspondences between images meaning to solve very large linear
systems. Some closed-forms solutions represent the scene as a volumetric deformable object.
Parashar et al. (2015) solve the problem by using 3D splines as a continuous approach.
In contrast, Collins and Bartoli (2015) use a discrete approach and define the object as a
tetrahedral mesh. Latter works have also explored the well-posedness and the uniqueness by
measuring the curves that are contained in the surface Gallardo et al. (2020). Two relaxations
of the isometry assumption are the conformality, which only preserves the angles (Bartoli
et al., 2015) and equireality (Casillas-Perez et al., 2019) that preserves the area between both
directional derivative vectors.

The optimization-based methods work directly with the correspondences (Ngo et al.,
2016, Salzmann and Fua, 2011, Yu et al., 2015). They jointly optimize the reprojection
error and the deformation energy of the template. As it happens in rigid, optimization-based
techniques are excellent to exploit the continuity of a sequential image stream. They usually
recover the observed shape directly from correspondences between the shape-at-rest and the
new image. If the changes in shape are not very extreme, they take the solution in the last
image as the seed to estimate the shape in the new image. As aforementioned, the problem
needs to be constrained. An important number of methods are based on inextensibility, or
in other words, limiting the Euclidean distance between nodes. There is an example of
inextensibility in Fig. 1.4. Other additional sources of information can be used such as
shading or textural clues (White and Forsyth, 2006, Moreno-Noguer et al., 2010). In Ngo
et al. (2016), a physical model based on inextensibility and a Laplacian penalty is used to
penalize both the stretching and the bending of a surface and recover its shape in real-time.

Many template-based methods assumed static camera (Ngo et al., 2016, Salzmann and
Fua, 2011, Bartoli et al., 2015). However, in SLAM, we are interested in estimating an
explicit camera pose, then the camera pose becomes an unknown of the problem. If the map
can move freely, the space of solutions includes any coupled rigid motions of the camera
and the map that produce the same view. That is what we have coined as the floating map
ambiguity. There is very small literature about the estimation of the camera pose and the
deformation of the object in the monocular case at the same time. One of the most common
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Fig. 1.4 a) Shape-at-rest of the surface b) and c) deformed surfaces. b) shows the Euclidean
distance between the point A and B. In contrast, c) shows the geodesic distance between A
and B. In an isometric surface, the geometric distance between two points never changes. An
inextensible surface is defined using the Euclidean distance. As it can be seen in b), with an
isometric deformation the Euclidean distance with deformation is always smaller than the
original one.

solutions is to segment some rigid parts and use them to estimate the camera pose. It can be
a fair solution for scenes where most observed parts are static, but this is not always the case
and it is not the case for our in-body sequences.

Moreno-Noguer and Porta (2011) introduced the factor graph formalism for simulta-
neous camera localization and shape recovery. Both map and deformation were solved
simultaneously by a least-square optimization and the method was able to detect and remove
outliers. They used an orthographic camera model that does not allow large displacement
of the camera wrt. the reconstructed body. It was one of the first work bringing closer the
monocular SLAM and the non-rigid methods and can be considered the first non-rigid camera
tracking. Another way to constrain the problem is through physical priors. A physical model
is used as prior to reconstruct the shape. Agudo et al. (2012) use 3D finite element models
–FEM– to formulate the deformations of the scene and the camera pose. In Agudo et al.
(2015), an initial reconstruction is made in static to initialize. Then, a FEM model is used
to estimate the most plausible solution by estimating the minimal forces required for the
observed deformation. In the work by Agudo et al. (2015), the model is defined through
FEM and there are rigid boundary conditions, yielding to a shape with limited deformation
what constrains the movement of the body and the camera.

We use the idea of a shape-at-rest and a deformation model to build our deformable
tracking, the front-end of the deformable SLAM conceived to recover the camera pose and
the deformation of the map at frame-rate (Lamarca and Montiel, 2018a). The closed-form
template-based techniques can suit perfectly for a non-rigid relocalization module, but they
are very sensitive to the matching. In contrast, the optimization-based techniques are clear
candidates as camera and map deformation tracking. Indeed, we present two optimization-
based deformable tracking methods in this thesis (Chapters 2 and 5). The first one uses a
triangular mesh and a global deformation model to obtain the deformation of the map for
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every single frame. In the second one, we minimize directly the photometric error and a local
deformation model to recover the deformation of the map.

1.3.2 Deformable Mapping

If we assume perspective camera, unknown shape-at-rest and camera pose, a third ambiguity
arises, we call it the common scale ambiguity. With a perspective and moving camera, the
scales of two different points in a deformable scene are unrelated. For example, if we have a
real elephant very far and a toy elephant very close, they would have the same projection in
the camera. If they move conveniently while imaged by a moving camera, they can generate
the same projection along their own trajectories. More constraints are needed to reconstruct
the global scene, usually quite restrictive. The methods that tackle this problem are called
Non-Rigid Structure-from-Motion –NRSfM–.

The first attempt of reconstructing deforming scenes came with the seminal work Bregler
et al. (2000) twenty years ago. This method uses an orthographic camera model, assuming
that the changes in the observed depth are negligible. The geniality of Bregler et al. (2000)
is the introduction of the concept of bases. The basic idea is that a deforming shape can be
defined as a combination of shapes, or in other words, a low-dimensional shape space. In the
case of the work presented by Bregler et al. (2000), a linear combination of a certain number
of shapes.

In the last twenty years many orthographic methods have been developed based on
this idea, and they are known as statistic methods or low-dimensional NRSfM. The main
distinction between methods is the representation of the basis. Initially, all the methods
followed the idea of recovering a structure (Torresani et al., 2004, Xiao et al., 2004, Dai et al.,
2014, Torresani et al., 2008). Bartoli et al. (2008) propose a bundle adjustment based on the
idea of basis to recover the minimal number of shapes. In Akhter et al. (2011), they propose
a change of paradigm and they use Discrete Cosine Transform (DCT) bases to define the
trajectory of the points. They prove the duality between using a shape basis space and a
temporal trajectory basis space. Although the results were impressive, almost all the images
had to be processed and the system failed under certain camera movements. Gotardo and
Martinez (2011b) expanded this idea by explicitly combining the DCT and shape space in a
complementary rank-3 space. Finally, Gotardo and Martinez (2011a) proposed non-linear
combinations of the basis instead of purely linear combinations what improved the results
against the former proposals. Garg et al. (2013) proposed an optimization that regularizes
the structure of the scene to be smooth and the number of basis.

As aforementioned, all these methods can work thanks to the assumption of orthographic
camera. This assumption is quite acceptable for many situations where the depth of the
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camera is almost constant, but it is prompted to fail in close-up exploratory sequences. To
process these sequences, the perspective assumption is needed. However, this assumption
is not enough to constrain the problem and we need extra priors. The most extended is the
local isometry (used in the Shape-from-Template methods) plus some bending regularizer.
A first solution considering a regularly sampled surface mesh model was presented in
Salzmann et al. (2008). Chhatkuli et al. (2014b) formulated the isometry through differential
equations, assuming that the observed surfaces are approximated as infinitesimally planar.
Parashar et al. (2017) formalized these assumptions in the context of Riemannian geometry,
introducing a method able to recover the unit normals of the surface and manage unobserved
features. Vicente and Agapito (2012) implemented stretching as soft-constraints in an energy
minimization framework.

One fundamental challenge of the perspective methods is how to define the connection
between the map points. Almost all the mentioned methods work by assuming that the points
are contained in a smooth surface. Some of the physical models assume that the non-rigid
object is a piecewise partition, i.e. a collection of pre-defined patches that move independently
as rigid objects. Varol et al. (2009) were the first in using this strategy, followed by imposing
a 3D global consistency in overlapping points. A relaxation to the piece-wise rigid constraint
was given by Fayad et al. (2010), assuming each patch deforming with a quadratic physical
model, thus, accounting for linear and bending deformations. All these methods required
an initial patch segmentation and the number of overlapping points, to this end Russell et al.
(2011) optimize the number of patches and overlap through an energy-based optimization.
In contrast, Taylor et al. (2010) constructs a triangular mesh, connecting all the points, and
considering each triangle as being locally rigid, being able to deal with topological changes.

Beyond the incredible merit of reconstructing a deforming surface, one of the main
disadvantages of these methods is the inability of extending the map. The NRSfM methods
usually focus on a small object covered by the field of view of the camera. In Chapter 3, we
conceive the first deformable method using as a base the work proposed by Parashar et al.
(2017). The key feature of our module is that apart from reconstructing the shape of the
objects for each keyframe, it is able to extend the map by assembling these parts together by
non-rigid surface alignment, also known in literature as Non-Rigid puzzle (Litany et al., 2016).
By extending the map, DefSLAM is the first system able to perform exploration in new
deforming zones (See Fig.1.5). In addition, the computational cost of the NRSfM methods is
usually bigger than the cost for the template-based algorithms. That is the reason why we
run the deformable tracking and mapping in parallel, achieving real-time performances.
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Fig. 1.5 Deformable SLAM exploration. The deformable tracking recovers the deformation
and the camera pose for the current frame (in green). The deformable mapping uses the
matches given by the tracking to estimate the shape of the map for the current keyframes
(blue and red frames) and assemble it with the previous map. Map points in red.

1.4 Contributions

We have already mentioned the different topics covered in this thesis in the previous sections.
Regarding the document structure, we opted for including the four more relevant publications
as the four main chapters of the thesis. We aim to benefit from the careful editing process
of top tier venues that result in self-contained and easy to read chapters, attempts to rewrite
them would easily have resulted in poorer chapters. On the other hand, this approach implies
repetitions specially in the introductions and related work, some changes in the notation and
sub-optimal cross-referencing between chapters. In any case, we find that the advantages
clearly outweigh the inconveniences.

The starting point of our research was the monocular ORBSLAM (Mur-Artal et al., 2015)
sequential processing composed of two main threads: the tracking and the mapping. The
tracking estimates tracking camera pose assuming a known map. The mapping builds the
map from the matches of sparse features among the keyframes. The available geometrical
information after processing every frame/keyframe is exploited to robustify and speed up
the processing of the incoming new frame/keyframe, constraining the search for matches
of discrete features described by an ORB binary descriptor. Once the discrete matches
are available, a non-linear optimization refines the available geometry estimation which
converges fast to the new optimum yielding a better estimation to the geometry.

Our first contribution, described in chapter 2, is to conceive a deformable tracking thread
able to estimate the camera pose and the map deformation assuming that a set of well spread
ORB features in the current frame have been matched with a shape at rest that plays the role
of the deformable map. It is assumed the deformable map is available. We propose a regular
triangular mesh whose control variables are the 3D coordinates of the mesh nodes. One of
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the issues was how to relate the matched features with the nodes, we opted for the barycentric
coordinates. We state the deformable tracking as the optimization of a target function that
combines deformation energy with reprojection error. The resulting system operates in real
time and it was published as a demo session and the corresponding manuscript as a 2018
ECCV workshop:

• Lamarca, J., & Montiel, J. M. M. Camera tracking for SLAM in deformable maps.
Proceedings of the European Conference on Computer Vision (ECCV) Workshops
2018. pg. 730–737.

• ECCV Demo Session Thursday, September 13, 4 PM - 6 PM. Camera Tracking for
SLAM in Deformable Maps. J. Lamarca, J.M.M. Montiel

Our second contribution is described in Chapter 3 and it is the central contribution of the
thesis: conceiving DefSLAM, the first ever visual monocular SLAM operating in deformable
scenes. Mainly, we devised the mapping thread for deforming scenes from a calibrated
monocular perspective sequence, then we integrated it with the deformable tracking thread
of chapter 2 running in parallel. The mapping is built on top of the IsoNRSfM proposed
in Parashar et al. (2017), we devised how to compute the ORB matches sequentially, the
keyframe creation policy and the expansion of the map when new regions are visited. For
the experimental evaluation, we created the Mandala dataset. This dataset contains stereo
sequences with increasing levels of deformation, i.e. faster and bigger deformations of a
mandala kerchief. The stereo images allow to compute the ground truth for the estimated
deforming maps. DefSLAM was validated on the Mandala dataset and on a selection of
sequences of the Hamlyn dataset. This research was developed in a cooperation with Prof.
Bartoli and Dr. Parashar from Université Clermont Auvergne and it was the result of a
research visit on 2019. The results have been published as:

• Lamarca, J., Parashar, S., Bartoli, A., & Montiel, J. M. M. DefSLAM: Tracking and
mapping of deforming scenes from monocular sequences. IEEE Transactions on
robotics, 37(1), 291-303.

The code is available under GPLv3.1 license at:

• Lamarca, J., Parashar, S., Bartoli, A., & Montiel, J. M. M. DefSLAM https://github.
com/UZ-SLAMLab/DefSLAM

DefSLAM algorithm heavily relies on the ORB matches. The better the matches are, the
better the performance is. Unfortunatelly, ORB points produce weak matches. The poor

https://github.com/UZ-SLAMLab/DefSLAM
https://github.com/UZ-SLAMLab/DefSLAM
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repeatability of the FAST detector struggles to initialize points, and once a map point is
initialized, it goes on struggling to match the point in the subsequent frames, resulting in
short intermittent point tracks. In Chapter 4, we propose a semi-direct matching based on the
photometric Lucas-Kanade tracking able to produce long and continuous tracks that boosts
the performance of DefSLAM. To further increase the robustness we also add relocalization
and a surgical tool removal for surgical images. The system that includes all these matching
advances, called SD-DefSLAM, has been published as:

• Rodríguez, J. J. G.*, Lamarca, J.*, Morlana, J., Tardós, J. D., & Montiel, J. M. M.
Sd-defslam: Semi-direct monocular slam for deformable and intracorporeal scenes.
In 2021 IEEE International Conference on Robotics and Automation (ICRA) (*Equal
contribution)

This research intertwines the deep understanding of J. Lamarca the main author of
DefSLAM with the solid background of J. J. Gómez-Rodríguez in LK tracking. Resulting in
a tight integration that boosts the DefSLAM performance, particularly in medical scenes.

Our last contribution, Chapter 5, is a revisiting of the foundations of camera tracking
thread for deforming environments. In the previous chapters, we modeled the scene as a
continuous surface with a planar topology, what severely limits the applicability in medical
scenes where discontinuities or tubular shapes are frequent. We propose to code the map
surface as a set of disconnected 3D textures planar patches, called surfels. Encouraged for the
nice performance of the semi-direct matches, we target a full photometric error minimization
that recomputes the matches at each iteration of the optimization, avoiding the hard data
association of the feature based methods and achieving subpixel accuracy. The experiments
display how we can achieve longer tracks and recover more accurately the map deformation
and the camera pose than the feature based DefSLAM- and the semi-direct SD-DefSLAM
deformable tracking. The results have been submitted for publication in:

• J. Lamarca, J. J. Gómez-Rodríguez, J. D. Tardós, J.M.M. Montiel Direct and Sparse
Deformable Tracking. Submitted to IEEE Robotics and Automation Letters with ICRA
2022 option.

In addition to the directly related with the thesis publications, there was a collaboration
out-of-the-scope of the thesis that was not included:

• D. Recasens, J. Lamarca, J.M. Fácil, J.M.M. Montiel and J Civera. Endo-Depth-and-
Motion: Reconstruction and Tracking in Endoscopic Videos Using Depth Networks
and Photometric Constraints. IEEE Robotics and Automation Letters, 2021.
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This paper presented a monocular rigid direct odometry system developed by J. Lamarca
that used a CNN to predict the depth for the keyframes made in collaboration with the Dr.
J.M. Fácil, expert in single-view estimation. To make it able to process in-body sequences
we use the network Monodepth 2 (Godard et al., 2019) trained in the Hamlyn dataset by
David Recasens during his Master Thesis.

The thesis results were disseminated in the “IEEE RAS Winter School on SLAM in
Deformable Environments” 1 held in Australia 5-9 July 2021. DefSLAM and SD-DefSLAM
where the core of the next sessions:

• Lecture, Deformable SLAM, J. Lamarca

• Tutorial, Deformable SLAM development and applications J. Lamarca

• Supervision of 3 student projects based on DefSLAM. Two of them were awarded a
price: Laura Oliva Maza, Antonella Wilby, Alex McClung, Shi Zhou, Scarlett Liu,
who obtain first prize of the Winter School and Yury Brodskiy, Hemanth Kanner, Olaya
Alvarez Tunon, Luiza Ribeiro Marnet, Reuben Docea, who obtain the third prize.

In addition the candidate has co-supervised the next end-of-grade projects:

• Repetible pairing on visual SLAM in medical endoscopy environment. Lozano Puñet,
Rodrigo. Co-supervised by Montiel, J.M.M. and Lamarca, J. Trabajo Fin de Grado.
Universidad de Zaragoza 2020.

• Numerical estimation of differential properties of the deformation field in deformable
SLAM with FlowNet2. Royo, Diego, Co-supervised by Montiel, J.M.M. and Lamarca,
J. Trabajo Fin de Grado. Universidad de Zaragoza 2020

• Evaluation and processing of medical scenes with non-rigid VSLAM system. Morlana
Ledesma, Javier, Co-supervised by Montiel, J.M.M. and Lamarca, J. Trabajo Fin de
Máster. Universidad de Zaragoza 2019

1https://www.uts.edu.au/research-and-teaching/our-research/centre-autonomous-systems/events/
ieee-ras-winter-school-slam-deformable-environments

https://www.uts.edu.au/research-and-teaching/our-research/centre-autonomous-systems/events/ieee-ras-winter-school-slam-deformable-environments
https://www.uts.edu.au/research-and-teaching/our-research/centre-autonomous-systems/events/ieee-ras-winter-school-slam-deformable-environments




Chapter 2

Camera Tracking for SLAM in
Deformable Maps

The current SLAM algorithms cannot work without assuming rigidity. In this chapter, we
present the first real-time tracking thread for monocular VSLAM systems that manages
deformable scenes. It is based on top of the Shape-from-Template (SfT) methods to code the
scene deformation model. Our proposal is a sequential method that manages efficiently large
templates, i.e. deformable maps estimating at the same time the camera pose and deformation.
It also can be relocated in case of tracking loss. We have created a new dataset to evaluate
our system. Our results show the robustness of the method in deformable environments while
running in real time with errors under 3% in depth estimation.

2.1 Introduction

Recovering 3D scenes from monocular RGB-only images is a significantly challenging
problem in Computer Vision. Under the rigidity assumption, Structure-from-Motion (SfM)
methods provide the theoretical basis for the solution in static environments. Nonetheless,
this assumption renders invalid for deforming scenes as most medical imaging scenarios. In
the case of the non-rigid scenes the theoretical foundations are not yet well defined.

We can distinguish two types of algorithms that manage non rigid 3D reconstruction:
Non-Rigid Structure-from-Motion (NRSfM), which are mostly batch processes, and Shape-
from-Template (SfT), which work frame-to-frame. The main difference between these
methods is that NRSfM learns the deformation model from the observations while SfT
assumes a previously defined deformation model to estimate the deformation for each image.
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Rigid methods like Visual SLAM (Simultaneous Localisation and Mapping) have made
headway to work sequentially with scenes bigger than the camera field of view (Mur-
Artal et al., 2015, Concha and Civera, 2015, Klein and Murray, 2007, Engel et al., 2017).
Meanwhile, non-rigid methods are mostly focused on reconstructing structures which are
entirely imaged and tracked, for example, surfaces (Chhatkuli et al., 2014a, Ngo et al., 2016,
Salzmann and Fua, 2011), faces (Bregler et al., 2000, Torresani et al., 2008, Bartoli et al.,
2008, Paladini et al., 2010), or articulated objects (Russell et al., 2011, Lee et al., 2014).

We conceive the first real-time tracking thread integrated in a SLAM system that can
locate the camera and estimate the deformation of the surface based on top of a SfT algorithm
following Salzmann and Fua (2011), Ngo et al. (2016), Perriollat et al. (2011), Bartoli et al.
(2015). Our method includes automatic data association and PnP+RANSAC relocalisation
algorithm. We code the deformable map as a template which consists of a mesh with a
deformation model. Our template is represented as a 3D surface triangular mesh with spatial
and temporal regularisers that are rotation and translation invariant. We have selected a
meshh to represent our map because it is suitable for implementing physical models. In
addition, we can relate the observations with the template with barycentric coordinates.

We evaluate our algorithm with experimental validation over real data both for camera
location and scene deformation. This is the first work that focuses on recovering the de-
formable 3D just from partial images. Thus, we have created a new dataset to experiment
with partially-imaged template for sake of future comparison.

2.2 Problem formulation

2.2.1 Template definition

We code the deformable structure of the scene as a known template T ⊂ R3. The template
is modelled as a surface mesh composed of planar triangular facets F that connect a set of
nodes V . The facet f is defined in the frame i by its three nodes V i

fj
= {V i

f,h} h= 1 . . .3. The
mesh is measured through observable points X which lie inside the facets. To code a point
Xj ∈ X in frame i wrt. its facet fj nodes, we use a piecewise linear interpolation through the
barycentric coordinates bj = [bj,1, bj,2, bj,3]⊤ by means of the function φ : [R3,R3x3] → R3:

Xi
j = φ(bj ,Vi

fj
) =

3∑
h=1

bj,hVi
fj ,h (2.1)
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Fig. 2.1 Left: Two step region definition for the case of three observations inside two
unconnected facets. dK=1 for the thickening Ki. Right: Ring of neighbours Nk of the node
K.

The camera is assumed projective, the observable point Xi
j ∈ T defined in R3 is viewed

in the frame i with the camera located in the pose Ti through the projective function
π : [SE(3 ),R3] → R2.

π
(
Ti,Xi

j

)
=

 fu
xi

j

zi
j

+ cu

fv
yi

j

zi
j

+ cv

 (2.2)

[
xi

j yi
j zi

j

]T
= RiXi

j + ti (2.3)

Where Ri ∈ SO(3) and ti ∈ R3 are respectively the rotation and the translation of the
transformation Ti and {fu,fv, cu, cv} are the focal lengths and the principal point that define
the projective calibration for the camera. The algorithm works under the assumption of
previously knowing the template. This is a common assumption of template methods. We
efectivelly compute it by means of a rigid VSLAM algorithm Mur-Artal et al. (2015). We
initialise the template from a 3D reconstruction of the shape surface at rest. We use Poisson
surface reconstruction as it is proposed in Kazhdan et al. (2006) to construct the template
triangular mesh from the sparse point cloud. Once the template is generated, only cloud
points which lie close to a facet are retained and then projected into the mesh facets where
their barycentric coordinates are computed.

2.3 Optimisation

We recover the camera pose and the deformation only in the template region detected by the
camera. We define the observation region, Oi, as the template nodes belonging to a facet
with one or more matched observations in the current image i. We dilate the Oi region with
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a layer that we call thickening layer, Ki whose thickness is dK. We call the template region
estimated in the local step local map, Li. It is defined as Li = Oi ∪Ki (See Fig. 2.1).

We propose the next optimisation to recover both the camera pose Ti and the position of
the local map nodes V i

k ∈ Li, in frame i:

argmin
Ti,V

i
k ∈Li

1
N•

∑
j

ρ
(∥∥∥πi
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Ti,φ(bj ,V

i
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)
)
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∑
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∥∥∥V i
k −V i−1

k

∥∥∥
The weights of the regularisers λL,λd,λt are defined with respect to a unit weight for

the data term. Additionally, we consider different normalisation factors to correct the final
weight assigned to each term. We consider a correction depending on the number of addends,
denoted asN•, in the summation of the corresponding regularising term and a scale correction
for the temporal term.

The nodes not included in the optimisation, whose position is fixed, V i
k ∈ {T \Li}, are

linked with those optimised, hence they are acting as boundary conditions. As a consequence
most of the rigid motion between the camera and the template is included in the camera
motion estimate Ti.

The regularisers code our deformation model, they are inspired in continuum mechanics
where bodies deform generating internal energies due to normal strain and shear strain. The
first term is the Cauchy or engineering strain:

∑
k

∑
l∈Nk
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l
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∥∥∥V 0

k −V 0
l
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k −V 0

l

∥∥∥
2

(2.5)

It penalises the normal strain energy. Per each node V i
k we consider a summation over

the ring of its neighbours Nk. Per each neighbour the deformation energy is computed as
proportional to the squared ratio between the distance increment and the distance at rest.
Unlike other isometry or inextensibility regularisers, (Ngo et al., 2016, Gallardo et al., 2016),
it is a dimensionless magnitude, invariant with respect to the facet size. Per each node V i

k we
consider its ring of neighbours Nk in the computation.
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The second regulariser is the bending energy:

∑
k

(
∥δi

k∥−∥δ0
k∥
)2 ∑

l∈Nk

1∥∥∥V i
k −V i

l

∥∥∥2 (2.6)

It penalises the shear strain energy. It is coded as the squared ratio between the deflection
change and the mean edge length in its ring of neighbours Nk. We use the ratio in order to
get dimensionless magnitude invariant to the facet size. The deflection δi

k also represents the
mean curvature, it is computed by means of the discrete Laplace-Beltrami operator:

δi
k = V i

k − 1∑
l∈Nj

ωl

∑
l∈Nj

ωlV
i

l (2.7)

in order to cope with irregular and obtuse meshes, ωl is defined by the so-called mean-value
coordinates Floater (2003):

ωl =
tan(Ω1

k,l/2)+tan(Ω2
k,l/2)∥∥∥V 0

k −V 0
l

∥∥∥ (2.8)

The Ω1
k,l and Ω2

k,l angles are defined in Figure 2.1.
The last term codes a temporal smoothing between the nodes in Li. This term is dimen-

sionless with the average length of the arcs in the mesh represented by S. We joinly optimise
the reprojection error and the deformation energy with the Levenberg–Marquardt algorithm
implemented in the library g2o Kümmerle et al. (2011).

2.4 SLAM Pipeline

To compose the entire tracking thread, we integrate the optimisation in a pipeline with
automatic data association working with ORB points, and a DBoW keyframe database
(Gálvez-López and Tardós, 2012) that allows relocalisation in case of losing the tracking.

Our optimisation method uses as input the observations of the template points in the
current frame. Specifically, multiscale FAST corner to detect the observations, and the
ORB descriptor (Rublee et al., 2011) to identify the matches. We apply the classical in
VSLAM active matching, that sequentially process the image stream. First, the ORB points
are detected in the current image. Next, with a camera motion model, it is predicted the
camera pose as a function of the past camera poses. Then, the last template estimate
and the barycentric coordinates are used to predict where the template points would be
imaged. Around the template point prediction it is defined a search region. Among the ORB
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points inside the search region, the one with the closest ORB descriptor is selected as the
observation. We apply a threshold on the ORB similarity to definitively accept a match. The
ORB descriptor of the template point is taken from the template initialisation. The similarity
is estimated as the Hamming distance between the ORB descriptors. To reduce the number of
false negatives, we cluster the matches according to their geometrical innovation, difference
between the predicted template point in the image and the detected one. Only the three main
clusters of matches are retained.

For relocalisation, we use a relaxed rigid PnP + RANSAC algorithm. We estimate the
initial solution with a PnP and refine it with a deformable optimization. We tested the original
rigid PnP in five thousand images that contain deformation and we got a recall of 26%
successful relocalisation. With the proposed relaxed method up to a 49%. The precision in
the relocalisation is close to the 100%.

2.5 Experiments

Comparison with state of the art SfT. We benchmark our proposal with the standard
Kinect paper dataset, to compare the performance of our deformation model with respect to
state-of-the-art template-based algorithms. Kinect paper dataset is composed of 193 frames,
each frame contains around 1300 observations coming form SIFT points. The matches for
the observations are also provided. The ground truth for the matched points are computed
from a Kinect RGB-D sensor. The benchmark considers a template that can be fit within
the camera field of view. To make an homogeneous comparison we fixed the camera and
leave the boundaries of the mesh free. In table 2.1 we show the mean RMS error along
the sequence compared with respect to some popular methods Chhatkuli et al. (2014a) [1],
Bartoli et al. (2015)[2], Özgür and Bartoli (2017)[3], Salzmann and Fua (2011)[4], Östlund
et al. (2012)[5], Brunet et al. (2010)[6]. Ours gets 4.86 mm at 13 ms per frame, what is
comparable with the similar state-of-the-art algorithms Salzmann and Fua (2011), Östlund
et al. (2012) and with a full data association stage.

Experimental validation. To analyse the performance of our system, we have created the
Kinect mandala dataset. In this dataset, a mandala blanket is hanged and deformed manually

Table 2.1 RMSE averaged over all the frames in the sequence.

[1] [2] [3] [4] [5] [6] Ours
Mean RMSE (mm) 3.97 4.56 3.78 7.47 4.82 3.86 4.86

Runtime per Frame (ms) 2 0.7 7 5 30 116 13
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Fig. 2.2 From left to right: frames #1347, #2089, #9454, #10739, corresponding to the shape
at rest and different deformations. Top: 2D image Bottom: 3D reconstruction

from its back surface, meanwhile a hand-held RGB-D camera closely observes the mandala
surface mimicking a scanning movement in circles. Due to the limited field of view of the
camera and its proximity to the cloth, the whole mandala is never completely imaged. We
run the experiments in a Intel® Core™ i7-7700K CPU @ 4.20GHz × 8 with a 32GB of
RAM memory.

The sequence is composed of ten thousand frames, there is a first part for initialisation
where the cloth remains rigid. After that, the level of hardness of the deformation is
progressively increased. The video captures from big displacements in different points of the
mandala to wrinkled moments and occlusions.

We evaluate the influence of the thickening layer size, dK. As result of the experiment,
we get a system that can run in real-time and have an RMS error of 2.30%, 2.22%, and 2.32%
for dK = 0,1 and 2 respectively. When it comes to runtime, the optimisation algorithm is
taking 17, 19 and 20 ms, and the total times per frame are 39, 40 and 41 ms. With dK=1 we
get to reduce the error without increasing excessively the time.

2.6 Discussion

We present a new tracking method able to work in deformable environment incorporating SfT
techniques to a SLAM pipeline. We have developed a full-fledged SLAM tracking thread
that can robustly operate with an average time budged of 39 ms per frame in very general
scenarios with an error under 3% in a real scene and with a relocalisation algorithm with
a recall of a 46% in deformable environments with a precision close to the 100%. In the
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next Chapter, we formulate a full deformable SLAM pipeline built on top of the deformable
tracking presented.



Chapter 3

DefSLAM: Tracking and Mapping of
Deforming Scenes from Monocular
Sequences

Monocular SLAM algorithms perform robustly when observing rigid scenes, however, they
fail when the observed scene deforms, for example, in medical endoscopy applications.
In this Chapter, we present DefSLAM, the first monocular SLAM capable of operating
in deforming scenes in real-time. Our approach intertwines Shape-from-Template (SfT)
and Non-Rigid Structure-from-Motion (NRSfM) techniques to deal with the exploratory
sequences typical of SLAM. A deformable tracking thread recovers the pose of the camera
and the deformation of the observed map by means of SfT processing a template that models
the scene shape-at-rest at frame rate. A deformable mapping thread runs in parallel with the
tracking to update the template by means of an isometric NRSfM processing a batch of full
perspective keyframes at keyframe rate. In our experiments, DefSLAM processes close-up
sequences of deforming scenes, both in a laboratory controlled experiment and in medical
endoscopy sequences, producing accurate 3D models of the scene with respect to the moving
camera.

3.1 Introduction

The goal of visual Simultaneous Localization and Mapping (SLAM) algorithms is to locate a
visual sensor in an uncertain map which is being estimated simultaneously. The typical use
case in SLAM includes exploratory trajectories where the camera images a scene without
previous information of the structure observed. Using a monocular sensor, visual SLAM
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Fig. 3.1 Real-time reconstruction of a deforming scene with DefSLAM. The mandala ker-
chief deforms while the camera moves. DefSLAM locates the camera shown as a green
frustum, while recovering the deformation of the kerchief using a template of the same. The
estimated 3D deformable map is expanded when new regions are explored by reestimating
new templates. The map is composed of sparse 3D points, in black, and a template as
triangular mesh, viewed part in green.

has to process several images rendering enough parallax to recover the map for the new
scene region wrt. the camera. Once the map is available, the camera can be localized wrt.
this map from just one image as long as the camera does not move to unexplored areas.
The rigidity assumption constrains the problem significantly, and it is intensively exploited
by state-of-the-art monocular SLAM systems (Engel et al., 2017, Klein and Murray, 2007,
Mur-Artal et al., 2015).

However, the rigidity assumption rends invalid in applications where the deformation is
predominant. To this end, we introduce DefSLAM, a calibrated monocular and deformable
SLAM system which can perform in deforming, i.e. non rigid, environments. A relevant use
case is medical endoscopy, where monocular visual SLAM is crucial a tool for augmented
reality and autonomous medical robotics.

In the literature, non-rigid monocular scenes have been handled by Non-Rigid Structure-
from-Motion methods (Chhatkuli et al., 2014a, 2016, Parashar et al., 2017, Taylor et al.,
2010, Vicente and Agapito, 2012) and Shape-from-Template methods (Chhatkuli et al., 2017,
Lamarca and Montiel, 2018b, Ngo et al., 2016, Salzmann and Fua, 2011). NRSfM methods
are able to recover the evolution of the 3D scenes non-rigid deformations from a set of
monocular images, after a computationally demanding batch processing of the images. In
contrast, SfT recovers the 3D deformation from a single image, at a low computational cost
but needs a template. The template is a 3D textured model describing the shape at rest of
the scene. DefSLAM framework combines the advantages of the two classes of non-rigid
monocular methods. We propose a parallel algorithm composed of a deformable tracking
thread as the front-end running SfT at frame rate, and a deformable mapping thread as the
back-end running NRSfM to compute the SfT template at a slower keyframe rate.
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Fig. 3.1 shows DefSLAM processing a sequence processed where the camera is being
located wrt. a deforming kerchief being mapped simultaneously using images from a monoc-
ular sensor from partial observations of different regions of the kerchief. The deformable
tracking thread recovers the camera pose and the deformation of the map at frame rate. It
uses a template for the viewed part of the map to recover the map points deformation by
minimizing a combination of reprojection error and deformation energy for each frame. The
deformable mapping thread initializes and refines map estimates, and extends the map when
new regions are visited. It processes just a selection of frames – keyframes – imaging the
same region to define the shape-at-rest of the template used by the deformable tracking thread
to process the subsequent frames.

We validated our DefSLAM algorithm in monocular sequences that include exploratory
trajectories observing deforming scenes. We evaluate DefSLAM on new waving mandala
kerchief dataset which we created and an in-vivo medical endoscopy Hamlyn dataset (Mount-
ney et al., 2010a). To make some comparison we have resorted to systems with a different
configuration than ours. We compare our results with the state-of-the-art rigid monocular
ORBSLAM (Mur-Artal et al., 2015) to display the DefSLAM unique capability to SLAM
deforming scenes. We also compared with MISSLAM (Song et al., 2018), the closest in the
literature offering SLAM accuracy results in medical deformable scenes, despite it is stereo
in contrast to our monocular system. These experiments validate the unprecedented ability
of DefSLAM to accurately code the structure of the scene in rigid and deformable scenarios,
including medical cases.

3.2 Related Work

3.2.1 SLAM

Deformable visual SLAM. The deformable SLAM methods in the literature rely on sensors
providing depth information, i.e. RGB-D or stereo sensors. DynamicFusion (Newcombe
et al., 2015) is a seminal work in deformable VSLAM with an RGB-D camera. It fuses
the frame-by-frame depth information into a canonical shape, i.e. a shape at rest, that
incrementally maps the entire scene after an exploratory trajectory of partial observations.
This canonical shape is deformed to the current keyframe with the as-rigid-as-possible
deformation model (Sorkine and Alexa, 2007). In the work proposed by Innmann et al.
(2016), the quality of the deformation is improved by including the photometric error in the
optimization. Gao and Tedrake (2018) substituted the volumetric representation by surfels
to improve the efficiency of the algorithm. These methods recover the whole canonical
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shape deformation which is usually small. This technique is not scalable to bigger shapes
like exploratory scenes in endoscopy. Song et al. (2017) propose to use an embedded
deformation model Sumner et al. (2007) instead of the as-rigid-as-possible model because it
better preserves the local details under the deformation. In MISSLAM (Song et al., 2018),
the system is enhanced with the tracking of a rigid system ORBSLAM (Mur-Artal et al.,
2015) to achieve better tracks and more robust deformable SLAM for medical endoscopy
exploration. In any case, all these algorithms optimize the whole map each time and thus
scale poorly with the size of the map. We aim similar SLAM capabilities in deformable
scenes, but in the challenging monocular case. In addition, our approach only optimizes the
observed map zone achieving good scalability wrt. the size of the map, being able to be run
on the CPU.

Rigid visual SLAM. Monocular rigid VSLAM is a mature field. The current state-of-
the-art monocular rigid VSLAM methods (Engel et al., 2017, Mur-Artal et al., 2015) provide
accurate, robust and fast results in robotic scenes. Some works have attempted to apply rigid
methods in in-vivo medical quasi-rigid scenes. Grasa et al. (2014) proposed an EKF-SLAM
algorithm, and Mahmoud et al. (2018) get dense maps based on ORBSLAM (Mur-Artal et al.,
2015). Marmol et al. (2019) use a rigid SLAM system to locate the camera in arthroscopic
images. All of these methods assume that the deformation is negligible and hence that a
purely rigid SLAM system is able to survive just by excluding from the map any deformed
scene region. We aim to achieve a similar performance, but in scenarios where deformation
is predominant, more specifically: real-time operation and capability to handle sequences of
close-ups corresponding to exploratory trajectories.

3.2.2 Non-Rigid Monocular Techniques

The methods in the literature which aim to recover the structure of a non-rigid scene from
monocular sequences are SfT and NRSfM.

Shape-from-Template. SfT methods recover the deformed shape of an object from a
monocular image and the object’s textured 3D shape at rest. This textured shape-at-rest of
the object is the so-called template. These methods associate a deformation model with
this template to recover the deformed shape. The main difference between these methods
is the definition of the deformation model. We distinguish between analytic and energy-
based methods. Among the analytic solutions, we focus on the isometric deformation which
assumes that the geodesic distance between points in the surface is preserved. Isometry for
SfT has proven to be well-posed and it quickly evolved to stable and real-time solutions
(Bartoli et al., 2015, Chhatkuli et al., 2017, Collins and Bartoli, 2010). Energy-based methods
(Agudo et al., 2014, Lamarca and Montiel, 2018b, Ngo et al., 2016, Salzmann and Fua, 2011)
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jointly minimize the shape energy wrt. the shape-at-rest and the reprojection error for the
image correspondences. These optimization methods are well suited to implement sequential
data association with robust kernels to deal with outliers.

Orthographic Non-Rigid Structure-from-Motion. The earliest non-rigid monocular
techniques are NRSfM. These methods were formulated using statistical models, first pro-
posed by Bregler et al. (2000). This work gave rise to a family of methods (Dai et al., 2014,
Moreno-Noguer and Porta, 2011, Paladini et al., 2009) which used a low dimensional basis
model to obtain the configuration of the 3D points from the images of a sequence. They ex-
ploited spatial reguralizers (Dai et al., 2014, Garg et al., 2013), temporal regularizers (Akhter
et al., 2011) and spatio-temporal regularizers (Agudo and Moreno-Noguer, 2015, Gotardo
and Martinez, 2011a,b). These methods may handle small surface deformations or articulated
objects, but they usually fail with very large deformations. They use an orthographic camera
model which is an approximation only valid when the scene is distant from the camera, this
is a strong assumption invalid in many applications.

Perspective Non-Rigid Structure-from-Motion. Real use cases need the more accurate
perspective camera model. It is able to model the close-up sequences typical in SLAM,
especially in medical endoscopy. The isometry assumption, first proposed in SfT methods,
has also produced excellent results in NRSfM (Chhatkuli et al., 2014a, 2016, Parashar et al.,
2017, Taylor et al., 2010, Vicente and Agapito, 2012). It brought not only improvements in
terms of accuracy, but also the ability to handle perspective cameras. Parashar et al. (2017)
proposed a local method, able to handle naturally occlusions and missing data also usual in
many applications.

Our approach. We propose the first visual SLAM system capable of working with
deforming monocular sequences. We propose a deformable tracking thread based on the
work presented in the Chapter 2, which uses a pre-computed template to recover the camera
pose and the deformation of the scene. We also propose a deformable mapping thread which
extends the map and estimates the shape-at-rest of the template in new explored zones by
means of the isometric NRSfM proposed by Parashar et al. (2017). Our contribution is a
new iterative scheme for the optimization in IsoNRSfM (Parashar et al., 2017) that allows to
calculate and refine the solutions incrementally at keyframe rate. Both for the deformable
mapping and tracking, we only optimize the part of the template observed having a runtime
independent of the size of the map in exploratory sequences.

We also propose a sequential active matching that exploits the already available SLAM
map to boost the data association performance. Our final contribution is to integrate in the
deformable mapping a non-rigid alignment between surfaces to build a global map, extending
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alignment as proposed in Newcombe et al. (2015), Gao and Tedrake (2018), Song et al.
(2018) to the monocular case.

The proposed deformable tracking and mapping algorithms run in parallel, in a similar
way to the state-of-the-art rigid SLAM methods Engel et al. (2017), Klein and Murray (2007),
Mur-Artal et al. (2015) to achieve real-time performances.

3.3 DefSLAM System Overview

DefSLAM recovers the structure of the scene, its deformation and the camera pose. It is
composed of three main components:

• The map. The map represents the structure of the scene reconstructed by DefSLAM
as a set of 3D map points. The map is deformable and the position of the map points
evolves along the sequence. Each map point j is represented by its position Xt

j for
each processed frame t.

We save some selected frames in the map called keyframes. We refer to the keyframes
in which a map point is initialized as anchor keyframes. After each new keyframe
processing, one of the anchor keyframes is selected as the reference keyframe. The
reference keyframe defines the template used by the deformable tracking to process
the new incoming frames.

• The deformable tracking thread. This thread is the front-end of the system and runs
at frame rate. It uses SfT to estimate the position of the map points Xt

j and the camera
pose Ttw for each frame t. We embed the map points into the template Tk to compute
their position. The shape-at-rest of the template Tk is the surface Sk observed in the
reference keyframe k.

• The deformable mapping thread. This thread is the back-end of the system and runs
at keyframe rate. It uses NRSfM to estimate the surface Sk observed in the keyframe
k.

Notation We use calligraphic letters for sets of geometrical entities in the deforming
scene, e.g. X for the set of all map points. Bold letters represent matrices and vectors.
Scalars are represented in italics. The indexes t represent the frames and Ttw the pose of the
frame at instant t. Superindexes represent the temporal instant of the estimation. The index j
represents the map points, n the nodes and e the edges of the mesh describing the template
surface.
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3.4 Deformable Tracking

Deformable tracking recovers the camera pose Ttw and the shape of the template T t
k in the

frame t by jointly minimizing reprojection error and deformation energy. Tk is the surface
reconstructed in the reference keyframe k. The tracking algorithm is composed of three
stages: data association, camera pose estimation and template deformation and new keyframe
selection. Next, it is detailed the template structure, the camera model and the three steps of
the algorithm.

3.4.1 Template

The template is a surface parametrized with a 3D triangular mesh. It is composed of a
set of planar triangular facets F , defined by a set of nodes V , and connected by a set of
edges E . The deformation of the map at frame t is defined through the pose of the nodes
of the template T t

k . The facet f ∈ F at frame t is defined by the pose of its three nodes
V t

fj
= {V t

f,h}, h = {1,2,3}. The map points observed in the keyframe k are embedded in
the facets of the mesh. The position of a map point Xt

j ∈ X in frame t is defined with its
barycentric coordinates, bj = [bj,1, bj,2, bj,3]⊤, wrt. the position of the nodes of the face fj :

Xt
j =

3∑
h=1

bj,hVt
fj ,h s.t. bj,1 + bj,2 + bj,3 = 1. (3.1)

3.4.2 Camera Model

We use the calibrated pinhole model. The projection of the 3D point j, Xt
j ∈ X t

k in the frame
t by a camera located at Ttw is modelled by the projection function π : [SE(3) ,R3] → R2:

π
(
Ttw,Xt

j

)
=

 fx
Xt

j

Zt
j

+Cx

fy
Y t

j

Zt
j

+Cy

 , (3.2)

where
[
Xt

j Y t
j Zt

j

]⊤
= RtwXt

j + ttw.

Rtw ∈ SO(3) and ttw ∈ R3 are respectively the rotation and the translation of the transfor-
mation Ttw. {fx,fy,Cx,Cy} are the focal lengths and the principal points from the camera
calibration. The set of observation in the image It are the keypoints xt matched with a
map point of X t. The map point Xt

j is projected in the normalized retina as (x̂t
j , ŷ

t
j) where

x̂t
j = xt

j−Cx

fx
, ŷt

j = yt
j−Cy

fy
and

(
xt

j yt
j

)⊤
= π

(
Ttw,Xt

j

)
.
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Fig. 3.2 Deformable tracking: estimating camera pose and deformation of the viewed map.
T t

k is the map shape in the frame t, Lt
k is the local map shape in the frame t and Tt

cw the
camera pose. Black points belong to the global map. Some of them are embedded in the
template. Current matched points in red.

3.4.3 Camera Pose and Template Deformation

In SLAM sequences, the camera usually images a zone smaller than the template. For
efficiency and scalability, we only optimize the observed zone of the template and its closest
vicinity. We refer to this part of the template as the local zone Lt

k ⊆ T t
k . Figure 3.2 shows

all the components of the deformable tracking: the template T t
k , the local zone Lt

k and the
camera pose Ttw.

To estimate the deformed Lt
k and Ttw, we jointly minimize the reprojection error

φd(It,Tcw,Lt
k) in the image It and the deformation energy φe(Lt

k,Tk) of the template
Tk:

argmin
Lt

k,Ttw

φd(It,Ttw,Lt
k)+φe(Lt

k,Tk). (3.3)

We solve (3.3) using the Levenberg-Marquardt optimization method. The initial guess for
(Lt

k,Ttw), is the solution of the previous frame, (Lt−1
k ,Tt−1w). We fix the pose boundary

nodes of Lt
k during the optimization to constraint the gauge freedoms of the camera pose

Ttw,
The reprojection error φd(It,Ttw,Lt

k) for the set of keypoints xt in image It is defined
as:

φd(It,Ttw,Lt
k) =

∑
j∈xt

ρ
(∥∥∥π(Xt

j ,Ttw)−xt
j

∥∥∥) . (3.4)
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The reprojection error is robust against outliers as it is weighted with a Huber robust kernel
ρ(.).

We define a deformation energy φe(Lt
k,Tk) wrt. Tk as a combination of a stretching

energy φs(Lt
k,Tk), a bending energy φb(Lt

k,Tk) and a reference regularizer φr(Lt
k,Tk):

φe(Lt
k,Tk) = λsφs(Lt

k,Tk)+λbφb(Lt
k,Tk)

+λrφr(Lt
k,Tk).

(3.5)

We use λs, λb and λr to weight the influence of each term.
The stretching energy φs(Lt

k,Tk) measures the difference in the length lte of each edge e
in the local zone Lt

k in the frame t with respect to its length lke in the shape-at-rest of Tk:

φs(Lk
t ,Tk) =

∑
e∈Lt

k

(
lte − lke
lke

)2

. (3.6)

The bending energy φb(Lt
k,Tk) measures the changes in mean curvature δt

n in each node
n wrt. the estimated δk

n in the shape-at-rest of Tk. We estimate the mean curvature through
the discrete Laplacian operator Floater (2003). We make the bending term dimensionless by
dividing it by the mean distance lke of the edges connected with the node Ek

n :

φb(Lt
k,Tk) =

∑
n∈Lt

k

∑
e∈Ek

n

(
δt

n − δk
n

lke

)2

. (3.7)

Optimization considering the terms φd(·), φb(·) and φs(·) allows to recover the relative
pose of the camera with respect to the template, but the absolute camera pose is not observable.
Thanks to the fixation of the Lt

k boundary nodes pose, the absolute camera pose becomes
observable. However, the camera pose sometimes is only weakly observable depending on
the boundary nodes geometrical distribution and cardinality. If the template is completely
observed by the camera, then there are no boundary points to be fixed and the camera pose
becomes fully non-observable.

We add another regularizer, φr(Lt
k,Tk), that we call reference regularizer to keep the

template as close as possible to its initial position in its reference keyframe, to alleviate the
camera pose weak observability. It is given by:

φr(Lt
k,Tk) =

∑
n∈Lt

k

∥∥∥Vt
n −Vk

n

∥∥∥ . (3.8)
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Optimization (3.3) also needs the derivatives of the regularizers (3.6)-(3.8), they are
detailed in Appendix A.

3.4.4 Data Association

To match the keypoints in the current frame with the map points, we apply an active matching
strategy as proposed in Davison (2003). First, the ORB keypoints are detected in the current
frame. Next, the camera pose is predicted with a camera motion model as a function of the
past camera poses. Then, we use the last estimated shape of template and the barycentric
coordinates to predict where the map points will be imaged. Around the map point prediction,
we define a search region. We match the map point with the keypoint with the most similar
ORB descriptor inside its search region. The similarity is estimated as the Hamming distance
between the ORB descriptors, the match is accepted only if it is below a distance threshold.
The ORB descriptor of the map point is taken from the keypoint of the keyframe where it
was initialized.

3.4.5 New Keyframe Selection

We select a new keyframe as soon as the mapping thread finishes its processing. If the
new keyframe covers a new map region, it becomes an anchor keyframe and the reference
keyframe and a new template is created. Otherwise, the new keyframe is a regular keyframe,
and its most covisible anchor keyframe is selected as the reference keyframe, and its template
is refined.

3.5 Deformable Mapping

Deformable mapping recovers the observed map as a surface Sk for the reference keyframe
k. This surface contains the map points observed in the keyframe during the tracking. With
the new keyframe we refine the map points and create new ones. Sk defines the shape-at-rest
of the template Tk for the deformable tracking for the next frames, as shown in Figure 3.3.

Deformable mapping is performed as follows: first, we compute the warps ηkk∗ between
the anchor keyframes k and the new keyframe k∗. At this stage, the considered anchor
keyframes are those where one of the currently observed map points were initialized. Second,
we estimate an up-to-scale surface Sk by processing the covisible keyframes with the new
keyframe by means of NRSfM. Third, we align Sk with the previous map to recover the
scale and the scaled surface Sk. Finally, with this new surface, we create the new template
by computing a triangular mesh and embedding the map points in its facets.
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Fig. 3.3 Extension of the map in the deformable mapping. Local area Lt
k−1 in green. Matched

points in red. In blue, the up-to-scale surface estimated by NRSfM, Sk (dotted line), and
template Tk computed from the scaled surface Sk of the reference keyframe k.

Fig. 3.4 Relation between an anchor keyframe k and one of its covisibles k∗. ϕk and ϕk∗ are
embeddings of the two keyframe surfaces k and k∗. ηkk∗ is the warp between k and k∗. ψkk∗

is the deformation field between the surfaces Sk and Sk∗

3.5.1 NRSfM

In isometric NRSfM, the surface deformation is modelled locally for each point under the
assumption of isometry and infinitesimal planarity. Assuming infinitesimal planarity, any
surface is approximated as a plane at an infinitesimal level, while maintaining its curvature
at the global level. Isometric NRSfM can handle both rigid and non-rigid scenes. Since
we use a local method, it can handle missing data and occlusions inherently. We build on
the isometric NRSfM proposed in Parashar et al. (2017). For the sake of completeness, we
summarize the formulation.
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ϕk is the embedding of the scene surface Sk, it is parametrized using the retina normalized
coordinates of the image Ik:

ϕk : R2 7→ R3

ϕk (x̂, ŷ) =
[

x̂
β(x̂,ŷ)

ŷ
β(x̂,ŷ)

1
β(x̂,ŷ)

]⊤
, (3.9)

where βk(x̂, ŷ) is the inverse depth of each point. The normal n⃗j(x̂, ŷ) of the surface
expressed wrt. this parametrization is given as:

n⃗j(x̂, ŷ) ∝


Kx̂

Kŷ

1− x̂Kx̂ − ŷKŷ

 , (3.10)

where Kx̂ = βk(x̂,ŷ)x̂
βk(x̂,ŷ) and Kŷ = βk(x̂,ŷ)ŷ

βk(x̂,ŷ) , the subindexes x̂− ∗ and ŷ denote the partial
derivatives.

NRSfM exploits the relationship between the metric tensor gk(x̂, ŷ), and the Christoffel
symbols Γx̂

k(x̂, ŷ) and Γŷ
k(x̂, ŷ), of the surface of the keyframe Sk and those of its covisible

keyframes Sk∗ . Assuming infinitesimal planarity and isometry, Γx̂
k(x̂, ŷ) and Γŷ

k(x̂, ŷ) only
depend on Kx̂ and Kŷ for each point in every keyframe image. The warp ηkk∗ between
the keyframes k and k∗ represents the transformation from the image Ik to the image Ik∗ .
Figure 3.4 shows the different elements of the two view relation, the warp ηkk∗ , the surface
embeddings for each keyframe ϕk and ϕk∗ , and the isometric deformation ψkk∗ between the
surfaces Sk and Sk∗ . Due to the infinitesimal planarity and isometry assumptions, the metric
tensor and the Christoffel symbols in two different surfaces k and k∗ are related through the
warp between these keyframes ηkk∗ as:

gk(x̂, ŷ) = J⊤
ηkk∗gk∗(x̂∗, ŷ∗)Jηkk∗ (3.11)

Γq
k(x̂, ŷ) =

∑
h

∂x̂h

∂x̂∗
h

(J⊤
ηkk∗ Γh

k(x̂∗, ŷ∗)Jηkk∗ +Hh
ηkk∗ ), (3.12)

where Jηkk∗ and Hq
ηkk∗ are the Jacobian and the Hessian for the variable q = {x̂, ŷ} of the

warp ηkk∗ respectively. Eqs. (3.11) and (3.12) can be transformed in two cubic polynomial
equations P (Kk

x̂ ,K
k
ŷ ) and Q(Kk

x̂ ,K
k
ŷ ) for each point correspondence:

P (Kk
x̂ ,K

k
ŷ ) =

∑
u,v∈[0,3]

puv(Kk
x̂)u(Kk

ŷ )v = 0 (3.13)

Q(Kk
x̂ ,K

k
ŷ ) =

∑
u,v∈[0,3]

quv(Kk
x̂)u(Kk

ŷ )v = 0, (3.14)
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Fig. 3.5 Sk is the estimated up-to-scale surface. n⃗ are the set of normals. Two examples of
surfaces at a different scale but having the same normals are displayed in dotted lines.

where the coefficients puv and quv depend only on the normalized coordinates of the points
and the derivatives of first and second-order derivatives of the warp ηkk∗ . We refer to the
paper presented by Parashar et al. (2017) for further details in the coefficients puv and quv.

3.5.2 Incremental Surface Normals Refinement

If a point is matched in two or more keyframes, we can calculate its normal in its anchor
keyframe k, defined by Kk

x̂ and Kk
ŷ , by means of non-linear optimization:

argmin
Kk

x̂ ,Kk
ŷ

(
P
(
Kk

x̂ ,K
k
ŷ

))2
+
(
Q
(
Kk

x̂ ,K
k
ŷ

))2
. (3.15)

In contrast to Parashar et al. (2017), optimization (3.15) is incrementally computed.
We initialize it with its last estimate achieving a fast convergence. Once the normals are
refined in their anchor keyframe, we transfer the normals to the new reference keyframe
with eq. 3.12. We recover the up-to-scale Sk from the set of estimated normals n⃗ using
Shape-from-Normals (SfN) (Chhatkuli et al., 2014a). The surface Sk is regressed with a
bicubic b-spline parametrized by its control nodes depth. The control nodes are defined by a
regular mesh in the image Ik. We fit the depth of the nodes to obtain a surface orthogonal to
the estimated normals with a regularizer in terms of bending energy (Fig. 3.5).
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Fig. 3.6 Sim(3) alignment. We align the the map points Xk
j ∈ Sk of the up-to-scale estimation

with the pose of the map points Xk
j ∈ T k

k−1 estimated for the frame k deforming the previous
template k−1

3.5.3 Surface Alignment

The new estimated surface Sk is up-to-scale. We need to recover the solution with a coherent
scale swk wrt. the already estimated map. This means that the scale-corrected shape-at-rest
Sk must have an scale coherent with the deformed template T k

k−1 estimated by the tracking
when the keyframe was inserted.

We align these surfaces map points through a transformation which belongs the group of
similarity of 3-space Sim(3), by means of non-linear optimization:

argmin
Rwk,twk,swk

∑
j∈Xk

∥∥∥∥swkRwkXk
j + twk −Xk

j

∥∥∥∥2
, (3.16)

where Rwk,twk,swk are the rotation translation and scale defining the Sim(3) transformation
(Fig. 3.6).

To build our new template Tk, we finally create a triangular mesh from the scale-corrected
surface Sk by means of regular triangular mesh in the image. The new map points 3D pose is
computed from the matched keypoints by constraining them to be in the estimated surface
Sk. Then, we embed the re-observed map points and the new map points by projecting them
into their corresponding template facet. With this embedding, we calculate the barycentric
coordinates of the map points which will be used by the tracking.

3.5.4 Template Substitution

Once the surface Sk is computed, the keyframe k is set as the reference keyframe and the
current template Tk−1 is substituted by Tk computed from Sk. The shape observed in the
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Fig. 3.7 Two examples of warp estimation. Warp estimation between the keyframe k (left)
and k∗ (right). The warp between k and k∗ is plotted in blue. Yellow points are the initially
matched map points, green points are the matches added by guided matching stage using the
warp.

current frame t differs from the shape of the new template Tk. This yields to failures in
the data association stage, which assumes small deformations, if we substitute the template
directly by Tk. Therefore, we transfer the matches from T t

k−1 to Tk and compute the current
shape T t

k using optimization (3.3).

3.5.5 Warp Estimation and Non-Rigid Guided Matching

The input of NRSfM is the set of warps ηkk∗ between an anchor keyframe k and their
covisible keyframes k∗. The image warp ηkk∗ is a function that transforms a point in the
anchor keyframe into the corresponding point in its covisible k∗:

ηkk∗ : [x̂, ŷ] ∈ R2 7→ [x̂∗, ŷ∗] ∈ R2.

First, we use a particular family of warps called Schwarps Pizarro et al. (2016), because,
as discussed in Parashar et al. (2017), the formulation of the 2D Schwarzian equation
regularizers are equivalent to the infinitesimal planarity of the NRSfM. See Figure 3.7 for
two examples of warp between keyframes.
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First, we estimate an initial warp between the anchor keyframe k and its covisible
keyframe k∗ with the matches given by the deformable tracking. Then we use the intial warp
to perform a guided matching stage between the keypoints in keyframes k and k∗. We accept
as a match the keypoint inside a search region with the smallest Hamming distance for the
ORB descriptor. We apply a threshold on the ORB similarity to definitively accept a match.
Once that we have the new matches we incorporate them to the initial ones and estimate the
final warp. See Figure 3.7 for two examples of warp between keyframes.

3.5.6 SLAM Initialization

At initialization we need to have a template available for the scene surface. We compute it
from the first frame of he sequence, assuming its surface S1, and hence its template T1 is a
plane parallel to perpendicular to the camera optical axis.

With the second keyframe inserted, the mapping thread starts to compute a new template,
that replaces the initial one. The accuracy of the first computed templates strongly depends
on how many keyframes are fed in the NRSfM and on how large is the parallax they render.

According to the experiments, our algorithm can track from an inaccurate template with a
high quality data association between keyframes, yielding long tracks and a low false positive
rate. As a result, as more keyframes rendering high parallax are created, the estimated
template eventually converges to the actual scene shape.

3.6 Implementation Details

The method is implemented in C++ and runs entirely on the CPU. We have used the OpenCV
library (Bradski, 2000) for base computer vision functions. For the SfT optimization and
the LS Sim(3) registration, we have used the g2o library (Kümmerle et al., 2011) and
its implementation of Levenberg-Marquardt. For the Schwarps optimization, the normal
estimation and the shape-from-normals, we have used the Ceres library (Agarwal et al.,
2010). The runtime depends on the resolution of the mesh used as template. For a mesh
of 10×10 nodes the runtime is approximately 50 ms for the deformable tracking thread and
approximately 400 ms for the deformable mapping in a machine with an i7-4700HQ CPU
and with 7.7 Gb RAM. The code will is available as a public git repository1.
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Fig. 3.8 Overall quality for Mandala dataset sequences. From left to right, the scenario
contains more deformation. Top: 3D RMS error (mm) per frame (the smaller, the better).
Bottom: Fraction of matched map points (the higher, the better).

Fig. 3.9 Recovering local deformations in the mandala3 sequence. 3D map points in red, 3D
point in yellow is the ground truth and blue lines are the difference. DefSLAM can perceive
and reconstruct the deforming scene.

3.7 Experiments

We tested DefSLAM in two datasets. The first dataset is the Mandala dataset which we
create to evaluate deformable monocular SLAM in a laboratory controlled situation. The
second is a selection of sequences from the medical Hamlyn dataset (Mountney et al. (2010a),
Stoyanov et al. (2005)), which comprises a phantom heart, and in-vivo sequences including
exploratory trajectories. The sequences in both datasets have ground truth depth for each
frame, either from stereo or from CT.

We focus on two per frame metrics: the 3D RMS error of the in-frustum map points and
the fraction of matched map points. The RMS error is computed after a scale alignment for
each frame of the sequence, it features the geometrical accuracy. The fraction of map points
matched is the quotient between the map points effectively matched in the current frame,

1https://github.com/UZ-SLAMLab/DefSLAM

https://github.com/UZ-SLAMLab/DefSLAM
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and the number of map points in-frustum of the current frame, i.e maximum number of map
points that ideally can be matched. A low fraction signals a poor map that can only represent
partially the scene imaged in the current frame.

In addition, we carried out an ablation analysis of the mapping and the tracking. In
the mapping, we focused in NRSfM stages of the normals estimation. In the tracking, we
evaluate the performance of the deforming template when compared with a rigid one. We
also analyzed the sensitivity of the system to the tuning of the regularizers weights in the
tracking optimization (eq. 3.5).

Currently, there is no other monocular SLAM for deformable environments to compare
with. Thus we select a rigid monocular SLAM method, ORBSLAM Mur-Artal et al. (2015),
as one of the closest for comparison. We had to re-tune several stages of ORBSLAM to
process deforming sequences. 1) We relaxed the thresholds for matching and outlier rejection
to retain matches despite the deformation. 2) We initialized it with the first frame ground
truth map, to avoid the dramatical failure of the monocular intialization. 3) We decreased the
rate of new keyframe creation up to one keyframe out of 3 frames, to adapt the map to the
scene deformations. On the other hand we compare with MISSLAM (Song et al., 2018) in
the Hamlyn phantom heart dataset, as the closest in the medical arena, despite MISSLAM is
stereo instead of monocular.

For the sake of repeatability, DefSLAM was run sequentialized in single-thread, inserting
one new keyframe every 10 frames. All the reported results are the median of 5 executions in
each sequence. Some results are updated in the youtube video2.

3.7.1 Mandala Dataset

We introduce the Mandala dataset to evaluate the map quality of deformable monocular
SLAM systems in a controlled environment. It is composed of 5 sequences (640x480
pix. at 30 fps) with exploratory trajectories observing a textured kerchief deforming near-
isometrically. We increased the hardness of deformation progressively by reducing the period
of the waves generated on the kerchief and increasing their amplitude from the shape-at-rest.
Fig. 3.10 shows the two configurations: planar and hanged.

In the sequence mandala0, the kerchief remains rigid on the floor. In mandala1, the
deformation had an amplitude of 15 cm and a period of 2 s. In mandala2, the amplitude is
10 cm and the period 1 s. In the mandala3, the amplitude is 25 cm and the kerchief oscillates
with a period of 2 s. In the mandala4, the amplitude is 30 cm, and its period is halved to 1 s.

2https://www.youtube.com/watch?v=6mmhD2_t6Gs&t=43s

https://www.youtube.com/watch?v=6mmhD2_t6Gs&t=43s
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Fig. 3.10 Two configurations of Mandala dataset: rigid planar (Mandala0), and hanged in the
rest of the sequences.

Overall quality experiment

We analyze the overall quality of the estimated map. Figure 3.8 shows the final results along
the five sequences for DefSLAM in green, and ORBSLAM in blue.

In rigid mandala0, DefSLAM obtains a similar 3D RMS error to ORBSLAM. Concerning
the fraction of matched map points, both DefSLAM and ORBSLAM got a high percentage
which means that the map points that are highly reused, due to the rigidity of the scene.

In mandala1 and mandala2, the kerchief has low frequency and amplitude deformation.
DefSLAM obtains a similar 3D RMS error to the one obtained in mandala0 for both se-
quences, being able to recover the deformation of the kerchief. ORBSLAM could process the
entire sequences, but its 3D RMS error was highly penalized by the deformation, triplicating
the error obtained in the mandala0 sequence, and the RMS error of DefSLAM. DefSLAM
could recover more accurately the deformation of the scene observed during the sequence
both in terms of RMS error and in fraction of matched map points per frame.

In the mandala3 and mandala4 sequences, the conditions are more extreme. ORBSLAM
could not process any of these sequences entirely. In this sequences, the fast deformation
yields difficulties for DefSLAM which experiments some delay to converge the correct shape.
This provoked some peaks in the RMS error. In any case, the error average was around the
4 cm during both sequences. In Fig. 3.9 we can observe the quality of the reconstruction of
the local deformations in the sequence mandala3. The fraction of matched map points for
DefSLAM was also smaller. Supplementary material includes a video with fragments of the
mandala dataset quality results.
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Fig. 3.11 Scale drift along the Mandala sequences. It increases more with more challenging.
It is reduced in case of re-observation.

Scale drift analysis

The previous section RMSE focuses on the up-to-scale shape accuracy. Fig. 3.11 shows the
scale drift along the different sequences. The main source of scale drift is the alignment (Sec.
3.5.3), where to estimate the scaled template, we align the reference up-to-scale template with
the previous reference scaled template. This makes the scale accumulate the misalignment
between the new and the old template. The scale drift is close to null in the mandala 0 and
increases to higher values to peak the deformation becomes more challenging. Eventually
the scale drift can be reduced due to re-observations of the map during the sequence.

Sensitivity Analysis

All the experiments reported, both in the Mandala dataset and Hamlyn, were run with
λs = 16000, λb = 300 and λr = 0.02 as standard tuning.

To better understand the role of the weights, we varied their values to study their effect
in the final 3D RMS error and scale drift in the challenging mandala3. We run the entire
sequence and evaluated the RMS error at the end of the sequence from frames # 800 to # 1000.
The error is not servery affected, remaining between 20 and 40 m, for a range of values from
λs = [1600,100000], λb = [100,1000], λr = [0,0.1]. By decreasing the λs and λb values, the
system becomes unconstrained and fails in process the entire sequence. By increasing λs and
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Fig. 3.12 Rigid tracking vs deformation tracking surface error as 3D RMS scene reconstruc-
tion error per frame in mm.

λb, the system assumes rigidity thus causing another failing scenario. Figure 3.12 shows the
extreme case of a perfectly rigid and fixed template compared with our standard tuning. It
can be seen how a rigid template for tracking fails to survive strong scene deformations. This
case correspond to high values for the three coeficients λs, λb and λr.

The reference regularizer has proven critical to reduce the scale drift specially in the
Hamlyn SeqHeart sequence where the camera is imaging constantly the same zone and
observing the entire template with few boundary point constraints (Sec. 3.7.2), from 36 %
for λr to 2 % for λr = 0.02

Deformation mapping normal estimation accuracy

We analyze the quality of the deformation mapping for sequence mandala3 focusing in the
angle error between the estimated normal and the ground truth normal, in the two stages of
the normal estimation, the initial NRSfM and the subsequent SfN (Sec. 3.5.2). Figure 3.13
shows the RMS angle error of the shape estimated by the NRSfM versus the error after the
SfN stage. SfN consistently reduces the error through the entire sequence improving the
normals. Averaging the error for all the keyframes in the sequence the SfN achieves a 15 deg
RMSE versus the 22 deg of the NRSfM.

The output of the NRSfM is the set of surface normals for each map point in the reference
keyframe. The normal of a map point is reestimated after each re-observation of that point in
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Fig. 3.13 (Left) Box-and-whisker plot for the normals angle error in a keyframe after SfN,
improvement as a function of the keyframe resobservations. (Right) per keyframe RMSE
angle error for the normal orientation after NRSfM and after SfN.

a new keyframe. Figure 3.13 shows the evolution of the RMS angle error for the normals in
a keyframe along 5 re-observations after its creation. We can see how the median error goes
from 23 degrees at initialization down to 12 deg after the 5th re-observation.

3.7.2 Hamlyn Dataset

Our last experiments test DefSLAM in six intracorporeal sequences from the Hamlyn dataset
(Mountney et al., 2010a, Stoyanov et al., 2005) to evaluate our algorithm in medical images.
The first two sequences are recorded with a ex-vivo phantom heart (Stoyanov et al., 2010)
syncronised with a CT scanner to register ground truth. In addition, we processed four
in-vivo laparoscopic sequences (See Fig. 3.15): 1) SeqAbdomen (Dataset 1) is an exploration
of the abdominal wall where the scene remains almost rigid (Fig. 3.15 Bottom left). 2)
SeqExploration (Dataset 20) performs an exploration around the exterior of the bowel with
low texture. it has a small deformation at the beginning (Fig. 3.15 Bottom right). 3) SeqHeart
(Dataset 4) (Stoyanov et al., 2005) is a non-rigid beating heart observed by a fixed camera. 4)
SeqOrgans (Dataset 19) is an abdominal exploration and deformation of the scene due to
tool interfering (Fig. 3.15 Top right).

The closest SLAM system to ours reporting accuracy wrt. an external sensor in medical
sequences is MISSLAM (Song et al., 2018). We evaluate our system in the same sequences,
i.e. the ex-vivo phantom heart sequences. Despite the lack of camera motion, the scenes
have enough deformation for DefSLAM to reconstruct them. We report a mean accuracy of
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Fig. 3.14 Processing Hamlyn sequences. Green DefSLAM, blue ORBSLAM. From left to
right: Heart, organs, abdomen and exploration sequences. Per frame RMS scene reconstruc-
tion error in mm after a per frame scale alignment with the stereo ground truth.

3 and 4 mm in the sequence phantom5 and phantom7, respectively. The average accuracy
MISSLAM (Song et al., 2018) as reported by the authors is 0.28 mm and 0.35 mm. Concern-
ing the execution time, we report a similar runtime per frame, but DefSLAM runs in CPU
unlike MISSLAM that uses GPU. It has to be noted that they use stereo input in contrast with
DefSLAM which is a purely monocular method.

Fig. 3.14 reports the median of 5 executions RMS error during the four in-vivo Hamlyn
sequences and Fig. 3.16 shows its corresponding scale drift. As it happened with the Mandala
dataset (Sec. 3.7.1, the scale drift got slighly increased for the more challenging sequence. In
the sequence where the camera remains in the same zone there is no scale drift.

DefSLAM is able to process SeqAbdomen and SeqExploration entirely with a mean 3D
RMS error of 17 mm and 10 mm respectively. In these scenes, the camera explore but it
come back to the same zone. DefSLAM was able to re-observe part if the map already built
and thus reduced the scale drift. ORBSLAM performed poorly in this sequences and could
not process them entirely.

In SeqHeart, the camera is practically static, but DefSLAM was able to initialize with
the monocular strategy proposed even with a short parallax. The 3D RMS error was ap-
proximately 3 mm, equal to the ex-vivo phantom result with a much better groundtruth.
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Fig. 3.15 DefSLAM in in-vivo Hamlyn dataset sequences. 3 typical 2D images an the
corresponding 3D maps. (Top left) Heart sequence. (Top right) Organs Sequence. (Bottom
left) Abdominal sequence. (Bottom right) Exploration sequence.

Fig. 3.16 Scale drift along the Hamlyn dataset sequences.
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ORBSLAM initializated with the ground truth was able to process the entire sequence with
an error of 5 mm

Finally in the sequence SeqOrgans, DefSLAM shows its ability to perform the reconstruc-
tion of a deformable scene in exploratory sequence with an accuracy of 8 mm. It survives
to the tool clutter that cover almost entirely the image, correcting the scale drift. In the end
of the sequence, the tool deforms the organ imaged and DefSLAM was able to recover the
deformation of the scene with the same error than in the rest of the sequence.

Fig. 3.15 shows the overall quality of the 3D reconstruction of the medical sequences.
Supplementary material includes the video with the results in all the sequences.

3.8 Conclusions

We have formulated DefSLAM, the first deformable SLAM able to process monocular
sequences. We have proposed to split the computation of DefSLAM in two parallel threads.
The deformation tracking thread is devoted to estimating the camera pose and the deformation
of the scene, it is based on SfT. SfT needs a prior of the geometry of the scene encoded in
the template. When exploring new zones, our method estimates new templates to cover new
areas. Our second thread, the deformation mapping, is devoted to periodically re-estimating
the template to better adapt it to the currently observed scene. Both SfT and NRSfM model
the cameras as perspective, hence the system is able to handle close-ups typical in scene
exploration where perspective effects are prevalent.

Our experiments confirm that the proposed method is able to handle real exploratory
trajectories of a deforming scene. Direct comparison with other systems is not possible,
we have focused the comparison with the rigid monocular ORBSLAM after its re-tuning
to handle non-rigid scenes. This comparison proves that DefSLAM is able to robustly
initialize from monocular sequences, continuously adapt the map to the scene deformation,
and producing accurate scene estimates.

We have also shown in preliminary experiments that the system is able to handle medical
endoscopy images. In the next Chapters, we will adapt this system for medical imagery
to handle all kinds of challenges not taken into account in the present work, i.e. uneven
illumination, poor visual texture, non-isometric deformations or ultra close-up shots exploring
the endoluminal cavities.

Another future work is to develop a full-fledged mapping system including multiple maps,
relocalization, loop closure or long term place recognition to achieve robust performance for
extended periods of time or multiple moving and deforming bodies.





Chapter 4

SD-DefSLAM: Semi-Direct Monocular
SLAM for Deformable and In-Body
Scenes

Conventional SLAM techniques strongly rely on scene rigidity to solve data association,
ignoring dynamic parts of the scene. In this work we present Semi-Direct DefSLAM (SD-
DefSLAM), a novel monocular deformable SLAM method able to map highly deforming
environments, built on top of the method proposed in the Chapter 3, DefSLAM. To robustly
solve data association in challenging deforming scenes, SD-DefSLAM combines direct
and indirect methods: an enhanced illumination-invariant Lucas-Kanade tracker for data
association, geometric Bundle Adjustment for pose and deformable map estimation, and bag-
of-words based on feature descriptors for camera relocation. Dynamic objects are detected
and segmented-out using a CNN trained for the specific application domain.

We thoroughly evaluate our system in two public datasets. The mandala dataset is a
SLAM benchmark with increasingly aggressive deformations. The Hamlyn dataset contains
intracorporeal sequences that pose serious real-life challenges beyond deformation like
weak texture, specular reflections, surgical tools and occlusions. Our results show that
SD-DefSLAM outperforms DefSLAM in point tracking, reconstruction accuracy and scale
drift thanks to the improvement in all the data association steps, being the first system able to
robustly perform SLAM inside the human body.
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4.1 Introduction

Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) are funda-
mental blocks for many applications like autonomous robots or augmented reality. Existing
methods can be classified as indirect or direct depending of the manner they perform data
association. On the one hand, indirect methods estimate 3D geometry from a set of matched
keypoints along covisible images, minimizing a geometric error. On the other hand, direct
methods avoid extracting features, and work directly on pixel intensities to estimate the 3D
geometry, optimizing a photometric error. Finally, semi-direct methods extract features and
combine both types of errors.

However, regardless of that classification, all methods rely on a simple, yet important
assumption: scene rigidity. This assumption greatly simplifies the SLAM and VO problem
and perfectly models many of their application domains. Nevertheless, the increasing interest
in Minimally Invasive Surgery (MIS) and medical robots has placed in the spotlight the
rigidity assumption, as these kinds of applications work on highly deforming scenarios. That
is why a new classification arises as rigid and non-rigid methods, the latter assuming that the
3D position of triangulated landmarks can vary over time.

In this work, building on DefSLAM, we propose SD-DefSLAM, the first deformable
semi-direct SLAM system, able to robustly process sequences under great deformations and
weak texture, as it is the case of MIS videos. SD-DefSLAM is semi-direct as it extracts ORB
features and uses an illumination-invariant Lukas-Kanade (LK) Lucas and Kanade (1981)
optical flow algorithm to perform data association, minimizing a photometric error, while the
camera pose and deforming 3D geometry is estimated minimizing the geometric error (Fig.
4.1).

In non-rigid SLAM, dynamic objects are difficult to separate from the deforming back-
ground using conventional techniques. To achieve robustness, we mask-out moving objects
with the help of a convolutional neural network (CNN) specifically trained to segment surgi-
cal tools. Finally, we include relocalization capabilities for which we perform long-term data
association with ORB descriptors (Rublee et al., 2011) and a bag of words (Gálvez-López
and Tardós, 2012), achieving robustness to camera occlusions.

4.2 Related Work

4.2.1 Rigid SLAM and VO

The first real-time SLAM systems followed the indirect approach. MonoSLAM (Davison
et al., 2007) matches a set of sparse keypoints and recovers the scene geometry in an EFK-
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Fig. 4.1 SD-DefSLAM working on Dataset1 of Hamlyn dataset. Left: features tracked in
the endoscopic image using photometric techniques. Right: camera motion and growing
deformable map estimated by minimizing geometric error.

based framework. This work was later extended by Civera et al. (2008), using an inverse
depth parametrization. Later PTAM (Klein and Murray, 2007) proposed a parallelization of
the main tasks of an SLAM system to allow a Bundle Adjustment (BA) scheme to optimize
the 3D geometry. ORB-SLAM (Mur-Artal et al., 2015) is currently the reference system
among indirect methods by using the combination of FAST-ORB feature-descriptor (Rublee
et al., 2011) and BA to optimize the 3D information. In its successive versions (Mur-Artal
and Tardós, 2017, Campos et al., 2021) it is extended to different type of sensors, ranging
from stereo cameras to wide-lens to inertial sensors.

As for direct methods, DSO (Engel et al., 2017) is the first fully direct VO algorithm that
jointly optimizes structure and motion with photometric BA. This work is later extended
in DSM (Zubizarreta et al., 2020) by building a direct SLAM algorithm that uses the
same photometric model of DSO. While current direct methods are more robust in weakly
textured areas, their accuracy degrades in presence of geometric distortions, and they assume
photometric invariance, being only able to adapt to global illumination changes (Engel et al.,
2017). So, they are not applicable in endoscopic images where strong deformations and local
illumination changes are prevalent.

Our work is more similar to SVO (Forster et al., 2014) that proposed an hybrid approach
combining direct and indirect methods. SVO is a semi-direct VO method that extracts
features in keyframes, uses photometric techniques to perform short-term data association,
and ultimately optimizes the reprojection error in a BA.

The crucial novelty of our method is the use of per-feature illumination-invariant photo-
metric data association, instead of the global image alignment used by DSO and SVO, that
cannot handle deforming scenes. Our method also allows to obtain medium-term photometric
data associations, improving reconstruction accuracy.
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4.2.2 Deformable SLAM and VO

Many deformable SLAM and VO systems were developed from rigid ones, aiming in many
cases to process intracorporeal sequences, as it is a naturally deforming environment of high
practical interest for which several datasets exist (Stoyanov et al., 2010, Pratt et al., 2010,
Stoyanov et al., 2005, Mountney et al., 2010b). The first systems that processed this kind of
images were proposed by Grasa et al. and Lin et al. (2013), both making use of conventional
feature-based SLAM and threshold strategies to differentiate between rigid and non rigid
points. Later, ORBSLAM was tuned by Mahmoud et al. (2016) and Mahmoud et al. (2017)
to be able to localize in MIS sequences. The seminal work DefSLAM (Lamarca et al., 2020)
is the first indirect monocular SLAM system able to tackle with exploration in deformable
scenarios. The system grows the map using a sequential Non-Rigid Structure-from-Motion
(NRSfM) algorithm based on the work proposed by Parashar et al. (2017), and estimates
at frame rate the deformation occurred and the camera pose by means of a Shape-from-
Template (SfT) algorithm (Lamarca and Montiel, 2018a). DefSLAM has been proved to
work in some simple medical sequences, but the presence of typical challenges like poor
texture, illumination changes and tools intrusion, make it fail.

This evidences the need of more robust data-association methods to process highly
deforming environments. In endoscopic sequences this is usually done by correlation
matching in consecutive images (Grasa et al.), (Lin et al., 2013), as feature matching using
descriptors such as ORB (Rublee et al., 2011) or SIFT (Lowe, 2004) usually do not perform
well in low texture regions. AKAZE, proposed by Alcantarilla et al. (2011), is a feature
designed to preserve the low texture gradient in the multiscale detector, performing especially
well for intracorporeal images. However, it is too slow to be applied in a real-time SLAM
algorithm. Du et al. (2015) proposed a deformable Lucas-Kanade (Baker and Matthews,
2004) implementation is proposed for tracking tissue surfaces in non-exploratory sequences,
including a term that controls the deformation. Deep learning techniques can also play
an important role as shown by Liu et al. (2020) in which they train a CNN to get dense
descriptors in a sinus endoscopy dataset.

Finally, as deformable sequences pose a big challenge for SLAM and VO algorithms, it
is essential a better understanding of the scene, identifying and removing dynamic objects
that could degrade performance. DynaSLAM (Bescos et al., 2018) uses CNNs to detect,
remove and inpaint potentialy dynamic objects such as persons or cars. DOT (Ballester
et al., 2020) follows up the ideas from DynaSLAM to only mask-out objects that are actually
moving. In the case of endoscopic images, the most typical dynamic objects are surgical tool.
Segmentation of this kind of objects is of interest to the scientific community and several
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Fig. 4.2 SD-DefSLAM scheme with a tracking and a mapping thread running concurrently.
The main novelties are in the tracking thread, that masks surgical tools using a CNN, achieves
robustness with an illumination-invariant photometric method that tracks the previous frame
and the local map, and includes bag-of-words relocalization and a new regularizer that
smooths camera motion.

methods (Laina et al., 2017, Kurmann et al., 2017, Pakhomov et al., 2019) have arisen as
response.

4.3 Semi-Direct DefSLAM

Our approach is called Semi-Direct Deformable SLAM (SD-DefSLAM) as it performs short-
term and medium-term data association Campos et al. (2021) using a photometric method
(subsection 4.3.1) while the deformable optimization backend (subsection 4.3.2) optimizes
a geometric error. A global overview of SD-DefSLAM is depicted in Fig. 4.2. It uses two
threads, one for deformable mapping, that progressively builds a growing deformable map
and other for deformable tracking, that estimates camera pose and map deformation for
each frame processed. Although the main novelties with respect to DefSLAM are in the
deformable tracking thread, for the reader convenience, we present here a brief summary of
the whole system.

The map is formed by a set of reference keyframes, that have observed new parts of the
scene as exploration progresses, with an associated surface template. Each template models
the observed surface with a triangular mesh that represents its shape-at-rest, whose vertices
are the 3D map points. The map also contains a set of refining keyframes that are used to
refine the templates. Templates are created and refined by the deformable mapping thread at
keyframe rate, and their deformation model is estimated by the deformable tracking thread at
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frame rate. Keyframes are added to a place recognition database Gálvez-López and Tardós
(2012) to enable relocation after occlusions.

The deformation mapping thread estimates the surface observed in the reference keyframes
and uses refining keyframes to improve this estimation incrementally. Templates are created
to grow the map when exploring new places. The core of the deformation mapping is a
Non-Rigid Structure-from-Motion (NRSfM) algorithm based on isometry and infinitesimal
planarity Parashar et al. (2017). It estimates the normal of the points of a keyframe. The
points are initialized assuming smoothness in the surface with respect to the rest of normals
estimated and they are refined with each new observation. After estimating the normals, a
shape-from-normals algorithm estimates a proportional shape of the surface that fits with
those normals. Finally, it performs a SE(3) alignment to recover the correct scale with respect
to the rest of the map. This new surface becomes the template for the deformation tracking.

The deformation tracking thread estimates the localization of the camera and the de-
formation of the 3D map surface at frame rate. The map surface is coded by means of its
shape-at-rest and a deformation model. The input of the deformation tracking is the last pose
of the camera, the last deformation of the template and the new frame. We use a LK tracker
to get initial putative matches, that are computed independently for each point. With the
putative matches we estimate a initial deformation of the mesh. This optimization is robust to
outliers and give us a better estimation of the position of the points. With these new estimates
we reinitialize the LK tracker and search for map points in the observed zone. This allow
matches with larger baselines than with a standard LK tracker. In case of tracking lost, we
have design a relocalization module (subsection 4.3.3) able to relocate the system in this map.
For our final application, we have incorporated a CNN that segments tools (subsection 4.3.4)
to remove matches in dynamic non-modeled objects.

4.3.1 Data Association

For data association, indirect methods rely on good texture to obtain distinctive features, a
RANSAC step to enforce rigidity of the set of matchings found, and robust costs functions in
BA to reduce the impact of the remaining outliers. In contrast, direct methods use global
image alignment that can use pixels with lower texture but rely even more strongly in scene
rigidity. In this section we present a photometric data association method that works reliably
in low-textured areas, without relying neither in illumination constancy, not in scene rigidity.
For this, we use an enhanced Lucas-Kanade (LK) algorithm to perform short-term data
association among all the images in the sequence. Our LK algorithm allows us to track
low textured surfaces with subpixel accuracy even though there have been local changes
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in lighting. Next, we describe the basic LK algorithm to better explain the improvements
performed to increase accuracy and robustness.

Basic Lucas-Kanade algorithm

Let be I and J the reference and the current grayscaled images respectively, u = (x,y)T a
generic image point found in I and P (u) a squared patch centered on u of size (2ωx +1)×
(2ωy + 1) pixels. The goal of LK algorithm is to find the optical flow vector d = (dx,dy)t

such us I(P (u)) and J(P (u +d)) are similar. This is solved using Gauss-Newton gradient
descent non-linear optimization:

argmin
d

∑
x∈P (u)

(I(x)−J(x +d))2 (4.1)

Note that the goal function depends directly on the gray values of both images and the
size of the patch ωx, ωy.

Enhanced Lucas-Kanade algorithm

The basic LK optimization (Eq. 4.1) depends directly on the raw intensity values of I and J ,
which makes the LK algorithm very sensitive to illumination changes. While some direct
methods address this issue with a global illumination compensation Engel et al. (2017), we
solve it in a more flexible way using local illumination compensation. In other words, we
compute a gain factor α and a bias value β per each tracked patch, which are added in the
optimization:

argmin
d,α,β

∑
x∈P (u)

(I(x)−αJ (x +d)−β)2 (4.2)

This is especially important when light changes do not occur uniformly across the image,
as it happens in outdoor scenes in a cloud-and-clear day, in autonomous car sequences taken
during the night, or crucially in endoscopic sequences where the light sources are attached to
the endoscope, brightening the image in the areas that get approached, while other areas get
darkened. In this cases, global illumination compensation would produce very poor results.

It is also important to keep in mind that the LK algorithm needs the initial guess for d to
be close to the solution in order to converge. That means that if the point to be tracked suffers
a big displacement in pixels (for example, due to camera motion or strong deformations)
between images, LK may display poor convergence. This can be solved by taking the
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pyramidal approach proposed in Bouguet (2001) in which the algorithm estimates the optical
flow along a pyramidal representation of I and J from the coarsest to the finest level.

Moreover, as we have geometrical estimates of the 3D scene surface and camera poses
provided by the SLAM, we can compute an initial guess for d using that information to
improve convergence. For that purpose, assuming local planarity around each tracked point,
we can further compute a homography (h) per point that synthesizes the shape of the patch
in the new image, yielding the following error term:

argmin
d,α,β

∑
x∈P (u)

(I(x)−αJ (h(x)+d)−β)2 (4.3)

Transformation defined by h compensates any rotation or scale change that the patch
could have suffered, making our enhanced LK algorithm rotation and scale invariant. It is
also essential to note that computations to synthesize the patch use bilinear interpolation to
achieve subpixel accuracy. Now the algorithm guesses for d, can be safely set to 0 because
most of the flow is estimated from the available geometry.

Finally, even though LK algorithm converges, it is not guaranteed that it has converged
to the correct solution. This can produce spurious feature tracks that negatively affect the
overall robustness and accuracy of the algorithm. Most systems address this issue imposing
scene rigidity, either in a RANSAC step or with global image alignment. In our case we
detect and discard most outliers computing the Structural Similarity Index (SSIM) Wang
et al. (2004) between the reference and the tracked patches. The remaining outliers are
successfully handled by a robust influence function in the deformable optimization.

4.3.2 Deformable optimization

Despite our LK algorithm is able to track low textured surfaces in the presence of deformation
using photometric error, the innovation between the reprojected map points and their position
in the image would be so high that they will be considered as outliers in a pure camera pose
optimization. Instead, the tracking thread estimates simultaneously the camera pose and the
surface deformation minimizing the geometric reprojection error. This dualism leads to the
semi-direct name of our algorithm.

More precisely, our deformable tracking thread performs a two-step optimization (Fig.
4.3) designed to increase SLAM accuracy by reusing the map. For that purpose, as the
camera performs exploration, we compute a local map around the current camera pose with
covisible keyframes.

The first step aims to compute a first coarse estimation Tt
cw for the camera pose. It

obtains putative matches for the points in the previous image using the LK tracker with no
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Fig. 4.3 Two-step optimization. First, points from the previous image are tracked using
photometric error, getting some matches (green squares) associated to map points (green
dots), and we perform a deformable optimization that improves both the camera pose Tt

cw

and the local map Lt−1
k , reducing the geometric error. Then, we project points from the local

map Lt
k into the current image, track them them with our enhanced LK method and perform

a final deformable optimization. The reobserved map points are marked in blue.

geometric information (eq. 4.2) and runs a first deformable pose optimization. With this
early optimization, we also compute the local map M for the next step.

With the computed camera pose Tt
cw and local map M from the previous step, we

reproject map points from the local map into the current image. Using the projections and
the geometrical information from M, we compute an homography h per projected point and
we search its true image position by running our LK tracker with homographies (eq. 4.3).
Finally, with the additional matches found, we run a second deformable pose optimization.

Both deformable optimizations estimate the local map Lt
k deformation at frame t, along

with the camera pose Tt
cw, using a modified version of the cost function proposed in Lamarca

et al. (2020):

argmin
Lt

k,T t
cw

φd(It,Tt
cw,Lt

k)+φe(Lt
k,Lt−1

k ,Tk)

+φc(Tt,t−1)
(4.4)

where φd(It,Tt
cw,Lt

k) is the total squared reprojection error weighted with a robust Huber
influence function, and φe(Lt

k,L
t−1
k ,Tk) is the deformation energy of the template T t

k that
considers bending and stretching (see Lamarca et al. (2020) for more details).

To smooth camera motion in frames with low number of matches due to occlusions or
sudden deformations, we add here a new regularization term:
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φc(Tt,t−1) = ξT Wξ (4.5)

where ξ = log (Tt,t−1) encodes the translation and rotation between the current and previous
frame in the Lie algebra, and W is a hand-tuned information matrix that controls the degree
of smoothing performed.

4.3.3 Relocalization

The presence of deformations, really low textured areas, or complete occlusions can lead to
system failure. In that context, it is of paramount importance to have a procedure that allows
tracking recovery. As in ORB-SLAM, the detection of candidate keyframes for relocation
uses the bag-of-words (BoW) technique from Gálvez-López and Tardós (2012), building a
database with every keyframe in the sequence, converting them into BoW after extracting
ORB descriptors. When the system gets lost, we convert the lost frame into BoW and
query the recognition database, obtaining some keyframe candidates. For each keyframe,
correspondences associated to map points are computed and then, we obtain an initial camera
pose with PnP, performing RANSAC iterations. The main difference with the rigid case
is that the inlier threshold has been increased to allow points with some deformation. If
PnP is successful, we retrieve the template associated with the candidate keyframe and
perform a deformable optimization, optimizing both the template and the camera pose.
Tracking continues with this retrieved template. Although our method only works under mild
deformations, as PnP is constrained by (weakened) rigidity, it is able to successfully solve
the typical short-time occlusions appearing in endoscopies.

4.3.4 Moving Objects

In conventional SLAM, moving objects can be successfully detected as their motion is not
consistent with the motion of the rest of the scene, except if they move too slowly. However,
in a deformable scenario, separating object motion from scene deformation is far from trivial
using just geometric information. Matches coming from moving objects lead to severe errors
in scene deformation or even to total SLAM failure. We propose to solve this issue using
semantic information with a CNN trained to identify and segment the typical moving objects
in each application domain, masking the corresponding image regions to avoid matching
features in them.

To segment surgical tools in medical scenes we use the CNN defined and trained in Shvets
et al. (2018). The network is directly integrated in the system and computes a mask for each
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Fig. 4.4 Frames from Hamlin datasets 4 and 19 showing surgical tools, that are successfully
detected and masked-out (yellow color) using semantic segmentation with a CNN.

incoming image. The mask is finally dilated to avoid keypoint detection in the borders of
tools. In Fig. 4.4, we show examples of the masks obtained in two different sequences.

If the tool occludes large parts of the image, the camera pose estimation will become an
ill-conditioned problem. For this reason, we constraint the camera motion with a smooth
motion prior. When the occlusion is complete, tracking is lost and the system relies on
relocation.

4.4 Experiments

We have evaluated the proposed system and compared it with DefSLAM (Lamarca et al.,
2020) in two datasets. The first one is the Mandala dataset created to evaluate deformable
SLAM. The purpose of this dataset is to evaluate the performance of the system in a controlled
environment with good texture and illumination conditions. Secondly, we further validated
our system in several medical sequences of the Hamlyn dataset which pose a substantial
challenge to SLAM algorithms. Although our method is pure monocular, in both cases, we
use datasets obtained with stereo cameras, to extract a ground truth solution for the scene
surface. We analyze the 3D RMS error of the reconstruction, by means of the Euclidean
distance between the ground truth and the reconstruction of the system correcting the scale
by frame, and reporting the scale drift observed along the trajectory. We also provide a
data association quality to compare the performance of the feature matching technique in
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Table 4.1 Comparison in Mandala Dataset.

DefSLAM [Lamarca et al. (2020)] SD-DefSLAM
RMSE (mm) Scale drift RMSE (mm) Scale drift

Mandala0 26.3 1.06 23.1 1.03
Mandala1 22.3 1.44 21.3 1.32
Mandala2 17.9 1.46 16.1 1.41
Mandala3 43.7 2.07 41.8 1.26
Mandala4 55.6 1.78 48.1 1.27

Table 4.2 Comparison in Hamlyn Dataset

DefSLAM [Lamarca et al. (2020)] SD-DefSLAM
RMSE
(mm) Scale drift

RMSE
(mm) Scale drift

f5 5.00 1.01 3.00 0.99
f7 4.50 0.99 4.35 0.99
Seq_heart 3.84 2.00 1.17 1.32
Seq_abdominal 23.98 0.98 22.2 1.01
Seq_organs 13.02 1.27 6.63 1.05
Seq_exploration 17.02 2.60 12.56 1.36

DefSLAM with the new semi-direct technique that uses photometric information and gives
subpixel accuracy.

4.4.1 Mandala dataset

The Mandala dataset consists of 5 sequences exploring a mandala kerchief that goes from a
totally rigid situation (Mandala0) to a intensively deforming one (Mandala4). The kerchief is
hanged and deformed creating waves that go through it. The intensity of the deformation is
measured depending on the speed and amplitude of the waves.

Table 4.1 shows that SD-DefSLAM outperforms DefSLAM in all Mandala sequences,
both in RMS reconstruction error and in scale drift. While in the most rigid sequence (Man-
dala0) the improvement is marginal, for those sequences with more aggressive deformations
(Mandala3 and Mandala4), SD-DefSLAM achieves a significant improvement.

4.4.2 Medical scenes

We have evaluated our system in several laparoscopic scenes of the Hamlyn dataset. This
sequences present a huge variety of scenarios, including phantom hearts with CT ground
truth (Dataset11-f5 and Dataset12-f7 in Hamlyn (Stoyanov et al., 2010, Pratt et al., 2010)), a
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non-exploratory heart sequence with tool intrusions (Dataset4 - Sequence_heart in Hamlyn
(Stoyanov et al., 2005)) and three exploratory sequences (Dataset1 - Sequence_abdominal,
Dataset19 - Sequence_organs and Dataset20 - Sequence_exploration in Hamlyn (Mountney
et al., 2010b)).

In general, SD-DefSLAM achieves better RMSE and Scale Drift that DefSLAM in all
sequences, as shown in Table 4.2. The improved data association enables our system to better
compute the map deformation, improving the RMSE and Scale Drift while the addition of
a CNN to mask out surgical tools in the Sequence_heart and Sequence_organs allows our
system to robustly process the sequences with significant improvement in the performance.
An example of the reconstructed surfaces under deformations is shown in Fig. 4.9.

4.4.3 Data association

The results in the last sections show how SD-DefSLAM outperforms DefSLAM in all the
tested datasets. One of the keys for the improvement is the data association which is a
fundamental part for both the tracking and the mapping. For the tracking, better association
leads to better estimation of the deformations in the map. Concerning the mapping, longer
tracks between keyframes speed up the convergence of NRSfM.

In this section, we analyse the proposed data association scheme. There are two key
differences wrt. the original method. The most evident one is that the matching is performed
photometrically, reaching subpixel accuracy. The other one is that each patch is initialized
with the keyframes and actively tracked in the consecutive images, removing feature extrac-
tion from the matching stage. This is significant as FAST features have low repeatability
between temporarily close images, impairing SLAM performance.

Figures 4.5 and 4.6 depict a comparison between the SD-DefSLAM photometric data
association (top) and the ORB matching of DefSLAM (bottom) in Mandala3 and Hamlyn
Dataset20. In both images, the percentage of matched map points (matched tracks) is shown
in blue and the inliers after the deformation optimization (DO inliers) in orange. The true
positive are the matched map points considered inliers by the deformable optimization,
representing the efficiency of the matching system.

In Mandala3 sequence, SD-DefSLAM doubles the percentage of correct matches obtained
by DefSLAM. This greatly improves the overall robustness of the system at the same time
that improves the accuracy. Dataset 20 poses a bigger challenge as the combination of low
texture and image blurring penalizes both types of data association algorithms, but the new
method is still clearly superior. This, together with the subpixel accuracy explains the more
accurate reconstruction and smaller scale drift obtained (last row in Table 4.2).
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Fig. 4.5 Percentage of points in the local map that are tracked (blue) and that are considered
inliers after deformable optimization (orange) in Mandala3 .

Fig. 4.6 Percentage of points in the local map that are tracked (blue) and that are considered
inliers after deformable optimization (orange) in Hamlyn Dataset20.
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Fig. 4.7 Relocalization in Dataset19. Relocalization due to tool intrusion. The CNN is able
to detect the tool correctly, but when it occludes most of the image, the system fails and
performs relocalization.

Fig. 4.8 Relocalization in Dataset20. The endoscope is extracted from the scene to clean it,
but the system is able to relocate the pose once it is introduced again in the body.

4.4.4 Relocalization

Besides the robustness of the system to tools or low texture, the camera still can get totally
occluded or even the endoscope must leave the scene to clean the optics. Thanks to the
relocalization module, we were able to relocate the system after a tracking failure. In contrast
with DefSLAM, which only cannot manage tracking lost, we were able to process more
frames in the proposed sequences, see Fig. 4.7 and Fig. 4.8.

4.5 Conclusions

While rigid SLAM is mature, deformable environments pose serious challenges requiring
to re-think all data association steps. We have shown that a semi-direct approach based on
per-feature illumination-invariant photometric tracking greatly improves data association,
reconstruction accuracy and scale drift. Its combination with CNN segmentation to detect
moving objects, and relocalization capabilities to deal with occlusions, gives the first SLAM
system able to robustly address the real-life challenges of medical sequences.

Our deformable model assumes isometric deformations. This is quite a restrictive
assumption that is not always fulfilled as is the case of MIS sequences. This causes a
worsening in the estimation of the deformation which in turn affects the quality of the data
association. This can be addressed by exploring new deformation models that properly
represent non-isometric deformations.
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Fig. 4.9 Examples of the reconstructed surfaces in the Sequence_organs. Note how we
reconstruct the deformation produced by medical tools. Top is the frame inserted, bottom the
3D reconstruction. From right to left: Frames #315, #1010,#1030,#1055



Chapter 5

Direct and Sparse Deformable Tracking

Deformable Monocular SLAM algorithms recover the localization of a camera in an unknown
deformable environment. Current approaches use a template-based deformable tracking to
recover the camera pose and the deformation of the map. These template-based methods use
an underlying global deformation model. In this paper, we introduce a novel deformable
camera tracking method with a local deformation model for each point. Each map point is
defined as a single textured surfel that moves independently of the other map points. Thanks
to a direct photometric error cost function, we can track the position and orientation of the
surfel without an explicit global deformation model. In our experiments, we validate the
proposed system and observe that our local deformation model estimates more accurately
and robustly the targeted deformations of the map in both laboratory-controlled experiments
and in-body scenarios undergoing non-isometric deformations, with changing topology or
discontinuities.

5.1 Introduction

VSLAM (Simultanenous Localization And Mapping from Visual sensors) is becoming a
mature technology to navigate in human-made environments, being crucial for technologies
like augmented reality and autonomous robot operation. Current state-of-the-art VSLAM
algorithms (Campos et al., 2021, Engel et al., 2017, Zubizarreta et al., 2020) strongly rely on
scene rigidity. As a consequence, they perform poorly in deforming scenes, e.g. in medical
environments.

Since PTAM (Klein and Murray, 2007), VSLAM algorithms divide the computation
in a tracking and a mapping concurrent threads. The tracking thread computes the camera
position wrt. the map at frame-rate. In parallel, the mapping thread recovers the structure of
the scene with a higher computational cost from some selected frames, so-called keyframes.



70 Direct and Sparse Deformable Tracking

Fig. 5.1 Direct and Sparse Deformable Tracking processing Hamlyn Dataset sequence 6,
results after frames #750, #1115 and #1153. Bottom: The map composed of sparse surfels.
Top: Camera Trajectory in green.
In the deformable case, both DefSLAM (Lamarca et al., 2020) and SD-DefSLAM (Rodríguez
et al., 2020), presented in Chapter 3 and 4, use a deformable mapping based on a Non-Rigid
Structure-from-Motion (NRSfM) (Parashar et al., 2017) to recover the structure of the scene
at keyframe rate, and a deformable tracking (Lamarca and Montiel, 2018a) that estimates
simultaneously the camera pose and the deformation of the map for every frame.

The deformable tracking of these previous methods relies on the usage of a mesh that
embeds the map points, and it recovers the most likely shape of the mesh according to a
deformation model. This deformation model is global i.e. each map point is connected with
their neighbours. This shows excellent performance in scenes with a single surface where
all the points are indeed connected. However, when points are not connected, like in scenes
with several surfaces, non-isometric surfaces, or with topological changes, the global model
does not represent properly the deformation of the map, yielding low performance.

In this paper, we propose a novel deformable tracking method that uses local deformation
models to treat the map points as independent bodies. Our first contribution is to model the
map as a sparse set of 3D moving textured surfels observed by a moving perspective camera.
Each surfel is assumed to have independent rigid displacements from the other surfels around
its position at rest. The formulation of the surfel is a first-order Taylor approximation
of the map point. The main advantage of this approach is that any smooth surface, e.g.
cylinders, planes, spheres or discontinuous surfaces, can be represented locally by a plane,
independently of its topology.

Our second contribution is to use a direct photometric error resulting from back-projecting
the surfel texture. We jointly optimize the 3D position and orientation of the surface to
minimize the direct photometric error. In contrast to previous approaches, in our proposed
direct deformable tracking there is no hard data association, instead, the final matching is a
byproduct of the photometric alignment.
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In our experimental section, we prove that our method can deal with discontinuous
surfaces and topological changes, and achieves better performance than the tracking method
used in current Deformable Monocular SLAM methods (Lamarca et al., 2020, Rodríguez
et al., 2020), obtaining longer tracks with better geometrical accuracy in medical sequences.

Next, in Sec.5.2, we discuss in detail the related works in non-rigid reconstruction and
VSLAM. In Sec.5.3, we present our formulation for the surfel. In Sec.5.4, we develop our
deformable tracking with fixed camera to prove the potential of surfel tracking adapting to
different surfaces. In contrast to the previous methods, we propose a fully direct and sparse
approach able to recompute the matches during the optimization. In Sec.5.5, we formulate
a world-centric direct deformable tracking to estimate the pose of the camera based on a
equilibrium regularizer. Finally, in the last Sec.5.6, the results obtained show a considerable
improvement wrt. the previous deformable tracking methods both in terms of robustness and
accuracy.

5.2 Related work

Deformable SLAM problem consists in reconstructing a map whose shape is constantly
deforming and recovering the camera trajectory wrt. the reconstructed map.

The first deformable SLAM method proposed was DynamicFusion Newcombe et al.
(2015). This method proposes a pipeline where the entire shape of map was reconstructed
from partial RGB-D observations from different positions. MISSLAM Song et al. (2018)
transferred this technique to medical scenarios by using stereo pairs. Concerning monocular
SLAM, the lack of depth information significantly entangles the reconstruction problem. The
first work to solve Deformable SLAM with monocular cameras was DefSLAM (Lamarca
et al., 2020). Like other monocular SLAM systems (Campos et al., 2021, Engel et al., 2017,
Zubizarreta et al., 2020), DefSLAM is composed of two main threads: deformable tracking
and mapping. These two components are based on the two main families of non-rigid
monocular methods: Non-Rigid Structure-from-Motion for mapping, and template-based
techniques for tracking.

The first approaches of NRSfM were formulated using statistical models (Bregler et al.,
2000, Dai et al., 2014, Akhter et al., 2011). A low dimensional basis model is used to obtain
the configuration of the 3D points for several images. The problem has been formulated
with different regularizers, e.g. spatial (Dai et al., 2014, Garg et al., 2013), temporal (Akhter
et al., 2011), or spatio-temporal (Gotardo and Martinez, 2011a). The main weakness of these
methods is the assumption of orthographic camera model, not suitable for VSLAM due to
the noticeable perspective effects in many targeted scenes where close-ups are dominant.
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Recent geometric methods have been proved to work with perspective cameras under the
assumption of local isometry in the surface (Chhatkuli et al., 2014a, 2016, Parashar et al.,
2017, Taylor et al., 2010, Vicente and Agapito, 2012). The method proposed by Parashar
et al. (2017) was the base of the deformable mapping proposed in the two previous Chapters
due to its ability to naturally handle occlusions and missing data .

Template-based techniques recover the deformation of the scene from a single-image
relying in a known textured surface and a deformation model. The 3D shape at rest of the
textured surface is the so-called template. In the deformable SLAM approaches, the template
is used to estimate the deformation of the map during tracking. The main difference between
these methods is the representation of the surface and its deformation model. Among the
analytic solutions, one of the most extended assumptions is that the surface is isometric. In
other words, the geodesic distance between points in the surface is preserved during the entire
sequence. Isometry for shape-from-template –SfT– has been proven to be well-posed and to
quickly evolve to stable and real-time analytical solutions (Bartoli et al., 2015, Chhatkuli
et al., 2017, Collins and Bartoli, 2010). On the other hand, energy-based methods (Salzmann
and Fua, 2011) are numerical approaches that jointly minimize the shape deformation energy
wrt. the shape-at-rest and the reprojection error for the current image correspondences. These
optimization methods are well suited to implement sequential data association with robust
kernels to deal with outliers.

The mentioned methods consider the camera static and usually reconstruct small objects
that move in the camera field of view. The deformable tracking methods estimate the camera
pose in addition to the deformation of the map. Usually, this is done by constraining the
problem with boundary conditions (Agudo et al., 2014, Lamarca and Montiel, 2018a). The
deformable tracking for deformable monocular SLAM (Lamarca et al., 2020, Rodríguez
et al., 2020) was built on top of the method proposed in Chapter 2. Template-based methods
rely on a global model that connects all the map points and are prompt to fail when the map
points are simply not connected or have a different relation.

In this paper, we formulate the points of the surface separately as surfels -surface element-
and jointly estimate its position for each frame and the position of the camera. One of the
closest approach was the scene flow technique proposed by Devernay et al. (2006), that uses
surfels to track some points of the scene, however they rely in a multi-camera setup, while
we use a monocular camera. Using surfels, we can represent more general disconnected
shapes of the scene and movements, and avoid the usage of a global deformation model.

Piecewise methods are local techniques where the non-rigid object is a collection of pre-
defined patches that move independently as rigid objects. The first work in using this strategy
was proposed by Varol et al. (2009), imposing a 3D global consistency in overlapping points.
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Fig. 5.2 Parametrization of a surfel in the initial image. Coordinates of the surface u and v
correspond to the normalized coordinates in the image x̂ and ŷ. We obtain z from the depth
image, and we estimate the tangent space vectors ut

i and vt
i as the directional derivatives in

the image coordinates I.

A relaxation to the piecewise rigid constraint was given by Fayad et al. (2010), assuming
each patch deforms with a quadratic physical model accounting for linear and bending
deformations. All these methods required an initial patch segmentation and the number of
overlapping points, to this end Russell et al. (2011) optimize the number of patches and
overlapping through an energy-based optimization. In contrast, Taylor et al. (2010) constructs
a triangular mesh, connecting all the points, and considering each triangle as being locally
rigid, being able to deal with topological changes. Our method belongs to this family of
methods, but in contrast, we do not assume that the points are overlapping.

The SD-DefSLAM proposed in Chapter 4 is a semi-direct method that replaces the
feature-based tracking of DefSLAM with a multiscale Lucas-Kanade tracker, resulting in
an improvement of the track lengths and reconstruction accuracy. In this work, we take
advantage of direct photometric error to recover the 3D relative position of the surface points.
Direct methods use the photometric error and have been proven extremely accurate in the
rigid SLAM case (Engel et al., 2017, Zubizarreta et al., 2020) and other NRSfM works (Yu
et al., 2015).

5.3 Formulation

This section is devoted to formalize the parametrization of a surfel and the photometric
equations describing its observation by a projective camera.
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5.3.1 Notation

Bold letters represent vectors or matrices (X). Scalars will be represented by light lowercase
letters (t), image brightness functions by light uppercase letters (I). Superindex t denotes
the frame in which the estimation is done. Subindex i identifies the surfel. Subindex p
refers to pixel coordinates in reference local to the surfel. To simplify the index notation all
the scene points coordinates are in the world reference. Camera poses are represented as
transformation matrices Tcw ∈ SE(3), transforming the coordinates of point from the world
frame into the camera frame.

5.3.2 Surfel parametrization

Assuming a continue and derivable C1 surface, a point Xt
i is represented by a surfel St

i

contained in the tangent space of the surface at the point. Thus, a generic 3D point p
belonging to the surfel can be parametrized using two local coordinates up and vp around Xt

i:

St
i(up,vp) = Xt

i +Jt
i

up

vp

 (5.1)

Jt
i =

[
ut

i vt
i

]
∈ R3×2 (5.2)

where Jt
i is the so-called Jacobian matrix whose columns are a pair of vectors forming a base

of the tangent space. As described in Eq. (5.6), Xt
i and Jt

i are defined for each frame in terms
of the corresponding values at t= 0, X0

i and J0
i , whose initialization from the first image is

described next.

5.3.3 Surfel initialization

We assume the scene surface is defined by means of the depth function: z(x̂, ŷ) : R2 → R in
terms of the normalized retina coordinates x̂, ŷ. This depth function can be provided by a
depth sensor (RGB-D camera or stereo rig). Then, X0

i and J0
i are estimated as:

X0
i = z(x̂, ŷ)


x̂

ŷ

1

 (5.3)
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and

J0
i =


z+ x̂ ∂z

∂x̂ x̂∂z
∂ŷ

ŷ ∂z
∂x̂ z+ ŷ ∂z

∂ŷ
∂z
∂x̂

∂z
∂ŷ

 (5.4)

For the experiments, we initialize surfels in the interest points extracted with Shi-Tomasi
Jianbo Shi and Tomasi (1994).

5.3.4 Photometric error

We denote the projection function as π(·) :R3 →R2. For our experiments, we use the pinhole
camera model. Note that this can be easily substituted by any other camera model.

We optimize the difference between the intensities of points in the surfel and the intensities
in their reprojections in the current image:

Pt
i =

∑
p

(
αt

iIt

(
π
(
TcwSt

i(up,vp)
))

+βt
i −T (up,vp)

)2
(5.5)

where Tcw is the pose of the camera with respect to the world. St
i(up,vp) is in the world

reference. We compensate the illumination changes by means of a gain (αt
i) and a bias (βt

i )
per surfel and per image. That allows us to synthesize the deformed surfel into the image,
thus our error function takes into account the local deformation.

We define a symmetric uniform grid in the surfel local coordinates that is reprojected into
the inital image to extract the surfel texture T (up,vp) parameterized by up and vp.

5.4 Direct and Sparse camera tracking with static camera

Let’s assume in this section that the camera is fixed and the initial values of the textured
surfels are given in advance, and we want to estimate the deformation for each incoming
image. With our formulation, the initial surfel is defined by its initial position X0

i , its Jacobian
J0

i and its texture T (up,vp).
The geometrical transformation of the surfel is expressed as:

St
i(up,vp) = (X0

i + tt
i)+Rt

iJ0
i Ft

i

up

vp

 (5.6)

where tt
i ∈R3 is the translation of the surfel, Rt

i ∈ SO(3) is the rotation of the surfel modeled
by the 3 parameters of its Lie algebra, and Ft

i ∈ R2×2 is a symmetric matrix that represent the
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Table 5.1 Deformation tensor F t
i for different local deformation models.

Isometry Conformal Equireal General

F t
i I2 sI2

[
α β

β 1+β
α

] [
α β
β γ

]
Variables - s α,β α,β,γ

deformation tensor. Its diagonal components represent the stretching of the tangent vectors,
and its off-diagonal element models the angle change between these vectors, i.e. the shearing.

As seen in Table 5.1, the most restrictive local deformation is isometric. This constraint
is equivalent to a rigid movement of the surfel. When the surfel deformation is not bounded
the first ambiguity arises:

Growing map ambiguity. The depth component of the translation of the surfel and the
surfel size can be coupled in such a way that changing its depth and size produces the same
image.

Proof. We define an µ factor that transforms the position and the deformation of the surfel
as:

(X0
i + tt

i) = µX0
i (5.7)

Ft
i =

µ 0
0 µ

 (5.8)

Ŝt
i(up,vp) = µX0

i +µRt
iJ0

i

up

vp

= µSt
i(up,vp) (5.9)

Under perspective projection any surfel Ŝt
i(up,vp) multiplied by µ produces the same

image π(St
i(up,vp)) = π(Ŝt

i(up,vp)).

To solve this ambiguity, we impose local isometry within the surfel. Isometry is a
distance preserving transformation. We propose two alternatives to code the isometry, as a
hard constraint or as a soft constraint.

Isometry as hard constraint implies the transformation of the surfel only as a rigid
body motion, in other words, the deformation matrix, Ft

i = I2. The motion is defined by 6
parameters (3 for translation + 3 for rotation).

Jt
i = Rt

iJ0
i ; Rt

i ∈ SO(3) (5.10)
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Thus, our cost function is defined only by the photometric error (Eq. (5.5)):

tt
i,Rt

i = argmin
tt
i,R

t
i,αi,βi

Pt
i (5.11)

In the case of a soft constrain we penalize the stretching and shearing of the surfel. It is
formulated through the tangent plane Jt

i. We define a deformation energy quadratic error as:

It
i =

∥∥∥Ft
i − I2

∥∥∥2
2

(5.12)

The soft constraint is modeled by means of the deformation energy coded by 3 additional
parameters defining the symmetric matrix Ft

i. In other words, the surfel can stretch and shear
if it explains better the image, but it tends to stay as close as possible to its original shape. It

i

is a scalar that penalises the shearing and stretching.
Finally, the optimization is a combination of the forward-compositional photometric error

and the deformation energy. The deformation energy regularization is weighted by a constant
ωI ,

tt
i,Rt

i,Ft
i = argmin

tt
i,R

t
i,F

t
i ,αi,βi

Pt
i +ωIIt

i (5.13)

All the errors considered in (5.11, 5.13) are quadratic, so it can be solved as a non-linear least-
squares problem. We propose Levenberg–Marquardt (LM) optimization Nocedal and Wright
(2006). The LM algorithm is a trust-region method that combines a Gauss-Newton and
steepest descend. The step control is defined through the damping factor λ that weights both
methods, λ also allows to control the step size. The Hessian is approximated as H ≈ J⊤J .

During the optimization, the data association between the images is changed boosting
the accuracy, however the convergence basin of the photometric optimization is small. We
propose an strict step size control to avoid leaving the convergence basin. We confine the
step to an ellipsoidal trust region defined by the diagonal matrix Dw = diag(H). We apply a
step policy where λ is limited to be ≥ 1 during the first steps to avoid long steps when far
from the minimum. In a subsequent stage λ is allowed to be reduced in order to benefit from
the Gauss-Newton quadratic convergence.

A singular values analysis of the Hessian matrix points out that this matrix is ill-
conditioned, i.e. the ratio between the smallest and biggest singular values is ≪ 1. This
reflects a different scaling in translation, rotation and deformation parameters. Thus, we
propose to use a diagonal scaling preconditioner matrix Ds(i, i) = 1√

si
to avoid numerical

issues, being si the diagonal values of (H+λDw). At each iteration the ∆x is then estimated
as:
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Ds (H+λDw)Ds∆x∗ = −DsJ
⊤r (5.14)

∆x = Ds∆x∗ (5.15)

In addition, to avoid mismatches due to discontinuities and light reflections, we satu-
rate the photometric error. We also carry out a multi-scale optimization to increase the
convergence basin observing that in case of temporal discontinuities or fast movements the
algorithm becomes much more robust.

We detect the outlier surfels using a threshold in the Zero Normalized Cross correlation
(ZNCC) between the texture of the surfel and the texture of its reprojection because it is
illumination invariant. If the ZNCC drops under a threshold the surfel can be assumed as
badly tracked and the corresponding observation is marked as an outlier.

The algorithm complexity is linear in the number of points since each new point would
suppose a new optimization and cubic in the number of pixels per surfel since the Jacobian
block of the surfel is dense and it increases one row per new pixel included.

5.5 Direct and Sparse deformable tracking

Deformable tracking algorithm takes as input the textured surfels and the initial camera pose.
Then, it estimates the deformation of the map and the camera pose wrt. the map.

Floating map ambiguity. Surfel position and camera pose are coupled and can be varied
producing the same projection of the pixel in the image.

Proof. Eq. (5.1) can be rewritten as:

St
i(up,vp) =

Rt
i tt

i

0 1


J0

i Ft
i

up

vp

 X0
i

0 1

 (5.16)

where we can define the rigid movement of the surfel as Tt
iw ∈ SE(3):

Tt
iw =

Rt
i tt

i

0 1

 (5.17)
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The camera pose Tcw and the transformation of a surfel Tt
iw are coupled and can be

interpreted as a arbitrary movements of the camera or as a movement of the surfel.

[
St

i(up,vp)
]
c

= TcwTt
iw

J0
i Ft

i

up

vp

 X0
i

0 1

 (5.18)

T̂cw = TcwTt
iw = T∗

cwTt∗
iw (5.19)

To avoid the ambiguity, we propose to soft-constrain each surfel position around an
equilibrium position Xt

ei
with the regularizer E t

i :

E t
i =

(
Xt

i −X0
i

)⊤
Σ−1

i

(
Xt

i −X0
i

)
(5.20)

This position gives a reference for the camera estimation. We can understand the camera
movement in our approach as the global rigid movement, and the deformation of the surfels
as movements around that equilibrium. Σi is the covariance that the surfels can reach in its
movement.

If the trajectory of the points along the sequence is known in advance, the equilibrium
point can be estimated as their average position and its covariance. In the case that the
position and covariance are unknown, we approximated as it is around the original position
and select a heuristic covariance with the expected movement. Lower covariances lead to
more rigid interpretation.

Similarly to Sec. 5.4, it is possible code the isometry as a hard or as a soft constraint. The
optimization for the hard constraint case is:

Xt
i,Jt

i,Tcw = argmin
Xt

i ,Jt
i ,α,β,Tcw

∑
i∈X

Pt
i +ωEE t

i (5.21)

The movement of the camera is defined by using Lie algebra of SE(3). We linearize in
the solution for each step and update the pose each step as:

T̂cw = exp(ζ)Tcw (5.22)

The optimization is done by using Levenger-Marquard. We again need to scale the
parameters through Ds and control the step with λDw.
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5.6 Experiments

We evaluate the performance of the two proposed methods: Sparse Deformable Tracking with
and without static camera, in rigid and deformable scenarios. We use sequences of laboratory-
controlled scenarios from CVLab (Varol et al., 2012) and sequences of intracorporeal scenes
selected from the Hamlyn Dataset (Mountney et al., 2010b). A video with the results is
provided as supplementary material1.

5.6.1 Tuning

Surfel size

Our primary assumption is that any surface can be locally approximated by the tangent
plane. The accuracy of the approximation deceases with the distance to the centre of the
surfel, hence it decreases with the surfel size. In contrast, bigger surfels allow more accurate
estimates of the surfel geometry. Thanks to the saturation policy that we apply, we have
noticed that even big surfels can accurately estimate the surfel geometry. We chose a surfel
size of ≈ 23 pixels experimentally. In experiments in the Kinect paper dataset, we have
observed that the error is reduced for bigger surfels, even if they do not fully accomplish
the planarity assumption. Too big surfels lead to problems with spatial discontinuities in the
scene.

Multi-scale

The convergence basin of the photometric methods is around one pixel, using multi-scale
increases it to more that one pixel in the finest scale. We use the solution of a coarse scale as
the initial guess of the next finer scale. In the kinect paper and T-shirt datasets, we found
several missing frames. That precludes the convergence for many surfels if only the finest
scale is used. Using 3 scales, the algorithm converges despite the missing frames.

Outlier rejection

We evaluate the ZNCC method to classify inliers as points that have converged correctly in
the optimization. Positives are inliers and negatives are outliers. The ground truth of the
correct tracks are classified through a threshold in the RMSE wrt. the ground truth surfel
trajectory. We show the ROC curve in Fig. 5.3 right wrt. varying the ZNCC threshold. Ideally,

1https://drive.google.com/file/d/1XJFbLsp_76eGqDisJj8Sjcljaf3F1c94/view?usp=sharing

https://drive.google.com/file/d/1XJFbLsp_76eGqDisJj8Sjcljaf3F1c94/view?usp=sharing
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Fig. 5.3 Left: Comparison in kinect Paper dataset from CVLab. Our method tracks individual
surfels with similar accuracy than template-based methods that assume surface continuity.
Right: Outlier detection, ROC curve wrt. the ZNCC threshold

the more up to the left the curve is, the better the classifier is. We finally select a value for
the ZNCC of 0.95 for the experiments in the Kinect dataset, and 0.85 for the Hamlyn dataset.

Soft vs. Hard isometric constraint

In Sec.5.3 we have discussed two ways of constraining the deformation of the surfel. We have
validated them in different sequences. We have observed that a soft constrained deformation
model does not improve the accuracy of the system. Isometry seems to be a good local
approach for the local deformation of the surfels, and thanks to treating the points individually
we can recover very different global deformations. For instance, in sequence 21 from Hamlyn
Dataset we can cover non-isometric global deformations, or in the kinect Paper Dataset,
we can track multiple objects, because we are treating each point individually. We use the
isometry as a hard constrain (Eq. 5.11 and Eq. 5.21) in all the rest of experiments.

5.6.2 Deformable Tracking with Static Camera

In this section, we analyse the performance of deformable tracking with static camera in real
sequences. The CVLab’s, T-shirt and paper dataset were recorded with a Kinect RGB-D
camera. We also test intracorporeal sequences from the Hamlyn Dataset, in this case with
stereo camera. We use the first depth image to initialise the surfels, i.e. the position, Jacobian
and texture of each surfel. Notice that our system is monocular, hence we only process the
gray images obtained with the RGB-D camera or with the left camera.

We compare our method against some reference shape-from-template (SfT) methods
(Özgür and Bartoli, 2017, Salzmann and Fua, 2011, Östlund et al., 2012, Bartoli et al., 2012,
Chhatkuli et al., 2014b, Brunet et al., 2010) in the Kinect paper dataset from CVLab. This
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0750 802 850 900 950Fig. 5.4 Deformable tracking results, two rows per sequence, first the 3D reconstruction, then
the RGB frames. Even if the surfels are estimated independently the entire reconstruction
displays an homogeneous consistency. (See entire sequences in supplementary material).
1st-2nd rows, kinect T-Shirt dataset, frames # 0,# 70,# 150,# 250 and #300. 3rd-4th
rows kinect Paper dataset, frames # 0,# 70,# 130,# 160 and #180. 5th-6th rows Hamlyn 4
(Heart sequence), frames # 0,# 12,# 16,# 26 and #40. 7th-8th Hamlyn 21 (Liver sequence),
frames # 750,# 800,# 850,# 900 and #950.
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Fig. 5.5 Non-isometric deformation results. Left to right: SD-DefSLAM, DSDT w. static
map, w. static camera and DSDT.
sequence consists in a paper deformed isometrically. This sequence has two main challenges
for our method: illumination changes and temporal discontinuities (missing frames) in frames
#70, #120, #130 and #150. In contrast to the other methods, ours is the only one using
photometric error.

As shown in Fig. 5.3, the first notable result is that our method can track individual
surfels with similar accuracy to methods that assume smoothness in the surface. We also
noticed that optimization-based methods (Salzmann and Fua, 2011, Östlund et al., 2012) get
worse results than the rest. These methods assume sequential images and the missing frames
break this assumption worsening the results. In our case, something similar happens, but
thanks to the multi-scale configuration the convergence gets substantially improved. We also
conclude that the local compensation of the illumination presented in Eq. 5.5 is crucial to
track a higher number of surfels.

We have seen that assuming smooth surfaces improves the results in the paper area.
However, this precludes the usage of this method in discontinuous surfaces. In contrast, as
we have not assumed any regularizer between the individual surfels, we can track surfels not
only on the paper area, but also on the person’s T-Shirt and on the white board (See Fig. 5.4).
Discontinuities raise other challenges like occlusions that are successfully managed with the
saturation of the photometric error.

5.6.3 Direct and Sparse Deformable Tracking

In this section, we analyse the deformable tracking, and we compare the advantage of a world-
centric (DSDT) approach (Sec. 5.5) where the camera can move versus a camera-centric
approach with static camera (DSDT-SC) (Sec. 5.4).

We compare both methods against our tracking with a static (i.e. rigid) map (DSDT-SM),
the deformable tracking from SD-DefSLAM (Rodríguez et al., 2020) and the tracking of
ORBSLAM (Mur-Artal and Tardós, 2017) in the sequences 6, 20 and 21 from Hamlyn
dataset (Mountney et al., 2010b). All the methods are initialized with a stereo pair in the
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Table 5.2 Comparison of our method against ORBSLAM and SD-DEFSLAM for the Hamlyn
Dataset sequences 6, 20 and 21. We report RMSE and # of frames processed.

Rigid map Deformable map
ORBSLAM DSDT-SM SD-DefSLAM DSDT-SC DSDT

Dataset 6
RMSE 4.85 3.26 2.72 9.24 3.17
# Fr. 128 200 286 334 300

Dataset 20
RMSE 1.37 1.37 4.68 3.09 2.9
# Fr. 220 210 252 350 500

Dataset 21
RMSE - - 6.19 1.81 1.30
# Fr. - - 323 321 300

ORB: ORBSLAM (Mur-Artal and Tardós, 2017); DSDT-SM: Direct Sparse with static
map; SD: Semi-direct DefSLAM (Rodríguez et al., 2020); DSDT-SC: Direct Sparse
Deformable Tracking with static camera; DSDT: Direct Sparse Deformable Tracking

same frame and no mapping is allowed, i.e., tracking the initial map without refining or
extending it.

Dataset 6 (from frame #50) is an abdominal exploration where the scene remains almost
rigid. It has a planar topology in the area where the camera closes up, and a small discontinuity
due to a nerve. The texture is minimal except for the veins. The deformable tracking can
process 300 frames before tracking loss with an RMS error close to 3mm. On the other hand,
DSDT-SC can process a similar number of frames but with a much bigger error. We conclude
that the regularizer added in the deformation tracking gives hints to the optimizer yielding
better performance. SD-DefSLAM processes a few frames less with similar error, however it
only focuses on the planar area.

Dataset 20 (from frame #750) is another abdominal exploration, but in this case the
scene contains some global near-isometric deformation keeping a similar shape. Deformable
tracking can track 500 frames from the initialization frame, in contrast to the camera-centric
approach DSDT-SC that only process 350 frames. Again thanks to the movement of the
camera we are able to recover many points that are missed by the DSDT-SC, being able to
process a higher number of frames. SD-DefSLAM assumes a global isometry by imposing
a mesh, and in this case, as we do not update the mesh, it misses a big part of points when
near-isometric deformation happens. Rigid methods focus in a small area of the scene being
badly conditioned. In contrast, our direct method tracks almost the double of features in
comparison with ORBSLAM.

The last one is Dataset 21 (from frame #750) where the camera images two lobes of a
liver moving as independent bodies, one lobe sliding over the other (See Fig.5.5). Thanks
to our formulation, the proposed deformable tracking can process global non-isometric
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deformations. We observe that our system is able to cope with deformations from independent
bodies. In this case, SD-DefSLAM can track some of the points but with a high RMSE
because its isometric deformation model cannot code the deformation actually observed.

5.7 Conclusion

In this paper we have proposed a novel approach for deformable tracking in deformable
SLAM. Each map point is modeled as a 3D surfel that is a local approximation of the scene
surface. The deformations of the map are modeled through the movement of these surfels.
In contrast to the previous deformable tracking methods we have proposed to remove any
connection between 3D map points.

We have proved experimentally that the local model for the deformable tracking can
perform similarly to the state-of-the art methods and can perform more robustly and more
accurately than the global methods in scenes composed of discontinuous surfaces, or with
global non-isometric deformations. In addition, we reassert the potential of the direct methods
over the feature-based equivalents.

Future work could extend this deformable tracking into a deformable mapping able
to reconstruct scenes composed of discontinuous surfaces, or with global non-isometric
deformations. With this two algorithmic components, it will be possible to create a new
generation of monocular Deformable SLAM algorithms able to work in a wider range of
scenarios.





Chapter 6

Conclusions

In this thesis, we have conceived the first Monocular SLAM able to work in deforming
scenarios. We have started a new research branch of SLAM that is able to work in more
general scenarios. We have shown that the deformable methods proposed are needed and
outperform the traditional ones.

Our first contribution was the deformable tracking presented in Chapter 2. In this first
version of the system, we have analysed how a deformable map must be treated. We introduce
an optimization method based on physical models, inspired in the template-based methods
that usually scope a small object that fits in the camera field-of-view. It recovers the shape of
the object by minimizing simultaneously the reprojection error and the deformation energy.
The first challenge of our method was to manage only partial views of the map. We saw that
trying to recover the entire deformation of the map was not advantageous in any way, instead
it is much better to recover just the area observed. The main disadvantage of this method is
that it needs a previously known shape-at-rest of the map.

In the Chapter 3, we propose to complement the deformable tracking with a deformable
mapping. This deformable mapping was able to map the scene even with deformations
from a monocular batch of images. It substitutes the classical rigid methods, like the bundle
adjustment, by the NRSfM of Parashar et al. (2017) which reconstructs surfaces assuming
isometry, infinitesimal planarity and continuity. The NRSfM method was conceived to deal
small objects like pillows, papers or fabrics. In our work, we design the deformable mapping
with the same assumptions, but with three main outstanding characteristics: it has automatic
data association, it is an incremental method, and it is able to explore new regions of the
scene keeping a coherent scale of the map. Bringing together the deformable tracking and
deformable mapping in a PTAM-like structure, our method is able to successfully process the
Mandala Dataset and medical sequences achieving state-of-the-art results and in real-time.
Thus, we can conclude that DefSLAM is the first deformable monocular SLAM system.
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In Chapter 4, we improve the DefSLAM to make it more robust in medical scenarios.
DefSLAM’s main drawback for this sequences was the feature-based matching, specifically
ORB method. The ORB method uses a FAST extractor that is not very repeatable, yielding
to a considerable number of unobserved features from frame to frame. We substituted it by a
Lukas-Kanade tracker that tracks the map points by using photometric error. This method
was shown to outperform the previous matching for the Mandala and medical sequences both
in terms of accuracy and robustness. Thanks to avoid the extraction of keypoints per frame,
the system performs with a similar computational time. In addition, we included a module
for relocalization in case of tracking failure and a segmentation module to remove dynamic
objects not related with the scene. Thanks to all the improvements proposed we were able to
process colonoscopy sequences with deformation.

The main issue of both systems comes with the assumption of continuity and isometry.
These assumptions are quite restrictive and although they approximately perform well in
near-isometric sequences, this is not the case for many medical sequences. That is why in
our last Chapter 5, we tackle the problem of reconstruct non-isometric deformations. To
achieve our purpose, we exploit the direct photometric error in order to track the points
individually without defining a global deformation model. Due to this new formulation we
are able to capture much better the nature of the deformations observed in the medical scene.
In our experiments, we proved that we can reconstruct non-isometric deformations or surface
with topological changes outperforming the deformable tracking methods proposed in the
previous chapters.

We can draw a general conclusion from this thesis by writing that we have proposed the
first system capable of work in deformable scenarios. And, in addition, we have also made
contributions within the current non-rigid monocular methods. On the first proposal, we
have developed a template-based camera tracking method able to work with maps partially
observed. On the second set of proposals, we have developed novel deformable mapping
inherited from the NRSfM able to perform explorations. We make our method more robust
exploding the photometric error and including new techniques for place recognition and
segmentation for dynamic SLAM. Finally, we have developed a new deformable tracking
method able to process near-isometric and non-isometric deformations more faithfully,
yielding in promising results and that serve as base for future deformable monocular SLAM
methods.
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6.1 Limitations and Future Work

In this thesis, we have explored geometric methods to create a new SLAM method able to
tackle the deforming scenes. To be able to reconstruct deforming maps, we had to make
many assumptions and incorporate physical models into the equations of the monocular
SLAM. This models are more restrictive than in the rigid SLAM, e.g. assuming continuous
or isometric surfaces. To have a fully robust and applicable method, those constrains must be
relaxed. In Chapter 5, we have seen that it is possible to recover the deformation of the map
and the camera pose only with local restrictions. From that point, we consider that the next
step is to build up an entire counterpart mapping able to work without assuming continuity.
This is crucial to build maps that are not totally smooth or with non-planar topology of the
reconstructed surface.

Finally, we have focused in the geometrical formulation leaving the data-driven ap-
proaches as a secondary topic. We have seen the improvements that this approaches can bring
to the field in many cases, e.g. segmenting or optical flow. In the Bachellor Degree of Diego
Royo 2020, we concluded that the optical flow with the Flownet proposed by Dosovitskiy
et al. (2015) can be used as a substitute of the Schwarp method used in the first stage of
the deformable mapping, achieving irregular and stepped warps. In Chapter 4, we use a
segmentation network to ignore the tools that enter in the camera field of view and are not
part of the map. The last collaboration with David Recasens in (Recasens et al., 2021) where
we explored the usage of Monodepth2 (Godard et al., 2019) as Mapping for the system
since it can generate depth from single images given similar results to the obtained with
geometrical methods. That is only a small proof of the potential impact that deep learning
can bring to this area.

We have focused this manuscript on the idea of conceiving a SLAM algorithm able to
tackle deformations of in-body sequences. One important underlying concept that was built
is the idea of a changing map. SLAM for applications in non-static scenarios, like a boat
in the middle of the ocean or in a street where cars are moving, will need a map with a
mathematical model that can represent the evolution of the map to have a robust and faithful
performance.
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Appendix A

DefSLAM: Derivatives of Regularizers of
the Deformable Tracking

We show the Jacobian terms of the regularizers to prove that it does not have singularities:

Stretching The streching error es(Lk
t ,Tk)e for the edge e is:

es(Lk
t ,Tk)e =

(
lte − lke
lke

)
, (A.1)
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e1 −Vt
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where Vt
e1 and Vt

e2 are the two nodes of the edge e in the instant t. Its derivative is
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Bending The bending error eb(Lt
k,Tk)n for the node n connected with its neighbours

Vl ∈ Nj through the edge el is:

eb(Lt
k,Tk)n = δt

n − δk
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. (A.4)

where
−→
δ

t

n is the mean curvature of the surface at the instant t. It is estimated though the
neighbours of the node and itself.
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δt
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n∥2 (A.6)

We assume fixed the values of the weights. Its derivative respect the node Vt
n is:
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with respect to its neighbours Vt
l
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In case of being a plane, the mean curvature and its derivative tends to zero.

∂eb(Lt
k,Tk)n

∂Vt
n

= 0 , δn
t = 0 (A.9)

Reference The reference error is

er(Lt
k,Lk

k) = Vt
n −Vk

n. (A.10)

and its derivative:
∂er(Lt

k,Tk)
∂Vt

n
= 1. (A.11)



Appendix B

Direct and Sparse Deformable Tracking.
Jacobian equations

In this section we develop the Jacobians used for the optimizations in Eq. 5.13 and Eq. 5.21.
To estimate them, we apply the chain rule to each of the residual terms: the photometric error,
the deformation energy and the equilibrium point constrain.

The photometric error was modeled through forward-compositional illumination-invariant
approach as in Eq. 5.5 for each pixel p:

Pt
i,p = αt

iT (up,vp)− I(π(TcwSt
i(up,vp))+βt

i . (B.1)

It depends on three groups of parameters: the deformation of the surfel, the camera pose,
and the initial parameters. This parameters are optimized depending on the problem.

In the Direct and Sparse Deformable Tracking with Static Camera, only the movement of
the surfel is optimized through its translation tt

i, rotation Rt
i and the deformation. The initial

parameters of the surfel, X0
i and J0

i , are known and the pose of the camera is fixed Tcw.

St
i = (X0

i + tt
i)+Rt

iJ0
i Ft

i

∆u
∆v

 (B.2)

The surfel is transformed to the camera reference by:

St
ic = TcwSt

i (B.3)

The derivatives of the photometric error wrt. the pose of the camera can be defined
through the chain rule:

∂Pt
i

∂X
= −∇I ∂π

∂St
ic

Rcw
∂St

i

∂X
(B.4)



104 Direct and Sparse Deformable Tracking. Jacobian equations

being ∇I the gradient of the image, it is estimated with a central finite differences kernel[
−1 0 1

]
. Rcw is the rotation of the camera which images the surfel. For the SfT, we

assume that the fixed camera is in the origin, so Tcw = I4.
∂π

∂St
ic

is the projection derivative. It is estimated by using the position of the point[
XcYcZc

]⊤
and the intrinsic calibration of the camera -focal length fx,fy- in the camera

reference as:

∂π
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∂St
i

∂X depends on the translation, rotation and deformation of the surfel. The jacobian
obtained for this derivative is a 3×6 or 3×9 matrix.
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For the deformation tracking presented in Sec.5.5 the camera is not static and its pose is
estimated. The derivative of the photometric error wrt. the camera motion is:

∂Pi

∂Tcw
= −∇I ∂π

∂St
i c

[
I3 −[St

i c]×
]
. (B.9)

α is static and only reestimated at the beginning of the optimization with the initial guess
of the coarsest scale. It is enough with multiply ∇I by the α gain.

When isometry is soft-constrained, we use a deformation energy to constrain the defor-
mations. Deformation are modeled by the symmetric matrix Ft

i and the deformation energy
is:

It
i =

∥∥∥Ft
i − I2

∥∥∥2
2
. (5.12)

The derivatives depending to model the deformation energy are:

∂It
i

∂F
= I3 (B.10)
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The equilibrium point residuals (Eq. 5.20 for deformation tracking). The Eq. 5.20)
derivatives used for the optimization are:

∂E t
i

∂tt
i

= I3. (B.11)





Appendix C

Conclusiones en Español

En esta tesis hemos concebido el primer SLAM Monocular capaz de trabajar en escenarios
con deformación. Hemos iniciado una nueva rama de investigación de SLAM que puede
trabajar en escenarios más generales. Hemos demostrado que los métodos deformables
propuestos son necesarios y superan a los tradicionales.

Nuestra primera contribución fue la localización deformable presentada en el Capítulo
2. En esta primera versión del sistema, hemos analizado cómo se debe tratar un mapa
deformable. Introducimos un método de optimización basado en modelos físicos, inspirado
en los métodos basados en plantillas que normalmente tratan un objeto pequeño que cabe en
el campo de visión de la cámara. Conseguimos recuperar la forma del objeto minimizando
simultáneamente el error de reproyección y la energía de deformación. El primer desafío
de nuestro método fue procesar solo vistas parciales del mapa. Vimos que recuperar toda
la deformación del mapa no era ventajoso de ninguna manera, en cambio es mucho mejor
recuperar solo el área observada. La principal desventaja de este método es que necesita
conocer la forma en reposo del mapa de antemano.

En el Capítulo 3, proponemos complementar la localización deformable con un mapeo de-
formable. Este mapeo deformable fue capaz de mapear la escena incluso con deformaciones
para un conjunto de imágenes monoculares. Sustituye los métodos rígidos clásicos, como el
ajuste de haces, por el NRSfM de Parashar et al. (2017) que reconstruye superficies asum-
iendo isometría, planaridad infinitesimal y continuidad. El método NRSfM fue concebido
para tratar objetos pequeños como almohadas, papeles o telas. En nuestro trabajo, diseñamos
el mapeo deformable con los mismos supuestos, pero con tres características principales
destacadas: tiene asociación automática de datos, es un método incremental y es capaz de
explorar nuevas regiones de la escena manteniendo una escala coherente del mapa. Al juntar
la localización deformable y el mapeo deformable en una estructura similar a PTAM, nuestro
método es capaz de procesar con éxito el Mandala dataset y algunas secuencias médicas
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logrando resultados estado del arte y en tiempo real. Así, podemos concluir que DefSLAM
es el primer sistema SLAM monocular deformable.

En el Capítulo 4, mejoramos DefSLAM para hacerlo más robusto en escenarios médicos.
Su principal inconveniente para estas secuencias fue el emparejamiento basada en caracterís-
ticas, específicamente el método ORB. El método ORB utiliza un extractor FAST que no es
muy repetible, lo que da lugar a un número considerable de características no observadas
entre imagenes. Lo sustituimos por un rastreador Lukas-Kanade que rastrea los puntos del
mapa mediante el uso de un error fotométrico. Se demostró que este método supera al
emparejamiento anterior tanto para el Mandala como para las secuencias médicas, tanto en
términos de precisión como de robustez. Gracias a evitar la extracción de keypoints por
frame, el sistema se comporta con un tiempo computacional similar. Además, incluimos
un módulo de relocalización en caso de fallo de seguimiento y un módulo de segmentación
para eliminar objetos dinámicos no relacionados con la escena. Gracias a todas las mejoras
propuestas pudimos procesar secuencias de colonoscopia con deformación.

El problema principal de ambos sistemas viene con el supuesto de continuidad e isometría.
Estos supuestos son bastante restrictivos y, aunque aproximadamente funcionan bien en
secuencias casi isométricas, este no es el caso de muchas secuencias médicas. Por eso, en
nuestro último Capítulo 5, abordamos el problema de la reconstrucción de deformaciones
no isométricas. Para lograr nuestro propósito, aprovechamos el error fotométrico para
rastrear los puntos individualmente sin definir un modelo de deformación global. Gracias
a esta nueva formulación podemos captar mucho mejor la naturaleza de las deformaciones
observadas en la escena médica. En nuestros experimentos demostramos que podemos
reconstruir deformaciones no isométricas o superficies con cambios topológicos que superan
los métodos de localización deformables propuestos en los capítulos anteriores.

Como conclusión general de esta tesis: hemos propuesto el primer sistema capaz de
funcionar en escenarios deformables. Además, también hemos hecho aportaciones dentro de
los actuales métodos monoculares no rígidos. En la primera propuesta, hemos desarrollado
un método de localización de cámara basado en plantillas capaz de trabajar con mapas par-
cialmente observados. En el segundo conjunto de propuestas, hemos desarrollado un nuevo
mapeo deformable heredado del NRSfM capaz de realizar exploraciones. Hacemos que
nuestro método sea más robusto explotando el error fotométrico e incluyendo nuevas técnicas
para el reconocimiento de lugares y la segmentación para SLAM dinámico. Finalmente,
hemos desarrollado un nuevo método de seguimiento deformable capaz de procesar deforma-
ciones casi isométricas y no isométricas de forma más fiel, dando resultados prometedores y
que sirven de base para futuros métodos SLAM monoculares deformables.
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C.1 Limitaciones y Trabajo Futuro

En esta tesis, hemos explorado métodos geométricos para crear un nuevo método SLAM
capaz de abordar las escenas con deformación. Para poder reconstruir mapas deformables,
tuvimos que hacer varias suposiciones e incorporar el modelo físico en las ecuaciones del
SLAM monocular. Estos modelos son más restrictivos que en el caso rígido, por ejemplo,
asumiendo superficies continuas e isométricas. Para tener un método completamente robusto
y aplicable, esas restricciones deben ser relajadas. En el capítulo 5, hemos visto que es
posible recuperar la deformación del mapa y la pose de la cámara solo con restricciones
locales. A partir de ese punto, consideramos que el siguiente paso es construir un mapeo
deformable más versátil capaz de funcionar sin asumir continuidad. Esto es crucial para
construir mapas que no sean totalmente uniformes o con topología no plana de la superficie
reconstruida.

Finalmente, nos hemos centrado en la formulación geométrica dejando los enfoques
basados en aprendizaje como un tema secundario. Hemos visto las mejoras que estos
enfoques pueden aportar al campo en varios casos, por ejemplo gracias a la segmentación
o al flujo óptico. En el trabajo de fin de grado de Diego Royo 2020, concluimos que el
flujo óptico con el Flownet propuesto por Dosovitskiy et al. (2015) se puede utilizar como
sustituto del método Schwarp utilizado en la primera etapa del mapeo deformable, logrando
deformaciones irregulares y escalonadas. En el Capítulo 4, usamos una red de segmentación
para ignorar las herramientas que entran en el campo de visión de la cámara y no son parte
del mapa. La última colaboración con David Recasens en (Recasens et al., 2021) exploramos
el uso de Monodepth2 (Godard et al., 2019) como Mapeo para el sistema ya que puede
generar profundidad a partir de imágenes individuales con resultados similares a los obtenidos
con métodos geométricos. Esa es solo una pequeña prueba del impacto potencial que el
aprendizaje profundo puede traer a este área.

Hemos centrado este manuscrito en la idea de concebir un algoritmo SLAM capaz de
abordar deformaciones de secuencias en el cuerpo. Un concepto subyacente importante
presentado es la idea de un mapa cambiante. En SLAM para aplicaciones en escenarios no
estáticos, como un bote en medio del océano o en una calle donde se mueven los coches
y peatones, se necesitará un mapa con un modelo matemático que pueda representar la
evolución del mapa para tener un desempeño robusto y fiable.
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