
QUANTITATIVE VERIFICATION OF GOSSIP

PROTOCOLS FOR CERTIFICATE TRANSPARENCY

by

MICHAEL COLIN OXFORD

A thesis submitted to the University of Birmingham for the

degree of DOCTOR OF PHILOSOPHY

School of Computer Science

College of Engineering and Physical Sciences

University of Birmingham

December 2020

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third parties.
The intellectual property rights of the author or third parties in respect of this work
are as defined by The Copyright Designs and Patents Act 1988 or as modified by any
successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission of
the copyright holder.

2

Abstract

Certificate transparency is a promising solution to publicly auditing Internet certificates.

However, there is the potential of split-world attacks, where users are directed to fake

versions of the log where they may accept fraudulent certificates. To ensure users are

seeing the same version of a log, gossip protocols have been designed where users share

and verify log-generated data. This thesis proposes a methodology of evaluating such

protocols using probabilistic model checking, a collection of techniques for formally

verifying properties of stochastic systems. It also describes the approach to modelling

and verifying the protocols and analysing several aspects, including the success rate of

detecting inconsistencies in gossip messages and its efficiency in terms of bandwidth.

This thesis also compares different protocol variants and suggests ways to augment

the protocol to improve performances, using model checking to verify the claims. To

address uncertainty and unscalability issues within the models, this thesis shows how

to transform models by allowing the probability of certain events to lie within a range

of values, and abstract them to make the verification process more efficient. Lastly, by

parameterising the models, this thesis shows how to search possible model configurations

to find the worst-case behaviour for certain formal properties.

4

Acknowledgements

To Auntie Mary and Nanny Lee.

Writing this thesis could not have been accomplished after four tumultuous years

alone. Firstly, I want to thank my co-supervisors, Dave Parker and Mark Ryan, for

their unconditional support and always willing to make time for me despite having

hectic work schedules. I could not have asked for more patient nor intelligent tutors.

I also want to thank: the Security Group for the interesting seminars and

conversations over lunch; Graham Shaw and Adam Williams for overseeing my

placement at Nettitude; Eike Ritter, David Galindo and Alice Miller for their useful

comments on my work; Birmingham’s BlueBEAR service for helping me complete

some experiments; and the reviewers for the CNS’20 conference for their valuable

feedback on the paper.

A number of close friends have helped me to overcome moments when I thought I

would never finish this thesis. These people are: Paul Goldring; Kelvin Cheung; Pablo

Vinuesa; Barri Matharu; Johnny Chan; and Susan Geng. Thank you all for some great

memories and life advice.

Lastly, I want to thank my sisters, Rebecca and Sarah, and my wonderful parents,

Agnes and Steven. I really cannot thank you all enough for what you have done for me

to get here, so here is another - thank you.

Any mistakes found in this thesis are of course my own.

6

Contents

List of Figures 11

List of Tables 13

Glossary 17

1 Introduction 21

2 Related Work 27

2.1 Transparency . 27

2.2 Gossip and Auditing for CT . 30

2.3 Probabilistic Model Checking . 31

3 Background 37

3.1 Certificate Transparency . 37

3.2 CT Gossiping . 50

3.3 Probabilistic Model Checking . 55

3.4 Derivative-free Optimisation . 74

4 Modelling and Verification of Gossip Protocols 81

4.1 Network Topology . 82

4.2 Modelling the Protocol . 85

7

CONTENTS

4.3 Specification of Protocol Properties . 92

4.4 Server-to-server Gossip . 94

4.5 Experimental Results . 96

4.6 Summary . 111

5 Tackling Uncertainty and Unscalability using IDTMCs 113

5.1 Using IDTMCs When Client Probabilities are Unknown 114

5.2 IDTMC Abstraction . 121

5.3 Experimental Results . 125

5.4 Summary . 133

6 Model Parameter Optimisation 135

6.1 Deriving Network Model Parameters 135

6.2 Adapting the Black-box Optimisation Problem 139

6.3 Python Application . 140

6.4 Experimental Results . 146

6.5 Combining IDTMCs With SMBO . 156

6.6 Summary . 157

7 Discussion and Conclusion 161

Bibliography 163

Appendix A Constructing Components from IDTMCs and Updating

ADTMCs 195

A.1 ConstructComponent . 196

A.2 UpdateADTMC . 196

Appendix B Deriving Distributions Using Surrogate Parameters 199

8

Appendix C Snapshots of PRISM Code 203

C.1 Normal Scenario Model (Without Server Gossip) 203

C.2 Split-world Scenario Model With Intervals (Without Server Gossip) . . 212

CONTENTS

10

List of Figures

3.1 A pair of Merkle hash trees . 41

3.2 Communication flow of CT . 46

3.3 Querying a certificate database . 48

3.4 CT information for a certificate . 49

3.5 An Illustration of a split-world attack 51

3.6 Illustration of the Chuat et al. CT gossip protocols 54

3.7 DTMC model example . 57

3.8 Example abstraction of a DTMC . 69

3.9 Demonstration of the Hyperopt library 79

3.10 Demonstration of the Benderopt library 80

4.1 Example of a network topology . 84

4.2 Abstract representation of log growth 91

4.3 Model checking results for the normal scenario 98

4.4 Model checking results for the split-world scenario (1) 100

4.5 Model checking results for the split-world scenario (2) 101

4.6 Statistical results for the normal scenario 103

4.7 Statistical results for the split-world scenario 104

4.8 Box-and-whisker plots for randomly sampled data (Chapter 4) 105

11

4.9 Comparing statistical and verification results (normal) 108

4.10 Comparing statistical and verification results (split-world, init. design) 109

4.11 Comparing statistical and verification results (split-world, ext. design) . 110

5.1 Box-and-whisker plots for randomly sampled data (chapter 5) 119

5.2 IDTMC model checking results (normal) 120

5.3 IDTMC model checking results (split-world) 121

5.4 Abstraction process of an IDTMC . 124

5.5 Comparing IDTMC and ADTMC verification results 132

6.1 Workflow of the optimiser code . 145

6.2 Best result found for a fixed number of trials 149

6.3 Results for normal models using the suggested parameters 150

6.4 Results for split-world models using the suggested parameters 151

6.5 Statistical model checking results for larger models 152

6.6 Box-and-whisker plots for randomly sampled data (chapter 6) 154

6.7 Comparing verification results with simulation data 155

6.8 Investigation into the local behaviour of the objective function for normal

scenario models . 158

6.9 Investigation into the local behaviour of the objective function for split-

world scenario models . 159

List of Tables

4.1 Description of csth/ssth variables . 92

4.2 Initial modelling setup for both model types. For each client type, they

connect with server types S1 and S2 with probabilities 0.02 and 0.28,

respectively. They also connect with one other unique server with

probability 0.7 e.g. the client type C1 connects with server type S3

with probability 0.7. 96

4.3 Model statistics (Chapter 4) . 98

4.4 Client type frequency (Chapter 4) . 102

4.5 Mean values for each proportion . 106

5.1 Probability intervals (chapter 5) . 116

5.2 Maximal/minimal values for each proportion (chapter 5) 119

5.3 Model statistics (chapter 5) . 130

6.1 List of options for the Python application 143

6.2 Probability intervals (chapter 6) . 147

6.3 Suggested modelling parameters . 148

6.4 Client type frequency (chapter 6) . 149

6.5 Maximal/minimal values for each proportion (chapter 6) 154

LIST OF TABLES

14

List of Algorithms

1 Generic sequential model-based optimisation (SMBO). 76

2 Constructing the abstract component 125

3 Building an ADTMC . 126

4 Deriving a probability distribution from fixed intervals 138

5 Objective function to optimise . 140

LIST OF ALGORITHMS

16

Glossary

N Set of natural numbers

Z Set of integer numbers

R Set of real numbers

PKI Public Key Infrastructure

CA Certificate authority

DNS Domain name service

CT Certificate Transparency

RFC Request for comments

TLS Transport Layer Security

h Cryptographic hash function

URL Uniform resource locator

SCT Signed certificate timestamp

MMD Maximum merge delay

STH Signed tree head

OCSP Online Certificate Status Protocol

HTTPS Hypertext Transfer Protocol Secure

m Gossip message data

sth STH data

M Markov model

17

Glossary

DTMC Discrete time Markov chain

MDP Markov decision process

Act Set of actions

S State space

E Transition relation function

Si Set of initial states

P Probability transition function

ιinit Initial distribution function

AP Set of atomic propositions

L State labelling function

π State-sequenced path

FPathM,s Set of all finite paths starting from state s

FPathM Set of all finite paths

IPathM,s Set of all infinite paths starting from state s

IPathM Set of all infinite paths

σ Adversary function

Adv Set of all adversaries

PCTL Probabilistic Computational Tree Logic

φ State-based PCTL formula or a general PCTL

formula depending on the context

Φ Path-based PCTL formula

P Probabilistic path operator

X Next operator

U Until operator

|=Adv Satisfied under Adv

F Future operator

18

Glossary

♦ Future operator (alternative)

rstate State reward function

raction Transition reward function

T Target set of states

Prob Probability of an event

I=k Instantaneous reward after exactly k ∈ N steps

C≤k Cumulative reward after exactly k ∈ N steps

RT Reachability reward before reaching target set T

R Reward operator

IDTMC Interval DTMC

ADTMC Abstract DTMC

F Objective function

SMBO Sequential model-based optimization

N Surrogate model

A acquisition function

H Observation history set

TPE Tree-structured Parzen estimator

NT Network topology

G Gossip rate function

P Client type profile function

C Set of client types in NT

Ci Client type i

S Set of server types in NT

Sj Server type j

MNT DTMC network model for network topology NT

δ Probability distribution function

19

Glossary

Pmin Minimal probabilistic path operator

Pmax Maximal probabilistic path operator

sabs abstract state (i.e a subset of concrete states)

F Client type frequency

I Set of possible initial states for MNT

G Gossip rate vector

x Surrogate choice vector

X Surrogate choice matrix

χ Modelling/configuration space

20

Chapter 1

Introduction

Certificate transparency (CT) [42] has shown to be a promising system that promotes

the public auditing of public key certificates, which are hugely important for web

domains to identify themselves when forming secure Internet connections with

visitors. Supported by both the Google Chrome browser [168] and the Apple Safari

browser [6], it continues to show promise in exposing any negligent actions by

certificate issuers [176].

An open security issue with CT is that it doesn’t prevent an attacker, namely a

log maintainer, from broadcasting their erroneous version of their CT log containing

fraudulent certificates used to stage man-in-the-middle attacks, convincing a segregated

population of internet users that it is legitimate. This type of attack, called a split-

world attack, involves forking and hosting a rogue version of a log to targeted victims

who then willingly accept anything included in this log because they have no way to

validate amongst themselves that their view of this log is the legitimate version hosted

to non-victims.

To retroactively detect split-world attacks in CT and deter any misbehaviour from

a log maintainer, one solution is to make devices perform random peer-to-peer

21

CHAPTER 1. INTRODUCTION

communication to disseminate data via gossip protocols, so that they can exchange

log-generated data with each other. That way, devices will be able to utilise log data

coming from multiple sources and collectively agree on what the correct state of the

log should be, making sure that the non-equivocation property is being respected by

the log maintainer i.e. it is not trying to host multiple contradicting states of the log

to different sets of users simultaneously.

In 2015, Chuat et al. [48] designed and tested protocols which make clients gossip

data through domain servers they regularly connect with using HTTPS connections,

making each type of entity validate for log consistency and update their local states

whenever they discover newer data. While they demonstrated the effectiveness of the

protocols using simulations, their methodology lacked any manner of formal analysis

and were not able to measure how effective the protocols were in detecting

inconsistencies in the log data when a split-world attack was occurring.

Formal verification uses mathematically-based techniques to prove that a particular

algorithm or protocol meets formally defined specifications. While formal verification

comes in many forms [154, 122, 201], the one which we focus on in this thesis is known

as model checking [49, 179]. Using model transition systems [133], distinct states of a

system are encapsulated and the transitions from each of them determine what may

or must follow from them (or there is an absence of transitions, in which case nothing

happens). By characterising a desired specification formally using a temporal logic,

the transition system is explored exhaustively to determine if it is possible to reach

states that meet or violate that specification. To sufficiently model systems which

exhibit stochastic behaviour, we can augment transition systems further by assigning

a probability distribution to the set of outgoing transitions for each state, representing

a Markovian process where the likelihood of an event happening only depends on the

current state of the model. This sub-field of model checking is known as probabilistic

22

model checking [130].

This thesis attempts to bridge the gap between probabilistic model checking and

CT using the Chuat et al. gossip protocols (for convenience, we call call them the

Chuat protocols) as a case study to investigate how effective they are at disseminating

log-based data to retroactively detect split-world attacks. We note that the objective of

this thesis is not to prove the correctness of the protocol logic so that it satisfies formal

security properties, but instead employs a set of metrics computed iteratively when a

unit of time has passed to evaluate protocol performance.

The thesis consists of three parts: the first part (Chapter 4) explains how we can

model a network using discrete time Markov chains, having clients randomly connect

and gossip with servers who then update themselves with the gossip messages they

receive. We describe some formal specifications to measure the security and efficiency

aspects of the Chuat protocols, suggesting how we can improve on the initial designs

and validate our claims using model checking. We use the PRISM model checker [129]

to give a rich analysis of the protocols we analyse.

The second part (Chapter 5) looks at how to accommodate for uncertainty in

models when it is hard to capture exactly the random behaviour of gossiping clients,

and model scalability when the model checking process becomes too expensive to

perform. To resolve the uncertainty issue, we use interval discrete time Markov chains

(IDTMCs) [117], replacing exact probabilistic values with intervals to show under-

and over- approximations of transition probabilities, thereby providing us with lower

and upper bounds on the quantitative properties we wish to analyse. To resolve the

scalability issue, we show how to transform our IDTMC models appropriately via

abstraction into smaller models which probabilistically simulate the former, called

abstract discrete time Markov chains (ADTMCs), which are less costly to perform

verification on but as a trade-off lose accuracy in the results [119]. We apply

23

CHAPTER 1. INTRODUCTION

extensions of PRISM which are capable of building and verifying IDTMC models,

additionally abstracting them by dynamically mapping states to their abstract

counterparts in the resulting ADTMC model.

The third and final part (Chapter 6) explains how to parameterise our DTMC

models and search over their possible configurations using sequential-based model

optimisation (SMBO) [109] to identify a configuration that best optimises particular

quantitative properties. While we take into account the possible transition

probabilities in the model like with IDTMCs, we have the added complexity of

searching over all initial setups of the network we are trying to model i.e. the set of

possible initial states for the probabilistic model, which is expensive in terms of model

checking effort. We describe an algorithm which takes as input a set of modelling

parameters, constructs a DTMC model based on those parameters and then perform

verification on it via PRISM using a pre-determined property, outputting a real value.

By treating this algorithm as a ‘black-box’ function, we use SMBO to try and fit a

cheaper surrogate function to it using a finite series of inputs chosen by SMBO and

their respective outputs, finally deciding on a worst-case network configuration which

maximises the quantitative result of our chosen property. We show empirically how

this technique produces better findings compared to using random sampling of client

data.

We intend for our primary audience to be security researchers wishing to see how

verification could be applied to investigating gossip protocols for decentralised systems.

However, this work should also be of interest to users of model checking across a wide

range of application domains.

The content of this thesis is structured as follows: in Chapter 2, we list related

work and point to other areas of research the interested reader can pursue further.

Chapter 3 covers the fundamental background material for this thesis including CT,

24

gossiping, probabilistic model checking and SMBO. Chapter 4 shows how to model a

type of gossiping network in two different scenarios using DTMCs, and uses temporal

logic to describe the properties we want to analyse. Chapter 5 discusses how to address

model uncertainty and scalability by introducing extensions of PRISM which performs

verification on IDTMCs embedded with uncertainties reflecting the random behaviour

of the clients. We show how we can reduce the complexity of this process via abstraction

which uses state partitioning to collapse the size of the models. Chapter 6 shows an

application of SMBO to maximise certain quantitative properties of the gossip protocols

by exploring a ‘model space’ which characterises all the possible network scenarios.

Chapter 7 concludes this thesis and possibilities for future work are discussed.

Some of the content of this thesis, in particular from Chapters 4 and 6, is published

in the following paper:

� M. Oxford and D. Parker and M. Ryan; Quantitative Verification of Certificate

Transparency Gossip Protocols. In: The Sixth International Workshop on Security

and Privacy in the Cloud (SPC‘20), July 2020, IEEE.

Supporting material, including PRISM files and source code, for this thesis can be found

at [202].

25

CHAPTER 1. INTRODUCTION

26

Chapter 2

Related Work

2.1 Transparency

The monitoring of public key certificates, first introduced by Kohnfelder [126] in his

bachelor’s thesis, has remained a difficult problem to solve since the early days of

the Internet, largely because Internet usage and human reliance on digital services

has significantly increased in recent decades [112]. Some early attempts included the

SSL observatory project [208] conducted in 2010 by the Electronic Frontier Foundation

which scanned datasets of publicly-visible certificates, real-time notary services which

periodically scanned areas of the Internet [5, 158, 205], incorporating mechanisms into

DNSSEC to create records which associated certificates with hosts which anyone could

check [187, 98] and public key pinning (PKP) [76]. Due to low adoption rates and issues

regarding how operators would be unable to maintain website content should they lose

any of their public keys, PKP has now been deprecated in Google Chrome since version

67 [172].

Certificate transparency (CT), devised by Laurie et al. [139] in 2013, is designed

to be an open and scalable system where anyone can participate in the auditing of

27

CHAPTER 2. RELATED WORK

certificates. A collection of client tools and libraries for interacting with CT logs can be

found online [87] and CT has already been enabled for Google Chrome; since April 2018,

it is required that all TLS certificates be appended to certificate transparency logs for

Chrome to accept any connections [168]. There are plans to update and replace some

of the existing CT formats and mechanisms, all of which are still in the experimental

phase [140]. Work has also been done on CT outside of Google to extend its capabilities

and validate its effectiveness. In 2014, Ryan [184] extended CT to efficiently handle

certificate revocation and applied it to devise end-to-end encrypted email without the

need for complex key-signing arrangements or trusted third parties. In 2016, Dowling

et al. [66] proved security properties for CT under particular modelling assumptions,

showing how it prevents log misbehaviour and protects honest log maintainers from

misbehaving log monitors. In 2017, Eskandarian et al. [74] used zero-knowledge proofs

to show how browsers could audit CT logs for misbehaviour without risking user privacy

and how CT can be compatible with private domains without leaking information about

them or any ‘short-lived’ certificates they used which lasted only a day. In 2018, Madala

et al. [148] supplemented CT with blockchains with the aim of giving domain owners

more authority over which certificates get issued in their name, claiming that it makes

the detection of fraudulent certificates more proactive.

There have been studies, in particular by Gasser et al. and Vandersloot et al. [186,

85, 212], looking at how CT has impacted the public key certificate ecosystem and

showing how powerful it is in collating certificate data. Furthermore, in 2017,

Gustafsson et al. studied the characteristics for different CT logs and compared their

contents for differences and similarities, especially between Google-operated and

CA-operated logs [95]. More recently, in 2019, Li et al. [142] gave a sceptical analysis

of how truly reliable CT is in finding fraudulent certificates because, even by scanning

a variety of logs, it is never guaranteed that the union of their results will return all

28

2.1. TRANSPARENCY

the certificates for the domains they investigated.

Many other transparency or decentralised systems exist which aim to solve

problems similar to certificate monitoring. Sovereign keys [71], Revocation

transparency [138], PoliCert [207], AKI [123], ARPKI [19], DTKI [222], AAD [210],

CertCoin [83], IKP [151], BlockPKI [69] and DomainPKI [214] all deal with

transparency in public key infrastructures. CIRT [184], CONIKS [155], EthIKS [29],

KAS [75], DECIM [223] and Google’s key transparency project [88] focus on providing

a way of authenticating public keys for peer-to-peer services and message encryption.

Catena [211] and Contour [4] both use the bitcoin blockchain (see the bitcoin

paper [162]) to provide binary transparency for distributed software packages.

Attestation transparency [20] looks at how to ensure that Internet services are

running correctly for all clients and are not running a malicious version of the service

to targeted victims. Google is also experimenting with running general transparency

logs as part of their Trillian project [89].

Very recently, Szalachowski [206] introduced a radical redesign of the certificate

ecosystem in the form of SmartCert, combining both the distribution, maintenance

and revocation processes for certificates using smart contracts. In this system,

SmartCert treats certificates as dynamic objects being periodically updated by CAs

using the Ethereum blockchain [220] or any other smart contract platform, allowing

for the addition of any information needed in certificates so clients can properly

validate them without the need to contact a third-party. Using a policy contract

which defines the conditions for a domain’s certificate to be deemed valid, coupled

with a SmartCert contract updated by authorised CAs which records the validation

state of the key pair being used by the domain, SmartCert minimises the trust needed

in CAs and gives domains more power to enforce their policies for certificates since

any newer SmartCert contracts (and their corresponding certificates) cannot be

29

CHAPTER 2. RELATED WORK

created without their consent. However, implementing SmartCert, even incrementally

as the author suggested, is an enormous challenge to get right. In addition the

systems places more responsibility on the CA by making them instigate periodic

validation checks for potentially millions of domain names.

2.2 Gossip and Auditing for CT

Gossip protocols, also known as epidemic protocols, were first conceived in the late 1980s

as a way to maintain consistency between databases replicated and stored at different

sites [62]. Generally speaking, a gossip protocol makes nodes in distributed systems

form peer-to-peer connections with other adjacent nodes and disseminate specific data,

the goal of this being to ensure that a majority of the nodes have common knowledge

about the state of an entity belonging to that same system. Much of the work in this

thesis is based on the gossip protocols devised by Chuat et al. [48] where they make

clients gossip digests of CT logs and update their local states when newer data arrives,

having servers act as staging posts. Chuat et al. [215] have also recently introduced a

secure consensus protocol which replicates the state of the CT log among independent

entities so that they share responsibility of maintaining the log, using proof assistants

to show that the protocol satisfies certain security properties and practical experiments

to see how well it scales in a CT-like system as the number of replicating nodes increase.

Nordberg et al. [166] have also developed gossiping mechanisms where auditors collect

and validate log digests from servers whilst treating the data as sensitive so that they

cannot be linked back to clients. Dahlberg et al. [53] have proposed aggregation-based

gossiping by having routers or an intermediary collect log data as it passes through them

and consistency checks are done via an off-path; this may be more suitable towards

internal corporate networks where administrators have more control over what enters

30

2.3. PROBABILISTIC MODEL CHECKING

and leaves.

We should note that KAS [75] and CONIKs [155] use a form of server-side gossiping

in their schemes as opposed to client-side gossiping to minimise the burden on users and

not pass on the responsibility of constantly checking for unusual behaviour from logs

when they get updated. As an alternative (or supplement) to retroactive gossiping, Syta

et al. [203] introduce witness co-signing where certificate authority activity is monitored

by a small set of decentralised witnesses; an attacker cannot make a client use their

certificate unless they can control the witnesses but this is an unlikely scenario if the

witnesses are made diverse enough.

Services on the Internet already exist that users and businesses can access to check

the current status of active logs or see which certificates have been submitted for

particular domains [72, 78, 41, 188]. Dahlberg and Pulls [52] have also developed

light-weight monitoring tools to reduce the trust placed in a small set of capable third

party auditors.

2.3 Probabilistic Model Checking

Probabilistic model checking combines both model checking, originating

independently from the works of Clarke and Emerson [49] and Queille and

Sifakis [179], and Markovian processes which have been studied throughout the

twentieth century [84, 106]. Numerous model checking tools exist that can perform

automated verification on Markov models; the one used for this thesis is the PRISM

symbolic model checker [129]. Other tools which may be of interest include

STORM [58] and PAT [143].

31

CHAPTER 2. RELATED WORK

2.3.1 Model Checking for Security Protocols

There have been well-documented cases of (non-probabilistic) model checking being

used to find vulnerabilities within security protocols. In 1996, Lowe [146] was able to

prove and provide examples of weaknesses in the Needham-Schroeder public-key

protocol [163] using the Failures Divergence Refinements Checker (FDR). He

demonstrated it in the case of an attack consisting of two interleaving runs of the

protocol and listed a sequence of events which led to a breach of security. It was

analogous to a man-in-the-middle attack where an initiator established a session with

an intruder pretending to be the responder. Using FDR, Lowe was able to prove that,

by amending the protocol in a certain way, no attacks could be found on the protocol

when used in a small system.

In the case of PRISM, there are examples of it being applied to security problems. In

2006, Norman and Shmatikov [167] used PRISM to investigate EGL (Even, Goldreich,

and Lempel), a contract signing protocol where clients who do not trust each other

exchange commitments to a contract to share data [77], showing that the protocol did

not satisfy a crucial property. They also suggested ways of how to minimise the chance

of this particular property being violated by amending the original protocol. In that

same year, Steel [198] was able to demonstrate using PRISM that, by exploiting APIs in

tamper-proof hardware security modules which were being used in ATM networks, PIN

digits could be revealed via a reformatting attack. Markov chains were used to represent

both the probabilistic and non-deterministic choices an attacker can make when trying

to leak data about the PIN number. Mirto et al. [159] have expressed an interest in using

PRISM to analyse the probabilistic nature of consensus protocols used in blockchains,

such as Proof-of-Work and Proof-of-Stake, and determine how robust they are in the

presence of malicious actors and unequal computing power distribution amongst the

nodes. Additionally, Marinković et al. [150] have introduced extensions of existing

32

2.3. PROBABILISTIC MODEL CHECKING

temporal logics to reason about blockchain consensus protocols probabilistically.

2.3.2 Analysing Gossip Protocols via Model Checking

There have been studies of applying probabilistic model checking techniques to analyse

gossip protocols during the late 2000s [118, 14]. For early examples which used PRISM,

Fehnker and Gao [81] analysed the performance of gossiping and flooding protocols in

a small network using while considering cases where network collisions and data loss

occur, combining this with large-scale simulations to see if their verification results

were consistent for more realistic network models. Kwiatkowska et al. [128] provided

quantitative analysis of a gossip protocol which used random peer sampling in small

networks [114]. The models included a scheduler which determined the order in which

nodes executed the protocol, keeping track of the ones which have already exchanged

data. In 2018, Webster et al. [216] studied a gossip protocol used in wireless sensor

networks to analyse the synchronisation of nodes and the dissemination of information,

showing how slight changes in the temperature of the sensor affects the quantitative

results. Unlike the models used in these previous works, the ones used in this thesis are

based on a client-server network model where clients are unable to communicate with

each other and must gossip information through servers.

2.3.3 Verification Approaches for Uncertainty

The idea to extend DTMCs with interval probabilities was first proposed by Jonsson

and Larsen [117] and was extended upon by Kozine and Utkin [127], Škulj [193] and

Sen et al. [190]. Additionally, Delahaye et al. [60] introduced a framework which

refined a set of interval Markov chains which modelled different aspects of a process to

enable compositional modelling and Sproston, Chakraborty and Katoen [44, 196]

studied Markov models which used open intervals instead of closed ones. In the more

33

CHAPTER 2. RELATED WORK

complex case where any of the probabilistic bounds are unknown, Delahaye et al. [59,

61, 16] provide a comprehensive study of parametric interval Markov chains.

Chonev [47] recently introduced an augmentation of Interval Markov chains to allow

for any dependencies between different transition probabilities, studying how this

affected the complexity of the reachability problem.

For performing automated verification on models with unknown parameters,

Calinescu et al. [37, 38] introduced the FACT (formal verification with confidence

intervals) probabilistic model checker. FACT computes confidence intervals for both

probabilistic and reward-based properties for parametric DTMCs whose probabilities

for certain transitions are unknown but recorded observations of them are

available [113, 97]. FACT uses an extension of PRISM’s functionalities to express

parametric Markov chains and obtain an algebraic expression for PCTL properties.

As part of the process of synthesising confidence intervals for quantitative properties,

external convex optimisers can be used which are compatible with FACT, such as

MATLAB’s YALMIP [145], GNU Octave [70, 91] and the Gurobi optimiser [94].

2.3.4 Verification Approaches for Scalability

A common problem in verification is how to model processes appropriately without

running into state space explosion which makes verification for complex specifications

infeasible [51]. Traditional techniques to alleviate this problem include efficient symbolic

algorithms which use binary decision trees [102], partial-order reduction [93] and bi-

simulation methods [134, 12, 39, 131]. This thesis focuses on abstraction methods

which aim to produce upper and lower bounds for specifications; in particular, we use

the lumping technique which partitions the states in a large model to produce smaller

ones which simulates the former [35]. Regarding abstracting labelled DTMCs, much

work has been done in this field by Huth et al. [92, 107], Katoen et al. [119] and Fecher

34

2.3. PROBABILISTIC MODEL CHECKING

et al. [80]. Abstraction techniques have also been developed for CTMCs [63, 120, 124,

101] and MDPs [54, 160, 173, 56, 103, 183].

In 2019, Ouadjaout and Miné [170] performed static analysis of wireless

communication protocols using possibly infinitely-sized Markov models, assessing the

performance of such protocols by computing the stationary distribution, which gives

the overall proportion of time spent in every reachable state over all possible runs of

the model [199]. By analysing the protocol source code, they were able to formulate

finite abstract models to approximate the properties of their original counterparts,

producing parametric bounds on properties of interest and extended the work to

analyse non-deterministic models. Whereas Ouadjaout and Miné only focus on the

analysis of one node in the network and modelled protocols at a low level down to

their programming code, our work looks at the general behaviour of particular

protocols and analyses their performance of them over a fixed period of time in

multi-node networks.

2.3.5 Model Parameter Optimisation

In the context of CTMCs modelling biological systems, researchers have recently tried

to bridge the disciplines of model checking and optimal parameter searching.

Bortolussi et al. [18, 32, 30] addressed the system design problem to optimise

parameters for models via Bayesian inference to maximise, for example, the robustness

of desired specifications i.e. the probability of satisfying a property remains relatively

unaffected by any perturbations in the model. To address the parameter synthesis

problem which tries to find parameter values for models leading to the satisfiability of

properties or matching the observed real-time behaviour of a process, automated tools

have been developed which utilise the PRISM language, including PROPhESY [57]

which focuses on parametric Markov chains and U-check [31] which employs Gaussian

35

CHAPTER 2. RELATED WORK

processes, both of which include user-friendly GUI interfaces. Borrowing ideas from

machine learning, statistical techniques have been devised to find, with a degree of

confidence, the likelihood of satisfying a property or a range of possible parameters to

optimise it given that the knowledge of a model is incomplete [175, 96, 17, 33].

In contrast to previous work, we use an existing optimisation method applied to

machine learning problems to attempt to solve a specific problem involving DTMCs,

where the underlying model structure is fixed yet we search over both probabilities

and parameters related to which client types are present. Furthermore, we are not

interested in which parameters of a model lead to the satisfiability of a property or

match observed behaviour but rather ones which produce a worst-case scenario for

important quantitative aspects of a protocol.

36

Chapter 3

Background

In this chapter, we cover the fundamental material needed to understand the later

chapters of this thesis, including certificate transparency (CT), gossiping in CT,

probabilistic model checking and sequential model-based optimisation (SMBO).

3.1 Certificate Transparency

In this section, we talk about certificate transparency, a technique proposed in the early

2010s which allows anyone to audit public key certificates to deter misbehaviour from

certificate distributors.

3.1.1 Motivation

When a user’s web browser (a client) connects to a website (hosted by a server),

establishing secure connections by public key cryptography is insufficient to ensure

that sensitive information is protected. There is the chance that the client is connected

to a spoof website that is trying to steal their sensitive information, and the public

key being used to encrypt the connection does not belong to the company hosting the

37

CHAPTER 3. BACKGROUND

genuine website.

To resolve this issue, public-key infrastructures, or PKIs [36], are used to manage

the creation and revocation of public-key certificates, digitally signed documents that

bind a public key to its owner. PKIs are usually composed of the following [2]:

� Certificate Authority (CA): A trusted third party which authenticates the

identities of individuals or companies by signing digital certificates.

� Registration Authority (RA): Issues any certificates to customers on behalf of the

root CA that signed them.

� Certificate Database: A database to store or revoke issued certificates.

The weakest link in PKIs is that users must trust CAs to distribute certificates

properly, otherwise it can lead to disastrous outcomes. An infamous example is the

defunct CA Diginotar where, in 2011, it was revealed that at least 500 fraudulent

certificates were issued in their name and they failed to keep any record of them.

When the incident was reported, this halted many financial and governmental services

from taking place over the Internet, and affected websites had to quickly obtain newer

certificates. It was also later found out that Diginotar had poor security management

in place, using out-of-date software and inadequate server-side protections [219, 141].

Due to this incident and other ones involving different CAs such as Comodo (now

Sectigo) and Globalsign [218, 182], researchers began to investigate ways to allow anyone

to see and audit the distribution of certificates, thereby reducing the need to trust CAs.

We describe a few of these proposals below [135]:

� Certificate pinning - Websites advertise which public keys are suitable for them by

associating (or ‘pinning’) them with their corresponding certificates and the web

browser will reject any certificates which have not been pinned. However, these

38

3.1. CERTIFICATE TRANSPARENCY

pins expire after a fixed period of time and if a website loses its public key before

this time expires, no-one will be able to access the site until a newer certificate is

issued [76].

� Notaries - The Internet is scanned from multiple areas, inserting all known

certificates into a notary log which is called by users when they receive unknown

certificates. However, this mechanism is likely to generate a lot of false positive

results because, for example, a certificate which is deemed suspicious may only

have just been issued and be replacing a known one for a particular

website [137].

� DNSSEC - Using DNS-based solutions, in particular the mechanisms of

DNS-based authentication of named entities (DANE) and certification authority

authorization (CAA), this extension of DNSSEC associates DNS records for

hosts with particular certificates or CAs. Clients check DANE records when

they connect to websites, whilst CAs check CAA records when issuing

certificates to hosts, refusing to do so if the host is not included in any record.

However, they introduce more trusted third parties such as DNS registries and,

due to the distributive nature of DNS, it is near impossible to preserve the

integrity of DNS records when being viewed by different parties, a situation

which attackers can easily exploit [187, 98].

3.1.2 Introduction

Certificate transparency, or CT, is a system which uses a public, append-only log which

anybody can interact with and monitor. Certificates get added to the CT log in a

special way so that the log can efficiently prove that i) a certificate has been appended

properly and ii) the latest state of the log is an extension of a previously seen one. Since

39

CHAPTER 3. BACKGROUND

the log is append-only, everyone will be alerted if an attacker tries to tamper with its

contents and replace genuine certificates with fraudulent ones. CT was first developed

by Laurie, Langley and Kasper, submitting the first RFC for it in 2013 [139]. A newer

experimental RFC, titled Certificate Transparency Version 2.0, was later released in

2014 and will obsolete the previous RFC once it has been finalised and approved. CT

is currently being pioneered by Google and the code for it can be found online [87].

Merkle Hash Trees

A Merkle hash tree, first introduced by Merkle [156] in his PhD thesis in 1979, is a

rooted binary tree where each leaf contains a block of cryptographically hashed data.

For a non-leaf node n with child nodes L and R, if hL and hR are the hashed data stored

at L and R respectively, then n contains the hashed data h(hL ||hR), where || denotes

string concatenation and h is a hash function. The size of the Merkle tree is defined to

be the number of leaves it has; if a Merkle tree has size zero, it is by default a single

node representing the hash of an empty string. In the context of CT, the leaves of a

Merkle tree represent the hashed data of certificates appended to the corresponding log

and are always arranged in the chronological order they get added. The root hash at

the root node is the encapsulation of all the data present in the Merkle tree.

For an example, Fig. 3.1(a) depicts a Merkle tree with six leaves, meaning that this

corresponds to a log containing six certificates cert1, . . . , cert6. The leaves are given by

hi = h(certi), where i = 1, . . . , 6. By concatenating the hashes h1 and h2, for example,

we obtain the hash for the parent node given by h(h1 ||h2) = h1||2. The root hash of

40

3.1. CERTIFICATE TRANSPARENCY

(a)

h((1||2) || (3||4)) || (5||6)

h(1||2) || (3||4)

h1||2

h1

cert1

h2

cert2

h3||4

h3

cert3

h4

cert4

h5||6

h5

cert5

h6

cert6

(b)

h((1||2) || (3||4)) || ((5||6) || (7||8))

h(1||2) || (3||4)

h1||2

h1

cert1

h2

cert2

h3||4

h3

cert3

h4

cert4

h(5||6) || (7||8)

h5||6

h5

cert5

h6

cert6

h7||8

h7

cert7

h8

cert8

Figure 3.1: A pair of Merkle hash trees with (a) six leaves and (b) eight leaves. Adapted
from [42].

the tree is given by

h

(
h
(
h(h1 ||h2)

∣∣∣∣∣∣h(h3 ||h4)
) ∣∣∣∣∣∣∣∣h(h5 ||h6)

)
= h

(
h
(
h1||2

∣∣∣∣∣∣h3||4

) ∣∣∣∣∣∣∣∣h5||6

)
= h(h(1||2) || (3||4) ||h5||6)

= h((1||2) || (3||4)) || (5||6)

Audit Proofs

In the context of CT, given a hash h∗, a proof is fundamentally the minimal set of

hashes needed already present that are present in the Merkle tree to reproduce the

root hash of the tree using h∗; if no such proof is possible to produce, then it is by

default an empty set. Given a certificate, an audit proof verifies that it is included

in the log by listing the hashes needed to reproduce the current root hash using the

hash of the certificate itself. It can be shown [156] that the size of such a list is at most

logarithmic to the number of leaves in the Merkle tree, in other words, it is proportional

to the number of layers the Merkle tree has. For example, in Fig. 3.1(a), to show that

41

CHAPTER 3. BACKGROUND

certificate data cert4 is in the log, observe that:

h3||4 = h
(
h3 ||h4

)
;

h(1||2) || (3||4) = h
(
h1||2 ||h3||4

)
;

h((1||2) || (3||4)) || (5||6) = h
(
h(1||2) || (3||4) ||h5||6

)
.

Therefore, the audit proof for cert4 is {h3, h1||2, h5||6}.

Consistency Proofs

To make sure that the log respects the append-only property, consistency proofs (or

extension proofs) are required and are generated similarly to audit proofs. Using the

root hash from a previously seen snapshot of a Merkle tree, a consistency proof verifies

that a more recent snapshot of the tree naturally extends the former. For a Merkle

tree tn with root hash hn, suppose that tm is a previously seen state of the tree with

root hash hm. To show that tn extends tm, the consistency proof needs to provide the

necessary hashes to show that the following is true [42]:

i) hm can be reproduced from hashes in tn, and

ii) hn can be reproduced from hm plus any of the node hashes in tn which are not

present in tm.

In Fig. 3.1, to show that tree (b) is an extension of tree (a), note that hashes h(1||2) || (3||4)

and h5||6 in (b) are necessary to reproduce h((1||2) || (3||4)) || (5||6) and

h(5||6) || (7||8) = h
(
h5||6 ||h7||8

)
;

h((1||2) || (3||4)) || ((5||6) || (7||8)) = h
(
h(1||2) || (3||4) ||h(5||6) || (7||8)

)
.

Therefore, the consistency proof between trees (a) and (b) is {h5||6, h7||8, h(1||2) || (3||4)}.

42

3.1. CERTIFICATE TRANSPARENCY

3.1.3 Log Format

This subsection describes how a CT log formats certificate data and the types of data

it produces for auditing purposes.

Log Entries

Certificates which are given to a log to be appended can take the form of a leaf certificate,

which is a newly issued certificate to be used for validating Internet connections, or a

precertificate that acts as a ‘proof of submission’ for the final certificate soon to be

issued by a CA. To distinguish precertificates from leaf certificates, a ‘poison extension’

is applied so that they are immediately deemed invalid by a client [147]. For any given

log entry, it will contain the certificate chain up to the certificate root, the entry index

and a Boolean flag which indicates the certificate type.

Anyone with access to a web browser can obtain a set of entries from a log using

HTTP GET commands [139]. For example, suppose we want contact a log with the

URL url to check a certificate with entry index index. We also want an audit proof for

the certificate when the log was of size size. This can be done by typing the following

in the URL address bar:

〈url 〉/ct/v1/get-entry-and-proof?leaf index=〈index 〉&tree size=〈size 〉

(3.1)

The output of (3.1) gives the following:

� A Merkle tree leaf input,

� a log entry showing the encoded certificate data,

� the list of Merkle tree nodes which proves the inclusion of the entry.

43

CHAPTER 3. BACKGROUND

Signed Certificate Timestamp

Whenever someone submits to a log, they are given a digitally signed receipt called a

signed certificate timestamp (SCT) to indicate that the log will ‘promise’ to append the

given certificate within a predetermined period of time called the maximum merge delay

(MMD). In practice, the MMD is usually twenty-four hours. SCTs act as insurance in

case the log does not append the corresponding certificates in the allotted time and can

be immediately used to prove such misbehaviour. An SCT contains the following:

� A hash of the log’s public key which acts as the log ID,

� A timestamp indicating when the certificate was accepted by the log (note that

it is not the time when it was appended by the log),

� A digest of the corresponding certificate.

Signed Tree Head

A signed tree head (STH) is created whenever the CT log digitally signs the current

Merkle root hash with its own public key, and is updated each time a new certificate

gets appended (and hence a new root hash is created). The current STH of a log must

not be older than an MMD; if the log receives no new submissions within an MMD

period, then the log signs the same STH with a fresh timestamp. An STH contains the

following:

� A timestamp indicating when the STH was updated,

� The size of the Merkle tree when the STH was updated,

� The root hash of the Merkle tree.

STHs are useful records whenever one needs to prove log consistency or certificate

inclusion and anyone can request the current STH from the log at any time. If we want

44

3.1. CERTIFICATE TRANSPARENCY

the latest STH generated from a log with URL url, we can type the following in a URL

address bar:

〈url 〉/ct/v1/get-sth

3.1.4 CT in Practice

This subsection gives a basic explanation of how CT is used during normal Internet

operations and the mechanisms that can be used to deliver SCTs with certificates. We

also describe how logs can be audited and provide a list of available tools which can

extract information from CT logs. Lastly, we briefly discuss how CT is integrated into

the Google Chrome browser.

Basic Procedure

Fig. 3.2 illustrates how certificates get added to a CT log and passed onto clients with

the corresponding SCT. First, before anyone can accept incoming connections from a

website, the host must request a certificate from a CA which it then creates, submitting

it to a log server on the host’s behalf if desired. When the log server accepts the

certificate, it issues an SCT for which the host must somehow obtain and bundle with

the newly issued certificate, using both objects in future TLS connections so clients can

validate the website.

To deliver SCTs to clients along with the certificates, three options are available

which each involve different levels of responsibility from both the host and the CA [105,

42]:

� X.509 extensions : The SCTs are embedded into the certificate itself which

clients can readily view. These SCTs are acquired by submitting precertificates

to different logs (see subsubsection 3.1.3). This does not include any server-side

modifications and responsibility for obtaining the SCT falls solely on the CA,

45

CHAPTER 3. BACKGROUND

Client Website CA Log

Request certificate

certificate c

SCT t
SCT t, cert. c

TLS handshake
cert. c, SCT t

Finished
get sth()

STH s

Figure 3.2: Communication flow of CT between a website, certificate authority (CA), log
server and client. Anyone is capable of asking for a signed tree head (STH) at any time which
contains up-to-date information about the log. In this figure, we assume that X.509 extensions
are being used to deliver signed certificate timestamps (SCTs) with the certificates.

making this method the most popular choice for domain owners. Due to this,

the CA Let’s Encrypt automatically embeds SCTs into their newly issued

certificates [104].

� TLS extensions : For this method, the domain owner is responsible for sending a

request to the log server for their newly issued certificate to be appended,

obtaining an SCT in the process which they must show to clients with the

certificate. This does not alter the way CAs issue certificates and server

operators need to accommodate for such extensions which can be risky and

error-prone.

� Online certificate status protocol (OCSP) stapling : This is where the CA sends

the certificate to both the website and log at the same time. The host then makes

an OCSP query [185] to the CA to get the SCTs which they include in TLS

handshake extensions. OCSP stapling reduces the delay in issuing certificates and

both the CA and host share the responsibility of following the correct procedure.

46

3.1. CERTIFICATE TRANSPARENCY

However, server operators still need to accommodate for OCSP stapling which

can be difficult to get right.

Log Auditing

The aim of monitors (or auditors) in CT is to continuously inspect logs and check for

misbehaviour by collating and analysing log-generated data from multiple Internet

sources. Monitors can exist for a variety of purposes, such as working on behalf of

organisations by flagging up suspicious certificates in their name or working

independently for research purposes. Some of the things monitors look out for when

inspecting a log include [140]:

� Making sure the log respects the MMD and does not violate any issued SCTs.

� The STH frequency count i.e. the number of STHs generated by the log in an

MMD period. This is to ensure that the log does not produce too many unique

STHs that could mark individual clients when they request them.

� Checking that the log maintains its consistency across different parts of the

Internet by verifying for consistency between multiple STHs.

Anyone is allowed to set up and maintain an auditor and there are already existing

tools which fulfil this role. Cert Spotter [41] is a commercial monitor which scans all

known logs which customers can query using a JSON API. There are also monitors

which are free-to-view such as Facebook’s monitoring tool [78, 43] and another

managed by Edgecombe on his website [72]. Sectigo and Censys also host their own

certificate databases which anyone can inspect [188, 40]. Note that, as Li et al. has

shown [142], third party monitors of CT logs tend to be unreliable when consulting

them for the complete sets of certificates for domains, mainly due to the increasing

volume of certificates that gets submitted to logs on a daily basis and the

47

CHAPTER 3. BACKGROUND

Figure 3.3: The result of a query when we search the domain name ‘hsbc’ on the certificate
database website crt.sh. This is just one of many methods to inspect CT logs for any suspicious
certificates. Accessed on 20th January, 2020.

self-limitations monitors impose upon themselves e.g. limiting the results returned

after each query. There is also the issue of having to place a lot of trust in a small set

of well-resourced third parties which can inspect logs continuously; a proposed

solution to this is called verifiable light-weight monitoring, developed by Dahlberg and

Pulls [52].

Google Chrome Operations

Since January 2015, it has been a requirement that extended validation certificates

be added to logs so that Internet connections can be accepted by the Google Chrome

browser [169]; since April 2018, this requirement has been revised to include all newly

issued TLS certificates [168]. Regardless of the method used to deliver SCTs, for a

certificate to be accepted, it must be presented to clients with at least one SCT from

a Google-operated log and another from a third-party log (Apple’s CT policy states

something similar [6]). Depending on the lifetime of the certificate, more SCTs from

different logs may be required. Furthermore, newly created logs are not immediately

48

3.1. CERTIFICATE TRANSPARENCY

Figure 3.4: The CT information for a certificate when inspecting the index page of hsbc.co.uk
via the Google Chrome browser. This certificate complies with Chrome’s CT policy as it has
been submitted to one Google-operated log and a third party log. The site was accessed on
20th January, 2020.

seen as trustworthy by Google and must meet a strict set of criteria to be added to a

list of trusted logs built into Chrome [125].

At the time of writing, there is no implementation in Chrome which asks for

audit/consistency proofs when it sees new certificates or STHs due to privacy

concerns: if a client contacts the log with an SCT, this risks leaking their browsing

history which a log maintainer can exploit. One workaround called ‘CT-over-DNS’

uses special DNS records to obfuscate who is asking for proofs from the perspective of

the log, with clients looking up CT information only through their existing DNS

resolver. However, this is still in the experimental phase and carries some risks if

deployed [194, 1, 157, 136].

49

CHAPTER 3. BACKGROUND

3.2 CT Gossiping

This section describes the Chuat protocols [48], which makes a client gossip with servers

after initialising encrypted connections with them and updates itself with log-based

data, auditing SCTs if they have not seen them before. The purpose of the these

protocols is to detect and report on an attack that involves hosting a fraudulent version

of a log to victims who are being prevented from viewing the genuine one, thereby

allowing bogus certificates to be accepted in the victims’ TLS connections without

question.

3.2.1 Split-world Attacks

In distributed systems, a Byzantine fault (inspired by the Byzantine general’s

problem [132]) occurs if independent processes fail to reach a consensus on the state of

a system, resulting in service failure or network segmentation. As a consequence of

this, different views of the network can be presented to different parties, causing

confusion about which of these views is the correct one [3, 67, 9]. For example, in the

case of cryptocurrencies such as bitcoin, it is vital for participating nodes in the

bitcoin network to agree on a chronological list of approved transactions to prevent

double spending from malicious nodes. One way that attackers can try and cause a

Byzantine fault is to hijack the incoming and outgoing connections of nodes so that

they only see attacker-controlled information (see eclipse attacks [192, 100, 149]).

In CT, a variation of a Byzantine fault can occur where the attacker attempts to host

their fraudulent version of a log containing illegitimate certificates to a set of Internet

users whose connections are being redirected so that they are made to contact it instead

(e.g. via man-in-the-middle attacks). This attack we described is called a split-world

attack [48, 153]. The attacker would have to be skilled and resourceful to carry out such

50

3.2. CT GOSSIPING

Victim(s)

Rogue Log

Client(s)

Real Log
Fake

certificate

Fake
certificate

Fraudulent
certificates
appended
to rogue log

copy contents

Figure 3.5: An Illustration of a split-world attack. The attacker copies the entire contents of
a log and modifies it to include fraudulent certificates, presenting this rogue log to a set of
isolated victims who have no means to verify consistency.

an attack for a prolonged period of time; potential candidates include an authoritarian

government which is able to control its population’s access to the Internet, or a log

maintainer in collusion with criminal gangs operating online scams. Since users do not

have a way to verify amongst themselves that their views of the log are identical, they

can never be confident that the log maintainer is behaving honestly.

3.2.2 Chuat Protocols

In 2015, Chuat et al. described and tested a solution involving gossip protocols which

required no extra architecture to implement on top of HTTPS and gossip messages were

piggybacked on encrypted connections clients first make when they attempt to visit a

website [48]. The protocols designed by Chuat et al. made clients and servers exchange

log-sourced data, with servers acting as proxies for clients to exchange messages across

different areas of the Internet.

51

CHAPTER 3. BACKGROUND

We will briefly explain how these protocols work. Firstly, after a client connects to

a HTTPS-enabled server and finishes the negotiation phase of the TLS handshake, it

calls getClientMessage() to generate the gossip message m1 which is piggy-backed

on a HTTPS request (step (1) in Fig. 3.6). The server receives m1 and checks to see if

it is valid, meaning that all the STHs included in the message are correctly signed by

a known log and contains the root hash of a Merkle tree with at least one certificate

appended. Then, the server replies in kind by calling getServerMessage() to generate

the gossip message m2 which is sent back to the client using an HTTPS response (step

(2) in Fig. 3.6). With log data from both parties now successfully exchanged, after

performing the necessary consistency checks, both the client and server must refresh

their knowledge of the log if the messages they retrieved have newer information. Since

the gossiping was done via HTTPS, no-one can know whether any gossip happened

without breaking the encryption used.

The two variants of this protocol presented by Chuat et al. are called STH-only

gossiping, where both m1 and m2 consist of only one STH, and

STH-and-consistency-proof gossiping, where messages contain a pair of STHs with a

consistency proof between their respective tree sizes; for convenience, we will refer to

the latter version as STH-and-proof. The idea behind gossiping proofs as well as

messages is to reduce the amount of connections an entity needs to make to a log

when requesting proofs as part of the protocol execution, thereby reducing the

overhead of the log server to maintain operations. The updating procedure for the

client is similar in both versions: using the server’s message, it requests a consistency

proof from the log whenever the tree size in m2 is distinct from what the client already

knows, updating itself when necessary using the contents of m2 (step (3) in Fig. 3.6).

Next, if the certificate’s SCT has not been audited yet, then the client will request

both inclusion and consistency proofs from the log to check if the certificate exists in

52

3.2. CT GOSSIPING

the log and finally updates its local state by retrieving the latest STH from the log.

Whenever a party receives an STH either through gossiping or by directly contacting

the log, the protocol uses the checkSTH() method to check for consistency between

multiple STHs when they are passed as parameters. To explain how this method works,

suppose that we have two STHs stha and sthb sourced from the same log, which are

associated with tree sizes ta, tb ∈ N. checkSTH (stha,sthb) will verify two things:

� If ta = tb, check the root hashes of stha and sthb are the same;

� If the timestamp of stha is older than the timestamp of sthb, check that ta ≤ tb.

If either of these conditions are not met, then the protocol treats this as a security

incident and the log cannot be trusted. Otherwise, the protocol can be executed

normally.

When a node does detect log inconsistency, either by checkSTH() failing or the log

providing an erroneous proof upon request, the node will start to propagate a warning

message which explains the issue discovered instead of STHs or proofs. A recipient of

the warning message will pass it onto a log monitor for them to investigate further and

determine if the log is conducting an attack.

The update procedures for the server in the two versions of the protocol work

differently. In STH-only gossiping, the server will be required to only store one STH,

whereas in STH-and-proof the server will record the messages it receives using a map

and will choose to gossip one of them depending on the message it receives from a

client.

To investigate how the gossip protocols would perform in a realistic setting, Chuat

et al. collected traces of global Internet HTTP/HTTPS connections and the traffic data

of different countries to model a global network. A small number of the clients used

in their simulations use the gossiping software while all HTTPS servers hosting major

53

CHAPTER 3. BACKGROUND

Client

CT Log

Server

Monitor

report errors

(1) message m1

(2) message m2,

certificate c,

SCT tc

(3) requests

(4) STHs/

proofs

(3) requests (4) proofs

report

errors

oversees activity

Figure 3.6: A basic illustration of the ChuatCT gossip protocols. First, a connected client
and server exchange gossip messages using encrypted channels, with the server giving its SCT
and the corresponding certificate to the client (steps (1) and (2)). Next, both entities update
their states using the STHs received in the messages whilst checking that log consistency is
not being violated (steps (3) and (4)). Anyone may request proofs or STHs from the log as
part of the protocol execution. Clients may report to log monitors if they receive warnings
from someone else stating that an anomaly has been found. Adapted from [48].

websites were assumed to be CT-enabled and had the ability to gossip, the reason for

this decision was being that companies were more likely to adopt the latest security

updates for their systems.

The investigations showed that the protocols were efficient in distributing log-based

information among clients, greatly reducing the need for them to contact the log directly.

54

3.3. PROBABILISTIC MODEL CHECKING

In particular, the use of gossiping consistency proofs with STHs was shown to be more

scalable as it added little overhead (defined as the number of log connections strictly

generated by the gossip protocol) compared to STH-only gossiping. Lastly, storing

these gossip messages for both the client and server only needed several megabytes of

data.

However, Chuat et al. acknowledged their investigations were not helpful in

analysing how successful the protocols were in detecting attacks. In particular, if a

split-world was taking place in the network, it is unclear whether detection could be

achieved in a reasonable amount of time. Furthermore, the issue of privacy is still an

issue whenever clients try to audit an SCT as it requires direct contact with the log.

3.3 Probabilistic Model Checking

Probabilistic model checking encompasses a broad set of formal techniques used to

model and analyse phenomena which exhibit stochastic behaviour, such as

communication protocols or biological processes. By mathematically describing every

possible type of behaviour, model checking gives us a way to identify the possible

configurations a system can be in and the random actions it may take.

In this section, to understand the techniques we shall use to analyse the

performance of CT gossip protocols, we cover the basics of probabilistic model

checking and discuss some advanced concepts involving uncertainty (when some of the

transition probabilities are unknown) and unscalability (when the model becomes too

large that model checking becomes computationally expensive). Lastly, we give a brief

overview of the probabilistic model checker PRISM. Some of the content in this

section is adapted from Baier and Katoen [13] and Forejt et al. [82].

55

CHAPTER 3. BACKGROUND

3.3.1 Discrete Time Markov Chains

A discrete time Markov chain (DTMC) is a labelled transition system which

encompasses a set of states, a probability transition function i.e. a real-valued

function which determines if a transition has a positive probability or not, and a

labelling function to indicate which atomic propositions are true for certain states.

Furthermore, the set of outgoing transitions for each state is augmented with a

probability distribution.

Definition 3.3.1. (DTMC) A DTMC is a tuple M = (S, Si, P , ιinit, AP , L), where

� S is a countable set of states,

� Si ⊆ S is the set of initial states,

� P : S × S → [0, 1] is the probability transition function such that, for each state

s ∈ S,
∑

s′∈S P (s, s′) = 1,

� ιinit : Si → [0, 1] is the initial distribution such that
∑

s∈Si
ιinit(s) = 1,

� AP is a set of atomic propositions,

� L : S → 2AP is a state labelling function.

Fig. 3.7 gives an example of a DTMC which models a naive protocol design. We

see, for example, P (s1, s2) = P (s1, s3) = 1
2

and L(s1) = {receive}. The state s0 is the

unique initial state in the model which we always start from i.e. ιinit(s0) = 1.

A path in a DTMCM is a (finite or infinite) sequence of states π = s0s1s2 . . . such

that s0 ∈ Si and P (si, si+1) > 0 for every i ≥ 0, representing a possible run of M.

We let π(i) denote the (i + 1)th state in π. For a finite path πfin = s0s1 . . . sn, the

56

3.3. PROBABILISTIC MODEL CHECKING

s0

{listen}

s1

{receive}

s2 {ready}

s3

{fix}

s6{sent}

4
5

1
5

1
2

1
2

1

1

1

Figure 3.7: Example of a DTMC with labelling e.g. L(s2) = {ready}.

probability of this path in M is given by:

ProbM(πfin) = ιinit(s0)
n−1∏
i=0

P (si, si+1). (3.2)

Going back to Fig. 3.7, a possible finite path in the model is s0s0s1s3s2s6 which occurs

with probability 4
5
· 1

5
· 1

2
= 2

25
. Unless otherwise stated, we assume all paths in M are

infinite.

For a (finite or infinite) path π in M, the trace of π, or tr(π), is defined as the

sequence of state labellings when taking π. For example, going back to our finite path

s0s0s1s3s2s6, its trace is equal to:

tr(s0s0s1s3s2s6) = {request}{request}{receive}{fix}{ready}{sent}.

For a state s, we let FPathM,s and IPathM,s denote the set of finite and infinite

paths in M starting from state s, respectively. The set of all finite and infinite paths

57

CHAPTER 3. BACKGROUND

in M, FPathM and IPathM, are defined as:

FPathM =
⋃
s∈S

FPathM,s,

IPathM =
⋃
s∈S

IPathM,s.

To reason about the likelihood of traversing certain paths in the model, a probability

measure needs to be constructed over the paths inM. For a finite path πfin = s0s1 . . . sn

in M, the cylinder set Cyl(πfin) is the set of all infinite paths in M prefixed by πfin:

Cyl(πfin) = {π ∈ IPathM | πfin prefixes π}.

Using measure theory [7], it can be shown that for the smallest set of cylinder sets

Cyl(πfin) where πfin ranges over all elements in FPathM, a unique probability measure

ProbM exists such that the probability for a cylinder set Cyl(s0s1 . . . sn) is given by

(3.2) (see Kemeny et al. for details [121]). For path fragments of length zero, we let

the probability of such paths be equal to one. As path probabilities are well-defined, an

important consequence of this fact is that we are able to reason about the probabilistic

aspects of DTMCs such as the reachability of a set of states (see subsection 3.3.4 for

details).

3.3.2 Markov Decision Processes

An extension of DTMCs are Markov decision processes (MDPs) which combine non-

determinism and probabilistic choice. MDPs are useful in modelling choices over a set

of actions, allowing us to determine which sets of choices produce best- and worst-

outcomes. They are also useful in modelling a system if we have parts of it that are

underspecified or too complex to model stochastically.

58

3.3. PROBABILISTIC MODEL CHECKING

Definition 3.3.2. (MDP) An MDP is a tuple MMDP = (S, Si, ιinit, Act, P , AP , L),

where

� S, Si, ιinit, AP and L are the same as in Definition 3.3.1.

� Act is a set of actions,

� P : S × Act × S → [0, 1] is a probability transition function such for every state

s and every action α, either
∑

s′∈S P (s, α, s′) = 1 or
∑

s′∈S P (s, α, s′) = 0.

DTMCs are a special case of MDPs with only one action. From a state s ∈ S,

transitions in the MDP occur by first choosing an action α ∈ Act non-deterministically

(we assume that the set of actions for each state is non-empty) and then randomly

choosing a successor state using the probability distribution given associated with α.

Paths in an MDP are written as π = s0α0s1α1s2 . . ., where s0 ∈ Si, αi is an action

available in state si and P (si, αi, si+1) > 0 for every i ≥ 0, with π(i) indicating the

(i+ 1)th state in π. The subsequent definitions for FPathM,s, IPathM,s, FPathM and

IPathM easily carry over from Section 3.3.1.

To resolve the non-determinism in MDPs, functions called adversaries (or policies)

can induce a DTMC depending on the path taken through the MDP. The main idea is

that an adversary chooses from the list of permitted actions available at the last state

of each finite path.

Definition 3.3.3. (Adversaries) Given an MDP M = (S, Si, Act, P , ιinit, AP , L), an

adversary is a function σ : FPathM → Dist(Act), Dist(Act) is the set of probability

distributions on Act, such that the probability σ(π)(α) > 0 only if α ∈ Act is an allowed

action in the last state of path π.

We let AdvM be the set of all adversaries for M, or just Adv if M is clear from

the context. We call an adversary memoryless if the probability distribution σ(π) only

59

CHAPTER 3. BACKGROUND

depends on the last state in π, not on π itself. In other words, if we have two different

finite paths π and π′ in M where their last states are identical, then σ(π) = σ(π′).

When traversing MDPs under an adversary σ, this induces a DTMC Mσ, with each

state representing a finite path taken in the MDP.

3.3.3 Probabilistic Computational Tree Logic (PCTL)

The objective of model checking is to determine whether our models meet specified

properties when starting from certain states. For example, we may like to know whether

a property has a high probability of being true, or it will be true after taking a certain

number of steps in the model. To do this, we need to be able to express these properties

using a form of temporal logic which is either true or false for a state in a Markov model.

For this thesis, we will use probabilistic computational tree logic (PCTL) [99]:

Definition 3.3.4. (PCTL syntax) The syntax of probabilistic computational tree logic

(PCTL) is as follows:

φ ::= true | a | φ ∧ φ | ¬φ | Ponp[Φ]

Φ ::= Xφ | φ1 U
≤l φ2 | φ1 Uφ2

Here, a is an atomic proposition, φ is a state formula, Φ is a path formula, p ∈ [0, 1],

l ∈ N and on∈ {<,≤, >,≥}

The probabilistic path operator Ponp[Φ] is read as follows: “the probability of

satisfying the path formula Φ is within in the range specified by on p”. X means

“next” and therefore Xφ is read as “φ will be true in the next state”. For state

formulae φ1 and φ2, φ1 U≤l φ2 means “φ2 is true within l steps in the model and φ1

holds true up until that point”. φ1 Uφ2 has a similar meaning but with φ2 being

satisfied sometime in the future.

60

3.3. PROBABILISTIC MODEL CHECKING

Given a set of adversaries Adv for a model, a state s and PCTL formula φ, we say

that “s satisfies φ”, or s|=Adv φ, if φ is satisfied in s under all adversaries in Adv. In the

sequel, let ProbσM,s(E) be the probability of event E occurring from state s in Markov

model M under an adversary σ.

Definition 3.3.5. (PCTL semantics) Let M = (S, Si, Act, P , ιinit, AP , L) be an MDP,

Adv a set of adversaries for M, s ∈ S and π ∈ IPathM. The satisfaction relation

|=Adv of PCTL is defined inductively by:

- s|=AdvTrue is always true,

- s|=Adv a⇔ a ∈ L(s),

- s|=Adv φ1 ∧ φ2 ⇔ s|=Adv φ1 and s|=Adv φ2,

- s|=Adv ¬φ⇔ s 6|=Adv φ,

- s|=Adv Ponp[Φ]⇔ ProbσM,s({π′ ∈ IPathM,s | π′|=AdvΦ}) on p, ∀σ ∈ Adv,

- π|=Adv Xφ⇔ π(1)|=Adv φ,

- π|=Adv φ1 U
≤l φ2 ⇔ ∃i ≤ l s.t. π(i)|=Adv φ2 and π(j)|=Adv φ1, ∀j < i,

- π|=Adv φ1 Uφ2 ⇔ ∃l ≥ 0 s.t. π|=Adv φ1 U
≤l φ2.

We can define something similar in the case of DTMCs; note that the set of

adversaries for such models has a cardinality of one. If Adv is clear from the context,

we shall simply write |= instead of |=Adv.

There are several other useful operators which can be derived from the syntax in

Definition 3.3.4 but for our purposes we give only one example. For a state PCTL

property φ, the future operator F φ, sometimes written as ♦φ, means that φ is eventually

61

CHAPTER 3. BACKGROUND

satisfied and its bounded variant F≤lφ means that φ will be true within l ≥ 0 steps. It

is easy to show the following equivalences:

F≤l φ ≡ trueU≤l φ,

Fφ ≡ trueUφ.

3.3.4 PCTL Model Checking

Since this is outside the scope of this thesis, we only briefly describe the model checking

problem and the general mechanics used to solve it. Given a modelM with state space

S, a set of adversaries Adv and a PCTL formula φ, the set SatM(φ) ⊆ S is defined to be

the set of states inM which satisfies φ, in other words, SatM(φ) = {s ∈ S | s |=Adv φ}.

The main problem of model checking is to determine if Si ⊆ Sat(φ). If this is the case,

we say that “M satisfies φ”, written as M |= φ.

Verifying PCTL formulae is usually solved by using backward breadth-first search

algorithms [27, 55] on the underlying graph of the Markov model [50]. To solve for

probabilistic-type properties, this can be reduced to solving the probabilistic reachability

problem, which computes the probability of reaching a set of target states from an initial

state, solved using a system of linear equations. Model checking software uses efficient,

iterative methods to find such probabilities to a suitable degree of accuracy; see the

Jacobi/Gauss-Seidel method [200]. In the case of MDPs, value iteration [178, 11] can

be applied to maximise or minimise a particular sum by finding adversaries that assign

as much or as little probability to certain states (see the Bellman equations [21]).

3.3.5 Reward Structures and Reward-based Properties

In addition to PCTL, reward structures on a model allow us to reason about other

quantitative properties we may be interested in, for example the number of times a

62

3.3. PROBABILISTIC MODEL CHECKING

certain process is executed before a program terminates or the amount of power used

by a device to execute an instruction. This involves augmenting the model so that

the states or transitions are assigned a value which are incremented when a path goes

through them.

Definition 3.3.6. (reward structures) A reward structure for a DTMC

M = (S, Si, P , ιinit, AP , L) is a pair of functions r = (rstate, raction), where

rstate : S → R≥0 is a state reward function and raction : S × S → R≥0 is an action

reward function.

We shall focus on three types of rewards for this thesis: instantaneous, cumulative

and reachability rewards.

Instantaneous Rewards

Instantaneous rewards measure the state reward after taking exactly k ∈ N steps in the

model. Given a path π ∈ IPathM, the instantaneous reward function I=k : IPathM →

R≥0 is defined as I=k(π) = rstate(π(k)). Calculating the expected value can easily be

done using repeated matrix multiplication.

Cumulative Rewards

The cumulative reward measures the total reward accumulated along a path of length

k ∈ N and thus considers both state and transition rewards. For k ∈ N and a Markov

model M, the cumulative reward function C≤k : IPathM → R≥0 is defined as the

total amount of state and transition reward accumulated along a path π of length k.

Like with instantaneous rewards, the expected cumulative reward can be computed

iteratively.

63

CHAPTER 3. BACKGROUND

Reachability Rewards

A special class of cumulative reward involves finding the reward until a set of target

states is reached in the model. Given a Markov modelM, a target set T , the reachability

reward function RT : IPathM → R≥0 is defined similarly to the function C≤k as seen

previously but with “k” in the summations replaced with “k∗”, where k∗ = min{k |

π(k) ∈ T}. Computing the expected reachability award can be done by solving a system

of linear equations.

Extending PCTL with Rewards

We extend our PCTL syntax given in Definition 3.3.1 to include reward-based properties

based on the three types we have already covered [82]. Letting r be a reward structure

and φr be a reward-based state formula, the syntax is defined as follows:

φr ::= Rr
onx[I

=k] | Rr
onx[C

≤k] | Rr
onx[Fφ] (3.3)

Here, x ∈ R≥0, k ∈ N, φ is a PCTL expression and on∈ {<,≤, >,≥}. Next, we give

the semantics for each operator in (3.3) using the notation from Definition 3.3.5. For

a reward function fr, let EσM,s(fr) be the expected value of fr from state s in Markov

model M under an adversary σ. Then:

- s|=Adv Rr
onx[I

=k]⇔ EσM,s(I
=k) on x, for every σ ∈ Adv,

- s|=Adv Rr
onx[C

≤k]⇔ EσM,s(C
≤k) on x, for every σ ∈ Adv,

- s|=Adv Rr
onx[Fφ]⇔ EσM,s(R

SatM(φ)) on x, for every σ ∈ Adv.

Here, SatM(φ) is defined as in Section 3.3.4. Examples of such reward-based properties

include:

64

3.3. PROBABILISTIC MODEL CHECKING

� Rqueue
>4 [I=t]: the expected size of a queue after exactly t steps is greater than four

(instantaneous reward).

� Rpower
≤3 [C≤t]: the expected cumulative amount of power used within t steps is at

most three units (cumulative reward).

� Rrequests
<5 [F end]: the expected number of requests before a protocol terminates is

less than five (reachability reward).

� Renergy
=? [F target]: the expected amount of energy used before an automated

system reaches the target destination (reachability reward).

The first three properties given above are examples of qualitative-based properties

which evaluate to either true or false; the last example is a quantitative-based property

which evaluates to a real value.

3.3.6 Interval Discrete Time Markov Chains

When modelling processes which exhibit fluctuating behaviour, it is hard to capture

exact transition probabilities simply because we lack experimental evidence. One way

to overcome this is to use bounded intervals to show the range of possible probabilities

from a given state. The resulting model takes the form of an interval discrete Markov

chain (IDTMC) [190, 117, 127]. In the sequel, we let P u, P l : S×S → [0, 1] be functions

which give the maximal and minimal probability of transitioning between two states

respectively.

Definition 3.3.7. (IDTMCs) An IDTMC is a tupleMI = (S, sι, P
u, P l, AP , L), where

� S,AP and L are the same as in Definition 3.3.1,

� sι ∈ S is the initial state in the model,

65

CHAPTER 3. BACKGROUND

� P u, P l : S × S → [0, 1] are functions such that, for every s ∈ S,

∑
s′∈S

P l(s, s′) ≤ 1 ≤
∑
s′∈S

P u(s, s′) and P l(s, s′) ≤ P u(s, s′), for all s′ ∈ S. (3.4)

The interval [P l(s, s′), P u(s, s′)] denotes the range of possible probabilities of

transitioning from s to s′, allowing for a possibly infinite set of probability

distributions from s. We need the condition stated in (3.4) for probability

distributions to exist given any state in MI .

We can interpret an IDTMC is in two different ways. The first one is an uncertain

Markov chain (UMC), where the IDTMC MI represents an infinite set of DTMCs

[MI], where for each DTMC M∈ [MI], the following is true:

P l(s, s′) ≤ P (s, s′) ≤ P u(s, s′), for every (s, s′) ∈ S × S.

A DTMC is non-deterministically chosen from [MI], determining all the transitions

and their respective probabilities for the chosen DTMC.

The second interpretation is that an IDTMC is an MDP with an infinite number of

actions, where the environment non-deterministically chooses a probability distribution

at each state. For a state s, we define Dists to be the set of all probability distributions

which can be chosen from s:

Dists =

{
P s : S → [0, 1]

∣∣∣∣∣∑
s′∈S

P s(s
′) = 1 and P l(s, s′) ≤ P s(s

′) ≤ P u(s, s′)

}
.

Like with regular MDPs, we can similarly define paths as an alternating sequence

of states and probability distributions, and adversaries which choose probability

distributions in Dists to induce a DTMC.

Regarding PCTL semantics, given a UMC MI and a PCTL formula φ, we say

66

3.3. PROBABILISTIC MODEL CHECKING

MI |= φ if and only if M |= φ for every M ∈ [MI]. In the case of the MDP

interpretation, the PCTL semantics are the same as in Definition 3.3.5.

Care must be taken when using either the UMC or MDP interpretations for IDTMC

model checking as they can give completely different results. For example, there are

cases of IDTMCs where for a given PCTL formula φ, the UMC form satisfies φ but the

MDP form does not; see Sen et al. for details [190]. For this thesis, we use the MDP

interpretation as it allows us to adapt well-known algorithms used for MDP model

checking which reduces the complexity of the probabilistic reachability problem (see

Section 3.3.8 for details).

3.3.7 Abstract Markov Chains

A special class of IDTMCs involve collapsing larger Markov models by partitioning

the states of the original model which we call the concrete states, giving each subset

a representative state called the abstract state, with transitions between such states

describing the minimal and maximal probabilities of moving from one state partition

to another [80].

Definition 3.3.8. (ADTMCs) An Abstract discrete time Markov chain (ADTMC) is

a tuple MA = (S, sι, P
u, P l, AP , L), where:

� S, sι, ιinit, AP , P
l, P u are the same as in Definition 3.3.7,

� L : S × AP → {>,⊥, ?} is a labelling function.

In three-valued abstraction techniques [119, 108], L is a labelling function which

determines the truthfulness of an atomic proposition in an abstract state depending on

the states from the original model it represents; for a given atomic proposition a ∈ AP

and abstract state s ∈ S, L(s, a) evaluates to either true (>) if a is true in every state

represented by s, false (⊥) if a is false every state represented by s, or indefinite (?)

67

CHAPTER 3. BACKGROUND

otherwise. In this thesis, we assume that our ADTMC models are unlabelled as we

are not concerned with determining if a qualitative PCTL property evaluates to either

true or false, thereby preserving the truthfulness of that same property in the original

concrete model.

Fig. 3.8 shows how models can be abstracted using a small DTMC. We have (a)

an unlabelled concrete model with seven states which we can transform into (b) an

ADTMC by partitioning the state space as follows: a0 = {s0}, a1 = {s1, s2}, a2 =

{s5, s6}, a3 = {s3, s4}. To find bounds P l(a1, a3) and P u(a1, a3), for example, we observe

the following:

P l(a1, a3) = min(P (s1, s3), P (s1, s4), P (s2, s3), P (s2, s4)) = 0,

P u(a1, a3) = max(P (s1, s3), P (s1, s4), P (s2, s3), P (s2, s4)) = 1
2

It is also possible to abstract IDTMCs in a similar fashion. For an IDTMC MI =

(S, sι, P
u, P l, AP , L) and a finite partitioningA = {A1, A2, . . . , An} of S, an abstraction

of MI with respect to A is the ADTMC MA
I = (A, Aι, P̃ u, P̃ l, AP, L̃), where:

� For any Ai, Aj ∈ A, we have P̃ l(Ai, Aj) = infs∈Ai
P l(s, Aj) and P̃ u(Ai, Aj) =

min{1, sups∈Ai
P u(s, Aj)}.

� Aι ∈ A is the abstract state such that sι ∈ Aι,

� L : S × AP → {>,⊥, ?} is labelling function as seen in Definition 3.3.8.

When abstracting IDTMCs, a caveat is that it will make our probability intervals less

meaningful because, for some s, s′ ∈ S, there may exist a value p ∈ [P l(s, s′), P u(s, s′)]

such that there is no probability distribution µs with µs(s
′) = p; if this is not the case,

then we say that our model is delimited. Abstracting a DTMC model always yields a

delimited ADTMC. To obtain delimited models, we can perform a special cut on the

probability intervals which shrinks them appropriately [119]:

68

3.3. PROBABILISTIC MODEL CHECKING

s0 s1 s2

s3 s4

s5 s6

1
3

2
3

1
2

1
2

1

1

2
5

3
5

1

1
2

1
2

(a) concrete model

a0 a1

a2

a3

[1
3
, 1

3
]

[2
3
, 2

3
]

[0, 1
2
]

[0, 1]

[0, 1
2
]

[1, 1]

[2
5
, 1]

[0, 3
5
]

(b) abstract model

Figure 3.8: An example abstraction of a concrete DTMC (a) into an ADTMC (b). The
abstract states represent the following subsets of the concrete state space: a0 = {s0}, a1 =
{s1, s2}, a2 = {s5, s6}, a3 = {s3, s4}.

Definition 3.3.9. (Normalisation) For an IDTMC M = (S, sι, P
l, P u, AP , L), the

normalisation ofMA yields an IDTMC M̃ = (S, sι, P̃
u, P̃ l, AP , L), where for all s, s′ ∈

S:

P̃ l(s, s′) = max
(
P l(s, s′), 1− P u(s, S\{s′})

)
,

P̃ u(s, s′) = min
(
P u(s, s′), 1− P l(s, S\{s′})

)
.

It can be shown that normalisation will always yield a delimited model and only

needs to be applied once. In Chapter 6, we adapt Definition 3.3.9 to derive probability

distributions given a set of intervals.

3.3.8 Model Checking IDTMCs

Seminal work on model checking IDTMCs has been done by Sen et al. [190, 45] who

describe a set of techniques to solve both the MDP and UMC semantics, showing their

respective computational complexity. They conclude that model checking UMCs are

less efficient to analyse in practice since the algorithms are related to checking the

69

CHAPTER 3. BACKGROUND

feasibility of bilinear matrix inequalities which is known to be NP-hard [209]. However,

under the MDP semantics, it is more efficient to reduce the problem of model checking

IDTMCs to model checking MDPs whose state space size is exponential in the state

space size of the former. Chen et al. [46] extends on the work of Sen et al. by showing

the reachability problem (i.e. “from a given state, what is the probability of reaching a

set of target states?”) coincides for both the UMC and MDP semantics whilst improving

the complexity bounds of model checking IDTMCs, proving that PCTL model checking

IDTMCs under the MDP semantics is P-complete.

Benedikt et al. [23] also present algorithms for model checking interval Markov

chains with respect to basic linear-time properties. In the context of ADTMCs, Katoen

et al. [119] describe in detail the notion of extreme schedulers which choose a class of

distributions where each probability is either maximised or minimised while respecting

the interval bounds, called extreme distributions. They show that, since ADTMCs

mimic the step-wise behaviour of their concrete counterparts (either a DTMC or an

IDTMC), extreme schedulers are sufficient to find under- and over-approximations of

satisfying PCTL formulae for abstraction-based model checking. Later on in Chapter

5, when we describe the probability intervals we use for our IDTMCs, we assume that

they are closed; Sproston, Chakraborty and Katoen [44, 196] show how open interval

sets can also be accommodated into models.

Model checking IDTMCs as MDPs can involve computing an infeasible amount of

extreme distributions at each state. In a similar fashion to Sen et al., to efficiently

compute the minimal (maximal) reachability probabilities over these potentially large

MDPs, a variant of value iteration is applied to efficiently compute extreme distributions

which minimise (maximise) a certain sum, which avoids having to find the set of extreme

distributions at every state [80].

70

3.3. PROBABILISTIC MODEL CHECKING

3.3.9 PRISM

PRISM [129] is an open-source probabilistic model checker which specialises in

modelling and verifying systems exhibiting random behaviour. Using the PRISM

modelling language, it allows us to formally describe models with probabilistic,

non-deterministic or real-time characteristics at a high level. Properties of interest can

be evaluated with a wide range of temporal logics including PCTL and its

reward-based extension. By having the ability to randomly sample thousands of paths

in models, the discrete-event simulator engine also supports statistical model checking

methods which can approximate quantitative properties if they are infeasible to derive

exactly. The version of PRISM used for this thesis is v4.6. We give a brief overview of

basic PRISM model design and some of its key functionalities we will use in this

thesis; see the PRISM website for more details [177].

Basic PRISM Syntax

Describing the details of a PRISM model using the PRISM language is a straightforward

process. For each independent process in the model, we can encapsulate their behaviour

using a module. A module M is made up of a set of variables V = {v1, v2, . . . , vk}

describing the possible states the module can be in, with each vi defined by a range of

values R(vi), where either R(vi) = {⊥,>} or R(vi) ⊂ Z, and a set of commands which

describe the behaviour of the module depending on the current state of its variables.

Generally speaking, a command is usually of the form:

[action] G → p1 : u1 + . . .+ pn : un; (3.5)

In line (3.5), action is the action label for the command which is commonly used to

synchronise the behaviour with other commands in the model (otherwise, we just use

71

CHAPTER 3. BACKGROUND

[]), G is the guard which must evaluate to true for the command to be executed and pi is

the probability of the corresponding variable update function ui : R(v1)× . . .×R(vk)→

R(v1)× . . .×R(vk) occurring, where
∑n

i=1 pi = 1. Note that variable updates can only

change variables defined within the module it resides in and it is possible for the guards

of two distinct commands to be true at the same time; in the case of DTMCs, it is

randomly decided which command get executed. An example of a command is:

[] (s = 1 ∧ t > 1) → 1
2

: (s′ = 2) + 1
2

: (s′ = 3) ∧ (t′ = 0);

where s and t are integer variables (we use the s′ and t′ notation to indicate the new value

of s and t respectively when the particular update function is applied). Additionally,

we can define reward structures for our models using separate constructs and assigning

different values to states or transitions if they satisfy certain conditions.

Symmetry Reduction

Briefly speaking, given two Markov modelsM andM′, we say thatM probabilistically

bisimulates M′ if a relation can be defined between the sets of states for each model,

showing that M can mimic the step-wise behaviour of the M′ in a way that they are

indistinguishable [134]. Probabilistic bisimulation is useful when we want to find more

compact, smaller versions of large models where model checking may be too expensive

to perform, preserving both quantitative- and qualitative-based properties under certain

conditions [10, 189].

To automate the process of finding and working with bisimulations of PRISM models

with large state spaces, PRISM allows us to compress the model information during

the building process using symmetry reduction [131, 64, 65], producing an equivalent

model which retains the same properties of the original model but uses significantly

72

3.3. PROBABILISTIC MODEL CHECKING

fewer states and thus takes less time to perform model checking on. We consider the

case of component symmetry, where for N modules m1,m2, . . . ,mN in the model, their

behaviour is indistinguishable and any pair can be permuted without affecting the

whole model, allowing us to uniquely represent all N of these modules with a single

meta-module. While symmetry reduction is a powerful technique, it is not applicable

in most circumstances where there are many processes behaving in different ways and

compacting the model in this way does produce an overhead during the building process.

Statistical Model Checking

If the models are too large, then it is sometimes infeasible for PRISM to compute exact

values for quantitative properties. A low-cost approach to overcome this problem is to

instead approximate the results by generating a large number of sample paths through

the model and evaluating a specified property for each of them. This technique is often

called statistical model checking [191, 165].

Using the discrete-event simulator, PRISM has multiple ways to perform statistical

model checking depending on the property we want to analyse:

� Confidence Interval (CI),

� Asymptotic Confidence Interval (ACI),

� Approximate probabilistic Model Checking (APMC),

� Sequential probability Ratio Test (SPRT).

For this thesis, we focus only on the CI method due to being applicable for the

formal specifications we want to measure. Given a confidence level γ, it produces an

estimation of a quantitative property y and an interval [y−w, y+w] where the true value

will lie with probability γ, w being the half-width of the interval which is calculated

73

CHAPTER 3. BACKGROUND

using the desired confidence level and the number of path samples we want to produce.

The default confidence level used in PRISM is 99%. At the time of writing, PRISM

does not support statistical model checking with multiple initial states. Furthermore,

the CI method is not suited to the use of bounded properties (i.e. of the form Ponp[. . .]

or Ronr[. . .]); the SPRT method is more appropriate to use in such cases.

3.4 Derivative-free Optimisation

In this section, we begin describing a technique that, given a function which is expensive

to compute, iterates between the construction of a series of models and the choosing of

an input for the function to best optimise it. Afterwards, we list a couple of Python

libraries which implement a variation of this technique and briefly demonstrate their

usage. In Chapter 6, we will also use these libraries to search over a space of probabilistic

models to minimise particular protocol properties.

3.4.1 Sequential Model-based Optimisation

Suppose that we want to optimise a particular function (or an algorithm) which

requires a long period of time to produce an output and is often erratic, thus making

it hard to discern any patterns of behaviour. To add another layer of complexity to

the issue, the analytical form of this function is unknown, meaning we cannot apply

any numerical methods which use calculus to find global (or local) maxima or minima

of the function [28]. This means that we can only rely on a finite sequence of inputs

and outputs to investigate the function due to external constraints such as cost and

time [8].

Problem 3.4.1. (The black-box optimisation problem) Consider χ the search space

and F : χ → R a real-valued deterministic function where the analytic form of F is

74

3.4. DERIVATIVE-FREE OPTIMISATION

unknown. Suggest an input x∗ ∈ χ which best minimises F . F can only be called up to

T ∈ N times to obtain a set of observations {(xi, F (xi))}Ti=1, where each xi ∈ χ.

Problem 3.4.1 allows for the existence of cases whereby F is multi-dimensional and

can be taken as parameters for both continuous and discrete values. We make F

deterministic to ensure the same inputs F always produce the same output. We shall

call F the objective function.

An efficient technique used to address the black-box problem is called sequential

model-based optimisation (SMBO), also known as Bayesian optimisation. SMBO is a

popular tool used within the machine learning community for the hyper-parameter

tuning of classifier models [109, 195, 15, 110, 111]. SMBO is a derivative-free

optimisation method which iteratively constructs a cheaper surrogate model which

mimics F . For each iteration of the surrogate model, an acquisition function is used

to recommend where to next evaluate F , making a trade-off between the exploration

(search areas where the behaviour of the function is unknown) and exploitation

(conservatively stay in areas where the best minimal value of F was found) of the

search space. The key idea behind SMBO uses Bayes’ theorem, which states that the

posterior belief on a hypothesis (or model) H being true given the collection of

evidence E gathered is proportional to the product of the prior belief of H being true

and the probability of obtaining E given that H is true [34]:

Prob(H | E) ∝ Prob(E | H) · Prob(H). (3.6)

Equation (3.6) suggests a way to construct successive surrogate models for F :

suppose we have a set of data points H = {(xi, F (xi))}Ni=0 and a prior belief of the

objective function Prob(F). Combining this with the likelihood of obtaining H with

our prior belief, Prob(H | F), we can find the posterior belief which updates what we

75

CHAPTER 3. BACKGROUND

Algorithm 1 Generic sequential model-based optimisation (SMBO).

Require: Objective function F , initial surrogate model N 0, maximum number of trials

T , acquisition function A

Ensure: Observation history H
1: procedure SMBO(F , N 0, T , A)

2: H ← ∅
3: for t = 1, . . . , T do

4: x∗ ← Argminx A(x,N t−1) . Suggest the next point to evaluate at

5: Evaluate F (x∗) . Expensive step

6: H ← H∪ (x∗, F (x∗)) . Update observation history

7: Fit newer model N t to H . Fit the newer model accordingly

8: end for

9: return H
10: end procedure

know about F :

Prob(F | H) ∝ Prob(H | F) · Prob(F).

A template of SMBO is given in Algorithm 1. We initially have a cheaper surrogate

function N 0 which we continuously update with each received output of F , an empty

observation history set H and the maximum number of trials permitted T ∈ N. At

trial number t ≤ T , we use the acquisition function A to choose the next input x∗ to

sample, given the prior belief over F modelled by N t−1. After evaluating F (x∗), we

update H with (x∗, F (x∗)) and fit a newer model N t to F with this newer information.

We iterate this process until we reach the maximum number of permitted trials.

While we will not cover the surrogate models or acquisition functions suitable for

SMBO, the standard for modelling objective functions is the Gaussian process

approach, which uses a combination of Gaussian distributions induced by H to derive

a distribution over the space of models for F , defined by a mean and covariance

function which can be analytically derived. If our prior belief of F is a Gaussian

process, the posterior belief after drawing a newer sample is also a Gaussian process

76

3.4. DERIVATIVE-FREE OPTIMISATION

[181]. For the acquisition function, a commonly used method is the expected

improvement function EI(x,N) which measures, given a surrogate model N , the

expectation of F exceeding the best minimal value found so far at a point x ∈ χ [116].

Jones [115], Villemonteix et al. [213] and Srinivas et al. [197] also discuss alternatives.

3.4.2 Tree-structured Parzen Estimator

Whilst the Gaussian process approach provides an elegant way to both optimise and

fit a model to F , the time complexity of each iteration scales cubically in |H| due to

the matrix multiplications involved, meaning an alternative is needed to accommodate

for more lengthy SMBO runs. The tree-structured Parzen estimator (TPE)

transforms the surrogate model constructed into two non-parametric densities formed

by H when the output of F is above or below a threshold chosen by TPE. We assume

the search space comprises of uniform (continuous), log-uniform (continuous),

quantised log-uniform (discrete), and categorical (discrete) variables.

For a pair (x, F (x)), if the surrogate models are supposed to represent Prob(F (x) |

x), then TPE tries to model both Prob(x | F (x)) and Prob(F (x)), defining the former

as:

Prob(x | F (x)) =

l(x), if F (x) < y∗

g(x), otherwise

(3.7)

In (3.7), l is a Gaussian mixture model (GMM) fitted to the set of observations

L ⊆ H associated with the function values under a threshold y∗ chosen by TPE (the

‘good’ points which sufficiently minimises F), and g is another GMM fitted to the

rest of the observations. To choose the next input of F , TPE evaluates the ratio g(x)
l(x)

,

choosing points which have a higher probability in l and lower probability under g. By

maintaining a sorted H, the runtime of each iteration of TPE scales linearly with |H|

and linearly in the number of optimised variables [26, 24].

77

CHAPTER 3. BACKGROUND

3.4.3 Python Libraries

In this thesis, we use two Python libraries which apply TPE and provides ways to

describe the parameters which are to be investigated:

� Hyperopt [90, 26, 25] provides algorithms and parallelisation infrastructure for

performing efficient parameter searching. It requires users to explicitly describe

the search space to take advantage of the its capabilities, allowing for flexibility

of the SMBO algorithm so that it can be applied to most search problems. It has

been successfully used in areas which require the training of neural networks or

other forms of scientific modelling [217, 180, 68].

� Benderopt [86, 22] is a lightweight black-box optimiser created by Valentin

Thorey, which takes inspiration from Bergstra et al. [24]. Although it has less

functionality than Hyperopt, configuration spaces in Benderopt can be described

in a more intuitive manner. The in-built Parzen estimator algorithm works

similarly to how TPE is implemented in Hyperopt.

At a basic level, these packages can be used as follows: firstly, we define the space we

wish the optimiser to search over, using a list of variables of differing types, quantised

or otherwise. Next, we run a minimising function on the objective function we wish to

investigate, taking as arguments the parameter space, the optimiser to use (in this case,

TPE) and the number of trials before the algorithm gives a final suggestion. Example

Python code using the two packages is given in Fig. 3.9 and 3.10.

After finishing an experiment, Hyperopt includes the option of collecting and saving

trial data should one wish to use it in future experiments. This is done by storing the

trial data into an object and modifying the result. The objective function returns into a

Python dictionary which stores the inputs used and the corresponding values obtained.

We can save the trial data into another file using the object serialisation library pickle,

78

3.4. DERIVATIVE-FREE OPTIMISATION

1 # Hyperopt demonstration

2 from hyperopt import hp , fmin , tpe , space_eval

3 import numpy as np

4

5 # The function we want to minimise

6 # Actual optimal co-ordinates => (3*pi/2, pi)

7 def q(args):

8 x, y = args

9 return np.sin(x) + np.cos(y)

10

11 # Define the search space

12 space = [hp.uniform("x", 0, 2*np.pi), hp.uniform("y", 0, 2*np.pi)]

13

14 # Let TPE suggest the best set of parameters which minimises q

15 best = fmin(q, space , max_evals =500, algo=tpe.suggest)

16

17 print (space_eval(space , best))

18 # output => (4.7083977675276705 , 3.1231335362403763)

19 # output of q with best sample => -1.99982167

Figure 3.9: Demonstration of the Hyperopt library

for example [174]. At the time of writing, Benderopt has no equivalent functionality

but it can suggest a sample to input into F given a set of trial data; in Chapter 6, we

shall use this to create a function based on Benderopt’s minimise function, which takes

trial data as an argument and uses it to suggest the next input at which to evaluate F

before starting the experiment.

79

CHAPTER 3. BACKGROUND

1 from benderopt import minimize

2 import numpy as np

3

4 # The function we want to minimise

5 # Actual optimal co-ordinates => (3*pi/2, pi)

6 def q(x, y):

7 return np.sin(x) + np.cos(y)

8

9 # Define the search space

10 space = [{

11 "name": "x",

12 "category": "uniform",

13 "search_space": {

14 "low" : 0,

15 "high" : 2*np.pi ,

16 }

17 },

18 {

19 "name": "y",

20 "category": "uniform",

21 "search_space": {

22 "low" : 0,

23 "high" : 2*np.pi ,

24 }

25 }]

26

27 # Find the input which minimises q. Uses the "parzen_estimator"

optimiser as default

28 best_sample = minimize(q, space , number_of_evaluation =500)

29

30 print(best_sample)

31 # output => {’x ’: 4.778215974445023 , ’y ’: 3.1834439790242306}

32 # output of q with best sample => -1.996958547

Figure 3.10: Demonstration of the Benderopt library

80

Chapter 4

Modelling and Verification of

Gossip Protocols

This chapter details the process of modelling clients and servers gossiping with each

other in a network using the Chuat gossip protocols. We achieve this by abstracting

the logic of the protocols and assuming that the clients behave stochastically. We

distinguish between the cases of whether a split-world attack is in process or not,

specify what properties we are interested in analysing and suggest an intuitive way to

improve the performance of the protocols. Lastly we provide verification results for our

models.

We use DTMCs to model the execution of the protocols as they provide a simple but

effective way of recording the state of each gossiping node and the random behaviour

of the clients do not depend on how the other entities are behaving or any previous

events that occurred i.e. the transition probabilities in the model are independent. We

can exploit efficient numerical techniques already implemented in PRISM, such as the

Gauss-Seidel method [200], when verifying DTMCs (see Chapter 3), allowing us to find

exact values for PCTL- and rewards-based specifications which allows us to evaluate

81

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

the protocol performance. Lastly, since we assume that clients of the same type behave

in the exact same way, we can exploit this to perform symmetry reduction on our

DTMCs and perform verification on smaller models that bisimulate the original model

and preserves the results of our quantitative properties.

4.1 Network Topology

Recall in Chapter 3 that in the Chuat protocols, clients gossip STHs with each other

by using servers as staging posts which distribute the data whenever they receive TLS

connections. There also exist two versions of the protocol which we have called STH-

only and STH-and-proof, based on the form the gossip messages take and the necessary

checks clients need to perform to update themselves with any data they receive. For

the purposes of modelling and verification, we define an abstraction of the network

comprising of clients and the servers they regularly connect with, categorising the clients

into different types based on their observed behaviour.

In our models, gossiping occurs via a sequence of rounds, each of which can be

broken down into a series of discrete steps which have clients randomly connecting

with servers and updating themselves afterwards. We assume that all the clients are

capable of gossiping and that they are allowed to connect with at most one entity

during a round. The rate at which the clients gossip with servers, which we call the

gossiping rate, is defined as the average proportion of outgoing gossiping connections to

the servers included in the network. The rates at which at which the clients connect to

each domain in the network given that it will gossip with them, called the client profile,

is the average proportion of outgoing connections to each server where gossip is being

used out of the total number of outgoing gossiping connections to these servers.

Definition 4.1.1. (Network topology) A network topology is a tuple

82

4.1. NETWORK TOPOLOGY

NT = (C,S,P ,G), where:

� C is the set of client types,

� S is the set of server types,

� P : C × S → [0, 1] is the client profile function where, for each C ∈ C,∑
S∈S P(C, S) = 1,

� G : C → [0, 1] is the gossiping rate function.

Our framework of having different client types in the network is useful for two

main reasons. The first is that, by having clients categorised by their different

features and then statistically deriving their behaviour, we can get a more realistic

view of how the protocols will perform compared to just using randomised values

which would not produce any meaningful results. The second reason is from a model

checking perspective because, as we will show later, determining quantitative

properties is expensive (increasing exponentially with the size of the network). By

declaring client types, we can apply symmetry reduction (see Chapter 3) which

significantly reduces the number of states we need by creating one ‘meta-client’ which

records the states of the clients that are identical in their behaviour and initial state

before the gossiping begins.

To give a small example, suppose we have the following network topology NT which

includes three unique client types and two server types described as follows:

� C = {C1, C2, C3},

� S = {S1, S2},

� P(C1, S1) = 0.1; P(C1, S2) = 0.9,

� P(C2, S1) = 0.2; P(C2, S2) = 0.8,

83

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

C1 C2 C3

S1 S2 Row of server types

Row of client types

0.1
0.9

0.2

0.8 1

0.2 0.6 0.8

Figure 4.1: A visual representation of our example network topology NT using directed
graphs. Each Ci represents an abstract client whose behaviour is based on the browsing
habits statistically derived from a sample of users. Each Sj is a collection of websites or
domains controlled by a single entity which we represent as a server. Each directed edge
going to a client to a server has a label denoting the likelihood of a client connecting to the
neighbouring server according to their profile. The gossip rate for a client type is indicated
by the labels of each looped edge.

� P(C3, S1) = 0; P(C3, S2) = 1,

� G(C1) = 0.2; G(C2) = 0.6; G(C3) = 0.8.

Using directed graphs, we can depict what this network topology looks like; see Fig. 4.1

for details. Even though we did not make it explicit in Definition 4.1.1, we assume that

there is a log server which entities in the network topology can contact and is operated

by a maintainer, which chooses to behave either honestly or maliciously depending on

the scenario we want to model; see subsection 4.2.1 for details.

4.1.1 How to Build Client Type Profiles

We list a few ways on how one could obtain client data and construct profiles for them

by parsing and analysing Internet connections. To determine how users may perform

in a simulation experiment, Chuat et al. [48] have clients randomly make connections

based on discrete probability distributions. They also consult Amazon’s Alexa service

to collect data on the top domains for different countries to build profiles of how users

84

4.2. MODELLING THE PROTOCOL

are likely to browse in different parts of the world. Tools and algorithms do exist to

analyse user behaviour from raw datasets; Xie et al. [221] were able to reconstruct user

behaviour with high accuracy by collating unencrypted web traffic, and Feng et al. [79]

applied stream algorithms on data recorded from cellular networks to achieve something

similar.

4.1.2 Deriving Server Types

To derive different server types, whilst a simplistic approach would be to have one

server represent a single domain or host, we could also have these servers represent the

services available through the Internet (e.g. banking, shopping) which our client types

have access to. Using this method, to derive any client profiles, it would be necessary

to categorise the connections clients make; Moore and Zuev [161] describe a way of how

this can be done using naive Bayesian techniques to develop a classifier which determine

the types of network traffic by application, illustrating how their classifier performs with

high accuracy when refinements were applied to the manually classified training data.

Jeffery et al. [73] demonstrate another way to classify network traffic using unsupervised

clustering algorithms, which can be useful when peer-to-peer services obfuscate any port

numbers they use to avoid detection. For more information, Nguyen and Armitage [164]

provide a survey of machine learning techniques being applied to classify Internet traffic.

4.2 Modelling the Protocol

Using a network topology as a template, we consider probabilistic models which

include gossip-enabled nodes where each one is of a type defined in the topology

which determines their identity and behaviour; we shall call them network models.

The basic procedure used in these models can be described as follows: first, clients

85

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

randomly decide whether to participate in a round of gossiping depending on their

pre-defined gossip rate. If they decide not to, they do nothing until the next round of

gossiping commences. Otherwise, they choose which server to connect with using their

client profile and ‘gossip’ their STH. Afterwards, every client in the round updates

their local state by comparing against the state variables representing the entity they

are connected with and changes their own internal state accordingly. After the round

is complete, the clients reset themselves by disconnecting but remember their stored

messages before the next round begins.

We can initialise the states of our clients and servers in many ways because in a

real network they are certain to have different STHs and SCTs stored, bringing more

complexity to our model. Therefore, to avoid these problems we impose the following

design restrictions:

i) Every client and server in the network will contact only one log; clients that are

victims of a split-world attack are redirected to a forked version of the log.

ii) Clients and servers already have valid and non-empty data (i.e. the tree sizes of

stored STHs are non-zero) before gossiping begins.

iii) All clients and servers are gossip-enabled.

iv) All the clients have previously audited the SCTs for the servers they can contact.

The state of each client in the model comprises several variables. First, cg indicates

which stage they are at in the protocol execution. A connection state cs records the

server they are currently connected with (cs = 0 means that the client is not connected

with anyone) and cskip denotes whether or not a client decides to skip a round. If cskip

is true, then all the client variables do not get altered for the rest of the round apart

from cg. A variable csth keeps track of the STH the client has stored, where its usage

86

4.2. MODELLING THE PROTOCOL

depends on the scenario we are looking at. Each server has one variable ssth which has

an equivalent purpose to csth.

We give examples of PRISM commands to show how a single gossip round is

executed: first, a probabilistic choice determines whether a node will participate in

the current gossip round:

[connect] cg = 0 → p : (c′g = 1) + (1− p) : (c′g = 1) ∧ (c′skip = >);

Next, if the client does decide to gossip (i.e cskip is false), it randomly chooses exactly

one of the M possible server types to gossip with, otherwise it moves on to the next

phase of the round:

[choose] cskip = ⊥ ∧ cg = 1 → p1 : (c′g = 2) ∧ (c′s = 1) +

p2 : (c′g = 2) ∧ (c′s = 2) +

...

pM : (c′g = 2) ∧ (c′s = 5);

[choose] cskip = > ∧ cg = 1 → (c′g = 2);

The clients then go into the update phase. To put it simply, if the connected server

has newer STH data, the client ‘updates’ itself by changing the value of csth (the update

command server-side is defined by considering all current connections it has from clients

and choose the newest STH data to update with):

[update] cg = 2 ∧ cskip = ⊥ ∧ server has sth→ (c′g = 3) ∧ (c′sth = >);

[update] cg = 2 ∧ ((cskip = ⊥ ∧ ¬ server has sth) | cskip = >)→ (c′g = 3)

Lastly, when the round ends, the clients check to see if all of the clients are now

87

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

updated. If they are, then the clients progress to a further state (from which they do

not exit). Otherwise, the clients reset some of their own variables and another round

of gossiping commences:

[round complete] cg = 3 ∧ ¬ clients all updated→ (c′g = 0) ∧ (c′s = 0) ∧ (c′skip = ⊥);

[round complete] cg = 3 ∧ clients all updated→ (c′g = 4)

To see the PRISM models in full, consult the supporting material for this thesis

[202]. In Chapter 5, when defining IDTMC models, we modify some of the above

commands by replacing exact probability values with real-valued intervals with non-

zero lower bounds.

4.2.1 Normal and Split-World Scenarios

We want to analyse how well the protocols adapt under normal conditions and during

a split-world attack; the log maintainer is honest in the former situation, while in the

latter it attempts to fork the log for malicious purposes. In the following, we denote si

to be the ith STH generated from the CT log with Merkle tree size ti ∈ N.

For the normal scenario, the nodes in the network start with an old STH sl (with

tree size tl) which was generated before the rounds of gossiping begin. We let one server

and one client have the newest STH sm initially, with tl < tm. This is to reflect the fact

that entities may choose to regularly contact the log to request newer STHs outside of

gossiping most likely because they act as log auditors.

Our second scenario looks at the situation where the log maintainer decides to target

a single client in the network by forking the log as part of a split-world attack. We

assume that the attacker, i.e. the log maintainer, wants to sustain the attack for as long

as possible until they achieve their objective of stealing sensitive information from a

88

4.2. MODELLING THE PROTOCOL

victim, regardless if the attack gets discovered afterwards (a ‘smash-and-grab’ attack).

We describe the attack as follows: before gossiping begins, the log has already

commenced a split-world attack by maintaining two separate ledgers forked from a

previous version of a log whose corresponding Merkle tree had tree size tl - the genuine

log that the attacker wants non-targeted entities to see, and a rogue log created to

target a victim whose Internet connections are intentionally being re-routed whenever

it attempts to contact the genuine log. This rogue log includes fraudulent certificates

which attacker-controlled servers use to host spoof websites. To further impersonate

genuine domains, we also assume that these servers support CT gossiping.

The newer STHs corresponding to the genuine and rogue logs are sm (the real data)

and s′n (the fake data) respectively, where tm, t
′
n ∈ N are their respective tree sizes, with

tm < t′n and timestamp(sm) < timestamp(s′n) i.e. s′n is the newly generated STH after

sm. This is done to bypass the checkSTH() function used in the Chuat protocols which

checks for inconsistency (see Chapter 3). Up to tree size tl, both logs are identical

in their contents and the structure of the Merkle tree at that time, implying that

consistency between STH pairs sl/sm and sl/s
′
n can be proven by the log server when

necessary.

As previously mentioned, the goal of the attacker is to steal information from a

particular client when they connect and gossip with servers under their control. To do

this, it tricks or forces the victim client with sufficiently older knowledge of the log into

gossiping with an attacker-controlled server that already possesses s′n (either through

phishing, man-in-the-middle attacks etc.), redirecting any of their connections so that

proof/STH requests they make are given to the rogue log. Afterwards, when the fake

STH data has been verified and the fraudulent certificate has been audited using its

SCT, the victim updates itself by caching s′n.

In our models, we have one updated server with sm that is not controlled by the

89

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

attacker, and one updated client with s′n which we assume to be the victim. The rest

of the entities in the network have an old STH sl such that tl < tm < t′n. We assume

that no spoof servers are ever contacted again (or the probability of them receiving any

connections in the future by clients is negligible) so that they are not part of the model.

In our models, detection of the split-world attack occurs when either at least one

client retrieves both sm and s′n through gossiping and receives an erroneous response to

its request for an extension proof by the log server (since the log cannot provide a valid

proof between the real and fake STH data), or at least one client receives a warning

message from a server which has detected an inconsistency with the log.

The variables csth and ssth are integers which represent the data type each entity

possesses. The rounds of gossiping end when at least one client detects something is

wrong for the reasons mentioned previously. In addition, we use Boolean variables cd

and sd as ‘detection flags’ which are set to true when a client or server have detected

something, respectively. The changes we make to our models is that during the update

stage, clients and servers can either update themselves with newer data or go into

detection mode when an inconsistency is spotted and, during the round complete stage,

the model checks if at least one client has cd set to true.

4.2.2 Protocol Variations

As mentioned in Chapter 3, the format of the gossip messages is different between the

STH-only and STH-and-proof versions of the Chuat protocols. Each client stores only

one message in both versions, but in STH-and-proof a server stores multiple messages

and gossips them depending on what messages it receives. In our models, by providing

all the entities with a baseline knowledge of the log, in both cases we make servers gossip

only the messages represented by ssth in the model. Table 4.1 shows which messages

correspond to the values that csth/ssth can take in both our normal and split-world

90

4.2. MODELLING THE PROTOCOL

t0 t1 t2 tl−1 tl tm

(a) Normal

t0 t1 t2 tl−1 tl

tl+1 tm

t′l+1 t′n

Real log

Fake log

(b) Split-world

Figure 4.2: An abstract representation of the growth of the log in (a) a normal scenario with
no attack occurring and (b) during a split-world attack. Each node in the directed graphs
indicate a state of the log when the Merkle tree size was ti, where i ≥ 0 and ti ∈ N. For an
older state of the log with tree size ti, it is succeeded by a new state of the log indicated by an
outgoing directed edge, and the tree size gets updated to ti+1 in the process. In the normal
scenario, the current state of the log has tree size tm and two entities in the network start
gossiping with the corresponding STH sm, while the rest of the entities have the old STH
data sl with tree size tl, with tl < tm. In the split-world attack scenario, the log is forked into
two different versions when it had tree size tl, creating a genuine log with STH sm and tree
size tm, and a rogue log with STH s′n and tree size t′n, where tm < t′n . In our network models,
one server has cached sm sourced from the genuine log while a designated victim client has
s′n obtained by gossiping with an attacker-controlled server . The rest of the entities in the
network initially have cached sl.

models.

We are interested in how often the protocols make clients contact the log during

their execution. To measure this in our models we use reward structures to count how

many times a consistency proof is requested from clients. Each variation of the protocol

has different requirements for the clients to call the log depending what gossip messages

they receive:

� STH-only - the tree size of the received message is different from what the client

already knows. Regarding our models, this means that between a connected

client/server pair the log is ‘called’ when the value of csth is not equal to ssth.

91

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

Normal case Gossip message format
csth/ssth Data Type STH-only STH-and-proof
False Old data sl (sa, sl, pa,l)
True New data sm (sl, sm, pl,m)

Split-world case Gossip message format
csth/ssth Data Type STH-only STH-and-proof

0 Old data sl (sa, sl, pa,l)
1 Real data sm (sl, sm, pl,m)
2 Fake data s′n (sl, s

′
n, p
′
l,n)

Table 4.1: The tables above describe what the csth/ssth variables represent in the models for
each value in both the normal and split-world cases. Here, sa is an STH with tree size ta > 0,
where ta < tl, and pa,b be a consistency proof between STHs sa and sb. We let p′l,n be a ‘fake’
consistency proof between sl and s′n.

� STH-and-proof - if the client’s message is (sa, sb, pa,b) and the obtained message

(sc, sd, pc,d), where ta, tb, tc, td ∈ N are tree sizes, then we must have that tb 6= tc

and tb 6= td. Due to our model design, this condition can occur if a client is already

updated but the server it is gossiping with is not. The client will also request a

proof when it obtains both the real and fake data which will trigger a detection.

4.3 Specification of Protocol Properties

We want to evaluate certain quantitative properties which will help us determine if the

protocols provide good security and do not place a burden on bandwidth. To be more

precise, we look at three properties:

i) Data dissemination: How effectively do the protocols spread the new data to each

client in the network?

ii) Protocol efficiency : How much demand does the protocol put on the log?

iii) Rate of detection: How quickly can the protocols detect a split-world attack

occurring in the network?

92

4.3. SPECIFICATION OF PROTOCOL PROPERTIES

To evaluate property i) using our models, we will measure the expected proportion

of clients to possess the newer STH per round, computed using reward structures which

track the current proportion after round r ∈ N. In PRISM, this is written as:

Rclient proportion
=? [I=r],

where I=r is the instantaneous reward function that outputs the state reward for a finite

path in the model after r rounds (see Chapter 3). The reward structure client proportion

simply calculates the fraction of clients that possess the newer STH at every state in

the model. Alternatively, we can find the expected amount of gossiping rounds it takes

until every client in the network has the latest data, i.e., csth is set to true every client:

Rrounds
=? [F clients all updated].

In the case of the split-world scenario, since we now have three types of STHs being

gossiped including the fake data generated from the rogue log, we measure the expected

proportion of clients to possess each type of STH per gossiping round:

Rdata type
=? [I=r].

Here, the reward structure data type works similarly to client proportion but counts the

proportion of clients that have a specific type of STH.

We also measure ii) using reward structures, distinguishing between the conditions

for each variation to request a proof and find the cumulative amount of log connections

made from clients per round. We use the property:

Rlog connections
=? [C≤r],

93

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

where C≤r is the cumulative reward operator that outputs the accumulated state and

transition rewards for a finite path in the model after r rounds. The reward structure

log connections counts the number of log connections made during the update phase of

the round. Property iii) is exclusive to the split-world model and can be written using

the P operator which is used to compute the likelihood of the occurrence of a specified

event:

P=?[F
≤r detect].

Lastly, to find the expected number of rounds which will take place before the detect

event occurs, we use the property Rrounds
=? [F detect].

4.4 Server-to-server Gossip

One of the key benefits of our approach using probabilistic verification is that we can

investigate the effect of modifying a protocol in terms of performance. This can help in

the future development of the protocol. To demonstrate this, we define a variant of the

gossip protocols in which the servers gossip directly with each other instead of behaving

as static entities. Server-to-server gossiping can help spread STHs to different regions

of the Internet quickly. This forgoes the need for users to venture outside their typical

activity to obtain fake data from potentially malicious sources, which we rely on in the

case of client-to-server gossip.

Some design decisions arise when deciding how to make the servers gossip. We need

to find the correct balance between data sharing and servicing clients and decide how

many servers a server should contact in each session; having too many servers gossip

with each other at the same time will place a strain on bandwidth and will result in

dissatisfied customers. We suggest some ways in which servers can discover peers to

gossip with, inspired by existing mechanisms used by the Tor anonymity network and

94

4.4. SERVER-TO-SERVER GOSSIP

BitTorrent:

� Directory authority - Tor clients contact a directory authority to discover any

relay points which can be used to create secure channels. The relay points are

randomly selected periodically to prevent linking a circuit and a user’s

activity [204]. To apply this to our extended protocols, we can establish similar

authorities which keep track of a list of selected servers for gossiping due to their

popularity with clients or availability.

� Distributed Hash Table (DHT) - BitTorrent uses a DHT mechanism which

removes the need for a point of authority (a ‘tracker’) which keeps track of all the

clients in the network. Clients store a DHT, which in practice acts as a routing

table, for a small number of nodes that have responded to previous requests

successfully [144]. Each node in the network is given a unique identifier and uses

a distance metric to measure how close it is to other nodes; the higher this value is

for certain nodes, the more detailed their entries are in the table (see the Kademlia

protocol [152]). To find peers for a specific torrent, a client would use the DHT

to seek out neighbouring nodes and ask them for information on other peers that

are downloading the same torrent.

We extend our models with server-server gossip using a simple abstraction: when a

server has the latest log data it gossips this outside the update phase, i.e. before clients

connect with them. To limit the additional burden on each server we fix the probability

of a server choosing another server to gossip with (including itself) to be 1
5
. To reduce

the complexity in our models, gossiping is conducted using unidirectional channels i.e.

servers send messages but do not receive replies to any of them.

95

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

Client type frequency C1: 1, C2: 3, C3: 1

Normal scenario initial set-up
Client of type C3 and server of

type S1 have the newest data

Split-world scenario initial set-up
Client of type C3 has fake data

and server of type S5 has real data

C1 gossip rate 0.8

C1 distribution [0.02, 0.28, 0.7, 0.0, 0.0]

C2 gossip rate 0.6

C2 distribution [0.02, 0.28, 0.0, 0.7, 0.0]

C3 gossip rate 0.2

C3 distribution [0.02, 0.28, 0.0, 0.0, 0.7]

Table 4.2: Initial modelling setup for both model types. For each client type, they connect
with server types S1 and S2 with probabilities 0.02 and 0.28, respectively. They also connect
with one other unique server with probability 0.7 e.g. the client type C1 connects with server
type S3 with probability 0.7.

4.5 Experimental Results

4.5.1 Protocol Designs Analysed

Now we demonstrate the use of our models using artificial network data, starting with

the presumption that our clients are grouped into three abstract types with differing

behaviours, which we will call C1, C2 and C3; we also use five server types S1, . . . , S5.

Suppose we have a network with five clients categorised into these three client types

and five servers which are of a unique type. We fix a representative set of probabilities

for the client profile probabilities, the initial setup we use for each model type and the

number of clients of each abstract type, as shown in Table 4.2. For each client type, the

probability of connecting to servers of type S1 and S2 are 0.02 and 0.28, respectively.

They also connect with one other unique server with probability 0.7.

In total, we study four protocol variants:

� STH-only protocol without servers gossiping,

� STH-only protocol with servers gossiping,

96

4.5. EXPERIMENTAL RESULTS

� STH-and-proof protocol without servers gossiping,

� STH-and-proof protocol with servers gossiping.

The first and third variants are the original designs presented by Chuat et al. [48], which

we will refer to as the initial designs. The other two are our modified versions which

include server-to-server unidirectional gossip, which we call the extended designs. We

model both types of design under normal conditions and when a split-world attack is

taking place, both described previously in section 4.2.1.

To validate our verification results, We use PRISM’s discrete event simulator to

perform statistical model checking using the CI method (see Chapter 3). In the following

graphs where we analyse the performance of the protocols over a sequence of rounds,

we give the 99% confidence interval for each approximate value found using black error

bars.

4.5.2 Verification Results

Model Statistics

We use PRISM’s implementation of symmetry reduction (see Chapter 3) on our

models to improve scalability when clients exhibit identical behaviour with the same

initial state and compare model statistics before and after symmetry reduction is

applied. Despite using a small network topology, it appears that our normal model

types are relatively inexpensive to model check compared to our split-world model

types, largely because there are fewer variables being used in the former. There is also

the common feature in all our models where each client can only gossip with three

distinct servers; clearly, the more possibilities a client can connect with, the more

states needed to accommodate these choices and thus the more expensive model

checking will be. Furthermore, implementing server gossip increases the number of

97

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

Scenario States (before SR) States (after SR) Transitions (after SR) Build time (s)

Normal conditions

without server gossip
215, 947 49, 850 86, 902 0.6

Normal conditions

with server gossip
304, 310 72, 256 137, 824 0.5

Split-world conditions

without server gossip
1, 427, 618 304, 515 525, 583 223.7

Split-world conditions

with server gossip
37, 017, 853 7, 984, 798 41, 737, 133 215.8

Table 4.3: Model statistics for each scenario investigated, before and after symmetry reduction
(SR) was applied. The build time consists of both building the original model and applying
SR to it.

(a) Client proportion (b) Log connections

Figure 4.3: Plots of the model checking results for the normal scenario. Allowing servers to
gossip improves the data spread and reduces the need for clients to request an extension proof
from the log, regardless of whether STH-only or STH-and-proof is used. In each graph, we
give the 99% confidence interval for each gossip round found via statistical model checking
using black error bars.

states in the model than without so we must abstract this behaviour as much as

possible to minimise state space explosion. We synchronise server gossip for each type

of data with the actions that occur before or after the client update phase, computing

the probability of a server obtaining a data type and updating themselves accordingly.

Table 4.3 gives the complete set of statistics for the models we used for verification.

98

4.5. EXPERIMENTAL RESULTS

Analysis of Normal Scenario Models

We measured the expected proportion of clients which have the latest log data

(Fig. 4.3(a)). It is clear that having servers gossip helps to improve the data spread;

as there are more chances of a server being updated per round, this will impact the

client’s chance of obtaining the latest data too. For both versions of the Chuat et al.

protocol, we expect the dissemination rate to remain the same; the updating

procedure for both of them are similar as the protocol prioritises the data the client

will store by the tree sizes of the received STHs and the SCT validation procedure is

exactly the same.

We also measured the number of client connections made to the log to determine

the efficiency of the protocol. Fig. 4.3(b) shows that STH-and-proof requires fewer

log connections from clients. For STH-only, the client must always contact the log

whenever it sees a different STH to what it already has cached even if may have seen

it before, making this version of the protocol very inefficient, whilst for STH-and-proof

the conditions to request a proof are very specific so the chances of a client calling the

log are small. Server-to-server gossip slightly improves efficiency for both versions in

the long term, most likely because servers will update themselves sooner than clients.

Analysis of the Split-world Scenario Models

We expect the chances of detection per gossiping round to be the same for both versions

of the protocol; in the context of our PRISM model design, the conditions for detection

in STH-only and STH-and-proof are exactly the same.

From Fig. 4.4(a), we see that using the original protocol to detect attacks takes a

while: after twenty rounds there there is only about a fifty per cent chance for a client to

notice that something is wrong. However, making servers gossip significantly improves

the detection rate as the legitimate data will be spread through the network quickly

99

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

(a) Detection rate (b) Log connections

Figure 4.4: Plots of the model checking results for the split-world scenario. Similar to the
normal scenario, the STH-and-proof protocol with servers gossiping can quickly detect attacks
and is economical at the same time.

and result in an inconsistency being found when fake data is gossiped. We note that

the results we obtained are influenced by the initial conditions in our network; if we

let a client with a high connectivity rate be targeted, then it would be more likely for

someone to detect an attack in only a few rounds. To address this issue, in Chapter 6 we

employ techniques to intelligently search over all possible configurations of a network

model to find a bad one which minimises an important quantitative property of the

gossip protocols.

As for the expected cumulative amount of log connections made per round, the

patterns in the results from Fig. 4.4(b) are similar to what we have observed previously

in the normal scenario but slightly more log connections are made on average due to

the addition of more types of data being passed around in the network.

Fig. 4.5(a) and (b) shows the expected proportion of clients to have each type of

STH per round when the initial and extended design are implemented, respectively.

Note that the data distribution among clients in the split-world scenario is identical for

STH-only and STH-and-proof as the update procedures for both versions are identical.

From Fig. 4.5 we see that, by using the initial design, clients are more likely to

100

4.5. EXPERIMENTAL RESULTS

(a) STH distribution (initial design) (b) STH distribution (extended design)

Figure 4.5: Plots showing the STH distribution for the split-world scenario. In the extended
designs, the clients were more likely to have the genuine STH than the fake one, whereas the
opposite result was seen using the initial designs.

possess data sourced from the rogue log than the legitimate data after twenty rounds.

This is due to how rare it is for someone to gossip with the server which initially has the

real STH while a fake STH with a larger tree size will spread relatively quickly. This is

in contrast to what happens when the extended design is used where after five rounds

more than half the clients are expected to have the real STH. We notice in Fig. 4.5(b)

that the proportions remain constant after seven rounds; as detection happens sooner,

the clients in the model retain the data they have at the moment when gossiping stops.

4.5.3 Improving Scalability Using Statistical Model Checking

We further investigate the gossip protocols when deployed in larger networks; this

is hard to achieve through model checking so we rely on PRISM’s statistical model

checking capabilities to find approximate values at the expense of accuracy. We have

extended our models to include 50, 100 and 200 clients while still fixing the number of

of servers at five. We scale the number of each type with respect to the ratios we used

in the original five-client network; while type 2 clients still make up a majority, there

are also slightly more clients of type 1 than of type 3. Table 4.4 gives the frequency of

101

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

Client type frequency

Clients Type C1 Type C2 Type C3

50 12 31 7

100 25 60 15

200 50 120 30

Table 4.4: The number of clients of each type for the differently sized networks we used.

each client type for our networks of different sizes.

For all our results, we use the CI method to find our estimations with their respective

99% confidence interval by sampling 2000 random paths. The amount of time it took

to output results did often fluctuate but in general it took longer to generate results for

our split-world models. Estimating the expected STH distribution per round was the

most time-consuming property to estimate.

Normal Models

For both the initial and extended designs, we approximate the data dissemination for the

first twenty rounds of gossiping. In Fig. 4.6(a), we also provide the confidence intervals

at each round represented by a black bar. We can clearly see by having our servers

gossip the clients will get updated quickly. When measuring efficiency, in Fig. 4.6(b) we

see a similar pattern emerging from when we looked at a smaller network, with the STH-

and-proof version looking more scalable as the number of clients increases. However,

in both versions of the protocol, server gossip does not appear to affect efficiency very

much.

Split-world Models

The approximate detection rate for the first twenty rounds is shown in Fig. 4.7(a),

suggesting that server gossip improves this property. One interesting observation is

that after round nine, the detection rate for the extended design remains constant no

102

4.5. EXPERIMENTAL RESULTS

(a) Data dissemination (b) Log connections

Figure 4.6: Statistical model checking results for the normal scenario for 50, 100 and 200
clients. The number of servers is five in all cases. We notice that the STH-and-proof version
of the protocol scales well when the number of clients increases in the network in terms
of efficiency, whilst this is not the case for the STH-only version even with server-to-server
gossip enabled. Furthermore, clients tend to get updated earlier with server-to-server gossiping
enabled.

matter how many clients there are in the network. This is probably due to the fact

that as more servers go into the detection phase early, computing the probability of

detection reduces to finding the chances of at least one client connecting to a server

which has already started to gossip warning messages.

From Fig. 4.7(b), we see clients are more likely to have the real STH invariant

on the amount of of clients present in the network. Fewer clients are expected to

update themselves with the fake STH but we should note that the initial conditions

on the model influence this outcome. In Fig. 4.7(c) we see the same outcomes in

the expected cumulative total of log connections as in the normal scenario but STH-

and-proof produces slightly more connections than usual while STH-only achieves the

opposite.

103

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

(a) Detection rate (b) STH-distribution

(c) Log connections

Figure 4.7: Statistical model checking results for the split-world scenario. The STH
distribution remains relatively constant as the number of clients increases and making servers
gossip help improve the detection rate.

4.5.4 Validating Results Against Simulations Using Randomly

Sampled Data

In the models we previously analysed, the probabilities represented statistical averages

for each client type, namely the average proportion of gossip connections made to

servers in the network. To conclude this section, to test if the results obtained from

verification using such averages give an accurate indicator of protocol performance, we

compare them against approximations for the same quantitative properties using models

induced from randomly sampled ‘concrete’ data from a batch of clients, provided these

104

4.5. EXPERIMENTAL RESULTS

Figure 4.8: Box-and-whisker plots showing the overall range of values for each randomly
generated proportion, broken down by client type. The tail ends represent the
maximum/minimum values for that category, the orange line and green triangle giving the
median and mean value for that data type, respectively.

clients have already been categorised (i.e. assigned a type) and clients belonging to the

same category behave very similarly. We use the same modelling setup as described in

Table 4.2 but this time we randomise the gossip rates and profiles for each client node

in the network.

We produce artificial client data by randomly generating 100 samples for each client

type (creating 300 individual samples in total), having the proportions for each sample

that make up the gossip rate and the individual client profile randomly chosen within

a prescribed range of values. When randomly choosing server connection proportions

for each type, we adapt an algorithm used in this thesis so that the sum of these values

equal one; see Appendix B for more details. We keep the range of possible values

allowed for each proportion sufficiently small so that, when aggregating the data of all

the client samples belonging to a single type, the average proportions are roughly equal

to the probabilities used in our models (see Table 4.5 for details). We give a visual

representation of the sampled data using box-and-whisker plots in Fig. 4.8.

To compare against the model checking results, we approximate the values for all

105

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

Category

Client type Gossip Rate Server 1 Server 2 Server 3 Server 4 Server 5

Type C1 0.801 0.022 0.278 0.694 0.003 0.003

Type C2 0.600 0.023 0.263 0.009 0.699 0.006

Type C3 0.200 0.023 0.271 0.009 0.004 0.693

Table 4.5: Mean values for each proportion, rounded to three decimal places each.

the properties we previously analysed using statistical model checking. For a given

scenario and protocol design, we perform 1000 trials where each time we randomly

choose individual client samples whilst still respecting the client type frequency in the

verification models (meaning that we randomly choose a single client of type C1 and C3

and three distinct clients of type C2), construct the PRISM model based on the chosen

samples and finally approximate results for the first twenty gossip rounds. To make the

estimations as accurate as possible, we find the 99% confidence level and have PRISM

generate 5000 path samples before approximating each result. Figures 4.9, 4.10 and

4.11 gives the full set of results; in each graph, the blue shaded areas give the range

of all estimations found for a given property (we do not plot any confidence intervals),

whilst the red dashed line gives the corresponding verification result.

Looking at the data visualised in Fig. 4.9, the model checking results for the normal

scenario fall within the shaded regions and there is less deviation in the estimations,

indicating that the probabilities we used helped to give a good indicator of protocol

performance, irrespective of the protocol design used. This is especially true for the

extended design as the estimations are almost equal with the model checking results in

some cases (see Fig. 4.9(b) and (d)).

As for the split-world scenario, when looking at the initial protocol design (Fig. 4.10),

the verification results are a coarser indicator of performance over a set of concrete

results. For example, while the verification results for the efficiency properties overlap

with the statistical data quite well (Fig. 4.10(e) and (f)), it is hard to say the same

when measuring the probability of detection (Fig. 4.10(a)) or the data type distribution

106

4.5. EXPERIMENTAL RESULTS

(Fig. 4.10(b)). On the other hand, when comparing the results for the extended design

(Fig. 4.11), there is little variance between the two sets of results.

107

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

(a) Data dissemination, initial design (b) Data dissemination, extended design

(c) STH-only log connections, initial design (d) STH-only log connections, extended design

(e) STH-and-proof log connections,
initial design

(f) STH-and-proof log connections,
extended design

Figure 4.9: Comparing the range of approximate results using artificial sample data (shaded
blue area) against the model checking results presented earlier in this chapter (red dashed
line) in the normal scenario. The experiment performed 1, 000 trials per property by randomly
selecting sample data to initialise the client probabilities whilst still preserving other aspects of
the model structure previously used for verification. To make the approximations as accurate
as possible, PRISM’s CI method is used with 99% confidence and 5, 000 path samples.

108

4.5. EXPERIMENTAL RESULTS

(a) Detection rate (b) Real data distribution

(c) Fake data distribution (d) Old data distribution

(e) STH-only log connections (f) STH-and-proof log connections

Figure 4.10: Comparing the range of approximate results using artificial sample data against
the model checking results presented earlier in this chapter for the split-world scenario (initial
protocol design only).

109

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

(a) Detection rate (b) Real data distribution

(c) Fake data distribution (d) Old data distribution

(e) STH-only log connections (f) STH-and-proof log connections

Figure 4.11: Comparing the range of approximate results using artificial sample data against
the model checking results presented earlier in this chapter for the split-world scenario
(extended protocol design only).

110

4.6. SUMMARY

4.6 Summary

This section presented a methodology for formally evaluating quantitative aspects of

the security and efficiency of the gossip protocols for certificate transparency using

probabilistic model checking. We explained our abstraction of the network and the

PCTL properties we used. We have also proposed an improvement to the original

protocol in which servers gossip directly with each other (instead of just via clients)

and our verification results show that this extension improves the security and

efficiency aspects of the protocols. Lastly, we used PRISM’s discrete event simulator

to approximate protocol properties in networks with a large amount of clients and

when comparing against the use of raw client data to build models to see if the

protocol performance remains relatively consistent when we adjust some of the

PRISM model parameters.

However, using exact and arbitrary values for probabilities clearly does not produce

meaningful analysis and perturbations are likely to be present when trying to capture

client type behaviour; in the next chapter, we will show how to introduce uncertainty

into our models in the form of IDTMCs. To alleviate the scalability issues we are likely

to encounter when analysing such models, we apply a technique to collapse them at the

cost of approximating protocol properties.

111

CHAPTER 4. MODELLING AND VERIFICATION OF GOSSIP PROTOCOLS

112

Chapter 5

Tackling Uncertainty and

Unscalability using IDTMCs

In the previous chapter, when we performed verification on a collection of DTMC

models, we used exact values for probabilities which may not be justifiable in more

rigorous analysis. A reason for this is that when collecting data from gossiping clients

belonging to a particular category or type, there is a chance that the observed behaviour

of the clients does not follow a common pattern of behaviour and thus it is not possible

to find a representative client type profile. Another reason is that using exact values

makes us only look at one instance of a possible gossiping scenario and not a range of

possible scenarios that allows us to find best- and worst-case protocol performances.

We also have issues of model unscalability when the state spaces for our models were

large and at times relied on statistical methods to find approximate results.

This chapter shows how transforming our models into interval discrete Markov

chains (IDTMCs) can resolve the issue of uncertainty present in client behaviour.

Using prototype implementations, we perform verification on IDTMCs and show how

we can abstract them to obtain smaller models which significantly reduces the time

113

CHAPTER 5. TACKLING UNCERTAINTY AND UNSCALABILITY USING
IDTMCS

needed to complete the model checking process. To see the models and

implementations in full, please refer to the supporting material [202].

5.1 Using IDTMCs When Client Probabilities are

Unknown

In Chapter 3, we discussed IDTMC models where exact probabilities are replaced with

real-valued intervals, introducing non-determinism over the set of possible probability

distributions to use when transitioning from a state. In this section, we transform our

models from Chapter 4 into IDTMCs so that we have under- and over- approximations

for client type behaviour, describing a prototype extension of PRISM which performs

verification on these IDTMCs.

5.1.1 IDTMC Network Model Design and Properties

As noted in Chapter 4, a network topology NT is defined by: the set of client types,

C; the set of server types, S; the client type profile function, P ; and the gossiping rate

function G. For a client type Ci ∈ C, G(Ci) is defined to be the average proportion of

outgoing gossiping connections clients of type Ci make to the server types in S. For

a pair (Ci, Sj) ∈ C × S, P(Ci, Sj) is defined to be the average proportion of outgoing

gossiping connections from Ci to Sj out of all the total gossiping connections made to

the server types in S.

As we have shown empirically in Chapter 4, this interpretation of the functions P

and G suffices to analyse network models where type-equivalent clients rarely deviate

in their behaviour. While the notion of client types is useful when aggregating batches

of client data coming from a single source (e.g. a country, Internet trace etc.), a

consequence of this is a diverse range of behaviour where no representative profile of

114

5.1. USING IDTMCS WHEN CLIENT PROBABILITIES ARE UNKNOWN

them is possible. To accommodate this, instead of having P and G map to exact

values, they could map client types to real-valued intervals instead, implying this will

transform our probabilistic models into IDTMCs. Mathematically speaking, for a client

type Ci ∈ C, the gossip rate function G is replaced by two real-valued functions Gu and

Gl which give the upper and lower bound of the gossip rate for G(Ci), respectively. We

can also define something similar for P .

To efficiently model check IDTMCs in PRISM, we implement an extension that

adapts value iteration [178, 11] used in MDP model checking to find the maximal or

minimal probabilistic reachability given a set of target states T in a recursive manner.

For an IDTMC M = (S, sι, P
u, P l, AP , L) and state s ∈ S, to compute the maximum

probability of reaching T within n ∈ N steps, denoted as p(s,n), the algorithm uses, for

every state s′ ∈ S, the maximum probability of reaching T within (n − 1) steps from

s′, or p(s′,n−1), deriving the probability distribution that assigns as much probability to

outgoing states of s for which the reachability probability is maximal i.e. an extreme

distribution, to maximise a certain sum [119]:

p(s,n) = max

{∑
s′∈S

δ(s)(s′) · p(t,n−1)

∣∣∣∣∣ δ(s) ∈ Dists
}
.

By definition, we let p(s,0) = 1 if s ∈ T and zero otherwise. The algorithm for finding

the minimal probabilistic reachability for a given state is derived similarly.

To demonstrate this process, three client types are used, C1, C2, C3 and five server

types S1, . . . , S5 as used in the previous chapter, however, for testing purposes we model

a smaller network to avoid building a large state space (the IDTMC verification tool

uses the explicit engine in PRISM to build the model which typically scales slightly less

well than the symbolic engines as the number of states in the model increases). Present

in the network topology is one client of each distinct type and the five server types,

115

CHAPTER 5. TACKLING UNCERTAINTY AND UNSCALABILITY USING
IDTMCS

Server type

Client type
C1 C2 C3

S1 [0.01, 0.1] [0.01, 0.1] [0.01, 0.1]

S2 [0.2, 0.4] [0.2, 0.4] [0.2, 0.4]

S3 [0.2, 0.3] [0.4, 0.5] [0.15, 0.25]

S4 [0.3, 0.4] [0.2, 0.3] [0.15, 0.25]

S5 [0, 0.29] [0, 0.19] [0, 0.49]

Table 5.1: Probability intervals used for each of the three client types, denoted as C1, C2 and
C3. We assume they can connect with five distinct server entities, labelled from S1 to S5, in
the network.

meaning eight entities in total are present in the network model. For each client type,

we assume the gossip rate falls within the range [0.48, 0.52] and for their client profiles

we specify the individual server connection probability intervals given in Table 5.1.

For example, a client of type C1 randomly connects with a server of type S1 with a

probability within the range [0.01, 0.1]. In these IDTMCs, we still respect our design

assumptions where one client and server each possesses recently generated STH data

before gossiping begins and that clients can only connect with at most one server per

gossip round.

Specifying intervals in a PRISM model so that the verification tool can identify and

parse them is straightforward; for a client module Client with connect rate probability

p, the command for connect is written as:

[connect] cg = 0 → [p− ε, p+ ε] : (c′g = 1) +

[1− (p+ ε), 1− (p− ε)] : (c′g = 1) ∧ (c′skip = >)

(5.1)

In (5.1), ε is the error which we fix at 0.02 to obtain our desired intervals. Next, we

116

5.1. USING IDTMCS WHEN CLIENT PROBABILITIES ARE UNKNOWN

write the choose command as:

[choose] cskip = ⊥ ∧ cg = 1 → [pL1 , p
H
1] : (c′g = 2) ∧ (c′s = 1) +

[pL2 , p
H
2] : (c′g = 2) ∧ (c′s = 2) +

...

[pL5 , p
H
5] : (c′g = 2) ∧ (c′s = 5);

[choose] cskip = > ∧ cg = 1 → (c′g = 2)

(5.2)

In (5.2), pLj /pHj are the lower/upper bounds of the server connection probability

of the client choosing server Sj, while cs specifies which server the client is currently

connected with. For a set of probability intervals [l1, u1], [l2, u2], . . . , [lN , uN] in a single

command, PRISM checks the following conditions are met:

1) li > 0 for each i = 1, . . . , N ,

2) li ≤ ui for each i = 1, . . . , N ,

3)
∑N

i=1 li ≤ 1 ≤
∑N

i=1 ui,

Condition 1 is needed to preserve the underlying graph structure of the Markov

chain; if there are distributions where the probability of transitioning to certain states

is zero, this will affect the qualitative results of the model. In Table 5.1, there are

intervals where the lower bound is zero, so to fulfil condition 1 we use a lower bound

of 10−14. Condition 3 ensures that legal probability distributions exist during that

particular action.

To specify the minimal/maximal reachability probabilities, we can use the

Pmin/Pmax syntax which denotes the minimum/maximum probabilistic path

117

CHAPTER 5. TACKLING UNCERTAINTY AND UNSCALABILITY USING
IDTMCS

operators in PRISM respectively:

Pmin=? [F≤r prop],

Pmax=? [F≤r prop].

(5.3)

In (5.3), the queries denote the minimal and maximal probability to reach a set of

states satisfying a proposition prop within r gossip rounds, respectively.

5.1.2 Methodology and Results

An in Chapter 4, we evaluate both the initial and extended designs of the protocol under

both normal circumstances and when a split-world attack is in progress, with one victim

client present in the network. The client of type C3 and the server of type S1 will have

the latest STH data from the log with the former possessing fake data during the split-

world scenario. For the normal scenario, we analysed the minimal/maximal likelihood

of all clients receiving the latest data during the first twenty rounds. Similarly, for

the split-world scenario, we analysed the minimal/maximal likelihood of inconsistency

detection. At the time of writing, the tool extension does not support rewards-based

IDTMC model checking, meaning protocol efficiency cannot be investigated. Using

(5.3), the properties we analyse are:

Pmin=? [F≤r clients all updated],

Pmax=? [F≤r clients all updated],

in the normal case and

Pmin=? [F≤r detect],

Pmax=? [F≤r detect],

118

5.1. USING IDTMCS WHEN CLIENT PROBABILITIES ARE UNKNOWN

Figure 5.1: Box-and-whisker plots showing the overall range of values for each proportion
randomly generated, broken down by client type. The tail ends represent the
maximum/minimum values for that category, the orange line and green triangle give the
median and the mean value for that data type, respectively. The spread of the data is
designed to closely match the intervals used in model checking as much as possible.

Category

Gossip Rate Server 1 Server 2 Server 3 Server 4 Server 5

Client Type Min Max Min Max Min Max Min Max Min Max Min Max

Type C1 0.482 0.516 0.01 0.1 0.2 0.4 0.2 0.295 0.3 0.392 0.0 0.29

Type C2 0.48 0.518 0.01 0.1 0.2 0.335 0.4 0.495 0.2 0.285 0.0 0.19

Type C3 0.484 0.516 0.01 0.1 0.2 0.4 0.15 0.25 0.15 0.25 0.0 0.49

Table 5.2: Maximal/minimal values for each proportion, rounded to three decimal places each.

in the split-world case.

Next, we generate artificial data in such a way that the range of proportions for

each category is large enough to try to closely match the size of the intervals used

for model checking. We present box-and-whisker plots for this collection of randomly

sampled data in Fig. 5.1 and give the maximal/minimal values of each proportion in

Table 5.2. We randomly chose samples from this data to construct models for statistical

model checking and compared the range of approximated results against our verification

results.

119

CHAPTER 5. TACKLING UNCERTAINTY AND UNSCALABILITY USING
IDTMCS

(a) Initial design (b) Extended design

Figure 5.2: IDTMC model checking and simulation results showing the probability of all
clients in the network being updated during the first twenty gossip rounds. We compare
against the simulation results (blue shaded area), minimal verification result (red line) and
maximal verification result (navy line).

Normal Scenario

In Fig. 5.2, for both the initial and extended versions of the protocol, we display the

range of statistical results using the randomly sampled data (the shaded blue area)

and the exact Pmin and Pmax reachability results (red and navy line, respectively).

We see the statistical results lie neatly between the verification results. In particular,

the Pmin result in Fig. 5.2(a) shows there are probability distributions which produce

even worse results than the randomly sampled data provides, giving an example of

IDTMC model checking having advantages over random simulations. In Fig. 5.2(b),

the verification results produce tight bounds on the simulation results and show that,

after fourteen rounds, it is guaranteed the newer data will be disseminated to all the

clients.

Split-world Scenario

Fig. 5.3(a) shows that a wider range of possibilities can happen; in the worst-case, the

probability of detection is just under twenty per cent given by the Pmin result. Using

120

5.2. IDTMC ABSTRACTION

(a) Initial design (b) Extended design

Figure 5.3: IDTMC model checking and simulation results showing the probability of
inconsistency detection amongst clients during the first twenty gossip rounds. We compared
against the simulation results (blue shaded area), minimal verification result (red line) and
maximal verification result (navy line).

the extended protocol design, detection is guaranteed after around twelve rounds. To

explain why, since server gossip is independent of client behaviour and the probability

of broadcasting to selected servers remains constant, the chances of the client detecting

something rapidly increases after several rounds no matter their client profile. There

would be little reason to put bounds on server behaviour as the more servers being

selected for gossip per round the better the data spread, so the question here is how

much liberty can be given to servers when selecting peers before it starts to negatively

impact on performance.

5.2 IDTMC Abstraction

As our models become more complex and the IDTMCs increase in size, applying the

IDTMC model checking implementation becomes a more expensive task, where an

excessive amount of time is needed to complete the process. At the cost of accuracy,

IDTMC abstraction can help derive relatively simpler models to perform model checking

121

CHAPTER 5. TACKLING UNCERTAINTY AND UNSCALABILITY USING
IDTMCS

on and obtain lower and upper bounds on probabilistic-type properties. This section

explains how we abstract a model using a combination of the algorithms described in

this section and existing functionalities within the PRISM codebase. To demonstrate

our tool, we focus on only abstracting normal scenario models without server gossip.

5.2.1 Dynamic Abstraction using PRISM

To abstract models with PRISM, one possibility is to construct the original, concrete

model first before then using the state/transition information, whether stored as a data

structure or exported to other files, to construct a newer abstracted model. However,

there are two problems with this approach:

� Size of the intermediate model - By trying to build the concrete model first so we

can derive the desired ADTMC, there is a risk that the former is too big to build.

Even if we build the concrete model, computer resource issues will still persist

which will not allow us to carry out the abstraction process.

� Usability - Writing code to abstract models in a specific way does not create

effective re-usable software which can be used for other purposes as certain

variables and functions will have to be hard-coded to solve our problem.

To address the above issues, we developed an algorithm which scans concrete

states individually as they are being explored and uses their respective transition

information to build a newer probability distribution to construct the abstract model

dynamically, by adding newer states/transitions or updating the bounds of existing

probability intervals. To describe the procedure, suppose we have an ADTMC

M = (S, sι, P
l, P u) constructed from the concrete IDTMC model

Mc = (Sc, sciota, P̃
l, P̃ u) after scanning states s1, s2, . . . , s(n−1) ∈ Sc. Assume that Mc

has a unique initial state and has no deadlock states. We wish to update M with

122

5.2. IDTMC ABSTRACTION

newer information after exploring state sn ∈ Sc with the set of neighbouring states

Next(sn) and the lower/upper probability bound function δl(sn)/δu(sn).

Abstract states are supposed to represent a partition of states, meaning to find which

partitions sn and its neighbouring states belong to, we evaluate a set of expressions

Expabs, with each one defining an abstract variable using concrete state information

to find the integer or truth value, depending on the context. To put it more formally,

Expabs = {F1, F2, . . . , FN} is a collection of functions which maps a state s ∈ Sc to a

value and is one of two types:

F Int : Sc → Z, or

FBool : Sc → {>,⊥}.

Updating the ADTMC using sn, δl(sn) and δu(sn) can be broken down into three

stages, which we will denote as functions:

i) FindAbstractState - Using Expabs, find which abstract state represents sn as

a tuple sabs = (F1(sn), F2(sn), . . . , FN(sn)), where each Fi ∈ Expabs for every

i = 1, . . . , n.

ii) ConstructComponent (Algorithm 2) - Next, using Next(sn), find the set of

abstract states Nextabs(sn) (similar to step i)) which neighbour sn and the

lower/upper probability bound function δlabs(sn)/δuabs(sn) describes the

minimal/maximal probability of transitioning from sn to each state in

Nextabs(sn).

iii) UpdateADTMC (Algorithm 3) - Lastly, use sabs, Nextabs(sn), δlabs(sn) and

δuabs(sn) to update M. This may include appending sabs to S if it has not been

seen before, adding newer transitions or updating existing bounds.

123

CHAPTER 5. TACKLING UNCERTAINTY AND UNSCALABILITY USING
IDTMCS

𝑠

𝑠

𝑠

𝑠

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

FindAbstractState +
ConstructComponent

ADTMC 𝑀[,]

[0,]

[,]

[,]

[,]

[, 1]

[0,]

𝐴

𝐴

𝐴

𝐴

[0,1]

[0,]

[0,]

…

…

…

…

…

UpdateADTMC

…

…

…

…

New ADTMC 𝑀′

Concrete
Model 𝑀

Component 𝐶

(1) (2)

…

…

Figure 5.4: Illustration of the three-stage process of (1) parsing state/transition information
from a concrete model (FindAbstractState and ConstructComponent), constructing the
abstract component and (2) using it to update an ADTMC (UpdateADTMC.)

Method i) simply takes as input sn and performs a loop over Expabs to evaluate

each Fi. For methods ii) and iii), please refer to Appendix A.

Fig.5.4 gives an example of where we have an ADTMC M and the state and

transition information from state s1 is parsed from the concrete model Mc to derive a

component C, which is then synthesised with M to produce a newer ADTMC M′. In

step (1), if we let δabs(s)(Ai) = [δlabs(s)(Ai), δ
u
abs(s)(Ai)] we apply FindAbstractState

and ConstructComponent to obtain the following:

� s1 ∈ A0, s2 ∈ A2, s3, s4 ∈ A3, Nextabs(s) = {A2, A3},

� δabs(s)(A2) = [1
3
, 2

3
],

� δabs(s)(A3) = [0, 1
3
] + [1

3
, 1

3
] = [0 + 1

3
, 1

3
+ 1

3
] = [1

3
, 2

3
]

Lastly, in step (2), we apply UpdateADTMC to transform M by adding or

updating information about the abstract model:

� A3 gets added to M, so S ′ = S ∪ {A3},

124

5.3. EXPERIMENTAL RESULTS

Algorithm 2 Constructing the set of adjacent abstract states and the corresponding
distribution function after exploring the state and transition information for a concrete
state s.

Require: State s, setNext(s) of outgoing states from s in IDTMCM = (S, sι, P̃
l, P̃ u),

lower/upper probability bound function δl(s)/δu(s), set of expressions for abstract

variables Expabs.

1: procedure ConstructComponent(s, Next(s), δl(s), δu(s), Expabs)

2: Nextabs(s)← ∅
3: Initialise probability bound functions δlabs(s), δ

u
abs(s)

4: for t ∈ Next(s) do

5: tabs ← FindAbstractState(t, Expabs)

6: if ta ∈ Nextabs(s) then

7: δlabs(s)(tabs)← δlabs(s)(tabs) + δl(s)(t)

8: δuabs(s)(tabs)← min(1, δuabs(s)(tabs) + δu(s)(t))

9: else

10: Nextabs(s)← Nextabs(s) ∪ {tabs}
11: δlabs(s)(tabs)← P̃ l(s, t)

12: δuabs(s)(tabs)← P̃ u(s, t)

13: end if

14: end for

15: Return Nextabs(sabs), δ
l
abs(sabs), δ

u
abs(sabs)

16: end procedure

� P u(A0, A1) = 1 (unchanged), P l(A0, A1) = 0 (since A1 /∈ Nextabs(s)),

� P u(A0, A2) = max
(

1
2
, 2

3

)
= 2

3
, P l(A0, A2) = min

(
0, 1

3

)
= 0,

� P u(A0, A3) = δuabs(s)(A3) = 2
3
, P l(A0, A3) = 0 (since A3 /∈ Sup(A0)),

5.3 Experimental Results

Our implementation of the process previously described involves a hybrid approach,

applying the skeleton algorithm of one of PRISM’s engines and combining it with

original code to build an ADTMC instead, using labels and formulae written within

the PRISM file to specify the abstract variables and the set of target states with which

125

CHAPTER 5. TACKLING UNCERTAINTY AND UNSCALABILITY USING
IDTMCS

Algorithm 3 Updating an abstract model M = (S, sι, P
l, P u) using a state s from

concrete IDTMC modelMc = (Sc, scι , P̃
l, P̃ u). Assume paths inMc are all infinite and

there is only one initial state.

Require: Concrete state s ∈ Sc, set of neighbouring states Next(s), lower/upper

probability bound function δl(s)/δu(s), set of expressions for abstract variables

Expabs.

1: procedure UpdateADTMC(M, s, Next(s), δl(s), δu(s), Expabs)

2: sabs ← FindAbstractState(s, Expabs)

3: Nextabs(s), δ
l
abs(s), δ

u
abs(s)←ConstructComponent(s, Next(s), δl(s), δu(s),

Expabs)

4: if scι = s then

5: sι ← sabs
6: end if

7: if sabs ∈ S then

8: Sup(sabs)← GetSupport(M, sabs) . Called via PRISM

9: for t ∈ Nextabs(sabs) do

10: if t ∈ Sup(sabs) then

11: P l(sabs, t)← min(P l(sabs, t), δ
l
abs(s)(t))

12: P u(sabs, t)← max(P u(sabs, t), δ
u
abs(s)(t))

13: else

14: S ← S ∪ {t}
15: if Sup(sabs) 6= ∅ then

16: P l(sabs, t)← 0

17: else

18: P l(sabs, t)← δlabs(s)(t)

19: end if

20: P u(sabs, t)← δuabs(s)(t)

21: end if

22: end for

23: for u ∈ Sup(sabs) \Nextabs(s) do

24: P l(sabs, u)← 0

25: end for

26: else

27: S ← S ∪ {sabs}
28: for t ∈ Nextabs(s) do

29: S ← S ∪ {t}
30: P l(sabs, t)← δlabs(s)(t)

31: P u(sabs, t)← δuabs(s)(t)

32: end for

33: end if

34: end procedure

126

5.3. EXPERIMENTAL RESULTS

to perform probabilistic reachability. By keeping track of the concrete states seen so

far and the ones yet to be explored, state/transition information is parsed to gain

newer information which is then added to the ADTMC model using the functionalities

provided by the PRISM codebase.

For the code to recognise abstraction information provided by the PRISM file, we

prefix formula names with the string “abs ”, where one abstraction formula corresponds

with one abstract variable. We reserve the formula name abs t which is used to denote

the satisfiability condition for an abstract state to be a target state (the code will raise an

error if no such formula named abs t exists). As with normal PRISM formulae, we can

embed a formula into others using its name. We store the abstract variable names (after

stripping the prefix “abs ”) and their respective formulae separately in vector objects

absV arNames and absV arExps. When the ADTMC has been successfully constructed

using the algorithm explained in the previous section, our code then performs bounded

reachability model checking on it automatically; for experimental purposes, given a

target set of states specified by abs t, we compute the probabilistic reachability for the

first twenty rounds.

5.3.1 Abstracting Normal Scenario Models

To test our implementation and evaluate the effectiveness of the abstraction, we

compare the model statistics, build times and verification results between full-scale

network models and their abstracted counterparts. Due to the difficulties of building

split-world models in PRISM and the inherent limitations of PRISM’s explicit engine,

we focus on normal scenario network models where no attack is taking place (see

Chapter 4). We devise one way that we could abstract our models based solely on

remembering whether a client or server has been updated and the global state the

clients are in. As we have explained in Chapter 4, each client c in the model has a

127

CHAPTER 5. TACKLING UNCERTAINTY AND UNSCALABILITY USING
IDTMCS

Boolean csth, which is true if the client has the newer STH, and each server s records

a Boolean ssth which has a similar function to csth.

To record the state of a client c in the abstract model, we allow (csth)
abs ∈ {>,⊥}

to be a Boolean variable which is false if the client is not updated or true otherwise.

For the client to be updated, one of the two conditions must be met:

i) If cg 6= 2, csth is also true,

ii) If cg = 2 (the connect phase), we look at whether csth is true or, if not, we check

whether the client will be updated in the next phase of the round i.e. if cs = j,

where j > 0, check that sjsth is true.

Therefore, letting M equal the number of server nodes in the network model, we

can express (csth)
abs as:

(csth)
abs = (cg 6= 2 ∧ csth = >) ∨

(
cg = 2 ∧

(
csth = > ∨

M∨
j=1

(
cs = j ∧ sjsth = >

)))
.

Next, for a server node sj in the network model, letting (sjsth)
abs ∈ {⊥,>} also be a

Boolean variable in the abstract model which records the update state of sj. It behaves

similarly to (csth)
abs, however, it can evaluate to true if an updated client chooses to

gossip with it in the connect phase. Letting N equal the number of client nodes in the

model, we have:

(sjsth)
abs =

(
c1
g 6= 2 ∧ sjsth = >

)
∨

(
c1
g = 2 ∧

(
sjsth = > ∨

N∨
i=1

(
cis = j ∧ cisth = >

)))
.

Since all clients move synchronously in the original model, it does not matter which

cig is used in the previous expression. We also have an integer variable absg ∈ N ∪ {0},

which records the phase of the gossip round, having a similar purpose to the client’s

128

5.3. EXPERIMENTAL RESULTS

global state in the concrete model, with the choose phase split into four different cases.

We describe the values for absg and what they represent next:

0 - Start of the gossip round,

1 - Choose stage where at least one updated client gossip and all the non-updated

ones decide to skip,

2 - Choose stage where all updated clients skip the round and at least one non-

updated client gossip,

3 - Choose stage where at least one updated and one non-updated client gossips ,

4 - Choose stage where all clients decide to skip,

5 - Connect stage,

6 - Round Complete stage,

7 - END stage. This is reached when all clients have been updated.

Lastly, we consider an abstract state of the form

(
(c1
sth)

abs, . . . , (cMsth)
abs, (s1

sth)
abs, . . . , (sNsth)

abs, absg
)

to be a target state if absg ≥ 6 (i.e. when the gossip round is completed) and∧M
i=1(cisth)

abs evaluates to true.

5.3.2 Results

We looked at four network models with differing amounts of clients and servers, each

with ten entities present. For the gossip rates and client profiles in each category, we

generated random intervals with a maximum length of 0.2 and the lower bound being no

129

CHAPTER 5. TACKLING UNCERTAINTY AND UNSCALABILITY USING
IDTMCS

N M States Transitions Build Time (s) Total MC Time (s)

original abstract original abstract original abstract original abstract

4 6 666,864 1664 1,204,464 8458 5.239 7.37 198.438 1.263

5 5 2,185,808 1728 4,051,808 9758 16.979 25.531 733.861 1.454

6 4 4,446,768 1760 8,321,520 10,689 37.455 55.865 1420.524 1.964

7 3 4,747,942 1776 8,876,458 11,616 42.567 163.35 1568.989 1.790

Table 5.3: Model statistics and times for normal scenario models with differing amounts of
clients, N , and servers, M , present. Whilst the building times for the abstract model took
longer than their concrete counterparts, we also see huge gains in the model checking efficiency.
All values are rounded to three decimal places where appropriate.

less than 0.01. We first evaluated the model statistics and build/model checking times

of constructing the concrete models and their abstracted counterparts, and afterwards

compared the experimental results.

Model Statistics and Times. For our concrete IDTMC models, their sizes ranged

from about 667, 000 to 4.7 million states, with the largest number of transitions found

nearly reaching 8.9 million. They typically take less time to build than their abstracted

versions, yet the total time to perform model checking, the total time to compute the

minimal and maximal reachability probabilities for the first twenty gossip rounds, took

25 minutes to finish. The number of states built for the abstract models did not go into

the tens of thousands; this is expected as, there are at most 2N · 2M · 8 = 210 · 8 = 8192

possible states. Due to these models being small, verification took at most two seconds

to finish. In each of the four cases investigated, it was more efficient to analyse the

abstracted models. Table 5.3 displays the full set of results.

Verification Results. Next, we compare the results obtained between the original,

concrete IDTMCs and their ADTMC counterparts by finding the minimal and maximal

reachability probabilities of reaching the set of targets states where all clients have newer

data. Since we are performing verification on concrete models where the probability

interval ranges were made to be small, we would expect there to be tight lower and

130

5.3. EXPERIMENTAL RESULTS

upper bounds. The ADTMCs will produce weaker bounds on the same properties, since

this is the trade-off for obscuring information concerning certain concrete variables. The

reliability of these bounds also depends on the difference in the sizes of the original and

abstract models; since the latter models are small, the bounds deviate when compared

against the results of concrete models with millions of states.

With four clients and six servers present in the model, the minimal (Pmin) and

maximal (Pmax) results obtained from the ADTMC, as we can see in Fig.5.5(a),

appear to be close to the IDTMC results, whereas with seven clients and three servers

(Fig.5.5(d)) the bounds are coarser, yet not too much as to be deemed impractical.

From an investigator’s perspective, to judge the effectiveness of the gossip mechanism,

the Pmin ADTMC results provide a reliable limit on the worst-case behaviour without

deviating too much from the IDTMC results.

5.3.3 Limitations

We have shown how our code can abstract PRISM models dynamically and can handle

millions of states whilst still being general enough to handle similar problems involving

abstraction. However, we must acknowledge the limitations of our implementation.

Firstly, the code is not optimised and still needs a sizeable amount of memory to

perform the abstraction. During our investigations, we found that PRISM’s explicit

engine was more efficient in building models compared to our tool extension, despite

allocating 12GB of memory to the heap space in each case. Secondly, the results we

obtained from our ADTMCs are only as good as the way we choose to abstract the

concrete model, and there are many possibilities of doing this which will require multiple

experiments to get right. To make the bound of the concrete and abstract results more

contiguous, one solution involves adding more abstract variables to preserve certain

information about the original models. Note the following caveat: the increase in the

131

CHAPTER 5. TACKLING UNCERTAINTY AND UNSCALABILITY USING
IDTMCS

(a) 4 Clients, 6 Servers (b) 5 Clients, 5 Servers

(c) 6 Clients, 4 Servers (d) 7 Clients, 3 Servers

Figure 5.5: Verification results for our concrete (IDTMC) and abstracted (ADTMC) models.
In each case, we compared the minimal (Pmin, blue lines) and maximal (Pmax, red lines)
results found for both versions of the network model.

number of states may be exponential and would not scale well if more clients get added

to the models. It is also unknown if adding more complex expressions in the PRISM

file can affect the tool extension efficiency.

To expand the capabilities of our implementation, since we have also added

support for DTMCs, it may be a useful feature to include support for three-valued

abstraction for PCTL properties, as it can be shown that the type of abstraction we

used conserves qualitative verification results [119]. Future work can also include

adding support for CTMC or MDP abstraction by implementing other techniques; see

132

5.4. SUMMARY

for example magnifying-lens abstraction [56] and game-based abstraction [173].

5.4 Summary

In this chapter, to accommodate for any uncertainties in the transition probabilities,

we build and verify IDTMCs using an extension of PRISM. Since IDTMCs are

non-deterministic models, we can produce PCTL results showing the best- and

worst-case outcomes for protocol performances and this is more effective than

performing a random search. Since IDTMCs are more costly to perform verification

on than DTMCs, we show how to ease this through abstraction, observing how there

is a trade-off between efficiency and accuracy. Our implementation has the benefit of

being more general purpose and uses existing PRISM functionalities, building the

abstraction of the IDTMC on-the-fly rather than trying to build the larger, concrete

model first. In the next chapter, building upon accommodating for uncertainty, we

introduce a method which allows us to search over other uncertain parameters other

than probabilities, allowing for more thorough analysis.

133

CHAPTER 5. TACKLING UNCERTAINTY AND UNSCALABILITY USING
IDTMCS

134

Chapter 6

Model Parameter Optimisation

In the previous chapter, IDTMCs provided a powerful way to capture probabilistic

uncertainties within our models. However, they are limited in some respect since the

uncertainties are only on the transition probabilities. This means we still need to keep

certain parameters fixed, such as the number of client nodes of each type. In this section,

by applying sequential-based model optimisation (SMBO) algorithms, we describe the

process of how we could intelligently explore a mixture of both discrete and continuous

parameters which define our models where, after a pre-determined number of trials

in which different parameters are chosen by a ‘black-box’ optimiser to configure the

network model, a set of parameters is suggested that produces a bad scenario which

minimises a PCTL property we are interested in.

6.1 Deriving Network Model Parameters

This section describes the model space for our DTMC network models which, given a

fixed network topology, contains the set of possible configurations that consists of the

initial state, the client type probabilities and the frequency of each client type in the

model. For a network topology NT , letMNT be a DTMC which models the gossiping

135

CHAPTER 6. MODEL PARAMETER OPTIMISATION

that occurs in a sequence of rounds until a condition is met. If NT has N client

types and M server types, we list these types as C1, C2, . . . , CN and S1, S2, . . . , SM

respectively.

6.1.1 Client Type Frequency

In MNT , let N ′ ∈ N be the total number of client nodes in the model. Assuming

each client node inMNT belongs to a unique type, and at least one client of each type

is always present, let fk ∈ N denote the number of clients of type k in MNT such

that
∑N

k=1 f
k = N ′. We define the client type frequency by the N -dimensional vector

F = (f 1, f 2, . . . , fN).

6.1.2 Set of Initial States

Our models must initialise the network state by assigning STH data to each client and

server before gossiping begins, for which there are many possibilities. As before, we

keep to our design assumptions whereby, in the initial state, only one client and one

server node initially have the latest STH data, with the rest of the nodes having old

STH data.

Given an initial setup of MNT , we define the initial local states for the clients

and servers separately. Let
(
C1
init, C

2
init, . . . , C

N
init

)
be an N -dimensional vector where

Ck
init = 1 means exactly one client of type Ck has the newest data (or, with split-world,

is treated as the victim with the fake data), and Ck
init = 0 otherwise. Due to our

design assumptions, it is necessary the condition
∑N

k=1C
k
init = 1 holds. Similarly, let(

S1
init, S

2
init, . . . , S

M
init

)
be an M -dimensional vector where Sjinit = 1 means a server of

type Sj has the latest data and Sjinit = 0 if otherwise, with
∑M

j=1 S
j
init = 1. Denoting the

client and server initial state vectors we previously described as U and V respectively,

we let the pair (U, V) describe the unique initial state of MNT . To describe all the

136

6.1. DERIVING NETWORK MODEL PARAMETERS

initial states MNT may have, let IC ⊆ {0, 1}N and IS ⊆ {0, 1}M be the set of all

possible initial states for the client and server nodes, respectively:

IC =

{(
C1
init, C

2
init, . . . , C

N
init

) ∣∣∣∣∣Ck
init ∈ {0, 1} for every k and

N∑
k=1

Ck
init = 1

}
,

IS =

{(
S1
init, S

2
init, . . . , S

M
init

) ∣∣∣∣∣Sjinit ∈ {0, 1} for every j and
M∑
j=1

Sjinit = 1

}
.

Lastly, we define the set of possible initial states for MNT to be the product set I =

IC × IS .

6.1.3 Probabilities for Each Client Type

The gossiping rates for the client types can be represented by the vector

G = (g1, g2, . . . , gN), where 0 < gk ≤ 1 for every k = 1, 2, . . . , N . For the server

connection probabilities, for a client type Ck and server type Sj, let

Ikj = [pk
j
, pkj] ⊆ [0, 1] be the probability interval which specifies the range of values for

probability pkj = P(Ck, Sj), and let Ik =
(
Ik1 , I

k
1 , . . . , I

k
M

)
be a tuple which contains

the intervals for each server connection probability for Ck, where the following

condition must hold for probability distributions to exist:

M∑
j=1

pk
j
≤ 1 ≤

M∑
j=1

pkj . (6.1)

If the condition described in expression (6.1) does get violated e.g. if we have∑M
j=1 p

k
j < 1, then we could not derive a valid distribution since the total sum would

always equal less than one. Similarly, if
∑M

j=1 p
k
j
> 1, the total sum will always be

greater than one.

To make sure we do not initially choose values in Ik1 where no probability

137

CHAPTER 6. MODEL PARAMETER OPTIMISATION

Algorithm 4 Deriving a probability distribution for client type ck with surrogate choice

parameters x = (xk1, . . . , x
k
M−1) and tuple Ik =

(
Ik1 , I

k
2 , . . . , I

k
(M−1), I

k
M

)
Require: For every 1 ≤ j ≤M and Ikj = [pk

j
, pkj],

∑M
j=1 p

k
j
≤ 1 ≤

∑M
j=1 p

k
j .

1: procedure DeriveDistribution(x, Ik)
2: for j = 1 . . . (M − 1) do

3: pkj = pk
j

+ xkj · (pkj − pkj)
4: Ikj ← pkj

5: for β = (j + 1) . . .M do

6: pk
(β,j)
← max

(
pk

(β,j−1)
, 1−

∑j
l=1 p

k
l −

∑
(j+1)≤β′≤M

β′ 6=β
pk(β′,j−1)

)
7: pk(β,j) ← min

(
pk(β,j−1), 1−

∑j
l=1 p

k
l −

∑
(j+1)≤β′≤M

β′ 6=β
pk

(β′,j−1)

)
8: Ikβ ←

[
pk

(β,j)
, pk(β,j)

]
9: end for

10: end for

11: pkM = 1−
∑M−1

j=1 pj

12: IkM ← pkm

13: return Ik

14: end procedure

distributions exist, we shall assume that Ik is a delimited, meaning that for every

1 ≤ j ≤ M and pkj ∈ Ikj , there exists a probability distribution

δ = (pk1, . . . , p
k
j , . . . , p

k
M).

To derive a probability distribution from Ik, we devise an algorithm (see Algorithm

4) which applies normalisation [119] a finite number of times after selecting values from

Ik1 , I
k
2 , . . . , I

k
M−1, in that order, finally deriving a value from IkM automatically. To do

this, we define a set of surrogate parameters xkj ∈ [0, 1] which each describe how far we

must go along each truncated interval Ĩkj ⊆ Ikj derived from normalisation. For more

details, please refer to Appendix B. We define xk = (xk1, . . . , x
k
M−1) to be the surrogate

choice parameter vector for client type Ck. Note that our algorithm is deterministic

since we iterate through Ik and xk simultaneously in a fixed order.

138

6.2. ADAPTING THE BLACK-BOX OPTIMISATION PROBLEM

6.1.4 The Modelling Space

To end this section, fixing tuples I1, . . . , IN which states the set of probability intervals

for each client type, we denote χ to be the set of all configurations forMNT of the form

(F, I,G,X), called the modelling space for MNT , where:

- F is the client type frequency vector,

- I is the set describing all initial states,

- G is the vector which lists the gossiping rate for each client,

- X = [x1, . . . ,xN]T is a N × (M − 1) matrix which specifies the surrogate choice

parameter vectors for each client type.

6.2 Adapting the Black-box Optimisation Problem

Analogous to the black-box problem optimisation problem (see Chapter 3, Problem

3.4.1), we define the problem we want to solve as follows:

Problem 6.2.1. (Black-box optimisation problem for model checking quantitative

PCTL properties) Let χ be the modelling space, φ a quantitative PCTL property and

Fφ : χ → R a function which constructs a model according to a configuration x ∈ χ,

performs verification on it using φ and outputs a real value. Suggest a point x∗ ∈ χ

which best minimises Fφ. Due to constraints, Fφ can only be called a finite number of

times.

To address the above problem, we apply SMBO introduced in Chapter 3, Section

3.4. To recap, SMBO seeks to find any trends of behaviour in the objective function

we wish to optimise by using a statistical model which is relatively cheap to evaluate

and is continuously re-adjusted through a series of inputs/output pairings, combining

139

CHAPTER 6. MODEL PARAMETER OPTIMISATION

Algorithm 5 FφP for PRISM property φP .

Require: Characterisation vector x = (F, I,G, [x1, . . . ,xN]T) ∈ χ, fixed interval sets

I1, . . . , IN , φP is a quantitative property

1: procedure FφP (x)

2: for k = 1 . . . N do

3: δk ← DeriveDistribution(xk, Ik) . See Algorithm 4

4: end for

5: Construct a PRISM model according to x, δ1, . . . , δN

6: Verify for property φP to obtain a result r′

7: Derive a value r ∈ R using r′

8: return r

9: end procedure

it with intelligent searching of χ to decide which input to evaluate next. By combining

this algorithm with the capabilities of PRISM, we wish to construct a series of DTMC

models and find the configuration which best optimises a metric related to φ. We

define a function FφP , where φP denotes φ written in the PRISM syntax, taking as

input a characterisation vector x ∈ χ. For each client type, we derive probability

distributions according to their respective interval sets and surrogate choice parameters

(See Algorithm 4). Next, we automatically construct a PRISM model and perform

verification on it with φP . Lastly, we output a value r ∈ R by performing operations

which use the verification result of φP . Algorithm 5 summarises this process.

6.3 Python Application

We present our Python application which uses optimisation libraries designed for

SMBO, namely Hyperopt and Benderopt (see Chapter 3, Section 3.4.3), to find

suggested parameters for our network model which optimises FφP . We explain the

workflow of the code, including the range of options available given by the user before

140

6.3. PYTHON APPLICATION

running it, and the different components of the application.

6.3.1 Workflow

Using the default options, if we let the trial data file path and the PRISM property

file path be trial file and property file respectively, we can run the application

using the command:

python smbo.py -t 〈trial file 〉 -props 〈property file 〉

To tell the application how to run, the user is provided with a wealth of options:

� Use Hyperopt (-hopt) - Use the Hyperopt library. The default state is to use

the Benderopt library. We allow this option so we can compare the performance

between both libraries (see Section 6.4).

� Evaluations (-e) - Specifies the number of trials to be done. Must be at least

one. Default value is fifty.

� Split-world models (-s) - Tells the application we want to analyse split-world

models instead of normal models. The default setting is to analyse normal models.

� Database file (-db) - The SQLite database to write experiment data to for further

analysis. If no database exists, the application will automatically create one with

the file name text db.sqlite.

� Property file (-props) - Which property file to use when calling PRISM. This

option is always required. An error is raised if no such file exists or any properties

cannot be correctly parsed.

141

CHAPTER 6. MODEL PARAMETER OPTIMISATION

� Trial data file (-t) - The file path used to import/export formatted experiment

data. This is required by the user and the contents must be in the correct format

depending on the optimiser being used. The number of samples present in this

file must not exceed the number of evaluations given by the -e option. If no such

file exists, the code will create and write data after the experiment has finished as

a dictionary formatted for the optimiser. Otherwise, the file will be overwritten

with both the old and newer data.

� Property number to evaluate (-p) - Specify which property to use from the

chosen property file. The default is to use the first property listed.

� Use multiple initial state models (-mulinit) - Analyse models with multiple

initial states instead of single initial state models, considering all initial setups

which respect our design principles.

� Apply symmetry reduction (-symm) - Make PRISM use symmetry

reduction during the model building process (see Chapter 3). The application

will automatically find the equivalent modules to collapse.

Tab. 6.1 summarises the list of arguments described. Next, we define the parameter

space which characterises all network models by calling the HyperoptParameters class

or BenderoptParameters class depending on the optimiser used. If mulinit is true, we

use a ‘dummy value’ as model checking is performed over all possible initial setups and

is equivalent to searching over N ′ ·M inputs from χ simultaneously.

We fixed the gossiping rate for each client type to be 0.5 because increasing this

probability will improve the dissemination/detection rate properties. The variables that

we vary are:

i) Client count - A list that includes all allowable vectors for F.

142

6.3. PYTHON APPLICATION

Argument Option Type Description Default value

Use Hyperopt

library
-hopt bool

Use the Hyperopt library when optimising.

If false, use the Benderopt library.
False

Evaluations -e int
The number of evaluations to do per

iteration. Must be at least one.
50

Use split-

world models
-s bool

Perform model checking on split-world type

models. If false, use normal type models.
False

Database -db str Which SQLite database to write data to. test db.sqlite

Property file -prop str
Name of PRISM property file to use.

Mandatory.
N/A

Trial data file -t str
Name of trial data file import or

export data. Mandatory.
N/A

Property number -p int

Specify which property to evaluate.

We analyse the first listed property

by default.

1

Use multiple

initial states
-mulinit bool

Perform verification on multiple initial

state models. If false, use single

initial state models.

False

Use symmetry

reduction
-symm bool

Apply symmetry reduction during the

model building process.
False

Table 6.1: List of options for the Python application.

ii) Initial client states - A list that includes all allowable vectors for IC.

iii) Initial server states - A list that includes all allowable vectors for IS .

iv) xkj - The surrogate choice value for client type Ck when deriving the probability

of connecting with server type Sj. For server SM , no such parameter exists since

the corresponding probability will be automatically derived.

i), ii) and iii) are treated as discrete parameters and vi) a continuous uniform parameter,

chosen within the interval [0, 1) (by design, both Hyperopt and Benderopt always choose

values strictly less than the upper bound).

Lastly, we need to specify what the objective function is before any optimising can

begin. Depending on the library used, we call either the benderopt or hyperopt

function, both of which sanitise the values for each parameter and feeds them into a

wrapper objective function which acts as the objective function. For a general

143

CHAPTER 6. MODEL PARAMETER OPTIMISATION

execution of objective function, firstly it generates the probability distribution for each

client type, invoking either the HonestModels or SplitworldModels class, depending on

the user’s preference, to construct the strings necessary to write the PRISM models.

A PRISMData object is then created, designed to call PRISM using command-line

tools, parameterised by user preference; for example, if the -symm flag was set, then

the -symm option will be included in the command to call PRISM with the correct

values to perform symmetry reduction. To obtain a verification result for φP , we call

the perform verification method from PRISMData and import it from a results file

using the extract result method. To accommodate for a range of results which may be

obtained using multiple initial states, extract result returns the result as a list from

which the value can be extracted. Lastly, after performing further operations, a real

value is returned. In our implementation, the verification result and corresponding

model parameters are saved into an SQLite database for statistical analysis.

To perform the optimisation process, we either use fmin from the Hyperopt library

or a customised minimize function using the Benderopt library which takes as an input

the objective function, the search space, the file path to import/export trial data and

the total number of evaluations we wish to complete. The latter is calculated as the

difference between the desired number of evaluations and the number of imported trial

data samples. For example, if the user inputs 100 evaluations and imports 20 samples

from a previous experiment, then 80 trial runs will be conducted. If no such trial data

exists, the code will perform the total number of evaluations. After this process ends,

the code prints out the sample found which best minimises the objective function and

saves trial data to the file path.

144

6.3. PYTHON APPLICATION

HyperoptParameters or
BenderoptParameters

Parse user
options

objective_function

Hyperopt or
Benderopt

Suggest
parameters +
pre-process

HonestModels or
SplitworldModels PRISMData

Return
verification result

PRISM

Output after T trials

Suggested
parameters

Output value +
conduct another
trial

property
file path

Pass PRISM
file path +
user options

trial data file

Updated trial
data file

Perform
verification

Figure 6.1: Overview of the workflow of the optimiser code. Users parse options to control
the execution of the code. A minimise function is called from the chosen optimiser library,
passing the number of trials to perform, the objective function, the file path to import/export
trial data from previous experiments and the parameter space. For each trial, the optimiser
suggests a newer set of parameters to use and generates the PRISM file. The user must supply
the file path of the property file and the number of the property to analyse. After extracting
the verification result, the objective function uses it to return a value to be fed back into the
optimiser. After the maximum number of trials has been performed, the code outputs the
best sample obtained to a text file and an saves all trial data to the given file path.

145

CHAPTER 6. MODEL PARAMETER OPTIMISATION

6.4 Experimental Results

To demonstrate our application, we perform optimisation over a given model space and

find the suggested setup, which gives the worst case result for properties considered

important; for the normal models, this is the expected number of rounds to spread the

latest STH data to all clients; for the split-world models, this is the expected number

of rounds until detection first occurs:

Rrounds
=? [F clients all updated],

Rrounds
=? [F detect].

(6.2)

We preserve our network topology to have three client types C1, C2 and C3, and

five server types, S1, . . . , S5, using the server connection probability intervals as shown

in Tab. 6.2. Our network models will have five client and server nodes each, with each

server being of a unique type. After modifying the behaviour of the objective function

to determine which models to construct and the result to output via a set of options (see

Tab. 6.1 for details), it outputs the negation of the largest result found after verifying

the PCTL property so we can maximise the quantitative results shown in (6.2). We

focus on models where only client-to-server gossip is used; we reason that if server-to-

server gossip can be shown to improve the quantitative aspects of a protocol’s design

in the worst case, then it can serve as a useful indicator for what we can expect for a

wide range of networking scenarios allowed by our model space.

6.4.1 Suggested Parameters Which Produce Negative

Outcomes

As in Chapter 4, we study four protocol variants and use both model checking and

statistical methods to evaluate their respective performance over time by analysing

146

6.4. EXPERIMENTAL RESULTS

Server type

Client type
C1 C2 C3

S1 [0.3, 0.4] [0.2, 0.25] [0.02, 0.1]

S2 [0.04, 0.3] [0.2, 0.25] [0.05, 0.3]

S3 [0.02, 0.2] [0.05, 0.1] [0.03, 0.3]

S4 [0.02, 0.3] [0.05, 0.25] [0.1, 0.3]

S5 [0.07, 0.15] [0.3, 0.35] [0.2, 0.4]

Table 6.2: Probability intervals used for each of our three client types to search over, denoted
as C1, C2 and C3. We assume they can connect with five distinct server entities, labelled
from S1 to S5, in the network.

the same properties as before: data dissemination, protocol efficiency and detection

rate. For both the normal and split-world cases, we use different objective functions

to find parameters which maximise the PCTL properties in (6.2). Tab. 6.3 provides

information on the suggested parameters which give the best result found when

searching the modelling space using single and multiple initial state models.

We perform experiments with both optimiser libraries and compared their outputs

for different models. For experiments using single initial state models, we perform

200 trials to ensure the search is thorough. For multiple initial state models, we only

perform 100 trials due to the excessive time it takes to analyse such models. We give

our findings in Fig. 6.2. In summary, searching over models with multiple initial states

is slightly more effective in finding the best results compared to using single initial

state models. In the normal case, the Benderopt library gave the best results whilst

for the split-world case, Hyperopt gave slightly better results. We note that, while the

results look more promising when searching over multiple initial state models, there is

a trade-off in the time to perform the required number of trials (on average, for both

libraries, twelve hours was needed to perform a batch of 25 trials).

147

CHAPTER 6. MODEL PARAMETER OPTIMISATION

(a)

Best suggestion

Parameter One initial state Multiple initial states

Client type

frequency
C1: 3, C2: 1, C3: 1 C1: 3, C2: 1, C3: 1

Initial setup
Client of type C3 and

server S3 have the newest data
N/A

C1 distribution (0.367, 0.257, 0.027, 0.269, 0.08) (0.399, 0.279, 0.021, 0.21, 0.091)

C2 distribution (0.214, 0.228, 0.061, 0.174, 0.323) (0.235, 0.209, 0.09, 0.12, 0.346)

C3 distribution (0.04, 0.099, 0.294, 0.253, 0.314) (0.05, 0.126, 0.282, 0.202, 0.34)

Result 9.851 9.855

(b)

Best suggestion

Parameter One initial state Multiple initial states

Client type

frequency
C1: 1, C2: 3, C3: 1 C1: 3, C2: 1, C3: 1

Initial setup
Client of type C1 has fake data;

Server S3 has real data
N/A

C1 distribution (0.334, 0.207, 0.035, 0.277, 0.147) (0.368, 0.239, 0.023, 0.23, 0.139)

C2 distribution (0.248, 0.226, 0.063, 0.113, 0.35) (0.225, 0.231, 0.066, 0.134, 0.344)

C3 distribution (0.055, 0.217, 0.077, 0.252, 0.398) (0.061, 0.27, 0.035, 0.286, 0.347)

Result 8.503 12.905

Table 6.3: The model parameters suggested for maximising (a) the expected number of rounds
for all client nodes to update themselves with newer data in the normal case and (b) the
expected number of rounds until client detection occurs in the split-world case. We also
distinguish between the parameters found when using single and multiple initial state models
to search over the modelling space.

6.4.2 Model Checking and Statistical Results Using Suggested

Parameters

Using parameters obtained from searching over single initial state models (see Tab. 6.2),

to look at how the protocols perform over time, we analyse for properties such as

detection and data spread, as done in previous chapters. Inspecting the verification

results, it appears the overall trends in the data are similar to those observed for

our previous experiments regarding data dissemination (Fig. 6.3(a)), detection rates

(Fig. 6.4(a)) and protocol efficiency (Fig. 6.3(b) and Fig. 6.4(b)). However, when

looking at the proportion of clients having each STH data type in the split-world case,

the clients are much more likely to possess fake data without server-to-server gossip,

148

6.4. EXPERIMENTAL RESULTS

(a) Using single initial state models (b) Using multiple initial state models

Figure 6.2: The best result found for our chosen properties after t trials using the optimiser
libraries Hyperopt and Benderopt. We distinguish between searching over (a) single initial
state models and (b) multiple initial state models.

Client type frequency

Clients C1 type C2 type C3 type

50 10 10 30

100 20 20 60

200 40 40 120

Table 6.4: The number of clients of each type for the differently sized networks used for
statistical model checking according to the suggested parameters used.

indicating fake data must reach further into a network before it can be detected, which

should be avoided (Fig. 6.4(c)). With server-to-server gossip applied, a larger proportion

of clients possess the real STH data (Fig. 6.4(d)).

Preserving the ratio of the client types present in the network and the rest of

parameters used in Tab. 6.3, we approximate results for the same properties in larger

networks using PRISM’s discrete simulator, applying the CI method to generate 99%

confidence intervals after sampling 2, 000 paths through the model. While we see

some of our findings remain consistent from Chapter 4 (Fig. 6.5(a), (b) and (c)), we

notice that server-to-server gossip reduces the efficiency of the STH-only protocol in

the split-world case (Fig. 6.5(d)). As shown in Fig. 6.5(e), with the initial protocol

design, more clients are needed to keep the proportion of them having fake data lower,

149

CHAPTER 6. MODEL PARAMETER OPTIMISATION

(a) Data dissemination (b) Log connections

Figure 6.3: Verification results for normal models using the suggested parameters found which
optimise our properties.

yet this metric remains constant when using the extended protocol designs.

150

6.4. EXPERIMENTAL RESULTS

(a) Detection rate (b) Log connections

(c) STH distribution, initial design (d) STH distribution, extended design

Figure 6.4: Verification results for split-world models using the suggested parameters found
that optimise our properties.

151

CHAPTER 6. MODEL PARAMETER OPTIMISATION

(a) Data dissemination (honest) (b) Log connections (honest)

(c) Detection rate (split-world) (d) Log connections (split-world)

(e) STH type distribution (split-world)

Figure 6.5: Statistical model checking results for our protocol variants using 50, 100 and 200
clients. We preserve the ratio of each client type when increasing the number of client nodes
and preserving the probabilities and initial conditions used in our models for verification.
Adding server-to-server gossip improves the data spread and detection (see (a) and (c)) but,
in the case of measuring the expected cumulative amount of the log connections for the STH-
only extended design in the split-world scenario, it does not scale well compared to the initial
design, as shown by (d). The extended design also aids in the distribution of the real data
whilst preventing the spread of the fake data (graph (e)).

152

6.4. EXPERIMENTAL RESULTS

6.4.3 Comparisons Using Randomly Sampled Data

Now we compare some model checking results from Section 6.4.2 with approximate

results using randomly generated data with 100 samples per client type to validate the

effectiveness of our methodology; we give the data statistics in Fig. 6.6 and Tab. 6.5.

Whilst we still select random samples for our client probabilities to generate DTMC

models, we also randomise the client type frequency and the initial state of the model.

We approximated the expected client proportion to have newer data (normal case) and

the probability of detection (split-world case) during the first twenty gossip rounds,

running 1, 000 trials for each property before evaluating the range of results. The

findings are presented in Fig. 6.7. For both cases, our verification results act as effective

lower bounds for our simulation results and a helpful indicator of what a negative

network traffic scenario looks like, showing how helpful it is over random searching

using sample data; we expected this as finding a possible worst-case scenario in an

infinitely sized search space would rely more on chance.

Even though there are no limits on the size of the model space to search over, it is

unknown how SMBO will perform as the dimensionality of the model space increases or

what is the sufficient number of trials needed to be performed to find optimal results.

As for our stability testing (see Section 6.4.4), there is room for improvement in our

searching so, for future work, we could investigate whether having a prior assumption

on which parameters appear to give more robust results (instead of starting with no

previous knowledge) produces a better search.

153

CHAPTER 6. MODEL PARAMETER OPTIMISATION

Figure 6.6: Box-and-whisker plots showing the overall range of values for each proportion
randomly generated, broken down by client type.

Category

Gossip Rate Server 1 Server 2 Server 3 Server 4 Server 5

Client type Min Max Min Max Min Max Min Max Min Max Min Max

Type C1 0.481 0.516 0.3 0.4 0.047 0.3 0.045 0.2 0.03 0.3 0.07 0.15

Type C2 0.482 0.52 0.2 0.25 0.2 0.25 0.05 0.1 0.1 0.203 0.3 0.35

Type C3 0.484 0.517 0.02 0.1 0.05 0.3 0.058 0.3 0.1 0.3 0.2 0.4

Table 6.5: Minimal/maximal values for each proportion, rounded to three decimal places each.

6.4.4 Investigating the Local Behaviour of the Objective

Functions

As the analytic forms of the objective functions used to construct and verify different

types of models are unknown, to end this section, we investigate how some of these

functions behave locally near our parameters used for model checking (see Table 6.3)

to see how erratic it is, determining if the parameters suggested by the optimisation

algorithms were sensible choices and hard to improve upon. Using the data from

Tab. 6.3, while restricting our investigations to the parameters used for single initial

state models and fixing the discrete parameters, we selected probabilities to vary

while keeping the other values in the distribution fixed. For each client type, we

varied two probabilistic values, performed ten trials and recorded the result achieved

154

6.4. EXPERIMENTAL RESULTS

(a) Expected client proportion (normal) (b) Detection rate (split-world)

Figure 6.7: Comparing the range of simulation results using random sampling (blue shaded
area) against the corresponding verification results (red-dashed line) which used the suggested
model parameters.

each time, repeating this procedure multiple times by fixing other probabilities. For

each client type Ck, we varied P(Ck, Sj), where j = 1, . . . , 4, and P(Ck, S5) within

their respective (normalised) intervals, using the value of the former to automatically

find the latter.

Fig. 6.8 shows the results and compares them against the worst-case result found

in the normal case (see Tab. 6.3). It appears that the results for the expected number

of rounds for all clients to obtain the newest STH data remain more or less consistent

and tend to lie between 9.5 and 10, though there were rare instances where we found

marginally better results. In Fig. 6.9, where we show our findings for the split-world

case, the results for the expected number of rounds until client detection appear more

stable except in those cases where we randomised probability pairs P(Ci, S3)/P(Ci, S5),

where i = 1, 2, 3, with no significant improvements over the best result found. In

conclusion, it appears that if we slightly altered some of the probabilities used in our

normal scenario model parameters for single initial states, there will be no significant

difference in our results. On the other hand, for the split-world model parameters, care

must be taken when we slightly alter certain probabilities as it may drastically reduce

155

CHAPTER 6. MODEL PARAMETER OPTIMISATION

the quality of our results.

6.5 Combining IDTMCs With SMBO

Examining all the investigations from previous and current chapters, we see IDTMC

model checking and SMBO possess both advantages and drawbacks when searching

unknown networks and probabilistic parameters. Whilst we still need to fix the discrete

parameters, IDTMCs are effective in finding optimal reachability probabilities to target

states over a wide range of probabilistic behaviour which our simulation experiments

could not achieve. SMBO allows us to search a mixture of parameters and appears

to be effective at suggesting worst-case possibilities over a much wider range network

modelling scenarios.

To take it further, we could combine both IDTMC model checking and SMBO by

making slight modifications on the objective function and how we search the model

space. Firstly, we let χ̂ be a smaller model space which represents all choices and

combinations for each discrete parameter in the network model. Using a vector x̂ ∈ χ̂

as an argument for the objective function, we construct an IDTMC with the client

profile probabilities replaced with fixed intervals from I1, . . . , IN , and each gossip rate

gi replaced with [gi − ε1, g
i + ε2], with ε1, ε2 > 0, performing verification for similar

properties. Whilst this improves results, a caveat is the massive computational cost

this incurs, so searching in χ and model checking DTMCs (with single initial states)

as before is likely to be the cheaper option. Given the prototype status of our IDTMC

verification implementation and how it is only compatible with the explicit engine at

the time of writing, there are limitations on the number of states/transitions which can

be built.

156

6.6. SUMMARY

6.6 Summary

In this chapter, by defining a model space which describes all the set-ups and structures

for a network model, we applied SMBO to search over a series of DTMC models to

find worst-case scenarios for properties using a Python application that combines the

use of PRISM and optimisation libraries. Our investigations show this approach is

advantageous over random searching and produces stable results. For future work, we

would like to experiment with SMBO and IDTMCs combined to see if this can further

improve our results and investigate other optimisation techniques compatible with our

problem.

157

CHAPTER 6. MODEL PARAMETER OPTIMISATION

(a) Randomising C1 type probabilities (b) Randomising C2 type probabilities

(c) Randomising C3 type probabilities

Figure 6.8: The results found when investigating the local behaviour of the objective function
that constructs normal scenario models with single initial states. The worst case result
found using our implementation (in this case, the expected number of rounds for the newer
data to reach all clients) is given by the red dashed line. We randomise over a pair of
probabilities whilst fixing the rest of the modelling parameters, seeing how small fluctuations
in the continuous parameters impact the output of the objective function. From the graphs
shown, it appears that if we slightly altered some of the probabilities used in our normal
scenario model parameters for single initial states, there will be no significant difference in
our results.

158

6.6. SUMMARY

(a) Randomising C1 type probabilities (b) Randomising C2 type probabilities

(c) Randomising C3 type probabilities

Figure 6.9: The result found when investigating the local behaviour of the objective function
that constructs split-world scenario models with single initial states. Due to the erratic
behaviour shown when randomising probability pairs P(Ci, S3)/P(Ci, S5), where i = 1, 2, 3,
this indicates, care must be taken if we choose slightly alter the client profile probabilities as
it will drastically reduce the quality of our results.

159

CHAPTER 6. MODEL PARAMETER OPTIMISATION

160

Chapter 7

Discussion and Conclusion

We believe that combining gossip with CT will be more prominent in the future to

help keep the Internet more accountable, especially with the growing ubiquity of cloud

computing [171]. It is therefore important to keep improving on the designs of these

gossip protocols. Probabilistic verification is a valuable tool for analysing these

protocols.

In this this thesis we show how to model and analyse a network where entities

used a gossip protocol to verify for consistency for a CT log, using probabilistic

verification to produce a rich amount of experimental data for each of the different

protocol designs we studied. We suggest ways to improve the security and efficiency

aspects of the protocol’s performances by servers simply broadcasting their log digests

randomly to other servers, backing up our claims using verification. To account for

model uncertainty and unscalability, we show PRISM extension tools which can verify

interval Markov chains to find best- and worst-case outcomes for quantitative PCTL

properties, performing abstraction on these models to reduce the complexity of the

model checking process. Lastly, we apply techniques designed specifically for machine

learning problems to search over a set of configurations for our DTMC models to find

161

CHAPTER 7. DISCUSSION AND CONCLUSION

bad cases of networks where the gossip protocols may perform poorly, showing

empirically that this is a better approach than using a random search.

The findings in this thesis validate some of the conclusions made by Chuat et al. [48],

in particular that the STH-and-proof version of their protocol is more efficient for clients

to use compared to the STH-only version as it makes less connections to the log on

average when requesting proofs. The thesis also resolves an issue in the methodology

used by Chuat et al. where it was unable to find the success rate of detecting a split-

world attack, providing exact probabilistic values. Finally, the augmentations to the

protocol designs described in this thesis help improve certain aspects over the initial

designs, motivating new discussions on how to build upon the work already done with

these protocols. We believe that the implications of this research for the wider CT

community is that it can inspire the use of model checking for other CT-based protocols

or mechanisms to investigate their efficacy in an abstracted setting, experimenting with

a number of possible extensions to see if it can improve their performances without

having to resort to running expensive or lengthy simulations.

Unlike previous work done in this field, we have been able to analyse relatively large

network models, even if we had to resort to finding approximations for properties as

we increased the number of clients. However, due to the prototype status of the tools,

there is a limit on the size of the IDTMC models (abstracted or otherwise) that can

be built due to their reliance on PRISM’s explicit engine, suggesting that future work

on the code may include how to make it compatible with the more powerful symbolic

engines (hybrid or MTBDD).

We had to make some compromises in our model design assumptions and tried not

to analyse the protocols at a low level since this would exponentially increase the state

space. Realistically speaking, modelling for networks that contain clients with diverse

behavioural patterns still remains a huge challenge and a main criticism of our work

162

is that many devices will have different levels of knowledge of the log and, as part of

the protocol logic, may have to audit SCTs if they have not seen them before. When

one compares the SCT audit process in the STH-only and STH-and-proof versions of

the Chuat protocols [48], the logic for both of them is identical, so adding a similar

feature into our models is unlikely to make our results more meaningful. Furthermore,

since we used DTMCs, we had our clients regularly gossip and update data in lock step

with each other, producing a coarse representation of an actual network; one way to

remedy this is by transforming our models into CTMCs and have client types gossip at

different rates, but the trade-off is that model checking becomes even more expensive.

Like with IDTMCs, we could alleviate this problem through abstraction.

Lastly, we believe that our idea of combining PRISM and SMBO is a novel

approach to finding worst-case scenarios for protocol properties and would like to see

this investigated further, in particular how effective SMBO is over random search as

the dimension of the modelling space increases. There were initial challenges in

understanding and implementing the third-party libraries since we used them in a

non-standard way, so we would like to see if other techniques or libraries exist that are

appropriate for solving the problem we tried to address.

163

CHAPTER 7. DISCUSSION AND CONCLUSION

164

Bibliography

[1] 506227 - Certificate Transparency: Audit logs by Checking SCTs for Inclusion.

url:

https://bugs.chromium.org/p/chromium/issues/detail?id=506227#c60

(visited on 17/01/2020).

[2] C. Adams and S. Lloyd. Understanding PKI: Concepts, Standards, and

Deployment Considerations. Addison-Wesley Professional, 2003.

[3] E. Akkoyunlu, K. Ekanadham and R. Huber. “Some Constraints and Tradeoffs

in the Design of Network Communications”. In: Proceedings of the 5th ACM

Symposium on Operating Systems Principles (SOSP’75). ACM. Nov. 1975,

pp. 67–74.

[4] M. Al-Bassam and S. Meiklejohn. “Contour: A Practical System for Binary

Transparency”. In: International Workshop on Cryptocurrencies and

Blockchain Technology (CBT’18). Vol. 11025. LNCS. Springer, Sept. 2018,

pp. 94–110.

[5] B. Amann, M. Vallentin, S. Hall and R. Sommer. Extracting Certificates from

Live Traffic: A Near Real-time SSL Notary Service. Tech. rep. ICSI, Nov. 2012.

[6] Apple’s Certificate Transparency policy. url:

https://support.apple.com/en-gb/HT205280 (visited on 23/05/2021).

165

https://bugs.chromium.org/p/chromium/issues/detail?id=506227#c60
https://support.apple.com/en-gb/HT205280

BIBLIOGRAPHY

[7] R. Ash and C. Doleans-Dade. Probability and Measure Theory. Academic

Press, 2000.

[8] C. Audet and W. Hare. Derivative-free and Blackbox Optimization. Operations

Research and Financial Engineering. Springer, 2017.

[9] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr. “Basic Concepts and

Taxonomy of Dependable and Secure Computing”. In: IEEE Transactions on

Dependable and Secure Computing 1.1 (Jan. 2004), pp. 11–33.

[10] A. Aziz, V. Singhal, F. Balarin, R. Brayton and A. Sangiovanni-Vincentelli. “It

Usually Works: The Temporal Logic of Stochastic Systems”. In: The 7th

International Conference on Computer Aided Verification (CAV’95). Vol. 939.

LNCS. Springer. 1995, pp. 155–165.

[11] C. Baier. “On Algorithmic Verification Methods for Probabilistic Systems”.

PhD thesis. habilitation thesis, University of Mannheim, 1998.

[12] C. Baier, B. Engelen and M. Majster-Cederbaum. “Deciding Bisimilarity and

Similarity for Probabilistic Processes”. In: Journal of Computer and System

Sciences 60.1 (2000), pp. 187–231.

[13] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT press, 2008.

[14] R. Bakhshi, F. Bonnet, W. Fokkink and B. Haverkort. “Formal Analysis

Techniques for Gossiping Protocols”. In: Operating Systems Review 41.5 (Oct.

2007), pp. 28–36.

[15] R. Bardenet, M. Brendel, B. Kégl and M. Sebag. “Collaborative

Hyperparameter Tuning”. In: The 30th International Conference on Machine

Learning (ICML’13). Vol. 28. June 2013, pp. 199–207.

166

BIBLIOGRAPHY

[16] A. Bart, B. Delahaye, P. Fournier, D. Lime, E. Monfroy and C. Truchet.

“Reachability in Parametric Interval Markov Chains Using Constraints”. In:

Theoretical Computer Science 747 (2018), pp. 48–74.

[17] E. Bartocci, L. Bortolussi, T. Brázdil, D. Milios and G. Sanguinetti. “Policy

Learning in Continuous-time Markov Decision Processes Using Gaussian

Processes”. In: Performance Evaluation 116 (Nov. 2017), pp. 84–100.

[18] E. Bartocci, L. Bortolussi, L. Nenzi and G. Sanguinetti. “On the Robustness of

Temporal Properties for Stochastic Models”. In: The 2nd International

Workshop on Hybrid Systems and Biology (HSB’13). Vol. 125. Open Access

Publishing. Sept. 2013, pp. 3–19.

[19] D. Basin, C. Cremers, T. Kim, A. Perrig, R. Sasse and P. Szalachowski.

“ARPKI: Attack Resilient Public-Key Infrastructure”. In: The 21st ACM

Conference on Computer and Communications Security (CCS’14). ACM, Nov.

2014, pp. 382–393.

[20] J. Beekman, J. Manferdelli and D. Wagner. “Attestation Transparency:

Building Secure Internet Services For Legacy Clients”. In: The 11th ACM Asia

Conference on Computer and Communications Security (ASIACCS’16). May

2016, pp. 687–698.

[21] R. Bellman. “A Markovian Decision Process”. In: Journal of mathematics and

mechanics 4.5 (1957), pp. 679–684.

[22] Bender - The Hyperparameters Optimiser. url: https://bender.dreem.com/

(visited on 21/01/2020).

[23] M. Benedikt, R. Lenhardt and J. Worrell. “LTL Model Checking of Interval

Markov Chains”. In: The 19th International Conference on Tools and

167

https://bender.dreem.com/

BIBLIOGRAPHY

Algorithms for the Construction and Analysis of Systems (TACAS’13).

Vol. 7795. LNCS. Springer. Mar. 2013, pp. 32–46.

[24] J. Bergstra, R. Bardenet, Y. Bengio and B. Kégl. “Algorithms for

Hyper-parameter Optimization”. In: The Twenty-fifth Annual Conference on

Neural Information Processing Systems (NIPS’11). Dec. 2011, pp. 2546–2554.

[25] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins and D. Cox. “Hyperopt: A

Python library for Model Selection and Hyperparameter Optimization”. In:

Computational Science & Discovery 8.1 (July 2015).

[26] J. Bergstra, D. Yamins and D. Cox. “Making a Science of Model Search:

Hyperparameter Optimization in Hundreds of Dimensions for Vision

Architectures”. In: The 30th International Conference on Mmachine Learning

(ICML’13). Vol. 28. June 2013.

[27] A. Bianco and L. De Alfaro. “Model Checking of Probabilistic and

Nondeterministic Systems”. In: The 15th International Conference on

Foundations of Software Technology and Theoretical Computer Science

(FSTTCS’95). Vol. 1026. LNCS. Springer. Dec. 1995, pp. 499–513.

[28] J.-F. Bonnans, J. Gilbert, C. Lemaréchal and C. Sagastizábal. Numerical

Optimization: Theoretical and Practical Aspects. Springer Science & Business

Media, 2006.

[29] J. Bonneau. “EthIKS: Using Ethereum to Audit a CONIKS Key Transparency

Log”. In: The 20th International Conference on Financial Cryptography and

Data Security (FC’16). Vol. 9604. LNCS. Springer. Feb. 2016, pp. 95–105.

[30] L. Bortolussi, D. Milios and G. Sanguinetti. “Smoothed Model Checking for

Uncertain Continuous-time Markov Chains”. In: Information and Computation

247 (Apr. 2016), pp. 235–253.

168

BIBLIOGRAPHY

[31] L. Bortolussi, D. Milios and G. Sanguinetti. “U-check: Model Checking and

Parameter Synthesis Under Uncertainty”. In: The 12th International

Conference on Quantitative Evaluation of Systems (QEST’15). Vol. 9259.

LNCS. Springer. Sept. 2015, pp. 89–104.

[32] L. Bortolussi and G. Sanguinetti. “Learning and Designing Stochastic

Processes from Logical Constraints”. In: The 10th International Conference on

Quantitative Evaluation of Systems (QEST’13). Vol. 8504. LNCS. Springer.

Aug. 2013, pp. 89–105.

[33] L. Bortolussi and S. Silvetti. “Bayesian Statistical Parameter Synthesis for

Linear Temporal Properties of Stochastic Models”. In: The 24th International

Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’18). Vol. 10806. LNCS. Springer. Apr. 2018, pp. 396–413.

[34] E. Brochu, M. Cora and N. de Freitas. A Tutorial on Bayesian Optimization of

Expensive Cost Functions, with Application to Active User Modeling and

Hierarchical Reinforcement Learning. Tech. rep. University of British

Columbia, Nov. 2009.

[35] P. Buchholz. “Exact and Ordinary Lumpability in Finite Markov Chains”. In:

Journal of Applied Probability 31 (1 Mar. 1994), pp. 59–75.

[36] J. Buchmann, E. Karatsiolis and A. Wiesmaier. Introduction to Public Key

Infrastructures. Springer Science & Business Media, 2013.

[37] R. Calinescu, C. Ghezzi, K. Johnson, M. Pezzé, Y. Rafiq and G. Tamburrelli.

“Formal Verification with Confidence Intervals to Establish Quality of Service

Properties of Software Systems”. In: IEEE Transactions on Reliability 65.1

(Aug. 2015), pp. 107–125.

169

BIBLIOGRAPHY

[38] R. Calinescu, K. Johnson and C. Paterson. “FACT: A Probabilistic Model

Checker for Formal Verification with Confidence Intervals”. In: The 22nd

International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’16). Vol. 9636. LNCS. Springer. Apr. 2016,

pp. 540–546.

[39] S. Cattani and R. Segala. “Decision Algorithms for Probabilistic

Bisimulation”. In: The 16th International Conference on Concurrency Theory

(CONCUR’02). Vol. 2421. LNCS. Springer. Aug. 2002, pp. 371–386.

[40] Censys - Certificate Search. url: https://censys.io/certificates (visited

on 17/01/2020).

[41] Cert Spotter - Certificate Transparency Monitor by SSLMate. url:

https://sslmate.com/certspotter/ (visited on 17/01/2020).

[42] Certificate Transparency. url:

https://www.certificate-transparency.org/ (visited on 08/07/2017).

[43] Certificate Transparency Monitoring - Facebook for Developers. url:

https://developers.facebook.com/tools/ct/ (visited on 17/01/2020).

[44] S. Chakraborty and J.-P. Katoen. “Model Checking of Open Interval Markov

Chains”. In: The 22nd International Conference on Analytical & Stochastic

Modelling Techniques & Applications (ASMTA’15). Springer. May 2015,

pp. 30–42.

[45] K. Chatterjee, K. Sen and T. Henzinger. “Model-checking ω-regular Properties

of Interval Markov Chains”. In: The 11th International Conference on

Foundations of Software Science and Computational Structures (FoSSaCS’08).

Vol. 4962. LNCS. Springer. Mar. 2008, pp. 302–317.

170

https://censys.io/certificates
https://sslmate.com/certspotter/
https://www.certificate-transparency.org/
https://developers.facebook.com/tools/ct/

BIBLIOGRAPHY

[46] T. Chen, T. Han and M. Kwiatkowska. “On the Complexity of Model

Checking Interval-valued Discrete Time Markov Chains”. In: Information

Processing Letters 113.7 (Apr. 2013), pp. 210–216.

[47] V. Chonev. “Reachability in augmented interval Markov chains”. In: The 11th

International Conference on Reachability Problems (RP’19). Vol. 11674. LNCS.

Springer. Sept. 2019, pp. 79–92.

[48] L. Chuat, P. Szalachowski, A. Perrig, B. Laurie and E. Messeri. “Efficient

Gossip Protocols for Verifying the Consistency of Certificate Logs”. In: The

18th Communications and Networking Simulation Symposium (CNS’15).

IEEE. Apr. 2015, pp. 415–423.

[49] E. Clarke and E. Emerson. “Design and Synthesis of Synchronisation Skeletons

Using Branching Time Temporal Logic”. In: Workshop on Logics of Programs.

Vol. 131. LNCS. Springer, May 1981.

[50] E. Clarke, E. Emerson and A. Sistla. “Automatic Verification of Finite-state

Concurrent Systems Using Temporal Logic Specifications”. In: Transactions on

Programming Languages and Systems (TOPLAS) 8.2 (Apr. 1986), pp. 244–263.

[51] E. Clarke, W. Klieber, M. Nováček and P. Zuliani. “Model Checking and the

State Explosion Problem”. In: LASER Summer School on Software

Engineering (LASER’11). Vol. 7682. LNCS. Springer. 2011, pp. 1–30.

[52] R. Dahlberg and T. Pulls. “Verifiable Light-weight Monitoring for Certificate

Transparency Logs”. In: The 23rd Nordic Conference on Secure IT Systems

(NordSec’18). Vol. 11252. LNCS. Springer. Nov. 2018, pp. 171–183.

[53] R. Dahlberg, T. Pulls, J. Vestin, T. Høiland-Jørgensen and A. Kassler.

“Aggregation-Based Gossip for Certificate Transparency”. In: arXiv preprint

(June 2018).

171

BIBLIOGRAPHY

[54] P. D’Argenio, B. Jeannet, H. Jensen and K. Larsen. “Reduction and

Refinement Strategies for Probabilistic Analysis”. In: The 2nd Joint

International Workshop von Process Algebra and Probabilistic Methods,

Performance Modeling and Verification (PAPM-PROBMIV’02). Vol. 2399.

LNCS. Springer. July 2002, pp. 57–76.

[55] L. De Alfaro. “Formal verification of Probabilistic Systems”. PhD thesis.

Stanford University, 1997.

[56] L. De Alfaro and P. Roy. “Magnifying-lens Abstraction for Markov Decision

Processes”. In: The 19th International Conference on Computer Aided

Verification (CAV’07). Vol. 4590. LNCS. Springer. July 2007, pp. 325–338.

[57] C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes,

J.-P. Katoen and E. Ábrahám. “PROPhESY: A PRObabilistic ParamEter

SYnthesis Tool”. In: the 27th International Conference on Computer Aided

Verification (CAV’15). Vol. 9206. LNCS. Springer. July 2015, pp. 214–231.

[58] C. Dehnert, S. Junges, J.-P. Katoen and M. Volk. “A Storm is Coming: A

Modern Probabilistic Model Checker”. In: The 29th International Conference

on Computer Aided Verification (CAV’17). Springer. July 2017, pp. 592–600.

[59] B. Delahaye. “Consistency for Parametric Interval Markov Chains”. In: The

2nd International Workshop on Synthesis of Complex Parameters

(SynCoP’15). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015,

pp. 17–32.

[60] B. Delahaye, K. Larsen, A. Legay, M. Pedersen and A. Wasowski.

“Consistency and Refinement for Interval Markov Chains”. In: The Journal of

Logic and Algebraic Programming 81.3 (2012), pp. 209–226.

172

BIBLIOGRAPHY

[61] B. Delahaye, D. Lime and L. Petrucci. “Parameter Synthesis for Parametric

Interval Markov Chains”. In: The 17th International Conference on

Verification, Model Checking, and Abstract Interpretation (VMCAI’16).

Springer. Jan. 2016, pp. 372–390.

[62] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,

D. Swinehart and D. Terry. “Epidemic Algorithms for Replicated Database

Maintenance”. In: The 6th Annual ACM Symposium on Principles of

Distributed Computing (PODC’87). Dec. 1987, pp. 1–12.

[63] S. Derisavi. “Solution of Large Markov Models Using Lumping Techniques and

Symbolic Data Structures”. PhD thesis. University of Illinois, 2005.

[64] A. Donaldson and A. Miller. “Symmetry Reduction for Probabilistic Model

Checking Using Generic Representatives”. In: The 3rd International

Symposium on Automated Technology for Verification and Analysis

(ATVA’06). Vol. 4218. LNCS. Springer. 2006, pp. 9–23.

[65] A. Donaldson, A. Miller and D. Parker. “Language-level Symmetry Reduction

for Probabilistic Model Checking”. In: The 6th International Conference on the

Quantitative Evaluation of Systems (QEST’09). IEEE. 2009, pp. 289–298.

[66] B. Dowling, F. Günther, U. Herath and D. Stebila. “Secure Logging Schemes

and Certificate Transparency”. In: The 21st European Symposium on Research

in Computer Security (ESORICS’16). Vol. 9879. LNCS. Springer. Sept. 2016,

pp. 140–158.

[67] K. Driscoll, B. Hall, H. Sivencrona and P. Zumsteg. “Byzantine Fault

Tolerance, from Theory to Reality”. In: The International Conference on

Computer Safety, Reliability, and Security (SAFECOMP’03). Vol. 2788.

LNCS. Springer. 2003, pp. 235–248.

173

BIBLIOGRAPHY

[68] P. Duggins. “A Psychologically-Motivated Model of Opinion Change with

Applications to American Politics”. In: Journal of Artificial Societies & Social

Simulation 20.1 (Jan. 2017).

[69] L. Dykcik, L. Chuat, P. Szalachowski and A. Perrig. “BlockPKI: An

Automated, Resilient, and Transparent Public-Key Infrastructure”. In: The

18th International Conference on Data Mining Workshops (ICDMW’18).

IEEE. Nov. 2018, pp. 105–114.

[70] J. Eaton, D. Bateman and S. Hauberg. GNU Octave. Network theory London,

1997.

[71] P. Eckersley. Sovereign Keys: A Proposal to Make HTTPS and Email More

Secure. 2011. url: https://www.eff.org/deeplinks/2011/11/sovereign-

keys-proposal-make-https-and-email-more-secure (visited on

27/02/2020).

[72] G. Edgecombe. Certificate Transparency Monitor. url:

https://ct.grahamedgecombe.com/ (visited on 17/01/2020).

[73] J. Erman, M. Arlitt and A. Mahanti. “Traffic Classification Using Clustering

Algorithms”. In: Proceedings of the 2006 SIGCOMM Workshop on Mining

Network Data (MineNet’06). ACM, Sept. 2006, pp. 281–286.

[74] S. Eskandarian, E. Messeri, J. Bonneau and D. Boneh. “Certificate

Transparency with Privacy”. In: Proceedings on Privacy Enhancing

Technologies (PoPETS) 2017.4 (2017), pp. 329–344.

[75] M. Etemad and A. Küpçü. “Efficient Key Authentication Service for Secure

End-to-end Communications”. In: The 9th International Conference on

Provable Security (ProvSec’15). Vol. 9451. LNCS. Springer. 2015, pp. 183–197.

174

https://www.eff.org/deeplinks/2011/11/sovereign-keys-proposal-make-https-and-email-more-secure
https://www.eff.org/deeplinks/2011/11/sovereign-keys-proposal-make-https-and-email-more-secure
https://ct.grahamedgecombe.com/

BIBLIOGRAPHY

[76] C. Evans, C. Palmer and R. Sleevi. Public Key Pinning Extension for HTTP.

Tech. rep. Internet Engineering Task Force, Apr. 2015.

[77] S. Even, O. Goldreich and A. Lempel. “A Randomized Protocol for Signing

Contracts”. In: Communications of the ACM 28.6 (June 1985), pp. 637–647.

[78] Facebook - Introducing our Certificate Transparency Monitoring tool. url:

https://www.facebook.com/notes/protect-the-graph/introducing-our-

certificate-transparency-monitoring-tool/1811919779048165 (visited

on 17/01/2020).

[79] C. Fang, J. Liu and Z. Lei. “Fine-grained HTTP Web Traffic Analysis Based

On Large-scale Mobile Datasets”. In: IEEE Access 4 (Aug. 2016),

pp. 4364–4373.

[80] H. Fecher, M. Leucker and V. Wolf. “Don’t Know in Probabilistic Systems”.

In: The 13th International SPIN Workshop (SPIN’06). Vol. 3925. LNCS.

Springer. Apr. 2006, pp. 71–88.

[81] A. Fehnker and P. Gao. “Formal Verification and Simulation for Performance

Analysis for Probabilistic Broadcast Protocols”. In: ADHOC-NOW. Vol. 6.

Springer. Aug. 2006, pp. 128–141.

[82] V. Forejt, M. Kwiatkowska, G. Norman and D. Parker. “Automated

Verification Techniques for Probabilistic Systems”. In: Formal Methods for

Eternal Networked Software Systems (SFM’11). Vol. 6659. LNCS. Springer,

June 2011, pp. 53–113.

[83] C. Fromknecht, D. Velicanu and S. Yakoubov. “A Decentralized Public Key

Infrastructure with Identity Retention”. In: IACR Cryptology ePrint Archive

(Oct. 2014).

175

https://www.facebook.com/notes/protect-the-graph/introducing-our-certificate-transparency-monitoring-tool/1811919779048165
https://www.facebook.com/notes/protect-the-graph/introducing-our-certificate-transparency-monitoring-tool/1811919779048165

BIBLIOGRAPHY

[84] P. Gagniuc. Markov chains: From Theory to Implementation and

Experimentation. John Wiley & Sons, 2017.

[85] O. Gasser, B. Hof, M. Helm, M. Korczynski, R. Holz and G. Carle. “In Log We

Trust: Revealing Poor Security Practices with Certificate Transparency Logs

and Internet Measurements”. In: The 19th International Conference on Passive

and Active Measurement (PAM’18). Vol. 10771. LNCS. Springer. 2018,

pp. 173–185.

[86] GitHub - Dreem-Organization/benderopt: Bender Brain. url:

https://github.com/Dreem-Organization/benderopt/ (visited on

31/05/2019).

[87] Github - google/certificate-transparency. url:

https://github.com/google/certificate-transparency (visited on

13/02/2018).

[88] Github - google/keytransparency: A Transparent and Secure Way to Look up

Public Keys. url: https://github.com/google/keytransparency/ (visited

on 27/02/2020).

[89] Github - google/trillian: A Transparent, Highly Scalable and Cryptographically

Verifiable Data Store. url: https://github.com/google/trillian (visited

on 28/02/2020).

[90] Github - hyperopt/hyperopt: Distributed Hyperparameter Optimization. url:

https://github.com/hyperopt/hyperopt (visited on 04/01/2020).

[91] GNU Octave. url: https://www.gnu.org/software/octave/ (visited on

30/01/2020).

176

https://github.com/Dreem-Organization/benderopt/
https://github.com/google/certificate-transparency
https://github.com/google/keytransparency/
https://github.com/google/trillian
https://github.com/hyperopt/hyperopt
https://www.gnu.org/software/octave/

BIBLIOGRAPHY

[92] P. Godefroid, M. Huth and R. Jagadeesan. “Abstraction-based Model

Checking Using Modal Transition Systems”. In: The 15th International

Conference on Concurrency Theory (CONCUR’01). Vol. 2154. LNCS.

Springer. Aug. 2001, pp. 426–440.

[93] M. Groesser and C. Baier. “Partial Order Reduction for Markov Decision

Processes: A Survey”. In: The 4th International Symposium on Formal

Methods for Components and Objects (FMCO’05). Vol. 4111. LNCS. Springer.

2005, pp. 408–427.

[94] Gurobi - The Fastest Solver. url: https://www.gurobi.com (visited on

30/01/2020).

[95] J. Gustafsson, G. Overier, M. Arlitt and N. Carlsson. “A First Look at the CT

Landscape: Certificate Transparency Logs in Practice”. In: The 18th

International Conference on Passive and Active Measurement (PAM’17).

Vol. 10176. LNCS. Springer, Mar. 2017, pp. 87–99.

[96] S. Haesaert, P. Van den Hof and A. Abate. “Data-driven and Model-based

Verification via Bayesian Identification and Reachability Analysis”. In:

Automatica 79 (May 2017), pp. 115–126.

[97] E. Hahn, H. Hermanns and L. Zhang. “Probabilistic Reachability for

Parametric Markov Models”. In: International Journal on Software Tools for

Technology Transfer 13.1 (2011), pp. 3–19.

[98] P. Hallam-Baker and R. Stradling. DNS Certification Authority Authorization

(CAA) Resource Record. Tech. rep. Internet Engineering Task Force, Jan. 2013.

[99] H. Hansson and B. Jonsson. “A Logic for Reasoning About Time and

Reliability”. In: Formal aspects of computing 6.5 (Sept. 1994), pp. 512–535.

177

https://www.gurobi.com

BIBLIOGRAPHY

[100] E. Heilman, A. Kendler, A. Zohar and S. Goldberg. “Eclipse Attacks on

Bitcoin’s Peer-to-peer Network”. In: The 24th USENIX Security Symposium

(USENIX’15). Aug. 2015, pp. 129–144.

[101] T. Henzinger, M. Mateescu and V. Wolf. “Sliding Window Abstraction for

Infinite Markov Chains”. In: The 21st International Conference on Computer

Aided Verification (CAV’09). Vol. 5643. LNCS. Springer. June 2009,

pp. 337–352.

[102] H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker and M. Siegle. “On the

Use of MTBDDs for Performability Analysis and Verification of Stochastic

Systems”. In: The Journal of Logic and Algebraic Programming 56.1-2 (2003),

pp. 23–67.

[103] H. Hermanns, B. Wachter and L. Zhang. “Probabilistic CEGAR”. In: The 20th

International Conference on Computer Aided Verification (CAV’08). Vol. 5123.

LNCS. Springer. July 2008, pp. 162–175.

[104] J. Hoffman-Andrews. Signed Certificate Timestamps Embedded in Certificates.

url: https://community.letsencrypt.org/t/signed-certificate-

timestamps-embedded-in-certificates/57187 (visited on 17/01/2020).

[105] How to Enable Certificate Transparency (CT). url: https:

//www.digicert.com/certificate-transparency/enabling-ct.html

(visited on 14/01/2020).

[106] R. Howard. Dynamic Probabilistic Systems, Volume 2: Semi-Markov and

Decision Processes. John Wiley & Sons, 1971.

[107] M. Huth. “On Finite-state Approximants for Probabilistic Computation Tree

Logic”. In: Theoretical Computer Science 346.1 (2005), pp. 113–134.

178

https://community.letsencrypt.org/t/signed-certificate-timestamps-embedded-in-certificates/57187
https://community.letsencrypt.org/t/signed-certificate-timestamps-embedded-in-certificates/57187
https://www.digicert.com/certificate-transparency/enabling-ct.html
https://www.digicert.com/certificate-transparency/enabling-ct.html

BIBLIOGRAPHY

[108] M. Huth, R. Jagadeesan and D. Schmidt. “Modal Transition Systems: A

Foundation for Three-valued Program Analysis”. In: The 10th European

Symposium on Programming (ESOP’01). Vol. 2028. LNCS. Springer. Apr.

2001, pp. 155–169.

[109] F. Hutter, H. Hoos and K. Leyton-Brown. “Sequential Model-based

Optimization for General Algorithm Configuration”. In: The 4th International

Conference on Learning and Intelligent Optimization (LION’11). Vol. 6683.

LNCS. Springer. Jan. 2011, pp. 507–523.

[110] F. Hutter, H.r Hoos and K. Leyton-Brown. “An Evaluation of Sequential

Model-based Optimization for Expensive Blackbox Functions”. In: Proceedings

of the 15th Annual Conference Companion on Genetic and Evolutionary

Computation (GECCO’13). July 2013, pp. 1209–1216.

[111] F. Hutter, L. Kotthoff and J. Vanschoren. Automated Machine Learning:

Methods, Systems, Challenges. SSCML. Springer Nature, 2019.

[112] Internet World Stats - Usage and Population Statistics. url:

https://www.internetworldstats.com/ (visited on 06/10/2020).

[113] N. Jansen, F. Corzilius, M. Volk, R. Wimmer, E. Ábrahám, J.-P. Katoen and

B. Becker. “Accelerating Parametric Probabilistic Verification”. In: The 11th

International Conference on Quantitative Evaluation of Systems (QEST’14).

Vol. 8657. LNCS. Springer. Sept. 2014, pp. 404–420.

[114] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec and M. Van Steen.

“Gossip-based Peer Sampling”. In: Transactions on Computer Systems

(TOCS) 25.3 (Aug. 2007), 8–es.

[115] D. Jones. “A Taxonomy of Global Optimization Methods Based on Response

Surfaces”. In: Journal of global optimization 21.4 (2001), pp. 345–383.

179

https://www.internetworldstats.com/

BIBLIOGRAPHY

[116] D. Jones, M. Schonlau and W. Welch. “Efficient Global Optimization of

Expensive Black-box Functions”. In: Journal of Global optimization 13.4 (Dec.

1998), pp. 455–492.

[117] B. Jonsson and K. Larsen. “Specification and Refinement of Probabilistic

Processes”. In: The 6th Symposium on Logic in Computer Science (LICS’91).

IEEE. July 1991, pp. 266–277.

[118] J.-P. Katoen. “How to Model and Analyze Gossiping Protocols?” In:

Performance Evaluation Review 36.3 (Nov. 2008), pp. 3–6.

[119] J.-P. Katoen, D. Klink, M. Leucker and V. Wolf. “Three-valued Abstraction

For Probabilistic Systems”. In: The Journal of Logic and Algebraic

Programming 81.4 (May 2012), pp. 356–389.

[120] J.-P. Katoen, D. Klink and M. Neuhäußer. “Compositional Abstraction for

Stochastic Systems”. In: The 7th International Conference on Formal Modeling

and Analysis of Timed Systems (FORMATS’09). Vol. 5813. LNCS. Springer.

Sept. 2009, pp. 195–211.

[121] J. Kemeny, J. Snell and A. Knapp. Denumerable Markov Chains. Springer,

1976.

[122] W. Khan, M. Kamran, S. Naqvi, F. Khan, A. Alghamdi and E. Alsolami.

“Formal Verification of Hardware Components in Critical Systems”. In:

Wireless Communications and Mobile Computing 2020 (Feb. 2020).

[123] T. Kim, L. Huang, A. Perrig, C. Jackson and V. Gligor. “Accountable Key

Infrastructure (AKI): A Proposal for a Public-key Validation Infrastructure”.

In: Proceedings of the 22nd International Conference on World Wide Web

(WWW’13). ACM, May 2013, pp. 679–690.

180

BIBLIOGRAPHY

[124] D. Klink, A. Remke, B. Haverkort and J.-P. Katoen. “Time-bounded

Reachability in Tree-structured QBDs by Abstraction”. In: Performance

Evaluation 68.2 (2011), pp. 105–125.

[125] Known Logs - Certificate Transparency. url:

https://www.certificate-transparency.org/known-logs (visited on

31/07/2017).

[126] L. Kohnfelder. “Towards a Practical Public-key Cryptosystem”. PhD thesis.

Massachusetts Institute of Technology, 1978.

[127] I. Kozine and L. Utkin. “Interval-valued Finite Markov Chains”. In: Reliable

computing 8.2 (2002), pp. 97–113.

[128] M. Kwiatkowska, G. Norman and D. Parker. “Analysis of a Gossip Protocol in

PRISM”. In: Performance Evaluation Review 36.3 (Dec. 2008), pp. 17–22.

[129] M. Kwiatkowska, G. Norman and D. Parker. “PRISM 4.0: Verification of

Probabilistic Real-time Systems”. In: The 23rd International Conference on

Computer Aided Verification (CAV’11). Vol. 6806. LNCS. Springer. July 2011,

pp. 585–591.

[130] M. Kwiatkowska, G. Norman and D. Parker. “Probabilistic Model Checking:

Advances and Applications”. In: Formal System Verification. Springer, 2018,

pp. 73–121.

[131] M. Kwiatkowska, G. Norman and D. Parker. “Symmetry Reduction for

Probabilistic Model Checking”. In: The 19th International Conference on

Computer Aided Verification (CAV’06). Vol. 4114. LNCS. Springer, July 2006,

pp. 234–248.

181

https://www.certificate-transparency.org/known-logs

BIBLIOGRAPHY

[132] L. Lamport, R. Shostak and M. Pease. “The Byzantine Generals Problem”. In:

ACM Transactions on Programming Languages and Systems 4.3 (1982),

pp. 382–401.

[133] K Larsen. “Modal Specifications”. In: The 1st International Conference on

Computer Aided Verification (CAV’89). Vol. 407. LNCS. Springer. June 1989,

pp. 232–246.

[134] K. Larsen and A. Skou. “Bisimulation through Probabilistic Testing”. In:

Information and Computation 94.1 (1991), pp. 1–28.

[135] B. Laurie. “Certificate Transparency”. In: Queue 12.8 (Sept. 2014), p. 10.

[136] B. Laurie. Github - google/certificate-transparency-rfcs/dns/draft-ct-over-dns.

url: https://github.com/google/certificate-transparency-

rfcs/blob/master/dns/draft-ct-over-dns.md (visited on 18/01/2020).

[137] B. Laurie. Improving SSL Certificate Security. url:

https://security.googleblog.com/2011/04/improving-ssl-

certificate-security.html (visited on 24/09/2020).

[138] B. Laurie and E. Kasper. Revocation Transparency. Tech. rep. Google, 2012.

[139] B. Laurie, A. Langley and E. Kasper. Certificate Transparency. Tech. rep.

Internet Engineering Task Force, June 2013.

[140] B. Laurie, A. Langley, E. Kasper, E. Messeri and R. Stradling. Certificate

Transparency Version 2.0. Internet-Draft. Work in Progress. Internet

Engineering Task Force, Feb. 2019.

[141] J. Leyden. Inside ‘Operation Black Tulip’: DigiNotar Hack Analysed. url:

https:

//www.theregister.co.uk/2011/09/06/diginotar_audit_damning_fail/

(visited on 14/01/2020).

182

https://github.com/google/certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md
https://github.com/google/certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md
https://security.googleblog.com/2011/04/improving-ssl-certificate-security.html
https://security.googleblog.com/2011/04/improving-ssl-certificate-security.html
https://www.theregister.co.uk/2011/09/06/diginotar_audit_damning_fail/
https://www.theregister.co.uk/2011/09/06/diginotar_audit_damning_fail/

BIBLIOGRAPHY

[142] B. Li, J. Lin, F. Li, Q. Wang, J. Li Qi.and Jing and C. Wang. “Certificate

Transparency in the Wild: Exploring the Reliability of Monitors”. In: The 26th

ACM Conference on Computer and Communications Security (CCS’19). ACM,

2019, pp. 2505–2520.

[143] Y. Liu, J. Sun and Jin S. Dong. “PAT 3: An Extensible Architecture for

Building Multi-domain Model Checkers”. In: The 22nd International

Symposium on Software Reliability Engineering (ISSRE’11). IEEE. Nov. 2011,

pp. 190–199.

[144] A. Loewenstern and A. Norberg. The BitTorrent DHT Protocol. url:

http://www.bittorrent.org/beps/bep_0005.html (visited on 09/10/2018).

[145] J. Löfberg. “Automatic Robust Convex Programming”. In: Optimization

methods and software 27.1 (2012), pp. 115–129.

[146] G. Lowe. “Breaking and Fixing the Needham-Schroeder Public-key Protocol

Using FDR”. In: The 2nd International Workshop on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS’96). Vol. 1055. LNCS.

Springer. Mar. 1996, pp. 147–166.

[147] V. Lynch. What are SSL Precertificates? 2017. url:

https://www.thesslstore.com/blog/ssl-precertificates/ (visited on

14/01/2020).

[148] D. Madala, M. Jhanwar and A. Chattopadhyay. “Certificate Transparency

Using Blockchain”. In: The 18th IEEE International Conference on Data

Mining Workshops (ICDM’18 Workshop). IEEE. Nov. 2018, pp. 71–80.

[149] Y. Marcus, E. Heilman and S. Goldberg. “Low-Resource Eclipse Attacks on

Ethereum’s Peer-to-Peer Network”. In: IACR Cryptology ePrint Archive

(2018).

183

http://www.bittorrent.org/beps/bep_0005.html
https://www.thesslstore.com/blog/ssl-precertificates/

BIBLIOGRAPHY

[150] B. Marinković, P. Glavan, Z. Ognjanović, D. Doder and T. Studer.

“Probabilistic Consensus of the Blockchain Protocol”. In: European Conference

on Symbolic and Quantitative Approaches with Uncertainty (ECSQARU’19).

Vol. 11726. LNCS. Springer. Sept. 2019, pp. 469–480.

[151] S. Matsumoto and R. Reischuk. “IKP: Turning a PKI Around with

Blockchains”. In: IACR Cryptology ePrint Archive (Oct. 2016).

[152] P. Maymounkov and D. Mazieres. “Kademlia: A Peer-to-peer Information

System Based on the XOR Metric”. In: The 1st International Workshop on

Peer-to-Peer Systems (IPTPS’02). Vol. 2429. LNCS. Springer. Mar. 2002,

pp. 53–65.

[153] D. Mazieres and D. Shasha. “Building Secure File Systems out of Byzantine

Storage”. In: The 21st Annual Symposium on Principles of Distributed

Computing (PODC’02). ACM. July 2002, pp. 108–117.

[154] S. Meier, B. Schmidt, C. Cremers and D. Basin. “The TAMARIN Prover for

the Symbolic Analysis of Security Protocols”. In: The 25th International

Conference on Computer Aided Verification (CAV’13). Vol. 8044. LNCS.

Springer. July 2013, pp. 696–701.

[155] M. Melara, A. Blankstein, J. Bonneau, E. Felten and M. Freedman. “CONIKs:

Bringing Key Transparency to End Users”. In: The 24th USENIX Security

Symposium (USENIX’15). Aug. 2015, pp. 383–398.

[156] R. Merkle. “Secrecy, Authentication, and Public Key Systems”. PhD thesis.

Stanford University, 1979.

[157] E. Messeri. Privacy implications of Certificate Transparency’s DNS-based

protocol. Tech. rep. Google, Jan. 2017.

184

BIBLIOGRAPHY

[158] A. Micheloni, K.-P. Fuchs, D. Herrmann and H. Federrath. “Laribus:

Privacy-preserving Detection of Fake SSL Certificates with a Social P2P

Notary Network”. In: The 8th International Conference on Availability,

Reliability and Security (ARES’13). IEEE. Sept. 2013, pp. 1–10.

[159] C. Mirto, J. Yu, V. Rahli and P. Esteves-Verissimo. “Probabilistic Formal

Methods Applied to Blockchain’s Consensus Protocol”. In: DSN Workshop on

Byzantine Consensus and Resilient Blockchains (BCRB’18). June 2018.

[160] D. Monniaux. “Abstract Interpretation of Programs as Markov Decision

Processes”. In: Science of Computer Programming 58.1-2 (2005), pp. 179–205.

[161] A. Moore and D. Zuev. “Internet Traffic Classification Using Bayesian Analysis

Techniques”. In: SIGMETRICS Performance Evaluation Review

(SIGMETRICS’05). ACM, June 2005, pp. 50–60.

[162] S. Nakamoto. Bitcoin: A Peer-to-peer Electronic Cash System. 2008. url:

https://bitcoin.org/bitcoin.pdf (visited on 27/02/2020).

[163] R. Needham and M. Schroeder. “Using Encryption for Authentication in Large

Networks of Computers”. In: Communications of the ACM 21.12 (Dec. 1978),

pp. 993–999.

[164] T. Nguyen and G. Armitage. “A Survey of Techniques for Internet Traffic

Classification Using Machine Learning”. In: IEEE communications surveys &

tutorials 10.4 (Oct. 2008), pp. 56–76.

[165] V. Nimal. “Statistical Approaches for Probabilistic Model Checking”. MSc

Mini-project Dissertation. Oxford University Computing Laboratory, 2010.

[166] L. Nordberg, D. Gillmor and T. Ritter. Gossiping in CT. Internet-Draft. Work

in Progress. Internet Engineering Task Force, Jan. 2018.

185

https://bitcoin.org/bitcoin.pdf

BIBLIOGRAPHY

[167] G. Norman and V. Shmatikov. “Analysis of Probabilistic Contract Signing”.

In: Journal of Computer Security 14.6 (Dec. 2006), pp. 561–589.

[168] D. O’Brien. Certificate Transparency Enforcement in Google Chrome. url:

https://groups.google.com/a/chromium.org/g/ct-

policy/c/wHILiYf31DE/m/iMFmpMEkAQAJ (visited on 10/12/2020).

[169] D. O’Brien and R. Sleevi. Github - chronium/ct-policy. url:

https://github.com/chromium/ct-policy (visited on 17/01/2020).

[170] A. Ouadjaout and A. Miné. “Quantitative Static Analysis of Communication

Protocols Using Abstract Markov Chains”. In: Formal Methods in System

Design 54.1 (2019), pp. 64–109.

[171] M. Oxford, D. Parker and M. Ryan. “Quantitative Verification of Certificate

Transparency Gossip Protocols”. In: The Sixth International Workshop on

Security and Privacy in the Cloud (SPC‘20). IEEE. July 2020.

[172] C. Palmer. Intent To Deprecate And Remove: Public Key Pinning. url:

https://groups.google.com/a/chromium.org/forum/#!msg/blink-

dev/he9tr7p3rZ8/eNMwKPmUBAAJ (visited on 30/09/2020).

[173] D. Parker, G. Norman and M. Kwiatkowska. “Game-based Abstraction for

Markov Decision Processes”. In: The 3rd International Conference on the

Quantitative Evaluation of Systems (QEST’06). IEEE. Sept. 2006, pp. 157–166.

[174] Pickle - Python Object Serialization - Python 3.8.6 Documentation. url:

https://docs.python.org/3/library/pickle.html (visited on 29/09/2020).

[175] E. Polgreen, V. Wijesuriya, S. Haesaert and A. Abate. “Data-efficient Bayesian

verification of parametric Markov chains”. In: The 13th International

Conference on Quantitative Evaluation of Systems (QEST’16). Vol. 9826.

LNCS. Springer. Aug. 2016, pp. 35–51.

186

https://groups.google.com/a/chromium.org/g/ct-policy/c/wHILiYf31DE/m/iMFmpMEkAQAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/wHILiYf31DE/m/iMFmpMEkAQAJ
https://github.com/chromium/ct-policy
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/he9tr7p3rZ8/eNMwKPmUBAAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/he9tr7p3rZ8/eNMwKPmUBAAJ
https://docs.python.org/3/library/pickle.html

BIBLIOGRAPHY

[176] J. Polhemus. Alum Adventures: Andrew Ayer Keeps Certificate Authorities

Honest With Certificate Transparency. 2017. url:

https://blog.cs.brown.edu/2017/12/19/alum-adventures-andrew-ayer-

keeps-certificate-authorities-honest-certificate-transparency/

(visited on 26/02/2020).

[177] PRISM Manual — Main / Welcome. url:

https://www.prismmodelchecker.org/manual/ (visited on 21/01/2020).

[178] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, 1994.

[179] J. Queille and J. Sifakis. “Specification and Verification of Concurrent Systems

in CESAR”. In: The 5th International Symposium on Programming

(Programming’82. Vol. 137. LNCS. Springer. Apr. 1982, pp. 337–351.

[180] A. Rahman, V. Srikumar and A. Smith. “Predicting Electricity Consumption

for Commercial and Residential Buildings Using Deep Recurrent Neural

Networks”. In: Applied Energy 212 (Feb. 2018), pp. 372–385.

[181] C. Rasmussen and C. Williams. Gaussian Processes in Machine Learning. MIT

Press, 2006.

[182] P. Roberts. Phony SSL Certificate Issued for Google, Yahoo, Skype, others.

url: https://threatpost.com/phony-ssl-certificates-issued-google-

yahoo-skype-others-032311/75061/ (visited on 17/02/2018).

[183] P. Roy, D. Parker, G. Norman and L. de Alfaro. “Symbolic Magnifying Lens

Abstraction in Markov Decision Processes”. In: The 5th International

Conference on Quantitative Evaluation of Systems (QEST’08). IEEE. Sept.

2008, pp. 103–112.

187

https://blog.cs.brown.edu/2017/12/19/alum-adventures-andrew-ayer-keeps-certificate-authorities-honest-certificate-transparency/
https://blog.cs.brown.edu/2017/12/19/alum-adventures-andrew-ayer-keeps-certificate-authorities-honest-certificate-transparency/
https://www.prismmodelchecker.org/manual/
https://threatpost.com/phony-ssl-certificates-issued-google-yahoo-skype-others-032311/75061/
https://threatpost.com/phony-ssl-certificates-issued-google-yahoo-skype-others-032311/75061/

BIBLIOGRAPHY

[184] M. Ryan. “Enhanced Certificate Transparency and End-to-End Encrypted

Mail”. In: The 21st Network and Distributed System Security Symposium

(NDSS’14). 2014.

[185] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin and C. Adams.

X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -

OCSP. Tech. rep. Internet Engineering Task Force, June 2013.

[186] Q. Scheitle, O. Gasser, T. Nolte, J. Amann, L. Brent, G. Carle, R. Holz,

T. Schmidt and M. Wählisch. “The Rise of Certificate Transparency and its

Implications on the Internet Ecosystem”. In: The 18th Internet Measurement

Conference (IMC’18). ACM, Oct. 2018, pp. 343–349.

[187] J. Schlyter and P. Hoffman. The DNS-based Authentication of Named Entities

(DANE) Transport Layer Security (TLS) protocol: TLSA. Tech. rep. Internet

Engineering Task Force, Aug. 2012.

[188] Sectigo Ltd. - Certificate Search. url: https://crt.sh/ (visited on

17/01/2020).

[189] R. Segala and N. Lynch. “Probabilistic Simulations for Probabilistic

Processes”. In: Nordic Journal of Computing 2.2 (1995), pp. 250–273.

[190] K. Sen, M. Viswanathan and G. Agha. “Model-checking Markov Chains in the

Presence of Uncertainties”. In: The 12th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS’06).

Vol. 3920. LNCS. Springer. Mar. 2006, pp. 394–410.

[191] K. Sen, M. Viswanathan and G. Agha. “On Statistical Model Checking of

Stochastic Systems”. In: The 17th International Conference on Computer Aided

Verification (CAV’05). Vol. 3576. LNCS. Springer, July 2005, pp. 266–280.

188

https://crt.sh/

BIBLIOGRAPHY

[192] A. Singh, N. Tsuen-Wan, P. Druschel and D. Wallach. “Eclipse Attacks on

Overlay Networks: Threats and Defenses”. In: INFOCOM. IEEE. Apr. 2006.

[193] Damjan Škulj. “Finite Discrete Time Markov Chains with Interval

Probabilities”. In: Soft Methods for Integrated Uncertainty Modelling. Springer,

2006, pp. 299–306.

[194] R. Sleevi and E. Messeri. Certificate Transparency in Chrome: Monitoring CT

Logs Consistency. Tech. rep. Google, 2017.

[195] J. Snoek, H. Larochelle and R. Adams. “Practical Bayesian Optimization of

Machine Learning Algorithms”. In: The 26th Annual Conference on Neural

Information Processing Systems (NIPS’12). Dec. 2012, pp. 2951–2959.

[196] J. Sproston. “Qualitative Reachability for Open Interval Markov Chains”. In:

The 10th International Conference on Reachability Problems (RP’18).

Vol. 11123. LNCS. Springer. Sept. 2018, pp. 146–160.

[197] N. Srinivas, A. Krause and M. Seeger. “Gaussian Process Optimization in the

Bandit Setting: No Regret and Experimental Design”. In: The 27th

International Conference on Machine Learning (ICML’10). June 2010.

[198] G. Steel. “Formal Analysis of PIN Block Attacks”. In: Theoretical Computer

Science 367.1-2 (Nov. 2006), pp. 257–270.

[199] W. Stewart. Introduction to the Numerical Solution of Markov Chains.

Princeton University Press, 1994.

[200] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Vol. 12. Springer

Science & Business Media, 2013.

[201] M. Strecker. “Formal Verification of a Java Compiler in Isabelle”. In: The 18th

International Conference on Automated Deduction (CADE-18). Vol. 2392.

LNCS. Springer. 2002, pp. 63–77.

189

BIBLIOGRAPHY

[202] Supporting material. url: https://github.com/MCOxford/phd_resources

(visited on 10/11/2020).

[203] E. Syta, I. Tamas, D. Visher, D. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly,

I. Khoffi and B. Ford. “Keeping Authorities “Honest or Bust” with

Decentralized Witness Cosigning”. In: The 37th IEEE Symposium on Security

and Privacy (S&P’16). IEEE. May 2016, pp. 526–545.

[204] P. Syverson, R. Dingledine and N. Mathewson. “Tor: The Second-generation

Onion Router”. In: The 13th USENIX Security Symposium (USENIX’04).

June 2004, pp. 303–319.

[205] P. Szalachowski. “PADVA: A Blockchain-Based TLS Notary Service”. In: The

25th International IEEE Conference on Parallel and Distributed Systems

(ICPADS’19). IEEE. Dec. 2019, pp. 836–843.

[206] P. Szalachowski. “SmartCert: Redesigning Digital Certificates with Smart

Contracts”. In: arXiv preprint (Mar. 2020).

[207] P. Szalachowski, S. Matsumoto and A. Perrig. “PoliCert: Secure and Flexible

TLS Certificate Management”. In: The 21st ACM Conference on Computer

and Communications Security (CCS’14). ACM, Nov. 2014, pp. 406–417.

[208] The EEF SSL Observatory. url: https://www.eff.org/observatory (visited

on 07/08/2017).

[209] O. Toker and H. Ozbay. “On the NP-hardness of Solving Bilinear Matrix

Inequalities and Simultaneous Stabilization with Static Output Feedback”. In:

Proceedings of 1995 American Control Conference (ACC’95). IEEE. June 1995,

pp. 2525–2526.

190

https://github.com/MCOxford/phd_resources
https://www.eff.org/observatory

BIBLIOGRAPHY

[210] A. Tomescu, V. Bhupatiraju, D. Papadopoulos, C. Papamanthou,

N. Triandopoulos and S. Devadas. “Transparency Logs via Append-only

Authenticated Dictionaries”. In: The 26th ACM Conference on Computer and

Communications Security (CCS’19). Nov. 2019, pp. 1299–1316.

[211] A. Tomescu and S. Devadas. “Catena: Efficient Non-equivocation via Bitcoin”.

In: The 38th IEEE Symposium on Security and Privacy (S&P’17). IEEE. May

2017, pp. 393–409.

[212] B. VanderSloot, J. Amann, M. Bernhard, Z. Durumeric, M. Bailey and

J. Halderman. “Towards a Complete View of the Certificate Ecosystem”. In:

The 16th Internet Measurement Conference (IMC’16). ACM, Nov. 2016,

pp. 543–549.

[213] J. Villemonteix, E. Vazquez and E. Walter. “An Informational Approach to the

Global Optimization of Expensive-to-evaluate Functions”. In: Journal of Global

Optimization 44.4 (2009), p. 509.

[214] X. Wang and M. El-Said. “DomainPKI: Domain Aware Certificate

Management”. In: The 21st Annual Conference on Information Technology

Education (SIGITE’20). ACM. Oct. 2020, pp. 419–425.

[215] J. Wanner, L. Chuat and A. Perrig. “A Formally Verified Protocol for Log

Replication with Byzantine Fault Tolerance”. In: The 39th International

Symposium on Reliable Distributed Systems (SRDS’20). IEEE. Sept. 2020.

[216] M. Webster, M. Breza, C. Dixon, M. Fisher and J. McCann. “Formal

Verification of Synchronisation, Gossip and Environmental Effects for Critical

IoT Systems”. In: The 18th International Workshop on Automated Verification

of Critical Systems (AVoCS’18). July 2018.

191

BIBLIOGRAPHY

[217] J. Wei, D. Duvenaud and A. Aspuru-Guzik. “Neural Networks For the

Prediction of Organic Chemistry Reactions”. In: ACS central science 2.10

(Oct. 2016), pp. 725–732.

[218] C. Williams. GlobalSign Screw-up Cancels Top Websites’ HTTPS Certificates.

url: http://www.theregister.co.uk/2016/10/13/globalsigned_off/

(visited on 17/12/2016).

[219] J. Wolff. How a 2011 Hack You’ve Never Heard of Changed the Internet’s

Infrastructure. url: https://slate.com/technology/2016/12/how-the-

2011-hack-of-diginotar-changed-the-internets-infrastructure.html

(visited on 14/01/2020).

[220] G. Wood. “Ethereum: A Secure Decentralised Generalised Transaction

Ledger”. In: Ethereum Project Yellow Paper (2014).

[221] G. Xie, M. Iliofotou, T. Karagiannis, M. Faloutsos and Y. Jin. “Resurf:

Reconstructing Web-surfing Activity from Network Traffic”. In: IFIP

Networking Conference. IEEE. May 2013, pp. 1–9.

[222] J. Yu, V. Cheval and M. Ryan. “DTKI: A New Formalized PKI with Verifiable

Trusted Parties”. In: The Computer Journal 59.11 (Nov. 2016), pp. 1695–1713.

[223] J. Yu, M. Ryan and C. Cremers. “DECIM: Detecting Endpoint Compromise in

Messaging”. In: IEEE Transactions on Information Forensics and Security

13.1 (Aug. 2017), pp. 106–118.

192

http://www.theregister.co.uk/2016/10/13/globalsigned_off/
https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html
https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html

Appendices

193

Appendix A

Constructing Components from

IDTMCs and Updating ADTMCs

In this section, we explain in detail the stages ConstructComponent and

UpdateADTMC as described in Chapter 5. To recap, suppose we have an ADTMC

M = (S, sι, P
l, P u) constructed from the concrete IDTMC model

Mc = (Sc, sciota, P̃
l, P̃ u) after scanning states s1, s2, . . . , s(n−1) ∈ Sc. Assume that Mc

has a unique initial state and has no deadlock states. We wish to update M with

newer information after exploring state sn ∈ Sc with the set of neighbouring states

Next(sn) and the lower/upper probability bound function δl(sn)/δu(sn).

To map the variables of sn to variables that make up an abstracted state, we let

Expabs = {F1, F2, . . . , FN} be a collection of functions which maps a state s ∈ Sc to a

value and is one of two types:

F Int : Sc → Z, or

FBool : Sc → {>,⊥}.

The function FindAbstractState uses Expabs to find which abstract state

195

APPENDIX A. CONSTRUCTING COMPONENTS FROM IDTMCS AND
UPDATING ADTMCS

represents sn. We express this abstract state as sabs = (F1(sn), F2(sn), . . . , FN(sn)),

where each Fi ∈ Expabs for every i = 1, . . . , n.

A.1 ConstructComponent

Loop over Next(sn), the set of neighbouring states of sn, and for each state

t ∈ Next(sn), we call FindAbstractState to find the abstract state tabs. If

tabs /∈ Nextabs(sn), assign δlabs(sn)(tabs) = P̃ l(sn, t) and δuabs(sn)(tabs) = P̃ u(sn, t).

Otherwise, denoting the current upper and lower bound as δ̂uabs(sn)(tabs) and

δ̂labs(sn)(tabs) respectively, we let:

δlabs(sn)(tabs) = δ̂labs(sn)(tabs) + P̃ l(sn, t),

δuabs(sn)(tabs) = min(1, δ̂uabs(sn)(tabs) + P̃ u(sn, t)).

Finally, if sn is the unique initial state in the IDTMC, then we set sι = sabs.

A.2 UpdateADTMC

We have two distinct cases dependent when whether sabs has already been added to the

state space of the ADTMC:

� sabs ∈ S: Find the support of sabs in M, Sup(sabs) i.e. the set of neighbouring

states of sabs before we updateM. For each tabs ∈ Nextabs(sn), if tabs ∈ Sup(sabs),

then let

P l(sabs, tabs) = min
(
P l(sabs, tabs), δ

l
abs(sn)(tabs)

)
,

P u(sabs, tabs) = max (P u(sabs, tabs), δ
u
abs(sn)(tabs)) .

Otherwise, add tabs to S if it is a newly found state, letting P u(sabs, tabs) =

196

A.2. UPDATEADTMC

δuabs(sn)(tabs) and

P l(sabs, tabs) =

{
0, if Sup(sabs) 6= ∅

δlabs(sn)(tabs), otherwise
.

Lastly, for each u ∈ Sup(sabs) \ Nextabs(sn), we set P l(sabs, u) = 0 as there is a

state (i.e. sn) abstracted by sabs where it cannot possibly transition to any state

abstracted by u.

� sabs /∈ S: Then sabs is added to S. For each tabs ∈ Nextabs(sn), add tabs to S and

have P l(sabs, tabs) = δlabs(sn)(tabs) and P u(sabs, tabs) = δuabs(sn)(tabs).

197

APPENDIX A. CONSTRUCTING COMPONENTS FROM IDTMCS AND
UPDATING ADTMCS

198

Appendix B

Deriving Distributions Using

Surrogate Parameters

In this section, we explain in the detail the process of deriving a probability distribution

using surrogate parameters. To recap, for a client type Ck and server type Sj, let

Ikj = [pk
j
, pkj] ⊆ [0, 1] be the probability interval which specifies the range of values for

probability pkj = P(Ck, Sj), and let Ik =
(
Ik1 , I

k
1 , . . . , I

k
M

)
be a tuple which contains the

intervals for each server connection probability for Ck, where the following condition

must hold for probability distributions to exist:

M∑
j=1

pk
j
≤ 1 ≤

M∑
j=1

pkj .

We shall further assume that each Ik is a delimited, meaning that for every 1 ≤ j ≤

M and pkj ∈ Ikj , there exists a probability distribution δ = (pk1, . . . , p
k
j , . . . , p

k
M).

We begin the process with the following tuple:

Ik = Ik0 =
(
Ik(1,0), I

k
(2,0), . . . , I

k
(M−1,0), I

k
(M,0)

)
,

199

APPENDIX B. DERIVING DISTRIBUTIONS USING SURROGATE
PARAMETERS

where each Ik(j,0) =
[
pk

(j,0)
, pk(j,0)

]
. Let η be the normalisation operator that takes as

input a tuple of real-valued intervals I and outputs a delimited tuple Ĩ.

Step 1: Set pk1 = pk
(1,0)

+ xk1 ·
(
pk(1,0) − pk(1,0)

)
and, in Ik0 , set Ik(1,0) = pk1 (i.e. pk(1,0) =

pk
(1,0)

= pk1). Normalise Ik0 to obtain:

η
(
Ik0
[
Ik(1,0) → pk1

])
= Ik1 =

(
pk1, I

k
(2,1), . . . , I

k
(M,1)

)
=
(
pk1, . . . , [p

k

(M,1)
, pk(M,1)]

)
.

Step 2: Set pk2 = pk
(2,1)

+ xk2 ·
(
pk(2,1) − pk(2,1)

)
and, in Ik1 , set Ik(2,1) = pk2. Normalise Ik1

to obtain:

η
(
Ik1
[
Ik(2,1) → pk2

])
= Ik2 =

(
pk1, p

k
2, I

k
(3,2), . . . , I

k
(M,2)

)
=
(
pk1, p

k
2, . . . , [p

k

(M,2)
, pk(M,2)]

)
.

...

Step j: We have the interval tuple

Ikj−1 =
(
pk1, p

k
2, . . . , p

k
j−1, I

k
(j,j−1), . . . , I

k
(M,j−1)

)
,

where Ik(α,j−1) =
[
pk

(α,j−1)
, pk(α,j−1)

]
for every j ≤ α ≤M . Set pkj to equal

pkj = pk
(j,j−1)

+ xkj ·
(
pk(j,j−1) − pk(j,j−1)

)
.

In Ikj−1, set Ik(j,j−1) = pkj . Next, for each β > j, normalise Ikj−1 by truncating each

200

interval Ik(β,j−1) to equal Ik(β,j) =
[
pk

(β,j)
, pk(β,j)

]
, where:

pk
(β,j)

= max

pk(β,j−1)
, 1−

j∑
l=1

pkl −
∑

(j+1)≤β′≤M
β′ 6=β

pk(β′,j−1)

 ,

pk(β,j) = min

pk(β,j−1), 1−
j∑
l=1

pkl −
∑

(j+1)≤β′≤M
β′ 6=β

pk
(β′,j−1)

 .

We get the resulting tuple

η(Ikj−1

[
Ik(j,j−1) → pkj

]
) = Ikj =

(
pk1, p

k
2, . . . , p

k
j−1, p

k
j , I

k
(j+1,j), . . . , I

k
(M,j)

)
.

...

Step M : Finally, we get pkM = pk
M

= pkM = 1 −
∑M−1

j=1 pj and set Ik(M,M−1) = pkM . We

output the probability distribution δ = IkM =
(
pk1, p

k
2, . . . , p

k
j , . . . , p

k
M

)
.

201

APPENDIX B. DERIVING DISTRIBUTIONS USING SURROGATE
PARAMETERS

202

Appendix C

Snapshots of PRISM Code

In this section, we provide a couple of sample of the PRISM model used for this thesis.

C.1 Normal Scenario Model (Without Server

Gossip)

A PRISM model (DTMC) we used to find verification results for Chapter 4,

describing a normal gossip scenario within a network of five clients and servers each:

1 // author: mco. Timestamp: 2018 -04 -12

2

3 // Comments here removed for convenience

4

5 dtmc

6

7 //--------------

8 // CLIENTS

9 //--------------

10

203

APPENDIX C. SNAPSHOTS OF PRISM CODE

11 // initial states for each client

12 const bool c1_sth_init = false;

13 const bool c2_sth_init = false;

14 const bool c3_sth_init = false;

15 const bool c4_sth_init = false;

16 const bool c5_sth_init = true;

17

18 // client connect rates

19 prob g1= 0.8;

20 prob g2= 0.6;

21 prob g3= 0.6;

22 prob g4= 0.6;

23 prob g5= 0.2;

24

25 // client profiles

26 prob p_1_1 = 1/50;

27 prob p_1_2 = 7/25;

28 prob p_1_3 = 7/10;

29 prob p_1_4 = 0;

30 prob p_1_5 = 0;

31

32 prob p_2_1 = 1/50;

33 prob p_2_2 = 7/25;

34 prob p_2_3 = 0;

35 prob p_2_4 = 7/10;

36 prob p_2_5 = 0;

37

38 prob p_3_1 = 1/50;

39 prob p_3_2 = 7/25;

40 prob p_3_3 = 0;

41 prob p_3_4 = 7/10;

204

C.1. NORMAL SCENARIO MODEL (WITHOUT SERVER GOSSIP)

42 prob p_3_5 = 0;

43

44 prob p_4_1 = 1/50;

45 prob p_4_2 = 7/25;

46 prob p_4_3 = 0;

47 prob p_4_4 = 7/10;

48 prob p_4_5 = 0;

49

50 prob p_5_1 = 1/50;

51 prob p_5_2 = 7/25;

52 prob p_5_3 = 0;

53 prob p_5_4 = 0;

54 prob p_5_5 = 7/10;

55

56 module Client1

57

58 // global state.

59 c1 : [0..5] init 0;

60 // connectivity state.

61 c1s : [0..5] init 0;

62 // current STH data stored by the client. ’True ’ means the client

has the latest STH.

63 c1_sth : bool init c1_sth_init;

64 //skip the round?

65 c1_skip : bool init false;

66

67 // client decides randomly to participate in the round.

68 [connect] c1=0 -> g1 : (c1 ’=1) + 1-g1 : (c1 ’=1) & (c1_skip ’=true);

69

70 // client randomly chooses a server if participating in the round.

205

APPENDIX C. SNAPSHOTS OF PRISM CODE

71 [choose] c1_skip=false & c1=1 -> p_1_1 : (c1 ’=2)&(c1s ’=1) + p_1_2

: (c1 ’=2)&(c1s ’=2) + p_1_3 : (c1 ’=2)&(c1s ’=3) + p_1_4 : (c1 ’=2)&(

c1s ’=4) + p_1_5 : (c1 ’=2)&(c1s ’=5);

72 [choose] c1_skip=true & c1=1 -> (c1 ’=2);

73

74 // client updates itself using data retrieved from server so long

as c1_skip=false or c1_sth=true.

75 [update] c1_skip=false & c1=2 & connected_server_has_sth -> (c1

’=3) & (c1_sth ’=true);

76 [update] c1=2 & ((c1_skip=false & !connected_server_has_sth) |

c1_skip=true) -> (c1 ’=3);

77

78 //round complete - reset if there is a client who is not yet

updated. Otherwise , stop.

79 [round_complete] c1=3 & !clients_all_updated -> (c1 ’=0) & (c1s ’=0)

& (c1_skip ’=false);

80 [round_complete] c1=3 & clients_all_updated -> (c1 ’=4);

81

82 //self -looping state - go here when every client is updated.

83 [END] c1=4 -> true;

84

85 endmodule

86

87 formula connected_server_has_sth = ((c1s=1 & s1_sth) | (c1s=2 & s2_sth

) | (c1s=3 & s3_sth) | (c1s=4 & s4_sth) | (c1s=5 & s5_sth));

88 formula clients_all_updated = c1_sth&c2_sth&c3_sth&c4_sth&c5_sth;

89

90 module Client2=Client1[p_1_1=p_2_1 ,p_1_2=p_2_2 ,p_1_3=p_2_3 ,p_1_4=p_2_4

,p_1_5=p_2_5 , g1=g2,c1=c2,c1s=c2s , c1_sth=c2_sth , c2_sth=c1_sth ,

c1_skip=c2_skip , c1_sth_init = c2_sth_init] endmodule

91

206

C.1. NORMAL SCENARIO MODEL (WITHOUT SERVER GOSSIP)

92 module Client3=Client1[p_1_1=p_3_1 ,p_1_2=p_3_2 ,p_1_3=p_3_3 ,p_1_4=p_3_4

,p_1_5=p_3_5 , g1=g3,c1=c3,c1s=c3s , c1_sth=c3_sth , c3_sth=c1_sth ,

c1_skip=c3_skip , c1_sth_init = c3_sth_init] endmodule

93

94 module Client4=Client1[p_1_1=p_4_1 ,p_1_2=p_4_2 ,p_1_3=p_4_3 ,p_1_4=p_4_4

,p_1_5=p_4_5 , g1=g4,c1=c4,c1s=c4s , c1_sth=c4_sth , c4_sth=c1_sth ,

c1_skip=c4_skip , c1_sth_init = c4_sth_init] endmodule

95

96 module Client5=Client1[p_1_1=p_5_1 ,p_1_2=p_5_2 ,p_1_3=p_5_3 ,p_1_4=p_5_4

,p_1_5=p_5_5 , g1=g5,c1=c5,c1s=c5s , c1_sth=c5_sth , c5_sth=c1_sth ,

c1_skip=c5_skip , c1_sth_init = c5_sth_init] endmodule

97

98 //--------------

99 // SERVERS

100 //--------------

101

102 // needed for module relabelling

103 const int S1 = 1;

104 const int S2 = 2;

105 const int S3 = 3;

106 const int S4 = 4;

107 const int S5 = 5;

108

109 // initial states for each server

110 const bool s1_init = true;

111 const bool s2_init = false;

112 const bool s3_init = false;

113 const bool s4_init = false;

114 const bool s5_init = false;

115

116 module Server1

207

APPENDIX C. SNAPSHOTS OF PRISM CODE

117

118 //does the server have the latest STH?

119 s1_sth : bool init s1_init;

120

121 // update if a connected client has the latest STH

122 [update] !s1_sth & connected_client_has_sth -> (s1_sth ’=true);

123 [update] s1_sth | (! s1_sth & !connected_client_has_sth) -> true;

124

125 //end when every client is updated

126 [END] true -> true;

127

128 endmodule

129

130 formula connected_client_has_sth = (c1s=S1 & c1_sth) | (c2s=S1 &

c2_sth) | (c3s=S1 & c3_sth) | (c4s=S1 & c4_sth) | (c5s=S1 & c5_sth)

;

131

132 module Server2=Server1[s1_sth=s2_sth , s2_sth=s1_sth , S1=S2 , s1_init=

s2_init] endmodule

133 module Server3=Server1[s1_sth=s3_sth , s3_sth=s1_sth , S1=S3 , s1_init=

s3_init] endmodule

134 module Server4=Server1[s1_sth=s4_sth , s4_sth=s1_sth , S1=S4 , s1_init=

s4_init] endmodule

135 module Server5=Server1[s1_sth=s5_sth , s5_sth=s1_sth , S1=S5 , s1_init=

s5_init] endmodule

136

137 //--------------

138 // FORMULAS

139 //--------------

140

141 const double f = 1/5;

208

C.1. NORMAL SCENARIO MODEL (WITHOUT SERVER GOSSIP)

142

143 //Keeps track of the proportion of clients that have the latest STH -

max sum should equal 1.

144 formula no_clients_updated = (c1_sth?f:0)+(c2_sth?f:0)+(c3_sth?f:0)+(

c4_sth?f:0)+(c5_sth?f:0);

145

146 //For STH -Only , client requests an extension proof if the retrieved

gossip message has a different tree size to what the client has

147 formula client1_getConsistency_STHOnly = c1_skip=false & c1=2 & ((c1s

=1 & c1_sth != s1_sth) | (c1s=2 & c1_sth != s2_sth) | (c1s=3 & c1_sth !=

s3_sth) | (c1s=4 & c1_sth != s4_sth) | (c1s=5 & c1_sth != s5_sth));

148 formula client2_getConsistency_STHOnly = c2_skip=false & c2=2 & ((c2s

=1 & c2_sth != s1_sth) | (c2s=2 & c2_sth != s2_sth) | (c2s=3 & c2_sth !=

s3_sth) | (c2s=4 & c2_sth != s4_sth) | (c2s=5 & c2_sth != s5_sth));

149 formula client3_getConsistency_STHOnly = c3_skip=false & c3=2 & ((c3s

=1 & c3_sth != s1_sth) | (c3s=2 & c3_sth != s2_sth) | (c3s=3 & c3_sth !=

s3_sth) | (c3s=4 & c3_sth != s4_sth) | (c3s=5 & c3_sth != s5_sth));

150 formula client4_getConsistency_STHOnly = c4_skip=false & c4=2 & ((c4s

=1 & c4_sth != s1_sth) | (c4s=2 & c4_sth != s2_sth) | (c4s=3 & c4_sth !=

s3_sth) | (c4s=4 & c4_sth != s4_sth) | (c4s=5 & c4_sth != s5_sth));

151 formula client5_getConsistency_STHOnly = c5_skip=false & c5=2 & ((c5s

=1 & c5_sth != s1_sth) | (c5s=2 & c5_sth != s2_sth) | (c5s=3 & c5_sth !=

s3_sth) | (c5s=4 & c5_sth != s4_sth) | (c5s=5 & c5_sth != s5_sth));

152

153 //Keeps track of the log connection currently being made using the STH

-Only protocol

154 formula log_connections_STHOnly = (client1_getConsistency_STHOnly ?1:0)

+(client2_getConsistency_STHOnly ?1:0)+(

client3_getConsistency_STHOnly ?1:0)+(client4_getConsistency_STHOnly

?1:0) +(client5_getConsistency_STHOnly ?1:0);

155

209

APPENDIX C. SNAPSHOTS OF PRISM CODE

156 //For STH -and -Proof , client requests an extension proof if it updated

and the connecting server does not.

157 formula client1_getConsistency_STHAndProof = c1_skip=false & c1=2 & ((

c1s=1 & c1_sth & !s1_sth) | (c1s=2 & c1_sth & !s2_sth) | (c1s=3 &

c1_sth & !s3_sth) | (c1s=4 & c1_sth & !s4_sth) | (c1s=5 & c1_sth &

!s5_sth));

158 formula client2_getConsistency_STHAndProof = c2_skip=false & c2=2 & ((

c2s=1 & c2_sth & !s1_sth) | (c2s=2 & c2_sth & !s2_sth) | (c2s=3 &

c2_sth & !s3_sth) | (c2s=4 & c2_sth & !s4_sth) | (c2s=5 & c2_sth &

!s5_sth));

159 formula client3_getConsistency_STHAndProof = c3_skip=false & c3=2 & ((

c3s=1 & c3_sth & !s1_sth) | (c3s=2 & c3_sth & !s2_sth) | (c3s=3 &

c3_sth & !s3_sth) | (c3s=4 & c3_sth & !s4_sth) | (c3s=5 & c3_sth &

!s5_sth));

160 formula client4_getConsistency_STHAndProof = c4_skip=false & c4=2 & ((

c4s=1 & c4_sth & !s1_sth) | (c4s=2 & c4_sth & !s2_sth) | (c4s=3 &

c4_sth & !s3_sth) | (c4s=4 & c4_sth & !s4_sth) | (c4s=5 & c4_sth &

!s5_sth));

161 formula client5_getConsistency_STHAndProof = c5_skip=false & c5=2 & ((

c5s=1 & c5_sth & !s1_sth) | (c5s=2 & c5_sth & !s2_sth) | (c5s=3 &

c5_sth & !s3_sth) | (c5s=4 & c5_sth & !s4_sth) | (c5s=5 & c5_sth &

!s5_sth));

162

163 //Keeps track of the log connection currently being made using the STH

-and -Proof protocol

164 formula log_connections_STHAndProof = (

client1_getConsistency_STHAndProof ?1:0)+(

client2_getConsistency_STHAndProof ?1:0)+(

client3_getConsistency_STHAndProof ?1:0)+(

client4_getConsistency_STHAndProof ?1:0)+(

client5_getConsistency_STHAndProof ?1:0);

210

C.1. NORMAL SCENARIO MODEL (WITHOUT SERVER GOSSIP)

165

166 //--------------

167 // REWARD STRUCTURES

168 //--------------

169

170 rewards "rounds"

171 true : 1/4;

172 endrewards

173

174 rewards "client_proportion"

175 true : no_clients_updated;

176 endrewards

177

178 rewards "client_proportion_sq"

179 true : no_clients_updated*no_clients_updated;

180 endrewards

181

182 rewards "log_connections_STHOnly"

183 true: log_connections_STHOnly;

184 endrewards

185

186 rewards "log_connections_STHOnly_sq"

187 true : log_connections_STHOnly*log_connections_STHOnly;

188 endrewards

189

190 rewards "log_connections_STHAndProof"

191 true : log_connections_STHAndProof;

192 endrewards

193

194 rewards "log_connections_STHAndProof_sq"

195 true : log_connections_STHAndProof*log_connections_STHAndProof;

211

APPENDIX C. SNAPSHOTS OF PRISM CODE

196 endrewards

C.2 Split-world Scenario Model With Intervals

(Without Server Gossip)

A PRISM model (IDTMC) we used to find verification results for Chapter 5, describing

a split-world gossiping scenario within a network of five clients and server each:

1 // Author: mco

2 // Timestamp: 16 -09 -2020

3

4 dtmc

5

6 // initial states for each client

7 const int c1_sth_init = 0;

8 const int c2_sth_init = 0;

9 const int c3_sth_init = 2;

10

11 // client connect rates

12 prob g1 = 0.5 ;

13 prob g2 = 0.5 ;

14 prob g3 = 0.5 ;

15

16 // client profiles

17 prob p_1_1_L = 0.01 ;

18 prob p_1_2_L = 0.2 ;

19 prob p_1_3_L = 0.2 ;

20 prob p_1_4_L = 0.3;

21 prob p_1_5_L = 1E-14 ;

22 prob p_1_1_H = 0.1 ;

212

C.2. SPLIT-WORLD SCENARIO MODEL WITH INTERVALS (WITHOUT
SERVER GOSSIP)

23 prob p_1_2_H = 0.4 ;

24 prob p_1_3_H = 0.3 ;

25 prob p_1_4_H = 0.4;

26 prob p_1_5_H = 0.29 ;

27

28 prob p_2_1_L = 0.01 ;

29 prob p_2_2_L = 0.2;

30 prob p_2_3_L = 0.4;

31 prob p_2_4_L = 0.2 ;

32 prob p_2_5_L = 1E-14;

33 prob p_2_1_H = 0.1 ;

34 prob p_2_2_H = 0.4;

35 prob p_2_3_H = 0.5;

36 prob p_2_4_H = 0.3 ;

37 prob p_2_5_H = 0.19 ;

38

39 prob p_3_1_L = 0.01;

40 prob p_3_2_L = 0.2;

41 prob p_3_3_L = 0.15;

42 prob p_3_4_L = 0.15;

43 prob p_3_5_L = 1E-14;

44 prob p_3_1_H = 0.1 ;

45 prob p_3_2_H = 0.4;

46 prob p_3_3_H = 0.25 ;

47 prob p_3_4_H = 0.25 ;

48 prob p_3_5_H = 0.49 ;

49

50 module Client1

51

52 // global state

53 c1 : [0..4] init 0;

213

APPENDIX C. SNAPSHOTS OF PRISM CODE

54

55 // connectivity state

56 c1s : [0..5] init 0;

57

58 // Record which root hash this node currently has.

59 c1_sth : [0..2] init c1_sth_init;

60

61 // detection state

62 c1d : bool init false;

63

64 //skip the round?

65 c1_skip : bool init false;

66

67 // client decides randomly to participate in the round

68 [connect] c1=0 -> g1 : (c1 ’=1) + 1-g1 : (c1 ’=1) & (c1_skip ’=true);

69

70 // client randomly chooses a server if participating in the round.

71 [choose] c1_skip=false & c1=1 -> [p_1_1_L , p_1_1_H] : (c1 ’=2)&(c1s

’=1) + [p_1_2_L , p_1_2_H] : (c1 ’=2)&(c1s ’=2) + [p_1_3_L , p_1_3_H] :

(c1 ’=2)&(c1s ’=3) + [p_1_4_L , p_1_4_H] : (c1 ’=2)&(c1s ’=4) + [

p_1_5_L , p_1_5_H] : (c1 ’=2)&(c1s ’=5);

72 [choose] c1_skip & c1=1 -> (c1 ’=2);

73

74 // client updates itself using data retrieved from server , checking

that no issues are present (so long as c1_skip=false).

75 [update] !c1_skip & c1=2 & s_data_ok -> (c1_sth ’= c_update) & (c1

’=3);

76 [update] !c1_skip & c1=2 & !s_data_ok -> (c1d ’=true) & (c1 ’=3);

77 [update] c1_skip & c1=2 -> (c1 ’=3);

78

214

C.2. SPLIT-WORLD SCENARIO MODEL WITH INTERVALS (WITHOUT
SERVER GOSSIP)

79 //round complete - start the next round if there no client has

found an issue with the log. Otherwise , go to self -looping state

and stop.

80 [round_complete] c1=3 & !detect -> (c1 ’=0) & (c1s ’=0) & (c1_skip ’=

false);

81 [round_complete] c1=3 & detect -> (c1 ’=4) & (c1s ’=0) & (c1_skip ’=

false);

82

83 //self -looping state

84 [END] c1=4 -> true;

85

86 endmodule

87

88 // pr_req_successful is true if either a) log returns a valid proof or

b) client does not need to contact log in the first place

89

90 formula pr_req_successful = (c1s=1 & s1_sth+c1_sth !=3) | (c1s=2 &

s2_sth+c1_sth !=3) | (c1s=3 & s3_sth+c1_sth !=3) | (c1s=4 & s4_sth+

c1_sth !=3) | (c1s=5 & s5_sth+c1_sth !=3);

91

92 // Warning messages are used when someone has already found an

inconsistency and starts to report this to other nodes through

gossiping.

93 formula warn_msg = (c1s=1 & s1d) | (c1s=2 & s2d) | (c1s=3 & s3d) | (

c1s=4 & s4d) | (c1s=5 & s5d);

94

95 // Clients update when given brand new data via a server

96 formula c_update = c1_sth + ((c1s=1 & s1_sth >c1_sth)?s1_sth -c1_sth :0)

+ ((c1s=2 & s2_sth >c1_sth)?s2_sth -c1_sth :0) + ((c1s=3 & s3_sth >

c1_sth)?s3_sth -c1_sth :0) + ((c1s=4 & s4_sth >c1_sth)?s4_sth -c1_sth

:0) + ((c1s=5 & s5_sth >c1_sth)?s5_sth -c1_sth :0);

215

APPENDIX C. SNAPSHOTS OF PRISM CODE

97

98 // An issue will be found in the data if either a) log cannot provide

a valid proof or b) client gets a warning message.

99 formula s_data_ok = pr_req_successful & !warn_msg;

100

101 formula detect = c1d | c2d | c3d;

102 label "detect" = c1d | c2d | c3d;

103

104 module Client2=Client1[p_1_1_L = p_2_1_L , p_1_2_L = p_2_2_L , p_1_3_L =

p_2_3_L , p_1_4_L = p_2_4_L , p_1_5_L = p_2_5_L , p_1_1_H = p_2_1_H ,

p_1_2_H = p_2_2_H , p_1_3_H = p_2_3_H , p_1_4_H = p_2_4_H , p_1_5_H =

p_2_5_H , g1=g2 , c1=c2 , c1s=c2s , c1_sth=c2_sth , c1_skip=c2_skip , c1d

=c2d , c2d=c1d , c1_sth_init = c2_sth_init] endmodule

105

106 module Client3=Client1[p_1_1_L = p_3_1_L , p_1_2_L = p_3_2_L , p_1_3_L =

p_3_3_L , p_1_4_L = p_3_4_L , p_1_5_L = p_3_5_L , p_1_1_H = p_3_1_H ,

p_1_2_H = p_3_2_H , p_1_3_H = p_3_3_H , p_1_4_H = p_3_4_H , p_1_5_H =

p_3_5_H , g1=g3 , c1=c3 , c1s=c3s , c1_sth=c3_sth , c1_skip=c3_skip , c1d

=c3d , c3d=c1d , c1_sth_init = c3_sth_init] endmodule

107

108 // needed for module relabelling

109 const int s1_init = 1;

110 const int s2_init = 0;

111 const int s3_init = 0;

112 const int s4_init = 0;

113 const int s5_init = 0;

114

115 // needed for module relabelling

116 const int S1 = 1;

117 const int S2 = 2;

118 const int S3 = 3;

216

C.2. SPLIT-WORLD SCENARIO MODEL WITH INTERVALS (WITHOUT
SERVER GOSSIP)

119 const int S4 = 4;

120 const int S5 = 5;

121

122 module Server1

123

124 //does the server have the latest STH?

125 s1_sth : [0..2] init s1_init;

126

127 // detection state

128 s1d : bool init false;

129

130 //If any clients sends inconsistent data , cease protocol execution

and go into detection state.

131 [update] !s1d & c_data_ok -> (s1_sth ’= s_update);

132 [update] !s1d & !c_data_ok -> (s1d ’=true) & (s1_sth ’=0);

133 [update] s1d -> true;

134

135 //self -looping state

136 [END] true -> true;

137

138 endmodule

139

140 //The following formulae is used for the ’update ’ stage in server 1.

Server -side , an issue will be found in the data if either a) log

cannot provide a valid proof or b) a pair of clients connect with

inconsistent data.

141 formula server_pr_req_fail = (c1s=S1 & s1_sth+c1_sth =3) | (c2s=S1 &

s1_sth+c2_sth =3) | (c3s=S1 & s1_sth+c3_sth =3);

142

143 formula pairwise_inconsistency = ((c1s=S1 & c1_sth =1) | (c2s=S1 &

c2_sth =1) | (c3s=S1 & c3_sth =1)) & ((c1s=S1 & c1_sth =2) | (c2s=S1 &

217

APPENDIX C. SNAPSHOTS OF PRISM CODE

c2_sth =2) | (c3s=S1 & c3_sth =2));

144

145 formula c_data_ok = !server_pr_req_fail & !pairwise_inconsistency;

146

147 // Servers update when given brand new data via a connected client.

148 formula s_update = s1_sth + max((c1s=S1&c1_sth >s1_sth?c1_sth -s1_sth :0)

,(c2s=S1&c2_sth >s1_sth?c2_sth -s1_sth :0) ,(c3s=S1&c3_sth >s1_sth?

c3_sth -s1_sth :0));

149

150 module Server2=Server1[s1_sth=s2_sth , s2_sth=s1_sth , s1d=s2d , s2d=s1d ,

S1=S2, s1_init=s2_init] endmodule

151 module Server3=Server1[s1_sth=s3_sth , s3_sth=s1_sth , s1d=s3d , s3d=s1d ,

S1=S3, s1_init=s3_init] endmodule

152 module Server4=Server1[s1_sth=s4_sth , s4_sth=s1_sth , s1d=s4d , s4d=s1d ,

S1=S4, s1_init=s4_init] endmodule

153 module Server5=Server1[s1_sth=s5_sth , s5_sth=s1_sth , s1d=s5d , s5d=s1d ,

S1=S5, s1_init=s5_init] endmodule

218

	d9a9ef29-9eba-4ed6-a3c4-e39d8ba35df2.pdf
	List of Figures
	List of Tables
	Glossary
	Introduction
	Related Work
	Transparency
	Gossip and Auditing for CT
	Probabilistic Model Checking

	Background
	Certificate Transparency
	CT Gossiping
	Probabilistic Model Checking
	Derivative-free Optimisation

	Modelling and Verification of Gossip Protocols
	Network Topology
	Modelling the Protocol
	Specification of Protocol Properties
	Server-to-server Gossip
	Experimental Results
	Summary

	Tackling Uncertainty and Unscalability using IDTMCs
	Using IDTMCs When Client Probabilities are Unknown
	IDTMC Abstraction
	Experimental Results
	Summary

	Model Parameter Optimisation
	Deriving Network Model Parameters
	Adapting the Black-box Optimisation Problem
	Python Application
	Experimental Results
	Combining IDTMCs With SMBO
	Summary

	Discussion and Conclusion
	Bibliography
	Appendix Constructing Components from IDTMCs and Updating ADTMCs
	ConstructComponent
	UpdateADTMC

	Appendix Deriving Distributions Using Surrogate Parameters
	Appendix Snapshots of PRISM Code
	Normal Scenario Model (Without Server Gossip)
	Split-world Scenario Model With Intervals (Without Server Gossip)

