24 research outputs found

    An authentic-based privacy preservation protocol for smart e-healthcare systems in iot

    Get PDF
    © 2013 IEEE. Emerging technologies rapidly change the essential qualities of modern societies in terms of smart environments. To utilize the surrounding environment data, tiny sensing devices and smart gateways are highly involved. It has been used to collect and analyze the real-time data remotely in all Industrial Internet of Things (IIoT). Since the IIoT environment gathers and transmits the data over insecure public networks, a promising solution known as authentication and key agreement (AKA) is preferred to prevent illegal access. In the medical industry, the Internet of Medical Things (IoM) has become an expert application system. It is used to gather and analyze the physiological parameters of patients. To practically examine the medical sensor-nodes, which are imbedded in the patient\u27s body. It would in turn sense the patient medical information using smart portable devices. Since the patient information is so sensitive to reveal other than a medical professional, the security protection and privacy of medical data are becoming a challenging issue of the IoM. Thus, an anonymity-based user authentication protocol is preferred to resolve the privacy preservation issues in the IoM. In this paper, a Secure and Anonymous Biometric Based User Authentication Scheme (SAB-UAS) is proposed to ensure secure communication in healthcare applications. This paper also proves that an adversary cannot impersonate as a legitimate user to illegally access or revoke the smart handheld card. A formal analysis based on the random-oracle model and resource analysis is provided to show security and resource efficiencies in medical application systems. In addition, the proposed scheme takes a part of the performance analysis to show that it has high-security features to build smart healthcare application systems in the IoM. To this end, experimental analysis has been conducted for the analysis of network parameters using NS3 simulator. The collected results have shown superiority in terms of the packet delivery ratio, end-to-end delay, throughput rates, and routing overhead for the proposed SAB-UAS in comparison to other existing protocols

    Resilience-Building Technologies: State of Knowledge -- ReSIST NoE Deliverable D12

    Get PDF
    This document is the first product of work package WP2, "Resilience-building and -scaling technologies", in the programme of jointly executed research (JER) of the ReSIST Network of Excellenc

    Private and censorship-resistant communication over public networks

    Get PDF
    Society’s increasing reliance on digital communication networks is creating unprecedented opportunities for wholesale surveillance and censorship. This thesis investigates the use of public networks such as the Internet to build robust, private communication systems that can resist monitoring and attacks by powerful adversaries such as national governments. We sketch the design of a censorship-resistant communication system based on peer-to-peer Internet overlays in which the participants only communicate directly with people they know and trust. This ‘friend-to-friend’ approach protects the participants’ privacy, but it also presents two significant challenges. The first is that, as with any peer-to-peer overlay, the users of the system must collectively provide the resources necessary for its operation; some users might prefer to use the system without contributing resources equal to those they consume, and if many users do so, the system may not be able to survive. To address this challenge we present a new game theoretic model of the problem of encouraging cooperation between selfish actors under conditions of scarcity, and develop a strategy for the game that provides rational incentives for cooperation under a wide range of conditions. The second challenge is that the structure of a friend-to-friend overlay may reveal the users’ social relationships to an adversary monitoring the underlying network. To conceal their sensitive relationships from the adversary, the users must be able to communicate indirectly across the overlay in a way that resists monitoring and attacks by other participants. We address this second challenge by developing two new routing protocols that robustly deliver messages across networks with unknown topologies, without revealing the identities of the communication endpoints to intermediate nodes or vice versa. The protocols make use of a novel unforgeable acknowledgement mechanism that proves that a message has been delivered without identifying the source or destination of the message or the path by which it was delivered. One of the routing protocols is shown to be robust to attacks by malicious participants, while the other provides rational incentives for selfish participants to cooperate in forwarding messages

    Corporate Social Responsibility To-Come: A Derridean Interruption of Transparency

    Get PDF
    This study investigated the relation between rhetorics of transparency and organizational action. Digging into CSR literature from a philosophy of communication perspective, this project seeks to determine if corporate social responsibility delivers on the promises it makes of a better world. Drawing on the work of Jacques Derrida, the research first lays out his often overlooked contribution to the philosophy of communication, and then moves towards possible applications in deconstructing the perceived benefits of CSR, particularly in its transparent nature. By looking at organizational life from the Triple Bottom Line, this dissertation peels back the underlying rhetoric of planet, people, profit to discover an ethical project with gaps, fissures, and inconsistencies, in need of a future-oriented version that lives up to this challenge CSR sets out for itself in such precarious times

    Formal Methods for Wireless Systems

    Get PDF
    I sistemi wireless sono costituiti da dispositivi che comunicano tra loro per mezzo di un canale radio. Questo paradigma di rete presenta molti vantaggi, ma la presenza del canale radio lo rende intrinsecamente vulnerabile. Di conseguenza, in tale ambito la sicurezza rappresenta un tema importante. I meccanismi di sicurezza messi a punto per i sistemi cablati presentano molti limiti quando vengono utilizzati in una rete wireless. I problemi principali derivano dal fatto che essi operano in modo centralizzato e sotto l'ipotesi di un “mondo chiuso”. Pertanto tecniche formali sono necessarie per stabilire una connessione matematicamente rigorosa tra la modellazione e gli obiettivi di sicurezza. Nella presente tesi si applica il formalismo ben noto del "process calculus" per modellare le principali caratteristiche della comunicazione wireless. Il contributo scientifico è essenzialmente teorico. Verrà proposto un primo process calculus per modellare il passaggio del tempo nei sistemi wireless. Verranno dimostrate alcune interessanti proprietà relative al tempo. Inoltre verrà presentata una rigorosa trattazione dei problemi di collisione. Verranno fornite anche “equivalenze comportamentali” (behavioural equivalence) e verranno dimostrate una serie di leggi algebriche. L'usabilità del calcolo verrà mostrata modellando il Carrier Sense Multiple Access, un diffuso protocollo di livello MAC in cui un dispositivo ascolta il canale prima di trasmettere. Verranno poi analizzati alcuni aspetti di sicurezza, in particolare verrà proposto un modello di trust per le reti ad hoc mobili. Tali reti sono costituite da nodi mobili che comunicano senza l’ausilio di altre infrastrutture. Le reti di tale calcolo verranno modellate come sistemi multilivello perché le relazioni di trust associano ai nodi livelli di sicurezza in base al loro comportamento. Tale modello di trust verrà incluso in un process calculus per reti ad hoc che sarà dotato di equivalenze comportamentali a partire dalle quali verrà sviluppata una "teoria osservazionale" (observational theory). Saranno garantiti sia alcune interessanti proprietà relative alla sicurezza, come la safety in presenza di nodi compromessi, sia risultati di non interferenza. Tale calcolo verrà utilizzato per analizzare una versione “sicura” di un algoritmo per il leader election nelle reti ad hoc. Verrà fornita anche una codifica del protocollo di routing per reti ad hoc chiamato endairA. Infine, il calcolo sul trust verrà esteso con aspetti legati al tempo, per spiegare la relazione tra tempo e trust. Infine quest’ultimo calcolo verrà applicato per dare una codifica del protocollo di routing per reti ad hoc chiamato ARAN.Wireless systems consist of wireless devices which communicate with each other by means of a radio frequency channel. This networking paradigm offers much convenience, but because of the use of the wireless medium it is inherently vulnerable to many threats. As a consequence, security represents an important issue. Security mechanisms developed for wired systems present many limitations when used in a wireless context. The main problems stem from the fact that they operate in a centralised manner and under the assumption of a \closed world". Formal techniques are therefore needed to establish a mathematically rigorous connection between modelling and security goals. In the present dissertation we apply the well-known formalism of process calculus to model the features of wireless communication. The scientic contributions are primarily theoretical.We propose a timed process calculus modelling the communication features of wireless systems and enjoying some desirable time properties. The presence of time allows us to reason about communication collisions. We also provide behavioural equivalences and we prove a number of algebraic laws. We illustrate the usability of the calculus to model the Carrier Sense Multiple Access scheme, a widely used MAC level protocol in which a device senses the channel before transmitting. We then focus on security aspects, in particular we propose a trust model for mobile ad hoc networks, composed only of mobile nodes that communicate each other without relying on any base station. We model our networks as multilevel systems because trust relations associate security levels to nodes depending on their behaviour. Then we embody this trust model in a process calculus modelling the features of ad hoc networks. Our calculus is equipped with behavioural equivalences allowing us to develop an observational theory. We ensure safety despite compromised nodes and non interference results. We then use this calculus to analyse a secure version of a leader election algorithm for ad hoc networks. We also provide an encoding of the endairA routing protocol for ad hoc networks. Finally, we extend the trust-based calculus with timing aspects to reason about the relationship between trust and time. We then apply our calculus to formalise the routing protocol ARAN for ad hoc networks

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Unmanned Aircraft Systems in the Cyber Domain

    Get PDF
    Unmanned Aircraft Systems are an integral part of the US national critical infrastructure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This textbook will fully immerse and engage the reader / student in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). The first edition topics covered National Airspace (NAS) policy issues, information security (INFOSEC), UAS vulnerabilities in key systems (Sense and Avoid / SCADA), navigation and collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security; electronic warfare considerations; data-links, jamming, operational vulnerabilities and still-emerging political scenarios that affect US military / commercial decisions. This second edition discusses state-of-the-art technology issues facing US UAS designers. It focuses on counter unmanned aircraft systems (C-UAS) – especially research designed to mitigate and terminate threats by SWARMS. Topics include high-altitude platforms (HAPS) for wireless communications; C-UAS and large scale threats; acoustic countermeasures against SWARMS and building an Identify Friend or Foe (IFF) acoustic library; updates to the legal / regulatory landscape; UAS proliferation along the Chinese New Silk Road Sea / Land routes; and ethics in this new age of autonomous systems and artificial intelligence (AI).https://newprairiepress.org/ebooks/1027/thumbnail.jp

    Strategic Latency Unleashed: The Role of Technology in a Revisionist Global Order and the Implications for Special Operations Forces

    Get PDF
    The article of record may be found at https://cgsr.llnl.govThis work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-59693This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-5969
    corecore