253 research outputs found

    Proactive admission control and dynamic resource management in SDN-based virtualized networks

    Get PDF
    Network virtualization is a promising approach in which common physical resources are shared between service providers. Due to the substrate network limitations such as maximum available memory of each node of the substrate network as well as different service priorities and requirements, resource management in this setup is essential. On the other hand, SDN is bringing a considerable flexibility in resource management by introducing a centralized controller which can monitor all the substrate network states. In this paper, we propose a proactive admission control and dynamic resource management in SDNbased virtualized network in which the number of accepted highpriority virtual network (VN) requests is maximized, subject to both substrate limitations and memory requirement of each VN request. In the proposed formulation, based on the prediction of the substrate network utilization, we reserve resources for upcoming high-priority VN requests. Via simulation, we show that the algorithm can increase the acceptance ratio of the highpriority VN requests up to % 100 where the substrate network is congested, i.e., arrival rates of both high-priority and low-priority VN requests are high

    Elastic provisioning of network and computing resources at the edge for IoT services

    Get PDF
    The fast growth of Internet-connected embedded devices demands new system capabilities at the network edge, such as provisioning local data services on both limited network and computational resources. The current contribution addresses the previous problem by enhancing the usage of scarce edge resources. It designs, deploys, and tests a new solution that incorporates the positive functional advantages offered by software-defined networking (SDN), network function virtual-ization (NFV), and fog computing (FC). Our proposal autonomously activates or deactivates embedded virtualized resources, in response to clients’ requests for edge services. Complementing existing literature, the obtained results from extensive tests on our programmable proposal show the superior performance of the proposed elastic edge resource provisioning algorithm, which also assumes a SDN controller with proactive OpenFlow behavior. According to our results, the maximum flow rate for the proactive controller is 15% higher; the maximum delay is 83% smaller; and the loss is 20% smaller compared to when the non-proactive controller is in operation. This improvement in flow quality is complemented by a reduction in control channel workload. The controller also records the time duration of each edge service session, which can enable the ac-counting of used resources per session.info:eu-repo/semantics/publishedVersio

    Dynamic Resource Provisioning of a Scalable E2E Network Slicing Orchestration System

    Get PDF
    Network slicing allows different applications and network services to be deployed on virtualized resources running on a common underlying physical infrastructure. Developing a scalable system for the orchestration of end-to-end (E2E) mobile network slices requires careful planning and very reliable algorithms. In this paper, we propose a novel E2E Network Slicing Orchestration System (NSOS) and a Dynamic Auto- Scaling Algorithm (DASA) for it. Our NSOS relies strongly on the foundation of a hierarchical architecture that incorporates dedicated entities per domain to manage every segment of the mobile network from the access, to the transport and core network part for a scalable orchestration of federated network slices. The DASA enables the NSOS to autonomously adapt its resources to changes in the demand for slice orchestration requests (SORs) while enforcing a given mean overall time taken by the NSOS to process any SOR. The proposed DASA includes both proactive and reactive resource provisioning techniques). The proposed resource dimensioning heuristic algorithm of the DASA is based on a queuing model for the NSOS, which consists of an open network of G/G/m queues. Finally, we validate the proper operation and evaluate the performance of our DASA solution for the NSOS by means of system-level simulations.This research work is partially supported by the European Union’s Horizon 2020 research and innovation program under the 5G!Pagoda project, the MATILDA project and the Academy of Finland 6Genesis project with grant agreement No. 723172, No. 761898 and No. 318927, respectively. It was also partially funded by the Academy of Finland Project CSN - under Grant Agreement 311654 and the Spanish Ministry of Education, Culture and Sport (FPU Grant 13/04833), and the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (TEC2016-76795-C6- 4-R)

    Baguette:towards end-to-end service orchestration in heterogeneous networks

    Get PDF
    Network services are the key mechanism for operators to introduce intelligence and generate profit from their infrastructures. The growth of the number of network users and the stricter application network requirements have highlighted a number of challenges in orchestrating services using existing production management and configuration protocols and mechanisms. Recent networking paradigms like Software Defined Networking (SDN) and Network Function Virtualization (NFV), provide a set of novel control and management interfaces that enable unprecedented automation, flexibility and openness capabilities in operator infrastructure management. This paper presents Baguette, a novel and open service orchestration framework for operators. Baguette supports a wide range of network technologies, namely optical and wired Ethernet technologies, and allows service providers to automate the deployment and dynamic re-optimization of network services. We present the design of the orchestrator and elaborate on the integration of Baguette with existing low-level network and cloud management frameworks

    Network slicing cost allocation model

    Get PDF
    Within the upcoming fifth generation (5G) mobile networks, a lot of emerging technologies, such as Software Defined Network (SDN), Network Function Virtualization (NFV) and network slicing are proposed in order to leverage more flexibility, agility and cost-efficient deployment. These new networking paradigms are shaping not only the network architectures but will also affect the market structure and business case of the stakeholders involved. Due to its capability of splitting the physical network infrastructure into several isolated logical sub-networks, network slicing opens the network resources to vertical segments aiming at providing customized and more efficient end-to-end (E2E) services. While many standardization efforts within the 3GPP body have been made regarding the system architectural and functional features for the implementation of network slicing in 5G networks, techno-economic analysis of this concept is still at a very incipient stage. This paper initiates this techno-economic work by proposing a model that allocates the network cost to the different deployed slices, which can then later be used to price the different E2E services. This allocation is made from a network infrastructure provider perspective. To feed the proposed model with the required inputs, a resource allocation algorithm together with a 5G network function (NF) dimensioning model are also proposed. Results of the different models as well as the cost saving on the core network part resulting from the use of NFV are discussed as well

    Performance Modeling of Softwarized Network Services Based on Queuing Theory with Experimental Validation

    Get PDF
    Network Functions Virtualization facilitates the automation of the scaling of softwarized network services (SNSs). However, the realization of such a scenario requires a way to determine the needed amount of resources so that the SNSs performance requisites are met for a given workload. This problem is known as resource dimensioning, and it can be efficiently tackled by performance modeling. In this vein, this paper describes an analytical model based on an open queuing network of G/G/m queues to evaluate the response time of SNSs. We validate our model experimentally for a virtualized Mobility Management Entity (vMME) with a three-tiered architecture running on a testbed that resembles a typical data center virtualization environment. We detail the description of our experimental setup and procedures. We solve our resulting queueing network by using the Queueing Networks Analyzer (QNA), Jackson’s networks, and Mean Value Analysis methodologies, and compare them in terms of estimation error. Results show that, for medium and high workloads, the QNA method achieves less than half of error compared to the standard techniques. For low workloads, the three methods produce an error lower than 10%. Finally, we show the usefulness of the model for performing the dynamic provisioning of the vMME experimentally.This work has been partially funded by the H2020 research and innovation project 5G-CLARITY (Grant No. 871428)National research project 5G-City: TEC2016-76795-C6-4-RSpanish Ministry of Education, Culture and Sport (FPU Grant 13/04833). We would also like to thank the reviewers for their valuable feedback to enhance the quality and contribution of this wor

    Contributions towards softwarization and energy saving in passive optical networks

    Get PDF
    Ths thesis is a result of contributions to optimize and improve the network management systme and power consumption in Passive Optical Network (PON). Passive Optical Network elements such as Optical Line Terminal (OLT) and Optical Network Units (ONUs) are currently managed by inflexible legacy network management systems. Software-Defined Networking (SDN) is a new networking paradigm that improves the operation and management of networks by decoupling control plane from data plane. Currently, network management in PON networks is not always automated nor normalized. One goal of the researchers in optical networking is to improve the programmability, efficiency, and global optimization of network operations, in order to minimize both Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) by reducing the complexity of devices and its operation. Therefore, it makes sense to use an SDN approach in order to manage the passive optical network functionalities and migrating must of the upper layer functions to the SDN controller. Many approaches have already addressed the topic of applying the SDN architecture in PON networks. However; the focus was usually on facilitating the deployment of SDN-based service and so Service Interoperability remains unexplored in detail. The main challenge toward this goal is how to make compatible the synchronous nature of the EPON media access control protocols with the asynchronous architecture of SDN, and in particular, OpenFlow. In our proposed architecture, the OLT is partially virtualized and some of its functionalities are allocated to the core network management system, while the OLT itself is replaced by an OpenFlow switch. A new MultiPoint MAC Control (MPMC) sublayer extension based on the OpenFlow protocol is presented. The OpenFlow switch is extended with synchronous ports to retain the time-critical nature of the EPON network. Our simulation-based results demonstrate the effectiveness of the new architecture, while retaining a similar (or improved) performance in term of delay and throughput when compared to legacy PONs. Nowadays, many researchers are working simultaneously to develop power saving techniques and improves energy efficiency in the PON network, and since the contribution of access networks to the global energy consumption is large, energy efficiency has become an increasingly important requirement in designing access networks. Therefore, energy-saving approaches are being investigated to provide high performance and consume less energy. Several techniques have been proposed to increase energy efficiency in PON networks. Such techniques are related to the centeralized DBA but the advantage of power saving in a distributed DBA remains untouched. We present a distributed energy-efficient Dynamic Bandwidth Allocation (DBA) algorithm for both the upstream and downstream channels of EPON to improve energy efficiency in EPON networks. The proposed algorithm analyzes the queue status of the ONUs and OLT in order to power-off the transmitter and/or receiver of an ONU whenever there is no upstream or downstream traffic. We have been able to combine the advantage of a distributed DBA such as DDSPON (a smaller packet delay, due to the shorter time needed by DDSPON to allocate the transmission slots) and the energy-saving features (that come at a price of longer packet delays due to the fact that switching off the transmitters make the packet queues grow). Our proposed DBA algorithm minimizes the ONU energy consumption across a wide range of network loads, while maintaining at an acceptable level the penalty introduced in terms of channel utilization and packet delay.Las contribuciones de esta tesis se centran en mejorar el sistema de gestión de red y el consumo de energía en redes de acceso ópticas pasivas (PON). Los elementos de las redes PON, como el terminal de línea óptica (OLT) y las unidades de red ópticas (ONU), se gestionan actualmente mediante sistemas poco flexibles. El nuevo paradigma de redes definidas por software (SDN) mejora la gestión de redes al desacoplar el plano de control del plano de datos. Actualmente, la gestión de redes PON no está automatizada ni normalizada. Uno de los objetivos de los investigadores en redes ópticas es mejorar la programabilidad, la eficiencia y la optimización global de las operaciones de red, con el fin de minimizar tanto el gasto de capital (CAPEX) como el gasto operativo (OPEX) al reducir la complejidad de los dispositivos y su funcionamiento. Por lo tanto, tiene sentido utilizar un enfoque SDN para gestionar las funciones de red óptica pasiva y migrar algunas de las funciones PON de capas superiores al controlador SDN. Otros investigadores han estudiado esta aproximación. sin embargo; el enfoque generalmente estaba en facilitar la implementación del servicio basado en SDN y, por lo tanto, la interoperabilidad de los servicios permanecía sin ser explorado en detalle. El principal desafío hacia este objetivo es cómo compatibilizar la naturaleza síncrona de los protocolos de control de acceso a medios EPON con la arquitectura asíncrona de SDN y, en particular, OpenFlow. En nuestra propuesta de arquitectura, la OLT se virtualiza parcialmente y algunas de sus funcionalidades se asignan al sistema de gestión de red centralizado, mientras que la OLT se reemplaza por un conmutador OpenFlow. Proponemos una nueva extensión de la subcapa de control múltiple de MAC (MPMC) basada en el protocolo OpenFlow. El conmutador OpenFlow se amplía con puertos síncronos para asegurar la naturaleza de tiempo real de la red EPON. Nuestros resultados basados ¿¿en simulaciones demuestran la efectividad de la nueva arquitectura, al tiempo que se mantiene un rendimiento similar (o mejorado) en términos de retardos y rendimiento en comparación con las PON clásicas. Por otro lado, se están desarrollando técnicas de ahorro de energía y mejora de la eficiencia energética en redes PON, y dado que la contribución de las redes de acceso al consumo total de energía es importante, la eficiencia energética se ha convertido en un requisito cada vez más importante. Se han propuesto varias técnicas por parte de otros autores para aumentar la eficiencia energética en las redes PON, relacionadas con algoritmos DBA (Dynamic Bandwidth Allocation) centralizados, pero las ventaja del ahorro de energía en un DBA distribuido no se ha explorado todavía. Por ello nuestra segunda contiribución es un algoritmo distribuido de asignación dinámica de ancho de banda energéticamente eficiente tanto para los canales ascendentes como descendentes de EPON para mejorar la eficiencia energética en las redes EPON. El algoritmo propuesto analiza el estado de cola de las ONU y la OLT para apagar el transmisor y/o el receptor de una ONU cuando no hay tráfico en sentido ascendente o descendente. Hemos podido combinar la ventaja de un DBA distribuido como DDSPON (que asegura retardos más pequeños, debido al menor tiempo que DDSPON necesita para asignar las ranuras de transmisión) y las características de ahorro de energía (al precio de tener retardos de paquete más grandes debido al hecho de que apagar los transmisores hace que las colas de paquetes crezcan). Nuestro algoritmo de DBA propuesto minimiza el consumo de energía de la ONU en una amplia gama de cargas de red, mientras mantiene a un nivel aceptable la penalización introducida en términos de utilización del canal y retardos.Postprint (published version
    corecore