
Citation: Cardoso, P.; Moura, J.;

Marinheiro, R.N. Elastic Provisioning

of Network and Computing

Resources at the Edge for IoT

Services. Sensors 2023, 23, 2762.

https://doi.org/10.3390/s23052762

Academic Editor: Francesco Bellotti

Received: 31 January 2023

Revised: 19 February 2023

Accepted: 28 February 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Elastic Provisioning of Network and Computing Resources at
the Edge for IoT Services
Patrícia Cardoso 1, José Moura 2,* and Rui Neto Marinheiro 2

1 Instituto Universitário de Lisboa (ISCTE-IUL), Av. das Forças Armadas, 1649-026 Lisboa, Portugal
2 Departamento de Ciências e Tecnologias da Informação, Instituto de Telecomunicações, Instituto

Universitário de Lisboa (ISCTE-IUL), Av. das Forças Armadas, 1649-026 Lisboa, Portugal
* Correspondence: jose.moura@iscte-iul.pt

Abstract: The fast growth of Internet-connected embedded devices demands new system capabilities at
the network edge, such as provisioning local data services on both limited network and computational
resources. The current contribution addresses the previous problem by enhancing the usage of scarce
edge resources. It designs, deploys, and tests a new solution that incorporates the positive functional
advantages offered by software-defined networking (SDN), network function virtualization (NFV),
and fog computing (FC). Our proposal autonomously activates or deactivates embedded virtualized
resources, in response to clients’ requests for edge services. Complementing existing literature, the
obtained results from extensive tests on our programmable proposal show the superior performance
of the proposed elastic edge resource provisioning algorithm, which also assumes an SDN controller
with proactive OpenFlow behavior. According to our results, the maximum flow rate for the proactive
controller is 15% higher; the maximum delay is 83% smaller; and the loss is 20% smaller compared to
when the non-proactive controller is in operation. This improvement in flow quality is complemented
by a reduction in control channel workload. The controller also records the time duration of each edge
service session, which can enable the accounting of used resources per session.

Keywords: resource management; elastic provisioning; software-defined networking; internet of
things; edge computing; container; self-activation; self-release; fog computing; scarce resources

1. Introduction

The International Data Corporate estimates that at the end of 2025 there will be
41.6 billion things connected to the Internet [1], generating 79.4 zettabytes of data. These
predictions are supported by two evident pillars: (i) improvements in the Telecom sector,
with more ubiquitous and cheaper Internet access, and (ii) programmable open-source
solutions that make it possible to deploy very versatile network devices, aggregating
networking, processing, and storage capabilities at the network edge.

The enormous scale of connected devices and the management of very large amounts
of generated data, as well as the use of diverse communication protocols, hardware, and
software supplied by distinct manufacturers, make it difficult to find the most efficient
configuration to use in legacy network architectures, and to address emerging internet of
things (IoT) scenarios. As such, there is a requirement for a more flexible and comprehensive
network architecture, essentially at the network edge.

The most promising approach to address the challenges mentioned above is to add
an edge layer between local system-embedded devices and the cloud to support periph-
eral computation, communication, and data storage. This new layer can enhance service
performance, mobility support, and data privacy while reducing data volume exchanged
through the backhaul links and guaranteeing low latency for end-user accessing services [2].
However, the addition of an edge layer to the system architecture brings new challenges
in managing the available resources at the peripheral infrastructure [3,4] and associated
services, which could be offered in a federated way [5].

Sensors 2023, 23, 2762. https://doi.org/10.3390/s23052762 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052762
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3516-8781
https://orcid.org/0000-0002-0385-8876
https://doi.org/10.3390/s23052762
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052762?type=check_update&version=1

Sensors 2023, 23, 2762 2 of 20

The available edge computational resources, sometimes referred to as fog computing
(FC), should be managed differently than computing assets from remote cloud data centers.
This is because, among other issues, edge servers have fewer processing resources available
when compared to cloud servers [3]. In this paper, we consider FC and edge computing
(EC) concepts in a similar way to model scenarios with computational containers operating
at network peripheral domains. Nevertheless, the reader is referred to [6], which discusses
FC and EC as slightly distinct but relevant pillars of the current evolution of networked
systems to satisfy the major requisites of IoT services.

Software-defined networking (SDN) has emerged as a network design to catalyze
the real deployment of innovative control or management solutions, overcoming the
network ossification imposed by the legacy proprietary network services [7]. In traditional
networks, the control and the data planes are located within the network devices, requiring
a personalized configuration on each device using low-level, rigid, and often vendor-
specific commands. SDN takes the control out of the data plane devices and provides
centralized logical control and abstraction from hardware complexity. Thus, SDN-based
solutions provide automatic control loops for a stable and optimal system operation, using
innovative and open-source programmable networking services [8].

Additionally, the use of virtualization techniques applied to SDN and sensor services
can address scalability and heterogeneity issues imposed by most upcoming IoT-based
scenarios [9]. Virtualized sensors abstract the hardware complexity from the developed
software, reducing the number of physical devices, aggregating IoT data, and enabling
the management of IoT domains via well-defined application programming interfaces
(APIs) [10,11].

Considering all the previously discussed aspects, we found a strong motivation to
enhance the current available literature by designing, implementing, and evaluating a novel
programmable open-source solution, which optimizes the usage of limited edge resources
and protects the quality of data flows. Summing up, the new key contributions of this
work are as follows: (i) supporting virtualized resource management at the network edge;
(ii) liberating idle system resources, ensuring a more efficient operation of the system’s
limited resources; (iii) enhancing the quality of data flows by using a proactive SDN
controller; and (iv) accounting resources used by each user service session, by the controller,
enabling the exploration of novel dynamic business models at the network edge.

The paper structure is as follows. Section 2 revises the most relevant related literature,
highlighting the novelty of our work. Section 3 presents the design and implementation
details of the proposed solution. The evaluation results of this proposal are discussed in
Section 4. The major outputs of the current investigation are summarized in Section 5.
Finally, Section 6 concludes and points out some future research directions.

2. Related Work

This section discusses related work, highlighting the novelty of the present research.
The text bellow debates data-driven softwarized solutions that are relevant for emerging
data-intensive and time-sensitive scenarios, which help to achieve various goals such
as controlling, orchestrating, or abstracting the available network edge assets, mainly
for distributed computing resources. Table 1 compares the current work with previous
associated research, highlighting the novel aspects of our contribution.

Sensors 2023, 23, 2762 3 of 20

Table 1. Literature comparison of covered topics, marked by ‘+’.

Reference Year SDN NFV (Broker) ML Orchestration Uncertainty Offloading Network Slicing Docker Linux Containers On-Demand Activation of IoT Services

[10] 2017 + +

[12] 2019 + + + +

[13] 2019 + +

[14] 2020 + +

[15] 2014 + + +

[16] 2016 + + +

[17] 2019 + +

[18] 2017 + +

[19] 1026 + + + +

[20] 2012 + +

[21] 2018 +

[22] 2019 +

[23] 2020 + +

[24] 2022 + +

[25] 2021 + +

Our work 2023 + + + + + +

Sensors 2023, 23, 2762 4 of 20

The work in [12] discussed adaptable and data-driven decision making for commu-
nication systems. They proposed machine learning (ML) [13] modules to enhance the
functional primitives of observation (ensured mainly via SDN), composition (ensured
mainly via network function virtualization—NFV), and control (ensured by the coordina-
tion between SDN and NFV) in the presence of uncertainty in relation to the network status
evolution. By offering these enhancements, the data-driven networked systems can learn
and properly react to changes in the networking context as well as unexpected variations in
traffic load. In addition, [14] proposed a smart SDN management of fog services. The work
in [15] studied the orchestration of SDN applications that cooperate to offer network-wide
resilience. The studied applications involved traffic classification, anomaly detection, and
traffic shaping.

Kobo et al. [10] studied SDN as a technology enabler for the upcoming use cases of
wireless sensor networks. The work in [16] investigated SDN for IoT applications. They
combined SDN with virtualization frameworks, such as NFV and network slicing. NFV can
use high-level policies to manage IoT resources and network slicing can support flow-based
QoS/QoE differentiation at the network edge. The authors of [17] studied the synergies of
both SDN and NFV for the efficient and secure operation of IoT networks.

Tomovic et al. [18] designed a solution that combines the major benefits normally
offered by both SDN and FC. Their proposal orchestrates fog resources, via SDN controllers,
to diminish the level of complexity to efficiently control those resources. In addition, the
SDN scalability issue was tamed by delegating some controller’s processing tasks to fog
computing nodes. The virtualization was out of scope of their work.

Another approach involving SDN and container-based technology is the one described
by Xu et al. [19], who proposed an in-house controller for elastically managing Docker
computing resources at edge switches. They used an SDN controller pushed to the edge
to manage the life cycle of services. Our research is also aligned with the main objective
discussed in [20], which adopted localized flow management performed by distributed
controllers to overcome the additional delay imposed by the constraints on the control
channel between each SDN controller and the SDN-based switch. However, the Xu proposal
was deployed in the Docker platform and was heavier and more demanding in terms of
resources than our lighter kernel-based container proposal. In fact, each Docker container
runs in the user-space, which increases both the system overhead and the activation time
of that container. Alternatively, Linux containers (LXC) running in the kernel offer more
agile bootstrap and operation than the ones provided by Docker containers. It has been
proven that LXC is the most performant solution in nearly all virtualization scenarios [21].

The authors in [22] substantiated the importance of using more performant containers
at the edge. However, they did not consider SDN. Recent work, such as [7,26], added
a comprehensive literature discussion on how emerging IoT services can be enhanced
through the collaborative deployment of both SDN and edge computing. To provide a
solution that addresses the different challenges present in IoT environments, the current
work proposes a novel integration of SDN with on-demand activation and orchestration of
lightweight containers, some of which can be virtualized sensors.

The work in [23] investigated a resource provisioning framework for IoT applications
in fog environments. This framework makes decisions empowered by Bayesian learning
to enhance the latency and cost requisites of IoT services. The authors in [24] proposed
an opportunistic admission and resource allocation policy to reconcile the uncertainty
associated to distinct system aspects, such as (i) users requesting IoT services provided by
vertical slices, (ii) the available system resources, and (iii) the heterogeneity level among
types of system resources. The main idea of their proposal was to allow the service
providers to decide whether to accept slice requests immediately or defer them according
to the load and price of needed resources. The most intelligent offloading decision on either
data or computation from edge devices with limited resources to other nearby resource-
richer devices can aid in fulfilling the functional requisites of IoT-based services more

Sensors 2023, 23, 2762 5 of 20

efficiently [25]. The three last referenced contributions on resource provisioning did not
directly consider the performance advantages of using the SDN paradigm.

The design and deployment of our proposal are discussed in the next section.

3. Proposed Solution

This section covers the proposal design in Section 3.1. The proposal deployment is
explained in Section 3.2.

3.1. Architecture

Figure 1 presents the high-level design of our proposal. It is an FC system that
combines the SDN paradigm with virtualized processing resources to be managed in IoT-
based scenarios. Our proposal supports the management of edge-computing resources in
elastic and agile ways. A possible distributed administration of edge storage is possible,
eventually, in reaction to the evolution of spatio–temporal data popularity [27], or a future
handling of flow mobility between different IoT access technologies could be enabled [28].
This is, however, beyond the scope of the present work, but we submit that a tight coupling
of a SDN controller and a broker in edge nodes, such as middleboxes at user premises, are
crucial for on-demand management of local heterogeneous resources [19].

In our proposal, the system’s data plane is formed by switches, which communicate
with a controller through the southbound API. There is also a top-level broker system entity
that communicates with the controller via the northbound API. In the beginning, not all
containers in data plane are running, enhancing the system’s sustainability in a similar way
to what was previously proposed for data center networks [29]. Then, the broker, after
detecting an increase in IoT data traffic, can automatically boot additional containers to
process that data.

Recently, various architectural standards and frameworks have been developed to
address the issue of designing large-scale IoT networks. The core idea behind these architec-
tures is to provide support for data, processes, and the functions of endpoint devices. There
are many well-known architectures, such as oneM2M and the IoT world forum (IoTWF),
and surveys are available that analyze the applicability of many reference architectures
for the IoT [30,31] or even propose a simplified framework that emphasizes the basic
components that are commonly found in most IoT systems [32].

Our solution is consistent with the shared understanding among these frameworks by
using a multi-tier architecture to allow for the interconnection of the IoT endpoint de-vices
to a network that transports the data to where they are ultimately used by applications,
whether at the data center, in the cloud, or at the network edge, embedded in edge devices
or middleboxes. Figure 1 depicts a horizontal split between two operation domains for
networking and computation, similar to that suggested in [32]. Here, a broker, possibly
controlled by IoT applications, is responsible for the service delivery and orchestration
of networking and computation resources at the edge (bottom layers), which are made
available, respectively, through SDN controllers and container hypervisors (middle layers).
The networking domain resources are switches and links, while the computation domain
resources are servers to process IoT data.

Considering the just-presented design, we also integrated the broker functionality into
network functions inside the SDN controller, reducing the system complexity and eliminating
the extra communication delay between the broker and controller. Additionally, a new top-
level entity with the role of orchestrator among redundant SDN controllers was included
in the system. These multiple orchestrated controllers can efficiently handle high control
workloads and provide a more robust control plane against any potential failures or system
threats [33,34]. The functions running in SDN controllers can automatically manage both
networking and computational resources, resulting in a more efficient system operation.

Sensors 2023, 23, 2762 6 of 20

Sensors 2023, 23, x FOR PEER REVIEW 6 of 21

automatically manage both networking and computational resources, resulting in a
more efficient system operation.

Figure 1. The proposed architecture with two operation domains, aggregating, respectively, net-
working and computation edge resources.

The diagram in Figure 2 shows the most relevant sequential steps encompassing the
diverse entities and how they interact in the investigated scenario.

Figure 2. Sequential diagram with the diverse system entities.

The top-level manager depicted in Figure 2 orchestrates all the available controllers,
assigning each controller the correct control OpenFlow role. In the figure, the cluster
manager assigns the MASTER role to the only available controller [34]. We also consider
a group of data servers (i.e., Server 1 to Server n) organized into an edge server cluster,
which offers the same service to potential clients. Each edge server is initially idle, with

Figure 1. The proposed architecture with two operation domains, aggregating, respectively, network-
ing and computation edge resources.

The diagram in Figure 2 shows the most relevant sequential steps encompassing the
diverse entities and how they interact in the investigated scenario.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 21

automatically manage both networking and computational resources, resulting in a
more efficient system operation.

Figure 1. The proposed architecture with two operation domains, aggregating, respectively, net-
working and computation edge resources.

The diagram in Figure 2 shows the most relevant sequential steps encompassing the
diverse entities and how they interact in the investigated scenario.

Figure 2. Sequential diagram with the diverse system entities.

The top-level manager depicted in Figure 2 orchestrates all the available controllers,
assigning each controller the correct control OpenFlow role. In the figure, the cluster
manager assigns the MASTER role to the only available controller [34]. We also consider
a group of data servers (i.e., Server 1 to Server n) organized into an edge server cluster,
which offers the same service to potential clients. Each edge server is initially idle, with

Figure 2. Sequential diagram with the diverse system entities.

The top-level manager depicted in Figure 2 orchestrates all the available controllers,
assigning each controller the correct control OpenFlow role. In the figure, the cluster
manager assigns the MASTER role to the only available controller [34]. We also consider
a group of data servers (i.e., Server 1 to Server n) organized into an edge server cluster,
which offers the same service to potential clients. Each edge server is initially idle, with its
network interface switched off, in an attempt to preserve service resources, e.g., to diminish
the energy consumption. When a client requests an edge service, the controller elects an
edge server to attend to that client request. Before reporting back the appropriate server
to the client, the controller activates the elected server, including its network interface. At
this step, the controller uses the algebraic representation (NetworkX) of the discovered
network topology to obtain a list of potential future end-to-end network routing paths (not

Sensors 2023, 23, 2762 7 of 20

shown in Figure 2). These paths can be immediately configured at the network nodes by
the controller, prior to the normal activation of data flows. This controller behavior can
help protect the traffic quality of long-time data flows. Returning to Figure 2, during the
client/server session, there is the expected bidirectional exchange of data service messages.
Finally, when the controller is notified of the end of the service session, it switches off the
edge server.

3.2. Deployment

Figure 3 details the deployment of our proposal, which was introduced in Section 3.1.
This proposal was implemented using a Ryu SDN controller, the broker, a virtual multilayer
switch, and service containers. The main novelty of our work, in relation to the already
existing functionality offered by Ryu APIs, is associated to the edge resource broker, which
is either external to the Ryu controller (see Section 3.2.2) or embedded in the Ryu controller
(see Section 3.2.3). In Section 3.2.2, the external broker complements the Ryu controller by
identifying the need to boot service containers that will process IoT data. In Section 3.2.3,
the embedded broker further enhances the Ryu operation by not only booting service
containers but also later deactivating some of these containers in case they are no longer
needed, thus releasing the normally scarce computational edge resources. Additionally, the
Ryu controller was enhanced to support the single-step end-to-end proactive installation
of OpenFlow rules at the network switches to improve the quality protection of new data
flows associated with IoT edge services.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 21

its network interface switched off, in an attempt to preserve service resources, e.g., to
diminish the energy consumption. When a client requests an edge service, the controller
elects an edge server to attend to that client request. Before reporting back the appropri-
ate server to the client, the controller activates the elected server, including its network
interface. At this step, the controller uses the algebraic representation (NetworkX) of the
discovered network topology to obtain a list of potential future end-to-end network
routing paths (not shown in Figure 2). These paths can be immediately configured at the
network nodes by the controller, prior to the normal activation of data flows. This con-
troller behavior can help protect the traffic quality of long-time data flows. Returning to
Figure 2, during the client/server session, there is the expected bidirectional exchange of
data service messages. Finally, when the controller is notified of the end of the service
session, it switches off the edge server.

3.2. Deployment
Figure 3 details the deployment of our proposal, which was introduced in Section

3.1. This proposal was implemented using a Ryu SDN controller, the broker, a virtual
multilayer switch, and service containers. The main novelty of our work, in relation to
the already existing functionality offered by Ryu APIs, is associated to the edge resource
broker, which is either external to the Ryu controller (see Section 3.2.2) or embedded in
the Ryu controller (see Section 3.2.3). In Section 3.2.2, the external broker complements
the Ryu controller by identifying the need to boot service containers that will process
IoT data. In Section 3.2.3, the embedded broker further enhances the Ryu operation by
not only booting service containers but also later deactivating some of these containers
in case they are no longer needed, thus releasing the normally scarce computational
edge resources. Additionally, the Ryu controller was enhanced to support the single-
step end-to-end proactive installation of OpenFlow rules at the network switches to im-
prove the quality protection of new data flows associated with IoT edge services.

lxcbr1lxcbr0

SDN Controller
RYU 1

Websocket
Communication

7

SouthBound API

data

control

Websocket
client / Broker

36

5

8

2

LXC1

4

LXC1 LXC2

2 2 8

OVS s1
lxcbr3

LXC3
MQTT-SN

Figure 3. Deployed architecture (Cluster Manager is omitted). The visualized messages are num-
bered according to their relative order of occurrence in the system after a new data flow is admit-
ted to the system, i.e., starting from the data message number 1.

Figure 3. Deployed architecture (Cluster Manager is omitted). The visualized messages are numbered
according to their relative order of occurrence in the system after a new data flow is admitted to the
system, i.e., starting from the data message number 1.

The implementation of Figure 3 materializes a testbed to obtain performance and
functional results for evaluating the proposed solution. It uses a Ryu SDN controller and
two Python applications to study distinct controller behaviors, i.e., reactive and proactive
modes. Regarding containerization, Linux containers were chosen as a more lightweight
and agile option compared to other alternatives, such as the Docker. The performance
advantages of using Linux containers occur because they run directly inside the kernel. In
the above scenario, the LXC1 and LXC2 containers virtualize IoT sensors and, as already
mentioned, these containers are not always running. The virtual multilayer switch is an
Open vSwitch (OVS), controlled by the Ryu SDN controller. The SDN controller uses

Sensors 2023, 23, 2762 8 of 20

Websocket northBound communication with the broker, which is responsible for managing
the container’s lifecycle. All the mentioned components are installed in a single Linux
machine, emulating a possible edge nodes setup implemented in middleboxes or set-top
boxes where available IoT functions should be managed.

In more detail, the network topology, i.e., the data plane architecture, includes one
Open vSwitch (OVS s1), one host (h1), and various links/bridges. Host h1 was created
using Linux Namespace. The OVS s1 was configured with a static datapath-id value of
one, the OpenFlow protocol version is 1.3, and a logical transport connection to the Ryu
controller is in TCP port 6633, which is the default port used by the SDN controller. Further
details about this are provided in the next subsection.

3.2.1. Switch and SDN Controller Communication

As described above, two Ryu Python applications were deployed in the reactive mode.
When the Ryu controller is started, a flow miss default rule is installed into the switch.
In this way, the switch sends a PacketIn message to the controller whenever the switch
(OVS) receives a packet. In reaction to each received PacketIn, the Ryu application uses the
OFPActionOutput class and the OFPP_FLOOD flag in the PacketOut message, instructing
the switch to forward the received packet to all switch ports except the incoming port.

The proactive Ryu application installs into the switch not only the “ask to the controller”
rule but also rules that define the correct output port to forward the flow to a pre-defined
Linux container. This proactive behavior reduces the number of PacketIn/PacketOut messages
between the OVS and the controller, especially for elephant flows. Alternatively, the reactive
mode may be better than the proactive mode for controlling sporadic and short-duration IoT
data flows. In this way, the reactive mode reduces memory usage on switches with significant
limitations in computational resources. The next subsection provides some information on
how the Ryu controller and the broker communicate.

3.2.2. Communication between the SDN Controller and the Broker

Whenever the SDN controller receives a packet from the switch, it sends a copy of
the PacketIn header, in JSON format, to the broker via a Websocket connection, as seen
in Figure 4. The broker then analyzes the header fields and extracts useful information,
namely the physical and IP addresses, the transport protocol, and its ports.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 21

The implementation of Figure 3 materializes a testbed to obtain performance and
functional results for evaluating the proposed solution. It uses a Ryu SDN controller and
two Python applications to study distinct controller behaviors, i.e., reactive and proac-
tive modes. Regarding containerization, Linux containers were chosen as a more light-
weight and agile option compared to other alternatives, such as the Docker. The perfor-
mance advantages of using Linux containers occur because they run directly inside the
kernel. In the above scenario, the LXC1 and LXC2 containers virtualize IoT sensors and,
as already mentioned, these containers are not always running. The virtual multilayer
switch is an Open vSwitch (OVS), controlled by the Ryu SDN controller. The SDN con-
troller uses Websocket northBound communication with the broker, which is responsi-
ble for managing the container’s lifecycle. All the mentioned components are installed in
a single Linux machine, emulating a possible edge nodes setup implemented in middle-
boxes or set-top boxes where available IoT functions should be managed.

In more detail, the network topology, i.e., the data plane architecture, includes one
Open vSwitch (OVS s1), one host (h1), and various links/bridges. Host h1 was created
using Linux Namespace. The OVS s1 was configured with a static datapath-id value of
one, the OpenFlow protocol version is 1.3, and a logical transport connection to the Ryu
controller is in TCP port 6633, which is the default port used by the SDN controller. Fur-
ther details about this are provided in the next subsection.

3.2.1. Switch and SDN Controller Communication
As described above, two Ryu Python applications were deployed in the reactive

mode. When the Ryu controller is started, a flow miss default rule is installed into the
switch. In this way, the switch sends a PacketIn message to the controller whenever the
switch (OVS) receives a packet. In reaction to each received PacketIn, the Ryu applica-
tion uses the OFPActionOutput class and the OFPP_FLOOD flag in the PacketOut mes-
sage, instructing the switch to forward the received packet to all switch ports except the
incoming port.

The proactive Ryu application installs into the switch not only the “ask to the con-
troller” rule but also rules that define the correct output port to forward the flow to a
pre-defined Linux container. This proactive behavior reduces the number of Packet-
In/PacketOut messages between the OVS and the controller, especially for elephant
flows. Alternatively, the reactive mode may be better than the proactive mode for con-
trolling sporadic and short-duration IoT data flows. In this way, the reactive mode re-
duces memory usage on switches with significant limitations in computational re-
sources. The next subsection provides some information on how the Ryu controller and
the broker communicate.

3.2.2. Communication between the SDN Controller and the Broker
Whenever the SDN controller receives a packet from the switch, it sends a copy of

the PacketIn header, in JSON format, to the broker via a Websocket connection, as seen
in Figure 4. The broker then analyzes the header fields and extracts useful information,
namely the physical and IP addresses, the transport protocol, and its ports.

Figure 4. Exchanged message in JSON format from the controller to the broker. Figure 4. Exchanged message in JSON format from the controller to the broker.

Each Linux container has known IP and physical addresses. When an ARP message
is identified, and the destination IP address matches one manageable Linux container,
the broker can automatically boot that container. If the container is already running or
if the destination IP does not match any of the pre-defined containers, the system logs
corresponding messages for future analysis. This allows, for instance, the registration of
the communication activity of individual virtual sensors and the deactivation of dormant
containers. The next subsection discusses the novel automatic (de)activation of edge servers
using SDN proactive flow control.

3.2.3. Novel Function for Automatic (De)Activation of Edge Servers

The following text details how the novel controller functionality responsible for sup-
porting the automatic deactivation of each edge cluster data server was implemented.
Additionally, when the edge server goes into the sleeping state, the current network func-
tion is also responsible for activating that server when it is needed again. Figure 5 visualizes

Sensors 2023, 23, 2762 9 of 20

the timeline of system actions that we discuss below. The first message sent by the client
device to the network is an ARP request to discover the MAC address of the data server
to fulfill the client service request. This ARP request arrives at the ingress switch, and the
switch sends a copy of it to the SDN controller, using a PacketIn OpenFlow message (see
the leftmost action in Figure 5 and Algorithm 1 below). The controller, inside the func-
tion associated with the PacketIn Event, parses the ARP header and learns the Virtual_IP
address of the cluster edge server previously indicated by the client. At this stage, the
controller assumes the role of a Proxy-ARP and invokes the internal function designated
as generate_arp_reply() (step 4 of Algorithm 1). When this function is invoked, it receives
two arguments: the client IP and the client MAC. Then, the generate_arp_reply() function
calls other function, boot_analysis(), passing two arguments: Virtual_IP and the client IP
(step 18). This function selects a dedicated server for that specific client (step 23) and boots
up the network interface of that server (step 24) before returning to the calling function
(step 25). Next, generate_arp_reply prepares the ARP reply message (step 19), considering
the returned IP of the elected server, and returns it to the function that is processing the
PacketIn Event together with the MAC_server (step 20). At this step, our solution tries to
optimize network operation. Thus, the controller holds the ARP reply (step 4) and checks if
it is necessary to install a proactive flow rule (step 5). If proactive flow rule installation is
necessary, the controller uses the algebraic representation of the network (NetworkX) to
discover the end-to-end path with the minimum cost between the current ingress switch
(of the ARP Request) and the elected server (step 6), which may include several switches.
After this, for each switch in the discovered path (step 7), the controller executes the next
proactive tasks: (i) it finds the ingress port and egress port in the minimum cost path (step 8)
and (ii) it creates and sends the flow rules for the switch (step 9). These flow rules support
both IP and ARP unicast bidirectional traffic, which are expected to traverse the path. In this
implementation, we should be aware that in the case of elephant flows, the ARP protocol
can send several verification ARP requests to prevent any potential ARP table-poisoning
attacks. Therefore, after initially installing the flow rules in the path switches, the controller
needs to keep track of that event, e.g., by using a Boolean variable (step 11), which is set to
False. This variable will be set to True again after the flow rules become idle and are deleted
from the switches, and the associated server will have its network interface switched off
(see step 18 of Algorithm 2 below). The main advantage of using this Boolean variable is
that it helps the controller handle ARP requests that follow the first one. In this scenario,
the controller only confirms the MAC address of the elected server without installing new
flow rules. Otherwise, repeatedly installing flow rules in the switches during a running
session could negatively impact service quality. It is important to note that end-to-end
paths for distinct sessions may be completely different, enabling load balancing. When the
initial flows are fully installed at the switches, the controller can finally send the ARP reply
to the client with the MAC address of the elected server (step 13).

Sensors 2023, 23, 2762 10 of 20

Sensors 2023, 23, x FOR PEER REVIEW 10 of 21

the controller can finally send the ARP reply to the client with the MAC address of the
elected server (step 13).

Figure 5. Timeline of system actions for the novel automatic (de)activation of edge servers using a
proactive flow controller.

Algorithm 1 The controller processes the initial ARP request associated to each flow. That mes-
sage is used as a trigger to anticipate the bidirectional flow rules installation on all the involved
switches in the end-to-end flow path with the minimum cost between the client and the elected
server.
1: for each PacketIn Event with pkt do
2: if pkt.ether.type = ARP
3: if ARP_Request for discovering IP associated to Virtual_IP
4: MAC_server, ARP_reply_packet = generate_arp_reply(Virtual_IP, client IP, client MAC)
5: if install_flows
6: evaluate min cost path (ci) from current sw to server; store each switch si on that path
7: for each stored si do
8: finds out si ingress port & si egress port for the min cost path
9: creates and sends the flow rules to switch si
10: end for
11: install_flows = False (see step 21 of Algorithm 2 below)
12: end if
13: send_msg(current sw, PacketOut(ARP_reply_packet))
14: end if
15: end if
16: end for
17: generate_arp_reply(Virtual_IP, client IP, client MAC)
18: IP_server = boot_analysis(Virtual_IP, client IP)
19: Using the IP_server serializes the ARP reply message (pkt_arp_reply)
20: return MAC_server, pkt_arp_reply
21: end function
22: boot_analysis(Virtual_IP, client IP)
23: selects a dedicated server for the client

Figure 5. Timeline of system actions for the novel automatic (de)activation of edge servers using a
proactive flow controller.

Algorithm 1 The controller processes the initial ARP request associated to each flow. That message is used as
a trigger to anticipate the bidirectional flow rules installation on all the involved switches in the end-to-end
flow path with the minimum cost between the client and the elected server.

1: for each PacketIn Event with pkt do
2: if pkt.ether.type = ARP
3: if ARP_Request for discovering IP associated to Virtual_IP
4: MAC_server, ARP_reply_packet = generate_arp_reply(Virtual_IP, client IP, client MAC)
5: if install_flows
6: evaluate min cost path (ci) from current sw to server; store each switch si on that path
7: for each stored si do
8: finds out si ingress port & si egress port for the min cost path
9: creates and sends the flow rules to switch si
10: end for
11: install_flows = False (see step 21 of Algorithm 2 below)
12: end if
13: send_msg(current sw, PacketOut(ARP_reply_packet))
14: end if
15: end if
16: end for
17: generate_arp_reply(Virtual_IP, client IP, client MAC)
18: IP_server = boot_analysis(Virtual_IP, client IP)
19: Using the IP_server serializes the ARP reply message (pkt_arp_reply)
20: return MAC_server, pkt_arp_reply
21: end function
22: boot_analysis(Virtual_IP, client IP)
23: selects a dedicated server for the client
24: boots UP the network interface of server
25: return IP address of the selected server
26: end function

Now, let us analyze how Algorithm 1 impacts system performance when a new
random data flow arrives in a network topology with N switches supervised by a single
SDN controller. By analyzing the behavior of Algorithm 1, we can conclude that there are
two positive outcomes for system performance, compared to the case when a non-proactive
controller is used. When the controller behaves proactively, the first positive outcome for
system performance arises due to a reduction in the number of OpenFlow control messages,

Sensors 2023, 23, 2762 11 of 20

i.e., PacketIn and PacketOut message types, compared to the situation with a non-proactive
controller. This message reduction is represented by (1) and depends on N.

6 × N − 2 (1)

The second positive outcome of using Algorithm 1 is due to the reduction in the
number of network messages, e.g., ARP messages. This occurs because the controller
assumes the role of a Proxy-ARP when it receives the initial ARP request from the ingress
switch. The reduction of network messages is represented by (2); it also depends on N.

2 × N − 2 (2)

The average trend of these two reductions in the number of messages per each new
data flow is visualized in Figure 6. We simulated each topology size (depending on N) ten
times. In each evaluation round, there was a random uniform probability of a new data
flow being admitted to the network. Overall, the reduction in system messages is more
significant for larger networks, especially for the control channel. Below, we discuss the
behavior of our proactive controller after an IoT data flow has terminated.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 21

24: boots UP the network interface of server
25: return IP address of the selected server
26: end function

Now, let us analyze how Algorithm 1 impacts system performance when a new
random data flow arrives in a network topology with N switches supervised by a single
SDN controller. By analyzing the behavior of Algorithm 1, we can conclude that there
are two positive outcomes for system performance, compared to the case when a non-
proactive controller is used. When the controller behaves proactively, the first positive
outcome for system performance arises due to a reduction in the number of OpenFlow
control messages, i.e., PacketIn and PacketOut message types, compared to the situation
with a non-proactive controller. This message reduction is represented by (1) and de-
pends on N.

6 × N − 2 (1)

The second positive outcome of using Algorithm 1 is due to the reduction in the
number of network messages, e.g., ARP messages. This occurs because the controller as-
sumes the role of a Proxy-ARP when it receives the initial ARP request from the ingress
switch. The reduction of network messages is represented by (2); it also depends on N.

2 × N − 2 (2)

The average trend of these two reductions in the number of messages per each new
data flow is visualized in Figure 6. We simulated each topology size (depending on N)
ten times. In each evaluation round, there was a random uniform probability of a new
data flow being admitted to the network. Overall, the reduction in system messages is
more significant for larger networks, especially for the control channel. Below, we dis-
cuss the behavior of our proactive controller after an IoT data flow has terminated.

Figure 6. Average reduction in the number of messages caused by the operation of a proactive
controller for each new data flow.

To handle the scenario when a session between the client and the data server ends,
the switch flow rules have idle timers. Thus, after the expiration of any flow idle timer in
a specific switch, it sends an event-triggered OpenFlow message that notifies the con-
troller about the removal of the flow (see Algorithm 2, step 7). Utilizing these notifica-
tions (steps 9–11), the controller (using the boot_analysis() function, which is called once
every second (step 3); T = 1 s for step 4) turns off the network interface of the data server
(step 17) and updates the state of a global internal variable (step 18), preparing the con-
troller to initiate a future new functional cycle for switching on, keeping on, and switch-
ing off the network interface of the same data server. Therefore, the server remains op-

Figure 6. Average reduction in the number of messages caused by the operation of a proactive
controller for each new data flow.

To handle the scenario when a session between the client and the data server ends, the
switch flow rules have idle timers. Thus, after the expiration of any flow idle timer in a
specific switch, it sends an event-triggered OpenFlow message that notifies the controller
about the removal of the flow (see Algorithm 2, step 7). Utilizing these notifications
(steps 9–11), the controller (using the boot_analysis() function, which is called once every
second (step 3); T = 1 s for step 4) turns off the network interface of the data server (step 17)
and updates the state of a global internal variable (step 18), preparing the controller to
initiate a future new functional cycle for switching on, keeping on, and switching off the
network interface of the same data server. Therefore, the server remains operational for a
few seconds after the service session ends. The controller also maintains useful statistical
information, such as the total time each server was powered on, which can be used as
accounting data to support a business model associated with the offered service.

Sensors 2023, 23, 2762 12 of 20

Algorithm 2 The controller can process any flow rule deleted message sent from any switch. Using the match
fields of the deleted flow rules, the controller can identify the servers to switch off their network interface,
saving server resources.

1: def _monitor(self):
2: while True do
3: boot_analysis()
4: hub.sleep(T)
5: end while
6: end function
7: for each FlowRemoved Event do
8: dpid = Event.msg.datapath.id
9: if dpid == egress switch for data server cluster
10: using match fields of removed flow rule, identifies the idle server
11: memorizes the idle server to power off its network interface
12: end if
13: end for
14: def boot_analysis(self):
15: Verifies if each active server (servi) has a pending request to switch off its interface
16: for each servi do
17: switches off the network interface of servi
18: install_flows = True (see step 11 of Algorithm 1)
19: end for
20: end function

4. Evaluation Results and Their Discussion

This section presents the performance and functional tests carried out on the imple-
mented proposal and discusses the most relevant results obtained. Figure 7 shows the
initial testbed, which consists of a network topology formed by a software-based switch
(OVS s1), a host (h1), and several containers (LXC1, LXC3). In addition, high-level entities
such as the Ryu SDN Controller coupled with a broker manage the resources of the network
topology. Table 2 lists the tools used during the proposal tests.

Section 4.1 discusses the performance results obtained from the initial testbed (Figure 7),
regarding network configuration and container activation. Section 4.2 analyzes how our
proposal behaves in an evolved scenario (Figure 8), subjecting our system to stress tests.
Finally, again using the scenario of Figure 8, we present in Section 4.3 the evaluation results of
the novel automatic (de)activation solution of edge servers using a proactive flow controller.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 21

Figure 7. Initial testbed to evaluate the proposed solution.

Table 2. Hardware and software tools used during the evaluation tests.

ASUS Intel® Core™ i7-3517U CPU @ 1.90 GHz 2.40 GHz,
12 GB RAM, Windows10 Education x64

-

VirtualBox Ubuntu 22.04
https://www.virtualbox.org/ (accessed on 29 January 2023)
https://releases.ubuntu.com/22.04/ (accessed on 29 January 2023)

Ryu SDN Controller (v4.34) https://ryu-sdn.org/ (accessed on 29 January 2023)
NetworkX (v2.6.3) https://networkx.org/ (accessed on 29 January 2023)
OpenvSwitch (v2.16.90, DB Schema 8.3.0) https://www.openvswitch.org/ (accessed on 29 January 2023)

Python 3.9.12
https://www.python.org/downloads/release/python-3912/ (accessed on
29 January 2023)

ip utility, iproute2–5.15.0, libbpf 0.4.0
https://man7.org/linux/man-pages/man8/ip.8.html (accessed on 29 Janu-
ary 2023)

Wireshark (v3.4.9) https://www.wireshark.org/ (accessed on 29 January 2023)

Traffic generator MGEN (v5.02b)
https://github.com/USNavalResearchLaboratory/mgen (accessed on 29
January 2023)

TRPR (v2.1b11)
https://github.com/USNavalResearchLaboratory/trpr (accessed on 29
January 2023)

Figure 7. Initial testbed to evaluate the proposed solution.

Sensors 2023, 23, 2762 13 of 20

Table 2. Hardware and software tools used during the evaluation tests.

ASUS Intel® Core™ i7-3517U CPU @ 1.90 GHz 2.40 GHz,
12 GB RAM, Windows10 Education x64

-

VirtualBox Ubuntu 22.04 https://www.virtualbox.org/ (accessed on 29 January 2023)
https://releases.ubuntu.com/22.04/ (accessed on 29 January 2023)

Ryu SDN Controller (v4.34) https://ryu-sdn.org/ (accessed on 29 January 2023)

NetworkX (v2.6.3) https://networkx.org/ (accessed on 29 January 2023)

OpenvSwitch (v2.16.90, DB Schema 8.3.0) https://www.openvswitch.org/ (accessed on 29 January 2023)

Python 3.9.12 https://www.python.org/downloads/release/python-3912/
(accessed on 29 January 2023)

ip utility, iproute2–5.15.0, libbpf 0.4.0 https://man7.org/linux/man-pages/man8/ip.8.html (accessed on
29 January 2023)

Wireshark (v3.4.9) https://www.wireshark.org/ (accessed on 29 January 2023)

Traffic generator MGEN (v5.02b) https://github.com/USNavalResearchLaboratory/mgen (accessed
on 29 January 2023)

TRPR (v2.1b11) https://github.com/USNavalResearchLaboratory/trpr (accessed on
29 January 2023)

Sensors 2023, 23, x FOR PEER REVIEW 14 of 21

Figure 8. The testbed to study the system under stress and the novel (de)activation of edge serv-
ers.

4.1. Delay Tests
The current subsection discusses evaluation results to assess the time required by

our SDN system to perform the next two sequential functional steps: (i) powering on an
initially disconnected service container; and (ii) sending the flow rules to network nodes
that enable a distributed IoT data session between producer entities (e.g., sensors) and
consumer entities (e.g., monitoring stations). These functional aspects under study are
particularly notable to demonstrate the feasibility of on-demand managing resources
that run on constrained devices at the network edge, such as small form factor single-
board computers.

We tested two distinct operation modes of the SDN controller—reactive and proac-
tive. In each operation mode, delay communication results were obtained in two scenar-
ios: (i) communication between a host device, using the Linux network namespace and a
sensor container; and (ii) communication between a user space container client and the
same sensor container. The results for each scenario were obtained by sending four
ICMP packets. In the first scenario, the sensor container (LXC1) sends ICMP packets to
host h1. Alternatively, in the second scenario, ICMP traffic is exchanged between LXC1
and the container LXC3. Table 3 lists the average values from fifty runs of each testing
scenario. As expected, the first packet always takes longer due to container activation
delay. Comparing the results of both scenarios, scenario 1 has better response times than
scenario 2. This is because in scenario 1, the kernel namespace h1 (i.e., Host 1) runs faster
than the user space container LXC3 used in scenario 2.

In general, the worst response time results were obtained with the reactive mode.
Although it is a simpler and less complex control mode, it stores only the default miss-
flow rule in the switch flow table, which sends every received packet by the switch to
the controller. This results in increased overhead on the OpenFlow control channel and
overloads both the SDN controller and broker. As a result of these issues caused by the
reactive mode, the system operates in a slower way, which increases end-to-end com-
munication latency.

The above results demonstrate that even when the SDN controller and the con-
trolled switch share the same computational space, such as edge middleboxes, the reac-

Figure 8. The testbed to study the system under stress and the novel (de)activation of edge servers.

4.1. Delay Tests

The current subsection discusses evaluation results to assess the time required by our
SDN system to perform the next two sequential functional steps: (i) powering on an initially
disconnected service container; and (ii) sending the flow rules to network nodes that enable a
distributed IoT data session between producer entities (e.g., sensors) and consumer entities
(e.g., monitoring stations). These functional aspects under study are particularly notable to
demonstrate the feasibility of on-demand managing resources that run on constrained devices
at the network edge, such as small form factor single-board computers.

We tested two distinct operation modes of the SDN controller—reactive and proactive.
In each operation mode, delay communication results were obtained in two scenarios:
(i) communication between a host device, using the Linux network namespace and a
sensor container; and (ii) communication between a user space container client and the

https://www.virtualbox.org/
https://releases.ubuntu.com/22.04/
https://ryu-sdn.org/
https://networkx.org/
https://www.openvswitch.org/
https://www.python.org/downloads/release/python-3912/
https://man7.org/linux/man-pages/man8/ip.8.html
https://www.wireshark.org/
https://github.com/USNavalResearchLaboratory/mgen
https://github.com/USNavalResearchLaboratory/trpr

Sensors 2023, 23, 2762 14 of 20

same sensor container. The results for each scenario were obtained by sending four ICMP
packets. In the first scenario, the sensor container (LXC1) sends ICMP packets to host h1.
Alternatively, in the second scenario, ICMP traffic is exchanged between LXC1 and the
container LXC3. Table 3 lists the average values from fifty runs of each testing scenario. As
expected, the first packet always takes longer due to container activation delay. Comparing
the results of both scenarios, scenario 1 has better response times than scenario 2. This is
because in scenario 1, the kernel namespace h1 (i.e., Host 1) runs faster than the user space
container LXC3 used in scenario 2.

In general, the worst response time results were obtained with the reactive mode.
Although it is a simpler and less complex control mode, it stores only the default miss-flow
rule in the switch flow table, which sends every received packet by the switch to the con-
troller. This results in increased overhead on the OpenFlow control channel and overloads
both the SDN controller and broker. As a result of these issues caused by the reactive mode,
the system operates in a slower way, which increases end-to-end communication latency.

The above results demonstrate that even when the SDN controller and the controlled
switch share the same computational space, such as edge middleboxes, the reactive mode
operation, unfortunately, still introduces a considerable delay that can degrade the quality
of most types of IoT applications. For this reason, the reactive mode may only be acceptable
in certain situations, such as when the network needs to be highly dynamic and able to
adapt quickly to changing conditions or with delay tolerant applications. The obtained
results also show that the proactive mode, with a slight increase in configuration complexity
at the network edge, can provide better performance results when long-time data sessions
are active. However, this mode will not be able to adequately accommodate more volatile
network conditions. The next subsection presents and discusses the results of stress
functional tests carried out on the proposed solution.

Table 3. Delay performance tests comparison, with 4 ICMP packets (values in ms obtained from Wireshark).

Controller’s Behaviour PKT
Scenario 1 (Host 1 Is a

Linux Container)
Scenario 2 (LXC3 Is a

Docker Container)

Host 1 -> LXC1 LXC3 -> LXC1

Reactive

1 416.56 565.94
2 22.03 48.57
3 16.84 34.04
4 17.87 30.52

Proactive

1 201.70 521.66
2 0.04 0.06
3 0.04 0.07
4 0.04 0.06

4.2. Stress Functional Tests

The proposal has been tested further using more demanding scenarios (see Figure 8).
In this realistic scenario, a TCP flow with 500 Kbit/s rate using Cubic congestion control
was initiated in host h1 and sent to h4. Before establishing this communication, the proposal
powers on switch s2, host h4, and enables the communication links s1–s2 and s2–h4, as
summarized in Table 4, 1 Flow(A): h1–h4. This table also lists the major setup steps for
additional stress tests, with an increasing number of simultaneous TCP flows.

The major performance results of these tests are visualized in Table 5. Delay1 is the
average time interval between the ARP request and the ARP reply message of each end-to-
end communication pair. Delay2 is the average time interval between the SYN message and
the SYN-ACK message of each TCP logical connection. Comparing the obtained Delay1
results during tests 1 Flow(A) and 1 Flow(B), one can conclude that the time to power on
both network and computational resources is about 1063 ms and the time to activate only
the computational resources associated with the virtualized server h5 and connect it to the
network infrastructure is much smaller, around 366 ms. In addition, when controlling a

Sensors 2023, 23, 2762 15 of 20

gradually increasing number of TCP flows, the solution showed a scalable and acceptable
performance degradation, even during the highest delay of the operational period of the
system (i.e., Delay1 in Table 5). The next subsection discusses the evaluation of the novel
automatic (de)activation of edge servers.

Table 4. Stress functional tests.

1 Flow (A): h1–h4 1 Flow (B): h1–h5 2 Flows: h1–h4;
h1–h5

3 Flows: h1–h4; h1–h5;
h1–h6

15 Flows: 5 × (h1–h4);
5 × (h1–h5); 5 × (h1–h6)

Power on s2
Power on h4

Connect s1–s2
Connect s2–h4

Inject 1 TCP flow of
500 Kb/s

Power on h5
Connect s2–h5

Inject 1 TCP flow of
500 Kb/s

Power on s2
Power on h4

Connect s1–s2
Connect s2–h4
Power on h5

Connect s2–h5
Inject 2 TCP flows of

500 Kb/s each

Power on s2
Power on h4

Connect s1–s2
Connect s2–h4
Power on h5

Connect s2–h5
Power on h6

Connect s2–h6
Inject 3 TCP flows of

500 Kb/s each

Power on s2
Power on h4

Connect s1–s2
Connect s2–h4
Power on h5

Connect s2–h5
Power on h6

Connect s2–h6
Inject 15 TCP flows of

100 Kb/s each

Table 5. Stress functional tests comparison (delay values in ms, obtained from Wireshark).

1 Flow(A) 1 Flow(B) 2 Flows 3 Flows 15 Flows

Delay1 1063 366 2100 2072 2083
Delay2 18 15 25 54 135

4.3. Novel Function for Automatic (De)Activation of Edge Servers

The current subsection presents and discusses the evaluation results of the novel
controller functionality that enables automatic (de)activation of the network interface of
each edge server. The testbed used for this scenario is visualized in Figure 8. This scenario
assumes that several services are demanded by clients h1, h2, and h3 from edge servers h4,
h5, and h6.

The mgen was used as a traffic generator in each test, and the trpr was used to
generate trend figures from all received messages that were previously stored in a log file.
The following extract of used script lines shows how to start a test and create its log file
(z = {4, 5, 6}; y = {1, 2, 3}).

sudo ip netns exec hz mgen input rx.mgn output hz.log &
sudo ip netns exec hy mgen input tx_hy.mgn &

The content of the mgen file that receives UDP flows at specified ports is as follows.

File rx.mgn
0.0 LISTEN UDP 30,000, 30,001, 30,002

The contents of mgen files that generate UDP traffic with a Poisson distribution are
presented below. For example, file tx_h1.mgn (when y = 1) initiates an 1 Mb/s UDP flow
from client h1 to the data server h4 at time 10.0 s. This flow ends at the time instant 60.0 s.

File tx_hy.mgn (y = {1,2,3})
Flow with 1 Mb/s between client hy and data server hz (z = {4, 5, 6})
10.0 ON 1 UDP SRC 20,000 + (y − 1) DST 10.0.0.89/30,000 + (y − 1) POISSON [976.75 128]
60.0 OFF 1

To visualize the results of flows regarding rate, interarrival delay, and loss, the follow-
ing commands were used.

Produce graphs for flow with 1 Mb/s between client hy (y = {1, 2, 3}) and data server hz (z = {4, 5, 6})
trpr drec input hz.log auto X output hz_rate.plt
trpr drec interarrival input hz.log auto X output hz_int_arrival.plt

Sensors 2023, 23, 2762 16 of 20

trpr drec loss input hz.log auto X output hz_loss.plt

To test the relevance of the controller in installing flows in the switches before they
traverse the network, two tests were conducted. The first test used a proactive controller,
and the second used a reactive controller. The differences in the Python code between the
reactive and proactive controller are that, in the latter controller, inside the function that
processes each PacketIn event, the code part that processes each ARP request to Virtual_IP
(the IP address of the data server cluster, as described in Section 3.2.3) includes instructions
for performing proactive discovery of the flow path with minimum cost and the immediate
transfer of the flow rules to the switches, enabling the discovery of the optimum flow path.

The results of both tests are shown in Figure 9. The left part of the figure shows
the results of the proactive controller, and the right part shows the results of the reactive
controller. All the results are related to the flow associated with the service session between
client h1 and data server h4. For each controller type, each visualized result is the average
of the obtained values from five repetitions of the same test. When we compare the results
for the proactive and reactive controllers, we can conclude that the reactive controller offers
the worst results in the three flow performance metrics under study: rate, interarrival
packet delay, and packet loss percentage. This degradation in flow performance occurs
because when the controller operates reactively, both the controller and the switches
become highly congested. The switches become congested because each switch must
transfer many packets from the fast kernel datapath to the slow switch process in the user
space before sending the corresponding PacketIn messages to the controller. This results in
a significant degradation in switch performance. The controller also becomes congested
because it is flooded by a huge number of PacketIn messages to be processed. All these
system inefficiencies, when the controller operates reactively, diminish the quality of high-
rate flows, due to switch congestion and packet buffering. In fact, when Figure 9a,b are
compared, the service session controlled by the reactive controller is extended by 16 s from
its initially programmed 50 s duration. This 32% extension on session time forces a high
consumption of system resources, including considerable extra usage of computational
resources associated with the edge server. Additionally, the maximum rate when the system
is managed by a reactive controller is 15% ((1100–939)/1100) lower than the maximum rate
obtained by the proactive controller. With a similar comparison for flow interarrival delay
and flow loss percentage, one can conclude that the proactive controller (in relation to the
reactive one) offers a 20% (20–0) reduction in maximum flow loss percentage and a very
significant 83% ((206–34)/206) reduction in maximum flow interarrival delay.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 22

tual_IP (the IP address of the data server cluster, as described in Section 3.2.3) includes
instructions for performing proactive discovery of the flow path with minimum cost and
the immediate transfer of the flow rules to the switches, enabling the discovery of the
optimum flow path.

The results of both tests are shown in Figure 9. The left part of the figure shows the
results of the proactive controller, and the right part shows the results of the reactive
controller. All the results are related to the flow associated with the service session be-
tween client h1 and data server h4. For each controller type, each visualized result is the
average of the obtained values from five repetitions of the same test. When we compare
the results for the proactive and reactive controllers, we can conclude that the reactive
controller offers the worst results in the three flow performance metrics under study:
rate, interarrival packet delay, and packet loss percentage. This degradation in flow per-
formance occurs because when the controller operates reactively, both the controller and
the switches become highly congested. The switches become congested because each
switch must transfer many packets from the fast kernel datapath to the slow switch pro-
cess in the user space before sending the corresponding PacketIn messages to the con-
troller. This results in a significant degradation in switch performance. The controller al-
so becomes congested because it is flooded by a huge number of PacketIn messages to
be processed. All these system inefficiencies, when the controller operates reactively,
diminish the quality of high-rate flows, due to switch congestion and packet buffering.
In fact, when Figure 9a and Figure 9b are compared, the service session controlled by the
reactive controller is extended by 16 s from its initially programmed 50 s duration. This
32% extension on session time forces a high consumption of system resources, including
considerable extra usage of computational resources associated with the edge server.
Additionally, the maximum rate when the system is managed by a reactive controller is
15% ((1100–939)/1100) lower than the maximum rate obtained by the proactive control-
ler. With a similar comparison for flow interarrival delay and flow loss percentage, one
can conclude that the proactive controller (in relation to the reactive one) offers a 20%
(20–0) reduction in maximum flow loss percentage and a very significant 83% ((206–
34)/206) reduction in maximum flow interarrival delay.

(a) (b)

Figure 9. Cont.

Sensors 2023, 23, 2762 17 of 20Sensors 2023, 23, x FOR PEER REVIEW 18 of 22

(c) (d)

(e) (f)

Figure 9. Average results of flow rate, flow interarrival packet delay, and flow loss percentage for
the two compared controllers, during a 50 s service session between client h1 and data server h4.
The proactive controller results are shown on the left side, and the reactive controller results are
shown on the right. (a) Flow rate (Kb/s) for the proactive controller, (b) flow rate (Kb/s) for the
reactive controller, (c) flow interarrival delay (ms) for the proactive controller, (d) flow interarrival
delay (ms) for the reactive controller, (e) flow loss percentage for the proactive controller, (f) flow
loss percentage for the reactive controller. In (a,b,f), the variation bars around non-null average
results are visualized in green.

Considering the proactive flow controller, we measured the system time slots
shown in Figure 5 in Section 3.2.3. The measured time slots (ms) are shown in Figure 10.
By far, the highest time slot is T7, which is 10.3 s. This is because the idle timer of the
used OpenFlow flow rules was configured for 10 s.

Figure 9. Average results of flow rate, flow interarrival packet delay, and flow loss percentage for the
two compared controllers, during a 50 s service session between client h1 and data server h4. The
proactive controller results are shown on the left side, and the reactive controller results are shown
on the right. (a) Flow rate (Kb/s) for the proactive controller, (b) flow rate (Kb/s) for the reactive
controller, (c) flow interarrival delay (ms) for the proactive controller, (d) flow interarrival delay (ms)
for the reactive controller, (e) flow loss percentage for the proactive controller, (f) flow loss percentage
for the reactive controller. In (a,b,f), the variation bars around non-null average results are visualized
in green.

Considering the proactive flow controller, we measured the system time slots shown
in Figure 5 in Section 3.2.3. The measured time slots (ms) are shown in Figure 10. By far, the
highest time slot is T7, which is 10.3 s. This is because the idle timer of the used OpenFlow
flow rules was configured for 10 s.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 21

(e) (f)

Figure 9. Average results of flow rate, flow interarrival packet delay, and flow loss percentage for
the two compared controllers, during a 50 s service session between client h1 and data server h4.
The proactive controller results are shown on the left side, and the reactive controller results are
shown on the right. (a) Flow rate (Kb/s) for the proactive controller, (b) flow rate (Kb/s) for the
reactive controller, (c) flow interarrival delay (ms) for the proactive controller, (d) flow interarrival
delay (ms) for the reactive controller, (e) flow loss percentage for the proactive controller, (f) flow
loss percentage for the reactive controller. In (a,b,f), the variation bars around non-null average
results are visualized in green.

Considering the proactive flow controller, we measured the system time slots
shown in Figure 5 in Section 3.2.3. The measured time slots (ms) are shown in Figure 10.
By far, the highest time slot is T7, which is 10.3 s. This is because the idle timer of the
used OpenFlow flow rules was configured for 10 s.

Figure 10. The temporal line of system actions associated with the novel automatic (de)activation
of the edge server network interface using a proactive flow controller together, along with the
measured time slots (in ms) between the most relevant system actions.

As discussed earlier, the current (proactive) controller can (de)activate the network
interface of each data server, based on the client demand for a specific edge service. Ta-
ble 6 summarizes how the proposed function for automatic (de)activation of edge serv-
ers distributed the clients’ service demands among the virtualized servers (i.e., nodes h4,
h5, and h6, as visualized in Figure 8). In this test, each client was uniquely associated

Figure 10. The temporal line of system actions associated with the novel automatic (de)activation of
the edge server network interface using a proactive flow controller together, along with the measured
time slots (in ms) between the most relevant system actions.

Sensors 2023, 23, 2762 18 of 20

As discussed earlier, the current (proactive) controller can (de)activate the network
interface of each data server, based on the client demand for a specific edge service. Table 6
summarizes how the proposed function for automatic (de)activation of edge servers dis-
tributed the clients’ service demands among the virtualized servers (i.e., nodes h4, h5, and
h6, as visualized in Figure 8). In this test, each client was uniquely associated with a specific
server. For example, client h1’s service requests were always directed to server h4, which
then offered the edge service exclusively to that client.

Table 6. Time distribution of edge service session among the virtualized servers.

Server h4
303.31 s
39.9%

Server h5
254.00 s
33.4%

Server h6
202.70 s
26.7%

Total Service Session
760.01 s (Service idle time = 673.25 s)

100.0%

Analyzing Table 6, during the total system operation interval of 1431.70 s, the service
was active for only 760.01 s. For example, during this time, server h4 provided the service
for 303.31 s, which corresponds to 39.9% of the total time the service was active. This implies
that the system resources normally associated with server h4 were free for other purposes
during 60.1% of the total time the service session was active. Similar conclusions can be
drawn for the remaining service servers, i.e., h5 and h6. This type of resource management
is particularly relevant in network edge scenarios with constrained computational and
network resources.

5. Lessons Learned

In the current work, we investigated a novel design for a programmable solution to
control an edge computing domain with embedded devices. In this design, we considered
a single controller and a broker, and we obtained some promising results showing that it is
possible to use scarce edge resources more efficiently while maintaining the quality of IoT
data services.

Our proposed automatic resource management function could also be responsible
for putting system nodes into sleeping mode and disconnecting parts of the network
infrastructure. These are very useful system features for subsequent use cases. One example
is the management of the networking domain of an operator, where similar solutions to the
ones investigated here can enhance the operation of limited system resources during peak
demands. A second example in which our proposal contributes is the scenario where the
controller records the operation time of each edge server. Considering that each edge server
is associated with a specific client, this functional characteristic enables an accounting of the
duration time and the amount of used system resources during each client service session.
This can support a dynamic business model for IoT scenarios.

6. Conclusions and Future Work

The paper presented an open-source programmable solution that can activate or
deactivate heterogeneous virtualized resources for services provided at the edge of the
network, targeting IoT-based cases or others with limited system processing resources.
We conducted extensive tests on the deployed open-source programmable system. We
analyzed a considerable number of results and learned some important lessons after
carefully examining those results. In summary, we showed that a programmable system
can optimize the usage of scarce edge resources and protect the quality of IoT data services.

Sensors 2023, 23, 2762 19 of 20

In our opinion, the current study has some open issues that could be addressed in
future research. The first opportunity is to carry out an extensive investigation, using
a detailed system model, about the optimum provisioning of edge system resources,
including energy efficiency. Other possible enhancements to the current work would be
to evaluate the proposal in a real IoT testbed, using standard solutions for several IoT
services that make use of protocols such as the Message Queuing Telemetry Transport
(MQTT), the Constrained Application Protocol (CoAP), or others. Finally, research on
programmable solutions [35] is envisioned to control real embedded devices and activate
edge containers in various network edge domains, such as creating a federated system of
IoT data microservices.

Author Contributions: Conceptualization, P.C., J.M. and R.N.M.; methodology, J.M. and R.N.M.;
software, P.C. and J.M.; validation, P.C., J.M. and R.N.M.; formal analysis, J.M. and R.N.M.; resources,
P.C. and J.M.; data curation, P.C. and J.M.; writing—original draft preparation, P.C. and J.M.; supervi-
sion and corrections, J.M. and R.N.M.; project administration, J.M. and R.N.M. All authors have read
and agreed to the published version of the manuscript.

Funding: The current work was funded by Fundação para a Ciência e Tecnologia (FCT)/Ministério
da Ciência, Tecnologia e Ensino Superior (MCTES) through national funds and, when applicable,
co-funded by European Union (EU) funds under the project UIDB/EEA/50008/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors acknowledge the support given by Instituto de Telecomunicações,
Lisboa, Portugal.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. International Data Corporation (IDC). IDC Forecast. 2020. Available online: https://www.idc.com/getdoc.jsp?containerId=

prUS45213219 (accessed on 29 July 2020).
2. Hu, P.; Dhelim, S.; Ning, H.; Qiu, T. Survey on fog computing: Architecture, key technologies, applications and open issues.

J. Netw. Comput. Appl. 2017, 98, 27–42. [CrossRef]
3. Cicconetti, C.; Conti, M.; Passarella, A.; Sabella, D. Toward Distributed Computing Environments with Serverless Solutions in

Edge Systems. IEEE Commun. Mag. 2020, 58, 40–46. [CrossRef]
4. Lertsinsrubtavee, A.; Ali, A.; Molina-Jimenez, C.; Sathiaseelan, A.; Crowcroft, J. Picasso: A lightweight edge computing platform.

In Proceedings of the 2017 IEEE 6th International Conference on Cloud Networking, CloudNet, Prague, Czech Republic, 25–27
September 2017; pp. 1–7. [CrossRef]

5. Cui, L.; Tso, F.P.; Jia, W. Federated Service Chaining: Architecture and Challenges. IEEE Commun. Mag. 2020, 58, 47–53. [CrossRef]
6. Moura, J.; Hutchison, D. Fog computing systems: State of the art, research issues and future trends, with a focus on resilience.

J. Netw. Comput. Appl. 2020, 169, 102784. [CrossRef]
7. Baktir, A.C.; Ozgovde, A.; Ersoy, C. How Can Edge Computing Benefit from Software-Defined Networking: A Survey, Use Cases,

and Future Directions. IEEE Commun. Surv. Tutor. 2017, 19, 2359–2391. [CrossRef]
8. Feamster, N.; Rexford, J.; Zegura, E. The Road to SDN: An intellectual history of programmable networks. Queue 2013, 11, 20–40.

[CrossRef]
9. Moura, J.; Hutchison, D. Modeling cooperative behavior for resilience in cyber-physical systems using SDN and NFV. SN Appl.

Sci. 2020, 2, 1534. [CrossRef]
10. Kobo, H.I.; Abu-Mahfouz, A.M.; Hancke, G.P. A Survey on Software-Defined Wireless Sensor Networks: Challenges and Design

Requirements. IEEE Access 2017, 5, 1872–1899. [CrossRef]
11. Islam, R.; Pahalovim, M.S.; Adhikary, T.; Razzaque, M.A.; Hassan, M.M.; Alsanad, A. Optimal Execution of Virtualized Network

Functions for Applications in Cyber-Physical-Social-Systems. IEEE Access 2018, 6, 8755–8767. [CrossRef]
12. Kellerer, W.; Kalmbach, P.; Blenk, A.; Basta, A.; Reisslein, M.; Schmid, S. Adaptable and Data-Driven Softwarized Networks:

Review, Opportunities, and Challenges. Proc. IEEE 2019, 107, 711–731. [CrossRef]
13. Xie, J.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Wang, C.; Liu, Y. A Survey of Machine Learning Techniques Applied to Software

Defined Networking (SDN): Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 393–430. [CrossRef]
14. Frohlich, P.; Gelenbe, E.; Nowak, M.P. Smart SDN Management of Fog Services. In Proceedings of the 2020 Global Internet of

Things Summit (GIoTS), Dublin, Ireland, 3 June 2020. [CrossRef]

https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
http://doi.org/10.1016/j.jnca.2017.09.002
http://doi.org/10.1109/MCOM.001.1900498
http://doi.org/10.1109/CloudNet.2017.8071529
http://doi.org/10.1109/MCOM.001.1900627
http://doi.org/10.1016/j.jnca.2020.102784
http://doi.org/10.1109/COMST.2017.2717482
http://doi.org/10.1145/2559899.2560327
http://doi.org/10.1007/s42452-020-03335-4
http://doi.org/10.1109/ACCESS.2017.2666200
http://doi.org/10.1109/ACCESS.2018.2805890
http://doi.org/10.1109/JPROC.2019.2895553
http://doi.org/10.1109/COMST.2018.2866942
http://doi.org/10.36227/techrxiv.11640162.v1

Sensors 2023, 23, 2762 20 of 20

15. Smith, P.; Schaeffer-Filho, A.; Hutchison, D.; Mauthe, A. Management patterns: SDN-enabled network resilience management. In
Proceedings of the IEEE/IFIP NOMS 2014-IEEE/IFIP Network Operations and Management Symposium: Management in a
Software Defined World, Krakow, Poland, 5–9 May 2014; pp. 1–9. [CrossRef]

16. Bizanis, N.; Kuipers, F.A. SDN and Virtualization Solutions for the Internet of Things: A Survey. IEEE Access 2016, 4, 5591–5606.
[CrossRef]

17. Farris, I.; Taleb, T.; Khettab, Y.; Song, J. A Survey on Emerging SDN and NFV Security Mechanisms for IoT Systems. IEEE
Commun. Surv. Tutor. 2019, 21, 812–837. [CrossRef]

18. Tomovic, S.; Yoshigoe, K.; Maljevic, I.; Radusinovic, I. Software-Defined Fog Network Architecture for IoT. Wirel. Pers. Commun.
2017, 92, 181–196. [CrossRef]

19. Xu, Y.; Mahendran, V.; Radhakrishnan, S. SDN docker: Enabling application auto-docking/undocking in edge switch. In
Proceedings of the IEEE INFOCOM, San Francisco, CA, USA, 10–14 April 2016; pp. 1–6. [CrossRef]

20. Hassas Yeganeh, S.; Ganjali, Y. Kandoo: A framework for efficient and scalable offloading of control applications. In Proceedings
of the HotSDN’12, 1st ACM International Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland, 13 August
2012; pp. 19–24. [CrossRef]

21. Struye, J.; Spinnewyn, B.; Spaey, K.; Bonjean, K.; Latré, S. Assessing the value of containers for NFVs: A detailed network
performance study. In Proceedings of the 2017 13th International Conference on Network and Service Management, CNSM 2017,
Tokyo, Japan, 26–30 November 2017; pp. 1–7. [CrossRef]

22. Mukute, T.; Pauls, M.; Mwangama, J.; Magedanz, T. Design and Implementation of Multi-Cloud VNFs Deployment Utilizing
Lightweight LXC Virtualization. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference
Workshop (WCNCW), Marrakech, Morocco, 15–18 April 2019; pp. 1–5. [CrossRef]

23. Etemadi, M.; Ghobaei-Arani, M.; Shahidinejad, A. Resource provisioning for IoT services in the fog computing environment: An
autonomic approach. Comput. Commun. 2020, 161, 109–131. [CrossRef]

24. Zhang, L.; Cao, B.; Feng, G. Opportunistic admission and resource allocation for slicing enhanced IoT networks. Digit. Commun.
Netw. 2022, in press. [CrossRef]

25. Bajaj, K.; Sharma, B.; Singh, R. Implementation analysis of IoT-based offloading frameworks on cloud/edge computing for sensor
generated big data. Complex Intell. Syst. 2022, 8, 3641–3658. [CrossRef]

26. Rafique, W.; Qi, L.; Yaqoob, I.; Imran, M.; Rasool, R.U.; Dou, W. Complementing IoT Services Through Software Defined
Networking and Edge Computing: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 1761–1804. [CrossRef]

27. Vales, R.; Moura, J.; Marinheiro, R. Energy-aware and adaptive fog storage mechanism with data replication ruled by spatio-
temporal content popularity. J. Netw. Comput. Appl. 2019, 135, 84–96. [CrossRef]

28. Alves, H.; Silva, L.M.; Marinheiro, R.N.; Moura, J.A.R.S. PMIPv6 integrated with MIH for flow mobility management: A real
testbed with simultaneous multi-access in heterogeneous mobile networks. Wirel. Pers. Commun. 2017, 98, 1055–1082. [CrossRef]

29. Heller, B.; Seetharaman, S.; Mahadevan, P.; Yiakoumis, Y.; Sharma, P.; Banerjee, S.; McKeown, N. ElasticTree: Saving Energy in
Data Center Networks. In Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation, San
Jose, CA, USA, 28–30 April 2010; pp. 1–17.

30. Gafurov, K.; Chung, T.-M. Comprehensive Survey on Internet of Things, Architecture, Security Aspects, Applications, Related
Technologies, Economic Perspective, and Future Directions. J. Inf. Process. Syst. 2019, 15, 797–819.

31. Rana, B.; Singh, Y.; Singh, P.K. A systematic survey on internet of things: Energy efficiency and interoperability perspective. Trans.
Emerg. Telecommun. Technol. 2021, 32, e4166. [CrossRef]

32. Hanes, D.; Salgueiro, G.; Grossetete, P.; Barton, R.; Henry, J. IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for
the Internet of Things, 1st ed.; Cisco Press: Indianapolis, IN, USA, 2017.

33. Drutskoy, D.; Keller, E.; Rexford, J. Scalable network virtualization in software-defined networks. IEEE Internet Comput. 2013, 17,
20–27. [CrossRef]

34. Moura, J.; Hutchison, D. Resilience Enhancement at Edge Cloud Systems. IEEE Access 2022, 10, 45190–45206. [CrossRef]
35. Anadiotis, A.C.; Galluccio, L.; Milardo, S.; Morabito, G.; Palazzo, S. SD-WISE: A Software-Defined WIreless SEnsor network.

Comput. Netw. 2019, 159, 84–95. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/NOMS.2014.6838323
http://doi.org/10.1109/ACCESS.2016.2607786
http://doi.org/10.1109/COMST.2018.2862350
http://doi.org/10.1007/s11277-016-3845-0
http://doi.org/10.1109/INFCOMW.2016.7562199
http://doi.org/10.1145/2342441.2342446
http://doi.org/10.23919/CNSM.2017.8256024
http://doi.org/10.1109/WCNCW.2019.8902839
http://doi.org/10.1016/j.comcom.2020.07.028
http://doi.org/10.1016/j.dcan.2022.08.007
http://doi.org/10.1007/s40747-021-00434-6
http://doi.org/10.1109/COMST.2020.2997475
http://doi.org/10.1016/j.jnca.2019.03.001
http://doi.org/10.1007/s11277-017-4908-6
http://doi.org/10.1002/ett.4166
http://doi.org/10.1109/MIC.2012.144
http://doi.org/10.1109/ACCESS.2022.3165744
http://doi.org/10.1016/j.comnet.2019.04.029

	Introduction
	Related Work
	Proposed Solution
	Architecture
	Deployment
	Switch and SDN Controller Communication
	Communication between the SDN Controller and the Broker
	Novel Function for Automatic (De)Activation of Edge Servers

	Evaluation Results and Their Discussion
	Delay Tests
	Stress Functional Tests
	Novel Function for Automatic (De)Activation of Edge Servers

	Lessons Learned
	Conclusions and Future Work
	References

