University
of Glasgow

Norman, G., Palamidessi, C., Parker, D. and Wu, P. (2009) Model checking probabilistic
and stochastic extensions of the pi-calculus. IEEE Transactions on Software Engineering
35 (2-3). pp. 209-223. ISSN 0098-5589

http://eprints.gla.ac.uk/39680/

Deposited on: 30 August 2010

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/5956.html
http://eprints.gla.ac.uk/39680/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO.2, MARCH/APRIL 2009 209

Model Checking Probabilistic and
Stochastic Extensions of the w-Calculus

Gethin Norman, Catuscia Palamidessi, David Parker, and Peng Wu

Abstract—We present an implementation of model checking for probabilistic and stochastic extensions of the w-calculus, a process
algebra which supports modeling of concurrency and mobility. Formal verification techniques for such extensions have clear
applications in several domains, including mobile ad hoc network protocols, probabilistic security protocols, and biological pathways.
Despite this, no implementation of automated verification exists. Building upon the w-calculus model checker Mobility Model Checker
(MMC), we first show an automated procedure for constructing the underlying semantic model of a probabilistic or stochastic w-calculus
process. This can then be verified using existing probabilistic model checkers such as PRISM. Secondly, we demonstrate how, for
processes of a specific structure, a more efficient, compositional approach is applicable, which uses our extension of MMC on each
parallel component of the system and then translates the results into a high-level modular description for the PRISM tool. The feasibility
of our techniques is demonstrated through a number of case studies from the w-calculus literature.

Index Terms—Verification, model checking, Markov processes, stochastic processes.

1 INTRODUCTION

THE m-calculus [1] is a process algebra for modeling
concurrency and mobility. It has been used to model,
for example, communication protocols for dynamic net-
work topologies, security protocols, and biological path-
ways. For each class of systems, probabilistic and stochastic
behaviors are often also key ingredients. Mobile ad hoc
network protocols, for example, can exhibit probabilistic
behavior through either communication failures or random
back off procedures. Similarly, randomization is frequently
applied in security protocols, e.g., for anonymity [2] or
contract-signing [3]. For biological systems, the times
between reactions are of a stochastic nature.

Consequently, suitable variants of the m-calculus have
been developed: probabilistic versions, for example [4],
which extend the original calculus with discrete probabil-
istic choice, have been proposed as a formalism to model
and reason about randomized security protocols [5], [6];
and stochastic extensions, for example [7], which augment
the calculus with exponential delays, have been shown to be
a suitable formalism for modeling and reasoning about
complex biological pathways [8], [9].

The benefits of automatic formal verification and tool
support in this context are clear: reasoning correctly about
the behavior of such models, particularly interactions
between probabilistic and nondeterministic behavior, is

e G. Norman and D. Parker are with the Oxford University Computing
Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK.
E-mail: {gethin.norman, david.parker/@comlab.ox.ac.uk.

o C. Palamidessi is with INRIA Saclay and Ecole Polytechnique, Rue de
Saclay, 91128 Palaiseau, France. E-mail: catuscia@lix.polytechnique.fr.

o P. Wu is with the University College London, Adastral Park, Martlesham
Heath, Ipswich IP5 3RE, UK. E-mail: p.wu@adastral.ucl.ac.uk.

Manuscript received 25 Jan. 2008; revised 30 June 2008; accepted 20 Aug.
2008; published online 15 Sept. 2008.

Recommended for acceptance by J. Hillston, M. Kwiatkowska, and M. Telek.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2008-01-0027.
Digital Object Identifier 10.1109/TSE.2008.77.

0098-5589/09/$25.00 © 2009 IEEE

known to be nontrivial. Furthermore, the state spaces of
probabilistic or stochastic models of realistic systems have a
tendency to grow extremely quickly, making manual
verification difficult or infeasible.

In this paper, we describe an implementation of
probabilistic model checking for models described in two
different extensions of the 7-calculus. The first, the simple
probabilistic m-calculus, is an extension of the m-calculus
obtained by introducing a discrete probabilistic choice
operator in addition to the existing nondeterministic
choice operator. The second, the stochastic m-calculus,
extends the original calculus by associating rates (para-
meters of exponential distributions) with both silent
transitions and channels.

Our approach is to adapt and reuse existing tools for
verification of mobile systems and of probabilistic and
stochastic systems. We first developed an extension of the
tool MMC [10], a logic-programming-based model checker
for the m-calculus. This extension, MMC,,,,,, can derive the
semantic model for an arbitrary process in the (finite-
control) probabilistic or stochastic m-calculus. The semantic
model, which is given by a Markov decision process (MDP)
or continuous-time Markov chain (CTMC), can then be
analyzed using standard tools, such as the probabilistic
model checker PRISM [11]. To improve efficiency, when the
process has a specific structure, we employ a compositional
approach, applying MMC,,,;, to each parallel component of
a system, processing the results to produce a high-level
modular description in the modeling language of PRISM,
and then performing probabilistic verification. This avoids a
potential blowup in the size of the intermediate MDP or
CTMC representation and allows us to exploit the efficient
symbolic model construction and analysis techniques in
PRISM. We present experimental results to illustrate the
performance of our implementation on a number of case
studies. To our knowledge, this paper constitutes the first
attempt to implement automated verification in this area.

Published by the IEEE Computer Society

210 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO.2, MARCH/APRIL 2009

Related work. Various tools exist for automatic verifica-
tion of the (nonprobabilistic) w-calculus. The Mobility
Workbench (MWB’99) [12] provides a bisimulation checker
and a 7-p-calculus model checker. Mobility Model Checker
(MMC) [10], a more recently developed tool, also supports
the m-p-calculus. The latter places particular emphasis on
efficiency and is built using logic programming technology.
ProVerif [13] supports verification of the applied 7-calculus,
a variant of the basic calculus. It is aimed primarily at
analysis of cryptographic protocols and is theorem-prover
based. Two alternative approaches are the PIPER system
[14], which verifies 7-calculus processes augmented with
type signatures based on an extraction of sound models
using types and CCS processes [15], [16], and which translate
a subset of the 7-calculus to the language Promela for model
checking in the SPIN tool. Static analysis techniques have
also been applied to the m-calculus, including abstract
interpretation [17] and control flow analysis [18].

A number of existing papers have proposed probabilistic
extensions of the w-calculus. The first [4] extended the
asynchronous version of the calculus, which removes the
output prefix construct, meaning processes must terminate
immediately after sending output. A version was then
proposed in [5], considering only silent probabilistic transi-
tions. This variant, which is essentially the same as the one
used in this paper, was introduced to specify and reason
about randomized security protocols. In [6], the probabilistic
m-calculus was used to formalize definitions of anonymity.

A stochastic extension of the w-calculus was first
considered in [7] in which the action prefix construct was
replaced with an action-rate prefix construct. A number of
different variants have since been proposed differing in
how rates are added to the prefix construct. In this paper,
we follow [19] and parameterize silent (1) actions with rates
and associate a (fixed) rate with each channel. A number of
discrete-event simulators for the stochastic w-calculus are
available, e.g., BioSpi [9] and SPiM [19], but to our
knowledge, no model checking tools.

Structure. The remainder of this paper is structured as
follows: Section 2 introduces the syntax and semantics for
probabilistic and stochastic extensions of the w-calculus.
Sections 3 and 4 describe our extension of MMC for
evaluating these semantics and show how the result of this
extension can be processed into input for the PRISM tool.
Section 5 presents experimental results and Section 6
concludes the paper. A preliminary version of this paper
(with only the discrete probabilistic case) appeared as [20].

2 THE m-CALCULUS

The m-calculus is a process algebra for modeling concur-
rency and mobility. Based on value-passing CCS [21], a key
distinguishing feature of the calculus is that it uses a single
datatype, names, for both channels and values, with the
consequence that it is possible to communicate channel
names between processes.

In this section, we present the probabilistic and stochastic
extensions of the m-calculus for which we have developed
automated model checking procedures. In order to facilitate
model checking, we make two simple assumptions. First, we
restrict our attention to finite-control m-calculus processes,

i.e., where recursion is not permitted within parallel
composition. This is necessary to ensure that the resulting
models are finite-state and is, in fact, also imposed by the
MMC n-calculus model checker, on which our work relies.

Second, we require that the systems to which we apply
model checking are closed, intuitively meaning that they
receive no inputs from their environment and send no
outputs to it. This is due to the nature of the properties that
are analyzed by probabilistic model checkers such as
PRISM. We will discuss this issue further in Section 4.6.

Preliminaries. Before describing the probabilistic var-
iants of the m-calculus, we present some preliminary notation
and definitions. Throughout the paper, we will assume a
countable set N of names, ranged over by z, z;, y, etc.

A match is an equality test on names from A and a
condition M is a finite conjunction of matches, i.e., M is of
the form [z; =y] A -+ A [z, = y,]. We denote by n(M) the
set of names that appear in M (ignoring any trivial equality
tests of the form [z = z]).

A substitution o is a partial mapping from A to A. The
simplest substitutions are of the form {y/z} which maps =
to y. We let n(o) denote the set of names that the
substitution affects, ie., n(o) ={z | Jy(#z) e N. o(z) =
ytU{z | Jy(# x) e N.o(y) = x}. A substitution o satisfies
the match [z =y], denoted by ok [z =y] if o(z) = o(y).
Satisfaction extends to conjunctions of matches in the
obvious way, e.g., o | [x1 = W] Az =y if 0 [21 = yi]
and o E [z2 = yo].

We will use five different action types for the two
extensions of the w-calculus: 7 (silent action), r(€ IR)
(rate action), z(y) (input), zy (output), and z(y) (bound
output). The bound names for an action «, denoted by
bn(c), are defined as follows: bn(7) = bn(r) = bn(zy) =0
and bn(z(y)) = bn(z(y)) = {y}. A substitution o can also be
applied to an action «, denoted by ao. The definition of this
ist to=71, ro=7r, (z(y)o=0(z)(y) if y¢nlo), (Ty)o=
o(z)o(y) and (Z(y))o = o(z)(y) if y ¢ n(o). Note that in the
case of input and bound output actions (i.e., those with
bound variables), the substitution is only defined when the
substitution does not change the bound names.

2.1 The Simple Probabilistic 7-Calculus

We use a probabilistic extension of the m-calculus called the
simple probabilistic m-calculus or Ty, which adds a discrete
probabilistic choice operator to the basic calculus. This
choice operator is blind, meaning that probabilities are
associated only with silent 7 actions, and not input or
output actions.

Syntax. We will let P, P, range over terms and « range
over actions. Using, as above, z,y,y; to range over names,
the syntax of the simple probabilistic 7-calculus is

a = 7lz(y)|zy,
P:=0[a.P|> P |> p7.R|P|P|,
icl icl

l/xPHJ: = y]P|A(y1, s Un),s

where I is an index set, p; € (0,1] with), .;p; = 1,and A is
a process identifier. In the following paragraphs, we
provide an informal description of the calculus. The next
section presents the formal semantics.

NORMAN ET AL.: MODEL CHECKING PROBABILISTIC AND STOCHASTIC EXTENSIONS OF THE 7

The inactive process, denoted by 0, can perform no
actions. The action-prefixed process a.P can perform
action o and then evolve into P, where « is one of three
types: z(y) inputs a name on z and stores it in y, Zy outputs
the name y on z, and 7 is the silent action representing
internal communication.

There are two types of choice: nondeterministic »,.; P
and probabilisticy ., p;7.P;. The former is standard in the 7-
calculus (and indeed CCS). The latter is the only new operator
in this probabilistic extension of the 7-calculus. As mentioned
above, branches of the probabilistic choice operator are
always prefixed with 7 actions. The process » ;. piT.P;i
randomly selects an index ¢ € I with probability p;, performs
a 7 action, and then evolves to process F;. We use p;7.P; @
pa7. P, to denote the binary form of probabilistic choice.

The parallel composition P;|P, can either proceed
asynchronously or interact through matching input/output
actions. The restriction vx P localizes the scope of x in
process P, i.e., z can be considered a new and unique name
within P. The match construction [z = y|P can evolve as
process P only if the match [z = y] is satisfied, i.e., names =
and y are identical. Finally, A(y1,...,y,) is a recursive call
with a corresponding process definition clause of the form
Az, ..., xn) 2 p

An occurrence of name y in process P is bound if it is in a
subexpression of P of the form z(y) (input-bound) or vy
(v-bound); otherwise, it is free. The sets of free and bound
names of P are denoted by fn(P) and bn(P), respectively,
and the set of all names is n(P). Without loss of generality,
we also make the assumption that bound names are all
distinct from each other and from free names. This can
always be achieved through alpha conversion. A process
which contains no free names is said to be closed.

Symbolic semantics. The operational semantics for
probabilistic extensions of the m-calculus are typically
expressed in terms of Markov decision processes (MDPs)
or, equivalently, probabilistic automata [22], which allow
both probabilistic and nondeterministic behavior. Existing
presentations of the semantics (for example, [5], which
describes a calculus essentially identical to m,,,) are concrete
in the sense that the semantic rules directly define the MDP
that corresponds to a process term. In this paper, we use a
symbolic presentation of the operational semantics [23]. This
approach is, in fact, quite common for the 7-calculus and is
particularly beneficial in the context of automatic tool
support, as is the case here, or for development of
bisimulation theories [23], [24].

The main features of the symbolic semantics, which
allow one to obtain compact models, are the following:

e As in the late semantics of the m-calculus, the input
variable of input transitions is kept as a name
variable (in contrast to the early semantics, where a
different transition is generated for every possible
name instance).

e Analogously to the match rule, in the communica-
tion rule, the match between the input and the
output channel is represented by a constraint
(condition).

7-CALCULUS 211

In principle, it is possible to define an early version of the
symbolic semantics, but such a version would differ from a
concrete semantics only because it would contain the free
variables of the initial process (and conditions on them).
Therefore, such a version would lack the “raison d’étre” of
the symbolic semantics: efficiently representing the effects
of the run-time communications.

Consider the simple process a(zx).zb.0 which inputs a
name z on channel a and then uses z as a channel on which
to output the name b. A concrete approach to the semantics
can establish that this process can accept an input on
channel a, but its subsequent behavior (which is dependent
on the input z) can only be captured once it is known which
other processes it will be composed with. A symbolic
approach allows the semantics of a process to include
variables (e.g.,) that can be used in actions (e.g., zb). This
allows us to adopt a compositional approach: given a
parallel composition of several processes, the semantics of
each of them can be computed separately in full, and then
composed afterward.

The symbolic semantics of the 7,1, calculus is expressed
in terms of probabilistic symbolic transition graphs (PSTGs).
These are a simple probabilistic extension of the symbolic
transition graphs of [23], previously used for the (nonprob-
abilistic) m-calculus [25], [26], [27], [28] and for CCS [23].
Alternatively, they can be seen as a symbolic extension of
Markov decision processes.

Let P be a mpo, process. The probabilistic symbolic
transition graph (PSTG) representing the semantics of the
process P is a tuple (S, sinit, 7 prob), Where

e Sis the set of symbolic states, each of which is a term
of the simple probabilistic 7-calculus;

® s, €5, the initial state, is the term P;

o T, CSxCondx Act x Dist(S) is the probabilistic
symbolic transition relation and is the least relation
given by the rules in Fig. 1.

In the above,

e (Cond denotes the set of all conditions (finite
conjunctions of matches) over N;

e Actis a set of actions of four basic types: 7, z(y), Ty,
and Z(y), where z,y € N;

e Dist(S) is the set of probability distributions over S.

We use the notation Q M {|pi : Qi|}; for the probabilistic

symbolic transition (Q,M,a,p) € Tpon, Where p(R) =
ZQ _pp; for anyﬁrpmb term R. For snnphClty, we abbreviate
the transition @ — {|1 : Q'[} to @ My @' and omit the trivial
condition true. We use multisets to ensure that processes
with duplicate components such as Q =17.0 &17.0 have
transitions of the form @ — {{1:0,1:0[} as opposed to
Q= {5: 0}

Of the four action types in Act, the first three are
described in the previous section. The fourth, z(y), denotes
output of a bound name and is used by the rules OPEN and
CLOSE to extend the scope of the bound name y.

A symbolic state ¢ encodes a set of 7, terms. More
specifically, it encodes the set of terms obtained from @ by
applying substitutions to its name variables. A substitution

212

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO.2, MARCH/APRIL 2009

M,
PRE _ _ P — {|pjk b, |}jk jer
a.P — {|1 : P|} (Ei piT"Pi) - {|pl : ‘PZ|}Z (Zie] Pl) 4> {|pjk : ij |}]k
]W « M,y(z) p N Tv ’
i o Bilbs 1: P 1:
PAR - —— {pi : il bn(a) Nfn(Q) =0 Com = y{lMANE ——{1:0
PlQ ——{p:i: (P |Q)} plQ EEIMIMNT, 41 - Priv/2} | Q')
M, M,y(z) / N,z (v) . /
RES PVE; {|pz . P |}z x g n(a) CLOSE ; /\{]E/\NPT |} Q {‘1 Q |}
ve P ——— {p; : vz Pi[}; P|Qy4>{|1 vo(P'{v/z} | Q")]}
M,yxz / % .. P.L.
OPEN U— — yé‘)l Pl T#y MATCH P [w:y]A{J\f’a’ Bilyi {z,y} Nbn(a) =10
ve P ——> {|1: P'|} [e=y]P —— {lpi : Bil}s
vz (true) = true
Ma ve[r=x] = true
IDE Py ynfo - wn} {p: - P |}Z Ti,...,2n) 2P ve [z=y] = false (z#y)
A(yr,- -, Yn) e, {p:i : Pil}: vely=z] = [y=z] (z#yAz#2)
x(MAN) = (vzaM)A(vzN)

Fig. 1. The symbolic semantics for 7., including (inset) application of operator vz to conditions.

o is applied to a process (), denoted by Qo, by replacing
each action « in @ with ao. Consider, for example, the
process @ = a(x).zb.0. We have that Q o) Q,
Q' =1zb.0. The symbolic state Q' represents the terms

where

Q'{z/z} for any name z.
A symbolic transition Q M {pi : Qil}; represents the

fact, that under any substitution o satisfying A/, the
process term (o can perform action ao and then with
probability p; evolve to process ;0. This is formally stated
in Lemma 1 below, which relates the symbolic (PSTG)
semantics of 7, as given in Fig. 1, and the concrete
(MDP) semantics, as presented, e.g., in [5]. This corre-
sponds to [27, Lemma 2.5], which discusses symbolic
semantics for the (nonprobabilistic) m-calculus. In the
lemma, ¢ = M indicates that the substitution o satisfies
the condition M of the transition, and the constraint
bn(a) N (fn(P)Un(o)) =0 corresponds to the fact that
bound names are not substituted in order to prevent
possible conflicts between bound and free names.

Lemma 1. Let P be a mpyn term:

1. IfP M {pi : P|};, then for any substitution o such

that o M with bn(a)N(fn(P)Un(o)) =10,

[elen

Po = {p; : Fol};.

2. If Po % {p; : P!l}, and bn(a) N
then P {pi : B},
(8.P)o=a.P.

Proof. Since the symbolic and concrete semantics of

(fn(P)Un(0)) =9,

where oEM and

share the same types of actions as the (standard)
w-calculus, the proof follows the one for [27, Lemma 2.5],
which is straightforward by transition induction. a

2.2 The Stochastic m-Calculus

We now describe a stochastic extension of the m-calculus
denoted by 7o, the underlying semantics of which is
expressed in terms of continuous-time Markov chains
(CTMCs). Each transition will thus be labeled with a rate,
representing the parameter of an exponential distribution
characterizing the delay until the associated transition is
enabled. More precisely, for rate r, the probability that the
transition is enabled within ¢ time-units is given by 1—e™"".
As in [19], stochastic behavior is introduced at the syntactic
level by associating a rate with each channel x, denoted by
rate(z), and by annotating silent 7 actions with the rate r at
which they occur, ie., 7,.

Syntax. Using P, P, to range over terms and « to range
over actions, the syntax of the stochastic 7-calculus is

y)|zy,
P:=0[a.P| Y P|P|P|,
iel

V:UPHJ: =y|P|A(y, . ..

o= Tr’.T(

2 Yn)s

where r € IR+, I is an index set, and A is a process identifier.

As in the probabilistic case, the terms 0, P, | P, vz P,
[z =y|P, and A(yi,...,yn) denote inactivity, parallel com-
position, restriction, match, and recursive call. The prefix
process 7,.P can (internally) evolve to P with rate r. The
choice >, ; P, represents a race condition between the
transitions of each P;: the first of these transitions to
become enabled is the one that is taken. Race conditions
also arise from parallel composition (P;|P,) between
processes. In this case, when two processes synchronize
on matching input/output actions on a channel z, the rate
of this transition is rate(z).

Symbolic semantics. The operational semantics for the
stochastic m-calculus is in terms of CTMCs. Usually (as in,

NORMAN ET AL.: MODEL CHECKING PROBABILISTIC AND STOCHASTIC EXTENSIONS OF THE 7-CALCULUS 213
p 2% pr
PRE, ———F— PREy —ew - PREqyr — SuMm o jel
T.P — P z(y).Pp 2 P Ty.P — P (Xier P) —— P;
M,a M,y(2) N,zv
P— P pP—=p Q'
PAR M, bn(a) ﬂfn(Q) - (Z) Com [z=y]AMAN. ratec(gx) Q
P|Q — P|Q PlQ : P{v/z}| Q'
M,a M,y(z) N,z(v)
P—P pP—=pP —= Q'
RES — x € n(a) CLOSE sl NMIAN mm(l? @
vr P —— P’ P|Q = : vo(P{v/z}| Q")
M, gx , Mo ,
pP—=P pP—P
OPEN - T#y MATCH {z,y} Nbn(a) =10
v P vaM,y(x) P [I:y]P [z=y]AM,a p
vz (true) = true
Py Yn/ 21 2n) Mo v [z=x] = true
IDE A LAt LA 7MZ A(xy, ..) 2P ve[z=y| = false (x#Yy)
Ayt yn) — P/ vely=z] = [y=z] (z#yAc#2)
ve(MAN) = (ve M)A (vzN)

Fig. 2. The symbolic semantics for m,.p, including (inset) application of operator vz to conditions.

e.g., [19], on which our syntax is based), a concrete semantics
is presented which maps each process term directly to the
CTMC it represents. However, as for the probabilistic case
(see the discussion in the previous section), in order to
adopt a compositional approach, we employ a symbolic
semantics based on an extension of symbolic transition
graphs [23].

Let P be a myo. process. The stochastic symbolic transition
graph (SSTG) representing the semantics for the process P is
a tuple (S, sinit, T stoc), Where

e Sis the set of symbolic states, each of which is a term
of the stochastic w-calculus;

® s, €5, the initial state, is the term P;

o Tyoo CSxCond x Act x S is the stochastic symbolic
transition multirelation and is the least multirelation
given by the rules in Fig. 2.

In the above,

e (Cond denotes the set of all conditions (finite
conjunctions of matches) over N.

e Actis a set of actions of four basic types: r, z(y), Ty,
and Z(y), where r € Ry and z,y € N.

The fact that we have used a multirelation is standard for
stochastic process algebras [29] and ensures that multiple
transitions are generated for expressions with identical
components, such as 7..P+ 7,..P. This requirement is
because the choice operator is interpreted as a race condition:
the first transition to become enabled is the one that is taken.
More precisely, since the minimum of two exponential
distributions with rates r; and r; is an exponential distribu-
tion whose rate is the sum r; + 7, the behavior of the process
7..P + 7,..P should be the same as that of m,.P. This is
captured in the semantics by the inclusion of two separate
transitions labeled r in the multirelation 7 ..

Analogously to the case for PSTGs, discussed in the
previous section, a stochastic symbolic transition @ el Q'
of an SSTG represents the fact that under any substitution o
satisfying M, the process term Qo can perform action ac
and then evolve to process Q'c. This is formally stated in
Lemma 2 below, which relates the symbolic (SSTG)
semantics of myo, as given in Fig. 2, and the concrete
(CTMC) semantics, as found in [19]. Again, this corre-
sponds to Lemma 2.5 in [27] for the standard (nonprob-
abilistic) m-calculus.

Lemma 2. Let P be a wy,. term:

1. IfP 2 p then for any substitution o such that o =

M with bn(e) N (fn(P)Un(o)) = 0, Po =% P'o.
2. If A]fg 5@ and bn(a) N (fn(P)Un(o)) =0, then
P = Q where 0 = M and (5.Q)o = a.Q'.

Proof. Straightforward by transition induction. The details
are almost identical in structure to [27, Lemma 2.5] except
that the action 7 in the w-calculus is replaced by numerical
rates r in 7., which do not influence names. O

Strictly speaking, the concrete semantics used above do
not correspond precisely to the usual definition of a CTMC,
since transitions can be associated with either rates (for
T actions) or inputs/output actions (which have yet to be
matched). Furthermore, multiple transitions can occur
between the same pair of states (due to the use of a
multirelation in the definition of an SSTG). In the semantics
of a closed mg,. process, however, only rate-labeled
transitions remain and multiple transitions between states
are simply summed.

214 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO.2, MARCH/APRIL 2009

3 GENERATING PSTGs AND SSTGs Using MMC

In this section, we describe the automatic generation of
the symbolic transition graph for an arbitrary process
expressed in either the simple probabilistic m-calculus or
stochastic 7-calculus. This is achieved with an extension
of the (nonprobabilistic) m-calculus model checker MMC
[10], which, from this point on, we refer to as MMC,,,},. In
the next section, we will build upon this, presenting a
more efficient, compositional scheme for processes of a
specific structure.

MMC,,,1, is based on only a subset of MMC's function-
ality: essentially the capability to construct the full set of
reachable states of a m-calculus process. The restrictions
placed on the syntax of the calculus by MMC are the same
as we impose in Section 2.

MMC works by (and derives its efficiency from)
exploiting the similarity between the way in which
resolution-based logic programming techniques handle
variables and the way in which the symbolic semantics of
the m-calculus handles names [10]. It is implemented in the
logic programming system XSB, which is a dialect of
Prolog. m-calculus names are represented by XSB variables.
MMC then uses a direct encoding of the symbolic
semantics of the calculus into XSB rules, based on the
definition of a predicate called trans. This approach has
several benefits: First, it gives a clear and intuitive
implementation; second, and more importantly, this en-
coding is provably correct [10].

Our implementation is a direct extension of this approach.
We have a straightforward encoding of the syntax of both
Tprob and 7o, into the language of XSB, with names and
process identifiers represented by XSB variables and con-
stants, respectively. We then adapt MMC'’s predicate trans
to represent the symbolic semantics of each calculus. We first
describe the case for the simple probabilistic 7-calculus and
then discuss the differences in the stochastic case.

The probabilistic case. We begin with the encoding of
the syntax of m,,;, into the language of XSB. Letting X, Y, Y;
range over variables, P range over processes and denoting
comma-delimited lists of processes as P, the syntax of 7y
in the input language of MMC,,}, is given by the following
BNF grammar:

act ::= tau|in(X,Y)|out(X,Y)
P ::= zero
|pref(act,P)
|choice(?)

e
|prob_choice(pref(tau(p),P))

[pax(p,P)

|nu(X,P)

|match((X =Y),P)
lproc(A(Yy,...,Y.)),

where A is the lower case form of process identifier 4, with

the definition clause of the form def(A(Xi,...,X,),P).
Assuming that p is a one-to-one function mapping XSB

variables to 7, names, the following function f, relates

the MMC,,,1, representation of the key components of mpop
(conditions, actions, and processes) into their corresponding
Tprob NOtation:

Conditions:
fo(true) = true,
f(X=Y) = [p(X) = p(Y)],
fo(LN)) = f,(M0) A f, ().
Actions:
fo(tau) =T,
fo(in(X, Y)) = p(X)(p(Y)),
fo(out(X,Y)) = p(X)p(Y),
f,(out bound(X, Y)) = p(X)(p(Y))
Processes:
fp(zero) = Oa

fp(pref(act, P)) = fp(aCt)-fp(P);
fy(choice(®)) = 3 £,(2.).

fo(prob_choice(pref(tau(p),P))) = ZpiT'fP(Pi)’
=1

fo(Par(P1,P2)) = f,(P1)|f,(P2),
fo(u(X,P)) = vp(X) fy(P),
fp(match((X =Y),P)) = [p(X) = p(Y)]/,(P),
fo(proc(A(Yy,...,Yn))) = A(p(Y1),- .-, p(Yn)),
where
P =[P,...,Pu,

pref(tau(p),P) = [pref(tau(p;),P1),...,pref(tau(p,),Pn)],

and A is defined with A(p(X,), ..., p(X,)) £ £,(P).

Using the function f,, we can now define the XSB
predicate trans, which represents the direct encoding of the
symbolic semantics of 7.1, (see Fig. 1) into XSB. A tuple
trans(P, PSteps, M), where PSteps is a list of compound
structures psteps(p;,act,P;), represents a symbolic prob-
abilistic transition:

Jo(M), f,(act)

—

fo(P) {p:: fP(Pi)}i'

The definition of trans is shown in Fig. 3. The predicates
prob_branch, set_par_steps, and set_nu _steps are defined
to construct the list PSteps according to the operational
semantics rules PROB, PAR, and RES. Other auxiliary
predicates used in Fig. 1 are given in Fig. 4. Note the close
correspondence between the definitions in Fig. 3 and the
rules of the symbolic semantics in Fig. 1.

The soundness and completeness of the encoding can be
established by induction on the length of derivations of a
query answer of trans and a symbolic transition in mpp,
respectively. The proof details are similar to Theorems 2
and 3 in [10].

Finally, we add an extra XSB predicate stg(P), which
uses query-evaluation on trans to derive the PSTG of

NORMAN ET AL.: MODEL CHECKING PROBABILISTIC AND STOCHASTIC EXTENSIONS OF THE 7-CALCULUS

215

% PRE:
trans (pref (act, P), [pstep(l, act, P)], true).
% PROB:
trans (prob_choice (ProbBranches), PSteps, true) :— prob_branch (ProbBranches, PSteps).
prob_branch ([], []).
prob_branch ([pref (tau(FirstProb), P) |Others],PSteps)
prob_branch (Others, OtherPSteps), append([pstep(FirstProb, tau, P)], OtherPSteps, PSteps).
% SUM:
trans (choice (Branches), PSteps, M) :-—
length (Branches, Size), upto(Size, I), ith(I, Branches, Branch), trans(Branch, PSteps, M).
% PAR:
trans (par (P, Q), PSteps, M) :-—
trans (P, PPSteps, M), set_par_psteps (PPSteps, Q, PSteps, 0).
trans (par (P, Q), PSteps, M) =
trans (Q, QPSteps, M), set_par_psteps (QPSteps, P, PSteps, 1).
set_par_psteps([], _, [1, _).
set_par_psteps ([pstep(Prob, A, P)|Others], Q, PSteps, Which) -
set_par_psteps (Others, Q, OtherPSteps, Which),
(Which == 0 -> append([pstep(Prob, A, par(P, Q)], OtherPSteps, PSteps)).
; append ([pstep (Prob, A, par(Q, P)], OtherPSteps, PSteps))).
% RES:
trans (nu(Y, P), PSteps, M) :—
trans (P, PPSteps, M), not_in_any(Y, PPSteps), not_in_constraint (Y, M), set_nu_psteps (PPSteps, Y, PSteps).
set_nu_psteps ([], _, []).
set_nu_psteps ([pstep (Prob, A, P1l) |Others], Y, PSteps) -
set_nu_psteps (Others, Y, OtherPSteps), append([pstep(Prob, A, nu(Y, P1l))], OtherPSteps, PSteps).
% COM:
trans (par (P, Q), [pstep(l, tau, par(Pl, Q1))], (M, N, L)) :-
trans (P, [pstep(l, A, P1)], M), trans(Q, [pstep(l, B, Ql)1, N), complement (A, B, L).
% OPEN:
trans (nu(Y, P), [pstep(l, outbound(X, Z), P1l)], M) =
trans (P, [pstep(l, out (X, Z), P1)], N, V), Y == Z, Y \== X, not_in_constraint (Y, M).
% CLOSE:
trans (par (P, Q), [pstep(l, tau, nu(W, par(Pl, Q1)))Il, (M, N, L)) :-
trans (P, [pstep(l, A, P1)], M), trans(Q, [pstep(l, B, Ql)], N), comp_bound(A, B, W, L).
% MATCH:
trans (match((X=Y), P), PSteps, M) :—- X ==Y, trans(P, PSteps, M).
trans (match ((X=Y), P), PSteps, (X=Y, M)) :- X \== Y, trans(P, PSteps, M).
% IDE:
trans (proc (PN), PSteps, M) :- def (PN, P), trans(P, PSteps, M).

Fig. 3. XSB code for the trans predicate encoding the ., symbolic semantics.

process P and output it in a simple textual format. This is
done through a depth-first traversal of the graph, followed
by an enumeration of all its symbolic states and transitions.
The XSB code for this can be found in [30].

Example. Consider the simple 7,1, process T'oss:

Toss(x) = z(y).(pr.yhead.0 ® (1 — p)7.ytail.0),

and then sends out, on channel y, either head or tail, with
probability p or 1 — p, respectively. Fig. 5 shows the
application of MMC,;,}, to the process Toss. The first four
lines illustrate the encoding of the ., syntax into XSB.
Below that is the output of the tool, i.e., the application of the
rule stg. Lines starting #i show the m,,, term for the ith state,
lines starting *j and 'k enumerate transitions and the
individual edges of transitions, respectively. All bound

complement (out (X, W), in(Y, W), W, true) - X =Y
complement (out (X, W), in(Y, W), W

complement (in (X, W), out(Y, W), W

complement (in (X, W), out(Y, W), W

comp_bound (outbound (X, W), in(Y,

comp_bound (outbound (X, W), in(Y,

comp_bound (in (X, W), outbound(Y,

comp_bound (in (X, W), outbound(Y,

not_in_any(_, []).

not_in_any(Z, [pstep(_, A, _)IL]) :-

not_in(Z, A), not_in_any(Z, L).
not_in(_, tau).
not_in(z, in(X,Y)) :—= 2 \== X, 2 \== Y.
not_in(Z, out(X,Y)) :— 2z \== X, Z \== Y.
not_in(Z, outbound(X,Y)) :- 2 \== X, Z \== Y.
not_in (Z, outboundl (X,Y)) :— Z \== X, Z \== Y.
not_in_constraint (_, true).
not_in_constraint (X, (Y=2)) :-= X \==Y, X \== Z.
not_in_constraint (X, (M, N)) :-—

not_in_constraint (X, M), not_in_constraint (X, N).

N)
1)

upto (N,

> 0.
upto (N, > 0

Nl is N - 1, upto(N1l, I).

’

def (toss (X),
pref (in(X, Y),
prob_choice ([pref (tau(p), pref(out (Y, head), =zero)),
pref (tau(l-p), pref (out (Y, tail), zero))]))).
| ?- stg(toss(try)).
#1: proc(toss(try))
*1 3 ==
#2: prob_choice ([pref (tau(p),pref (out (_h417,head),
zero)) ,pref (tau(l-p),pref (out (_h417,tail),zero))])
>1: _h417
'1: —= ’1’:in(try,_h417) --> 2
*2: ==
#3: pref (out (_h417,head), zero)
r2: —— ’'p’:tau ——> 3
#4: pref (out(_h417,tail), zero)
'3: —— '1 - p’:tau —-—> 4
*3: ==
#5: zero
'4: —— "1’ :0ut(_h417,head) --> 5
x4 ==
'5: —— "1’ :0ut(_h417,tail) --> 5
[1: try]l [2: head] [3: tail]
+++ Statistics of toss(try) +++
Nodes:5, Edges:5, P-Steps:4, Free Names:3, Bound Names:1

Fig. 4. Auxiliary XSB code for the trans predicate.

Fig. 5. Sample output from MMC,,»,.

216 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO.2, MARCH/APRIL 2009

names are given unique names (e.g., ~h417) and displayed on
lines beginning >. All free names used are listed at the end,
plus other statistics for the PSTG.

The stochastic case. The generation of the SSTG for a
Tstoc Process proceeds in almost identical fashion. Since the
calculus has no probabilistic choice operator, the list PSteps
in the representation trans(P,PSteps,M) of each symbolic
transition contains only a single item of the form
pstep(rj,act,P;), where r; now represents a real-valued
rate, instead of a probability.

The encoding of a rate-labeled prefix process 7,.P is
treated as a special case of the probabilistic choice operator
for o with a singleton operand. Input and output actions
over a channel z are given dummy rates of 1 which will be
replaced with the channel rate rate(z) subsequently. Since
MMC,,0 simply enumerates all matching transitions when
evaluating the symbolic semantics (and does not remove
any duplicates), no special treatment is required to deal
with the multirelation in the definition of SSTGs.

4 TRANSLATING PSTGs AND SSTGs INTO PRISM

We use the probabilistic model checker PRISM (which
supports both MDPs and CTMCs) to perform analysis of
the semantic models derived from o, O myo. processes.
The scheme described in the previous section can be used to
translate an arbitrary process described in either the simple
probabilistic 7-calculus or stochastic 7n-calculus into the
probabilistic or stochastic symbolic transition graph repre-
senting its semantics. We apply model checking to closed
processes (this issue is discussed further in Section 4.6), for
which the symbolic (PSTG or SSTG) semantics and concrete
(MDP or CTMC) semantics coincide. The list of states and
transitions produced by MMC,,, as illustrated by the
example in Fig. 5, can hence easily be imported directly into
PRISM for analysis.

However, for processes of a specific structure, we instead
propose to adopt a compositional translation, using the
high-level modeling language supported by PRISM. This
results in a much more efficient translation procedure. More
specifically, we consider the case where systems are of the
form P=vxzy-- vz (P1| -+ | P,) and each P, contains no
instances of the v operator (including inside recursive
definitions). The basic idea is to generate the symbolic
transition graph for each subprocess P; (as described in the
previous section), map each individual symbolic transition
graph to a PRISM module (a component of a PRISM
language model), and then use PRISM to construct the
semantics of P through the parallel composition of these
modules. Note that the compositional nature of this
approach is reliant on our use of symbolic semantics.
Without this, we would not be able to generate the full
semantics of P; in isolation.

The overall process structure we impose (a parallel
composition of a set of processes, optionally enclosed inside
a restriction of one or more names) is actually fairly typical:
systems are generally modeled as a parallel composition of
multiple components and, since we assume that P is closed,
it is likely that free names used as channels between
processes will be restricted in this way. Furthermore, in
most cases, a process can be rearranged to a structurally

congruent process which is of the correct form, by pushing
v operators to the outside. We have, for example, that
Pi vz P, and vz (P, | P») are structurally congruent under
the assumption that « does not occur in P;. The only class of
processes which cannot be renamed in this way are those
that include v inside recursive definitions. In this case, the
process can, in principle, generate an infinite number of
new names. This can be resolved in the context of a parallel
composition with other processes, and therefore, in such a
case, we can resort to the basic approach: use MMC,,,1, to
construct the symbolic transition graph for the full system
and import this directly into PRISM.

There are two principal challenges regarding the transla-
tion of symbolic transition graphs into PRISM: 1) mapping
the name datatype into PRISM’s basic type system and
2) mapping binary (CCS-style) communication of names
over channels to PRISM’s multiway (CSP-style) synchroni-
zation without value passing. In brief, 1) is handled by
enumerating the set of all free names, assigning each an
(identically named) integer constant to represent it and 2) is
handled by introducing an action label for each required
combination of process sender/receiver pair, channel, and
name. Communication of names between processes is
handled by including in each receiver process with a
bound input variable z, an identically named local (integer)
variable which will be used to store the name assigned to .

Before discussing the details of this compositional
translation, we give both an overview of the PRISM syntax
and semantics and a simple example which illustrates the
key aspects of the translation.

4.1 PRISM Semantics

A PRISM model comprises a set of n modules, the state of
each being given by a set of finite-ranging local variables.
The global state of the model is determined by the union of
all local variables, which we denote by V. The behavior of
each module is defined by a set of guarded commands.
When modeling MDPs, these commands take the form

[act] guard — py i up + - 4 Py ¢ Uy,

where act is an (optional) action label, guard is a predicate
over V, p; € (0,1], and w; are updates of the form

() = win)& - &(x), = uip),

where u; ; is a function over V. Intuitively, in global state s of
the PRISM model, the command is enabled if s satisfies guard.
If a command is executed, the module will, with probability
pi, update its local variables according to the update u;, by
setting the value of each local variable z; to u; ;(s).

When modeling CTMCs, commands are of the form

[act] guard — T : u,

where act is an (optional) action label, guard is a predicate
over V, r € Ry, and u is an update (of the form shown
above). In this case, when the guard is satisfied, there is a
transition with rate r that updates the local variables
according to u. When multiple commands with the same
update are enabled, the corresponding transitions are
combined into a single transition whose rate is the sum of
the individual rates.

NORMAN ET AL.: MODEL CHECKING PROBABILISTIC AND STOCHASTIC EXTENSIONS OF THE 7

const int @ = 1; const int b = 2; const int ¢ = 3;
const int d = 4; const int e = 5;
module Py

s1 :[1..6] init 1;

v : [0..5] init O;

w : [0..5] init 0;

J(s1=1) — 0.5:(sy =2)+0.5: (5] =3);
[a-P;_Py_c] (s1 =2) — (s; =4);
[a-P;_-Py_d] (s1 =3) — (s; =5);

10. [e-P3_Pi.e] (s1=4) — (s] =6); & (v =¢)
11. [d-Ps_P;-e] (s1 =5) — (s] =6); & (w' =e)
12. endmodule

13. module Py

000N A AN

14. s2 ¢ [1..3] init 1

15. z : [0..5] init 0;

16. [a-P;-Py_c] (s2=1) — (s5 =2) & (z' = ¢);
17. [a-P;-Py.d] (s2=1) — (sf=2) & (z' = d);
18. [b_P3_Ps.z] (s2 =2) — (s5 = 3);

19. | endmodule

20. module Py

21. sz :[1..2] init 1

22. y : [0..5] init O;

23. [b_P2_-Ps.z] (s3=1) — (s5=2) & (v = z);
24. [c-P3_-Ps.e] (s3 =2) & (y =c¢c) — (s =3);

25. [d-Ps_Pj.e] (s3=2)& (y=d) — (s5=3);

26. endmodule

Fig. 6. PRISM code for the example.

In practice (see, for example, Fig. 6), we omit probabil-
ities (or rates) equal to one and elements of updates that are
of the form (2’ = z). The semantics of the whole PRISM
model is the parallel composition of all modules using the
standard CSP parallel composition [31] (i.e., modules
synchronize over all their common actions). For transitions
arising from synchronization between multiple processes,
the associated probability or rate is obtained by multiplying
those of each component transition. See [32] for the full
semantics of the PRISM language.

4.2 Example Translation
Consider the following parallel composition of two pro-
cesses expressed in the simple probabilistic 7-calculus:

e Q éAVCL (Q1]Q2);

e Qi =vevd(3r.acc(v).0 ®ir.ad.dw).0);

° QQ—Vb(a(x).br.0 | b(y)yeO)
Process ()1 includes two names c and d, available only within
the scope of @1, representing private channels. It makes a
random choice, outputting with equal probability either the
name c or d on channel a. It then attempts to receive an input
on the corresponding channel (¢ or d, respectively) and
terminates. Process ()2 is the parallel composition of two
subprocesses which communicate over a channel b. The first
subprocess inputs a name on channel a (which will be one of
the two private channels from ();) and reoutputs it on
channel b. The second subprocess inputs on channel b and
then outputs e on whichever channel it received.

Noting that c and d do not occur in () and that b does not
occur in (), we can rewrite) as the structurally congruent
process P, defined as follows:

P l/az/bz/cud(Pl | Py | Ps);
P 27' .ac.c(v) 0 &37.ad.d(w).0;
e Py= b() ye.O7

and the corresponding PSTGs are given by

e o 0
HDIID

7-CALCULUS 217

o QD {LQLLQIL QLS @ M Qland Q) X
Q5 Qﬁ,

o Pl

° Q3 () 3 Jf’ QQ Q§

In the above, we orrut probabilities that are 1 and conditions
true. The PSTGs for P;, P, and P; have the sets of bound
names {v,w}, {z}, and {y}, respectively, and the combined
set of free names is {a, b, ¢, d, ¢}. The resulting PRISM model
is shown in Fig. 6. This example will be referred to in the
full explanation of the translation given below.

4.3 Formal Translation

We assume that the set of all names in the system is A/, which
is partitioned into disjoint subsets: N/", the set of all free
names appearing in processes P, . . P,,, and N} bn SN bn
the sets of input-bound names for processes P, ..., P,,,.

For clarity, we will retain, wherever possible, identical
notation between the 7-calculus terms and the resulting
PRISM language description. Thus, each of the n subpro-
cesses (or symbolic transition graphs) P, becomes a PRISM
module P; and the (finite) set of terms S; = {Q},...,Q}. }
that constitute states of the symbolic transition graph of P;
becomes a set of integer indexes @Qi,...,Qj uniquely
representing each one. '

Module P, has |N"| + 1 local variables: its local state (i.e.,
the state of the corresponding symbolic transition graph) is
represented by variable s;, with range Q1,...,Qj, and each
bound name 2’ € N?" has a corresponding Varlable z;, with
range 0,. |J\/), The model also includes |N/"| 1nteger
Constants, one for each free name, which are assigned (in
some arbitrary order) distinct, consecutive nonzero values.
If the value of variable 2/ is equal to one of the these
constants, then the corresponding bound name has been
assigned the appropriate free name (by an input action). If
% = 0, no input to the bound name has occurred yet.

In this way, the conditions which label transitions of the
symbolic transition graph can be translated directly into
PRISM. For example, if condition M equals [z = a] A [y = b],
where z,y are bound names and a, b free names, then the
translation of M into PRISM is identical: (z = a) and (y = b),
where z,y are integer variables and a, b integer constants.

In addition, when translating stochastic n-calculus
processes, for each free name z we add to the PRISM
description a constant rate.r whose value is equal to
rate(z), i.e., the rate associated with the channel z.

For each transition in the symbolic transition graph for P,
we will include a set of corresponding PRISM commands in
the module P;. We consider each type of transition separately
below. Note thatif P, is a simple probabilistic w-calculus term,
then from the semantics (see Fig. 1), the only transitions which
can include multiple probabilistic choices are internal; there-
fore, the remaining types of transitions (input and output)
can be written in the simplified form Q; = R;. For the
since PRISM multiplies the rates of
synchronizing transitions and synchronization in the
m-calculus is always binary, we associate rates (e.g., rate_x
for channel z) with the “output” transitions and set the rates

stochastic case,

218 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO.2, MARCH/APRIL 2009

for “input” transitions to 1 (which is the default so can be
omitted).

Case 1 (Probabilistic internal transition). For a transition

M,

1—>{‘p1 :"':pm:Rin|}7

we add the command

0 (si =

See Fig. 6, line 7, for an example.

Ql) & M — pl:(S:’, = Rll) +pm (RL)

Case 2 (Stochastic internal transition). For a transition

M,r

Q’i I Ri7

we add the command

0(si=Q) &M —r:(s;=R;).

Case 3 (Output on free name). For a transition

M,zy

Q; ~2 R;, where z € N,

when translating simple probabilistic 7-calculus pro-
cesses, we add, for each j € {1,...,n}\{i}, the command

[z-Pi-Pjy] (si = Qi) & M — (s} = Ri),

while for stochastic 7-calculus processes we add, for each
je{l,...,n}\{d},
[2-P_P;y] (s; = Q;) & M — rate_z : (s, = R;).

The channel z, sender P, receiver P;, and sent name y
are all encoded in the action label. See Fig. 6, lines 8 and
18, for examples of sending free and bound names y,
respectively.

Case 4 (Output on bound name). For a transition

M,zy b
Q; —— R;, wherez € N},

in the probabilistic case, we add, for each a € N " and

je{1,...,n}\{i},
[a-P:-Pj] (si = Qi) & M & (z = a) — (s} = Ry),

while in the stochastic case, for each a € N'" and
je{1,...,n}\{i}, the command

[a-P,_P;y] (si = Q;) & M & (x = a) — rate-a : (s, = R;)

is added. This is similar to Case 3 except that we include
a command for each possible value a of z. See, for
example, lines 24 and 25 of Fig. 6.

Case 5 (Input on free name). For a transition

M,
Qi — ’ Z> R;, where z 6./\[1"

in both cases, we add, for each yE/\/'\N?" and
jeA{l,...,n}\{i}, the command

[-P;-Py] (s = Q) & M — (s, = Ry) & (£ =).

For input actions, we add a line for each possible
received name y. The assignment (2 =y) models the

update of the bound name z to y. See, for example,
lines 16 and 17 of Fig. 6, which match the output
commands from lines 8 and 9. Notice that this
translation also works in the case where y is a bound
name in another process P; (see, for example, line 23
of Fig. 6).

Case 6 (input on bound name). For a transition

]\[1 (2)
Q; — R;, where z € N] b

when translating both simple probabilistic and stochastic
processes, we add for each a € N7, y e M\NV"", a
jeA{1,...,n}\{i}, the command

[a-P;_Py] (si =Q;) & M & (z = a)
— (5 =R) & (< =),

This case combines elements of Cases 4 and 5: we add
a command for each possible pairing of channel a that
may represent and name y that may be received.

Finally, we need to remove some spurious commands
added in Cases 5 and 6, since they correspond to input
actions which will never occur. More precisely, for each
module P;, we identify labels z_P;_P;_y which appear on
a command of P; but which do not appear in any of the
commands in module P;. Commands with such action
labels are removed from P;. For example, in Fig. 6, since
process P; only outputs c or d on channel a, there is no
label of the form a_P;_P,_e in module P;, and therefore,
commands with this label have been removed from
module P,.

4.4 Correctness of the Translation

By assumption, the term being translated is finite control, is
vay (P | --- | P,). The first
step in the proof is to show that any term in the derivation
Vﬂﬁk(QlUl | te
for any 1 < j<n, Q; is a state of the symbolic transition

closed, and of the form P = vz, . ..

tree of P is of the form vz, . .. | Qnon), where,

graph for the process P; and o; is a substitution from the
P,. The proof
is by induction on the (concrete) transition rules using

bound names of P; to the free names of P, ...,

Lemma 1 or Lemma 2, depending on whether we are
considering ol OF Tstoc-

Using this result, we now show that the translation is
correct by constructing a mapping between these terms and
the states of the PRISM model and demonstrating that for
any term in the derivation tree of P, there is a transition in
the (concrete) semantics if and only if the corresponding
PRISM state has a matching transition. For any term
vag (Qro1] -+ | Qunoy), the state in the PRISM model
is constructed as follows: for any 1 < j < n, the values of
=Q) =

... ark _zk, where if o(x;)—ze./\/'f", then 71’ is the

vry...
the Varlables of module P; are given by s; =

integer constant corresponding to the free variable z and
otherwise (i.e., o(z]) = z]) 4] equals 0.

The remainder of the proof is dependent on whether we
are in the probabilistic or stochastic setting.

NORMAN ET AL.: MODEL CHECKING PROBABILISTIC AND STOCHASTIC EXTENSIONS OF THE 7-CALCULUS 219

4.4.1 Probabilistic Case
Consider any 7, term @ in the derivation tree, where
Q= vay...vz;(Qor] -+ |Quo,) and the transition Q 5

{|pm : Rm[}m~
From the transition rules and the conditions we have

imposed on the structure of m,., terms, there are the
following two cases to consider:

and R, =

-+ | Qnoy). From Lemma 1b, we

Internal transition. Q;o; = {p,: R/},
Z/JJk (1| - | R
have Q] i {pm : R}, where o; F M; and R}, 0;=R/.

m*
Hence, by construction, in the module P;, there is a command

vy .

m

of the form

0 (s; = Q) & M — py:(s; = R}) + -+ +p,:(s) = R},).

Finally, since ¢; = M; and by definition of the mapping
between 7,1, terms and PRISM, it follows that the PRISM
state corresponding to () satisfies the guard (s; = Q;) & M;
and that the transition is preserved in the translation.

DR, Qu R, j+1,

Communication. Qjo; — and

{pm : Rl},, = {1 : R}, where R=vzx;...vz;(Qio1] |
R’]{y/z}| -+ |Ry| -+ |Qnoy). From Lemma 2b, assuming
without loss of generality that z is fresh
M;,xi(2;
Q;) R;, where o; = M; and (z;(z;).Rj)o; =
z(2).-Rj;
M- luqy

e @

Now, since z is fresh, it follows that z = z; and, because
o0 is a substitution from bound to free names of Py, ..., P,, it
follows that y € N\N ?”. In addition, since o, is a substitu-
tion from bound to free names, either z; is free and equals z,
and hence, in module P;, we have the command

Rl, where g }:]V[l and (:L‘ﬂ/l R[)O’l = SL‘y Rl

[z-P-Pjy) (s; = @) & M; — (s} = R)) & (2 =),

or z; is bound and, since x;o; = z, it follows that z is free,
and therefore, the command

[2_P, Q) & M & (zj =) — (s; = R)) & (¢ = y)

appears in module P;. Employing similar arguments, if ; is
free, then z; = x and the command

=Q) &M — (s;=

appears in module F. While, if z; is bound, then module P,
includes the command

:Ql)&Ml&({L'l:x)H(SE:

Pyl (s;=

[x_P_Pj_y] (s1 R;)

[z_P_Pj_y] (s1 Ry).

Since o; = M;, 0, = M), zj0; = z, and x;0; = =, it follows
that the guards (3] Q;) & Mj, (s;=Q;) & M; & (z; = x),
(s1=Q)) & M;, and (s; = Q) & M; & (z; = x) hold in the
PRISM state encoding Q. Finally, since the encoding of
R{y/z} can be obtained from the encoding of R;o; by
setting the variable z to value y, it follows that the transition
is preserved by the translation.

To complete the proof, it remains to show that for any
transition of the PRISM model, there is a matching
transition in the corresponding ., term. The result

follows in a similar manner to the above using Lemma 1a
instead of Lemma 1b.

4.4.2 Stochastic Case

Consider any g, term @ in the derivation tree, where @) =
oge T

vxy ... vz (Qio1] -+ |@Qnoyn) and the transition Q — vz ...

vey R.

From the transition rules and the conditions we have
imposed on the structure of mgt,. terms, there are the
following two cases to consider.

Internal transition. Qjo; R R and R = Qoq| -]

M-
R; | -+ |Qnoy. From Lemma 2b, we have Qj N R, where
o; EM; and Rjo; =
module P, there is a command of the form

0 (s; =

Finally, since o; = M; and by definition of the mapping
between 7. terms and PRISM, it follows that the PRISM
state corresponding to () satisfies the guard (s; = Q;) & M;
and that the transition is preserved in the translation.

Rj. Hence, by construction, in the

Qj) & ‘]V[I — T (83 = RJ)

Communication. Qjo; — R;-, Qo — R), j#1, R=

Qo | - | Bify/z} [- [By | - [Quom,
From Lemma 2b, assuming without loss of generality that

and rate(z) =r.

z is fresh:

Qj
z(2).R;
L] Ql ‘ﬁ;ﬂ Rl, where (o] ': Ml and ({Elyl Rl)O'Z = xy Rl
We employ the same arguments used in the probabilistic

case. If z; is free, module P; contains the command

Y] (sj =

while if z; is bound, it contains the command

M; TJ (z)

R;, where o; = M; and (zj(2;).R;)0; =

(v PP, Q) & My — (s = B)) & (2 =),

[2- PPyl (s = Q) & M; & (2 ==

Similarly, if z; is free, the command

[x_P_P

iy) (1= Q) & My — rate_z : (s) = Ry)

appears in module F, and, if z; is bound, then the command

[x_P_Pjy] (51 = Qi) & M; & () = x) — rate_z : (s; = R))

appears in module P,.

The remaining arguments are the same as in the
probabilistic case, using additionally the fact that the
PRISM constant rate_z has been given the value rate(z).

4.5 Optimizations

The translation from symbolic transition graphs to PRISM
code described in this section can be optimized to reduce
the size of the generated code and the resulting model. The
basic idea is to compute an overapproximation of the
possible values that each symbolic transition graph’s bound
name can take, and thus, the channels it can send out on
and the values that can be sent on those channels. With this
information, we can decrease the range of the PRISM local
variables corresponding to each bound name and remove
unnecessary commands corresponding to combinations of

220 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO.2, MARCH/APRIL 2009

channel, value, and processes that can never occur. The
overapproximation is computed iteratively, starting with an
empty set of possible values for each bound name, and at
each step adding any name that can be received upon any
channel that can be used to assign to the bound name. The
iterations required is bounded by the number of processes
n. For clarity of presentation, the example in Fig. 6 has, in
fact, been optimized in this way.

This optimization could be improved by employing more
complex techniques based on those developed in [18] which
use control flow analysis to establish an overapproximation
of the set of channels a name may be bound to and the set of
names that may be sent along a given channel.

4.6 Properties

For probabilistic model checking of MDPs and CTMCs,
properties are typically specified using the temporal logics
PCTL [33], [34] and CSL [35], [36], the key components of
which are timed and untimed probabilistic reachability.
Examples of expressible properties include the maximum
probability of a failure occurring (Ppax—¢[F failure]), the
minimum probability of a process successfully completing
(Pmin=[F success]), the probability that a message is deliv-
ered by time (€ IR) (P—-[F=' delivered]), and the probability
of a reaction occurring in the time interval [t;,?](C IR)
(P—[Fl" 2] reaction]). In practice, a wide range of useful
properties can be expressed in this way.

Most probabilistic model checking tools, including
PRISM, use state-based property specifications, i.e., the
atomic propositions (failure, delivered, etc.) in the examples
above are quantifier-free predicates identifying a set of
states in the model. Also, the models that are checked are
closed: there are no inputs/outputs between the model and
its environment, only between components included within
the model. This is our reason for only performing probabil-
istic model checking on closed w-calculus processes.

In terms of the translation from n-calculus description to
PRISM model, we simply need to be able to identify the
particular set of target states specified in the reachability
property. This is done through the MMC,,,,, translator when
it constructs a PSTG or SSTG: either by identifying which
symbolic states correspond to a particular process term; or
those in which a particular action is available (in the latter
case, such actions can be added purely for the purposes of
identifying states, and then removed through restriction).

For example, consider a distributed randomized algo-
rithm executed between n parallel components P, ..., P,. A
typical property to be checked is that algorithm always
terminates with probability 1 (for any possible scheduling
of the n components). In this case, we would identify the
term in the 7-calculus description of each process P; that
corresponds to that process finishing its execution of the
algorithm. From the output of the MMC,,, translator, we
can identify the corresponding local state (); of the process.
We would then compute (in PRISM) the (minimum
probability) of reaching the state s; = Q1 A -+ A s, = Q.

Although not considered in the case studies used in this
paper, our implementation could also be extended to allow
for the computation of cost- or reward-based properties,
which are also supported by PRISM. This allows expression
of properties such as the “maximum expected number of

messages sent before termination” or “the minimum
expected power consumption within ¢ time units.” Typi-
cally the cost/reward information needed for these proper-
ties is added to the model (MDP or CTMC) by annotating
either transitions labeled with particular actions (for
example, the action-label which corresponds to a message
being sent between two components) or states with real
values. Since our translation of the probabilistic or
stochastic 7-calculus to PRISM preserves both information
about the state and channel communications of a process,
information of this kind could be incorporated into the
translation in a relatively straightforward fashion.

More general temporal properties, for example, that a
certain sequence of actions is performed, could be encoded
through the addition of a test/watchdog process [37].
Model checking for specification formalisms more specifi-
cally tailored to the mobile aspects of the m-calculus, such as
spatial logic [38], will be an area of future work.

5 IMPLEMENTATION AND RESULTS

Our implementation of model checking for the simple
probabilistic 7-calculus and stochastic m-calculus is fully
automated and comprises three parts: 1) MMC,,, an
extension of MMC (as described in Section 3), which
constructs the symbolic transition graphs for a simple
probabilistic or stochastic 7-calculus process; 2) the trans-
lator from the symbolic transition graph to PRISM code (as
described in Section), implemented in Java; and 3) the
probabilistic model checker PRISM [11] which builds the
MDP/CTMC from part 2) and performs verification of
PCTL/CSL properties. We based our implementation on
MMC 1.0 and PRISM 3.1.1.

First, we consider the dining cryptographers protocol
(DCP) [39], Chaum’s randomized solution to the classic
anonymity problem in which a group of N parties
collectively establish whether either one of the group or an
independent party has to make a payment. If the former, this
is achieved without any of the N—1 nonpaying parties
knowing the identity of the paying one. This was previously
modelled in the probabilistic 7-calculus in [6]. To check
anonymity, we compute the probability of reaching each of
the possible outcomes of the protocol (from the point of view
of an individual party) and establish that they are identical.

Second, we study the partial secret exchange (PSE)
algorithm of [3] for anonymous contract signing between
two parties. A probabilistic 7-calculus model of PSE was
given in [5]. The protocol was independently analyzed in
PRISM [40], where a potential flaw of the protocol was
identified, in that one party always has an advantage over
the other. Several modifications to the protocol were
proposed and shown to have a lower probability of this
occurring. We used a 7,1, model of both the original and a
modified version to demonstrate the same flaw.

Third, we constructed both a probabilistic and stochastic
model of a mobile communication network (MCN), based
on the (nonprobabilistic) 7m-calculus model in [41]. The
system comprises N base stations with fixed communica-
tion links to a mobile switching center and a mobile station
which can be connected to each of the base stations via
radio links. The mobile station roams between the base

NORMAN ET AL.: MODEL CHECKING PROBABILISTIC AND STOCHASTIC EXTENSIONS OF THE 7-CALCULUS

221

TABLE 1
Performance of the Probabilistic Model Checking Process

Case N Model size MTBDD Construction time (sec.) Model checking
study States Transitions size PSTGs/ | PRISM MDP/ in PRISM
(nodes) SSTGs code CTMC (sec.)
5 160,543 592,397 58,448 2.20 0.27 0.93 5.21
[1,475,401 6,520,558 100,122 2.50 0.27 1.98 15.1
DCP 7 13,221,889 68,121,834 154,074 2.95 0.31 3.10 39.4
8 116,192,457 683,937,352 220,043 331 0.31 4.23 90.8
9 1,005,495,499 | 6,657,256,911 298,285 3.62 0.36 6.26 316.2
3 9,321 32,052 17,999 1.63 0.21 0.43 0.31
PSE 4 89,025 419,172 43,120 2.12 0.27 0.95 1.23
5 837,361 5,028,700 88,074 2.60 0.31 1.89 2.96
3 9,328 32,059 18,184 1.57 0.22 0.41 0.86
PSE 04 4 89,040 419,187 43,388 1.99 0.26 0.39 3.45
5 837,392 5,028,731 89,309 2.49 0.31 1.96 14.3
MCN 2 609 950 58,430 1.38 0.31 2.61 0.34
(probabilistic) 3 3,611 5,811 216,477 1.60 0.46 12.0 6.06
MCN 2 565 854 32,898 1.44 0.38 2.13 1.18
(stochastic) 3 3,295 5,079 119,197 1.59 0.44 7.05 2.76
3 13,081 43,330 8,667 1.00 0.11 0.25 222
FGF 4 87,109 315,436 28,725 1.08 0.12 1.34 24.1
5 453,593 1,763,842 108,354 1.21 0.12 8.62 156.6
6 2,011,729 8,318,684 304,464 1.39 0.16 323 999.3

stations. When it changes base station, the mobile commu-
nication network acts as an intermediate party, controlling
the handover protocol and exchange of communication
links between stations. This case study was analyzed using
MMC in [10]. In both this and the original paper, though,
the occurrence of a failure during the handover protocol
was modeled as a nondeterministic choice. In the probabil-
istic version, we are able to correctly model this as a
random event. For the stochastic model, we used the
adapted version of [42]. This allows both correct modeling
of the failure event and also timing characteristics of the
network. We check the probability of a handover operation
completing successfully, within a given number of com-
munications (for the probabilistic case) or within a fixed
time deadline (for the stochastic case).

Our final case study is a CTMC model of the Fibroblast
Growth Factor (FGF) signalling pathway. We consider a
slightly simplified version of the model from [43], compris-
ing interactions between a mixture of FGF ligands and
receptors. In the my,. formulation, the v operator is used to
give each FGF ligand a unique channel name. The binding
between a particular FGF ligand and receptor is modeled by
this name being passed between the two. Unbinding occurs
through a communication over this private channel. We
check the probability that all FGF receptors have relocated
(are no longer active) by a certain time bound.

Table 1 shows the performance of our implementation on
the case studies. Experiments were run on a 2-GHz PC with
2-GB RAM running Linux. For each case study, we
analyzed several models of increasing size by varying a
parameter N. For the DCP model, N represents the number
of parties; for PSE (we consider two variants: the original
protocol EGL and the modified version EGL3 from [40]), N
is the size of contract; for the MCN models, N represents
the number of base stations; and for FGF, N is the number

of FGF ligands (the number of receptors remains fixed). The
table shows the size of the resulting MDPs/CTMCs
(number of states/transitions) and corresponding storage
in PRISM (MTBDD nodes, where one node uses 20 bytes).
We also give the time required for each stage of the process,
i.e., constructing: the PSTGs (using MMC,,,1); the PRISM
code (using the translator); and the MDP or CTMC model
(using PRISM). Finally, we give the time to check a single
(quantitative) PCTL/CSL property for each using PRISM
(with the fastest available engine).

The results are very encouraging. We see that our
techniques are scalable to the construction and analysis of
Tprob and 7o Models with extremely large state spaces and
that the times required for all stages of the process are
relatively small. Furthermore, the compositional approach
to the translation proved to be essential. On the FGF model
(N =3), for example, constructing the full model in
MMC,,on took more than 100 times as long as the
compositional technique. For larger parameter values, it
was not feasible to directly construct the full model.

The MCN case study, although smallest in terms of state
space, is a particularly good example of the applicability of
this implementation since it fully exploits all mobile aspects
of the calculus. The most obvious area for improvement in
our results concerns MTBDD sizes. As is often the case with
automatically generated code, the PRISM models resulting
from our technique do not always exhibit the kind of
structure and regularity that can be exploited by PRISM’s
symbolic implementation. We are confident that perfor-
mance can be improved in this area.

6 CONCLUSIONS

In this paper, we have demonstrated the feasibility of
implementing model checking for probabilistic and stochas-
tic extensions of the m-calculus. Furthermore, we have

222 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO.2, MARCH/APRIL 2009

shown, through its application to several large examples,
the efficiency of the approach. The probabilistic version of
the m-calculus we used (with only blind probabilistic choice)
has proved to be expressive enough for the appropriate
application domains (probabilistic algorithms for security
and dynamic communication protocols with failures and/or
randomization) and yet amenable to analysis with exten-
sions and adaptions of existing verification tools. Similarly,
the version of the stochastic n-calculus we used (with rates
assigned to 7-transitions and to channels) is both a natural
formalism for modeling biological systems and well suited
for the model checking techniques we have proposed.

We would like to extend this work in several directions.
For convenience of modeling, we plan to add support for
polyadic communication over channels. We also hope to
add support for more flexible property specifications using
watchdog processes. Finally, we will investigate ways to
further improve the efficiency of our implementation, in
particular, with regards to the automatically generated
PRISM code. Possibilities include optimizations to reduce
the resulting symbolic (MTBDD) storage in PRISM and
bisimulation minimization techniques.

ACKNOWLEDGMENTS

Authors Gethin Norman and David Parker were with the
School of Computer Science at the University of Birming-
ham and Peng Wu was at CNRS and LIX when parts of this
work were first carried out. Gethin Norman and David
Parker are supported in part by EPSRC grants GR/S11107
and GR/S46727 and Microsoft Research Cambridge con-
tract MRL 2005-44 and Catuscia Palamidessi and Peng Wu
were supported in part by the INRIA/ARC project
ProNoBis. The authors thank the anonymous referees for
their valuable comments.

REFERENCES

[1] R. Milner, J. Parrow, and D. Walker, “A Calculus of Mobile
Processes, 1,” Information and Computation, vol. 100, pp. 1-40, 1992.

[2] M. Reiter and A. Rubin, “Crowds: Anonymity for Web Transac-
tions,” ACM Trans. Information and System Security, vol. 1, no. 1,
pp- 66-92, 1998.

[3] S.Even, O. Goldreich, and A. Lempel, “A Randomized Protocol for
Signing Contracts,” Comm. ACM, vol. 28, no. 6, pp. 637-647, 1985.

[4] O. Herescu and C. Palamidessi, “Probabilistic Asynchronous
w-Calculus,” Proc. Third Int'l Conf. Foundations of Software
Science and Computation Structures, J. Tiuryn, ed., pp. 146-160,
2000.

[5] K. Chatzikokolakis and C. Palamidessi, “A Framework to Analyze
Probabilistic Protocols and Its Application to the Partial Secrets
Exchange,” Proc. Int’l Symp. Trustworthy Global Computing,
R.D. Nicola and D. Sangiorgi, eds., pp. 146-162. Springer, 2005.

[6] M. Bhargava, C. Palamidessi, “Probabilistic Anonymity,” Proc.
16th Int’l Conf. Concurrency Theory, M. Abadi and L. de Alfaro,
eds., pp. 171-185, 2005.

[71 C. Priami, “Stochastic n-Calculus,” Computer J., vol. 38, no. 7,
pp. 578-589, 1995.

[8] A. Regev, W. Silverman, and E. Shapiro, “Representation and
Simulation of Biochemical Processes Using the m-Calculus Process
Algebra,” Proc. Pacific Symp. Biocomputing, R. Altman, A. Dunker,
L. Hunter, and T. Klein, eds., vol. 6, pp. 459-470, 2001.

[9] C. Priami, A. Regev, W. Silverman, and E. Shapiro, “Application
of a Stochastic Name Passing Calculus to Representation and
Simulation of Molecular Processes,” Information Processing Letters,
vol. 80, pp. 25-31, 2001.

[10] P. Yang, C. Ramakrishnam, and S. Smolka, “A Logic Encoding of
the m-Calculus: Model Checking Mobile Processes Using Tabled
Resolution,” Int’l |. Software Tools Technology Transfer, vol. 4, pp. 1-
29, 2004.

[11] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM:
A Tool for Automatic Verification of Probabilistic Systems,” Proc.
12th Int'l Conf. Tools and Algorithms for the Construction and
Analysis of Systems, H. Hermanns and]. Palsberg, eds., pp. 441-
444, 2006.

[12] B. Victor and F. Moller, “The Mobility Workbench—A Tool for the
w-Calculus,” Proc. Sixth Int’l Conf. Computer Aided Verification,
R. Alur and D. Peled, eds., pp. 428-440, 1994.

[13] B. Blanchet, ProVerif: Automatic Cryptographic Protocol Verifier User
Manual, www .preverif.ens.fr/proverif-manual.ps.gz, 2005.

[14] S. Chaki, S. Rajamani, and]J. Rehof, “Types as Models: Model
Checking Message-Passing Programs,” Proc. 29th Symp. Principles
of Programming Languages, pp. 45-57, 2002.

[15] P. Wu, “Interpreting m-Calculus with Spin/Promela,” Computer
Science, vol. 8, pp. 7-9, supplement, 2003.

[16] H. Song and K. Compton, “Verifying m-Calculus Processes by
Promela Translation,” Technical Report CSE-TR-472-03, Univ. of
Michigan, 2003.

[17] A. Venet, “Abstract Interpretation of the m-Calculus,” Proc. Fifth
LOMAPS Workshop Analysis and Verification of Multiple-Agent
Languages, M. Dam, ed., pp. 51-75, 1996.

[18] C.Bodei, P. Degano, F. Nielson, and H.R. Nielson, “Static Analysis
for the m-Calculus with Applications to Security,” Information and
Computation, vol. 165, pp. 68-92, 2001.

[19] A. Phillips and L. Cardelli, “Efficient, Correct Simulation of
Biological Processes in the Stochastic m-Calculus,” Proc. Fifth Int’l
Workshop Computational Methods in Systems Biology, M. Calder and
S. Gilmore, eds., pp. 184-199, 2007.

[20] G. Norman, C. Palamidessi, D. Parker, and P. Wu, “Model
Checking the Probabilistic 7-Calculus,” Proc. Fourth Int’l Conf.
Quantitative Evaluation of Systems, pp. 169-178, 2007.

[21] R. Milner, Communication and Concurrency. Prentice Hall, 1989.

[22] R. Segala and N. Lynch, “Probabilistic Simulations for Probabil-
istic Processes,” Nordic]. Computing, vol. 2, no. 2, pp. 250-273,
1995.

[23] M. Hennessy and H. Lin, “Symbolic Bisimulations,” Theoretical
Computer Science, vol. 138, pp. 353-389, 1995.

[24] P. Wu, C. Palamidessi, and H. Lin, “Symbolic Bisimulations for
Probabilistic Systems,” Proc. Fourth Int’l Conf. Quantitative Evalua-
tion of Systems, pp. 179-188, 2007.

[25] H. Lin, “Symbolic Bisimulation and Proof Systems for the
m-Calculus,” technical report, School of Cognitive and Computer
Science, Univ. of Sussex, 1994.

[26] M. Boreale and R.D. Nicola, “A Symbolic Semantics for the
n-Calculus,” Information and Computation, vol. 126, no. 1, pp. 34-52,
Apr. 1996.

[27] H. Lin, “Complete Inference Systems for Weak Bisimulation
Equivalences in the w-Calculus,” Information and Computation,
vol. 180, no. 1, pp. 1-29, 2003.

[28] A. Ingdlfsdéttir and H. Lin, “A Symbolic Approach to Value-
Passing Processes,” Handbook of Processes Algebra, chapter 7,
Elsevier, 2001.

[29] J. Hillston, A Compositional Approach to Performance Modelling.
Cambridge Univ. Press, 1996.

[30] G. Norman, C. Palamidessi, D. Parker, and P. Wu, “Translating
the Probabilistic m-Calculus to PRISM,” Technical Report CSR-07-
02, School of Computer Science, Univ. of Birmingham, 2007.

[31] A. Roscoe, The Theory and Practice of Concurrency. Prentice-Hall,
1997.

[32] Online PRISM documentation, www.prismmodelchecker.org/
doc/, 2009.

[33] H. Hansson and B. Jonsson, “A Logic for Reasoning about Time
and Reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512-
535, 1994.

[34] A. Bianco and L. de Alfaro, “Model Checking of Probabilistic and
Nondeterministic Systems,” Proc. 15th Conf. Foundations of Software
Technology and Theoretical Computer Science, P. Thiagarajan, ed.,
pp- 499-513, 1995.

[35] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Verifying
Continuous Time Markov Chains,” Proc. Eighth Int’l Conf.
Computer Aided Verification, R. Alur and T. Henzinger, eds.,
pp. 269-276, 1996.

NORMAN ET AL.: MODEL CHECKING PROBABILISTIC AND STOCHASTIC EXTENSIONS OF THE 7-CALCULUS

[36]

[37]

(38]

[39]

(40]
[41]

[42]

(43]

C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-
Checking Algorithms for Continuous-Time Markov Chains,” IEEE
Trans. Software Eng., vol. 29, no. 6, pp. 524-541, June 2003.

M. Goldsmith, N. Moffat, B. Roscoe, T. Whitworth, and I
Zakiuddin, “Watchdog Transformations for Property-Oriented
Model-Checking,” Proc. Second Int’l Symp. Formal Methods Europe,
K. Araki, S. Gnesi, and D. Mandrioli, eds., pp. 600-616, 2003.

L. Caires and L. Cardelli, “A Spatial Logic for Concurrency
(Part I),” Information and Computation, vol. 186, no. 2, pp. 194-235,
2003.

D. Chaum, “The Dining Cryptographers Problem: Unconditional
Sender and Recipient Untraceability,”]. Cryptology, vol. 1, pp. 65-
75, 1988.

G. Norman and V. Shmatikov, “Analysis of Probabilistic Contract
Signing,” J. Computer Security, vol. 14, no. 6, pp. 561-589, 2006.

F. Orava and]. Parrow, “An Algebraic Verification of a Mobile
Network,” Formal Aspects of Computing, vol. 4, pp. 497-543, 1992.
C. Priami, “Stochastic Analysis of Mobile Telephony Networks,”
Proc. Fifth Int'l Workshop Process Algebra and Performance Modeling,
E. Brinskma and A. Nymeyer, eds., pp. 145-171, 1997.

J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O.
Tymchyshyn, “Probabilistic Model Checking of Complex Biologi-
cal Pathways,” Proc. Fourth Int'l Workshop Computational Methods in
Systems Biology, C. Priami, ed., pp. 32-47, 2006.

Gethin Norman received the degree in mathe-
matics from the University of Oxford and the
PhD degree in computer science from the
University of Birmingham. He is a research
officer in the Oxford University Computing
Laboratory. He has worked as a research fellow
at the University of Birmingham. He has made a
broad range of contributions to the PRISM
project, ranging from the underlying theory and
model checking algorithms to case studies and

advanced implementation techniques.

223

™

Catuscia Palamidessi received the PhD de-
gree from the University of Pisa in 1988. She is
the director of research at INRIA Futurs, where
she leads the team Comeéte. She worked as a
full professor at the University of Genova, ltaly
(1994-1997) and at the Pennsylvania State
University (1998-2002). Her research interests
include concurrency, distributed systems, and
security. Her past achievements include the
proof of expressiveness gaps between various
concurrent calculi and the development of a probabilistic version of the
asynchronous =-calculus. Her current research is in mobile calculi,
probability, and the use of probabilistic concepts in concurrency and
security. She has been the program committee chair of various
conferences, including MFPS 2008, SOFSEM 2008, ICALP 2005, and
CONCUR 2000. She is on the editorial board of Mathematical Structures
in Computer Science (MSCS), Theory and Practice of Logic Program-
ming (TPLP), and Electronic Notes in Theoretical Computer Science
(ENTCS), and is a member of the Executive Committee of the European
Association of Theoretical Computer Science (EATCS).

David Parker received the BSc and PhD
degrees from the University of Birmingham. He
is a research officer atn the Oxford University
Computing Laboratory. Prior to that, he spent
five years working as a research fellow at the
University of Birmingham. His current research
interests include various topics in the field of
probabilistic verification, including symbolic
model checking, abstraction techniques, and
software model checking. He is the lead devel-
oper of the PRISM model checker. His doctoral thesis was runner-up in
the 2003 BCS Distinguished Dissertation Awards.

Peng Wu received the BSc degree in computer
science from the Ocean University of China in
1998 and the MSc and PhD degrees in computer
science from the Institute of Software, Chinese
Academy of Sciences, in 2001 and 2005,
respectively. He is currently a research associ-
ate at University College London. His research
interests are automatic verification of network
systems via model checking.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

	coversheet.pdf
	http://eprints.gla.ac.uk/39680/

