39 research outputs found

    Bisimulations and Logical Characterizations on Continuous-time Markov Decision Processes

    Full text link
    In this paper we study strong and weak bisimulation equivalences for continuous-time Markov decision processes (CTMDPs) and the logical characterizations of these relations with respect to the continuous-time stochastic logic (CSL). For strong bisimulation, it is well known that it is strictly finer than CSL equivalence. In this paper we propose strong and weak bisimulations for CTMDPs and show that for a subclass of CTMDPs, strong and weak bisimulations are both sound and complete with respect to the equivalences induced by CSL and the sub-logic of CSL without next operator respectively. We then consider a standard extension of CSL, and show that it and its sub-logic without X can be fully characterized by strong and weak bisimulations respectively over arbitrary CTMDPs.Comment: The conference version of this paper was published at VMCAI 201

    Model checking probabilistic and stochastic extensions of the pi-calculus

    Get PDF
    We present an implementation of model checking for probabilistic and stochastic extensions of the pi-calculus, a process algebra which supports modelling of concurrency and mobility. Formal verification techniques for such extensions have clear applications in several domains, including mobile ad-hoc network protocols, probabilistic security protocols and biological pathways. Despite this, no implementation of automated verification exists. Building upon the pi-calculus model checker MMC, we first show an automated procedure for constructing the underlying semantic model of a probabilistic or stochastic pi-calculus process. This can then be verified using existing probabilistic model checkers such as PRISM. Secondly, we demonstrate how for processes of a specific structure a more efficient, compositional approach is applicable, which uses our extension of MMC on each parallel component of the system and then translates the results into a high-level modular description for the PRISM tool. The feasibility of our techniques is demonstrated through a number of case studies from the pi-calculus literature

    Decision algorithms for modelling, optimal control and veriïŹcation of probabilistic systems

    Get PDF
    Markov Decision Processes (MDPs) constitute a mathematical framework for modelling systems featuring both probabilistic and nondeterministic behaviour. They are widely used to solve sequential decision making problems and applied successfully in operations research, arti?cial intelligence, and stochastic control theory, and have been extended conservatively to the model of probabilistic automata in the context of concurrent probabilistic systems. However, when modeling a physical system they suffer from several limitations. One of the most important is the inherent loss of precision that is introduced by measurement errors and discretization artifacts which necessarily happen due to incomplete knowledge about the system behavior. As a result, the true probability distribution for transitions is in most cases an uncertain value, determined by either external parameters or con?dence intervals. Interval Markov decision processes (IMDPs) generalize classical MDPs by having interval-valued transition probabilities. They provide a powerful modelling tool for probabilistic systems with an additional variation or uncertainty that re?ects the absence of precise knowledge concerning transition probabilities. In this dissertation, we focus on decision algorithms for modelling and performance evaluation of such probabilistic systems leveraging techniques from mathematical optimization. From a modelling viewpoint, we address probabilistic bisimulations to reduce the size of the system models while preserving the logical properties they satisfy. We also discuss the key ingredients to construct systems by composing them out of smaller components running in parallel. Furthermore, we introduce a novel stochastic model, Uncertain weighted Markov Decision Processes (UwMDPs), so as to capture quantities like preferences or priorities in a nondeterministic scenario with uncertainties. This model is close to the model of IMDPs but more convenient to work with in the context of bisimulation minimization. From a performance evaluation perspective, we consider the problem of multi-objective robust strategy synthesis for IMDPs, where the aim is to ?nd a robust strategy that guarantees the satisfaction of multiple properties at the same time in face of the transition probability uncertainty. In this respect, we discuss the computational complexity of the problem and present a value iteration-based decision algorithm to approximate the Pareto set of achievable optimal points. Moreover, we consider the problem of computing maximal/minimal reward-bounded reachability probabilities on UwMDPs, for which we present an ef?cient algorithm running in pseudo-polynomial time. We demonstrate the practical effectiveness of our proposed approaches by applying them to a collection of real-world case studies using several prototypical tools.Markov-Entscheidungsprozesse (MEPe) bilden den Rahmen fĂŒr die Modellierung von Systemen, die sowohl stochastisches als auch nichtdeterministisches Verhalten beinhalten. Diese Modellklasse hat ein breites Anwendungsfeld in der Lösung sequentieller Entscheidungsprobleme und wird erfolgreich in der Operationsforschung, der kĂŒnstlichen Intelligenz und in der stochastischen Kontrolltheorie eingesetzt. Im Bereich der nebenlĂ€u?gen probabilistischen Systeme wurde sie konservativ zu probabilistischen Automaten erweitert. Verwendet man MEPe jedoch zur Modellierung physikalischer Systeme so zeigt es sich, dass sie an einer Reihe von EinschrĂ€nkungen leiden. Eines der schwerwiegendsten Probleme ist, dass das tatsĂ€chliche Verhalten des betrachteten Systems zumeist nicht vollstĂ€ndig bekannt ist. Durch Messfehler und Diskretisierungsartefakte ist ein Verlust an Genauigkeit unvermeidbar. Die tatsĂ€chlichen Übergangswahrscheinlichkeitsverteilungen des Systems sind daher in den meisten FĂ€llen nicht exakt bekannt, sondern hĂ€ngen von Ă€ußeren Faktoren ab oder können nur durch Kon?denzintervalle erfasst werden. Intervall Markov-Entscheidungsprozesse (IMEPe) verallgemeinern klassische MEPe dadurch, dass die möglichen Übergangswahrscheinlichkeitsverteilungen durch Intervalle ausgedrĂŒckt werden können. IMEPe sind daher ein mĂ€chtiges Modellierungswerkzeug fĂŒr probabilistische Systeme mit unbestimmtem Verhalten, dass sich dadurch ergibt, dass das exakte Verhalten des realen Systems nicht bekannt ist. In dieser Doktorarbeit konzentrieren wir uns auf Entscheidungsverfahren fĂŒr die Modellierung und die Auswertung der Eigenschaften solcher probabilistischer Systeme indem wir Methoden der mathematischen Optimierung einsetzen. Im Bereich der Modellierung betrachten wir probabilistische Bisimulation um die GrĂ¶ĂŸe des Systemmodells zu reduzieren wĂ€hrend wir gleichzeitig die logischen Eigenschaften erhalten. Wir betrachten außerdem die SchlĂŒsseltechniken um Modelle aus kleineren Komponenten, die parallel ablaufen, kompositionell zu generieren. Weiterhin fĂŒhren wir eine neue Art von stochastischen Modellen ein, sogenannte Unsichere Gewichtete Markov-Entscheidungsprozesse (UgMEPe), um Eigenschaften wie Implementierungsentscheidungen und BenutzerprioritĂ€ten in einem nichtdeterministischen Szenario ausdrĂŒcken zu können. Dieses Modell Ă€hnelt IMEPe, ist aber besser fĂŒr die Minimierung bezĂŒglich Bisimulation geeignet. Im Bereich der Auswertung von Modelleigenschaften betrachten wir das Problem, Strategien zu generieren, die in der Lage sind den Nichtdeterminismus so aufzulösen, dass mehrere gewĂŒnschte Eigenschaften gleichzeitig erfĂŒllt werden können, wobei jede mögliche Auswahl von Wahrscheinlichkeitsverteilungen aus den Übergangsintervallen zu respektieren ist. Wir betrachten die KomplexitĂ€tsklasse dieses Problems und diskutieren einen auf Werte-Iteration beruhenden Algorithmus um die Pareto-Menge der erreichbaren optimalen Punkte anzunĂ€hern. Weiterhin betrachten wir das Problem, minimale und maximale Erreichbarkeitswahrscheinlichkeiten zu berechnen, wenn wir eine obere Grenze fĂŒr dieakkumulierten Pfadkosten einhalten mĂŒssen. FĂŒr dieses Problem diskutieren wir einen ef?zienten Algorithmus mit pseudopolynomieller Zeit. Wir zeigen die Ef?zienz unserer AnsĂ€tze in der Praxis, indem wir sie prototypisch implementieren und auf eine Reihe von realistischen Fallstudien anwenden

    Decision algorithms for probabilistic simulations

    Get PDF
    Probabilistic phenomena arise in embedded, distributed, networked, biological and security systems, and are accounted for by various probabilistic modeling formalisms based on labelled transition systems. Among the most popular ones are homogeneous discretetime and continuous-time Markov chains (DTMCs and CTMCs) and their extensions with nondeterminism, which we will consider in this thesis. Simulation relations admit comparing the behavior of two models and provide the principal ingredients to perform abstractions of the models while preserving interesting properties. Intuitively, one model simulates another model if it can imitate all of its moves. Simulation preorders are compositional, thus allowing hierarchical verification and decomposition of difficult verification tasks into several subproblems. Recently, variants of simulation relations, such as simulatability and polynomially accurate probabilistic simulations, have been introduced to prove soundness of security protocols. The focus of this thesis lies in decision algorithms for various simulation preorders of probabilistic systems. We propose efficient decision algorithms and provide also experimental comparisons of these algorithms.In einem breiten Spektrum von Systemen, etwa bei eingebetteten, verteilten, netzwerkbasierten und biologischen System sowie im Bereich Security, treten PhĂ€nomene auf, die sich sehr gut durch Probabilismus beschreiben lassen. Als Modellierungsformalismus dienen dabei verschiedene probabilistische Erweiterungen von Transitionssystemen. Zu den wohl populĂ€rsten Formalismen dieser Art zĂ€hlen hier homogene Markovketten (Markov chains) mit diskreter Zeit und Markovketten mit kontinuierlicher Zeit, bzw. deren Erweiterungen mit Nichtdeterminismus. Genau diese Klasse von Modellen betrachten wir in dieser Dissertation. Simulationsrelationen erlauben es, das Verhalten zweier Modelle in Beziehung zu setzen und liefern den grundlegenden Baustein, um Abstraktionen so zu betreiben, daß interessante Eigenschaften erhalten bleiben. Intuitiv gesprochen simuliert ein Modell ein anderes, wenn es alle ZustandsĂŒbergĂ€nge des anderen imitieren kann. Derartige Simulationsordnungen sind kompositional, daher erlauben sie hierarchische Verifikation und Zerlegung von Verifikationsaufgaben in kleinere Unterprobleme. KĂŒrzlich wurden Simulationsrelationen eingefĂŒhrt, wie etwa Simulatability und Polynomiell Akkurate Probabilstische Simulationen, um Korrektheit von Sicherheitsprotokollen zu zeigen. Der Schwerpunkt dieser Dissertation liegt auf Entscheidungsalgorithmen fĂŒr verschiedene Simulationsordnungen auf probabilistischen Systemen. Wir stellen neue, effiziente Entscheidungsalgorithmen vor und vergleichen diese in Experimenten mit existierenden Algorithmen

    Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal Abstractions

    Get PDF
    Controllers for dynamical systems that operate in safety-critical settings must account for stochastic disturbances. Such disturbances are often modeled as process noise in a dynamical system, and common assumptions are that the underlying distributions are known and/or Gaussian. In practice, however, these assumptions may be unrealistic and can lead to poor approximations of the true noise distribution. We present a novel controller synthesis method that does not rely on any explicit representation of the noise distributions. In particular, we address the problem of computing a controller that provides probabilistic guarantees on safely reaching a target, while also avoiding unsafe regions of the state space. First, we abstract the continuous control system into a finite-state model that captures noise by probabilistic transitions between discrete states. As a key contribution, we adapt tools from the scenario approach to compute probably approximately correct (PAC) bounds on these transition probabilities, based on a finite number of samples of the noise. We capture these bounds in the transition probability intervals of a so-called interval Markov decision process (iMDP). This iMDP is, with a user-specified confidence probability, robust against uncertainty in the transition probabilities, and the tightness of the probability intervals can be controlled through the number of samples. We use state-of-the-art verification techniques to provide guarantees on the iMDP and compute a controller for which these guarantees carry over to the original control system. In addition, we develop a tailored computational scheme that reduces the complexity of the synthesis of these guarantees on the iMDP. Benchmarks on realistic control systems show the practical applicability of our method, even when the iMDP has hundreds of millions of transitions.Comment: To appear in the Journal of Artificial Intelligence Research (JAIR). arXiv admin note: text overlap with arXiv:2110.1266

    Probabilistic Models and Process Calculi for Mobile Ad Hoc Networks

    Get PDF

    Quantitative verification of gossip protocols for certificate transparency

    Get PDF
    Certificate transparency is a promising solution to publicly auditing Internet certificates. However, there is the potential of split-world attacks, where users are directed to fake versions of the log where they may accept fraudulent certificates. To ensure users are seeing the same version of a log, gossip protocols have been designed where users share and verify log-generated data. This thesis proposes a methodology of evaluating such protocols using probabilistic model checking, a collection of techniques for formally verifying properties of stochastic systems. It also describes the approach to modelling and verifying the protocols and analysing several aspects, including the success rate of detecting inconsistencies in gossip messages and its efficiency in terms of bandwidth. This thesis also compares different protocol variants and suggests ways to augment the protocol to improve performances, using model checking to verify the claims. To address uncertainty and unscalability issues within the models, this thesis shows how to transform models by allowing the probability of certain events to lie within a range of values, and abstract them to make the verification process more efficient. Lastly, by parameterising the models, this thesis shows how to search possible model configurations to find the worst-case behaviour for certain formal properties
    corecore