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i

Abstract Wireless systems consist of wireless devices which communicate with each
other by means of a radio frequency channel. This networking paradigm offers much
convenience, but because of the use of the wireless medium it is inherently vulnerable
to many threats. As a consequence, security represents an important issue. Security
mechanisms developed for wired systems present many limitations when used in a wireless
context. The main problems stem from the fact that they operate in a centralised manner
and under the assumption of a “closed world”. Formal techniques are therefore needed
to establish a mathematically rigorous connection between modelling and security goals.

In the present dissertation we apply the well-known formalism of process calculus to
model the features of wireless communication. The scientific contributions are primarily
theoretical. We propose a timed process calculus modelling the communication features of
wireless systems and enjoying some desirable time properties. The presence of time allows
us to reason about communication collisions. We also provide behavioural equivalences
and we prove a number of algebraic laws. We illustrate the usability of the calculus to
model the Carrier Sense Multiple Access scheme, a widely used MAC level protocol in
which a device senses the channel before transmitting.

We then focus on security aspects, in particular we propose a trust model for mobile
ad hoc networks, composed only of mobile nodes that communicate each other without
relying on any base station. We model our networks as multilevel systems because trust
relations associate security levels to nodes depending on their behaviour. Then we embody
this trust model in a process calculus modelling the features of ad hoc networks. Our
calculus is equipped with behavioural equivalences allowing us to develop an observational
theory. We ensure safety despite compromised nodes and non interference results. We
then use this calculus to analyse a secure version of a leader election algorithm for ad
hoc networks. We also provide an encoding of the endairA routing protocol for ad hoc
networks.

Finally, we extend the trust-based calculus with timing aspects to reason about the
relationship between trust and time. We then apply our calculus to formalise the routing
protocol ARAN for ad hoc networks.
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1

Introduction

Wireless systems are commonly associated with telecommunications networks
whose interconnections between devices (or nodes) are implemented without the
use of wires. This kind of network uses electromagnetic waves for the carrier, such
as radio waves, infrared radiation, microwaves, to transmit information.

Packet Data technology is a form of packet switching technology used to trans-
mit digital data via radio communications links. It was developed in the mid-
1960s and was put into practical application in 1969 in the Advanced Research
Projects Agency Network (ARPANET), created by the Defence Advanced Re-
search Projects Agency (DARPA) of the United States Department of Defence.
It was the world’s first operational packet switching network, and the predecessor
of the contemporary global Internet. Initiated in 1970, the ALOHANET, based
at the University of Hawaii, was the first large-scale packet radio project. Using
ALOHANET, a number of experiments have been performed in order to develop
methods to arbitrate access to a shared radio channel by network nodes. These
experiments were generally considered to be successful, and also marked the first
demonstration of Internetworking, as data were routed between the ARPANET,
PRNET (a packet radio network created by DARPA), and SATNET (a satellite
packet radio network) networks.

During the 1980s the wide evolution of business, trade and industry introduced
in everyday life new demands in communication technologies. Therefore these tech-
nologies, needed for such things as pagers and wireless telephones, would be per-
fected to the point that they became widely available consumer products. Initially
developed only for voice communication services, at the end of 1990s, with the
enormous increase of Internet usage, it became necessary the development of wire-
less technologies for data transfer. Thus WAP and GPRS technologies were born,
characterised by a long communication range. Besides these, wireless standards
with shorter range were developed: among these, the IEEE 802.11 for wireless
LAN was introduced and improved during the years.

Today, the range of application of wireless technologies includes data commu-
nications, Internet access, multimedia applications, and mobile payment services.
Moreover they offer a number of advantages over alternative solutions, as increased
capacity, reduced power and reduced interference from other signals.
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Important features of wireless systems are: (i) half-duplex radio frequency chan-
nel: on a given channel, a node can either transmit or receive but cannot do both
at the same time; (ii) local broadcast communication: a message sent by a node
reaches only the nodes within the radio transmission range of the sender; (iii)
mobility: nodes move while remaining connected to the network, breaking links
with old neighbours and establishing fresh links with new devices, and (iv) time:
many activities in wireless systems require the need for a common notion of time
among devices. During the last ten years or so, wireless systems have represented
a strong stimulus to the research community which has devoted to them hundreds
of papers.

1.1 Problem Statement

In spite of the enormous proliferation of wireless technology, many technical chal-
lenges remain in designing robust and secure wireless networks. The current sit-
uation in the world of wireless communications leads to new requirements from
users. Ubiquitous systems presuppose that the user can access the communications
anytime and anywhere. The arrival of mobile communications brings a dynamic
aspect into the digital environment and extends security-related requirements.
Moreover, the “open” and shared nature of their medium makes wireless systems
very vulnerable to many threats, some ones due to atmospheric problems or to
technical failures, but the most ones are due to human misbehaviours. The gap
between these current and emerging features and requirements and the vision of
secure wireless applications indicates that much work remains to do in order to
make concrete this reality. Formal techniques are therefore needed to establish a
mathematically rigorous connection between modelling and desired security goals.

Traditional security mechanisms, widely and successfully used for wired sys-
tems, present a number of limitations when used in a wireless context. The main
problems stem from the fact that these systems operate in centralised manner and
under the assumption of a “closed world”. Indeed, if in traditional digital systems
the main security requirements were addressed by installing firewalls at network
entries and by providing security level monitoring, these solutions are inadequate
for wireless systems. Indeed, wired communication may be seen as a static envi-
ronment having more or less defined threats, lists of closed communicating entities
and identities and static mostly direct trust relationships between them. This is
not the case of wireless systems, where the number and the identity of users are
not known in advance.

A more soft approach to security seems to be more appropriate [131]. The goal
of soft security mechanisms is to stimulate the collaborative adherence to common
ethical norms by participants in a community and the collaborative enforcement
of them. In other words, they describe a social control model which acknowledges
that malicious users can exist among good ones and attempts to make them known
to all the community in order to isolate them.

In everyday life every interactions between persons or organisations are based
on some kind of trust relationships. In the modern wireless world, the concept of
trust plays a significant rôle because relations in the virtual world more and more
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Figure 1.1 Time, Trust, Security and Mobility in Wireless Networks

Trust

Mobility

Time

Security

(4)

(1) (2)

(5)

(3)

reflect real life. Trust precludes some elements of certainty in the relationships
among participants and it exploits the mechanisms of cooperation, vital in wire-
less systems that do not rely on the presence of a fixed infrastructure. The trust
management approach for wireless systems is a soft security mechanism developed
as an answer to the inadequacy of traditional authorisation mechanisms. Trust
management systems determine whether or not a request should be allowed, by
defining languages for expressing authorisations and access control policies, and by
providing a trust management engine for determining when a particular request is
authorised. They operate in distributed systems and eliminating the closed world
assumption of traditional access control systems. Trust establishment in the con-
text of wireless networks is still an open and challenging field.

In Figure 1.1, we give a scheme for the relationships between specific aspects
considered in this dissertation and playing important rôles in wireless systems:
time, trust, security and mobility. Time has implications with security and trust;
trust is related with security; mobility has implications with trust and security.

• Arrow (1): in trust models for wireless networks, the timing factor is important
because more recent trust information should have more influence on the trust
establishment process. More generally, a notion of time would allow to record
past behaviours. In this manner, a malicious agent, which has been previously
detected, cannot regain trust after some time;

• Arrow (2): many security protocols for wireless networks require the presence
of timing information, because they present parameters that may vary with
time. Usually these parameters certify the freshness of a message. In this set-
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ting, some security properties, such as authentication and secrecy, can be re-
formulated in a timed setting;

• Arrow (3): security mechanisms are designed to protect infrastructure and in-
formation. Usually security objectives formulation is based on the analysis of
trust to all possible entities that may potentially interact with a system. The
concept of trustworthiness is essential in open and distributed environments.
Traditional security solutions are totally inadequate in this setting and then
decentralised trust management systems were developed as an answer to their
inadequacy;

• Arrow (4): mobility has impact on the trust establishment process, as it intro-
duces issues related to user credentials management, indirect trust establish-
ment and mutual authentication between previously unknown and untrusted
entities;

• Arrow (5): in the traditional digital world the main security requirements were
addressed by installing firewalls at network borders and security level monitor-
ing. Fixed communication may be seen as a static environment having more
or less defined threats, lists of communicating entities and static, mostly direct
trust relationships between them. The arrival of mobile communications brings
a dynamic aspect into the digital environment and extends security-related re-
quirements.

1.2 Summary of Contributions

The goal of the present dissertation is modelling and reasoning about wireless
systems and their security needs by means of formal methods. We focus on the well-
known formalism of process calculus, that during the last years has been extended
to cope with the possibility to model features of wireless systems and to formalise
and analyse some protocols. Moreover, we focus on trust-based security, developing
trust models explicitly tailored for wireless systems. The scientific contributions
are primarily theoretical. In the sequel, we provide a summary of them.

A Timed Calculus for Wireless Systems

We propose a timed calculus for wireless systems called TCWS, in which all wire-
less devices are assumed to be synchronised, using some clock-correction synchro-
nisation protocol [76,221] correcting the local clock of each node to run in par with
a global time scale. Time proceeds in discrete steps represented by occurrences of a
simple action tick, in the style of Hennessy and Regan’s TPL [111], to denote idling
until the next clock cycle. As in Hennessy and Regan’s TPL [111], and Prasad’s
timed CBS [195], our TCWS enjoys three basic time properties:

• time determinism: the passage of time is deterministic, i.e. a network can reach
at most one new state by performing the action tick;

• patience: nodes will wait indefinitely until they can communicate;
• maximal progress: data transmissions cannot be delayed, they must occur as

soon as a possibility for communication arises.
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Figure 1.2 Hidden and Exposed terminal problem

A CB B CA D

The operational semantics of our calculus is given in terms of a labelled transition
system. We follow a two-phase approach [181] separating the execution of actions
for synchronisation from the passage of time.

In this calculus we focus on communication interferences. In the literature,
there exist a number of process calculi modelling wireless systems [91, 92, 94, 163,
167, 178, 214]. All these calculi rely on the presence of some MAC-level protocol
to remove interferences. However, in wireless systems collisions cannot be avoided
although there are protocols to reduce their occurrences. We believe that commu-
nication collisions represent a serious concern that should be taken into account
in a timed model for wireless systems.

As a case study we use our calculus to model the Carrier Sense Multiple Access
(CSMA) protocol [123]. According to this scheme, stations transmit only when
the channel is sensed free. As we will show, this protocol allows to prevent certain
forms of collisions, although it suffers from two well-known problems: the hidden
terminal problem and the exposed terminal problem. Figure 1.2 gives a graphical
representation of these two problems. Suppose A, B, and C are three stations that
want to communicate. If the station B is within the transmission range of both
A and C, and A and C cannot hear each other, then A is a hidden terminal with
respect to C and vice versa. This is because C could transmit to B when A is
already transmitting to B (as it doesn’t hear A) causing a collision at B (Figure
1.2 on the left).

Suppose A, B, C, and D are four stations, where the two receivers A and D
are out of range of each other and the two transmitters B and C are in range of
each other. Here, if a transmission between B and A is taking place, node C is
prevented from transmitting to D as it concludes after carrier sense that it will
interfere with the transmission by its neighbour B. However D could still receive
the transmission of C without interference because it is out of range from B.
Therefore, C is an exposed terminal with respect to B, and vice versa (Figure 1.2
on the right).

We propose as main program equivalence a timed variant of weak reduction
barbed congruence [172]. As an efficient proof method for our timed barbed con-
gruence we propose a security variant of labelled bisimilarity [169]. We then apply
our bisimulation proof-technique to prove a number of algebraic properties.
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A Calculus of Trustworthy Ad hoc Networks

We then focus on trust-based security aspects. We propose a process calculus for
mobile ad hoc networks which embodies a behaviour-based multilevel trust model.
We call this calculus CTAN.

We model our networks as multilevel systems [28] where each device is associ-
ated to a security level depending on its behaviour. Thus, trust relations associate
security levels to nodes.

None of process calculi recently used to model different aspects of wireless sys-
tems and cited above addresses the notion of trust. In our calculus, each node
is equipped with a local trust store containing a set of assertions. These asser-
tions supply trust information about the other nodes, according to a local security
policy. Our calculus is not directly concerned with cryptographic underpinnings.
However, we assume the presence of a hierarchical key generation and distribu-
tion protocol [122,211]. Thus, messages are transmitted at a certain security level
relying on an appropriate set of cryptographic keys.

We provide the operational semantics of our calculus in terms of a labelled
transition system where each transition is annotated with a security level. For sim-
plicity, our operational semantics does not directly express node mobility. However,
we will show how to adapt the mobility approach proposed in [92] to annotate our
labelled transitions with the necessary information to represent node mobility.

Our calculus guarantees that only authorised nodes receive sensible informa-
tion. Thus, our networks enjoy two desirable security properties: safety preserva-
tion and safety despite compromised nodes. The first property ensures that a node
m transmitting at level ρ may only synchronise with nodes receiving at level ρ or
above, according to the local knowledge of both sender and receivers. The second
property says that bad nodes, once detected, may not interact with good nodes.
In this manner, bad nodes (recognised as such) are isolated from the rest of the
network.

In CTAN, our program equivalence is a security variant of weak reduction
barbed congruence. Moreover, along the lines of [70], we propose a labelled bisim-
ilarity, called δ-bisimilarity, parameterised on security levels. Our bisimilarity is a
congruence and an efficient proof method for our reduction barbed congruence.

Information flow properties are a particular class of security properties for
controlling the flow of information among different entities. The seminal idea of
non interference proposed in [96] aims at assuring that “variety in a secret input
should not be conveyed to public output”. In a multilevel computer system [28] this
property is reformulated saying that information can only flow from low levels to
higher ones. We prove a non-interference result using our notion of δ-bisimilarity.
Formally, high-level behaviours can be arbitrarily changed without affecting low-
level equivalences, that is equivalence parameterised on low security levels. Then
a network is interference free if its low security level behaviour is not affected by
any activity at high security level.

As case studies, we use our calculus to formalise and analyse a secure version
of the leader election algorithm for mobile ad hoc networks [227]. We then propose
an encoding of the endairA routing protocol for ad hoc networks [9].
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Time vs Trust

We introduce a simple timed variant of the calculus previously presented. We call
it TCTAN. First of all, we extend our trust model proposed for CTAN with a
very simple notion of time to express the validity of trust information. In this
manner, more recent trust information should have more influence on the trust
establishment process. Then, we develop appropriate changes in operational se-
mantics in order to distinguish between instantaneous and timed actions. As in
TWCS, we adopt the fictitious clock approach: a global clock is supposed to be
updated whenever all the processes agree on this, by globally synchronising on the
special action, called tick, representing the passing of one time unit. All the other
actions are assumed to be instantaneous.

In TCTAN we assume the presence of clock synchronisation protocols following
the untethered clock approach [75, 188, 202], achieving a common notion of time
without synchronisation. A global time scale is maintained while letting the local
clocks run untethered.

In this last calculus we work with configurations. A configuration t.M is a pair
composed by a time indicator and a network, where t indicates the global time.
As in TWCS, we separate the execution of actions from the passage of time. We
provide the operational semantics of our calculus in terms of a labelled transition
system.

We adapt the behavioural theory of CTAN in order to model it to timing
extensions. Moreover, we prove that all the properties of CTAN are preserved by
this calculus and that it also enjoys the basic time properties of time determinism,
patience and maximal progress. As case study, we use our calculus to formalise
the secure, on-demand routing protocol ARAN [209], that uses digital certificates
with timestamps.

1.3 Outline

Our thesis is divided into two parts. In the first part we give an overview of
background arguments, describing for each of them related work. In the second
part we focus on contribution arguments.

Part I: Background

• In Chapter 2 we give an overview of wireless networks. We also deal with the
rôle of time, security aspects and mobility;

• In Chapter 3 we describe traditional access control, and we introduce the
concept of trust and trust management systems;

• In Chapter 4 we present an overview of foundational process calculi, timed
process calculi and some recent calculi for wireless networks;

• In Chapter 5 we give an overview of some formal methodologies for the mod-
elling and analysis of wireless systems.
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Part II: Contributions

Some of the material of the second part has been presented in our papers [165,166]
and in technical report [164].

• In Chapter 6 we describe our timed calculus for wireless systems;
• In Chapter 7 we present our calculus of trustworthy ad hoc networks;
• In Chapter 8 we present a timed extension of our trust-based calculus;
• In Chapter 9 we conclude the dissertation with a discussion of research con-

tributions and directions for future work;
• In Appendix A we provide supportive material and full proofs.

1.4 Publications

In the following we report publications concerned with the present dissertation:

[166] Massimo Merro and Eleonora Sibilio. A Timed Calculus for Wireless Systems.
In proceedings of the 3rd International Conference on Fundamentals of Soft-
ware Engineering (FSEN), volume 5961 of Lecture Notes in Computer Science,
pages 228-243. Springer, 2009;

[164] Massimo Merro and Eleonora Sibilio. A Timed Calculus for Wireless Systems.
Technical Report 75/2009, Department of Computer Science - University of
Verona, 2009, submitted to a journal;

[165] Massimo Merro and Eleonora Sibilio. A Calculus of Trustworthy Ad Hoc Net-
works. In proceedings of the 6th International Workshop on Formal Aspects in
Security and Trust (FAST2009), volume 5983 of Lecture Notes in Computer
Science, pages 157-172. Springer, 2010.
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Background





2

Wireless Communication

2.1 Introduction

In the last years, the communication has become increasingly mobile and ubiq-
uitous. As a result, new requirements have to be accomplished and new features
have to be added to communication systems. Indeed it has been proven that tradi-
tional ways of networking, i.e. with physical cables, are inadequate to completely
meet these new systems. For example, let us think of some kind of monitoring,
tracking and controlling in an hostile environment, e.g. nuclear reactor control, fire
detection or traffic monitoring. It should be immediately get across that in these
settings the development of traditional networkings could meet some difficulties.
The most obvious obstacle is the “immobility” of traditional infrastructures: if
users must be connected to a network by physical cables, their movements are
dramatically reduced.

Wireless communication is, by any measure, the fastest growing segment of the
communications; it has become very popular in industry, business, commerce and
in everyday life. Indeed, wireless technologies provide a wide choice of capabilities
and features and then they are in position to satisfy different demands. Wireless
technology spans from user applications, such as personal area networks, ambient
intelligence, and wireless local area networks, to real-time applications, such as
cellular, and ad hoc networks. Important features of wireless systems are: (i) half-
duplex radio frequency channel, (ii) local broadcast communication, (iii) (possible)
node mobility and (iv) time.

Wireless networks can be classified according to the coverage area of their
devices. Moreover, different types can be considered according to their features.

Many activities in wireless systems require the need for a common notion of
time among devices. For example, we can think of wireless sensor networks in
which devices are equipped with sensor hardware to sense physical phenomena.
The data sensed by these devices have to be combined and evaluated to derive
knowledge about the environment where they are working. This operation is called
data-fusion. The fusion of individual sensor readings is possible only by exchanging
messages that are timestamped by each sensor’s local clock. Many other aspects
are greatly influenced by temporal relationships, e.g., whichever the media access
control protocol may be or real-time and temporal synchronisation constraints
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characterising the hosts communications. Moreover, many security protocols re-
quire the presence of timing information, because they present parameters that
vary with time. Usually these parameters certify the freshness of a message. In
this setting, some security properties, such as authentication and secrecy, can be
reformulated in a timed setting. All this requires the need for a common notion
of time among the devices. Protocols that provide such a common notion of time
are called clock synchronisation protocols.

In spite of the enormous proliferation of this technology, many technical chal-
lenges remain in designing robust and safe wireless networks and then it is nec-
essary the development of modern security applications. The gap between these
current and emerging features and requirements and the vision of secure wireless
applications indicates that much work remains to be done to make concrete this
reality.

Operating in open and shared media, wireless communication is inherently less
secure than wired communication. Mobile wireless devices usually have limited
resources, such as bandwidth, storage space, processing capability, and energy,
which makes security enforcement hard. Wireless networks have to face different
attacks or threats that may easily compromise their functionality. The effects of
these attacks are not trivial. For this reason, it is rather urgent the necessity of
security mechanisms aimed either at preventing the attacks or at minimising their
effects. When operating in wireless scenario, new security requirements has to be
added to the traditional ones and these last ones have to be reformulated in terms
of the new features.

An important aspects in wireless networks having many implications with se-
curity aspects is mobility. In wireless networks, mobility is associated with the
ability of a user to access telecommunication services from different locations and
different devices. In the traditional digital world the main security requirements
were addressed by installing firewalls at network borders and security level mon-
itoring. Fixed communication may be seen as a static environment having more
or less defined threats, borders, lists of communicating entities (and identities)
and static, mostly direct trust relationships between them. The arrival of mobile
communications brings a dynamic aspect into the digital environment and extends
security-related requirements. Thus security solutions overcoming these problems
have to be developed.

We end this introduction with an outline of the present chapter: in Section
2.2 we deal with wireless networks, in particular in Section 2.2.1 we provide a
classification of them, whereas in Section 2.2.2 we consider emerging types, finally
in Section 2.2.3 we describe some wireless protocols. In Section 2.3 we describe the
rôle of time in wireless systems and introduce the clock synchronisation protocols.
In Section 2.4 we consider some security aspects in wireless systems, in particular
in Section 2.4.1 we deal with their threats and vulnerabilities and in Section 2.4.2
with security requirements. In section 2.5 we deal with mobility aspect. Finally, in
Section 2.6 we give a brief summary of the arguments discussed in this chapter.
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2.2 Wireless Networks

With the term wireless network we refer to any type of computer network that
is wireless, i.e. the interconnections are implemented without the use of wires.
Like all networks, a wireless network is a collection of devices, also called nodes
or stations, transmitting data over a shared network medium. This is the most
obvious characteristic of wireless networks: the transmission takes place over a
wireless channel, which is usually a radio channel, but can also be an infrared
channel. In traditional networks, communication channels are full-duplex, that is
a node can transmit and receive at the same time. As a consequence, collisions
caused by two simultaneous transmissions are immediately detected and repaired
by retransmitting the message after a randomly-chosen period of time. This is not
possible in wireless networks where channels are half-duplex : on a given channel,
a node can either transmit or receive but cannot do both at the same time.

Usually, in a network, there are three methods for transmitting a message:

• Unicast : when the message is sent to a single destination node. For instance
web client-server interactions use unicast transmissions;

• Broadcast : when the message is sent to all network nodes. For instance, a mes-
sage advertising the foreseen network unavailability is broadcast to all nodes;

• Multicast : when the message is sent to a subset of the network nodes. For in-
stance, users connect to a network to access the Internet services, e.g., video
streaming or videoconference. Different groups of users sharing the same in-
terests can coexist. The size of the group can be very high or on the contrary,
very limited.

However, in wireless networks radio signals span over a limited area, called trans-
mission cell, and therefore reach only a (possibly empty) subset of devices in the
system. Nodes being in the transmission cell of a node m are called neighbours of
m. In a classical wired network, with a single broadcast transmission a message
sent by a node may reach all the nodes in the network. It is not the same with
wireless networks, where a message sent by a node reaches only the nodes within
the radio transmission range of the sender. That is why in wireless networks it is
dealt with semi-broadcast or local broadcast communications. To reach all nodes
in the network, a message must be forwarded by nodes which receive it. Actually,
even the devices within a cell might not be reachable due to environmental con-
ditions such as walls, obstacles, etc. For these reason, the wireless communication
must be taken into account the probability of packets losses.

In recent years, wireless technologies have become very popular such that we
can say today they are the medium of choice of many applications. In the following
sections, we give a classification of wireless networks and a description of the most
interesting emerging types.

2.2.1 A Classification of Wireless Networks

According to either the supported data rate or the coverage area or the tech-
nological factors, different classifications of wireless networks could be showed.
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The simplest and the most common one is based on the coverage area of wire-
less devices. In [57,90] we can find a comprehensive overview of wireless networks
according to this kind of classification.

Wireless Body Area Networks

A Wireless Body Area Network (WBAN) has a very limited transmission range:
only 1 or 2 meters. These networks are studied to cover only the space around a
human body, allowing the interconnection of “wearable” devices, like hearphones,
palms and so on. The most interesting and attractive feature of a WBAN is the
possibility of connecting similar devices and the ability of autoreconfiguration,
making easy some common operations, like either the removal or the addition of
new devices.

Wireless Personal Area Networks

A Wireless Personal Area Network (WPAN) provides wireless interconnections
of personal devices placed around an individual person’s workspace. Typically,
a wireless personal area network uses a technology that permits communication
within a very short range (about 10 meters). Whereas a WBAN is dedicated to the
interconnections of wearable devices, a WPAN is used to create a communication
in the immediately proximity of a user. The interconnection could also be estab-
lished between mobile devices and a fixed infrastructure, like Internet. One such
technology is Bluetooth [104], which has been used as the basis for the standard
IEEE 802.15 [1].

Wireless Local Area Networks

A Wireless Local Area Network (WLAN) technology provides a range from 100
to 500 meters about, and high-speed wireless data connections between mobile
devices (such as laptops, PDAs, phones and home entertainment equipment) or
between mobile devices and nearby fixed base stations, as access points. In order
to provide connectivity between a wireless station and a broadband wired network,
an access point may have two interfaces, a wireless interface and a wired interface.
Due to their rapid installation, flexibility, scalability and good throughput at low
cost, WLANs are the most spread wireless networkings. The standard on which
they are developed is the IEEE 802.11 [123]. This standard provides many useful
capabilities, as mobility and quality of service support. The basic building block
of an 802.11 network is the Basic Service Set (BSS), which is a set of stations that
have successfully synchronised. Communications take place within a specific area,
called the basic service area, defined by the propagation features of the wireless
medium. When a station is in the basic service area, it can communicate with the
other members within the BSS. There exist different types of BSSs:

• Independent BBS (IBBS): in a IBBS devices communicate directly with each
other without using any distribution system. IBSSs are sometimes referred to
as ad hoc BSSs or ad hoc networks;
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• Infrastructure BSS : they are distinguished from the independent ones by the
presence of an access point. Access points are used for all communications
in infrastructure networks, including communication between mobile nodes in
the same service area. Then in an infrastructure network, if a station wants
to communicate, it must be associated to an access point to obtain network
services;

• Extended Service Set (ESS): they are created by linking several BSSs together
within a backbone network. ESSs can create coverage in small offices and
homes, but they cannot cover larger areas.

Wireless Metropolitan Area Networks

A Wireless Metropolitan Area Network (WMAN) extends the coverage range of a
local network, covering a metropolitan area or campus. Then it provides services,
as Internet connection, to a very large number of users. WMANs are based on IEEE
802.16 [2] standard, also referred to as Worldwide interoperability for Microwave
Access (WiMAX), and allow Internet connectivity for LANs in a metropolitan
region. This technology provides inexpensive broadband accesses and supports for
user mobility. A WMAN is composed by three elements:

• a subscriber station (SS) or mobile subscriber station (MSS), which is user’s
terminal;

• a base station (BS), that provides radio access functionality;
• a network control and management system, that includes entities supporting

routing, network management, scheduling and coordination services, multime-
dia session management services, security and mobility services.

User terminals are connected to base stations, which are connected to the network
control and management system.

Wireless Wide Area Networks

A Wireless Wide Area Network (WWAN) is network covering a large geographic
area and provide an high speed wireless communication. WWANs can have a
transmission range varying from 1,5 to 1,8 kilometres. Access to home services
from a remote location and user mobility are provided. These networks are used
above all as a mobile telecommunications cellular networks even if they can also
used to transmit data.

2.2.2 Emerging Wireless Networks

In this subsection, we describe the most relevant upcoming types of wireless net-
works.

Cellular networks

A cellular network is an infrastructure-base network composed of several radio
cells each served by at least one fixed-location transceiver, that is the radio access
device, also known as base station. The base stations are connected together by a
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wireline network. They are installed and managed by an authorised operator. A
base station provides that mobile devices can access to the backbone with one-
hop. Each base station serves only a limited physical area, called a cell, hence the
name cellular. Mobile devices can move from one cell to another one. In a given
cell, they are connected to the base station via wireless channels. By connecting
their backbones together and setting up appropriate roaming agreements, different
network operators can jointly provide larger coverage. In any cell is possible to use
several portable transceivers that can be moved through more than one cell during
transmission. In this manner it is enabled ever worldwide mobility for users.

Cellular networks have been deployed in the last decade, and are proliferat-
ing throughout the world. Today, cellular networks are so popular that in some
countries, the number of mobile subscribers already exceeds the number of fixed
telephone lines. Originally, cellular networks provided only voice communication
services and the sending and receiving of short text messages. Today, the range of
applications includes data communications, Internet access, multimedia applica-
tions, and mobile payment services. Moreover they offer a number of advantages
over alternative solutions, as increased capacity, reduced power and reduced inter-
ference from other signals.

Ad hoc networks

An ad hoc network consists only of nodes that relay each others’ traffic, that is a
set stations communicating with each other without relying on any base station.
The most diffused network paradigm in this context considers nodes as mobile de-
vices. Then we talk about Mobile Ad hoc NETwork (MANET). Especially during
the last years, such networks have been a strong stimulus to the research commu-
nity. Indeed, this is a new attracting area for its potential to provide ubiquitous
connectivity without the assistance of any fixed infrastructure.

We can distinguish between the following two kinds of MANETs:

• Mobile ad hoc networks in hostile environments: they designate a set of mobile
nodes operating in an environment where the presence of a “strong” attacker
is expected, e.g. in a military setting. In this context, more then in other cat-
egories, secure and safety are central and essential needs. In these networks,
in compliance with the rôle of each of the users, each device knows a pre-load
appropriate set of cryptographic keys in order to protect the communication.
An authority in charge of the preloading phase. As long as a node is not com-
promised, it is reasonable to assume that it will have a highly cooperative
behaviour with respect to the other nodes of the network. The security chal-
lenges typically encountered in this kind of networks include secure routing,
prevention of traffic analysis, resistance of a captured device to reverse engi-
neering and key retrieval;

• Self-organised mobile ad hoc networks: they do not have authority to take care
of the initialisation phase. This means that the network is purely peer-to-peer,
and that the nodes have to organise by themselves secure communications,
establishing safety associations. Such networks are very vulnerable. One of
the most serious problems is the unpredictable presence of malicious nodes.
Without appropriate mechanisms, such a network can go into stopping due to
the presence of attackers.
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Vehicular networks

A vehicular ad hoc network (VANET) is potentially the largest instantiation of the
mobile ad hoc networking technology. It provides communications among nearby
vehicles and between vehicles and nearby fixed equipment. In other words, nodes
act both as end points and as routers. By their features, VANETs are between the
two cases of mobile ad hoc networks just described: indeed they cannot be fully
self-organised, but they also cannot be placed under the strict control of a single
authority. Their main goal is ensuring safer and more efficient driving conditions,
enabling a variety of applications for safety, traffic efficiency and driver assistance.
To this end, a special electronic device is placed inside each vehicle which provides
ad hoc network connectivity for the passengers. For the presence of this electronic
device, each of such a vehicle is a node in the VANET and can receive and send
messages through the wireless medium over the network.

For the reasons explained above, most of the concerns of interest to MANETs
are of interest in VANETs, but some details are different. Rather than moving at
random, vehicles tend to move in an organised fashion. The interactions with road-
side equipment can likewise be characterised fairly accurately. And finally, most
vehicles are restricted in their range of motion, for example by being constrained
to follow an asphalted road.

A VANET can integrate multiple ad hoc networking technologies such as WiFi
IEEE 802.11 b and g [123] standards, WiMAX IEEE 802.16 [2] and Bluetooth [104].

Wireless mesh networks

A wireless mesh network is a network composed of radio nodes organised in a mesh
topology. A mesh topology is a particular type of networking topology where each
node may act as an independent router, regardless of whether it is connected to
another network or not. Wireless mesh network are often made up of one Wireless
Hot Spot (WHS), connected to the Internet, and of several Transit Access Points
(TAPs). The TAPs are responsible for sorting the traffic between mobile stations,
e.g. cell phones and other wireless devices, and the WHSs in multi-hop fashions.
In order to provide wireless Internet connectivity in a wide geographic area, wire-
less mesh networks can represent a feasible solution. One of the most interesting
feature is that when one node can no longer operate, the remaining nodes can still
communicate with each other, directly or through intermediate nodes. Wireless
mesh networks can be implemented with various wireless technology including the
IEEE 802.11 [123] and IEEE 802.16 [2] standards, cellular technologies or com-
binations of them. Finally, for its inner features and its nature, a wireless mesh
network can be seen as a special type of a wireless ad hoc network.

Sensor networks

A wireless sensor network consists of a large number of spatially distributed au-
tonomous sensors and a few base stations (or sinks). The sensor nodes are tiny
devices that are equipped with sensing circuits. They cooperatively collect data
to monitor physical or environmental conditions, such as temperature, sound, vi-
bration, pressure, motion or pollutants. Moreover, the sensor nodes are typically
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equipped with a radio transceiver or other wireless communications device, a small
microcontroller, and an energy source, usually a battery. The sinks are more pow-
erful devices with respect to sensor nodes: they collect the data gathered by the
sensor nodes and then send them to some specific application units for final pro-
cessing. Initially developed for military applications, such networks are now used
in many industrial and civilian application areas, including industrial process mon-
itoring and control, machine health monitoring, healthcare applications, home au-
tomation and traffic control. As we stated above, the sensor nodes are usually
battery powered. Since recharging the batteries is often impractical, or even im-
possible in some deployment scenarios, this has a profound effect on the design
of sensor networks. As a result, all wireless sensor networking mechanisms are de-
signed to reduce the energy consumption of the sensor nodes and increase network
lifetime as much as possible.

2.2.3 Applications

In this section, we describe some wireless protocols.

Bluetooth, IEEE 802.11, and IEEE 802.16

Bluetooth [104] is a communication protocol primarily designed for low power
consumption, with a short range based on low-cost transceiver microchips in each
device. It makes it possible for these devices to communicate with each other when
they are in range. Bluetooth provides a way to connect and exchange information
between devices such as mobile phones, telephones, laptops, personal comput-
ers, printers, GPS receivers, digital cameras, and video game consoles through a
short-range radio frequency bandwidth. Because the devices use a radio broadcast
communications system, they do not have to be in line of sight of each other. In
particular, the process by which a pair of devices authenticate with each other and
establishes the key is called device pairing.

The 802.11i [124] is also known as WPA2, is an amendment to the IEEE
802.11 [123] standard specifying security mechanisms for wireless networks. This
has substituted the previous security specification, the Wired Equivalent Privacy
(WEP), after the disclosure of some flaws. The involved entities are the peer, the
access point and an authentication server. The peer authentication process involves
an handshake, in which the access point acts like a pass through the server, on
behalf of the peer. Actually, the process may either consists of a challenge-response
mechanism, or a password-based mechanism.

The 802.16 [2] and its amendment IEEE 802.16e-2005 are standards for wire-
less metropolitan area networks. They contain the PKMv2 protocol, enhancing
security features with respect to the old version. The protocol has a notable mix-
ture of security components. Parties at stake are base stations and mobile stations,
that need to securely transmit and receive. Base and mobile stations can mutually
authenticate, and it was missing in the first version. The chain of keys that are se-
quentially computed to finally derive the ultimate key, used in the communication,
are now derived from both the contribution of all the two parties.
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Routing Protocols

Routing is a fundamental function in every network that is based on multi-hop
communications, as mobile ad hoc networks and wireless sensor networks. These
systems act as end-systems and they also perform routing functions. In this con-
text, it is useful to follow the distinction in [222] between forwarding and routing
processes. When a node is looking up the appropriate routing information and a
packet arrives at that node, the process of forwarding is activated: it appropri-
ately allows to relay the packet towards its destination. Routing information are
computed by the routing process, and is defined by routing protocol or routing
algorithm.

A routing protocol is used to determine the appropriate paths on which data
should be transmitted in a network. According to [57], routing protocols for wire-
less systems can be classified into:

• Topology-based protocols: they rely on traditional routing concepts, such as
maintaining routing tables or distributing link-state information, but they are
adapted to the special requirements of mobile ad hoc networks. Topology-based
protocols can be further divided into three groups:
– Proactive protocols: they try to maintain consistent routing information

within the system so that at any time, every node knows how to route
packets to all other nodes in the network. A disadvantage is that usually
periodic exchanges of routing information among the nodes are required. If
only a few pairs of nodes communicate with each other, proactive protocols
can waste a lot of resources unnecessarily. An advantage is that as routing
information is always up-to-date and available, packets can be sent to any
destination virtually with no delay. Examples of proactive routing protocols
are OLSR [65] and DSDV [187];

– Reactive protocols: a route is established between a source and a destination
only when it is needed. For this reason, reactive protocols are also called
on-demand protocols. A disadvantage is that it may happen that a node
wants to communicate with another node but no working route to that
other node is available. Thus the communication must be delayed until
such a route is discovered. Examples of on-demand protocols are DSR [129]
and AODV [186];

– Hybrid protocols: they try to combine the advantages of the proactive and
the reactive approaches. An example of an hybrid protocol has been pro-
posed in [107];

• Position-based protocols: they use information about the physical locations of
the nodes to route data packets to their destinations. The advantage of position-
based routing is that the nodes do not need to maintain routing information
or to discover routes explicitly, and therefore the control overhead of these
protocols tends to be smaller. The disadvantages that they rely on additional
hardware, as GPS or some other positioning service, in each node or some other
mechanisms by which the nodes can determine their own location.

Initial work in ad hoc routing has considered only the problem of providing efficient
mechanisms for finding paths, without considering security. In wireless networks
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routing control messages are sent over wireless channels. However, due to the lack
of physical protection, some of the routers could be corrupted and not follow the
routing protocol faithfully [136]. Obviously, this can have undesirable effects on the
operations of the network. There are a number of different attacks to manipulate
the routing in an ad hoc network. According to [209], typical routing attacks are:

• Modification attacks, which cause a redirection of network traffic and DoS
attacks by altering control message fields or by forwarding routing messages
with fake values;

• Impersonation attacks, also known as spoofing, when a node misrepresents its
identity;

• Fabrication attacks, which involve the generation of false routing messages.

Since an adversary can paralyse the activity of a network by attacking this basic
functionality, several “secure” routing protocols have been proposed. Comprehen-
sive surveys of these protocols can be found in [57,120]. Among them we remember,
SRP [184], Ariadne [121], endairA [9], SAODV [238], SEAD [119] and ARAN [209].

2.3 Time Synchronisation

For most applications and algorithms that run in a wireless system, time is a cen-
tral aspect. Let us think to sensor networks. In them, each device is equipped with
sensor hardware to sense physical phenomena. The data sensed by these devices
have to be combined and evaluated to derive knowledge about the environment
where they are working. This operation is called data-fusion. It in turn allows to
the devices to react intelligently to changes in their environment. For all these
activities, in order to determine the direction of the phenomena, temporal rela-
tionships among different events originated by different devices, i.e. the event X
has happened before the event Y , have to be exhibited. Moreover, to estimate the
speed of the phenomena, real-time issues, i.e. X and Y have happened within a
specific time interval, and then time differences between events originating from
different devices have to be calculated. The fusion of individual sensor readings is
possible only by exchanging messages that are timestamped by each device’s local
clock.

This is just one example attesting the importance of time in wireless systems.
Many other situations can be exhibited. For instance, many security protocols
require the presence of timing information, because they present parameters that
vary with time. Usually these parameters certify the freshness of a message. In
this setting, some security properties, such as authentication and secrecy, can be
reformulated in a timed setting. All this requires the need for a common notion of
time among the devices.

A computer clock is an electronic device that counts oscillations in an accurately-
machined quartz crystal, at a particular frequency. It is also defined as an ensem-
ble of hardware and software components used to provide an accurate, stable, and
reliable time-of-day function to the operating system and its clients. Computers
clocks are essentially timers. The timer counts the oscillations of the crystal, which
is associated with a counter register and a holding register. For each oscillation in
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the crystal, the counter is decremented by one. When the counter becomes zero,
an interrupt is generated and the counter is reloaded from the holding register.
Therefore, it is possible to program a timer to generate an interrupt 60 times a
minute, where each interrupt is called a clock tick, by setting an appropriate value
in the holding register. At each clock tick, the interrupt procedure increments the
clock value stored in memory. The term software clock normally refers to the time
in a computer clock to stress that it is just a counter that gets incremented for
crystal oscillations. The interrupt handler must increment the software clock by
one every time an interrupt (i.e., a clock tick) occurs.

The clock value can be scaled to get the time of the day; the result can be used
to timestamp an event on that computer. In practice, the quartz crystals in each
of the devices will run at slightly different frequencies, causing the clock values
to gradually diverge from each other. This divergence is formally called the clock
skew, which can lead to an inconsistent notion of time. Clock synchronisation is
performed to correct this clock skew.

In centralised systems, there is no need for synchronised time because there
is no time ambiguity. A device gets the time by simply issuing a system call
to the kernel. When another process tries to get the time, it will get either an
equal or a higher time value. Thus, there is a clear ordering of events and the
times at which these events occur. On the other hand, in distributed systems each
device has its own internal clock and its own notion of time. In practice, these
clocks can easily drift seconds per day, accumulating significant errors over time.
Also, because different clocks tick at different rates, they may not remain always
synchronised although they might be synchronised when they start. This clearly
poses serious problems to applications that depend on a synchronised notion of
time. In distributed systems, where each machine has its own physical clock, clock
synchronisation has significant importance. Clock synchronisation protocols ensure
that physically distributed processors have a common notion of time. It has a
significant effect on many areas like security systems, fault diagnosis and recovery,
scheduled operations, database systems, and real-world clock values.

Researchers have developed successful clock synchronisation protocols for wired
networks over the past few decades. However, due to the features of wireless
systems, neither logical time [141, 142] nor classical clock synchronisation algo-
rithms [143, 213] are applicable in their setting. Indeed, algorithms implementing
logical time assume that causal relationships manifest themselves in network mes-
sages between entities generating the event. This is not the case of real world where
wireless networks operate. Instead, classical clock synchronisation algorithms are
not adapted to wireless systems because they rely on two important assumptions:
(i) the ability to periodically exchange messages between nodes that have to be syn-
chronised, and (ii) the ability to estimate the time it takes for a message to travel
between two nodes to be synchronised. In the wireless scenario, these assumptions
cannot be made, especially when we consider mobile devices; for example, the fre-
quent temporary networks partitions may not permit to devices to be synchronised
when they sense two different events. Moreover, in wireless path may be arbitrar-
ily delayed, ruling out good estimation of message delay. Thus the assumptions
(i) and (ii) above are violated. Finally, a wireless network could comprise a large
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number of devices to be synchronised. This constitutes a scalability challenge for
classical synchronisation protocols.

During the last years, many appropriate clock synchronisation protocols tai-
lored for wireless networks are developed. Good overviews of them can be found
in [76,221].

In [221] the authors have classified synchronisation protocols based on two
kinds of features:

1. Synchronisation issues: in this kind of classification, we can find different
options:
• Master-slave vs peer-to-peer synchronisation: the former assigns one node

as the master and the other nodes as slaves. The slave nodes consider
the local clock reading of the master as the reference time and attempt
to synchronise with the master. In the latter any node can communicate
directly with every other node in the network. This eliminates the risk of
master node failure, which would prevent further synchronisation. Even if
peer-to-peer configurations offer more flexibility, they are more difficult to
control;

• Clock correction vs untethered clocks: in the first option, the local clock in
each node is correct by running on a par with a global time scale or an
atomic clock, used to provide a convenient reference time. In untethered
approach, the protocol tends to achieve a common notion of time without
synchronisation. This approach is widely spreading as it allows to save a
considerable amount of energy;

• Internal synchronisation vs external synchronisation: in internal synchro-
nisation approach a global time base, called real-time, is not available from
within the system and the goal is to minimise the maximum difference
between the readings of local clocks of the nodes. In external synchroni-
sation approach a standard source of time such as Universal Time (UTC)
is provided. There is an atomic clock that provides actual real-world time,
usually called reference-time. The local clocks of nodes seek to adjust to
this reference time in order to be synchronised;

• Probabilistic vs deterministic synchronisation: the former provides a prob-
abilistic guarantee on the maximum clock off-set with a failure probability
that can be bounded or determined. The latter guarantees an upper bound
on the clock offset with certainty;

• Sender-to-receiver vs receiver-to-receiver synchronisation: the first method
synchronises a sender with a receiver by transmitting the current clock val-
ues as timestamps. The second method is based on the statement of fact
that if any two receivers receive the same message in single-hop transmis-
sion, they receive it at approximately the same time. Thus the receivers
exchange the time at which they received the same message and compute
their offset based on the difference in reception times.

2. Application-dependent features: the options of this kind of classification
are the following:
• Single-hop vs multi-hop networks: in a single-hop network, a node can di-

rectly communicate and exchange messages with any other node in the
network. The need for multi-hop communication arises due to the increase
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in the size of wireless networks. In such settings, nodes in one domain com-
municate with nodes in another domain via an intermediate node. Commu-
nication can also occur as a sequence of hops through a chain of pairwise-
adjacent nodes;

• Stationary networks vs mobile networks: in stationary networks, nodes do
not move. On the contrary, in a mobile network, nodes can move, and they
connect with other nodes only when entering in communication range of
them. Mobility is an inherent advantage of a wireless environment but it
induces more difficulties in synchronisation. It leads to frequent changes in
network topology and demands that the protocol be more robust, because
it requires re-synchronisation of nodes and recomputation of the neighbour-
hoods;

• MAC-layer based approach vs standard approach: the Media Access Con-
trol (MAC) layer is a part of the Data Link Layer of the Open System
Interconnection (OSI) model. This layer is responsible for (i) providing re-
liability to the layers above it with respect to the connections established
by the physical layer and (ii) preventing transmission collisions so that the
message transmission between one sender and the intended receiver nodes
does not interfere with transmission by other nodes.

2.4 Security Aspects

The Merrian-Webster dictionary on-line [162] defines security as the quality or
state of being secure - to be free from danger. This definition seems to be very
generic; it is particularly referred to the protection of life, things, resources from
damage due to either intentional or unintentional human actions or natural catas-
trophes, e.g. earthquakes, hurricanes, storms and so on. When we want to explicitly
refer to the protection of information, we have to talk about information security,
meaning protection of information and information systems from unauthorised
access, use, disclosure, disruption, modification or destruction. Information secu-
rity is defined as the preservation of confidentiality, integrity and availability of
information [127], commonly known as the CIA (Confidentiality, Integrity and
Availability) properties.

When designing communication systems, it is essential to include more strict
security requirements. In particular, in wireless networks the situation is very com-
plicated for different reasons. Due to their peculiar features, they are vulnerable
against both external and internal attacks. Due to the open nature of wireless
medium, attacking its availability is not a complex task. Without protection, any-
one in the transmission range of the sender can intercept its signal. Mobile wireless
devices usually have limited resources, such as bandwidth, storage space, process-
ing capability, and energy. In this context, it is challenging to implement and use
the cryptographic algorithms and protocols required for the creation of security
services. Indeed costly security solution may not be affordable. Moreover, some
devices, as sensors, are not tamper-resistant; thus it is possible to reprogram or
simply destroy them. Furthermore, due to their inherent distributed nature, it is
very difficult to localise the failure point or the actual cause of malfunction.
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Even worse, very often wireless networks are employed in hostile environment,
such as battlefields, or in emergency situations, as in hospitals, or in other civil-
ian and scientific applications, such as in monitoring of pollution. In all these
conditions, wireless devices are exposed to many threats, some ones due to at-
mospheric problems or to technical failures, but the most ones are due to human
misbehaviours. These last threats introduce relevant issues, as it is impossible, or
anyway extremely complicated, to prevent the human actions and consequently
it is extremely difficult to anticipate the kind of misbehaviour that will affect a
network while not yet deployed. In addition, rapid deployment of new networking
technologies and of new services are encouraged by competition. Indeed, wireless
technologies are changing rapidly and new features and products are continuously
introduced. As a result, there is no time to put right and implement complete
protection mechanisms. Consequently, very often the protection mechanisms are
designed a posteriori and can be not appropriate.

More difficulties arise when considering wireless networks without fixed infras-
tructure. Compared with infrastructure-based wireless networks, security manage-
ment is more challenging due to unreliable communication, intermittent connec-
tion, node mobility, and dynamic topology. As we stated, these systems do not
have any entry points such as routers, gateways, etc, then nodes have to configure
and organise themselves in a cooperative way without external supports. On the
contrary, fixed infrastructures are typically present in wired networks and can be
used to monitor all network traffic that passes through them. A mobile node can
see only a portion of a network, that is the packets it sends or receives together
with other packets within its radio range. This introduces some difficulties.

Summarising, compared with traditional networks, the security management
in wireless systems is more difficult due to the following features:

• resource constraints: they reduces the possibility of designing costly security
solutions;

• unreliable communications: the shared-medium nature and unstable channel
quality of wireless links may result in high packet-loss rate and re-routing
instability. This implies that the security solution in wireless ad hoc networks
cannot rely on reliable communication;

• node mobility and dynamic topology : nodes can leave and join the network
and move independently, so the network topology can change frequently. The
highly dynamic operation of a MANET can cause traditional techniques to be
unreliable. Indeed, as nodes are mobile they may enter or leave the a route
frequently, adding complexity in the design of protocols for these networks;

• scalability : it is a key problem when we consider a large network size.

In [57, 106, 128, 150] we can find an exhaustive analysis of security vulnera-
bilities, threats, attacks, requirements, and challenges for wireless networks. In
Sections 2.4.1 and 2.4.2 we give an overview of them.

2.4.1 Security Threats and Vulnerabilities

As we stated, the first obvious feature of wireless networks is that communica-
tion takes place over a wireless channel. Such a channel suffers from a number
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of vulnerabilities. Attacks on channel include any actions that aim at interrupt-
ing, disturbing, or stopping the normal activities of the system, intentionally or
unintentionally. We can divide these attacks into five categories:

• Passive attacks: they are able to retrieve and copy data from the network, but
do not influence over its behaviour. Indeed passive attacks consist in listening to
the traffic in the network and analysing the captured data without interacting
with the network. Eavesdropping is a common type of passive attack; it can
be defined as the interception of information or data by an unintended party.
It consists in placing an antenna at an appropriate location and overhearing
the information that the victim transmits or receives. Usually, the protection
against such misdeeds is achieved by encrypting that information;

• Active attacks: they directly obstruct the development of the services. An active
attacker try to modify the content of the message exchanged between parties: in
this way the attacker can capture, delete, redirect or alter the data so that the
potential recipient of the message will no more be able to receive it. Moreover,
an active attacker can also modify the routing or the control messages of the
network. Finally, the attack can be made in terms of consumption of resources,
battery or memory, computational power of the network. An example of this
kind of attacks is the Man in the Middle (MitM): an attacker interposes between
two parties for suspicious purposes;

• External attacks: they come from outside the logical communication group or
network. For example the external attacker may be a person using an high
power transceiver able to launch a remote attack. The attacker can also be an
internal node of the network, carrying out some attacks against an adjacent
communication group;

• Internal attacks: they include the attacks originating from within the same
communication group. With respect to external attacks, they are more difficult
to prevent and for this reason they can be more dangerous;

• Misbehaviour : it can be considered an internal active attack as it is an unautho-
rised behaviour of an internal node of a network. More precisely this node does
not appropriately collaborate in the cooperative process of its neighbourhood.
The scope of a misbehaving node is not to damage other nodes but to save
its energy, memory and resources. For these reasons, it is called selfishness. If
a network has a centralised control authority, the selfishness attack does not
occur.

From the functional point of view , the different threats can be organised in the
following categories:

• Common attacks: this category comprises all passive and active attacks on
wireless channel;

• Denial of Service Attacks (DoS): it is a special class of active attacks, deserv-
ing a category of its own. It attempts to disrupt the function of a service,
making network resources unavailable to its intended users or destroying the
services availability. This kind of attack can also be carried out by a group of
collaborating attackers. The disruption can range from physical destruction of
network equipment (power exhaustion attack) to attacks to the occupation of
network’s bandwidth (jamming attack). In the first one, an attacker imposes a
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particularly complex task to a node in order to consume its battery charge (in
case of sensor networks) or to fill its buffers or memory. In jamming attacks,
the attacker constantly emits radio frequency signals, thus any member of the
network in the affected area will not be able to send or receive any packet;

• Node compromise: in general a node is compromised when it is under the
control of an attacker, that can gain access or control to the node itself after its
deployment and can either read or modify its internal memory. The ultimate
goal of this attack is, in most cases, to obtain the secret keys stored within a
trusted node;

• Side-channel attacks: these are attacks on the cryptographic materials of a
node. In order to compromise a node, it is also possible to attack its hardware
through this kind of attacks. The main objective of side channel attacks is to
obtain confidential data stored within the node;

• Impersonation attacks: the cheat on identities is numbered in this category.
The attacker pretends to be a legitimate node in a communication group by
forging the valid identity of a legitimate node. Examples of this kind of attacks
are the replication and the Sybil attacks. In the former a malicious node can
create multiple fake and pseudonymous identities. In the Sybil attack [180], a
node use multiple identities to deceive other nodes. The attacker can either
fabricate new identities or steal them from legitimate nodes;

• Protocol-specific attacks: wireless networks base their correct engineering on
many different protocols (routing, data aggregation, time synchronisation . . .)
Specific attacks are direct to them. As a result, the internal services of the
network are influenced.

2.4.2 Security Requirements

The effects of attacks in a network are not trivial, because very often they make
the services unavailable. For this reason it is necessary to develop security mecha-
nisms aimed either at preventing the attacks or at minimising their effects. In this
section, we deal with the requirements usually expected for secure systems and in
particular how these requirements are fulfilled in wireless networks. In [218] we can
find a description of the basic requirements that are considered universal in any
communication network. However, for wireless networks, additional requirements
must be considered. Thus, to the so called CIA properties, we need to add new
appropriate requirements. Again in [57, 128, 150] we can find an exhaustive list of
these requirements:

• Confidentiality : it is the term used to indicate the preventing of the disclosure of
information to unauthorised individuals or systems. It is based on the principle
that transmitted data must be known only by specific and authorised parties.
In order to provide this level of security, data must be encrypted. In some cases,
it may be not mandatory, for instance where the data is public by itself (e.g.
a temperature of a room) and when no other information can be derived from
it. On the other hand, in many particular situations (e.g. a private household,
a credit card transaction) the physical data obtained by the network can be
deemed as sensitive, and then must be read only by internal and authorised
entities. Moreover, certain cryptographic materials, such as security credentials
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and secret keys, must be hidden from unauthorised and external entities. If
an unauthorised party obtains sensitive information in any way, a breach of
confidentiality has occurred;

• Integrity : it means that data cannot be maliciously modified or deleted without
authorisation. This ensures that the received data are the same as those sent.
Unlike confidentiality, integrity is, in most cases, a mandatory property. The
data to be protected are not only the users’ data, but also the data related to
the control of the network;

• Authentication: it is necessary to ensure that data, transactions, communica-
tions or documents are genuine. It is also important for authenticity to validate
that both parties involved are who they claim to be. In other words, nobody
cheats on identities, pretending to be another party. In wireless networks, and
in particular in mobile wireless networks, the authentication requirement is
very important to make possible the legitimation of registered members of the
network;

• Authorisation: it is the basic requirement for access control mechanisms, grant-
ing appropriate access to resources (connectivity, data, information providing,
. . .) based both on the user’s identity and the organisation’s policy. Authorisa-
tion requirement allows that only authorised nodes in a network can perform
specific tasks;

• Availability : the services of a wireless network must be accessible by its users
whenever it is necessary, in normal activities or under attacks. This requirement
should also provide higher priority to very important communications, such as
an emergency call from a cellular phone and it should also guarantee a fair
distribution of the radio channel to mobile users in the transmission range;

• Freshness: the data produced by a network must be recent. This requirement is
particularly important for sensor networks, because they are data-centric and
their existence is due to the collection of physical data from an environment;

• Forward and Backward Secrecy : a node can be deployed to substitute a failed
node. In this context, there are two important properties to be considered:
forward secrecy and backward secrecy. The first one is referred to the feature
of substituted node to not be able to read any future messages after it leaves
the network, whereas the second one indicates that a substitutive node should
not be able to read any previously transmitted message;

• Self-Organisation: it is a specific property related to the autonomous nature
of ad hoc networks. Nodes must be independent and flexible enough to au-
tonomously react against problematic situations, organising and healing them-
selves. These problematic situations can be caused either by external or internal
attackers trying to influence over the behaviour of the elements of the system
or by extraordinary circumstances in the environment or in the network itself;

• Auditing : this property is particularly referred to sensor networks. The elements
of a sensor network must be able to store any significant events that occur
inside the network. Auditing information is useful to analyse the behaviour of
the system after a failure, e.g. to examine the causes of such a failure. This
property is also closely related to self-organisation: in order to adjust their
behaviour, sensor nodes must be able to know the state of their neighbourhood;
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• Non-repudiation: a node cannot deny the sending of a message it has previously
sent. It can be also considered the repudiation of receipt, where the recipient
tries to deny the reception of the message. Moreover, it should not be possible
for a user of a given service provided by a given operator to deny that he did
not use that service. In other words, the operator must to be able to prove
that the specific user really used that specific service. In order to overcome this
problem, it is necessary to used certain “evidence”, that is redundant piece of
information, as a nonce or a timestamp, that uniquely identify the message.
They can be used to detect and discard duplicates and replay of the same
messages;

• Privacy and Anonymity : in some situations, the nodes should not reveal their
location nor the party with which they communicate. As confidentiality, privacy
and anonymity are not mandatory properties.

2.5 Mobility vs Security

In wireless networks, mobility is associated with the ability of a user to access
telecommunication services from different locations and different devices. With the
term nomadism it is indicated a discrete terminal mobility which implies the ability
of the terminal to be connected to different networks, for example, at home and in
the office. Session continuity is not supported in this case. In a distinguished way
from nomadism, the term mobility implies continuous uninterrupted user access
to a service even while changing location or device. Ubiquitous mobility is often
expressed in terms of “anywhere, anytime and any device” connectivity. Wireless
does not mean imperatively mobile, as mobility is a service; its realization requires
additional support from both the part of the network and the user. A user can
always move within a WiFi cell but without mobility support he cannot move to
a neighbouring cell. As a consequence, the use of wireless devices raises mobility
support requirements.

Mobility classification includes user, session, code and terminal mobility. User
or personal mobility allows a user to be reachable on different terminals at the
same logical address. Session mobility allows a user to continue a session even
when changing a terminal. Service mobility allows a user to maintain access to his
services while changing devices or network service providers. It should be possible
for a user to update services definitions from any terminal. Thus, with service
mobility, a user has the possibility to store his preferences either locally or at the
dedicated server, that is associated with the user’s address. Code mobility allows
software entities (codes, objects or processes) to be relocated or moved from one
terminal to another during their execution.

In this dissertation, we concentrate on the terminal mobility in ad hoc wireless
networks. Terminal mobility allows a device to change its location while continu-
ing to maintain all services and sessions running. Mobile devices break links with
old neighbours and establish fresh links with new devices. The end points of these
new links may belong either to the same or to different subnets, either to the same
or different administrative domains and they may support the same or different
access technologies. Terminal mobility may be classified into micromobility and
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macromobility, according to the locality impact. Micromobility refers to mobility
over a small area. Usually this means mobility within a single IP domain. Macro-
mobility represents mobility over a large area. This includes mobility support and
associated address registration procedures that are needed when the mobile node
moves between IP domains.

From the description of mobility above provided, it can be noticed that its
support introduces new challenges and increases the complexity of modern wire-
less systems. In the traditional digital world, the main security requirements such
as confidentiality, integrity, availability and non-repudiation were addressed by in-
stalling firewalls at network borders and security level monitoring. Fixed commu-
nication may be seen as a static environment having more or less defined threats,
borders, lists of communicating entities (and identities) and static, mostly direct
trust relationships between them. The arrival of mobile communications brings a
dynamic aspect into the digital environment and extends security-related require-
ments. Not only confidentiality of data but also confidentiality of location, traffic
and identity should be addressed. The use of cryptography becomes vitally nec-
essary but difficult to implement because of the limited processing capabilities of
mobile devices. The need to maintain a security state while moving among net-
works introduces new threats to security solutions. According to [57], mobility has
the following security implications:

• devices become a way to permanently trace the movements of a user and hence
jeopardising his privacy;

• mobility also means that a given device must be able to roam across wireless
networks controlled by different operators. As mentioned above, this requires
that appropriate roaming agreements are made between operators;

• to be mobile the device must be small, meaning that it has limited storage,
computing power, and energy. This can lead to poor engineering of the security
protocols;

• a mobile station can easily be stolen, with the risk that it is misused or reverse
engineered and that the data that it contains are accessed.

In a mobile network, secure channel binding must be provided in order to assure
that end-points of a secure channel are the same of those authenticated by each
other. This requirement becomes very important since a masquerade attack can
be easily realized in a mobile scenario. Moreover, a visited network should identify
and authenticate a user that asks the network to grant access, dynamically build
trust relations with other administrative domains in order to authenticate a visitor,
distribute/negotiate encryption keys with users, correctly account user’s activity
and recognise malicious behaviour in a visitor.

Obviously, in this scenario it is critical to know what entities can access what
resources, from where and when. A user is often served by an entity that is not his
identity provider and trust establishment between a user and a service provider
becomes a necessity. In a wireless context, new security mechanisms have to be
developed as complex processes of entities recognising, definition of privileges and
restriction for them and access granting according to these privileges. We analyse
more accurately these issues in the next chapter.
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2.6 Chapter Summary

Wireless networks are quickly becoming the networks of choice. This is not only
due to the large bandwidth, but also to the flexibility and freedom they offer. As
stated in [57], new trends in the design of wireless networks lead to increase the
number of security challenges and extend security related requirements in terms
of safety and cooperation.

The trend in next-generation wireless systems is toward an IP-based infras-
tructure with the support of heterogeneous wireless access technologies. One of
the challenges for these systems is the design of efficient mobility management
solutions.

Many often, there is no direct communication link between the two nodes that
want to communicate. However, it is possible to pass through one or more interme-
diate nodes. This is known as a multi-hop. Multi-hopping communication increases
the “security distance” between the device under the control of the operator (base
station, access point) and/or the mobile station. Consequently, appropriate mea-
sures must be taken to prevent misbehaviours against the correct functionality of
the network.

Wireless devices provide more flexibility to the users as they are programmable;
for example a user can easily increase the performances of a device by installing
new applications on it. But at the same time, this flexibility can be misused to
prepare attacks; in this context selfishness may become an uncontrolled threat.

In this chapter, we provided a classification of wireless networks, according to
the coverage area of the devices. Then we described the most popular network
types, as cellular, ad hoc, vehicular, mesh and sensor networks. We briefly de-
scribed some applications in the area of short range communication, as Bluetooth,
IEEE 802.11 and IEEE 802.16. We provided a more detailed description of wireless
routing protocols.

We described clock synchronisation protocols that provide such a common
notion of time. Finally, we dealt with security and with mobility aspects.

In the next chapter we discuss traditional access control mechanisms, focusing
on their inadequacy for wireless systems. Then we introduce the concept of trust
and describe trust management systems.
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Security Mechanisms

3.1 Introduction

The purpose of access control is to limit the actions or operations that a legitimate
user of a computer system can perform. Access control constrains what a user can
do directly, as well what programs executing on behalf of the users are allowed
to do. In this way access control seeks to prevent activity which could lead to a
breach of security. A widely applied access control policy is the access control list.
Roughly speaking, an access control list is a list of permissions attached to an
object. It specifies which users or system processes are granted access to objects,
as well as what operations are allowed to be performed on given objects. ACLs
work well when access policies are set in a centralised manners. However, they are
less suited to ubiquitous systems where the number of users may be very large
(think of sensor networks) and/or continuously changing. In this scenario users
may be potentially unknown and, therefore, untrusted.

Emerging wireless systems have one issue in common: the need to grant or
restrict access to resources according to some security policy. However, different
systems and applications have different notions of what a resource is. Moreover
different applications have different access-granting or -restricting policies. The
criteria on which a decision is based may differ greatly among the various applica-
tions (or even between different instances of the same application). The security
mechanism should be able to handle those different criteria.

In [131] Jøsang has distinguished between hard security, for the traditional
information security mechanisms, and soft security, for the so called social control
mechanisms. Cryptographic algorithms and firewalls are examples of hard security
mechanisms, and they have the general property of allowing complete access or
no access at all. Hard security also assumes complete certainty. It is clear how
these strong assumptions cannot meet the features of wireless networks. While the
goal of traditional information security is to preserve the CIA properties, the goal
of soft security mechanisms is to stimulate the quality of a specific community
in terms of the ethical behaviour and the integrity of its members. Soft security
mechanisms seem to be well suited for wireless systems. Among these mechanisms,
we can find the ones that take into consideration the concept of trustworthiness.
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Current security technology offers us some capability to build in a certain level
of security into our communication, i.e. cryptographic algorithms for privacy and
digital signatures, authentication protocols for proving authenticity and access
control methods for managing authorisation and so on. However, these methods
cannot manage the more general concept of trustworthiness, that is essential in
open and distributed environments as wireless settings. In everyday life, every
interaction between persons or organisations is based on some kind of trust rela-
tionships. In the modern wireless world, the concept of trust plays a significant
rôle because relations in the virtual world more and more reflect real life.

Trust and security are two concepts that cannot be desegregated. Also the con-
cepts of trust and reputation are closely related in trust management systems and
they are firmly routed in sociology and psychology. In a first approximation, trust
can be defined as the belief that another party (a person, an organisation, but
also a device) will behave according to a set of well established rules and will thus
meet expectations of another party. Focusing on computing-oriented definitions,
trust is a binary directional relationship between two parties, called trustor and
trustee. In general, the trustor is the subject that trusts an entity or a service, and
the trustee is the entity that is trusted. Trust information is usually represented as
a collection of assertions on the reliability of the parties. The trust establishment
process includes specification of valid assertions, their generation, distribution, col-
lection and evaluation. Trust evaluation is performed by applying specific policies
to assertions; the result is a trust relation between the trustor and the trustee.

The trust management approach to distributed system is a soft security mecha-
nisms developed as an answer to the inadequacy of traditional authorisation mech-
anisms. Trust management engines avoid the need to resolve identities in an autho-
risation decision. Instead, they express privileges and restrictions in a programming
language. A trust management systems (TMS) may be either a credential-based
or a behaviour-based system. In credential-based systems peers or nodes use cer-
tificates in order to establish trust with other peers. Behaviour-based systems are
often called experience-based as in these models an entity A trusts another entity
B based on its experience on B’s past behaviour. These systems heavily rely on
the concept of reputation.

We end this introduction with an outline of the present chapter. In Section 3.2
we describe traditional access control, providing an overview of the most common
mechanisms and policies. In particular, we describe in Section 3.2.1 the Access
Control List and in Section 3.2.2 some access control policies. Then we provide a
classification of the policies according to their administration in Section 3.2.3. In
Section 3.3 we introduce trust context. In particular in Section 3.3.1 we analyse
security issues related to trust and in Section 3.3.2 we describe the concepts of
trust and reputation. In Section 3.4 we describe the trust management approach
and in Section 3.4.1 we analyse trust management systems for MANETs. Finally,
in Section 3.5 we give a summary of the chapter.

3.2 Traditional Access Control

Access control is the process of limiting actions or operations that a legitimate user
of a computer system can perform. It constraints what a user can do directly, as
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well as what programs executing on behalf of the users are allowed to do. Access
control principles were proposed by Sandhu and Samarati in [207]. In their paper,
the authors have stated that access control is enforced by a reference monitor :
any attempted access by a user, or program executing on behalf of that user, to
objects in the system has to be mediated by the reference monitor. An authorisa-
tion database, administered and maintained by a security administrator, records
the associations between each user and the operations that the user is actually
authorised to perform. The administrator sets these authorisations on the basis
of the security policy of the organisation. When the reference monitor receives a
request from a user, it consults the authorisation database in order to determine if
that user can perform that operation. It is important to make a clear distinction
between authentication and access control. Correctly establishing the identity of
the user is the responsibility of the authentication service. Access control assumes
that authentication of the user has been successfully verified prior to enforcement
of access control via a reference monitor. For these reasons, it is important to
understand that access control is not an exhaustive solution for securing a system
but it has to coexist with other security services.

It is also important to understand the distinction between policies and mech-
anisms. Policies are high level guidelines which determine how accesses are con-
trolled and access decisions determined. Mechanisms are low level software and
hardware functions which can be configured to implement a policy. A desirable
goal is to develop access control mechanisms which are largely independent of the
policy for which they could be used. In this manner, mechanisms can be used to
serve a variety of security purposes.

In general, there do not exist bad or good policies but there exist policies
which ensure more protection than others. However, not all systems have the same
protection requirements. Policies suitable for a given system may not be suitable
for another. For instance, very strict access control policies, which are crucial to
some systems may be inappropriate for environments where users require greater
flexibility. As a consequence, the choice of access control policy depends on the
particular features of the environment to be protected.

In this section we give an overview of most popular access control policies and
mechanisms for traditional systems. We briefly discuss why they are inappropriate
for wireless systems.

3.2.1 Access Control List

Over the years, a number of abstractions have been developed in dealing with
access control. Perhaps the most fundamental of these is the realization that all
resources controlled by a computer system can be represented by data stored in
objects, e.g., files. Therefore protection of objects is the crucial requirement, which
in turn facilitates protection of other resources controlled via the computer system.

Any activity in a system is initiated by entities known as subjects. Subjects are
typically users or programs executing on behalf of users. Subjects initiate actions
or operations on objects. These actions are permitted or denied according to the
authorisation modes established in the system.

In the simplest case, access policies are expressed by an access matrix [14],
where there is a row for each subject, and a column for each object. Each cell of
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the matrix specifies the access authorised for the subject in the row to the object
in the column. The task of access control is to ensure that only the operations
authorised by the access matrix actually get executed. As stated in [207], this is
achieved by means of a reference monitor, which is responsible for mediating all
attempted operations by subjects on objects. Note that the access matrix model
clearly separates the problem of authentication from that of authorisation. In sys-
tems using an access matrix, all users are known to a system in advance. Obviously,
this is not the case of wireless systems. Moreover, access control matrices do not
provide a scalable solution. It might not only impose performance problems but
also increases the probability of an administration mistake. In a large system the
access matrix will be enormous in size, and most of its cells are likely to be empty.
In order to overcome these limitations and implement access policies in more com-
pact and efficient way several solutions have been proposed. An example in this
direction is the Access Control List.

An Access Control List (ACL) [207] is a list describing which access rights
a user has on an object (resource). Such a list of users is defined together with
the corresponding resource. This approach corresponds to storing the matrix seen
above by columns. With ACLs it is easy to determine which modes of access a
subject has for an object. It is also easy to revoke all accesses to an object by re-
placing the corresponding list with an empty one. On the other hand, to determine
all the accesses that a subject has, it is necessary to examine the ACL of every
object in the system with respect to a subject. Similarly, if all accesses of a subject
need to be revoked, all lists must be visited one by one. In practice revocation of
all accesses of a subject is often done by deleting the user account corresponding
to that subject. This is acceptable if a user is leaving an organisation. However, if
a user is reassigned within the organisation, it would be more convenient to retain
the account and change its privileges to reflect the changed assignment of the user.

ACLs do not need to physically exist in one location but may be distributed
throughout the system. ACLs have been used in distributed systems because they
are conceptually easy to understand. However, there are a number of fundamental
reasons for which ACLs are inadequate for wireless networks. For example, ACLs
are suitable to situations where access policies are set in a centralised manner, but
they are less suited for the situation where the system interacts with a large amount
of users that is continuously changing. Even if they are simple to implement,
they are not efficient for doing security checks at runtime. Blaze, Feigenbaum and
Keromytis in [45] and Krukow in [138] have provided a list of these inadequacies
and their reasons:

• Authorisation = Authentication + Access Control List : authentication deals
with establishing identity. In traditional static environments, e.g., operating
systems, the identity of an entity is well known. In Internet and wireless ap-
plications this is often not the case. This means that before an access control
list is to be used some form of authentication must have been performed. In
distributed systems, often public key based authentication protocol are used,
which usually relies on centralised and global certification authorities;

• Delegation: it is necessary for scalability of a distributed system. It enables
decentralisation of administrative tasks. Existing distributed system security
mechanisms usually delegate directly to a certified entity. In such systems,
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policy (or authorisations) may only be specified at the last step in the delegation
chain (the entity enforcing policy), most commonly in the form of an ACL. The
implication is that high level administrative authorities cannot directly specify
overall security policy but they can only certify lower level authorities. This
authorisation structure leads easily to inconsistencies among locally specified
sub-policies;

• Expressibility and Extensibility : a generic security mechanism must be able
to handle new and several conditions and restrictions. The traditional ACL
approach has not provided sufficient expressibility or extensibility. Thus, many
security policy elements that are not directly expressible in ACL form must be
hard coded into applications. This means that changes in security policy often
require reconfiguration, rebuilding, or even rewriting of applications;

• Local trust policy : the number of administrative entities in a distributed system
can be quite large. Each of these entities may have a different trust model for
different users and other entities. For example, system A may trust system B to
authenticate its users correctly, but not system C; on the other hand, system B
may trust system C. It follows that the security mechanism should not enforce
uniform and implicit policies and trust relations.

3.2.2 Access Control Policies

We now discuss some different policies which commonly occur in computer systems:

• classical mandatory policies;
• classical discretionary policies;
• the Bell-LaPadula Model.

We have added the “classical” adjective to the first two items to underline that
mandatory and discretionary policies have been recognised by security researchers
and practitioners for a long time. However, in recent years there is increasing
consensus that there are legitimate policies which have aspects of both of these.
The Bell-LaPadula model is an example of this fact.

Mandatory Access Control Policies

Mandatory Access Control (MAC) refers to a type of access control by which the
operating system constraints the ability of a subject (or user) to access or more
generally to perform some specific operations on an object. A subject is always
a process or a thread, whereas objects are files, directories, memory segments
and so on. Security levels are associated to subjects and objects. The security
level associated with an object reflects the sensitivity of the information contained
in that object, i.e, the potential damage which could result from unauthorised
disclosure of the information. The security level associated with a subject reflects
the subject’s trustworthiness not to disclose sensitive information to unauthorised
subjects. In the simplest case, the security level is an element of a hierarchical
ordered set. A dominion relation is established among the elements of the set,
according to the chosen order relation. For example, if the order relation is ≥ then
we say that a level l dominate a level l′ if l ≥ l′.
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Any operation by any subject on any object is tested against the policy, in order
to decide if the security requirements are enough to allow the operation. The policy
is the set of authorisation rules enforced by the operating system, Thus, whenever
a subject attempts to access an object, an authorisation rule examines the policy
and decides whether to grant the access or not. In particular, the following two
principles are required to hold:

• Read down: a subject’s security level must dominate the security level of the
object being read, according to the order relation of the hierarchical set;

• Write up: a subject’s security level must be dominated by the security level of
the object being written, according to the order relation of the hierarchical set.

Satisfaction of these principles ensures secrecy, because it prevents more sensitive
information, that is those contained in high level objects, to flow to objects at
lower levels.

Mandatory access control can as well be applied for the protection of informa-
tion integrity. The integrity level associated with an object reflects the degree of
trustworthiness that can be placed in the information stored in the object, and the
potential damage that could result from unauthorised modification of the informa-
tion. The integrity level associated with a user indicates the user’s trustworthiness
for inserting, modifying or deleting data and programs at that level. Similarly to
secrecy, for integrity the following principles are required:

• Read up: a subject’s integrity level must be dominated by the integrity level of
the object being read, according to the order relation of the hierarchical set,

• Write down: a subject’s integrity level must dominate the integrity level of the
object being written, according to the order relation of the hierarchical set.

Satisfaction of these principles safeguard integrity by preventing less reliable in-
formation, i.e. stored in low objects, to flow to high objects.

With mandatory access control, the security policy is centralised and it is
directly controlled by a security policy administrator. Users do not have the possi-
bility to override the policy and, for example, grant access to resources otherwise
restricted. Then there is a central policy to be enforced for all users.

Discretionary Access Control Policies

Similarly to mandatory policies, Discretionary Access Control (DAC) policies gov-
ern the access of users to the information on the basis of the user’s identity and
authorisations. For each subject and each object in the system, the authorisations
specify the access modes, e.g., read, write, or execute, that the subject can per-
form on the object. Each request of a subject to access an object is checked against
these authorisations.

Even if both discretionary and mandatory access control govern the ability
of subjects to access objects, on the contrary on mandatory, discretionary access
control allows users the possibility to make policy decision or assign security levels.
Let us consider a system in which user can create objects. Thus in DAC systems
the individual user may, at his own discretion, determine who is authorised to
access the objects he creates. Instead, in MAC systems, the creator of an object,
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if he is not the central authority, does not have the ability to determine who has
authorised access to it.

If on the one hand the flexibility of discretionary policies makes them suitable
for a variety of systems and applications, on the other hand they do not provide
real assurance on the flow of information in a system. For example, a subject who
is able to read data can pass it to other subjects not authorised to read it. The
reason is that discretionary policies do not impose any restriction on the usage of
information, that is dissemination of information is not controlled. By contrast, as
we stated above, dissemination of information is controlled in mandatory systems.

Discretionary access control policies can be classified into closed, when default
decision of the reference monitor is permission, and in open, when decision could
also be applied by specifying denials instead of permissions. In this last case, each
access request by a user is checked against the specified negative authorisations
and it is granted only if no authorisation denying the access exists.

The Bell-LaPadula Model

The earliest security policy model was proposed by Bell and LaPadula in the
Bell-LaPadula Model [28], also known as Multi-Level Security. The Bell-LaPadula
model focuses on data confidentiality and restricted access to classified informa-
tion, in contrast to the Biba Integrity Model [40], a formal state transition system
of computer security policy that describes a set of access control rules designed to
ensure data integrity.

The Bell-LaPadula model is a state machine model initially developed to en-
force access control in government and military applications. As usual, the entities
of an information system are divided into subjects and objects. It describes a set
of access control rules which use security levels on objects and subjects, called
security labels for the former and clearances for the latter. Security levels range
from the most sensitive (e.g.“Top Secret”), down to the least sensitive (e.g., “Un-
classified” or “Public”), expressed in terms of a lattice.

In the model it is defined a notion of a secure state and it is proven that
each state transition preserves security by moving from secure state to secure
state, inductively proving that the system satisfies the security goals of the model.
The transition from one state to another state is defined by transition functions.
A system state is defined secure when it allows access modality of subjects to
objects only according to a security policy. To determine whether a specific access
modality is allowed, the clearance of a subject is compared to the security labels of
the object to determine if the subject is authorised for the specific access modality.
The model defines two MAC rules and one DAC rule with three security properties:

1. The Simple Security Property : a subject at a given security level may not read
an object at a higher security level (also known as no read-up);

2. The ?-property : a subject at a given security level must not write to any object
at a lower security level (also known as no write-down);

3. The Discretionary Security Property : it uses of an access matrix to specify the
discretionary access control.

Among the limitations of this model, we can remember that it is restricted to
confidentiality and it does not provide for policies for changing access rights. Indeed
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it is oriented to systems with static security levels. Moreover, a low subject can
detect the existence of high objects when it is denied access. This is the so called
covert channel, that is a means by which two components of a system that are not
permitted to communicate do so anyway by affecting a shared resource. Finally, an
information hiding can happen: two components of the system that are permitted
to communicate about one set of things, exchange information about disallowed
topics by encoding contraband information in the legitimate traffic.

3.2.3 Administration of Access Control

According to [207], we can have a classification of the policies based on their admin-
istration, that is who is authorised to modify allowed access. When we described
mandatory and discretionary policies, we stated that the first one is controlled
by a security administrator, who is the only one who can change security levels
to subjects or objects. Instead, in discretionary policies, the individual user may,
at his own discretion, determine who is authorised to access the objects he has
created. This allows a wide range of administrative policies:

• Centralised : a single entity or a group is allowed to grant and revoke authori-
sations to the users. This is the case of mandatory policies;

• Hierarchical : according to a hierarchy, a central authority is responsible for
assigning administrative responsibilities to other administrators. The admin-
istrators can then grant and revoke access authorisations to the users of the
system;

• Cooperative: authorisations on resources need the cooperation of several au-
thorities;

• Ownership: the individual user is the owner of the resources he has created.
Thus, at his own discretion, he can determine who is authorised to access these
objects, as for discretionary policies;

• Decentralised : the owner of an object can also grant other users the privilege
of administering authorisations on it.

In many distributed systems, and in wireless networks, centralised administration
of access rights is infeasible both because the large number of users and because
their specific features (i.e. ad hoc networks). All the other requirements are basilar
in these systems, as delegation, cooperation, and so on, but very often existing
access control do not implement them. Moreover, in the access control mechanisms
described in previous sections, the operations considered are elementary such as
read, write and execute. Modern applications make demands for more complex
actions.

All previous access control mechanisms were originally designed for wired sys-
tems. Wireless networks use a shared medium and therefore access control methods
used in wired networks are not suitable for them. An additional challenge in wire-
less networks is that the user can appear anywhere in the network thus policies
for controlled networks access becomes essential. Network security that relies on
physical constraints is no longer effective.

Access control mechanisms operate at a number of levels in a system, from
the physical to the application layer. These systems are vulnerable to environmen-
tal changes that make invalid assumptions in their design. The dynamic nature
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of ubiquitous networking is the most challenging aspect of access control design.
Traditional access control mechanisms are not suitable to the ubiquitous and open
environment where the number and identities of users are not known in advance.
The number of users is extremely large and their behaviour is difficult to predict,
so the risks for service providers change dramatically in such circumstances. It be-
comes impossible for an administrator to analyse system logs and adapt security
policies to the actual situation. Thus a mechanism should be developed to provide
access control to resources and to automated management of access policies. Al-
though progress has been made, much remains to be done. The concept of trust
seems to represent a promising basis for such a direction, as we describe in the
next sections.

3.3 Trust in Wireless Systems

As we explained in Section 2.4, security can generally be defined as the quality or
state of being secure - to be free from danger. In particular, the term information
security is referred to the protection of information. It is commonly defined as the
preservation of the CIA properties, that is confidentiality, integrity and availability
of information. It is often assumed that the owner of information has an interest in
keeping them free from danger, and in preserving their CIA properties. However,
in many situations it is necessary a protection from harmful information and from
those who offer services, so that the problem is reversed. Traditional security so-
lutions are totally inadequate for protecting against for example deceitful service
providers that give false or misleading information.

When designing communication systems, it is essentially to include more strict
security requirements and not only those related to the CIA properties. In partic-
ular, in wireless networks the situation is very complicated.

In [131] Jøsang has distinguished between hard security and soft security . Hard
security is referred to the traditional information security mechanisms, like au-
thentication and access control, whereas soft security indicates the so called social
control mechanisms. In Section 3.2 we described some traditional access control
security mechanisms. Cryptographic algorithms and firewalls are other examples
of hard security mechanisms, and they have the general property of allowing com-
plete access or no access at all. Hard security also assumes complete certainty. It
is clear how these strong assumptions cannot meet the features of wireless net-
works. In contrast to traditional information security where security policies are
often explicitly defined for a specific security domain by a security manager, soft
security is based on an implicit security policy collaboratively emerging from the
whole community. In [131] soft security is defined as the collaborative adherence
to common ethical norms by participants in a community and the collaborative
enforcement of them. Among these mechanisms, we can find the ones that take
into consideration the concept of trustworthiness.

Current security technology offers us with some capability to build in a certain
level of security into our communication, i.e. cryptographic algorithms for privacy
and digital signatures, authentication protocols for proving authenticity and access
control methods for managing authorisation and so on. In Section 3.2 we explained



40 3 Security Mechanisms

why security solutions devised for wired networks cannot be used to protect the
wireless systems, focusing on access control mechanisms. In particular, these meth-
ods cannot manage the more general concept of trustworthiness, that is essential
in open and distributed environments as wireless settings. Indeed current security
technology is lacking the complementary tool for managing trust effectively; for
this reason there is rapidly growing literature on the theory and applications of
alternative systems based on the concept of trustworthiness. While the goal of
traditional information security is to preserve the CIA properties, the goal of soft
security mechanisms is to stimulate the quality of a specific community in terms
of the ethical behaviour and the integrity of its members. What constitutes ethical
norms within a community will be dynamically defined by certain key entities in
conjunction with the user. Soft security mechanisms make it possible to identify
and punish bad members of a community, that is those participants who do not
respect the norms, and to recognise and reward good members, that is who adhere
to the norms.

3.3.1 Trust vs Security

According to Buttyán and Hubaux [57], trust and security are two tightly cou-
pled concepts that cannot be desegregated. For example, cryptography is a means
to implement security but it is highly dependent on trusted key exchange. Simi-
larly, trusted key exchange cannot take place without requisite security services in
place. It is because of this inter-reliance that often both of these terms are used
interchangeably when defining a secure system.

In a first approximation, trust can be defined as the belief that another party
(a person, an organisation, but also a device) will behave according to a set of well
established rules and will thus meet one’s expectations. This notion is fundamental
in all human societies (and also in many animal groups); generally, a breach of
trust is considered to be a major offence. But trust is a fuzzy and abstract notion,
because it considered across persons or across areas of competence: no matter how
close they are to each other, different people may trust very different things, even
in front of the same evidence. Likewise, a person A may trust a person B for the
accomplishment of a certain task, but not another.

Buttyán and Hubaux in [57] have collocated trust with respect to security and
cooperation:

• Trust preexists security : trust is a natural phenomenon, and it has existed for
millennia, before any concept of security was invented. Security is simply a
technique to infer trust: if A trusts something, security can help A trusting
something else. For example, if A trusts that a personal computer is not com-
promised and that the security protocols and the cryptographic algorithms
it uses are not flawed, then A will carry out e-banking transactions with the
legitimate belief that they are safe. It should be clear from this simple exam-
ple that any security mechanism requires some level of trust in its underlying
components;

• Cooperation reinforces trust : in the informal definition that we have provided,
trust is about the ability to predict the behaviour of another party. A reasonable
assumption is the selfishness of the parties in a system. Therefore, if a system
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is designed in such a way that the socially desirable behaviour coincides with
a party’s interest, then it is likely that the party will indeed behave as desired.
Hence there is the possibility of a virtuous cycle, because if an observer B
notices a cooperative behaviour of A, B could believe that A will continue to
be cooperative in the future. Thus the trust of B in A will increase. This also
encourages B to be cooperative, which will reinforce the trust that A has in
B, and so on.

Because of the complex features of trust, and as it is very deeply rooted in the
human nature, trust is difficult to quantify and to model. It is in fact easier to
describe the reasons to trust someone or something, which are the following, ac-
cording to [57]:

• Moral values: any society has its rules, and in many cases it is assumed that
other parties obey these rules, typically because of their education or because
they fear bad publicity. In any case their misbehaviour should be disclosed. So
for example, we trust a large cellular operator to protect our privacy as long as
there is no strong reason (e.g., a legal enquiry) to depart from that attitude;

• Experience about a given party : previous interactions are of course revealing
about the trustworthiness of a given party. These interactions can be either
first hand (direct) or be reported by other parties (indirect), meaning that
reputation is a fundamental component of trust;

• Rule enforcement organisation and mechanism: if the risks are high, the obe-
dience to the rules is further encouraged by a specialised agency. For example,
the way cellular operators use the radio spectrum is usually regulated by a
governmental agency or the way mobile users make use of the radio spectrum
is usually controlled by the operator. Moreover, technical mechanisms must
be deployed to either make attacks more difficult or to encourage the desired
behaviour;

• Usual behaviour : although malicious behaviour refers to poorly understood
psycho-logical mechanisms, it is possible to consider that one behaviour is much
more frequent than another. For example, network users will often keep trying
to set up a communication in spite of the fact that the network is congested, but
very few will make the effort to jam a given area simply to enjoy complicating
other peoples life.

3.3.2 Trust and Reputation

The concepts of trust and reputation are closely related and they are firmly routed
in sociology and psychology. Although there is no universal definition for these con-
cepts, due their rich connection with different disciplines, we focus on computing-
oriented definitions.

Trust is a binary directional relationship between two parties, called trustor
and trustee. In general, the trustor is the subject that trusts an entity or a service,
and the trustee is the entity that is trusted. Trust enables a trustor to reduce
uncertainty in its future interactions with a trustee, whose actions may affect the
state of the trustor. Trust relations may be revoked on the basis of newly obtained
evidence.
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The term trust has been used with a variety of meanings [161]. The definition
of trust adopted by Gambetta in [88] is often referred as reliability trust and it is
defined as the belief or subjective possibility by which an individual A expects that
another individual B performs a given action on which the welfare of A depends.
The author introduces the dependency of trust from the context, meaning that
a trust relationship has a scope, as it applies to a specific purpose or domain of
actions. In these terms, trust may be viewed as a quantitative value, that is a
quantifiable relation between two entities. According to Grandison [102], trust is
the quantified belief by a trustor with respect to the competence, honesty, security
and dependability of a trustee, within a specified context. In [155], trust implies a
risk of some sort and it is strongly linked to confidence and context. In [37] it is
introduced a formal representation of trust relationships and a way to dynamic
trust evaluation. In [132] the authors distinguish between functional and referral
trust, and between direct and indirect trust. Functional trust is the belief in an
entity’s ability and willingness to carry out or support a specific function on which
the relying party depends. Referall trust is the belief in an entity’s ability to rec-
ommend another entity with respect to functional trust. A direct trust relation
occurs when the trustor trusts the trustee directly, without relying on intermedi-
ates. An indirect trust relation occurs when the trustor trusts a trustee based on
one or more opinions from third parties.

Reputation is defined as the opinion held by the trustor towards the trustee,
based both on its past experience and recommendations of other trustees. A rec-
ommendation is simply an attempt at communicating a party’s reputation from
one community context to another. Reputation is an important concept for the
trust evaluation, but it is often confused with trust. Social network researchers
deal with reputation as a quantity derived from the implicit social network which
is globally visible to all members of the network. The difference between trust and
reputation can be illustrated by the following statements:

a) I trust you because of your good reputation;
b) I trust you despite your bad reputation.

Assuming that the two sentences relate to the same trust scope, statement a)
reflects that the relying party is informed of the trustee’s reputation and bases
his trust on that. Statement b) reflects that the relying party has some private
knowledge about the trustee, e.g. through direct experience or intimate relation,
and that these factors replace any (negative) reputation that a person might have.
This observation reflects that trust is a personal and subjective phenomenon that
is based on various factors or evidence, and that some of those have more weight
than others. Personal experience typically carries more weight than second hand
trust referrals or reputation, but in the absence of personal experience, trust often
has to be based on recommendation from others. An individual’s subjective trust
can be derived from a combination of received recommendations and personal
experience.

Trust represents an active and decisive concept: if one entity trusts another
entity then, the latter is allowed to perform certain actions. Reputation may serve
as a source of trust; however, it does not directly define allowed actions. Trust is
subjective, while reputation is also subjective but is not based on personal observa-
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tions. Reputation usually comes from the context and it does not reflect personal
experience of the interested party. As for trust, there are several possible definitions
of reputation. For instance, in [7] reputation is defined as an expectation about an
individual’s behaviour based on observations of its past behaviour. In [134] rep-
utation is proposed as a meaning of building trust; one entity can trust another
entity based on its good reputation.

We can summarise the features of trust as follows:

• trust is not symmetric: if a user A trusts another user B, it does not mean that
B trusts user A;

• trust is not distributive: if a user A trusts users B and C in pair, the statement
“A trusts B and A trusts C” separately is not true;

• trust is not transitive: if a user A trusts a user B and B trusts a user C, it
does not follow that A trusts user C.

3.4 Trust Management Systems

Trust management and trustworthy computing are becoming increasingly signifi-
cant in a distributed environment, since they assist the systems in making sensible
interactions with unknown parties by providing a basis for more detailed and au-
tomated decisions [203].

Multi-agent systems often use access control mechanisms to manage shared
resources. The problem of access control can be splitted in two subproblems: (i)
determining whether or not a request should be allowed, and (ii) enforcing the
decision. Trust management systems solve the first subproblem by defining lan-
guages for expressing authorisations and access control policies, and by providing
a trust management engine for determining when a particular request is autho-
rised. Traditional access control mechanisms are centralised and operate under a
closed world assumption in which all of the parties are known. Trust management
systems generalise access control mechanisms by operating in distributed systems
and eliminating the closed world assumption. Over the last years, a number of
trust management systems have been developed, some focusing on authentica-
tion [225, 231, 239], others for specialised purposes [25, 63, 113], others for general
purpose authorisation [43,46,74], and others based on logics [5, 15,145].

An enlightening formalisation of trust management systems has been proposed
by Weeks in [230]. In this paper the author has introduced a mathematical frame-
work for expressing trust management systems. The framework helps in under-
standing a number of existing systems, making a comparison among them. Accord-
ing to the framework in [230], trust management systems are usually composed by
the following components: (i) evidence manager, to collect and classify evidence,
(ii) mathematical model, to formulate evidence into opinion, and then to use that
opinion to predict the result of future interactions, and (iii) policy manager, that
collaborates with the evidence manager and the mathematical model in defining
policies for making decisions and granting authorisations to users. The semantics
of the policy manager is then defined via a least fixpoint in a lattice. The trust
management framework proposed in [230] is monotonic, in the sense that autho-
risations granted to a user can only increase. To demonstrate the flexibility of
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this framework, the author reformulated the systems KeyNote [43] and SPKI [74]
using his framework. The definition of the semantics via the least fixpoint also
makes it clear that the framework cannot handle revocation. There are some other
aspects of trust management systems that do not fit well within this framework.
One example is REFEREE [63], in which the trust management engine directly
interprets policies and credentials, without finding a fixpoint meaning.

In traditional trust management systems, as those mentioned above, decisions
are based on the credentials presented by user. However, more generally, trust
management systems can be classified into credential-based and behaviour-based
systems. In credential-based systems peers use certificates in order to establish
trust with other peers. Their trust management is limited to verifying credentials
and restricting access to resources according to the application of defined poli-
cies. When a peer requests an access to a resource, the resource owner provides
access only if it can verify the credentials of the requesting peer. These systems
are used when there is an implicit trust in the resource owner by the requesting
peers. They do not incorporate the need of the requesting peer to establish trust
on the resource owner. For these reasons they are a good solution for decentralised
systems. One of the first implementations of a credential-based management sys-
tem was PolicyMaker [45, 47, 48]. KeyNote [44] appeared as an improvement of
PolicyMaker and REFEREE [63] as a trust management system for web services.

Behaviour-based systems are often called experience-based as in these models
an entity A trusts another entity B based on its experience on B’s past behaviour.
These systems heavily relies on the concept of reputation. One of the first attempts
to build a reputation-based trust management systems for e-commerce was SPO-
RAS [237]. REGRET [205] is a reputation-based model developed in the context
of multi-agents. Based on beliefs, Jøsang proposed a subjective logic [135] in order
to derive reputation values. Other reputation systems use probabilistic methods
such as the Beta function [133].

The main differences between credential and reputation systems can be sum-
marises as follows: the former ones produce a score that reflects the relying party’s
subjective view of an entity’s trustworthiness, whereas reputation systems produce
an entity’s (public) reputation score as seen by the whole community. Secondly,
transitivity of trust paths and networks is an explicit component in credential sys-
tems, whereas reputation systems usually do not take transitivity into account,
or only in an implicit way. Finally, trust systems take subjective expressions of
(reliability) trust about other entities as input, whereas reputation systems take
ratings about specific (and objective) events as input.

In the following we give brief description of some of the credential-based and
behaviour-based trust systems cited above.

Credential-based TMSs

PolicyMaker and KeyNote

Blaze et al. [45, 46] have developed the traditional notion of trust management
based on the compliance checking problem: “Does a set C of credentials prove
that a request r complies with a local security policy σ?”. The same authors in
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the same papers have also developed a first prototype trust management system
called PolicyMaker.

The most general form of proof of compliance in PolicyMaker is undecidable
and several natural restrictions are NP hard. PolicyMaker considers a version of the
proof of compliance problem which requires that all assertions are monotonic (as-
sertions are fully programmable functions that are part of credentials). This leads
to a restricted notion of proof of compliance which is decidable in polynomial time.
KeyNote [44], the successor of PolicyMaker, restricts the language of assertions to
a simple domain specific language so that resource usage is proportional to pro-
gram size. KeyNote is less general than PolicyMaker but has simpler syntax and
semantics, and requires less computational power. Architectural tradeoffs between
Policy Maker and KeyNote is considered in [45].

The RT Family

The Rôle-based Trust management (RT) framework is a family of languages for
policies and credentials which combines the strengths of rôle-based access con-
trol [79, 206] and trust management. It was developed by Li, Mitchell and Wins-
borough in [146, 147]. The RT framework consists of languages together with an
engine which works by translating credentials into Datalog rules. This enables
proof of compliance checking in polynomial time. RT supports concepts of inter-
section rôles, manifold rôles and delegation of rôle activation; these enhance the
expressive power, compared to other frameworks. Furthermore, RT supports dis-
tributed credentials and distributed credential discovery and it is considered to be
the state of the art for credential based trust management systems.

Behaviour-based TMSs

Bayesian Systems

Jøsang and Ismail [133] and Mui, Mohtashemi and Halberstadt [176] were among
the first authors in developing reputation systems based on a Bayesian probabilistic
approach with beta priors. Bayesian systems take binary ratings as input, i.e.
positive or negative, and are based on computing reputation scores by statistical
updating of beta probability density functions (PDF). The a posteriori, i.e. the
updated, reputation score is computed by combining the a priori, i.e. previous,
reputation score with the new rating. The reputation score can be represented
in the form of the beta PDF parameter tuple (α, β), where α and β represent
the amount of positive and negative ratings respectively, or in the form of the
probability expectation value of the beta PDF, and optionally accompanied with
the variance or a confidence parameter. The advantage of Bayesian systems is that
they provide a theoretically sound basis for computing reputation scores, and the
only disadvantage that it might be too complex to understand.

Belief Models

Belief theory is a framework related to probability theory, but where the sum
of probabilities over all possible outcomes not necessarily add up to 1, and the
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remaining probability is interpreted as uncertainty. Jøsang [130] has proposed a
belief/trust metric called opinion denoted by ωAx = (b, d, u, a), which expresses
the relying party A’s belief in the truth of statement x. Here b, d, and u represent
belief, disbelief and uncertainty respectively where b, d, u ∈ [0, 1] and b+d+u = 1.
The parameter a ∈ [0, 1], which is called the relative atomicity, represents the base
rate probability in the absence of evidence, and is used for computing an opinion’s
probability expectation value E(ωAx ) = b + au, meaning that a determines how
uncertainty shall contribute to E(ωAx ). When the statement x for example says
“David is honest and reliable”, then the opinion can be interpreted as reliability
trust in David. As an example, let us assume that Alice needs to get her car
serviced, and that she asks Bob to recommend a good car mechanic. When Bob
recommends David, Alice would like to get a second opinion, so she asks Claire for
her opinion about David. When trust and trust referrals are expressed as opinions,
each transitive trust path Alice−→ Bob−→David, and Alice−→ Claire−→David
can be computed with the discounting operator, where the idea is that the referrals
from Bob and Claire are discounted as a function Alice’s trust in Bob and Claire
respectively. Finally the two paths can be combined using the consensus operator.

The Trust Structure Frameworks

Carbone, Nielsen and Sassone [58] have defined the trust structure framework, a
formal model for trust based on the work of Weeks [230], but focusing on in-
formation rather than authorisation. They have a set D of trust values, built
through a particular operator on a complete lattice. A trust structure is a triple
T = (D,�,v), where � is the trust ordering and v is the information ordering.
These partial orderings are used to built complete lattices on D.

The goal of the framework is to define, given a set of principals P and a trust
structure T , a unique global trust state, gts, to represent every principal’s trust
in every other principal. Mathematically, the computation is very similar to that
proposed by Weeks. Principals define their trust policies, a sort of “web of trust”,
and by means of them each local policy makes reference to other principals’ local
policies using mutual recursion. Global trust is the function determined collectively
by the web of policies. This amounts to say that gts is the least fixpoint of the
universal set of local policies.

The framework presented in [58] described above could be considered as an “hy-
brid” model, not really a credential ones, although it may be instantiated to obtain
certain credential-based systems, and on the other hand, not really an experience-
based model, although it may be instantiated to certain simple experience-based
system. Nielsen and Krukow in [182] have started with the trust model in [58] and
have added probabilities. They have explicitly model risk, e.g. the expected cost of
an interaction, as well as trust. Each interaction is modelled as having a set of pos-
sible outcomes. Thus they have explicitly consider a structure, Out, modelling the
possible outcomes. The risk of each outcome depends on the probability of the out-
come when interacting with a principal, and on the intrinsic cost or benefit of the
outcome. Costs are represented by probability density functions on some range of
cost values. The main contribution is the discovery that the notion of event struc-
tures, well studied in the theory of concurrency, can faithfully model the important
concepts of observation and outcomes of interactions. In this setting, observations
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are events and an outcome of an interaction is a maximal set of consistent events,
representing the past evidence for that particular outcome. They consider a trust
structure T = (D,�,v) where D has the general form D = Out −→ Ev where
Ev represents evidence. Further, they have presented a general procedure to con-
vert trust values into probabilities of outcomes. Krukow, Nielsen and Sassone [140]
have proposed an alternative way of recording behavioural information. They have
presented a logical policy-based framework for reputation systems in which prin-
cipals specify policies which state precise requirements on the past behaviour of
other principals that must be fulfilled in order for interaction to take place. The
framework consists of a formal model of behaviour, based on event structures, a
declarative logical language for specifying properties of past behaviour and effi-
cient dynamic algorithms for checking whether a particular behaviour satisfies a
property from the language.

3.4.1 Trust Management Systems for MANETs

We explained that the activities of MANETs highly depend on the distributed
cooperation among nodes and, at the same time, they are susceptible to node mis-
behaviour. Thus the establishment of trust relationships within the network could
serve as the basis for higher level security solutions. However, the specific fea-
tures of MANETs pose challenges for the trust management area. We can think of
constrained energy, memory, computation, communication capabilities, the wire-
less nature of communications, the dynamically changing topology and the lack
of fixed infrastructure. There are a number of consequences: each node needs to
manage trust relationships with other nodes individually, connectivity cannot be
assured, and thus stable hierarchies of trust relations cannot be supported, trust
establishment needs to support evidence that may be uncertain and incomplete.
Moreover, node misbehaviour can affect not only network operations but also the
trust evaluation framework itself.

For all these considerations, trust establishment protocols for MANETs should:

• be decentralised and not based on online trusted parties. Instead, they should
support distributed, cooperative evaluation, based on uncertain evidence;

• support and exploit the diversity in the roles and the capabilities of the nodes
in the deployments by allowing for flexibility in the trust establishment process;

• support trust revocation in a controlled manner;
• scale to large deployments, be flexible to membership changes and entail ac-

ceptable resource consumption.

In Section 2.5 we reasoned how mobility in MANETs has impact on security. It has
also impact on the trust establishment process. It introduces issues related to user
credentials management, indirect trust establishment and mutual authentication
between previously unknown and untrusted entities. For example, in cellular net-
work access providers and service providers may trust each other on contractual
basis. In such a way a user may connect to a network managed by an author-
ity with which he has not established direct trust. Since trust relations are not
transitive, special trust infrastructures and mechanisms are required to establish
indirect trust between a roaming user and a visited network. In a mobile network,
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it is critical to know what entities can access what resources, from where and
when. A user is often served by an entity that is not his identity provider and
trust establishment between a user and a service provider becomes a necessity.
Trust management represents a complex process of entities recognising, defini-
tion of privileges and restriction for them and access granting according to these
privileges. In daily communications, interaction with multiple identity and service
providers becomes an important part of trust management. All parties involved
must have specific trust relationships. Entities verifying trust information often
do not have direct means to estimate trustworthiness of the corresponding entity.
Thus trust models must take into consideration also the conditions in which a
party can trust other parties.

Credential-based trust management systems for MANETs aim at defining
mechanisms for pre-deployment knowledge on the trust relationships within the
network, usually represented by certificates, to be spread, maintained and man-
aged either independently or cooperatively by the nodes. Trust decisions are mainly
based on the provision of a valid certificate which proves that the target node is
considered trusted either by a certification authority or by other nodes that the
issuer trusts. It is generally outside the scope of certificate-based frameworks to
evaluate the behaviour of nodes and base trust decisions on that evaluation.

In behaviour-based trust management systems for MANETs, each node per-
forms trust evaluation based on continuous monitoring of the behaviour of its
neighbours, in order to evaluate how cooperative they are. Although a mechanism
that determines the identities of the other nodes is usually assumed to exist, it
is generally outside the scope of behaviour-based trust establishment models to
securely authenticate other nodes and to determine whether they are legitimate
members of the network. In that sense, behaviour-based models are more reactive
than certificate-based models. As an example, if a node makes unauthorised use
of the network and behaves selfishly or maliciously, it will not manage to gain or
retain a trust level that will allow it to cooperate with other nodes, and it will be
thus isolated. Trust is evaluated both independently, by each node, based on ob-
servations and statistical data that is continuously accumulated by monitoring the
network traffic, and cooperatively through sharing recommendations and spreading
reputation. The main objective of these behaviour-based models is to isolate the
nodes that either act maliciously because they have been compromised, or selfishly
to preserve resources, by assigning and recommending low levels of trust.

Comprehensive surveys of trust management systems for ad hoc networks can
be found in [10,24,201]. In the following we give a brief description of two of these
frameworks.

Trust Establishment in Pure Ad-hoc Networks

Pirzada and McDonald [190] have proposed a behavioural model for ad hoc net-
works. They have called pure ad hoc networks those networks that which have
no required centralised infrastructure. In Section 2.2.1 we have called them self-
organised mobile ad hoc networks. Pirzada and McDonald have described a trust
model for finding trustworthy routes in ad hoc networks that is entirely based on
direct trust evaluation. In their model, they have made use of independent trust
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agents that reside on network nodes, each one gathering network traffic informa-
tion in passive mode by applying appropriate taps at different protocol layers. The
information gathered from these events is classified into trust categories, so that
the situational trust TS(i, j, x) for node j according to node i can be computed
using the information of trust category x. Moreover, weights Wi(x) are assigned
according to the utility and importance of each trust category for i. The general
trust is thus computed as the trust that the trustor node i assigns to the trustee
node j based upon all previous transactions in all situations, according to their
significance.

The Directed Graph Approach

A different view on trust evaluation with respect to [190] has been proposed by
Theodorakopoulos and Baras in [223]. They have presented a behavioural trust
model for ad hoc networks which mainly focus on the evaluation of indirect trust as
the combination of opinions from neighbouring nodes, assuming that some mech-
anism exists for these nodes to assign their opinions based on local observations.
The process of indirect trust evaluation is formulated as a shortest path problem
on a weighted directed graph, where graph nodes represent network nodes and
edges represent trust relations. The edges are weighted with the trust value that
the issuer node has on the target node and the confidence value it assigns on its
opinion, depending on the number of the previous interactions and positive direct
evaluations. The theory of semirings is being used for formalising two versions of
the trust inference problem: finding the trust-confidence value that node i should
assign to node j, based on the trust-confidence values of the intermediate nodes,
and finding a sequence of nodes that has the highest aggregate trust value among
all trust paths from i to j.

3.5 Chapter Summary

The purpose of access control is to limit the actions or operations that a legitimate
user of a computer system can perform. Access control constrains what a user can
do directly, as well what programs executing on behalf of the users are allowed to
do. In this way access control seeks to prevent activity which could lead to breach
of security. Traditional access control mechanisms do not work well with wireless
systems. A more suitable approach is represented by trust management systems.

In this chapter we described the main features of access control and we analysed
some traditional access control mechanisms and policies. Traditional access control
mechanisms are classified as hard security, as well as cryptographic algorithms and
firewalls. They have the general property of allowing complete access or no access
at all. Hard security also assumes complete certainty. It is clear how these strong
assumptions cannot meet the features of wireless networks. More soft security
mechanisms are necessary. While the goal of traditional information security is to
preserve the CIA properties, the goal of soft security mechanisms is to stimulate the
quality of a specific community in terms of the ethical behaviour and the integrity
of its members. Trust management approaches are mechanisms of this kind. Then
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we introduce the concept of trust and we describe some trust management systems.
In the next chapter we deal with process calculi.



4

Process Calculi

4.1 Introduction

Process algebra is an active area of research in concurrency theory, the theory
of parallel and distributed systems in computer science. It has been developed
during the early seventies of the twentieth century. Baeten in [17] have addresses
the history of this research area. Until that moment, the only part of concurrency
theory that existed was the theory of Petri nets, proposed by Petri in his Ph.D.
thesis in 1962 [189].

The term process algebra is used in different meanings. The word “process”
refers to the behaviour of a system. A system is anything showing behaviour, in
particular the execution of a software system, the actions of a machine or even the
actions of a human being. Behaviour is the total of events or actions that a system
can perform, the order in which they can be executed and maybe other aspects
of this execution, such as timing or probabilities. We always describe only some
aspects of behaviour; we can say that we have only an observation, and an action
is the chosen unit of observation.

The word “algebra” denotes that we take an algebraic/axiomatic approach in
talking about behaviour. If we consider the definition of a group in mathematical
algebra, we can say that a group is any mathematical structure with operators
satisfying the group axioms. In other words, a group is any model of the equational
theory of groups. Likewise, we can say that a process algebra is any mathematical
structure satisfying the axioms given for the basic operators. An element of a
process algebra is a process. By using axioms, it is possible to perform calculations
with processes.

The term process calculus, used for the first time by Milner in [169], denotes
an approach largely algebraic, but which may also include the use of logic or other
mathematical disciplines.

The simplest model of behaviour is to consider it as an input/output function.
We can observe a value, the input, given at the beginning of the process, and then
at some moment we can observe another value (or the same) as outcome or output.
This model has been the basis in the development of finite state automata theory.
In automata theory, a process is modeled as an automaton. An automaton has
a number of states, some are initial states, other ones final states, and a number
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of transitions from one state to another one. A transition denotes the execution
of a basic action, that constitutes the basic unit of behaviour. A run is a path
from an initial state to a final state, a behaviour is the set of executions from the
initial state to a final state. Two automata can be compared, that is it is possible
to establish if they are equal. This is expressed by a notion of equivalence. On
automata, the basic notion of equivalence is language equivalence, based on the
algebra of regular expressions.

During the years, studying more complex and dynamic systems, the automaton
model was found to be incomplete. Basically, the notion of interaction between
systems is not considered. The description of parallel or distributed systems, or so-
called reactive systems, is based on this notion of interaction: during the execution
from initial state to final state, a system may interact with another system. The
theory behind reactive systems is the concurrency theory and process calculus was
developed as as an approach to concurrency theory.

A process calculus is characterised by a syntax, a formal semantics, and be-
havioural relations. The syntax describes the structure of the terms (processes) of
the calculus and it is is defined inductively. The semantics gives reasoning about
the system dynamics. We can distinguish between operational, denotational and
axiomatic semantics. Finally, behavioural equivalences allow to establish when two
processes have the same observable behaviour, that is they are indistinguishable
for an observer. The foundational process calculi, as CCS [168,169], CSP [56,117],
ACP [30,31], π-calculus [171], take point-to-point communication as primitive.

Important developments have occurred since the formulation of these basic
process calculi. One important aspect to be taken into consideration is time. There
may be good reasons to introduce time in such a way that suitable timing becomes
relevant for the correct behaviour of a complex system, or because for certain
protocols depends on the timing of certain actions or simply to pay attention to
performance aspects of a system.

Process calculi that incorporate some form of timing have been studied ex-
tensively by now. According to purposes and applications, different versions of
describing timing have been presented in the literature [18–20,23,111,175,195,199].

Developed with the goal of providing very general process models, most spe-
cialised calculi are derived from their seminal ideas. It seemed that point-to-point
fashion led to complicated and sometimes little intuitive encodings when dealing
with more modern systems. In the recent years, a particular attention has been
addressed to the development of process calculi and observational theories to ob-
tain a formal foundation of the modelling and analysis of wireless communications.
Specific aspects of wireless communications must be taken into account in these
new process calculi: local broadcasting, the presence of obstacles that disables the
reception, the possibility of interferences and collisions, and node mobility. These
aspects have been taken into account in calculi as [77,92,94,95,163,167,178,214].

The present chapter is organised as follows. In Section 4.2 we present an
overview of foundational process calculi, in Section 4.3 we deal with timed pro-
cess calculi, whereas in Section 4.4 we describe some recent calculi for wireless
networks. Finally, in Section 4.5 we give a summary of the chapter.
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4.2 Foundational Process Calculi

Process algebra can be defined as the study of the behaviour of parallel or dis-
tributed systems by algebraic means. Besides parallel composition to describe a
system, process algebra can usually also provide alternative composition (choice)
and sequential composition (sequencing). Moreover, we can reason about such
systems using algebra, i.e. equational reasoning. By means of this equational rea-
soning, we can do verification, i.e. establishing whether a system satisfies certain
properties.

Among the basic laws on operators of process algebra, we can distinguish be-
tween the following:

• static laws, also called structural laws, that do not involve actions but list some
general properties of the operators involved, such as commutativity, associa-
tivity, distributivity, and so on;

• dynamic laws, that involve action executions directly. For instance, there is
no static law connecting parallel composition to the other operators. Such a
connection is at the heart of process algebra, and it makes calculation possible.
In most process algebras, this law allows to express parallel composition in
terms of the other operators, and is called the expansion theorem. This theorem
is an example of dynamic law. Process algebras with an expansion theorem are
called interleaving process algebras, those without are called partial order or
true concurrency.

Milner in [169] has made a distinction between process calculus and process al-
gebra, considering the first one largely algebraic but where also other mathematical
disciplines can be used.

Typically, there are three elements that constitute a process calculus:

1. Syntax: the structure of the terms of a process calculus is defined inductively.
Processes are basic terms of process calculi. The simplest entities are channel
names whose purpose is to provide means of communication. Processes use
them to interact and pass values to one other by referring to them in interac-
tions; moreover values received can be used again in further interactions. When
among values also channel names are passed, we say that it is a name-passing
process calculus, otherwise it is called value-passing process calculus. Processes
evolve performing actions; thus in the syntax the capabilities for action (i.e.
input/output . . . ) are also described. In addition to names, one needs a means
to form new processes: the crucial operators, always present in some form or
other, allow parallel composition of processes, specification of which channels
to use for sending and receiving data, sequentialisation of interactions, hiding
of interaction points, recursion or process replication;

2. Semantics: a formal semantics gives reasoning about the system dynamics.
At the beginning of the studies in concurrency area, we could distinguish three
main styles of formal reasoning about computer programs, focusing on giving
semantics to programming languages:
• Operational semantics: a computer program is modeled as an execution

of an abstract machine. A state of such a machine is a valuation of vari-
ables and a transition between states is an elementary program instruc-
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tion. Pioneer of this field is McCarthy [160]. Operational semantics is usu-
ally expressed in two style: Structural Operational Semantics (SOS) by
Plotkin [191], generating Labelled Transition Systems (LTS), so that states
are closed terms and state transitions are obtained from a collection of in-
ference rules, and the Chemical Abstract Machine (CHAM) [34], giving
the semantics in terms of a set of reduction rules for term rewriting and
a structural congruence to rearrange terms. It can also be taken into ac-
count a binary relation, called reduction relation, explaining how a system
can evolve independently of its environment, whereas the SOS explains not
only activity within the system but also how processes can interact with
their external environment. It is possible to choose only the former or the
latter or both to provide an operational semantics; when both of them are
used, it is necessary to formally prove the correspondence;

• Denotational semantics: it is more abstract than operational semantics, as
computer programs are usually modeled by a function transforming input
into output [210];

• Axiomatic semantics: emphasis is put on proof methods proving whether
programs are correct. Central notions are program assertions, program
statement and postcondition, and invariants. Preliminary works can be
found in [80,115];

3. Behaviour equivalences: a central topic for process calculi is to establish
when two processes have the same observable behaviour, that is when they are
indistinguishable for an external observer. The notion of equivalence studied
for process calculus is usually not language equivalence, as for the automata.
Particular notions of behavioural equivalences are involved. Several notions of
them can be found in literature, sharing some properties:
- two processes are equivalent only if identical interactions are observed to

any environment;
- the equivalence is preserved by some key construct of the calculus.
Bisimulation is an example of behavioural equivalence; intuitively two pro-
cesses P and Q are bisimilar if they match each other’s actions.

The problem to be faced at the beginning of the study in concurrency was
how to give semantics to programs containing parallel operator. It was immedi-
ately clear that the idea of a behaviour as an input/output function needed to be
abandoned. A program could still be modeled as an automaton, but the notion of
language equivalence is no longer appropriate. Moreover, in modelling automata
global variables were used: a state of a system is given as a valuation of the pro-
gram variables, that is, a state is determined by the values of the variables. In
concurrent systems, the independent execution of parallel processes makes diffi-
cult and sometimes impossible to determine the values of global variables at a
given moment. It turns out to be simpler to let each process have its own local
variables, and to denote exchange of information explicitly.

One of the people studying the semantics of parallel programs in the early
seventies was Hans Bekič. Working on the denotational semantics of ALGOL and
PL/I, it arose the problem of how to give a denotational semantics for parallel
composition. In [27] Bekič have proposed a preliminary solution, that is definitely
considered a precursor of the later expansion law of process algebra. In general,
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Bekič has contributed a number of basic ingredients to the emergence of process
algebra.

Before describing the process calculi closely related to wireless networks and
then to process calculi presented in the present thesis, we first give a background
on what may be called “pure” or “foundational” calculi.

CCS

The work of Milner about his process theory CCS has culminated in the publication
of the book [168], that was later updated in [169] with the notion of bisimulation.
In these books we have for the first time in history a complete process algebra,
with a set of equations and a semantical model. Moreover in [169] the author
have used for the first time the expression “process calculus” with the meaning
previously explained. They are presented the basic language and a value-passing
variant of CCS. The CCS provides a static and non-distributed model of processes
with synchronous point-to-point communication. We now give a brief description
of the value-passing CCS, where, with respect to the basic language, the variables
and values to be passed through channels are introduced.

Actions are of the form

α ::= ā(v)
∣∣ a(v)

∣∣ τ

to mean the output of a value v on channel a, the input of a value v on channel a
and the silent action, respectively. Among the processes, we report

P ::= 0
∣∣ α′.P

∣∣ P +Q
∣∣ A

def= P
∣∣ P | Q

∣∣ P\K

where
α′ ::= ā(v)

∣∣ a(x)
∣∣ τ

is the output, input and silent prefix, respectively. Process 0 denotes the terminal
process, α′.P is the prefix process, P +Q is the non-deterministic choice, A def= P
indicates a recursive definition of P , P | Q is the parallel composition of P and Q,
P\K denotes the restriction process, to mean that actions contained in K cannot
be used for interactions with the environment but only for internal communications
in P .

A labelled transition relation over processes is provided as operational seman-
tics of the calculus. Below, we report the rule for the parallel composition, when
both branches interact internally via handshake. The other rules are quite straight-
forward:

ā(v).P1
ā(v)
−−−−→ P1 a(x).P2

a(v)
−−−−→ {v/x}P2

ā(v).P1 | a(x).P2
τ−−→ P1 | {v/x}P2

where {v/x}P2 means the substitution of variable x with value v in P2.
Among the different behavioural relations used for the CCS, we cite the strong

bisimulation, in which each action α of one process must be matched by an action
α of the other, and the weak bisimulation, where the requirement is relaxed and it
is required that each τ action is matched by zero or more τ actions. It is proved
that they are congruence, that is they are preserved under all operators of the
calculus.
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CSP

The works of Hoare et al. [56,117] give a good overview of CSP, that was introduced
some years before in [116] as a value-passing calculus. In processes there is a
distinction between two choice operators:

• Deterministic (or external) choice: it allows the future evolution of a process
to be defined as a choice between two component processes, and allows the
environment to resolve the choice by communicating an initial event for one of
the processes;

• Non-deterministic (or internal) choice: it allows the future evolution of a pro-
cess to be defined as a choice between two component processes, but does not
allow the environment any control over which of the component processes will
be selected.

Moreover, the parallel operator is represented as an interleaving operator to model
completely independent concurrent activity. It does not hide communications and
thus allows any number of processes to participate in the same event.

The operational semantics of CSP is usually expressed in denotational style.
The three major denotational models of CSP are the traces model, the stable fail-
ures model, and the failures/divergences model. Semantic mappings from process
expressions to each of these three models provide the denotational semantics for
CSP. Behavioural reasoning are not based on equivalences but on refinements.
The notion of refinement consists in establishing a relation between components
of a system which captures the fact that the system satisfies at least the same
conditions as another systems. This leads to a more abstract notion, where it is
not required that the implementation and its specification must be indistinguish-
able, as in bisimulation, but it is required only that the observations of a correct
implementation are contained in those of its specification.

ACP

In [29] Bergstra and Klop started the work that led to ACP [30, 31]. In [29] they
have used the phrase “process algebra” for the first time. In the following, we quote
the exact description:

A process algebra over a set of atomic actions A is a structure

A = 〈A,+, ·,T, ai(i ∈ I)〉

where A is a set containing A, the ai are constant symbols corresponding to the
ai ∈ A, and + (union), · (concatenation or composition, left out in the axioms), T
(left merge) satisfy for all x, y, z ∈ A and a ∈ A the following axioms:
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A1 x+ y = y + x

A2 x+ (y + z) = (x+ y) + z

A3 x+ x = x

A4 (xy)z = x(yz)

A5 (x+ y)z = xz + yz

A6 (x+ y) = xTz + yTz

A7 axTy = a(xTy + yTx)

A8 aTy = ay.

Bergstra and Klop have defined a process algebra with alternative, sequential and
parallel composition, but without communication. A model was established based
on projective sequences (a process is given by a sequence of approximations by
finite terms), and in this model, it is established that all recursive equations have
a solution.

π-calculus

Research on networks of processes where processes are mobile and configuration of
communication links is dynamic has been dominated by the π-calculus by Milner,
Parrow, and Walker [171]. Good textbooks can be considered [170,208].

This calculus can be considered a development of previous process calculi where
processes are considered static. Central to the π-calculus is the notion of name.
The simplicity of the calculus lies in the dual rôle that names play as communica-
tion channels and variables. This implies, most importantly, that communicated
names can be used as new communication links after reception. This is achieved
syntactically by action prefixes

π ::= x̄y
∣∣ x(z)

∣∣ τ
∣∣ [x = y]π.

The first three prefixes are similar in the value-passing version of the CCS, and
represent the sending of name y via channel x, the receiving of any name z via
channel x and the silent action, respectively. The last one is a conditional capa-
bility: it is π if x and y are the same name. The syntax of the processes is the
following:

P ::= M
∣∣ P1 | P2

∣∣ νzP
∣∣ !P

M ::= 0
∣∣ π.P

∣∣ M1 +M2

Most of them has the same meaning as in CCS. The restriction νzP limits the
scope of the name z to the process P , similar to restriction P\K in CCS, but here
the scope of a restriction may change dynamically as the result of communication,
the so-called scope extrusion. Replication !P is the means to express infinite be-
haviour via the equation !P ≡ P | !P of the structural congruence. The structural
congruence is a relation over processes: informally, two processes are structurally
congruent, if they are identical up to structure. In particular, parallel composition



58 4 Process Calculi

is commutative and associative. The basis definition of structural congruence is a
collection of axioms that allows manipulation of the term-structure.

The actions are given by α ::= x̄y
∣∣ xy

∣∣ x̄(z)
∣∣ τ : the first is the

sending of the name y via the name x, the second is the receiving of y via x, the
third is the sending of a fresh name via x (bound output) and the last one is the
silent action.

The original semantics of the π-calculus has been given in terms of labelled
transition system in the SOS style [191], where transactions are of the form P

α−−→
P ′, for some action α. An example of transition is:

P
x̄z−−−→ P ′ z 6= x

νzP
x̄(z)
−−−−→ P ′

P
x̄(z)
−−−−→ P ′ Q

xz−−−→ Q′ z /∈ fn(Q)
P | Q τ−−→ νz(P ′ | Q′)

The first rule expresses the extrusion of the scope of a name, whereas the second
one expresses that a process P performing a bound output x̄(z) can interact with
a process Q that can receive z via x and z becomes restricted in Q. Alternatively,
the behaviour of a π-process can be described by means of a reduction semantics,
where reduction are of the form P −→ P ′, modelling an internal evolution of the
process P . Indeed this ignores the capability of a process to interact with the
environment. An example of reduction is:

(x̄y.P1 +M1) | (x(z).P2 +M2) −→ P1 | {y/z}P2.

In the π-calculus, labelled and reduction semantics coincide.
For that concerns behavioural equivalences barbed congruence and bisimulation

were defined. Barbed congruence is based on the notion of barbs, that are observ-
able predicates of the form P ↓a for each name a, which detects the possibility of
a process of accepting a communication with the environment at a. An equivalent
labelled transition semantics can be defined by exhibiting auxiliary predicates.

4.3 Timed Process Calculi

Important developments have occurred since the formulation of the basic process
calculi CCS [168,169], CSP [56,117] and ACP [30,31]. As we explained in Section
4.2, the π-calculus [171] can be considered a development in terms of mobility.
Indeed in π-calculus processes are mobile and configuration of communication
links is dynamic. Most of the developments of process calculi are collected in the
impressive handbook [32].

One important aspect that has be taken into consideration is time. There may
be good reasons to introduce time in such a way that suitable timing becomes
relevant for the correct behaviour of a complex system. This is, for example, the
case of most controllers. Their correct behaviour, often derived from physical laws,
usually involves actions performed between certain timebounds. Moreover, for cer-
tain data communication protocols, whether they behave at an appropriate level
of abstraction like a queue depends on the timing of certain actions. Still another
reasons may be that there is simply a need to pay attention to performance aspects
of a system.



4.3 Timed Process Calculi 59

The introduction of aspects of time into the setting of process calculi has re-
ceived much attention in research and, considering that time is a complex subject,
it is not surprising the proliferation of proposals. Indeed, process calculi that in-
corporate some form of timing enabling quantitative analysis of time performance
have been studied extensively by now. The literature regarding this development
is quite extensive. We confine our discussion to approaches which are the basis for
our calculi described in the second part of the thesis.

According to purposes and applications, different versions of describing timing
have been presented in the literature. Baeten and Reniers in [23] have made a
distinction between the following choices:

1. The nature of the time domain:
• discrete time vs dense time: this choice is with respect to which type of

time domain is used to describe timing. In discrete time, the time domain
is of a discrete nature, whereas in dense time the time domain is of a
continuous nature, i.e. between every two moments in time there is another
moment in time. The axiom of ACP has been extended to discrete time
by Baeten and Bergstra in [19]. Baeten, Bergstra and Reniers [20] have
increased the framework of [19] with the silent step τ . In [18] Baeten and
Bergstra have proposed a real-time version of ACP; in [103] it is proposed
a language based on ACP to describe and verify real-time systems using a
discrete time scale; in [181] Nicollin and Sifakis have presented a temporal
extension of CCS, the ATP algebra, with a notion of discrete global time;
in [199] Reed has presented a real-timed extension of CSP, called Timed
CSP, while CCS is the starting point for the TCCS calculus of Moller and
Tofts [175] and of the calculus called TPL of Hennessy and Regan [111];

• linear time vs branching time: in a linear time domain each two moments
in time are ordered by some total ordering ≤, in a branching time domain
this is only a partial ordering.

2. The way in which time is syntactically described:
• time-stamped description vs two-phase description: if the description of

time is attached to the atomic actions, we speak of a time-stamping
mechanism. If, on the other hand, time delay is separated from action
execution, we have a two-phase approach. For instance, the calculi in
[19,103,111,175,181] have introduced special actions to model the passage
of time, although the basis for all those proposals may be found in [36].

3. The way in which time is semantically incorporated:
• absolute timing vs relative timing : sometimes, it is convenient to describe

the passage of time with respect to a global clock, then we have absolute
timing, sometimes, it is convenient to describe passage of time relative to
the previous action, then we have the relative timing;

• time-determinism vs time-nondeterminism: a choice to be made with far
reaching consequences is whether a delay may determine a choice. In the
literature three versions are encountered. Firstly, if the delay by itself may
not determine any choice, we speak of strong time-determinism. Secondly,
if a delay of t time by itself cannot determine a choice between alternatives
that allow a delay of t time, we speak of weak time-determinism. Finally,
if a delay can determine a choice we speak of time-nondeterminism;
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• durational actions and instantaneous actions: it is possible either to as-
sume that actions have no duration, and hence are instantaneous, or that
they have a duration. In the latter case, the duration can be specified or
unspecified. Example of calculi with durational actions are [67,68];

• urgent actions vs multi-actions: if actions occurring at the same time can
be ordered, these are called urgent actions, otherwise these are called multi-
actions.

Baeten and Middelburg [21] have proposed several timed process algebras
treated in a common framework, and related by embeddings and by conserva-
tive extensions relations. All the theory presented in the book are generalisations
of the ACP process algebra without timing. These process algebras, called ACPsat,
ACPsrt, ACPdat and ACPdrt, allow the execution of two or more actions consecu-
tively at the same point in time, separate the execution of actions from the passage
of time, and consider actions to have no duration. The process algebra ACPsat is a
(dense)real-time process algebra with absolute time, ACPsrt is a (dense)real-time
process algebra with relative time. Similarly, ACPdat and ACPdrt are discrete-time
process algebras with absolute time and relative time, respectively. In these pro-
cess algebras the focus is on unsuccessful termination or deadlock. The framework
of Baeten and Reniers in [22] extends the framework of [21] to model successful
termination for the relative-time case.

The stochastic process calculus modelling paradigm has been introduced as an
extension of classical process calculi with timing information. This model mainly
aims at the integration of functional design with quantitative analysis of com-
puter systems. Time is represented by exponentially distributed random variables
that are assigned to each activity in the model. Thus, the semantic model of this
stochastic model can easily be transformed into a continuous time Markov chain.
This can help to compute performance measures as well as dependability mea-
sures. Among these calculi we remember CCS+ [219], PEPA [114], EMPA [33],
ES-SPA [55] and Sπ [197].

In the following we describe more in details two process calculi, the TPL and
the TCBS, that use similar approaches to those used for our timed process calculi
described in the second part of this thesis.

TPL

Papers like [199] and [18] have proposed very descriptive languages with which it
is possible to describe the minutiae of detailed timing considerations in complex
systems. According to Hennessy and Regan [111], there are certain applications
for which these languages may be inappropriate because the description may be
unnecessary complex. For this reason, Hennessy and Regan have proposed in [111]
a very simple and intuitive timed process calculi, the Timed Process Language
(TPL). TPL presents a mathematically simple notion of time that may be useful
in particular application areas such as protocol verification. Indeed protocols are
typical examples in which time affects the behaviour of just a small part of the
overall system. Hence it is unnecessary using complex formal language to model
them. TPL is designed so that the specification of the time-independent part of
the system may be treated as usual in process calculi whereas the time-dependent
part may be carried out by a simple extension.
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The idea of [111] is to introduce into the CCS a specific action modelling time
passing. The authors have used the symbol σ to denote it. When a process execute
a σ action it means that it is idling or doing nothing until the next clock cycle.
The σ action shares many of the properties of the usual actions of CCS, but it is
distinguished by certain of its specific properties. This is due to the fact that it
represents the passage of time and this part it treated separately in TPL. Thus
TPL is characterised by the following time properties:

• discrete time: time proceeds in discrete steps represented by occurrence of the
action σ;

• actions are instantaneous: time is not associated directly with communication
actions but occurs independently. This is retained by the implicit assumption
underlying CCS that all communications are instantaneous, since in TPL there
is a distinction between the passage of time, scanned by σ actions, and all other
actions are performed in between occurrences of this time action;

• time determinism: the passage of time is deterministic, i.e. the process can
reach at most one new state by performing σ action;

• patience: a process can idle, i.e. it can perform a σ action, indefinitely until it
can communicate. This is an intuitive assumption underlying the usual (asyn-
chronous) theories of process calculus that all process may idle indefinitely and
that the semantic theory is formulated in terms of the actions which a process
may perform;

• maximal progress: a process cannot delay if it can perform a communication, i.e.
communications cannot be delayed, they must occur as soon as possible. This is
expressed in TPL saying that if a process can perform a τ -action, then it cannot
execute a σ action. Indeed, as in CCS, a τ -action represents a synchronisation
between a sender and a receiver process. The maximal progress property has
been introduce in [71] and it is a common features of many proposed timed
process calculi.

The syntax of TPL processes is very similar to the syntax of CCS processes,
except for the delay process σ.P , to mean that the process P can do nothing until
the next clock cycle and from that moment it behaves as P . This syntax is used to
force delay. Moreover, TPL has another new process, the timeout process bP c(P ′),
coming from the ATP algebra of [181]. The behaviour of the process bP c(P ′) is
properly decided by the passage of time in favour of the right hand process, that
is if bP c(P ′) can execute a σ action then it evolves into P ′. The dynamism of
the system is expressed by an operational semantics, divided in two parts. The
first is a slight generalisation of the standard operational semantics of CCS where
the new action σ plays no rôle, whereas the second part is defined in term of this
action. Thus in the first part the transitions are of the form

α−−→, where the action
α ranges over the sending, the reception and the τ -action as in CCS, whereas in
the second part the transitions are of the form

σ−−→. Below, we report three rules,
the first explains how the delay process behaves, the other ones models the actions
that the timeout process can perform:

−
σ.P

σ−−→ P

P
α−−→ P ′′

bP c(P ′) α−−→ P ′′
P 6 τ−−→

bP c(P ′) σ−−→ P ′
.
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The requirement of the last rule is for the maximal progress, as stated above.
The goal of the authors of [111] is to extended the semantic theory of processes

based on testing [109]. Using the operational semantics, Hennessy and Regan have
defined an operational preorder on timed processes based on must testing, where
also time has to be considered. The characterisation of testing preorder is expressed
in terms of barbs [192, 226], that is sequences of the form s1A1 . . . skAk, where si
is a sequence of actions that a process can perform to arrive at a specific state
and Ai is the set of next possible action from that state. Thus two processes are
compared according to the barbs they can exhibit and the barbs may be compared
using defining orders.

TCBS

Prasad [195] has proposed a timed variant of his Calculus of Broadcasting Systems
(CBS) [194], called TCBS. CBS is a simple and natural CCS-like calculus modelling
broadcast behaviours: processes send data one at a time and data are received
instantaneously by all others. This is the most important feature that allows to
distinguish CBS from almost all other process calculi, which use point-to-point
communication.

In TCBS the passage of time is dense. Besides to standard constructs in pro-
cess calculus, in the syntax of the processes of TCBS we find the timeout process
δ : P , whose meaning is similar to the timeout process bP c(P ′) of [111]. The com-
munication rules are modelled by means of an operational semantics, containing
the relations

w!−−−→, w?−−−→, τ−−→ and
δ:−−→ over processes, modelling transmission,

receiption, silent action and passage of δ instants of time. We write only the rules
for timeout process:

−
δ : P

δ:−−→ P

P
w?−−−→ P ′

δ : P
w?−−−→ P ′

P
w!−−−→ P ′

0 : P
w!−−−→ P ′

−
(δ + δ′) : P

δ:−−→ δ′ : P
.

The third rule underlines the assumption that if a communication occurs then it
cannot be delayed. This is expressed by 0 delay. Indeed also the TCBS calculus,
as TPL described above, is characterised by the maximal progress property and
the time determinism and the patience properties, as well. The last rules together
with rule

P
δ:−−→ P ′ P ′

δ′:−−−→ P ′′

P
(δ+δ′):
−−−−−−→ P ′′

introduces a further property of TCBS, that is time additivity. This properties is
associated with density; it does not hold for TPL because it is a discrete timed
calculus. Additivity is expressed by the following statement:

P
δ:−−→ δ′:−−−→ P ′ iff (δ + δ′)P

(δ+δ′):
−−−−−−→ P ′.

For that concerns the behavioural equivalences, Prasad has proposed a strong
bisimulation and a weak bisimulation, that, as usual, abstracts over τ actions, and
in which also time passing actions are taken into consideration. A delay prefix
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operator can be derived up to weak bisimulation if time dependent behaviour is
allowed.

Developed with the goal of providing very general process models, most spe-
cialised calculi are derived from the seminal ideas of calculi described in previous
sections. In the next section, we provide a description of process calculi for wireless
systems.

4.4 Process Calculi for Wireless Systems

The majority of process calculi take point-to-point communication as primitive.
However, in order to implement a calculus to model systems with broadcast com-
munications, as wireless networks, it seemed that point-to-point fashion led to
complicated and sometimes little intuitive encodings. Thus dedicated calculi with
broadcast as primitive could avoid many problems. Examples of peculiarities of
wireless devices with respect to the more conventional wired communication are:

• the local broadcasting, meaning that a transmission spans over the limited
area, called cell, and does not reach all nodes in the network, but only the so
called neighbours;

• within the cell, there may be the presence of obstacles that disables the recep-
tion;

• nodes may not transmit and receive at the same time, thus, there may be
undetected interferences and collisions when two devices try to transmit at the
same time;

• node are mobile, that is they can break links with old neighbours and estab-
lishing fresh links with new devices.

In the last years many process calculi to describe wireless networks have been
proposed. In this section we describe some of them.

CWS

Mezzetti and Sangiorgi [167] have proposed a Calculus of Wireless Systems (CWS)
to describe interferences. CWS has nodes, which represent the devices of the sys-
tem, that can be composed in parallel. Inside a node there is a sequential process,
which models the behaviour of that device. Each node has a location and a radius
that define the cell over which that node can transmit. CWS does not model the
movement of devices.

When developing the semantics for CWS, the authors have decided to refine
the view on transmissions and observe, for each node, the change of state between
transmission and reception (and vice versa), rather then single transmissions. Fur-
ther, in accordance with physical wireless devices, they have assumed that, when
a device is not performing a transmission, its antenna is in reception mode. An
event is the state change; they call begin transmission the event which corresponds
to a device which initiates a transmission, and end transmission the event which
corresponds to a transmitter which finishes its transmission.

The authors have presented a Reduction Semantics (RS) and a Labelled Tran-
sition Semantics (LTS). The RS and the LTS differ in the approach followed to
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check the interferences. In the LTS, the derivation of a transition takes a set of ac-
tive transmitters, i.e., a set of devices that are currently engaged in a transmission
as a parameter; then, the various possibilities of interferences are checked against
such a parameter. In the RS, by contrast, such parameter is absent; the checks for
interferences are confined into the rules of the semantics itself. As a consequence,
however, the derivation of a reduction has to be decomposed into three separate
sub-derivations, which are defined using some auxiliary relations on an extension
of the calculus. Each one of such auxiliary relations implements a logical distinct
sub-component of the mechanism with which transmissions are performed in wire-
less systems, e.g., individuation of the transmitter, individuation of its cell, and,
for each receiver in the cell, the individuation of possible interferences. The main
extensions of the calculus are given by markers that are placed on the network
nodes and that represent a partial state of the node within the whole reduction.

The main technical result of the paper in [167] is the equivalence between the
two semantics.

CBS]

In [178] Nanz and Hankin have proposed a framework for specification and security
analysis for ad hoc networks. We describe more in detail this calculus in Section
5.3.

CMAN

In [94] Godskesen has suggested a Calculus for Mobile Ad hoc Networks (CMAN),
based on an extension of the π-calculus. The goal of CMAN is to facilitate the
modelling of two very important features of ad hoc networks: (i) mobility, for
which nodes autonomously change localities and thereby change their connections
and hence the topology of the network, and (ii) spatially oriented broadcast, for
which messages will only reach those nodes within the communication range of
the emitting node. Thus the author has assumed that nodes may move arbitrarily,
change their neighbour relationship and thereby change the network topology. The
syntax of a node is bpcσl , where l is its location and σ is the set of the locations of its
neighbour, letting the topology be explicitly part of the network syntax and letting
the topology change as a consequence of computational steps. Nodes composed by
parallel composition constitute a network. In CMAN broadcast is atomic in the
sense that all neighbours at the time of the broadcast, and only those, can listen
to and receive the broadcasted message.

Connection and disconnection of nodes are bidirectional and they are modelled
by reduction rules. Spatially oriented broadcast is also realized by a broadcast
reduction rule, labelled by the location l of the emitting node, where the node at
location l broadcasts to all nodes to which it is connected in the current topology.
It is also modelled the topic that a message could be lost.

A novel contribution of the work in [94] is that the author has chosen to work
with a family of broadcast reductions, one for each locality in the network. This
allows an external observer to observe the locality (node) in charge of the syn-
chronous broadcast. However, since it may be unrealistic for an observer to cover
the whole network, it is introduced the notion of a hidden node νkb〈t〉.rck, i.e. a
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node with the location name k restricted. It may connect to other nodes extruding
its location name and subsequently send/receive messages to/from its neighbours,
but the emission from a hidden node cannot be observed by an external observer,
hence the reduction obtained is not a broadcast reduction.

Moreover the author has defined a semantic choosing to abstract from observ-
ability of node mobility. CMAN is equipped with a natural reduction semantics and
congruence, and a co-inductive sound and complete bisimulation characterisation.
Finally, some primitives to model cryptographic operations are added, modelling
a possible attacks to the ARAN [209] routing protocol.

ω-calculus

For many aspect Singh, Ramakrishnan and Smolka in [214] have proposed a process
calculus very similar to the one presented in [94], modelling the two principal
features of a mobile ad hoc network: broadcast spatially oriented communication
and mobility. The authors have called their calculus the ω-calculus, operating a
separation of a node’s communication and computational behaviour, described by
an ω-process, from the description of its physical transmission range, referred to as
an ω-process interface. Ideally, the specification of a mobile ad hoc network node’s
control behaviour should be independent of its neighbourhood information, even
if in a traditional process calculus the model must intermix the computation of
neighbourhood information with the protocol’s control behaviour, rendering such
models unnatural and complex.

The syntax of the calculus comprises a set of nodes, each of which runs a
process. Processes are specified by extending π-calculus process expressions with
broadcast-communication primitives, thus is quite standard, while the major dif-
ference with respect to the π-calculus can be seen in the syntax of node expressions,
because the author have design with P : G a basic node with process P and in-
terface G. As usual, networks are given by the parallel composition of nodes. The
topology of the network is expressed as a node-connectivity graph, where an edge
between two nodes indicates that they are in the same transmission range. The
ω-process interfaces are comprised of groups, which operationally function as local-
broadcast ports. A group of a node represents the maximal sets of neighbouring
nodes. Mobility is captured in the ω-calculus via the dynamic creation of new
groups and dynamically changing process interfaces. The authors have provided a
formal semantics in terms of labelled transition systems and structural-equivalence
rules.

The authors have showed that the state reachability problem is decidable for
finite-control ω-processes. They also have proved that their calculus is a conser-
vative extension of the π-calculus. Then they have defined a bisimulation equiv-
alence, showing that it is a congruence. Congruence results are also established
for a weak version of bisimulation equivalence, which abstracts away from two
types of internal actions: τ -actions, as in the π-calculus, and µ-actions, signalling
node movement. They additionally have defined a symbolic semantics for the ω-
calculus extended with the mismatch operator, along with a corresponding notion
of symbolic bisimulation equivalence, and established congruence results for this
extension as well. They have illustrated the practical utility of the calculus by
outlining a formal ω-calculus model of a leader election protocol for mobile ad hoc
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networks [227] and the AODV protocol [186]. Finally, they have described how
the operational semantics is directly encoded in Prolog, forming the first step in
constructing a model checker for the calculus.

CMN

Merro in [163] has proposed a Calculus for Mobile ad hoc Networks (CMN). This
calculus focuses on an observational theory for mobile ad hoc networks more than
on topology of the network or on the modelling of routing protocols, as for [214]
and [94]. A network is represented as a collection of nodes, composed in parallel.
Messages are broadcasted and received via channels, that may be public or private
to a set of node. The restriction operator ν is used to model the privacy. A node
has this syntax: n[P ]µl,r, where n is the network address, P is the sequential process
running in this node, l is the location, r is the transmission radius, µ is the mobility
tag (a node may be stationary or mobile: in the first case the tag will be s, in the
second m). The location l and the radius r are used to determine the cell over
which a node can broadcast values through channels: only nodes within the cell
of the transmitting node will receive the message sent. It is assumed the presence
of protocols to avoid transmission collisions; moreover the calculus does not deal
with cryprographic underpinnings.

The dynamics of the calculus is specified by the reduction relation _ over
networks that, as usual, relies on another relation, the structural congruence, ≡,
which allows manipulations of term structure to bring potential inter-actors to-
gether. Beyond the standard rules in process calculi, the reduction rules model
broadcast, movement and message loss. Broadcast is successfull when the nodes
are at a specific distance from the transmitting node; it is used a function d(l, l′),
where l and l′ are respectively the locations of the transmitting and receiving
node. If r is the radius and the computed distance is equal or less than r, then the
communication may success. The message loss is modelled assuming that there
exists no receiving. For the movement, the only requirement is that the mobility
is setted to m. It is also defined a labelled transition system, dividing into two set
of rules, one for processes and one for networks.

For that concerns behavioural equivalences, in CMN only the transmission of
messages can be observed. In fact, in a broadcasting calculus, an observer can-
not see whether a given process actually receive a particular broadcasted value.
For this reason the notion of observability is represented by the transmission of
messages that can be detected by a pervasive observer, i.e. an observer that can
listen anywhere, at any channel. At this point it is defined the reduction barbed
congruence that is the largest symmetric binary relation over networks that re-
spect some specific properties (reduction closed, barb preserving and contextual).
The author has defined an appropriate notion of simulation/bisimulation for ad
hoc networks, proving that this bisimilarity implies reduction barbed congruence,
and hence represents a valid method for proving that two networks are reduction
barbed congruent. Actually, it is proved that bisimilarity is more than a proof
technique; it represents a complete characterisation of reduction barbed congru-
ence. Indeed reduction barbed congruence is contained in the labelled bisimilarity.
As usual in process calculi, it is proved the correspondence between labelled bisim-
ilarity and reduction semantics. Since the observational theory is developed, using
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(bi)simulation proof method, they are formally proved some non-trivial properties
of ad hoc networks.

RBPT and CNT

In [91] Ghassemi, Fokkink and Movaghar have presented a process calculus for
modelling and reasoning about mobile ad hoc networks and their protocols. Their
calculus is called Restricted Broadcast Process Theory (RBPT). They have mod-
elled the essential modelling concepts of ad hoc networks, i.e. local broadcast,
connectivity of nodes and connectivity changes.

In CWS [167], CMAN [94], CMN [163], and the ω-calculus [214], the topology
is defined as a part of the syntax, while the semantics of CBS] [178] is quantified
over a set of node configurations. In the former calculi (except CWS, where the
topology is considered static), a process evolves syntactically (to reflect topology
changes) by the application of mobility rules defined in the semantics, while in
the latter, the underlying configuration changes arbitrary in the semantics. The
authors have transfered topology concepts completely to the semantics, similarly
to CBS], although their labelled transition systems and the equivalence relations
are completely different. In [178] a transition to the next state is examined for
all possible valid graphs (those contained in the network topology fixed a priori)
whereas in [91] a transition is examined for all graphs containing the connections
used in a communication, constituting valid topologies. A valid topology is a set of
connectivity relations between nodes such that the topology invariant is satisfied.
A topology invariant is a set of predicates defined over nodes. In RBPT, it is the
network behaviour that defines a set of valid topologies under which such behaviour
is correct, rather than the underlying topology dictates the network behaviour.

The authors have provided a formal operational semantics for their process
calculus, parametrised over the invariants, and they have defined equivalence re-
lations on protocols and networks. They have showed how their calculus can be
applied to prove correctness of a simple ad hoc routing protocol.

The work in [91] has been refined in [92], where the same authors have provided
an equational theory for RBPT. Then they have exploited an extended calculus
called Computed Network Theory (CNT). The previous notion of invariant is re-
fined with then notion of restrictions. They have assumed a binary relation >
over the set of locations (or node addresses), which imposes connection relations
between addresses. A relation while A > B denotes a node with address A is con-
nected to a node with address B. A network restriction is a set of relations >. The
transitions of the operational semantics are now subscripted by a set of network
restrictions, those that are necessary to the transition to fire.

4.5 Chapter Summary

In this chapter we sketched a brief history of process calculus. The early work
centred around giving semantics to programming languages involving a parallel
construct. Here, two changes were needed: first of all, abandoning the idea that a
program is a transformation from input to output, replacing this by an approach
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where all intermediate states are important, and, secondly, replacing the notion of
global variables by the paradigm of message passing and local variables.

In the 1970s, both these steps were taken, and the process calculi CCS and CSP
evolved. In doing so, process calculus became an underlying theory of all parallel
and distributed systems, extending formal language and automata theory with the
central ingredient of interaction. We briefly described the so called foundational
process calculi, as CCS, CSP, ACP and π-calculus.

Important developments have occurred since the formulation of the basic pro-
cess calculi (CCS, CSP, ACP). Among these developments is noteworthy the intro-
duction of timing aspects into this setting. According to purposes and applications,
different versions of describing timing have been presented in the literature. In the
present chapter, we described general features of timed process calculi and anal-
ysed some timed process calculi useful to understand our approaches.

In the following years, much work has been done, and many process calculi
have been formulated and many extensions were added. In particular, we described
some process calculi developed to address the features of wireless networks. They
concern with mobility, interferences, spatially oriented broadcast.

In the next chapter we give an overview of formal techniques for security anal-
ysis in wireless networks.



5

Formal Techniques for Security Analysis

5.1 Introduction

The usual security goal of information and communication systems is preventing
passive attacks and detecting active ones. When and where an attack occurs this is
a deliberate attempt to compromise the system that reaches a non-desirable state
or it behaves in a non-desirable way, and then its functionalities are compromised.

Formal specification and security analysis have a long research history in com-
puter science, as for the development of network protocols. However, only few
works to date have attempted to bring these two branches of research together,
let alone in the small context of wireless networks.

Security goals can be achieved by physical protection or protocol/algorithmic
measures. Typical examples of physical protection are when a server is locked in a
room under continuous video surveillance or when a device is placed inside some
tamper resistant packaging, e.g., smart cards. Physical protection is very effective,
but it is often very expensive as well and, even worse, it is not always applicable.
For instance, in wireless systems the communication takes place over a radio chan-
nel. As a consequence, the access to the wireless channel cannot be prevented by
physical means. When physical protection is not feasible or very expensive, algo-
rithmic measures can be used. Most of these algorithmic measures are based on
cryptographic algorithms and on protocols that allow for secure communications
over insecure channels at the cost of physically protecting a limited amount of key
material only.

A protocol defines a sequence of interactions between entities designed to
achieve a specific goal. However, the particular nature of wireless systems poses a
number of challenges in designing and also analysing protocols. Formal techniques
are therefore needed to establish a mathematically rigorous connection between
protocol modelling and desired goals. We can divide protocol analysis techniques
into automated-based methods, in which tools and automation are used, proof-based
methods, focusing on translating protocol steps directly into some mathematical
formalism enriched with proof techniques, and language-based methods, that start
out by modelling a security protocol in some process calculus and then they exploit
standard static analysis techniques such as model checking, static analysis, type
systems, or abstract interpretation. Very often automated-based and language-
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based methods come together, as the latter often support tools. Among proof-
based methods we remember BAN logics, Strand Spaces, and theorem proving.

In general, protocol analysis consists of two main tasks: falsification, that is
that is finding flaws in protocols that are not correct, and verification, that is prov-
ing their correctness. Automated-based techniques usually focus on falsification,
whereas proof-based methods focus on verification, even if they may sometimes
only be able to indirectly indicate flaws.

According to the protocol classes they analyse, protocol analysis techniques
can be distinguished into security protocols and communication protocols. The
goal of a security protocol is to establish a security property between communi-
cation partners, e.g. authentication or secrecy. These protocols usually make use
of cryptographic mechanisms such as encryption and digital signatures in order
to execute correctly in hostile environments where an attacker may deliberately
try to compromise the protocol. On the other hand, communication protocols are
designed to establish communication between agents in a network, which includes
various tasks such as link establishment, routing, or end-to-end transfer of data.
In comparison to security protocols, communication protocols are usually far more
complex in terms of message contents and required internal computation.

The use of cryptographic primitives is very common in the area of systems
communication. On the one hand, various mathematical issues concerning these
primitives have been covered, leading to a better understanding of the foundations
of cryptography, on the other hand, the use of these cryptographic primitives does
not give full guarantees about the fulfilment of the security requirements anal-
ysed in Section 2.4.2. In wireless communications many unpredictable threats can
rise up and most of them cannot be prevented by cryptographic primitives. Start-
ing from these observations, a branch of research in computer security assumes
cryptographic primitives to be perfect, and uses a black box view of cryptography.

Formal methods have been proved efficient modes both to better define the
goals of the security protocols and the mechanisms to achieve them, and to offer
a precise description of the interactions among the involved entities. The protocol
to be analysed is described in a given language. Thus in such a language a formal
specification of the security properties to be verified is presented. In order to
prove whether or not these security properties are accomplished, it is simulated
an hostile environment, in which the presence of malicious agents is considered.
Thus the protocol is proved secure or not by formally analysing its development
in this environment. More precisely, the protocol is running together with honest
participants and malicious ones.

We end this introduction with an outline of the present chapter. Section 5.2
gives an overview of some formal methodologies that have became popular in the
last decades for the modelling and analysis of computing systems. In Section 5.3
we describe formal models for wireless security. Finally, in Section 5.4 we provide
a summary of the arguments of the chapter.

5.2 Methodologies

In wireless networks, the flexibility provided by the open broadcast medium and
the cooperativeness of the mobile devices, in particular in MANETs, introduces
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new security risks. As part of rational risk management, it should be possible to
identify these risks and take appropriate actions. In some cases this is possible,
in other cases we may have to accept that vulnerabilities exist and seek to take
appropriate actions when we believe someone is attacking us. In [57, 158] we can
find a detailed overview of current methodologies for security analysis in wireless
networks and its applications. In the following sections, we deal with the most
common ones.

Model Checking

Model checking techniques have been initially developed to reason about correct-
ness of discrete state systems. Then they have been extensively used also to verify
real time and hybrid systems. In particular in [16, 82, 152, 156, 159, 228] the mod-
elling and analysis of security protocols have been studied.

The model checking technique allows to check whether a given model satis-
fies a given logical formula. We can formulate a general model checking problem
as follows: given a property, expressed in a given logic, it is verified whether it
is satisfied by a given model, specified in some formal language. Such a language
can be source code descriptions in a hardware description language or a special-
purpose language. A finite state machine is used to represent the executed code.
For example, if the assumed finite state machine is a direct graph, the nodes rep-
resent the possible states reached during the execution and the edges represent the
transitions from one state to another one. Moreover, in particular states specific
properties may held, represented by atomic propositions. The main practical chal-
lenge of model checking is to overcome the state explosion problem: the size of the
state space grows exponentially with the size of the system description. As finite
state model checking methodology is considered, it is sometimes not possible to
analyse protocols in all generality. As a consequence, finitary restrictions or drastic
simplifications have to be made.

A first attempt to overcome the limitations of model checking technique has
been presented by Basin, Mödersheim, and Viganò in [26], where the authors
have presented the model checker OFMC, that combines two ideas for analysing
security protocol. The first idea is the use of lazy data types as a simple way of
building efficient on-the-fly model checkers for protocols with very large, or even
infinite, state spaces. The second idea is the integration of symbolic techniques
and optimisations for modelling a lazy Dolev-Yao intruder [73], whose actions are
generated in a demand-driven way.

Among the tools for model checking used for wireless networks, we cite SPIN
model checker [118] and AVISPA toolkit [16, 228]. In particular, SPIN has been
used to automatically find vulnerabilities in the discovery route process of ad hoc
on demand routing protocols, whereas the model checking functionalities of the
AVISPA toolkit have been used in [224] to verify some building blocks of security
protocols for wireless sensor networks.

Bhargavan, Obradovic, and Gunter [38] have used SPIN to verify routing proto-
cols for mobile ad-hoc networks. For a loop-freedom property expressed in temporal
logic they can use the model checker SPIN to expose flaws on a fixed network setup.
Andel and Yasinsac [13] have also used SPIN to automatically analyses a route
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discovery process. SPIN allows automated evaluation tracing the adversary’s ac-
tions that leads to an attack. In particular, the protocols analysed were DSR [129]
and SRP [184].

Model checking technique is also used in [215] to analyse the authentication
process in 802.11i standard.

Static Analysis

Static analysis is a static technique for predicting safe and computable approxi-
mations to the set of a value that the objects of a program may assume during its
execution [183]. The goal of static analysis is to automatically identify many com-
mon coding problems before a program is released. Static analysis tools examine
the text of a program statically, without attempting to execute it. Theoretically,
they can examine either a program’s source code or a compiled form of the program
[62]. Static analysis tools usually offer an high degree of automation and therefore
they may require less human intervention with respect to other techniques, e.g.
theorem provers. Moreover, they are efficient: the analysis has polynomial times
with respect to the specification. On the other hand, even if static analysers may
discover a lot of security flaws, like buffer overruns, access problems, exception
handling, format string problems, however they cannot solve all security prob-
lems. Generally, static analysis tools look for a fixed set of patterns, or rules, in
the code. Although more advanced tools allow new rules to be added over time,
if a rule has not been written yet to find a particular problem, the tool will never
find that problem.

Available tools are either commercial, e.g. [69, 193, 196], or academic, e.g. [42,
52]. In academic area, it is worthy to notice the work of Bodei et al. [49–52],
who have shown that such techniques, namely control flow analysis, can also be
applied to process calculi, and have derived secrecy and authentication properties
in variants of the π-calculus [171] and Spi Calculus [6]. In [236] static analysis
is used to investigate which extensions are really necessary, and which can be
omitted, without compromising the correctness of the protocol.

Automated Theorem Proving

Automated theorem proving (ATP), or automated deduction, is currently consid-
ered the most well-developed subfield of automated reasoning, and it consists in
proving of mathematical theorems by computer programs. These programs show
that some statements are a logical consequences of a set of axioms or hypotheses.
ATP systems are used in a wide variety of domains, e.g., mathematics, manage-
ment, electronics. The language used to write conjecture, axioms and hypotheses
is a logic, in particular the first-order logic. First-order theorem proving is one
of the most mature subfields of automated theorem proving. The first-order logic
is expressive enough to allow the specification of some kind of problems. On the
other hand, it is semi-decidable, and a number of sound and complete calculi have
been developed, enabling fully automated systems. More expressive logics, such as
higher order and modal logics, allow the convenient expression of a wider range
of problems than first-order logic. Anyway, theorem proving for these logics is less
well developed. The power of an ATP system, is actually its formality, that allows
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no ambiguity. Actually, this is the power of using a formal method approach for
solving some kind of problems given certain premises.

ATP is a technique widely used among the formal methods community for the
verification of security properties. Among the literature, we cite the Isabelle/HOL
toolkit [126], Coq [66], ProVerif [41] and Athena [216].

In [42] the author have used ProVerif to analyse the standard protocol defined
by the Bluetooth specification.

The work in [232], by Yang and Baras, focuses on developing formal mod-
els (a combination of model checking and theorem proving) for ad hoc routing
protocols, aimed at modelling insider attackers. Insider attackers are those that,
besides replaying messages generated by legitimate parties, and degrading com-
munication by jamming the lower layers of communication, have the legitimate
keys necessary to generate authentic messages. The protocol under investigation
is the SAODV [238]. The authors in [232] have aimed at testing the presence of
uncompromised paths through the network. An uncompromised path exists when
the routing service is guaranteed, despite of the presence of any number of insider
attackers.

Type Systems

Another program analysis approach to protocol security is based on type systems.
The first attempt has been proposed by Abadi in [3], where the author have de-
veloped formal rules for achieving secrecy properties in security protocols. This
approach has successively been extended for the π-calculus [171] by Abadi and
Blanchet in [4]. Data are classified into Public, Secret, and Any, that subsumes
both the other levels. The goal of the typing system is to establish that if a pro-
cess P typechecks, it does not leak values of level Any. In other words, this means
that P does not leak its secret inputs. The notion of leaking is formalised in terms
of testing equivalence.

Abadi and Blanchet in [4] have also shown the relation of the type systems
approach to the Prolog-based protocol checker ProVerif [41] which translates a
process into logic-programming rules which can be automatically evaluated. Four-
net, Gordon and Maffeis [87] have considered the problem of statically verifying
the conformance of the code of a system to an explicit authorisation policy. They
have formalised their safety criterions in the setting of a process calculus, and have
presented a verification technique based on a type system. Hence, they can verify
policy conformance of code that uses a wide range of the security mechanisms
found in distributed systems, ranging from secure channels down to cryptographic
primitives, including encryption and public key signatures. In [64] the authors
have defined an extension to the higher-order π-calculus [208] for analysing pro-
tocols that rely on remote attestation. They have also provided a static analysis
technique for ensuring safety in the presence of arbitrary attackers.

5.3 Formal Analysis for Wireless Security

In this sections, we focus on formal languages able to model wireless secure pro-
tocols. We also describe very general schemata for the definition and analysis of
security properties.



74 5 Formal Techniques for Security Analysis

Non-Interference and General Schemata

In the literature, several efforts have been made to prevent the unauthorised infor-
mation flow in multilevel computer systems [28], i.e. systems where processes and
objects are bound to a specific security level. The seminal idea of non interference
proposed in [96] aims at assuring that information can only flow from low levels
to higher ones. The first taxonomy of non-interference-like properties has been
uniformly defined and compared by Focardi and Gorrieri in [81, 82] in the con-
text of a CCS-like process calculus. In particular, processes in the calculus were
divided into high and low processes, according to the level of actions that they
can perform. To detect whether an incorrect information flow (i.e. from high to
low) has occurred, a particular non interference-like property has been defined, the
so-called Non Deducibility on Compositions (NDC). Intuitively a system is NDC
if the set of its low level views cannot be modified by composing such a system
with any high level process. The NDC property has been reformulated in terms of
network security. For instance, in [84–86] the low-level processes are used to specify
the communication primitives of a cryptographic protocol, whereas an high-level
process is intended to be any possible adversary. The behaviour of the protocol
running in isolation is compared with the behaviour of the protocol running in
parallel with an adversary.

Focardi and Martinelli in [86] have proposed a Generalised Non Deducibility on
Compositions (GNDC) as a uniform approach for the definition and the analysis of
various security properties. The GNDC is actually based on this idea of checking
a system against all the possible hostile processes. This general schema has the
following form:

E satisfies Pα/ iff ∀X ∈ Env : E || X / α(E)

Basically, the general property Pα/ requires that the system E satisfies a specifica-
tion α(E) when composed (in parallel) with any (possibly hostile) environment X.
The property is parametric with respect to α(E) and / that can be instantiated
in order to obtain different security properties. In particular, α(E) is a function
between processes that, given E, specifies which should be its intended correct be-
haviour, whereas / is a relation between processes representing the actual notion
of observation. Thus, with E || X /α(E) it is checked if process E shows a correct
behaviour even in the presence of an adversary X.

This universal quantification over all the possible intruders could be prob-
lematic when trying to check a property, since the verification may span over
infinitely many processes (one for each intruder). Usually, this problem is over-
come by analysing the case where only the most powerful intruder is considered. If
the property holds in the presence of the most powerful intruder then it will cer-
tainly hold even if less powerful ones are considered. Basically, the most powerful
intruder is a process that knows a set of messages ϕ, can communicate only over
fixed channels, can receive every message passing over these channels (increasing in
such a way its knowledge) and, finally, can send over these channels every message
that it can deduce starting from ϕ.

Gorrieri, Locatelli and Martinelli [98] have proposed a timed version of GNDC,
called timed Generalised Non Deducibility on Compositions (tGNDC). It rephrases
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the analogue GNDC, but in a timed setting. In this context, / and α are, respec-
tively, a timed behavioural relation and a timed property. In [100] the tGNDC has
been used to verify properties of the µTESLA protocol [188] for sensors networks.

Process Calculi

The formalism of process calculus introduced in Chapter 4 has been successively
extended to cope with the possibility to detect flaws in communication and se-
curity protocols [82, 153]. A paradigmatic example of how errors can be found in
security protocols using a process algebra based formalism and an analysis tool is
the case of the Needham-Schroeder protocol [179]. Lowe has found an authenti-
cation attack [151] to this protocol. This attack can be described as follows: as a
consequence of the interleaving of the two sessions, an intruder discovers sensitive
data, by pretending to be one of the honest participant. The attack was found
by running a tool for formal automated analysis, on an algebraic specification of
the protocol, based on CSP [56, 117]. Lowe subsequently proposed to fix the pro-
tocol [152]. By running the modified specification with the same tool, he did not
find any attack.

In the setting of wireless networks, here we describe the CBS] process calculus.
In [178] Nanz and Hankin have proposed a framework for the specification and
the security analysis for mobile wireless networks. The authors have called their
calculus CBS], as they considered the CBS calculus [194] the first calculus to have
broadcast as communication primitive as a direct ancestor of their calculus.

In CBS] there is clear distinction between the processes and the topology of the
network, which can change independently by the actions. The goal of the authors
is to present a framework, based on a broadcast calculus and static analysis, which
allows mobile wireless networks and their security to be formally described and
analysed. They have focused their attention on the routing, a central issue in
wireless systems.

In CBS] the syntax of a node is n[P, S], where n is the location, P is the
process and S is a private store. Indeed, according to the authors, nodes are not
memoryless but store information in routing tables with impact on future actions.
Furthermore, the local accessibility allows a clear distinction between the event
that information become available to an eavesdropper and the event that the same
information is disclosed to the attacker capturing the store. As usual in process
calculi for wireless systems, a network N is a parallel composition of nodes.

The authors in [178] have extended CBS by introducing the local broadcast : sent
messages are not received globally but only by adjacent neighbours of the sender.
The notion of adjacency is made explicit by the connectivity graph, indicated with
G, that is a common graph whose vertex set is a subset of locations of nodes,
indicated with m,n, . . ., and an edge (m,n) means that nodes at locations m
and n are neighbours. Connectivity graphs are used to describe the connections
between nodes for a particular moment in time. As usual the operational semantics
is expressed by a labelled transition relation, equipped by a connectivity graph, a
reduction relation and a structural equivalence. The transitions of the operational
semantics are of the form:

N
(U,m)#
−−−−−−−→G N ′
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In a label (U,m)#, the following communication modes can be expressed: sending
(U,m)!, reception (U,m)?, and loss (U,m): of the term U sent out by m. Nodes
may drop messages if they are not within the transmission range of the node who
is broadcasting.

The authors have developed notions of behavioural equivalence over networks
that include the notion of connectivity and then they have identified a security
property expressed through the behavioural equivalences of the calculus. This
property expresses topology consistency as a building block for routing security,
which focus on the notion of mediated process equivalence: processes are considered
equivalent if they have the same capabilities to store items. Therefore security is
determined by the relation between the actual environment conditions and what
nodes believe about their environment. The belief is expressed by routing tables
built by the private store.

Finally, the authors have showed how to combine their calculus and the control
flow analysis into the proposed framework. They have applied a control flow anal-
ysis technique over the networks, that leads to an over approximation of the set of
terms which may be transmitted, together with their senders, and the set of terms
which may be stored, together with the location of the storage. This enable to
automatically check whether networks are mediated equivalent and prove security
properties for network protocols. In particular, they have described µSAODV, a
simplified version of the combination of the routing protocol AODV [186] and its se-
curity extension SAODV [238]. The framework has thus been used for automated
verification. From the analysis results for µSAODV the authors have concluded
that the protocol is insecure and have presented a simple attack.

Process calculus has been used to formalise and analyse routing protocols in
some other works. For instance, the CMAN of Godskesen [94] has been used
to provide a formalisation of an attack on the cryptographic routing protocol
ARAN [209]. The author has used his weak bisimulation ≈ to show that a simpli-
fied version of ARAN is insecure. In particular, called A the version of the routing
protocol and given a specification of an intruder I, Godskesen has proved that
A 6≈ A | I.

Singh, Ramakrishnan and Smolka [214] have used their ω-calculus for mod-
elling the AODV [186] routing protocol. In particular, they have used a PROLOG
encoding of the semantics of their calculus to develop and analyse the protocol.

5.4 Chapter Summary

A verification of correctness for wireless protocols is an essential requirement for
successfully continuing with the developing of the related technologies. Indeed, the
huge proliferation of commercial proposals in the area, as well as the widespread
usage in everyday life, demands assurance for essential security properties over the
wireless links. Recent literature demonstrates that the use of formal methods and
tools, popular means for the analysis of security aspects of computer protocols,
can provide the solution to the quest for verification.

In this chapter, we surveyed several approaches for modelling and verifying
wireless secure procedures and we briefly described their application to the verifi-
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cation of common standards in the area of short range communication (Bluetooth,
IEEE 802.11, IEEE 802.16, routing protocols).





Part II

Contributions
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A Timed Calculus for Wireless Systems

6.1 Introduction

The IEEE 802.11 standard [123] contains a series of specifications for wireless LAN
technologies. The basic building block of an 802.11 network is the Basic Service
Set (BSS), which is a set of stations that have successfully synchronised and that
use radio transceivers to broadcast messages. In Independent BSS (IBSS), stations
communicate with each other without using any distribution system. IBSS net-
works are sometimes referred to as ad hoc networks. In this chapter, we propose a
formal model for IBSS networks paying particular attention to communication in-
terferences. Communication interferences represent one of the main concern when
evaluating the performances of a network in terms of network throughput, i.e. the
average rate of successful message delivery over a communication channel.

In concurrent systems, an interference occurs when the activity of a compo-
nent is damaged or corrupted because of the activities of another component.
In Ethernet-like networks, communication channels are full-duplex: a node can
transmit and receive at the same time. As a consequence, collisions caused by two
simultaneous transmissions are immediately detected and repaired by retransmit-
ting the message after a randomly-chosen period of time. This is not possible in
wireless networks where radio signals span over a limited area, called transmission
cell , and channels are half-duplex : on a given channel, a device can either transmit
or receive, but cannot do both at the same time. As a consequence, in wireless
systems communication collisions can only be detected at destination by receivers
exposed to different transmissions.

We analysed in detail in Section 4 the formalism of process calculus. In the last
twenty-five years, process calculi [30,60,112,169,171] have been intensively used to
study the semantics of concurrent/distributed systems, and to develop verification
techniques for such systems. In the literature, there exist a number of process
calculi modelling wireless systems [91,92,94,163,167,178,214]. All these calculi rely
on the presence of some MAC-level protocol to remove interferences. However, in
wireless systems collisions cannot be avoided although there are protocols to reduce
their occurrences (see, for instance, the IEEE 802.11 CSMA/CA protocol [123] for
unicast communications). We believe that communication collisions represent a
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serious concern that should be taken into account in a timed model for wireless
systems.

Many protocols for wireless networks rely on a common notion of time among
the devices, provided by some clock synchronisation protocol. Most clock synchro-
nisation protocols for ad hoc networks [89, 148, 174, 212, 220, 235] follow the clock
correction approach correcting the local clock of each node to run in par with
a global time scale, as described in Section 2.3. We remember that an excellent
survey of existing clock synchronisation protocols for sensor networks and more
generally for ad-hoc networks can be found in [221]. This approach heavily relies
on network connectivity . In a connected network all nodes are in touch with each
other, although not always directly. Wireless networks are usually assumed to be
connected; disconnected devices can be considered as not being part of the network
as, in general, they need to re-authenticate to rejoin the network.

We propose a Timed Calculus for Wireless Systems TCWS , in which all wire-
less devices are assumed to be synchronised, using some clock-correction synchro-
nisation protocol. Thus, TCWS is a process calculus with absolute timing, where
all timing refers to an absolute clock.

Time proceeds in discrete steps represented by occurrences of a simple action
tick, in the style of Hennessy and Regan’s TPL [111], to denote idling until the
next clock cycle. This is known as the fictitious clock. The calculus is value-passing,
and message transmission requires a positive amount of time. The operational
semantics is given in terms of a labelled transition system in the SOS style of
Plotkin. We follow a two-phase approach [181] separating the execution of actions
for synchronisation from the passage of time. Then we have

M
λ−−→ N

for synchronisation, where the label λ does not range over tick, and

M
tick−−−→ N

for the time passing. The meaning of these transitions is that the network M can
execute the action λ and tick, respectively, and then evolve into the network N .
As usual for ad hoc networks, the communication mechanism is broadcast.

As in Hennessy and Regan’s TPL [111], and Prasad’s timed CBS [195], our
TCWS enjoys three basic time properties:

• time determinism: the passage of time is deterministic, i.e. a network can reach
at most one new state by performing the action tick;

• patience: nodes will wait indefinitely until they can communicate;
• maximal progress: data transmissions cannot be delayed, they must occur as

soon as a possibility for communication arises.

We provide a notion of network well-formedness to take into account node-
uniqueness, network connectivity, transmission exposure, and transmission con-
sistency. Then, we prove that our labelled transition semantics preserves network
well-formedness.

As a case study we use our calculus to model the Carrier Sense Multiple Access
(CSMA) scheme [123]. According to the CSMA scheme, stations transmit only
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when the channel is sensed free. As we will show, this protocol allows to prevent
certain form of collisions, although it suffers of two well-known problems: the
hidden terminal problem and the exposed terminal problem.

A central concern in process calculi is to establish when two terms have the
same observable behaviour, that is, they are indistinguishable in any context. Be-
havioural equivalences are fundamental for justifying program transformations.
Our program equivalence is a timed variant of (weak) reduction barbed congru-
ence, a branching-time contextually-defined program equivalence. Barbed equiva-
lences [172] are simple and intuitive but difficult to use due to the quantification
on all contexts. Simpler proof techniques are based on labelled bisimilarities [169],
which are co-inductive relations that characterise the behaviour of processes us-
ing a labelled transition system. We define a labelled bisimilarity which is a proof
method for our timed reduction barbed congruence. We then apply our bisimula-
tion proof-technique to prove a number of algebraic properties.

We end this introduction with an outline of the chapter. In Section 6.2, we
provide both syntax and operational semantics of our calculus. In Section 6.3 we
propose a notion of network well-formedness to rule out inconsistent networks and
we prove that network well-formedness is preserved at run time. In Section 6.4, we
prove that TCWS enjoys the above cited time properties. In Section 6.5, we use
our calculus to study the CSMA protocol. In Section 6.6, we equip TCWS with a
notion of observational equivalence along the lines of Milner and Sangiorgi’s barbed
congruence. In Section 6.7, we propose a labelled bisimilarity as a proof method
for our observations equivalence. More precisely, we prove that our bisimilarity is a
congruence and that it implies our observational equivalence. In Section 6.8 we then
use our bisimilarity to prove a number of algebraic properties. In Section 6.9 we
present related work. Finally, in Section 6.10 we give a summary of the arguments
discussed in this chapter.

6.2 The Calculus

6.2.1 Syntax

In Table 6.1, we define the syntax of TCWS in a two-level structure, a lower one
for processes and a upper one for networks. We use letters a, b, c, . . . for logical
names, x, y, z for variables, u for values, and v and w for closed values, i.e. values
that do not contain free variables. Closed values actually denote messages that
are transmitted as TCP/IP packets. Packets contain a number of auxiliary infor-
mations such as the network address of the transmitter. So, sometimes we write
m:v to mean a message v transmitted by node m. With an abuse of notation,
structured messages of the form m:v are ranged by the same letters v and w. We
write ũ to denote a tuple u1, . . . , uk of values.

Networks are collections of nodes (which represent devices) running in parallel
and using a unique common channel to communicate with each other. We use the
symbol 0 to denote the empty network, while M1 | M2 represents the parallel
composition of two sub-networks M1 and M2. Nodes cannot be created or de-
stroyed. All nodes have the same transmission range. We write n[W ]νt for a node
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Table 6.1 The Syntax
Values

u ::= x variable˛̨
v closed value

Networks
M,N ::= 0 empty network˛̨

M | N parallel composition˛̨
n[W ]νt node

Processes
W ::= P inactive process˛̨

A active process

P,Q ::= nil termination˛̨
!〈u〉.P broadcast˛̨
?(x).P receiver˛̨
tick.P delay˛̨
b?(x).P cQ receiver with timeout˛̨
[u1 = u2]P,Q matching˛̨
H〈ũ〉 recursion

A ::= 〈v〉t.P active sender˛̨
(x)v.P active receiver

named n (the device network address) executing the sequential process W . The
tag ν denotes the set of (the names of) the neighbours of n. Said in other words,
ν contains all nodes in the transmission cell of n. In this manner, we model the
network topology. Notice that the network topology could have been represented
using some kind of restriction operator à la CCS over node names. We preferred
our notation to keep at hand the neighbours of a node. The variable t is a semantic
tag ranging over positive integers to represent node exposure. Thus, a node n[W ]νt ,
with t > 0, is exposed to a transmission (or more transmissions) for the next t
instants of time.

Processes are sequential and live within the nodes. For convenience, we dis-
tinguish between non-active and active processes. An active process is a process
which is currently transmitting or receiving. An active node is a node with an
active process inside. The symbol nil denotes the skip process. The sender process
!〈v〉.P allows to broadcast the value v. Once the transmission starts the process
evolves into the active sender process 〈v〉δv .P which transmits the message v for
the next δv time units, the time necessary to transmit v. In the construct 〈v〉t.P
we require t > 0. The receiver process ?(x).P listens on the channel for incoming
messages. Once the reception starts the process evolves into the active receiver
process (x)w.P and starts receiving. Only when the channel becomes free the re-
ceiver calculates the CRC (Cyclic Redundancy Check) to check the integrity of the
received packets. Upon successful reception the variable x of P is instantiated with
the transmitted message w. The process tick.P models sleeping for one time unit.
The process b?(x).P cQ denotes a receiver with timeout. This operator comes from



6.2 The Calculus 85

the process algebra ATP put forward in [181]. Intuitively, this process either starts
receiving a value in the current instant of time, evolving into an active receiver,
or it idles for one time unit, and then continues as Q. Process [v1 = v2]P,Q is the
standard “if then else” construct: it behaves as P if v1 = v2, and as Q otherwise.
In processes tick.P, ?(x).P , b?(x).P cQ, and !〈v〉.P the occurrence of process P is
said to be guarded. We write H〈ṽ〉 to denote a process defined via a definition
H(x̃) def= P , with | x̃ |=| ṽ |, where x̃ contains all variables that appear free in P .
Defining equations provide guarded recursion, since P may contain only guarded
occurrences of process identifiers, such as H itself. We use a number of notational
conventions.

∏
i∈IMi means the parallel composition of all sub-networks Mi, for

i ∈ I. We write !〈v〉 for !〈v〉.nil, and 〈v〉δ for 〈v〉δ.nil. We recall that in the active
sender process 〈v〉t.P it holds that t > 0. However, sometimes, for convenience, we
write 〈v〉0.P assuming the following syntactic equality 〈v〉0.P = P .

In the terms ?(x).P , b?(x).P cQ, and (x)v.P the variable x is bound in P .
This gives rise to the standard notion of α-conversion. We identify processes and
networks up to α-conversion. We assume there are no free variables in our networks.
The absence of free variables in networks is trivially maintained as the network
evolves. We write {v/x}P for the substitution of the variable x with the value v in
P . We define structural congruence, written ≡, as the smallest congruence which
is a commutative monoid with respect to the parallel operator.

Given a network M , nds(M) returns the names of the nodes which constitute
the network M . For any network M , actsnd(M) and actrcv(M) return the set of
active senders and active receivers of M , respectively. Thus, for instance, for N =
m[!〈w〉]νt | n[〈v〉r.P ]ν

′

t′ we have nds(N) = {m,n} and actsnd(N) = {n}. Given a
network M and an active sender n ∈ actsnd(M), the function active(n,M) says for
how long the node will be transmitting. For instance, if N is the network defined as
before, active(n,N) = r. If n is not an active sender then active(n,N) = 0. Finally,
given a network M and a node m ∈ nds(M), the function ngh(m,M) returns the
set of neighbours of m in M . Thus, for N defined as above ngh(m,N) = ν.

6.2.2 Operational Semantics

We give the operational semantics of our calculus in terms of a Labelled Transition
System (LTS). Table 6.2 contains a simple LTS for processes. Rules (SndP) and
(RcvP) model the beginning of a transmission. In rule (SndP) a sender evolves into
an active sender. For convention we assume that the transmission of a value v takes
δv time units. In rule (RcvP) a receiver evolves into an active receiver (x)m:v.P
where m is the transmitter’s name and v is the value that is supposed to be
received after δv instants of time. The process b?(x).P cQ can start a reception in
the current instant of time, as ?(x).P , or it can idle for one time unit evolving into
Q. Rules (RcvTO) and (Timeout) model these two different behaviours, respectively.
The remaining rules regards time passing. Rules (Nil-tick), (Rcv-tick), and (Tick) are
straightforward. In rule (ActSnd) the time necessary to conclude the transmission is
decreased. In rule (ActRcv) the derivative does not change as a reception terminates
only when the channel is sensed free. Notice that sender processes do not perform
tick-actions. This is to model the maximal progress property.
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Table 6.2 LTS - Process transitions

(SndP)
−

!〈v〉.P !v−−→ 〈v〉δv .P
(RcvP)

−
?(x).P

?w−−−→ (x)w.P

(RcvTO)
−

b?(x).P cQ ?w−−−→ (x)w.P
(Timeout)

−
b?(x).P cQ tick−−−→ Q

(Nil-tick)
−

nil
tick−−−→ nil

(Rcv-tick)
−

?(x).P
tick−−−→?(x).P

(Tick)
−

tick.P
tick−−−→ P

(ActSnd)
r > 0

〈v〉r.P tick−−−→ 〈v〉r−1.P
(ActRcv)

−
(x)v.P

tick−−−→ (x)v.P

Table 6.3 LTS - Begin transmission

(Snd)
P

!v−−→ A

m[P ]νt
m!v−−−−→ m[A]νt

(Rcv)
m ∈ ν P

?m:v−−−−−→ A

n[P ]ν0
m?v−−−−→ n[A]νδv

(RcvPar)
M

m?v−−−−→M ′ N
m?v−−−−→ N ′

M | N m?v−−−−→M ′ | N ′
(Sync)

M
m!v−−−−→M ′ N

m?v−−−−→ N ′

M | N m!v−−−−→M ′ | N ′

(Coll)
m ∈ ν t′:=max(t,δv)

n[(x)w.P ]νt
m?v−−−−→ n[(x)⊥.P ]νt′

(Exp)
m∈ν W 6=(x)w.P t′:=max(t,δv)

n[W ]νt
m?v−−−−→ n[W ]νt′

(OutRng)
m 6∈ ν m 6= n

n[W ]νt
m?v−−−−→ n[W ]νt

(Zero)
−

0
m?v−−−−→ 0

We have divided the LTS for networks in two sets of rules corresponding to
the two main aspects of a wireless transmission. Table 6.3 contains the rules to
model the initial synchronisation between the sender and its neighbours. Table 6.4
contains the rules for modelling time passing and transmission ending.

Let us comment on the rules of Table 6.3. Rule (Snd) models a node starting a
broadcast of message v to its neighbours in ν. By maximal progress, a node which
is ready to transmit will not be delayed. Rule (Rcv) models the beginning of the
reception of a message v transmitted by a station m; m is in the transmission
range of the receiver. This happens only when the receiver is not exposed to
other transmissions i.e. when the exposure indicator is equal to zero. The exposure
indicator is then updated because node n will be exposed for the next δv instants
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of time. The reception will finish only when the receiver senses the channel free
(see rule (Time-0) of Table 6.4).

Rule (RcvPar) models multiple receptions. Rule (Sync) serves to synchronise
the components of a network with a broadcast transmission originating from a
node m. In rule (Coll) an active receiver n is exposed to a transmission originating
from a node m. This transmission gives rise to a collision at n. We use the symbol
⊥ to indicate that a collision has happened. In this case, we may need to update
the exposure indicator of n to the maximum between the current value and the
duration of the transmission causing the collision. Rule (Exp) models the exposure
of a node n (which is not an active receiver) to a transmission originating from a
transmitter m. In this case, n does not take part in the transmission. Notice that
a node n[?(x).P ]ν0 might execute rule (Exp) instead of (Rcv). This is because a
potential (synchronised) receiver might miss the synchronisation with the sender
for several reasons (internal misbehaving, radio signals problems, etc). Such a sit-
uation will give rise to a failure in reception at n (see rule (RcvFail) in Table 6.4).
Rule (OutRng) regards nodes which are out of the range of a transmission origi-
nating from a node m. Rule (Zero) is similar but regards empty networks. Rules
(RcvPar) and (Sync) have their symmetric counterpart.

Let us explain the rules in Table 6.3 with an example.

Example 6.1. Consider the network

Net
def= k[!〈v〉.?(x).P ]νk0

∣∣ l[?(x).Q]νl0

∣∣ m[!〈w〉]νm0

∣∣ n[?(y).R]νn0

with the following communication topology: νk = {l,m, l′}, νl = {k,m}, νm =
{k, l, n, l′,m′}, and νn = {m}.

Figure 6.1 Network topology of Example 6.1

k l

ml′

m′ n

We draw the network topology of Net in Figure 6.1: circles represent nodes,
whereas a connection line between two nodes represents that those nodes are neigh-
bouring. There are two possible broadcast communications originating from sta-
tions k and m, respectively. Let us suppose k starts broadcasting. By applying
rules (Snd), (Rcv), (Exp), (OutRng), (RcvPar), and (Sync) we have:

Net
k!v−−−→ k[〈v〉δv .?(x).P ]νk0

∣∣ l[(x)k:v.Q]νlδv
∣∣ m[!〈w〉]νmδv

∣∣ n[?(y).R]νn0

= Net1 .

Now, by maximal progress, the station m must start transmitting at the same
instant of time. Supposing δv < δw we have:
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Table 6.4 LTS - Time passing/End transmission

(Time-0)

W
tick−−−→W ′ W 6= (x)w.P

n[W ]ν0
tick−−−→ n[W ′]ν0

n[(x)w.P ]ν0
tick−−−→ n[{w/x}P ]ν0

(Time-t)
t > 0 W

tick−−−→W ′ W 6 ?v−−−→
n[W ]νt

tick−−−→ n[W ′]νt−1

(RcvFail)
t > 0 P

?⊥−−−→ A

n[P ]νt
tick−−−→ n[A]νt−1

(Zero-tick)
−

0
tick−−−→ 0

(Par-tick)
M

tick−−−→M ′ N
tick−−−→ N ′

M | N tick−−−→M ′ | N ′

Net1
m!w−−−−→ k[〈v〉δv .?(x).P ]νkδw

∣∣ l[(x)⊥.Q]νlδw
∣∣ m[〈w〉δw ]νmδv

∣∣ n[(y)m:w.R]νnδw
= Net2 .

Now, node l is exposed to a collision and its reception is doomed to fail. Notice
that, although node m was already exposed when it started transmitting, node n
will receive correctly the message w from m.

Let us comment on rules of Table 6.4. Rules (Time-0) and (Time-t) model the
passage of one time unit for non-exposed and exposed nodes, respectively. In rule
(Time-t) the exposure indicator is decreased, whereas in rule (Time-0) this is not
necessary as time indicator is equal to 0. Notice that for W = !〈v〉.P none of these
two rules can be applied, as for maximal progress no transmission can be delayed.
Notice also that, for W =?(x).P and t > 0, rule (Time-t) cannot be applied. In this
case, we must apply rule (RcvFail) to model a failure in reception. This may happen,
for instance, when the receiver misses the preamble starting a transmission, or
when a receiver wakes up in the middle of an ongoing transmission. Rule (Zero-tick)

is straightforward. Rule (Par-tick) models time synchronisation. This is possible
because our networks are connected. Rule (Par-tick) has its symmetric counterpart.

Example 6.2. Let us continue with the previous example. Let us show how the

system evolves after δv and δw time units. We write
tick−−−→

δv
to mean the passage

of δv instants of time. We recall that 0 < δv < δw. For simplicity let us define
δ := δw − δv:

Net2
tick−−−→

δv
k[?(x).P ]νkδ

∣∣ l[(x)⊥.Q]νlδ
∣∣ m[〈w〉δ]νm0

∣∣ n[(y)m:w.R]νnδ
tick−−−→ k[(x)⊥.P ]νkδ−1

∣∣ l[(x)⊥.Q]νlδ−1

∣∣ m[〈w〉δ−1]νm0

∣∣ n[(y)m:w.R]νnδ−1

tick−−−→
δ−1

k[(x)⊥.P ]νk0

∣∣ l[(x)⊥.Q]νl0

∣∣ m[nil]νm0

∣∣ n[(y)m:w.R]νn0

tick−−−→ k[{⊥/x}P ]νk0

∣∣ l[{⊥/x}Q]νl0

∣∣ m[nil]νm0

∣∣ n[{m:w/y}R]νn0
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Table 6.5 LTS - Matching and Recursion

(Then)
n[P ]νt

λ−−→ n[P ′]νt′

n[[v = v]P,Q]νt
λ−−→ n[P ′]νt′

(Else)
n[Q]νt

λ−−→ n[Q′]νt′ v1 6= v2

n[[v1 = v2]P,Q]νt
λ−−→ n[Q′]νt′

(Rec)
n[{ṽ/̃x}P ]νt

λ−−→ n[P ′]νt′ H(x̃)
def
= P

n[H〈ṽ〉]νt
λ−−→ n[P ′]νt′

Notice that, after δv instants of time, node k will start a reception in the middle
of an ongoing transmission (the transmitter being m). This will lead to a failure
at k.

In the rest of the chapter, the metavariable λ will range over the following
labels: m!v, m?v, and tick. In Table 6.5 we report the obvious rules for nodes
containing matching and recursive processes (we recall that only guarded recursion
is allowed).

6.3 Well-Formedness

The syntax presented in Table 6.1 allows to derive inconsistent networks, i.e. net-
works that do not have a realistic counterpart. Below we give a number of defini-
tions to rule out ill-formed networks.

As network addresses are unique, we assume that there cannot be two nodes
with the same name in the same network.

Definition 6.3 (Node uniqueness). A network M is said to be node-unique if
whenever M ≡M1 | m[W1]

ν
t | n[W2]

ν′

t′ it holds that m 6= n.

We also assume network connectivity, i.e. all nodes are connected to each other,
although not always directly. We recall that all nodes have the same transmission
range. Formally,

Definition 6.4 (Network connectivity). A network M is said to be connected
if

• whenever M ≡ N | m[W1]
ν
t | n[W2]

ν′

t′ with m ∈ ν′ it holds that n ∈ ν;
• for all m,n ∈ nds(M) there is a sequence of nodes m1, . . . ,mk ∈ nds(M), with

neighbouring ν1, . . . , νk, respectively, such that m=m1, n=mk, and mi ∈ νi+1,
for 1 ≤ i ≤ k−1.

The next definition is about the consistency of exposure indicators of nodes.
Intuitively, the exposure indicators of active senders and active receivers must
be consistent with their current activity (transmission/reception). Moreover, the
neighbours of active senders must have their exposure indicators consistent with
the duration of the transmission.
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Definition 6.5 (Exposure consistency). A network M is said to be exposure-
consistent if the following conditions are satisfied.

1. If M ≡ N | m[(x)v.P ]νt , with v 6= ⊥, then 0 ≤ t ≤ δv.
2. If M ≡ N | m[〈v〉r.P ]νt , then r ≤ δv.
3. If M ≡ N | m[〈v〉r.P ]νt | n[W ]ν

′

t′ , with m ∈ ν′, then 0 < r ≤ t′.
4. Let M ≡ N | n[W ]νt with t>0. If active(k,N) 6= t for all k in ν∩actsnd(N),

then there is k′ in ν\nds(N) such that whenever N ≡ N ′ | l[W ′]ν
′

t′ , with k′ ∈ ν′,
then t′ ≥ t.

The next definition is about the consistency of transmitting stations. The first
and the second part are about successful transmissions, while the third part is
about collisions.

Definition 6.6 (Transmission consistency). A network M is said to be tran-
smission-consistent if the following conditions are satisfied.

1. If M ≡ N | n[(x)v.Q]νt and v 6= ⊥, then | actsnd(N) ∩ ν | ≤ 1.
2. If M ≡ N | m[〈w〉r.P ]νt | n[(x)v.Q]ν

′

t′ , with m ∈ ν′ and v 6= ⊥, then (i)
v = m:w, and (ii) r = t′.

3. If M ≡ N | n[(x)v.P ]νt , with | actsnd(N) ∩ ν |> 1, then v = ⊥.

Definition 6.7 (Well-formedness). A network M is said to be well-formed if it
is node-unique, connected, exposure-consistent, and transmission-consistent.

In the sequel, we will work only with well-formed networks. Finally, we prove
that network well-formedness is preserved at runtime. In particular, the preser-
vation of exposure- and transmission-consistency are the more interesting and
delicate results.

Proposition 6.8. Let M be a node-unique network. If M
λ−−→ M ′ then M ′ is

node-unique.
Proof By transition induction. The result easily follows by the fact that no
inference rule creates new nodes. �

Proposition 6.9. Let M be a connected network. If M
λ−−→ M ′ then M ′ is con-

nected.
Proof By transition induction. The result easily follows by the fact that no
inference rule changes the network topology. �

Proposition 6.10 (Exposure consistency). Let M be an exposure consistent

network. If M
λ−−→M ′ then M ′ is exposure consistent.

Proof The proof proceeds by transition induction on the derivation of M
λ−−→

M ′, for λ ∈ {m!v,m?v, tick}. We show the most significant cases, derived by an
application of rules (Sync), (RcvPar), and (Par-tick). The other cases are straight-
forward. Here we show just a few cases. The full proof can be found in Section A.1
at page 168.
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• Let M
m!v−−−−→ M ′ by an application of rule (Sync) with M = M1 | M2,

M1
m!v−−−−→ M ′1 and M2

m?v−−−−→ M ′2, and M ′ = M ′1 | M ′2, where M ′1 and M ′2
are exposure consistent by inductive hypothesis. We have to prove that M ′

respects the clauses of Definition 6.5.
– Clauses 1-2. In these cases the result follows directly by inductive hypoth-

esis.
– Clause 3. Let M ′ ≡

∏
i ni[W

′
i ]
νi
t′i
| h[〈v〉r.P ]νht′h | n[W ′]νnt′n , with h ∈ νn. We

have to prove that r ≤ t′n. We only consider the case when h ∈ nds(M1)
and n ∈ nds(M2) (or viceversa). The other cases are easier and follow by
inductive hypothesis. There are two possibilities.
· h 6= m. By Lemma A.1(7) at page 167 we have

M ≡
∏
i

ni[Wi]
νi
ti
| h[〈v〉r.P ]νhth | n[W ]νntn

for appropriate processes and tags. Now, if m ∈ νn by Lemma A.1(4) we
have t′n = max(tn, δv). As M is exposure consistent it holds that r ≤ tn
and hence also r ≤ t′n. On the other hand, if m 6∈ νn by an application of
Lemma A.1(3) we have t′n = tn. As M is exposure consistent it follows
that r ≤ tn = t′n.

· h = m. By Lemma A.1(2) it follows that

M ≡
∏
i

ni[Wi]
νi
ti
| h[!〈v〉.P ]νhth | n[W ]νntn

for appropriate processes and tags, with r = δv. Since h ∈ νn, by Lemma
A.1(4) we have t′n = max(tn, δv). As a consequence, r ≤ t′n.

– Clause 4. Let

M ≡ N | n[W ]νt =
∏
i

ni[Wi]
νi
ti
| n[W ]νt

and
M ′ ≡ N ′ | n[W ′]νt′ =

∏
i

ni[W ′i ]
νi
t′i
| n[W ′]νt′

with t′ > 0 and active(k′, N ′) 6= t′ for all k′ ∈ ν ∩ actsnd(N ′). We have to
prove that there is k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for some i, then
t′i ≥ t′. We can distinguish two cases:
· If m 6∈ ν by Lemma A.1(3) we have t′ = t. By Lemma A.1(6), it follows

that actsnd(N) ⊆ actsnd(N ′). As a consequence, ν ∩ actsnd(N) ⊆ ν ∩
actsnd(N ′). Since t′ = t we can derive that for all k ∈ ν ∩ actsnd(N)
it holds that active(k,N ′) 6= t. By Lemma A.1(6) and Lemma A.1(7)
if k 6= m then active(k,N) = active(k,N ′). Since m 6∈ ν it follows that
for all k ∈ ν ∩ actsnd(N) it holds active(k,N) 6= t. Since M is exposure
consistent it follows that there is k̂ ∈ ν \ nds(N) such that if k̂ ∈ νi, for
some i, then ti ≥ t. Notice that ν \ nds(N) = ν \ nds(N ′). Moreover, by
Lemma A.1(3) and A.1(4) we have ti ≤ t′i, for all i. This allows us to
derive that there is k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for some i, then
t′i ≥ ti ≥ t = t′.
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· If m ∈ ν then by Lemma A.1(4) we have t′ = max(t, δv). By definition
of neighbouring of a node m ∈ ν implies m 6= n. By Lemma A.1(2)
it follows that m 6∈ actsnd(N), m ∈ actsnd(N ′), and active(m,N ′) =
δv. Since active(k′, N ′) 6= t′ for all k′ ∈ ν ∩ actsnd(N ′), and m ∈ ν ∩
actsnd(N ′), it follows that t′ 6= δv. Since t′ = max(t, δv), it follows that
t′ = t. By Lemma A.1(6), it follows that actsnd(N) ⊆ actsnd(N ′). As a
consequence, ν ∩ actsnd(N) ⊆ ν ∩ actsnd(N ′). Since t′ = t we can derive
that for all k ∈ ν ∩ actsnd(N) it holds that active(k,N ′) 6= t. By Lemma
A.1(6) and Lemma A.1(7) if k 6= m then active(k,N) = active(k,N ′).
Since m 6∈ actsnd(N) it follows that for all k ∈ ν ∩ actsnd(N) it holds
active(k,N) 6= t. Since M is exposure consistent it follows that there is
k̂ ∈ ν \ nds(N) such that if k̂ ∈ νi, for some i, then ti ≥ t. Notice that
ν \ nds(N) = ν \ nds(N ′). Moreover, by Lemmas A.1(3) and A.1(4) we
have ti ≤ t′i, for all i. This allows us to derive that there is k̂ ∈ ν\nds(N ′)
such that if k̂ ∈ νi, for some i, then t′i ≥ ti ≥ t = t′.

�

Let us prove now that our LTS preserves transmission consistency.

Proposition 6.11 (Transmission consistency). Let M be both an exposure

consistent and a transmission consistent network. If M
λ−−→M ′ then M ′ is trans-

mission consistent.

Proof The proof proceeds by transition induction on the derivation of M
λ−−→

M ′, for λ ∈ {m!v,m?v, tick}. We show the most significant cases, derived by an
application of rules (Sync), (RcvPar), and (Par-tick). The other cases are straight-
forward. We show just a few cases. The full proof can be found in Section A.1 at
page 170.

• Let M
m!v−−−−→ M ′ by an application of rule (Sync), with M = M1 | M2,

M1
m!v−−−−→ M ′1 and M2

m?v−−−−→ M ′2, and M ′ = M ′1 | M ′2, where M ′1 and M ′2
are transmission consistent by inductive hypothesis. We have to prove that M ′

respects the clauses of Definition 6.6. Let examine the three clauses one by one.
– Clause 1. Let

M ′ ≡ N ′ | n[(x)w.Q]νnt′n =
∏
i

ni[W ′i ]
νi
t′i
| n[(x)w.Q]νnt′n

with w 6= ⊥. We have to prove that | actsnd(N ′)∩ν |≤ 1. By Lemma A.1(2)
at page 167 we have

M ′ ≡ N ′ | n[(x)w.Q]νnt′n ≡
∏
j

nj[W ′j]
νj
t′j
| m[〈v〉δv .P ]νmt′m | n[(x)w.Q]νnt′n

and
M ≡ N | n[W ]νnt′n =

∏
j

nj[Wj]
νj
tj
| m[!〈v〉.P ]νmtm | n[W ]νntn

for appropriate processes and tags.
There are two possibilities.
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· If m /∈ νn then by Lemma A.1(3) we have W = (x)w.Q. By Lem-
mas A.1(6) and A.1(7) we have actsnd(N ′) = actsnd(N) ∪ {m}. Since
M is transmission consistent, we have | actsnd(N) ∩ νn |≤ 1. Since
m /∈ νn it follows that | actsnd(N ′) ∩ νn |≤ 1.

· If m ∈ ν then by Lemma A.1(5) we have W =?(x).Q (the case W =
b?(x).P cQ is similar) and tn = 0. By Lemmas A.1(6) and A.1(7) we
have actsnd(N ′) = actsnd(N) ∪ {m}. Since tn = 0, m ∈ νn, and M
is exposure consistent, clause 3 of Definition 6.5 allows to derive that
actsnd(N ′) ∩ νn = {m}. Hence, | actsnd(N ′) ∩ νn |≤ 1.

– Clause 2. Let

M ′ ≡
∏
i

ni[W ′i ]
νi
t′i
| h[〈w1〉r.P ]νht′h | n[(x)w2 .Q]νnt′n

with h ∈ νn and w2 6= ⊥. We have to show that w2 = m:w1 and r = t′n.
There are two cases.
1. Suppose h 6= m. In this case, by Lemma A.1(2) at page 167 we have the

following situation:

M ′ ≡
∏
j

nj[W ′j]
νj
t′j
| m[〈v〉δv .R]νmt′m | h[〈w1〉r.P ]νht′h | n[(x)w2 .Q]νnt′n

and

M ≡
∏
j

nj[Wj]
νj
tj
| m[!〈v〉.R]νmtm | h[〈w1〉r.P ]νhth | n[W ]νntn

for appropriate processes and tags.
Now, there are two sub-cases.
a) If m /∈ νn then by Lemma A.1(3) we have W = (x)w2 .Q and t′n = tn.

Since M is transmission consistent we derive w2 = m:w1 and r = t′n.
b) If m ∈ νn then by Lemma A.1(5) we have W =?(x).Q (the case

W = b?(x).P cQ is similar) and tn = 0. However, sinceM is exposure
consistent by clause 3 of Definition 6.5 it must be tn > 0. So, this
case is not possible.

2. Suppose h = m. This case easily follows by an application of Lemma A.1(2)
and Lemma A.1(5).

– Clause 3. Let

M ′ ≡ N ′ | n[(x)w.P ]νnt′n =
∏
i

ni[W ′i ]
νi
t′i
| n[(x)w.P ]νnt′n

with | actsnd(N ′)∩νn |> 1. We want to show that w = ⊥. By an application
of Lemma A.1(2) at page 167 it holds that

M ′ ≡
∏
j

nj[W ′j]
νj
t′j
| m[〈v〉δv .Q]νmt′m | n[(x)w.P ]νnt′n

and
M ≡

∏
j

nj[Wj]
νj
tj
| m[!〈v〉.Q]νmtm | n[W ]νntn
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for appropriate processes and tags. Since | actsnd(N ′) ∩ νn |> 1, it must
be W ′j = 〈wj〉r.Pj , for some j. By Lemma A.1(6) we derive that Wj =
W ′j . At this point we reason by contradiction. Suppose w 6= ⊥. Then, by
Lemma A.1(5) we haveW =?(x).P (the caseW = b?(x).P cQ is similar) and
tn = 0. However, sinceM is exposure consistent, by clause 3 of Definition 6.5
it must be tn > 0. This contradiction allows us to conclude that w = ⊥.

�

Theorem 6.12 (Subject reduction). If M is a well-formed network, and M
λ−−→

M ′ for some label λ and network M ′, then M ′ is well-formed as well.
Proof The proof follows by an application of Propositions 6.8, 6.9, 6.10, and
6.11. �

6.4 Time Properties

We now prove that TCWS enjoys three desirable time properties: (i) time deter-
minism, (ii) patience, and (iii) maximal progress.

Theorem 6.13 formalises the determinism nature of time passing: a network
can reach at most one new state by executing the action tick.

Theorem 6.13 (Time Determinism). Let M be a well-formed network. If

M
tick−−−→M ′ and M

tick−−−→M ′′ then M ′ and M ′′ are syntactically the same.

Proof By induction on the length of the proof of M
tick−−−→M ′. The base cases

are when the transition is derived by the application of one of the following rules:
(Time-0), (Time-t), (RcvFail), and (Zero-tick). It is straightforward to prove that the

statement holds for these rules. As to the inductive case, let M
tick−−−→ M ′ by an

application of rule (Par-tick). This implies that M = M1 | M2, for some M1 and

M2, with M1
tick−−−→ M ′1, M2

tick−−−→ M ′2 and M ′ = M ′1 | M ′2. As M = M1 | M2,

the transition M
tick−−−→M ′′ can be derived only by applying rule (Par-tick) where

M1
tick−−−→ M ′′1 , M2

tick−−−→ M ′′2 and M ′′ = M ′′1 | M ′′2 . By inductive hypothesis it
holds that M ′i and M ′′i are syntactically the same, for i ∈ {1, 2}. This implies that
M ′ and M ′′ are syntactically the same. �

In [111, 195], the maximal progress property says that processes communicate
as soon as a possibility of communication arises. However, unlike [111,195], in our
calculus message transmission requires a positive amount of time. So, we generalise
the property saying that transmissions cannot be delayed.

Theorem 6.14 (Maximal Progress). Let M be a well-formed network. If there

is N such that M
m!v−−−−→ N then M

tick−−−→M ′ for no network M ′.
Proof By induction on the structure of M . In M = 0 the statement does not
apply. If M is composed by only one node and M

m!v−−−−→ N , this can be derived
only by an application of rule (Snd) with M = m[!〈v〉.P ]νt and N = m[〈v〉δv .P ]νt .
Because sender nodes cannot perform tick-actions, there is no network M ′ such
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that M
tick−−−→ M ′. Let M be composed by at least two nodes. If M

m!v−−−−→ N
by an application of rule (Sync) then M = M1 | M2 for some M1 and M2, with

M1
m!v−−−−→ M ′1, M2

m?v−−−−→ M ′2 and N = M ′1 | M ′2 (the converse is similar). In
this case the only rule for deriving a tick-transition from M is (Par-tick). However,

the inductive hypothesis guarantees that M1
tick−−−→ M̂ for no network M̂ ; then

M
tick−−−→M ′ for no network M ′. �

The last time property is patience. In [111, 195] patience guarantees that a
process will wait indefinitely until it can communicate. In our setting, this means
that if no transmission can start then it must be possible to execute a tick-action
to let time pass.

Theorem 6.15 (Patience). Let M be a well-formed network. If M
m!v−−−−→ M ′

for no network M ′ then there is a network N such that M
tick−−−→ N .

Proof By contradiction and then by induction on the structure of M . We prove
that if M

tick−−−→ N for no network N then there is a network M ′ such that
M

m!v−−−−→M ′. Let us proceed by induction on the structure of M . We show just a
few cases. The full proof can be found in Section A.1 at page 173.

• Let M = 0. Then M
tick−−−→ M by an application of rule (Zero-tick). So, the

statement does not apply.
• Let M = n[W ]νt . We proceed by induction on the structure of P .

– If W = nil and t = 0 then M
tick−−−→ n[P ]ν0 by an application of rules

(Nil-tick and ) and (Time-0). Thus the statement does not apply.

– If W = !〈v〉.P then M 6 tick−−−→. However, M
m!v−−−−→ m[〈v〉δv .P ]νt , by an appli-

cation of rule (Snd), in contradiction with the hypothesis.

– If W =?(x).P and t = 0 then M
tick−−−→ n[W ]ν0 , by an application of rules

(Rcv-tick) and (Time-0). Thus the statement does not apply.

– If W = tick.P and t = 0 then M
tick−−−→ n[W ]ν0 by an application of rules

(Sigma) and (Time-0). Thus the statement does not apply.

– If W = b?(x).P cQ and t = 0 then M
tick−−−→ n[Q]νt	1, by an application of

rules (Timeout) and (Time-0). Thus the statement does not apply.
– If W = 〈v〉r.P , with r > 1, and t = 0 then by an application of rules

(ActSnd) and (Time-0) we have M
tick−−−→ n[〈v〉r−1.P ]ν0 and the statement

does not apply.
– If W = (x)v.P , with t > 0, then by an application of rules (ActRcv) and

(Time-t) we have M
tick−−−→ n[(x)v.P ]νt	1 and the statement does not apply.

• Let M = M1 | M2. A transition of the form M
tick−−−→ M ′ can be derived only

by an application of rule (Par-tick). Thus if M cannot perform a tick-action
then at least one of the premises of rule (Par-tick) does not hold:

– If M1
tick−−−→ M ′1 for no network M ′1, then by inductive hypothesis we have

M1
m!v−−−−→ M ′1, for some M ′1. As M = M1 | M2 is a well-formed network,
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by Lemma A.4 at page 173 it holds that M
m!v−−−−→ M ′1 | M ′2, for some M ′2,

in contradiction with the hypothesis.
– If M2

tick−−−→M ′2 for no network M ′2, then we can reason as in the previous
sub-case.

�

6.5 A Case Study: the Carrier Sense Multiple Access
Scheme

The Carrier Sense Multiple Access (CSMA) scheme [123] is a widely used MAC
level protocol in which a device senses the channel before transmitting. More
precisely, if the channel is sensed free, the sender starts transmitting immediately,
that is in the next instant of time (we recall that in wireless systems channels are
half-duplex); if the channel is busy, that is some other station is transmitting, the
device keeps listening the channel until it becomes idle and then starts transmitting
immediately. This strategy is called 1-persistent CSMA. More generally, in a p-
persistent CSMA strategy, where p is a probability, the sender transmits with
probability p, and waits for the next available time slot, with probability 1− p.

In our calculus, we can easily model the 1-persistent CSMA scheme using
receivers with timeout where the sender process !〈v〉.P is replaced by the process
defined below:

!!〈v〉.P def= b?(x).!〈v〉.P c!〈v〉.P .

The next example shows how 1-persistent CSMA affects the behaviour of a
wireless system. Let us consider the network:

Net
def= k[!!〈v〉.?(x).P ]νk0

∣∣ l[?(x).Q]νl0

∣∣ m[tick.!!〈w〉]νm0

∣∣ n[?(y).R]νn0

with the following communication topology: νk = {l,m, l′}, νl = {k,m}, νm =
{k, l, n, l′,m′}, and νn = {m}, as in Figure 6.1. Here, node k senses the channel
free and, according to the CSMA scheme, in the next instant of time it will start
transmitting. Thus,

Net
tick−−−→ k[!〈v〉.?(x).P ]νk0

∣∣ l[?(x).Q]νl0

∣∣ m[!!〈w〉]νm0

∣∣ n[?(y).R]νn0

= Net1 .

In Net1, node m it is currently listening the channel to check whether it is free.
By applying rules (Snd), (Rcv), (Exp), (OutRng), (RcvPar), and (Sync) node k can
start transmitting:

Net1
k!v−−−→ k[〈v〉δv .?(x).P ]νk0

∣∣ l[(x)k:v.Q]νlδv
∣∣ m[(x)k:v.!〈w〉]νmδv

∣∣ n[?(y).R]νn0

= Net2 .

Now, since k has already started its transmission, node m senses the channel busy
and it must wait until the channel becomes free. Notice that in this manner there
are no collisions at l and/or k. In fact, after δv instants of time we have:
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Net2
tick−−−→

δv
k[?(x).P ]νk0

∣∣ l[(x)k:v.Q]νl0

∣∣ m[(x)k:v.!〈w〉]νm0

∣∣ n[?(y).R]νn0

tick−−−→ k[?(x).P ]νk0

∣∣ l[{k:v/x}Q]νl0

∣∣ m[!〈w〉]νm0

∣∣ n[?(y).R]νn0

= Net3

where node l has successfully received value v from k. Notice that after δv instants
of time node m senses the channel free, and by maximal progress it will start
transmitting in the next instant of time.

Notice that, using a CSMA scheme, there is always a chance of stations trans-
mitting at the same time, caused by the fact that different stations sensed the
medium free and decided to transmit at once. As an example, consider the net-
work:

Net′
def= k[!!〈v〉.?(x).P ]νk0

∣∣ l[?(x).Q]νl0

∣∣ m[!!〈w〉]νm0

∣∣ n[?(y).R]νn0

with the same communication topology as before. In this scenario, both nodes k
and m want to start transmitting. And since both of them sense the channel free,
they will start transmitting in the next instant of time. Thus, assuming δv < δw,
we have:

Net′
tick−−−→ k[!〈v〉.?(x).P ]νk0

∣∣ l[?(x).Q]νl0

∣∣ m[!〈w〉]νm0

∣∣ n[?(y).R]νn0

k!v−−−→ k[〈v〉δv .?(x).P ]νk0

∣∣ l[(x)k:v.Q]νlδv
∣∣ m[!〈w〉]νmδv

∣∣ n[?(y).R]νn0

m!w−−−−→ k[〈v〉δv .?(x).P ]νkδw
∣∣ l[(x)⊥.Q]νlδw

∣∣ m[〈w〉δw ]νmδv
∣∣ n[(y)m:w.R]νnδw .

In this situation, node l is exposed to a collision caused by the two transmis-
sions.

Notice that, the CSMA scheme is not always a good idea. Let us consider,
for instance, the previous network Net where nodes l and m are not neighbours
anymore, that is νl = {k} and νm = {k, n, l′,m′}. The network topology is drawn
in the picture on the left of Figure 6.2. Now, suppose that m wants to send a
message to n.

Figure 6.2 Network topologies for CSMA examples

k l

ml′

m′ n

k l

ml′

m′ n

Then, the CSMA scheme delays the transmission without any reason, only
because m is exposed to the transmission originating from k. This is a well-known
problem, not prevented by CSMA, called exposed terminal problem.
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The CSMA scheme suffers from another well-known problem called hidden
terminal problem. This happens when two transmitters sense the channel free,
because they are not in each other’s transmission cell, and start transmitting
causing a collision to a third node lying in the transmission cells of both. As
an example, you can consider, for instance, the previous network Net with the
following communication topology: νk = {l, l′}, νl = {k,m}, νm = {l, n, l′,m′},
and νn = {m}. The network topology is drawn in the picture on the right of Figure
6.2. In this case, both transmissions at k and m will fire causing (after two instants
of time) an interference at l.

In unicast communications, to reduce the number of collisions due to the hidden
terminal problem, the CSMA scheme may be used together with a CA (Collision
Avoidance) protocol. In this protocol, before transmitting the message, two spe-
cial packets (RTS/CTS) are sent to reserve the channel [123]. On one hand this
technique reduce the number of collisions, on the other hand the transmission of
extra data may drastically reduce the performances of the network. Moreover, the
CSMA/CA protocol does not help for broadcast communications, as it is designed
only for unicast transmissions.

6.6 Behavioural Semantics

In this section we propose a notion of timed behavioural equivalence for our wireless
networks. Our starting point is Milner and Sangiorgi’s barbed congruence [172],
a standard contextually-defined program equivalence. Intuitively, two terms are
barbed congruent if they have the same observables, in all possible contexts, under
all possible evolutions. The definition of barbed congruence strongly relies on two
crucial concepts: a reduction semantics to describe how a system evolves, and a
notion of observable which says what the environment can observe in a system.

From the operational semantics given in Section 6.2.2 it should be clear that
a wireless network evolves transmitting messages. Notice that a transmission in a
network does not require any synchronisation with the environment. Thus, we can
define the reduction relation _ between networks using the following inference
rule

(Red) M
m!v−−−−→ N

M _ N
.

We write _∗ for the reflexive and transitive closure of _.
Now, let us focus on the definition of an appropriate notion of observable. In

our calculus, as in CCS [169] and in π-calculus [171], we have both transmission
and reception of messages. However, in broadcast calculi only the transmission of
messages may be observed [137,163]. In fact, an observer cannot detect whether a
given node actually receives a broadcast value. In particular, if the node m[!〈v〉.P ]νt
evolves into m[〈v〉r.P ]νt we do not know whether some of the neighbours have
actually synchronised for receiving the message v. On the other hand, if a non-
exposed node n[?(x).P ]ν0 evolves into n[(x)m:v.P ]νt , then we can be sure that some
node in ν has started transmitting. Notice that a node n can certify the reception
of a message v from a transmitter m only if it receives the whole message without
collisions.
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Following Milner and Sangiorgi [172] we use the term “barb” as synonymous
of observable.

Definition 6.16 (Barbs). Let M be a well-formed network. We write M ↓n, if
M ≡ N | m[〈v〉r.P ]νt , for some m, v, r, P, t and ν, such that n ∈ ν and n /∈ nds(N).
We write M ⇓n if there is M ′ such that M _∗ M ′ ↓n.

The barb M ⇓n says that there is a transmission at M reaching the node n
of the environment. The observer can easily detect such a transmission placing
a receiver with timeout at n. Say, something like n[b?(x).0c!〈w〉.0]ν

′

t , where M |
n[b?(x).0c!〈w〉.0]ν

′

t is well-formed, and f ∈ ν′, for some fresh name f . In this
manner, if n is currently exposed to a transmission then, after a tick-action, the
fresh barb at f is definitely lost. One may wonder whether the barb should mention
the namem of the transmitter, which is usually recorded in some specific field of the
packets. Notice that, in general, due to communication collisions, the observer may
receive incomprehensible packets without being able to identify the transmitter. In
fact, if M ↓n there might be several nodes in M which are currently transmitting
to n. So, in our setting, it does not make sense to put the name of the transmitter
in the barb.

Now, everything is in place to define our timed notion of reduction barbed
congruence. In the sequel, we write R to denote binary relations over well-formed
networks.

The first property that our timed notion of reduction barbed congruence has
to satisfy is the preservation of the barb.

Definition 6.17 (Barb preserving). A relation R is said to be barb preserving
if whenever M R N it holds that M ↓n implies N ⇓n.

As we are interested in weak behavioural equivalences, the definition of reduc-
tion closure is given in terms of weak reductions.

Definition 6.18 (Reduction closure). A relation R is said to be reduction-
closed if M R N and M _ M ′ imply there is N ′ such that N _∗ N ′ and M ′ R N ′.

When comparing two networks M and N , time must pass in the same manner
for M and N .

Definition 6.19 (tick-closure). A relation R is said to be tick-closed if M R N

and M
tick−−−→ M ′ imply there is a network N ′ such that N _∗

tick−−−→_∗ N ′ and
M ′ R N ′.

Our relation is preserved by the parallel operator.

Definition 6.20 (Contextuality). A relation R is said contextual if M R N ,
for M and N well-formed, implies M | O R N | O for all networks O such that
M | O and N | O are well-formed.

Finally, everything is in place to define timed reduction barbed congruence.

Definition 6.21 (Timed reduction barbed congruence). Timed reduction
barbed congruence, written ∼=, is the largest symmetric relation over well-formed
networks which is barb preserving, reduction-closed, tick-closed, and contextual.
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6.7 A Bisimulation Proof Method

The definition of timed reduction barbed congruence is simple and intuitive. How-
ever, due to the universal quantification on parallel contexts, it may be quite dif-
ficult to prove that two terms are barbed congruent. Simpler proof techniques are
based on labelled bisimilarities. In this section, we propose an appropriate notion
of bisimulation between networks. As a main result, we prove that our labelled
bisimilarity is a proof-technique for timed reduction barbed congruence.

First of all we have to distinguish between transmissions which may be observed
and transmissions which may not be observed.

(Shh)
M

m!v−−−−→ N ngh(m,M)⊆nds(M)

M
τ−−→ N

(Obs)
M

m!v−−−−→ N ν:=ngh(m,M)\nds(M)6=∅

M
m!vIν−−−−−−→ N

Rule (Shh) models transmissions that cannot be detected by the environment. This
happens if none of the potential receivers is in the environment. Notice that, al-
though there is no explicit rule, τ -actions propagate through parallel composition.

Lemma 6.22. If M
τ−−→M ′ then M | N τ−−→M ′ | N and N |M τ−−→ N |M ′.

Rule (Obs) models a transmission of a message that may be potentially received
by the nodes ν of the environment. Notice that this transmission can be really
observed at some node n ∈ ν only if no collisions arise at n during the transmission
of v.

In the sequel, we use the metavariable α to range over the following actions:
τ , tick, m?v, and m!vIν. Since we are interested in weak behavioural equivalences,
that abstract over τ -actions, we introduce a standard notion of weak action: =⇒
denotes the reflexive and transitive closure of

τ−−→; α==⇒ denotes =⇒ α−−→ =⇒; α̂==⇒
denotes =⇒ if α = τ and α==⇒ otherwise.

Definition 6.23 (Bisimilarity). A relation R over well-formed networks is a
simulation if M R N implies that

• nds(M) = nds(N)
• whenever M

α−−→M ′ there is N ′ such that N α̂==⇒ N ′ and M ′ R N ′.

A relation R is called bisimulation if both R and its converse are simulations. We
say that M and N are bisimilar, written M ≈ N , if there is some bisimulation R
such that M R N .

The requirement that two bisimilar networks must have the same nodes is quite
reasonable. Technically, this is necessary to prove that the bisimilarity is a con-
gruence.

In order to prove that our labelled bisimilarity implies timed reduction barbed
congruence we have to show its contextuality.

Theorem 6.24 (≈ is contextual). Let M and N be two well-formed networks
such that M ≈ N . Then M | O ≈ N | O for all networks O such that M | O and
N | O are well-formed.
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Proof We prove that the relation

S def= {
(
M | O , N | O

)
: M ≈ N, M | O and N | O well-formed }

is a bisimulation by a case analysis. We show details for one case. The full proof
can be found in Section A.1 at page 174.

• Since M ≈ N by definition of bisimilarity it follows nds(M) = nds(N). This
implies nds(M | O) = nds(N | O).

• Let M | O m!vIν−−−−−−→ M̂ , by an application of rule (Obs) because M | O m!v−−−−→
M̂ , with ν = ngh(m,M | O) \ nds(M | O) 6= ∅.
There are two possible cases:
– M | O m!v−−−−→ M̂ by an application of rule (Sync) because M

m!v−−−−→ M ′

and O
m?v−−−−→ O′, with M̂ = M ′ | O′. Since M

m!v−−−−→ M ′ it follows that
m ∈ nds(M) and hence ν = (ngh(m,M) \ nds(M)) \ nds(O). Let ν′ :=
ngh(m,M) \ nds(M), since ν 6= ∅ it follows that ν′ 6= ∅. By an application

of rule (Obs) we have M
m!vIν′−−−−−−−→M ′. Now, since M ≈ N there is N ′ such

that N m!vIν′=======⇒ N ′ with M ′ ≈ N ′ and ν′ = ngh(m,N)\nds(N) 6= ∅. Since
the action m!vIν′ can be generated only by an application of rule (Obs),
there are N1 and N2 such that

N
τ−−→
∗
N1

m!v−−−−→ N2
τ−−→
∗
N ′ .

Since O
m?v−−−−→ O′, by several applications of Lemma 6.22 and one applica-

tion of rule (Sync) we have:

N | O τ−−→
∗
N1 | O

m!v−−−−→ N2 | O′
τ−−→
∗
N ′ | O′ .

As
ν = ngh(m,M | O) \ nds(M | O)

= (ngh(m,M) \ nds(M)) \ nds(O)
= (ngh(m,N) \ nds(N)) \ nds(O)
= ngh(m,N | O) \ nds(N | O)
6= ∅ .

by an application of rule (Obs) we can derive

N | O τ−−→
∗
N1 | O

m!vIν−−−−−−→ N2 | O′
τ−−→
∗
N ′ | O′ .

By Theorem 6.12, both M ′ | O′ and N ′ | O′ are well-formed. As M ′ ≈ N ′

it follows that
(
M ′ | O′ , N ′ | O′

)
∈ S.

– M | O m!v−−−−→ M̂ , by an application of rule (Sync), because M
m?v−−−−→ M ′

and O
m!v−−−−→ O′, with M̂ = M ′ | O′. Since O

m!v−−−−→ O′, it follows that
m ∈ nds(O) and hence ν = (ngh(m,O) \ nds(O)) \ nds(M). Since M ≈ N

there is N ′ such that N m?v====⇒ N ′ with M ′ ≈ N ′. By several applications
of Lemma 6.22 and one application of rule (Sync) it follows that:

N | O τ−−→
∗
N1 | O

m!v−−−−→ N2 | O′
τ−−→
∗
N ′ | O′ .
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By definition of bisimilarity, M ≈ N implies nds(M) = nds(N). Moreover,
since M | O and N | O are well-formed and m ∈ nds(O), by node uniqueness
it follows that m 6∈ nds(M) and m 6∈ nds(N). Thus,

ngh(m,N | O) \ nds(N | O) = (ngh(m,O) \ nds(O)) \ nds(N)
= (ngh(m,O) \ nds(O)) \ nds(M)
= ngh(m,M | O) \ nds(M | O)
= ν
6= ∅ .

With this premise, by an application of rule (Obs) we can derive

N | O τ−−→
∗
N1 | O

m!vIν−−−−−−→ N2 | O′
τ−−→
∗
N ′ | O′ .

By Theorem 6.12, both M ′ | O′ and N ′ | O′ are well-formed. As M ′ ≈ N ′

it follows that
(
M ′ | O′ , N ′ | O′

)
∈ S.

�

In Theorem 6.25 we state our soundness result for which our bisimilarity implies
our reduction barbed congruence.

Theorem 6.25 (Soundness). Let ngh be a neighbouring function and M and N
two well-formed networks wrt ngh such that M ≈ N . Then M ∼= N .
Proof We have to prove that the labelled bisimilarity is contextual, barb pre-
serving, reduction- and tick-closed. Contextuality follows from Theorem 6.24. Re-
duction and tick-closure follow by definition. As to barb preservation we reason
by contradiction. If M ↓n, we can choose as a context to observe this barb the
network O

def= n[b?(x).0c!〈w〉.0]νt such that M | O and N | O are well-formed,
and f ∈ ν, for some fresh name f . Since M ↓n the network M | O will never
(even in the future) perform an output action n!wIν. Let us assume that N 6⇓n.
We would have N | O tick===⇒ n!wIν======⇒. However, this is in contradiction with the
hypothesis, as by Theorem 6.24 we have M | O ≈ N | O. So, it must be N ⇓n. �

6.8 Algebraic Laws

In Theorem 6.26, we report a number of algebraic properties on well-formed net-
works that can be proved using our bisimulation proof-technique. We briefly ex-
plain them:

• Laws 1 and 2: they show different but equivalent nodes that do not interact
with the rest of the network;

• Law 3: it is about exposed and sleeping nodes;
• Law 4: it is about successful reception. Here, node n will receive correctly

the value v because all its neighbours will not interfere during the current
transmission;

• Laws 5 and 6: they are about collisions. In both cases the transmission at m
will cause a collision at n;
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• Law 7: it tells about the blindness of receivers exposed to collisions. In par-
ticular, if all neighbours of a transmitter are exposed, then the content of the
transmission is irrelevant as all recipients will fail. Only the duration of the
transmission may be important as the exposure indicators of the neighbours
may change.

Theorem 6.26.

1. n[nil]νt ≈ n[Sleep]νt , where Sleep def= tick.Sleep.
2. n[nil]νt ≈ n[P ]νt , if P does not contain sender processes.
3. n[tickr.P ]νs ≈ n[tickr.P ]νt if s ≤ r and t ≤ r.
4. m[〈v〉r.P ]νt | n[(x)m:v.Q]ν

′

r | M ≈ m[〈v〉r.P ]νt | n[tickr.{m:v/x}Q]ν
′

r | M , if
m ∈ ν′ and for all k ∈ ν′ \m it holds that M ≡ k[ticks.R]νktk |M

′, with s ≥ r.
5. m[!〈v〉.P ]νs | n[(x)w.Q]ν

′

t ≈ m[!〈v〉.P ]νs | n[(x)⊥.Q]ν
′

t , if m ∈ ν′.
6. m[〈v1〉r.!〈v2〉.P ]νs | n[(x)w.Q]ν

′

t ≈ m[〈v1〉r.!〈v2〉.P ]νs | n[(x)⊥.Q]ν
′

t , if m ∈ ν′.
7. m[!〈v〉.P ]νt | N ≈ m[!〈w〉.P ]νt | N , if δv = δw, and for all n ∈ ν it holds that
N ≡ n[W ]ν

′

t′ | N ′, with t′ > 0.
Proof By exhibiting the appropriate bisimulations. Let us prove, for instance,
Law 5. The other proofs can be found in Section A.1 at page 176. For convenience,
let us define:

• A
def= m[!〈v〉.P ]νs | n[(x)w.Q]ν

′

t

• B
def= m[!〈v〉.P ]νs | n[(x)⊥.Q]ν

′

t .

Let
S def= {(A,B) | for all s and t} ∪ Id

where Id is the identity relation over network terms. We prove that S is a bisim-
ulation. We proceed by case analysis on the possible transitions of A. Notice that
by maximal progress, no tick-actions may be performed.

• If A
h?v′−−−−→ A′. The most interesting case is when h ∈ ν ∩ ν′. In this case, by

an application of rules (Coll), (Exp), and (RcvPar) we have A′ = m[!〈v〉.P ]νs′ |
n[(x)⊥.Q]ν

′

t′ , where t′ = max(t, δv′) and s′ = max(s, δv′). Similarly, we have

B
h?v′−−−−→ A′ and we are done.

• If A
m!vIν̂−−−−−−→ A′, with ν̂ = ν \ {n} 6= ∅, then since m ∈ ν′, by an application

of rules (Snd), (Coll), (Sync), and (Obs) it follows that A′ = m[〈v〉δv .P ]νs |
n[(x)⊥.Q]ν

′

t′ with t′ = max(t, δv). Similarly, we have B
m!vIν̂−−−−−−→ A′ and we are

done.
• If A

τ−−→ A′, because A
m!v−−−−→ A′ and ν = {n}. This case is similar to the

previous one.
�
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6.9 Related Work

In this section, we describe some related work.

Process Calculi without Time

We described in detail all the following related calculi but CBS] [178] in Section
4.4, whereas we described CBS] in Section 5.3. Here we remember some of their
features and we give a comparison of them with TCWS under different aspects.

Nanz and Hankin [178] have introduced a calculus for mobile wireless networks
(CBS]), relying on graph representation of node localities. The main goal of the
paper is to present a framework for specification and security analysis of com-
munication protocols for mobile wireless networks. Merro [163] has proposed a
process calculus for mobile ad hoc networks with a labelled characterisation of re-
duction barbed congruence. Godskesen [94] has proposed a calculus for mobile ad
hoc networks (CMAN). The paper proves a characterisation of reduction barbed
congruence in terms of a contextual bisimulation. It also contains a formalisation
of an attack on the cryptographic routing protocol ARAN. Singh, Ramakrish-
nan, and Smolka [214] have proposed the ω-calculus, a conservative extension
of the π-calculus. A key feature of the ω-calculus is the separation of a node’s
communication and computational behaviour from the description of its physi-
cal transmission range. The authors have provided a labelled transition semantics
and a bisimulation in “open” style. The ω-calculus is then used for modelling a
leader election protocol and the AODV routing protocol for MANETs. Ghassemi,
Fokkink, and Movaghar [91] have proposed a process algebra for mobile ad hoc
networks (RBPT) where, topology changes are implicitly modelled in the (opera-
tional) semantics rather than in the syntax. The authors have proposed a notion of
bisimulation for networks parameterised on a set of topology invariants that must
be respected by equivalent networks. This work is then refined in [92] where the
authors have proposed an equational theory for an extension of RBPT. Mezzetti
and Sangiorgi [167] have instead proposed the CWS calculus, a lower level calcu-
lus to describe interferences in wireless systems. In their LTS there is a separation
between transmission beginning and transmission ending. In CWS, CMAN, CMN
and in ω-calculus the topology is defined as a part of the syntax, while the seman-
tics of CBS] is quantified over a set of node configurations. In the former (except
CWS, where the topology is considered static), A process evolves syntactically
(to reflect topology changes) by the application of mobility rules defined in the
semantics, while in the latter, the underlying configuration changes arbitrary in
the semantics.

All the previous calculi but CWS abstract from the presence of interferences
and moreover are developed for mobile networks. In CWS a node is specified by
n[P ]cl,r denoting process P , synchronised on channel c, deployed at a node with
logical address n, physical location l and transmission range r. The topology of
a network is derived by a function d, defining which nodes are located within
transmission range of each other. Our work was definitely inspired by [167] for the
choice of the representation of network topology and the representation of colli-
sions, even if with some differences. In TCWS we have n[W ]νt for a device with
network address n, executing the sequential process W with the set of neighbours
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ν. Then we do not need to explicit the physical location of a node as we do not
use a distance function to calculate the set of neighbours of a node, because we
write them in the syntax with the tag ν. Moreover we consider a unique channel.
Finally, in CWS in order to identify whether and where two transmissions interfere
with each other, a transmission is not atomic, but is modelled by its two boundary
events: begin-transmission and end-transmission. Physically, these events represent
a modification of the antenna communication mode. In order to study communi-
cation interferences, we consider time-consuming transmissions and semantic tags
representing exposure and transmission durations are updated according to.

Process Calculi with Time

None of the calculi mentioned above deals with time, although there is an extensive
literature on timed process algebra, as we stated in Section 4.3. From a purely syn-
tactic point of view, the earliest proposals are extensions of the three main process
algebras, ACP, CSP and CCS. For example, [18] presents a real-time extension of
ACP, [199] contains a denotational model for a timed extension of CSP, while CCS
is the starting point for [175]. In [18] and [199] time is real-valued, and at least
semantically, associated directly with actions. The other major approach to repre-
senting time is to introduce special actions to model the passage of time, which the
current calculus shares with [19,103,175,181] and [233,234], although the basis for
all those proposals may be found in [35]. TWCS shares many of the assumptions of
the languages presented in these papers. For example, all the papers above assume
that actions are instantaneous and only the extension of ACP presented in [103]
does not incorporate time determinism; however maximal progress is less popular
and patience is even rarer.

More recent works on timed process algebra include the following papers. Aceto
and Hennessy [8] have presented a simple process algebra where time emerges in
the definition of a timed observational equivalence, assuming that beginning and
termination of actions are distinct events which can be observed. Hennessy and
Regan [111] have proposed the timed calculus called TPL, as timed version of CCS,
enjoying time determinism, maximal progress, and patience. Our action tick takes
inspiration from theirs. The authors have developed a semantic theory based on
testing and characterised in terms of a particular kind of ready traces. Prasad [195]
has proposed a timed variant of his CBS [194], called TCBS. In TCBS a time out
can force a process wishing to speak to remain idle for a specific interval of time;
this corresponds to have a priority. TCBS also assumes time determinism and
maximal progress. We described both TPL and TCBS in detail in Section 4.3.
Corradini et al. [67] have dealt with durational actions proposing a framework
relying on the notions of reduction and observability to naturally incorporate tim-
ing information in terms of process interaction. Corradini and Pistore [68] have
studied durational actions to describe and reason about the performance of sys-
tems. Actions have lower and upper time bounds, specifying their possible different
durations. Their time equivalence refines the untimed one. As we described, also
Baeten and Middelburg [21] have proposed several timed process algebras treated
in a common framework, and related by embeddings and conservative extensions
relations. In these process algebras the focus is on unsuccessful termination or
deadlock. In [22] Baeten and Reniers extend the framework of [21] to model suc-
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cessful termination for the relative-time case. Laneve and Zavattaro [144] have
proposed a timed extension of π-calculus where time proceeds asynchronously at
the network level, while it is constrained by the local urgency at the process level.
They have proposed a timed bisimilarity whose discriminating is weaker when
local urgency is dropped.

Our time model is inspired by TPL of [111] for the following properties: dis-
crete time, separation in the LTS between synchronisation and time passing, time
determinism, patience and maximal progress. On the contrary of TPL our actions
are not instantaneous and in this case we took inspiration by [67] and [68]. Also
our definition of timed reduction barbed congruence takes inspiration from [67].

6.10 Chapter Summary

We proposed a timed process calculus for wireless systems, called TCWS, exposed
to communication collisions. In our model, time and collisions are treated in a com-
pletely orthogonal way. The operational semantics of our calculus is given in terms
of a labelled transition system. We provided a notion of network well-formedness
and we proved that it is preserved at run-time. We proved that the calculus enjoys
a number of desirable time properties. As a case study we modelled the Carrier
Sense Multiple Access (CSMA) scheme. The main behavioural equivalence of our
calculus is a timed variant of reduction barbed congruence and, as efficient proof
method for it, we defined a labelled bisimilarity. We then applied our bisimulation
proof-technique to prove a number of algebraic properties.

For simplicity, in TCWS we relied on a static network topology. As a conse-
quence, our results mainly apply to stationary networks. Notice that movement is
not relevant in important classes of wireless systems, most notably sensor networks
(not all sensor networks are stationary, but the stationary case is predominant).

In the next two chapters we propose two calculi for MANETs. In CTAN in
Chapter 7 we embody a behavioural trust model and we adopt a mobility model
following the approach of [92]. In TCTAN in Chapter 8 we extend CTAN with a
simple notion of time.
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A Calculus of Trustworthy Ad Hoc Networks

7.1 Introduction

Ad hoc networking is a new area in wireless communications that is attracting
the attention of many researchers for its potential to provide ubiquitous connec-
tivity without the assistance of any fixed infrastructure. In describing mobile ad
hoc networks (MANETs) in Section 2.2.2 we said that they are self-configuring
networks of mobile devices, also called nodes, communicating with each other via
radio transceivers. The communication is usually broadcast. Ad hoc networks may
operate in a standalone fashion, or may be connected to the larger Internet. They
can be used wherever a wired backbone is infeasible and/or economically inconve-
nient, for example, to provide communications during emergencies, special events
(expos, concerts, etc.), or in hostile environments. Lack of a fixed infrastructure,
node mobility, shared wireless medium, cooperative behaviour, and physical vul-
nerability are some of the features that make challenging the design of a security
scheme for mobile ad hoc networks.

In this scenario, trust management and trustworthy computing are becoming
increasingly significant as they assist the systems in making sensible interactions
with unknown parties by providing a basis for more detailed and automated deci-
sions [203]. With the rapid development of network technologies and applications,
the existing network architecture exposes serious insufficiencies, and various net-
work attacks have kept emerging, such as malicious attacks, junk mails and com-
puter virus etc. All this makes the current networks vulnerable and untrustworthy.
So network security has to face big challenges.

The Trusted Computing Group (TCG) [105] has been developed to enhance
endpoint trustworthiness and standardise open specifications for high trusted com-
puting, but does not provide the network trustworthiness. The trustworthiness of
network is an urgent problem, and it is the inevitable trend in the development of
high trusted computing. According to Feng, Lin and Li [78, 185], in trustworthy
networks security and survivability must be provided on network services, con-
trollability must be provided on network architecture, user’s behaviours should be
monitored and some abnormal behaviours should be handled.

In brief, trustworthiness is reflected in three ways:
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• Trustworthiness of network services: traditional security mechanism can re-
solve the trustworthiness of service providers’ identities, but cannot provide the
trustworthiness of their behaviours. In trustworthy network, service providers
should be honest and provide secure services, cannot propagate malicious pro-
grams and leak private information of users. Quality of Service (QoS) and
security control mechanisms are important technologies to realize the trust-
worthiness of network services;

• Trustworthiness of information transmission: it means that information cannot
be deleted, tampered or damaged during transmission. Confidentiality, integrity
and availability of information should be ensured, which can be realized by
security protocols, encryptions and signatures;

• Trustworthiness of users: it includes the trustworthiness of users identity and
behaviours, which can be realized by rigorous authentication and correct au-
thorisation.

In this chapter we focus on trustworthiness of users identity and behaviours. It
is very important for trustworthy networks and it can be realized by access con-
trol technology. As we described in Section 3.2, access control systems typically
authenticate principals and then solicit access to resources. Access control is es-
sentially addressed to limit the privileges of users to access system resources, and
users can only do some operations which have been authorised to him. Correct
authorisation can ensure the trustworthiness of user’s behaviours. The trustwor-
thiness of users is evaluated according to their behaviours. So system attributes
of users not only includes their identity, but also their trust value, considered into
the access control in trustworthy network. Moreover, it is required the real-time
detection and auditing on system states and behaviours of users, which can reduce
the security risks to a great extent before network attacks emerge.

In Section 3.2 we described some traditional access control mechanisms; they
rely on the definition of specific permissions, called access policies, which are
recorded in some data structure such as Access Control Lists (ACLs). ACLs work
well when access policies are set in a centralised manners. However, they are less
suited to ubiquitous systems where the number of users may be very large and/or
continuously changing. In this scenario users may be potentially unknown and,
therefore, untrusted.

In order to overcome these limitations, Blaze, Feigenbaum and Lacy [46] have
introduced the notion of Decentralised Trust Management as an attempt to define
a coherent framework in which safety critical decisions are based on trust policies
relying on partial knowledge. Trust formalisation is the subject of several academic
works. Among them we remember [37,88,102,132,155]). In Section 3.3 we analysed
the concept of trust and reputation and we also described the trust management
approach. In particular, we argued that stable hierarchies of trust relations cannot
be supported in MANETs as evidence may be uncertain and incomplete, and only
sporadically collected and exchanged. However, in behaviour-based trust models
each node may perform trust evaluation based on continuous monitoring of mis-
behaviours of neighbours (direct trust). Misbehaviours typically include dropping,
modification, and misrouting of packets at network layer. Trust evaluation may
also depend on node reputation relying on cooperation with other nodes (indirect
trust).
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In section 2.4.1 we showed that there are various threats to ad hoc networks,
of which the most interesting and important is node subversion. In this kind of
attack, a node may be reverse-engineered, and replaced by a malicious node. A
bad (or compromised) node can communicate with any other node, good or bad.
Bad nodes may have access to the keys of all other bad nodes, whom they can
impersonate if they wish. They do not execute the authorised software and thus do
not necessarily follow protocols to identify misbehaviour, revoke other bad nodes,
vote honestly or delete keys shared with revoked nodes. So, trust frameworks for
ad hoc networks should support node revocation to isolate malicious nodes.

In Section 2.5 we discussed another key feature of MANETs: node mobility .
Devices move while remaining connected to the network, breaking links with old
neighbours and establishing fresh links with new devices. This makes security
even more challenging as the compromise of a legitimate node or the insertion
of a malicious node may go unnoticed in such a dynamic environment. Thus, a
mobile node should acquire trust information on new neighbours, and remove trust
information on old neighbours that cannot be monitored anymore.

In this paper, we propose a process calculus for mobile ad hoc networks which
embodies a behaviour-based multilevel trust model. We call this Calculus of Trust-
worthy Ad hoc Networks CTAN .

Our trust model is decentralised and supports both direct trust, by monitoring
nodes behaviour, and indirect trust, by collecting recommendations and spreading
reputations. No information on past behaviours of nodes is recorded. Our model
takes into consideration challenges introduced by mobility. For instance, we model
loss of trust information. This could happen when a node moves, changing its
neighbourhood. In this case, trust information concerning old neighbours must
be deleted as they cannot be directly verified. We model our networks as multi-
level systems [28] where each device is associated to a security level depending
on its behaviour. Thus, trust relations associate security levels to nodes. We de-
scribed many process calculi recently used to model different aspects of wireless
systems [92, 94, 95, 163, 167, 178, 214]. However, none of these papers address the
notion of trust. In our calculus, each node is equipped with a local trust store
containing a set of assertions. These assertions supply trust information about
the other nodes, according to a local security policy. Our calculus is not directly
concerned with cryptographic underpinnings. However, we assume the presence of
a hierarchical key generation and distribution protocol [122, 211]. Thus, messages
are transmitted at a certain security level relying on an appropriate set of crypto-
graphic keys. As usual, the operational semantics of the calculus is given in terms
of a labelled transition system, where actions are executed at a certain security
level. Then the transitions are of the form

M
λ−−→ρ N

indicating that the network M can perform the action λ, at security level ρ, evolv-
ing into the network N . For simplicity, our operational semantics does not directly
express node mobility. However, we will show how to adapt the approach pro-
posed in [92] to annotate our labelled transitions with the necessary information
to represent node mobility.
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Our calculus guarantees that only authorised nodes receive sensible informa-
tion. The safety up to a security level property says that a synchronisation at a
certain security level ρ is safe if the involved parties trust each other at that secu-
rity level. Our networks enjoy two desirable security properties: safety preservation
and safety despite compromise. The first property ensures that under all possible
evolutions, no invalid synchronisation arises. The second property says that bad
nodes, once detected, may not interact with good nodes. In this manner, bad nodes
(recognised as such) are isolated from the rest of the network.

In CTAN, our program equivalence is a security variant of weak reduction
barbed congruence. Along the lines of [70], we define a labelled bisimilarity pa-
rameterised on security levels. Intuitively, two networks are δ-bisimilar if they
cannot be distinguished by any observer that can only perform actions at security
level at most δ. Our bisimilarity is a congruence and an efficient proof method for
our reduction barbed congruence. A non interference result expressed in terms of
information flow is also proved by means of labelled bisimilarity.

As case studies, we use our calculus to analyse a secure version of the leader
election algorithm for mobile ad hoc networks [227]. We then provide an encoding
of the endairA routing protocol for ad hoc networks [9]. In our encoding, routing
paths are associated with a certain security level σ as they are composed only by
nodes at security level at least σ. This is quite a desirable property in a multilevel
network where information at certain security level is supposed to travel along
trusted nodes.

We end this introduction with an outline of the chapter. In Section 7.2, we
describe our behaviour-based trust model. In Section 7.3, we describe CTAN, in
particular in Section 7.3.1 we provide the syntax and in Section 7.3.2 we give
the operational semantics of our calculus. In Section 7.4, we present our mobility
model. In Section 7.5, we prove our safety properties. In Section 7.6, we propose a
notion of observational equivalence along the lines of Milner and Sangiorgi’s barbed
congruence. In Section 7.7, we propose a labelled bisimilarity as a proof method
for our observations equivalence. More precisely, we prove that our bisimilarity
is a congruence and it implies our observational equivalence. In Section 7.8, we
use our bisimulation to prove a non-interference result. In Section 7.9, we use our
calculus to study a secure version of the leader election protocols for MANETs
and an instance of the eindairA routing protocol for MANETs. In Section 7.10, we
present related work. Finally, in Section 7.11 we give a summary of the arguments
discussed in this chapter.

7.2 Trust model

In this section we propose a behaviour-based multilevel decentralised trust model
for MANETs. As in most trust models for distributed systems [46, 64, 149, 198],
each node comes together with an extra component called trust manager . A trust
manager consists of two main components: the monitoring module and the repu-
tation handling module. The first module monitors the behaviour of neighbours,
while the second one collects/spreads recommendations and evaluates trust infor-
mation about other nodes using a local security policy. The continuous work of
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Table 7.1 Trust framework
m,n ∈ Nodes node name
〈S, <〉 complete lattice

bad,trust,low,high∈S security level
A ∈ Assertions = Nodes ×Nodes × S assertion

T ⊆ ℘(Assertions) trust store
P : ℘(Assertions)→ ℘(Assertions) policy function

the trust manager results in a local trust store T containing the up-to-date trust
relations.

Trust information may change over time due to mobility, temporary discon-
nections, recommendations, etc. The main objective of the model is to isolate bad
nodes, i.e. nodes which do not behave as expected. For this reason, we support
node revocation. This may happen when a node detects a misbehaviour of an-
other node, and spreads this information to its neighbours. Repudiable evidences
allow bad nodes to falsely accuse good nodes. Thus, recommendations are always
evaluated using a local security policy implementing an appropriate metric.

The basic elements of our model are nodes (or principals), security levels,
assertions, policies and trust stores. We use k, l,m, n, . . . to range over the set
Nodes of node names. We assume a complete lattice 〈S, <〉 of security levels:
bad<trust<low<high. The bad security level is associated to a misbehaviour, trust is the
lowest security level associated to trusted behaviour, low is associated to more
trusted behaviour, i.e. for more sensible data, whereas high indicates the highest
trusted behaviour. We use the Greek letter ρ for security levels belonging to S.
The set of assertions is defined as Assertions = Nodes × Nodes × S. Thus, an
assertion 〈m,n, ρ〉 says that a node m trusts a node n at security level ρ. A local
trust store T contains a set of assertions, formally T ⊆ ℘(Assertions). When a
node m (the trustor) wants to know the security level of a node n (the trustee),
it has to check its own trust store T . For convenience, we often use T as a partial
function of type Nodes → Nodes → S, writing T (m,n) = ρ when m considers n as
a node of security level ρ. If ρ = bad then m considers n a bad (unreliable) node and
stops any interaction with it. In this manner, we implement a simple form of re-
vocation. A node can receive new assertions from its neighbours. These assertions
will be opportunely stored in the local trust store by the trust manager, according
to a local security policy P. A security policy P is a function that evaluates the
current information collected by a node and returns a set of assertions consistent
with the policy implementation. Formally P : ℘(Assertions) → ℘(Assertions).
For example, let us consider that the policy of a node m has to evaluate these
two assertions: 〈n, q, ρ〉 and 〈l, q, ρ′〉. The implementation of the policy of m could
be such that P(〈n, q, ρ〉 ∪ 〈l, q, ρ′〉) = 〈m, q, ρ〉 if T (m,n) > T (m, l), otherwise
P(〈n, q, ρ〉 ∪ 〈l, q, ρ′〉) = 〈m, q, ρ′〉, where T is the trust table of m. For simplicity,
we assume that all nodes have the same security policy P. Notice that the outcome
of the policy function could differ from one node to another as the computation
depends on the local knowledge of nodes. The presence of a revocation mechanism
implies that our policy function is a non-monotone one. Table 7.1 summarises our
trust model.
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Table 7.2 Syntax of CTAN
Values

u ::= v closed value˛̨
x variable

Networks
M,N ::= 0 empty network˛̨

M | N parallel composition˛̨
n[P ]T node

Processes

P,Q ::= nil termination˛̨
σ!〈ũ〉.P broadcast sender˛̨
σ!〈ũ〉u.P unicast sender˛̨
σ?(x̃).P receiver˛̨
P +Q nondeterministic choice˛̨
[ũ op ũ′]P,Q matching˛̨
H〈ũ〉 recursion

Messages exchanged among nodes are assumed to be encrypted using a hierar-
chical key generation and distribution protocol [122,211]. The trust manager may
determine a key redistribution when a security level is compromised. More gener-
ally, re-keying [72] allows to refresh a subset of keys when one or more nodes join
or leave the network; in this manner nodes are enable to decrypt past traffic, while
evicted nodes are unable to decrypt future traffic. As showed in [211] re-keying
may be relatively inexpensive if based on “low-cost” hashing operators.

7.3 The Calculus

7.3.1 Syntax

In Table 7.2, we define the syntax of our calculus in a two-level structure, a lower
one for processes and a upper one for networks. We use letters k, l,m, n, . . . for node
names. The Greek symbol σ ranges over the security levels low and high, the only
ones which are directly used by programmers. We use letters x, y, z for variables,
u for values, and v and w for closed values, i.e. values that do not contain free
variables. We write ũ to denote a tuple u1, . . . , uk of values.

Networks are collections of nodes (which represent devices) running in parallel
and using channels at different security levels to communicate with each other. We
use the symbol 0 to denote an empty network. We write n[P ]T for a node named
n (denoting its network address) executing the sequential process P , with a local
trust store T .

Processes are sequential and live within the nodes. We write nil to denote the
skip process. The multicast sender process σ!〈ṽ〉.P transmits the message ṽ to all
trusted nodes at security level σ, and then continues as P . The unicast sender
process σ!〈ṽ〉n.P transmits the message ṽ to node n at security level σ, and then
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continues as P . As we will see in the last section of this paper, unicast transmissions
are quite common in MANET protocols.

Remark 7.1. Messages are assumed to be encrypted using a hierarchical key gen-
eration and distribution protocol. Thus, a message transmitted at security level
ρ can be decrypted only by nodes at security level ρ or greater, according to the
trust store of both sender and receiver. Moreover, we assume that messages are
always signed by transmitters. In unicast communication we assume the presence
of a link key, that is a key shared by two neighbours. Link keys provide protection
for unicast messages exchanged between two neighbouring nodes.

The receiver process σ?(x̃).P listens for incoming communications at security level
σ. Upon reception, the receiver processes evolves into P , where the variables of x̃
are replaced with the message ṽ. We write {ṽ/̃x}P for the substitution of variables
x̃ with values ṽ in P . In process [ṽ op w̃]P,Q, op is a binary operator returning
a boolean. It may range for example over the symbols =, <,>,≤,≥,∈,⊆. The
process [ṽ op w̃]P,Q denotes the “if then else” construct: it behaves as P if ṽ op w̃ =
true, and as Q otherwise. Process P+Q denotes nondeterministic choice. We write
H〈ṽ〉 to denote a process defined via a definition H(x̃) def= P , with | x̃ |=| ṽ |, where
x̃ contains all variables that appear free in P . Defining equations provide guarded
recursion, since P may contain only guarded occurrences of process identifiers. In
process σ?(x̃).P variables x̃ are bound in P . This gives rise to the standard notion
of α-conversion and free and bound variables. We assume there are no free variables
in our networks. The absence of free variables in networks is trivially maintained
as the network evolves. Given a network M , nds(M) returns the set of the names of
those nodes which constitute the network M . Notice that, as networks addresses
are unique, we assume that there cannot be two nodes with the same name in
the same network. We write

∏
iMi to denote the parallel composition of all sub-

networks Mi. We write M | N for the parallel composition of two sub-networks
M and N . We write σ!〈ṽ〉 or σ!〈ṽ〉n to mean σ!〈ṽ〉.nil or σ!〈ṽ〉n.nil, respectively.

As usual in process calculi, in Table 7.3 we define structural congruence, written
≡, as the basic congruence between networks that only differ for minor differences
in the syntax.

7.3.2 Operational Semantics

We give the operational semantics of our calculus in terms of a labelled transition
system (LTS). We have divided our LTS in two sets of rules. Table 7.4 contains
the rules to model the synchronisation between sender and receivers. Table 7.5
contains the rules to model trust management.

Our transitions are of the form

M
λ−−→ρ M

′

indicating that the network M can perform the action λ, at security level ρ, evolv-
ing into the network M ′. By construction, in any transition of this form ρ will
be different from bad. More precisely, ρ will be equal to low for low-level security
transmissions, and equal to high for high-level security transmissions. If ρ = trust
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Table 7.3 Structural Congruence
m[P +Q]T ≡ m[Q+ P ]T (Struct Sum Comm)

m[P + (Q+Q′)]T ≡ m[(P +Q) +Q′]T (Struct Sum Assoc)

m[P + nil]T ≡ m[P ]T (Struct Sum Zero)

m[[ṽ op ṽ′]P,Q]T ≡ m[P ]T if ṽ op ṽ′ = true (Struct Then)

m[[ṽ op ṽ′]P,Q]T ≡ m[Q]T if ṽ op ṽ′ = false (Struct Else)

m[A〈ṽ〉]T ≡ m[{ṽ/̃x}P ]T if A(x̃)
def
= P ∧ | x̃ | = | ṽ | (Struct Rec)

M | N ≡ N |M (Struct Par Comm)

(M | N) |M ′ ≡M | (N |M ′) (Struct Par Assoc)

M | 0 ≡M (Struct Par Zero)

M ≡M (Struct Refl)
M ≡ N implies N ≡M (Struct Symm)
M ≡ N ∧ N ≡ O implies M ≡ O (Struct Trans)

M ≡ N implies M |M ′ ≡ N |M ′, for all M ′ (Struct Cxt Par)

Table 7.4 LTS - Synchronisation

(MCast)
D := {n : T (m,n) ≥ σ} D6=∅
m[σ!〈ṽ〉.P ]T

m!ṽ.D−−−−−−→σ m[P ]T
(Rcv)

T (n,m) ≥ σ | x̃ |=| ṽ |
n[σ?(x̃).P ]T

m?ṽ.n−−−−−−→σ n[{ṽ/̃x}P ]T

(UCast)
T (m,n) ≥ σ

m[σ!〈ṽ〉n.P ]T
m!ṽ.n−−−−−−→σ m[P ]T

(RcvPar)
M

m?ṽ.D−−−−−−→ρ M
′ N

m?ṽ.D′−−−−−−−→ρ N
′ bD := D ∪D′

M | N m?ṽ. bD−−−−−−→ρ M
′ | N ′

(Sync)
M

m!ṽ.D−−−−−−→ρ M
′ N

m?ṽ.D′−−−−−−−→ρ N
′ D′ ⊆ D

M | N m!ṽ.D−−−−−−→ρ M
′ | N ′

(Par)
M

λ−−→ρ M
′ sender(λ) /∈ nds(N)

M | N λ−−→ρ M
′ | N

(Sum)
m[P ]T

λ−−→σ m[P ′]T

m[P +Q]T
λ−−→σ m[P ′]T

then the transition models trust management and involves all trusted nodes. The
variable λ ranges over the labels m!ṽ.D, m?ṽ.D, and τ , where D is a set of
nodes. We sometimes write m!ṽ.n and m?ṽ.n as an abbreviation for m!ṽ.{n}
and m?ṽ.{n}, respectively. The label m!ṽ.D models the transmission of message
ṽ, originating from node m, and addressed to the set of nodes in D. The label
m?ṽ.D represents the reception of a message ṽ, sent by m, and received by the
nodes in D. The label τ models internal actions, which cannot be observed. The
function sender(·) applies to a label and returns the name of the sender, thus
sender(m!ṽ.D) = sender(m?ṽ.D) = m, whereas sender(τ) =⊥ (undefined).
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Let us comment on the rules of Table 7.4. Rule (MCast) models a node m which
sends a message ṽ at security level σ; the set D contains the destination nodes with
security level at least σ, according to the trust store of m.

Remark 7.2. Rule (MCast) may recall the Directed Diffusion approach of [125], in
which a node decides to which neighbours to send the data to, according to a
reinforcement mechanism. These reinforcements limit the paths of transmissions,
as messages only travel down these reinforced paths, and hence increase efficiency.
In [72] the Directed Diffusion is used to formalise a mechanism of securing group
communication.

Rule (Rcv) models a node n receiving a message ṽ, sent by node m, at security
level σ. Node n receives the message from m only if it trusts m at security level σ.
Here, we abstract on the actual behaviour of receivers as they verify the identity
of the sender and discard unauthorised messages. Rule (UCast) models a unicast
transmission of message ṽ from node m to node n at security level σ. Rule (RcvPar)

serves to put together parallel nodes receiving from the same sender. If sender and
receiver(s) trust each other then they may synchronise by one or more applications
of rule (Sync). In this rule, the condition D′ ⊆ D ensures that only authorised
recipients receive the transmitted value. Rule (Par) is standard in process calculi.
Notice that using rule (Par) we can model situations where potential receivers do
not necessarily receive the message, either because they are not in the transmission
range of the transmitter or simply because they loose the message. Rule (Sum) is
also standard: if one of the process performes an action then the whole process
performs that action. Rules (Sync), (RcvPar), (Sum) and (Par) have their symmetric
counterparts.

Let us explain the rules in Table 7.4 with an example.

Example 7.3. Let us consider the network:

M
def= k[σ?(x̃).Pk]Tk | l[σ?(x̃).Pl]Tl | m[σ!〈ṽ〉.Pm]Tm | n[σ?(x̃).Pn]Tn

where Tk(k,m) ≥ σ, Tl(l,m) < σ, Tm(m,n) = Tm(m, l) ≥ σ, Tm(m, k) < σ and
Tn(n,m) ≥ σ. In this configuration, node m broadcasts message ṽ at security level
σ, knowing that the nodes allowed to receive the message at that security level
are n and l. However, node l does not trust m at security level σ. Thus, n is the
only node that may receive the message. By an application of rules (MCast), (Rcv),
(Par), and (Sync) we have:

M
m!ṽ.{l,n}
−−−−−−−−→σ k[σ?(x̃).Pk]Tk | l[σ?(x̃).Pl]Tl | m[Pm]Tm | n[{ṽ/̃x}Pn]Tn .

Now, let us comment on the rules of Table 7.5 modelling trust management.
We remember that each node comes with a trust manager component which is
not specified in our syntax. We rather model the behaviour of this component
through the transition rules of Table 7.5. The transmissions modelled in this ta-
ble are addressed to all trusted nodes i.e. all nodes at security level trust. Rule
(DTrust) models direct trust . This happens when the monitoring module of a node
m, while monitoring the activity of a trusted node n, detects a misbehaviour of
n. In this case, node m executes two operations: (i) it implements node revoca-
tion updating its trust store, according to its local policy; (ii) it broadcasts the
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Table 7.5 LTS - Trust Management

(DTrust)

T (m,n) > bad ṽ := n,bad

T ′ := P(T ∪ 〈m, ṽ〉) D := {n : T (m,n) > bad}
m[P ]T

m!ṽ.D−−−−−−→trust m[P ]T ′

(SndRcm)
T (m,n) = ρ ṽ := n, ρ D := {n : T (m,n) > bad}

m[P ]T
m!ṽ.D−−−−−−→trust m[P ]T

(RcvRcm)
T (n,m) > bad ṽ := l, ρ T ′ := P(T ∪ 〈m, ṽ〉)

n[P ]T
m?ṽ.n−−−−−−→trust n[P ]T ′

(Lose)
T ′ ⊆ T T ′′ := P(T ′)

n[P ]T
τ−−→trust n[P ]T ′′

corresponding information to inform all trusted nodes about the misbehaviour of
n. Rule (SndRcm) models indirect trust by sending a recommendation. This may
happen, for example, when a node moves and asks for recommendations on new
neighbours. Again, recommendations are addressed to all trusted nodes, according
to the trust knowledge of the recommender. Rule (RcvRcm) models the reception
of a recommendation from a trusted node: a new trust table T ′ is calculated, ap-
plying the local policy to T ∪ 〈m, ṽ〉. Rule (Lose) models loss of trust information.
This happens, for instance, when a node moves, changing its neighbourhood. In
this case, assertions concerning old neighbours must be deleted as they cannot
be directly verified. The consistency of the remaining assertions must be main-
tained by applying the security policy. Notice that, in this manner, we may also
loose information about bad nodes that may be encountered again in the future.
However, in order to get in touch with an unknown party, a node needs enough
recommendations from trusted neighbours.

Let us explain the rules in Table 7.5 with an example.

Example 7.4. Let us show how direct and indirect trust are modelled in our setting.
Let us consider the network:

M
def= k[Pk]Tk | l[Pl]Tl | m[Pm]Tm | n[Pn]Tn

where Tk(k,m) ≥ trust, Tl(l,m) = bad, Tm(m,n) = Tm(m, l) = Tm(m, k) ≥ trust,
and Tn(n,m) ≥ trust. Now, if node m observes that node k is misbehaving, then (i)
it adds an assertion 〈m, k, bad〉 to its local knowledge; (ii) it broadcasts the infor-
mation to its trusted nodes. Thus, by an application of rules (DTrust), (RcvRcm),
(Par), and (Sync) we have

M
m!ṽ.{k,l,n}
−−−−−−−−−−→trust k[Pk]T ′k | l[Pl]Tl | m[Pm]T ′m | n[Pn]T ′n .

Notice that since l does not trust m, only node n (but also the bad node k) will
receive m’s recommendation. Moreover the local knowledge of m and n will change,
according to their local policy. This is a case of direct trust for m, and indirect
trust for n.
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Table 7.6 LTS - Matching and Recursion

(Then)
n[P ]T

λ−−→ρ n[P
′]T ′ ṽ1 op ṽ2 = true

n[[ṽ1 op ṽ2]P,Q]T
λ−−→ρ n[P

′]T ′

(Else)
n[Q]T

λ−−→ρ n[Q
′]T ′ ṽ1 op ṽ2 = false

n[[ṽ1 op ṽ2]P,Q]T
λ−−→ρ n[Q

′]T ′

(Rec)
n[{ṽ/̃x}P ]T

λ−−→ρ n[P
′]T ′ H(x̃)

def
= P

n[H〈ṽ〉]T
λ−−→ρ n[P

′]T ′

Table 7.7 LTS - Synchronisation with network restrictions

(MCastR)
D:={n : T (m,n) ≥ σ} D6=∅
m[σ!〈ṽ〉.P ]T

m!ṽ.D−−−−−−→σ,∅ m[P ]T

(RcvR)
T (n,m)≥σ |x̃|=|ṽ| P ′:={ṽ/̃x}P
n[σ?(x̃).P ]T

m?ṽ.n−−−−−−→σ,(n,m) n[P
′]T

(UCastR)
T (m,n) ≥ σ

m[σ!〈ṽ〉n.P ]T
m!ṽ.n−−−−−−→σ,∅ m[P ]T

(RcvParR)
M

m?ṽ.D−−−−−−→ρ,C1 M
′ N

m?ṽ.D′−−−−−−−→ρ,C2 N
′ bD := D ∪D′

M | N m?ṽ. bD−−−−−−→ρ,C1∪C2 M
′ | N ′

(SyncR)
M

m!ṽ.D−−−−−−→ρ,C1 M
′ N

m?ṽ.D′−−−−−−−→ρ,C2 N
′ D′ ⊆ D

M | N m!ṽ.D−−−−−−→ρ,C1∪C2 M
′ | N ′

(ParR)
M

λ−−→ρ,C M ′ sender(λ) /∈ nds(N)

M | N λ−−→ρ,C M ′ | N

(SumR)
m[P ]T

λ−−→σ,C m[P ′]T

m[P +Q]T
λ−−→σ,C m[P ′]T

Finally, Table 7.6 contains the standard rules for matching and recursion.

7.4 Node Mobility

In wireless networks, node mobility is associated with the ability of a node to ac-
cess telecommunication services at different locations from different nodes. Unlike
wired networks, where the main security requirements are addressed by installing
firewalls, in mobile ad hoc networks node mobility introduces new issues related
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to user credential management, indirect trust establishment and mutual authen-
tication between previously unknown and hence untrusted nodes.

For these reasons, node mobility in ad hoc networks has turned to be a chal-
lenge for automated verification and analysis techniques. After the first work on
model checking of (stationary) ad hoc networks [39], Nanz and Hankin [178] have
proposed a process calculus where topology changes are abstracted into a fixed
representation. This representation, called network topology, is essentially a set of
connectivity graphs denoting the possible connectivities within the nodes of the
network. Thus, in [178] the topology is not part of the syntax, but it is a parame-
ter of the operational semantics. A similar approach is introduced in [92], although
the labelled transition systems and the equivalence relations are completely differ-
ent. In [178] a transition to the next state is examined for all possible valid graphs
(those contained in the network topology fixed a priori) whereas in [92] a transition
is examined for all graphs containing the connections used in a communication.
These connections are called restrictions.

As the reader may have noticed, our calculus does not directly model the
network topology neither in the syntax nor in the semantics. However, it is very
easy to add topology changes at semantics level, so that each state represents a
set of valid topologies, and a network can be at any of those topologies at any
time [92]. In Table 7.7 we rewrite the rules of Table 7.4 in the style of [92]. Rules
are of the form

M
λ−−→ρ,C M ′

indicating that the network M can perform the action λ, at security level ρ, under
the network restriction C, evolving into the network M ′. Thus, a network restric-
tion C keeps track of the connections which are necessary for the transition to fire.
The rules in Table 7.5 can be rewritten in a similar manner, except for rule (Lose)

in which the network restriction is empty. Notice that the rule (Lose) in Table 7.5
affects network topology changes. In fact, if a trust information is lost then certain
nodes may not be able of communicating anymore.

Example 7.5. Consider the same network given in the Example 7.3. Then by ap-
plying rules (MCastR), (RcvR), (ParR), and (SyncR) we have

M
m!ṽ.D−−−−−−→σ,{(n,m)} k[σ?(x̃).Pk]Tk | l[σ?(x̃).Pl]Tl | m[Pm]Tm | n[{ṽ/̃x}Pn]Tn .

The transition is tagged with the network restriction {(n,m)}, as only node n has
synchronised with node m.

The reader may have noticed that the rules of Table 7.7 do not use network re-
strictions in the premises. As a consequence, there is a straightforward operational
correspondence between a transition

λ−−→ρ and one of the form
λ−−→ρ,C .

Proposition 7.6.

1. M
λ−−→ρ M

′ with λ ∈ {m!ṽ.D,m?ṽ.D} iff there exists a restriction C such

that M
λ−−→ρ,C M ′ and C ⊆ {(m,n) for all n ∈ D}.

2. M
τ−−→ρ M

′ iff M
τ−−→ρ,∅ M

′.
Proof
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1. We separately prove that (⇒) if M
λ−−→ρ M ′, with λ := {m!ṽ.D

∣∣
m?ṽ.D}, then there exists a restriction C such that M

λ−−→ρ,C M ′ and

C ⊆ {(m,n) for all n ∈ D} and (⇐) if M
λ−−→ρ,C M ′, with λ := {m!ṽ.D

∣∣
m?ṽ.D} and C ⊆ {(m,n) for all n ∈ D} then M

λ−−→ρ M
′. It is proved by in-

duction on M
λ−−→ρ M

′, in the first case, and on M
λ−−→ρ,C M ′, in the second

case. We show details only for λ = m!ṽ.D. Similar proof can be exhibited for
λ = m?ṽ.D.
(⇒) The base cases are when the transition M

m!ṽ.D−−−−−−→ρ M ′ is given
by rules (MCast), (UCast), (DTrust) or (SndRcm). By rules (MCastR),
(UCastR), (DTrustR) or (SndRcmR), respectively, there is C = ∅ such that

M
m!ṽ.D−−−−−−→

ρ,∅ M
′. As to the inductive case, let us consider M

m!ṽ.D−−−−−−→ρ

M ′ given by rules (Sum), (Sync) or (Par). We show details only for rule

(Sync). Let M
m!ṽ.D−−−−−−→ρ M

′ by rule (Sync), with M = M1 | M2,M
′ =

M ′1 | M ′2 for some M1,M
′
1,M2, and M ′2, because M1

m!ṽ.D−−−−−−→ρ M
′
1 and

M2
m?ṽ.D′−−−−−−−→ρ M

′
2 (the converse is similar) with D′ ⊆ D. By inductive hy-

pothesis, it holds that there are C1 and C2 such that M1
m!ṽ.D−−−−−−→ρ,C1 M

′
1,

M2
m?ṽ.D′−−−−−−−→ρ,C2 M ′2, with C1 ⊆ {(m,n) for all n ∈ D} and C2 ⊆

{(m,n) for all n ∈ D′}. By rule (SyncR) it holds that

M1 |M2
m!ṽ.D−−−−−−→ρ,C1∪C2 M

′
1 |M ′2.

As D′ ⊆ D, it holds that C1 ∪ C2 ⊆ {(m,n) for all n ∈ D}, as required.

(⇐) The base cases are when the transition M
m!ṽ.D−−−−−−→ρ,C M ′ is given by

rules (MCastR), (UCastR), (DTrustR) or (SndRcmR). Then C = ∅. By rules

(MCast), (UCast), (DTrust) or (SndRcm) we have M
m!ṽ.D−−−−−−→ρ M ′. As

to the inductive case, let us consider M
m!ṽ.D−−−−−−→ρ,C M ′ given by rules

(SumR), (SyncR) or (ParR). We show details only for rule (SyncR). Hence,

let M
m!ṽ.D−−−−−−→ρ,C M ′ given by rule (SyncR), with M = M1 | M2 and

M ′ = M ′1 | M ′2, for some M1,M2,M
′
1 and M ′2, because M1

m!ṽ.D−−−−−−→ρ,C1

M ′1 and M2
m?ṽ.D′−−−−−−−→ρ,C2 M

′
2 (the converse is similar), with C = C1∪C2 ⊆

{(m,n) for all n ∈ D} and D′ ⊆ D. Then C1 ⊆ {(m,n) for all n ∈ D} and
by construction it holds that C2 ⊆ {(m,n) for all n ∈ D′}. By inductive

hypothesis we have M1
m!ṽ.D−−−−−−→ρ M ′1 and M2

m?ṽ.D′−−−−−−−→ρ M ′2. By rule

(Sync) it holds that M1 |M2
m!ṽ.D−−−−−−→ρ M

′
1 |M ′2, as required.

2. The proof of this case can be found in Section A.2 at page 178.
�
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7.5 Safety Properties

Access control [207] is a well-established technique to provide safety properties
ensuring that only principals with appropriate access rights can access data.

In general, in distributed systems safety properties ensure that no invalid com-
munications arise [87]. In our setting, safety properties involve security levels, as
communications are parameterised on them. Thus, our safety properties aim at
guaranteeing that only authorised nodes receive sensible information.

We define a notion of safety up to a security level to describe when a commu-
nication is safe up to a certain security level.

Definition 7.7 (Safety up to a security level). A node m transmitting at level
ρ may only synchronise with a node n receiving at level ρ or above, according to
the local knowledge of m and n, respectively.

Intuitively, Definition 7.7 says that a synchronisation at a certain security level ρ
is safe if the involved parties trust each other at that security level.

The next theorem states that the safety property is preserved at run time:
under all possible evolutions, no invalid synchronisation arises. Intuitively, it is
proved that if a node ni receives a message sent by a sender m at security level ρ,
it means that m and ni trust each other at security level at least ρ.

Theorem 7.8 (Safety preservation). Let M
m!ṽ.D−−−−−−→ρ M

′ with

M ≡ m[P ]T |
∏
i ni[Pi]Ti and M ′ ≡ m[P ′]T ′ |

∏
i ni[P

′
i ]T ′i .

1. If P ′i 6= Pi, for some i, then T (m,ni) ≥ ρ and Ti(ni,m) ≥ ρ.
2. If T ′i 6= Ti, for some i, then T (m,ni) ≥ ρ and Ti(ni,m) ≥ ρ.

Proof

1. This case applies only for transitions at level σ. The proof is by induction
on the transition M

m!ṽ.D−−−−−−→σ M
′. The case base is when M

m!ṽ.D−−−−−−→σ M
′ is

given by rule (Sync), with M ≡ m[σ!〈ṽ〉.P ]T | n[σ?(x̃).Q]T ′ and M ′ ≡ m[P ]T |
n[{ṽ/̃x}Q]T ′ or M ≡ m[σ!〈ṽ〉n.P ]T | n[σ?(x̃).Q]T ′ . We show details only for
the first case, the other one is similar. By rule (MCast) we have

m[σ!〈ṽ〉.P ]T
m!ṽ.D−−−−−−→σ m[P ]T ,

with D := {n : T (m,n) ≥ σ} and by rule (Rcv)

n[σ?(x̃).Q]T ′
m?ṽ.n−−−−−−→σ n[{ṽ/̃x}Q]T ′ ,

with T ′(n,m) ≥ σ. As M
m!ṽ.D−−−−−−→σ M ′ by (Sync), it holds that n ∈ D

and then T (m,n) ≥ σ, as required. As to the inductive case, let us consider

M
m!ṽ.D−−−−−−→σ M

′ given by rule (Sync) or (Par), with M ≡ m[P ]T |
∏
i ni[Pi]Ti

and M ′ ≡ m[P ′]T |
∏
i ni[P

′
i ]Ti . We show details only for the first case, the

other one is similar. Let M
m!ṽ.D−−−−−−→σ M ′ by (Sync), with M = M1 | M2

and M ′ = M ′1 |M ′2, for some M1,M2,M
′
1 and M ′2, because M1

m!ṽ.D−−−−−−→σ M
′
1
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and M2
m?ṽ.D′−−−−−−−→σ M

′
2 (the converse is similar), with D := {n : T (m,n) ≥

σ},D′ ⊆ D. More precisely, let

M ≡ m[P ]T |
∏
i

ni[Pi]Ti = m[P ]T |
∏
k

nk[Pk]Tk |
∏
j

nj[Pj]Tj

and

M ′ ≡ m[P ′]T |
∏
i

ni[P ′i ]Ti = m[P ′]T |
∏
k

nk[P ′k]Tk |
∏
j

nj[P ′j]Tj

for appropriate processes and tags, where

M1 = m[P ]T |
∏
k

nk[Pk]Tk ,M
′
1 = m[P ′]T |

∏
k

nk[P ′k]Tk ,

M2 =
∏
j

nj[Pj]Tj ,M
′
2 =

∏
j

nj[P ′j]Tj .

By inductive hypothesis, if P ′k 6= Pk, for some k, then T (m,nk) ≥ σ and
Tk(nk,m) ≥ σ. By Lemma A.5(1) at page 178, if P ′j 6= Pj , for some j, then
Tj(nj ,m) ≥ σ. It remains to prove that T (m,nj) ≥ σ. But, by Lemma A.5(1)
we have nj ∈ D′. As D′ ⊆ D and D := {n : T (m,n) ≥ σ} it holds that
T (m,nj) ≥ σ, as required.

2. This case applies only for transitions at level trust. The proof is by induction
on the transition M

m!ṽ.D−−−−−−→trust M
′. The proof is similar to the previous

case.
�

In [87] a conformance criterion is defined in terms of safety despite compro-
mised principals. According to this criterion, an invalid authorisation decision at
an uncompromised node can arise only when nodes on which the decision logically
depends are compromised. A node is said compromised (or bad) when its privileges
can be exercised by the attacker. A realistic threat model for a distributed system,
and then for hoc networks, should include partial compromise, that is the possi-
bility that some of the nodes in the system are compromised. Partial compromise
covers deliberate insider attacks as well as external attackers taking ownership of
insiders’ assets.

In our setting, the safety despite compromise property comes as a consequence
of Theorem 7.8, for which trusted nodes never synchronise with untrusted nodes.
In this manner, bad nodes (recognised as such) are isolated from the rest of the
network and they cannot affect communications.

Corollary 7.9 (Safety despite compromise). Let M
m!ṽ.D−−−−−−→ρ M

′ with

M ≡ m[P ]T |
∏
i

ni[Pi]Ti and M ′ ≡ m[P ′]T ′ |
∏
i

ni[P ′i ]T ′i .

If T (m,ni)=bad or Ti(ni,m)=bad, for some i, then P ′i=Pi and T ′i=Ti.
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Proof We proceed by contradiction. We prove that if P ′i 6=Pi or T ′i 6=Ti, for
some i, then T (m,ni)6=bad and Ti(ni,m) 6=bad. Indeed, by Theorem 7.8(1) if P ′i 6=Pi
it holds that T (m,ni)≥ρ and Ti(ni,m)≥ρ and by Theorem 7.8(2) if T ′i 6=Ti it holds
that T (m,ni)≥ρ and Ti(ni,m)≥ρ. By construction we know that ρ 6= bad. Then
this is in contradiction with the hypotheses. �

7.6 Behavioural Semantics

Our main behavioural equivalence is σ-reduction barbed congruence, a variant of
Milner and Sangiorgi’s (weak) barbed congruence [172] which takes into account
security levels. Basically, two terms are barbed congruent if they have the same
observables (called barbs) in all possible contexts, under all possible evolutions.
For the definition of barbed congruence we need two crucial concepts: a reduction
semantics to describe how a system evolves, and a notion of observable which says
what the environment can observe in a system.

From the LTS given in Section 7.3.2 it is easy to see that a network may evolve
either because there is a transmission at a certain security level or because a node
loses some trust information. Thus, we can define the reduction relation _ between
networks using the following inference rules:

(Red1) M
m!ṽ.D−−−−−−→ρ M

′

M _ M ′
(Red2)

M
τ−−→trust M

′

M _ M ′

We write _∗ to denote the reflexive and transitive closure of _.
Also in CTAN, as in TCWS and in in CCS [169] and in π-calculus [171], we

have both transmission and reception of messages although only transmissions can
be observed. In fact, in a broadcasting calculus an observer cannot see whether a
given process actually receives a broadcast synchronisation. In particular, if the
node m[σ!〈ṽ〉.P ]T or the node m[σ!〈ṽ〉n.P ]T evolves into m[P ]T we do not know
whether some potential recipient has synchronised with m. On the other hand, if a
node n[σ?(x̃).P ]T evolves into n[{ṽ/̃x}P ]T , then we can be sure that some trusted
node has transmitted a message ṽ to n at security level σ.

Definition 7.10 (σ-Barb). We write M ↓σn if either M ≡ m[σ!〈ṽ〉.P ]T | N
or M ≡ m[σ!〈ṽ〉n.P ]T | N , for some m,N, ṽ, P, T such that n /∈ nds(M), and
T (m,n) ≥ σ. We write M ⇓σn if M _∗ M ′ ↓σn for some network M ′.

The barb M ⇓σn says that there is a potential transmission at security level σ, orig-
inating from M , and that may reach the node n in the environment. In the sequel,
we write R to denote binary relations over networks. As usual, we need to provide
some definitions of properties on which our reduction barbed congruence relies. As
in TCWS, also in CTAN we are interested in weak behavioural equivalences; then
the definition of reduction closure is given in terms of weak reductions.

Definition 7.11 (σ-Barb preserving). A relation R is said to be σ-barb pre-
serving if whenever M R N it holds that M ↓σn implies N ⇓σn.
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Definition 7.12 (Reduction closure). A relation R is said to be reduction
closed if M R N and M _ M ′ imply there is N ′ such that N _∗ N ′ and
M ′ R N ′.

Definition 7.13 (Contextuality). A relation R is said to be contextual if M R
N implies that M | O R N | O, for all networks O.

Finally, everything is in place to define our σ-reduction barbed congruence.

Definition 7.14 (σ-Reduction barbed congruence). The σ-reduction barbed
congruence, written ∼=σ, is the largest symmetric relation over networks which is
σ-barb preserving, reduction closed and contextual.

7.7 A Bisimulation Proof Method

In the sequel we define an appropriate notion of bisimulation and, as a main result,
we prove that our labelled bisimilarity is a proof-technique for our σ-reduction
barbed congruence.

In general, a bisimulation describes how two terms (in our case networks) can
mimic each other’s actions. First of all we have to distinguish between transmis-
sions which can be observed and transmissions which can not be observed by the
environment.

(Shh)
M

m!ṽ.D−−−−−−→ρ M
′ D⊆nds(M) ρ′ 6=bad

M
τ−−→ρ′ M

′
(Obs)

M
m!ṽ.D−−−−−−→ρ M

′ D′:=D\nds(M)6=∅

M
m!ṽID′−−−−−−−→ρ M

′

Rule (Shh) models transmissions that cannot be observed because none of the
potential receivers are in the environment. Notice that security levels of τ -action
are not related to the transmissions they originate from. Rule (Obs) models a
transmission, at security level ρ, of a message ṽ, from a sender m, that may be
received by the nodes of the environment contained in D̂. Notice that the derivation
tree the rule (Obs) can only be applied at top-level. In fact, we cannot use this rule
together with rule (Par) of Table 7.4, because λ does not range on the new action.

In the sequel, we use the metavariable α to range over the following actions:
τ , m?ṽ.D and m!ṽID. Since we are interested in weak behavioural equivalences,
that abstract over τ -actions, we introduce a standard notion of weak action: we
write =⇒ρ denoting the reflexive and transitive closure of

τ−−→ρ; we also write α==⇒ρ

denotes =⇒ρ
α−−→ρ =⇒ρ;

α̂==⇒ρ denotes =⇒ρ if α = τ and α==⇒ρ otherwise.

Definition 7.15 (δ-Bisimilarity). The δ-bisimilarity, written ≈δ, is the largest
symmetric relation over networks such that whenever M ≈δ N if M

α−−→ρ M
′,

with ρ ≤ δ, then there exists a network N ′ such that N α̂==⇒ρ N
′ and M ′ ≈δ N ′.

This definition is inspired by that proposed in [70]. Intuitively, two networks
are δ-bisimilar if they cannot be distinguished by any observer that can perform
actions at security level at most δ.

Theorem 7.16 (≈δ is contextual). Let M and N be two networks such that
M ≈δ N . Then M | O ≈δ N | O for all networks O.
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Proof We prove that the relation

S def= {
(
M | O , N | O

)
for all O such that M ≈δ N}

is a δ-bisimulation. We proceed by case analysis on the transition M | O α−−→ρ M̂ ,
with ρ ≤ δ. We show just a few cases. The full proof can be found in Section A.2
at page 180.

• Let M | O m!ṽID−−−−−−→ρ M̂ by an application of rule (Obs), with D 6= ∅, because

M | O m!ṽ. bD−−−−−−→ρ M̂ , with D := D̂ \ nds(M | O) 6= ∅. We have the following
possibilities:

– LetM | O m!ṽ. bD−−−−−−→ρ M̂ by an application of rule (Sync) becauseM
m!ṽ. bD−−−−−−→ρ

M ′ and O
m?ṽ.D′′−−−−−−−→ρ O

′, with M̂ = M ′ | O′ and D′′ ⊆ D̂. Let D′ :=
D̂ \ nds(M); as D := D̂ \ nds(M | O) 6= ∅ then also D′ 6= ∅. Then we can

apply (Obs) and obtain M
m!ṽID′−−−−−−−→ρ M

′. As M ≈δ N then there is N ′

such that N m!ṽID′=======⇒ρ N
′ with M ′ ≈δ N ′. Since the action m!ṽID′ can

be generated only by an application of rule (Obs) this implies that there are
N1 and N2 such that

N
τ==⇒ρ N1

m!ṽ.cD′−−−−−−→ρ N2
τ==⇒ρ N

′

with D′ := D̂′ \ nds(N) 6= ∅. By Lemma A.7 at page 179 we have M ≡
M̂ | m[P ]T and N1 ≡ N̂ | m[Q]T , for some M̂, N̂ , T,Q and P , and D̂ :=
{n : T (m,n) ≥ ρ} and D̂′ := {n : T (m,n) ≥ ρ}. Then D̂′ = D̂. By several
applications of Lemma A.6 at page 179 and one application of rule (Sync),
as D′′ ⊆ D̂, we have

N | O τ==⇒ρ N1 | O
m!ṽ. bD−−−−−−→ρ N2 | O′

τ==⇒ρ N
′ | O′.

It holds that
D := D̂ \ nds(M | O)

= D̂ \ nds(M) \ nds(O)
= D′ \ nds(O)
= D̂ \ nds(N) \ nds(O)
= D̂ \ nds(N | O) 6= ∅.

Then by one application of rule (Obs) we have N | O m!ṽID======⇒ρ N
′ | O′

and (M ′ | O′, N ′ | O′) ∈ S, as required.
�

Theorem 7.17 (Soundness). Let M and N be two networks such that M ≈δ N .
Then M ∼=σ N , for σ ≤ δ.
Proof The σ-barb preserving follows by Lemma A.10 at page 183, the reduction-
closure follows by definition and contextuality follows by Theorem 7.16. �
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Remark 7.18. For the sake of analysis, we can redefine the δ-bisimilarity using the
labelled transition system with network restrictions. However, in Proposition 7.6
we already proved the operational correspondence between the two labelled tran-
sition systems. As a consequence, the resulting bisimilarity would not change.

7.8 Non-Interference

We described in Section 5.3 very general schemata for the definition and analysis
of security properties. In particular, we dealt with information flow properties. We
remember that they are a particular class of security properties for controlling the
flow of information among different entities. The seminal idea of non-interference
proposed in [96] aims at assuring that “variety in a secret input should not be
conveyed to public output”. In a multilevel computer system [28] this property says
that information can only flow from low levels to higher ones. The first taxonomy of
non-interference-like properties has been uniformly defined and compared in [81,82]
in the context of CCS-like process calculus. In particular, processes were divided
into high-level and low-level processes, according to the level of actions they can
perform. To detect whether an incorrect information flow (i.e. from high-level
to low-level) has occurred, a particular non-interference-like property has been
defined, the so-called Non Deducibility on Composition (NDC). This property
basically says that a process is secure with respect to wrong information flows if
its low-level behaviour is independent of changes to its high-level behaviour.

Here, we prove a non-interference result using our notion of δ-bisimilarity. In-
tuitively, high-level behaviours can arbitrarily change without affecting low-level
equivalences.

In Definition 7.19 we formalise the concept of high-level behaviour in the terms
of high-level networks. We recall that actions at security level trust do not depend
on the syntax of the processes as they only depend on the trust manager; thus,
these actions can fire at any moment of the computation.

Definition 7.19 (δ-high level network). A network H is a δ-high level network,

written H ∈ Hδ, if whenever H
λ−−→δ′ H

′ then either δ′=trust or δ′ > δ. Moreover,
H ′ ∈ Hδ.

The non-interference result is stated in the following theorem. Intuitively, if
two δ-bisimilar networks M and N run in parallel with two high-level networks H
and K and such that H ≈trust K then the resulting networks M | H and N | K
are δ-bisimilar as well.

Theorem 7.20 (Non-interference). Let M and N be two networks such that
M ≈δ N . Let H and K be two networks such that: (i) H,K ∈ Hδ, (ii) H ≈trust K,
and (iii) nds(H) = nds(K). Then, M | H ≈δ N | K.
Proof We prove that the relation

S def= {
(
M | H , N | K

)
for all H,K ∈ Hδ such that

M ≈δ N,H ≈trust K and nds(H) = nds(K)}
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is a δ-bisimulation. We do a case analysis on the transition M | H α−−→ρ M̂ , with
ρ ≤ δ. We show just a few cases. The full proof can be found in Section A.2 at
page 184.

• Let M | H m!ṽID−−−−−−→ρ M̂ by an application of rule (Obs), with ρ 6= trust,

because M | H m!ṽ. bD−−−−−−→ρ M̂ . The only possibility is that M | H m!ṽ. bD−−−−−−→ρ M̂

by rule (Par) because M
m!ṽ. bD−−−−−−→ρ M

′ with D := D̂ \ nds(M | H) 6= ∅,m /∈
nds(H), as by Lemma A.7 at page 179 m ∈ nds(M), and M̂ = M ′ | H. Let
D′ := D̂ \nds(M); as D := D̂ \nds(M | H) 6= ∅ then also D′ 6= ∅. We can apply

rule (Obs) and obtain M
m!ṽID′−−−−−−−→M ′. As M ≈δ N then there is N ′ such that

N
m!ṽID′=======⇒ρ N

′ with M ′ ≈δ N ′. Since the action m!ṽID′ can be generated
only by an application of rule (Obs) this implies that there are N1 and N2 such
that

N
τ==⇒ρ N1

m!ṽ.cD′−−−−−−→ρ N2
τ==⇒ρ N

′

with D′ := D̂′ \ nds(N) 6= ∅. As m /∈ nds(K), by several applications of Lemma
A.6 at page 179 and by one application of rule (Par) we have:

N | K τ==⇒ρ N1 | K
m!ṽ.cD′−−−−−−→ρ N2 | K

τ==⇒ρ N
′ | K.

As nds(H) = nds(K) it holds that

D := D̂ \ nds(M | H)
= D̂ \ nds(M) \ nds(H)
= D′ \ nds(H)
= D̂′ \ nds(N) \ nds(K) 6= ∅.

Thus by one application of rule (Obs) we have N | K m!ṽID======⇒ρ N
′ | K and

(M ′ | H,N ′ | K) ∈ S, as required.

• Let M | H m!ṽID−−−−−−→ρ M̂ by an application of rule (Obs), with ρ = trust, because

M | H m!ṽ. bD−−−−−−→trust M̂ , with D := D̂ \ nds(M | H) 6= ∅. We have the following
possibilities:

– Let M | H m!ṽ. bD−−−−−−→trust M̂ by an application of rule (Sync) because

M
m!ṽ. bD−−−−−−→trust M

′ and H
m?ṽ.D′′−−−−−−−→trust H

′, with M̂ = M ′ | H ′,D′′ ⊆ D̂
and H ′ ∈ Hδ. Let D′ := D̂ \ nds(M); as D := D̂ \ nds(M | H) 6= ∅ then also

D′ 6= ∅. We can apply (Obs) and obtain M
m!ṽID′−−−−−−−→trust M

′. As M ≈δ N
then there is N ′ such that N m!ṽID′=======⇒trust N

′ with M ′ ≈δ N ′. Since the
action m!ṽID′ can be generated only by an application of rule (Obs) this
implies that there are N1 and N2 such that

N
τ==⇒trust N1

m!ṽ.cD′−−−−−−→trust N2
τ==⇒trust N

′

with D′ := D̂′ \ nds(N) 6= ∅. As H ≈trust K then K
m?ṽ.D′′=======⇒trust K

′ with
H ′ ≈trust K

′ and K ′ ∈ Hδ. Then there are K1 and K2 such that
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K
τ==⇒trust K1

m?ṽ.D′′−−−−−−−→trust K2
τ==⇒trust K

′

By Lemma A.7 at page 179 we have M ≡ M̂ | m[P ]T and N1 ≡ N̂ | m[Q]T ,
for some M̂, N̂ , T,Q and P and D̂ := {n : T (m,n) ≥ trust} and D̂′ := {n :
T (m,n) ≥ trust}. Then D̂′ = D̂. By several applications of Lemma A.6 at
page 179 and one application of rule (Sync), as D′′ ⊆ D̂, we have

N | K τ==⇒trust N1 | K1
m!ṽ. bD−−−−−−→trust N2 | K2

τ==⇒trust N
′ | K ′.

As nds(K) = nds(H) it holds that

D := D̂ \ nds(M | H)
= D̂ \ nds(M) \ nds(H)
= D′ \ nds(H)
= D̂ \ nds(N) \ nds(K) 6= ∅.

Then N | K m!ṽID======⇒ρ N
′ | K ′ and (M ′ | H ′, N ′ | K ′) ∈ S, as required.

�

7.9 Case Studies

In this section, we use our calculus to formalise and analyse a secure version of
the leader election algorithm for MANETs [227]. Our encoding is inspired by that
given in the ω-calculus [214] for the original leader election algorithm of [227]. We
then propose an encoding of the endairA routing protocol for ad hoc networks [9].
In our encoding, routing paths are associated with at a certain security level σ
as they are composed only by nodes at security level at least σ. This is quite a
desirable property in a multilevel network where information at certain security
level is supposed to travel along trusted nodes.

7.9.1 A Secure Leader Election Protocol for MANETs

A subnetwork of a network M is said to be a connected component of M if all
nodes are connected to each other via one or more hops. For simplicity, we assume
a total order among node names (also called node-ids). The algorithm proposed
in [227] serves to elect the leader node of a connected component with maximum
node-id. Nodes periodically use probe and reply messages to keep track of their
neighbours.

The algorithm operates by first “growing” and then “shrinking” a spanning
tree rooted at the node that initiates the election algorithm. We refer to this
computation-initiating node as the source node. As we will see, after the spanning
tree shrinks completely, the source node will have adequate information to deter-
mine the most-valued-node and will then broadcast its identity to the rest of the
nodes in the network. The algorithm uses three kinds of messages, viz. Election,
Ack and Leader. Elections messages are used to grow the spanning tree. When
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Figure 7.1 The encoding of the leader election protocol for MANETs
/∗Starting node broadcasts election message and evolves into the AwaitAckInit state waiting for
ack messages. ∗/

Source(id, elec, lid)
def
= σ!〈elecMsg, id〉.AwaitAckInit(id, 1 , lid)

/∗In the AwaitAckInit state the initiator node receives ack messages (other messages are ignored)
and store the maximum node-id received; eventually the process evolves into the SendLeader state.
∗/

AwaitAckInit(id, elec, lid)
def
= σ?(x̃).[fst(x̃) = ackMsg]

[snd(x̃) ≥lid]AwaitAckInit(id, elec, snd(x̃)),
AwaitAckInit(id, elec, lid),

AwaitAckInit(id, elec, lid)
+ SendLeader(id, elec, lid)

/∗In the SendLeader state the node broadcasts a leader message.∗/

SendLeader(id, elec, lid)
def
= σ!〈ldrMsg, lid〉.Node(id, 0 , lid)

/∗A node which did not initiate the protocol may receive either an election or a leader message,
evolving into an ElectionProcess or a LeaderProcess state, respectively.∗/

Node(id, elec, lid)
def
= σ?(x̃).[fst(x̃) = ldrMsg]

LeaderProcess(id, elec, lid, snd(x̃)),
[fst(x̃) = elecMsg]ElectionProcess(id, 1 , lid, snd(x̃)),Node(id, elec, lid)

/∗A node in the LeaderProcess state basically propagates leader messages containing the max-
imum between its lid and the maxid received in the leader messages. The most interesting case
in when maxid < lid. This means that either the node was not part of the election process or the
node did not report the ack to its parent nodes, for example because it was disconnected. In both
cases, it broadcasts its lid as the maximum node-id.∗/

LeaderProcess(id, elec, lid,maxid)
def
= [maxid = lid]

[elec = 0]Node(id, 0 , lid), σ!〈ldrMsg, lid〉.Node(id, 0 , lid),
[maxid>lid]σ!〈ldrMsg,maxid〉.Node(id, 0 ,maxid),
[maxid<lid]σ!〈ldrMsg, lid〉.Node(id, 0 , lid)

/∗In the ElectionProcess state a node broadcasts the election message received by its parent and
evolves into an AwaitAck state, waiting for ack messages.∗/

ElectionProcess(id, elec, lid, idp)
def
= σ!〈elecMsg, id〉.AwaitAck(id, elec, lid, idp)

/∗In the AwaitAck state the node receives ack messages and update the maximum node-id as in
the AwaitAckInit state; the only difference is that when acks end, the process evolves into the
SendAck state.∗/

AwaitAck(id, elec, lid, idp)
def
= σ?(x̃).[fst(x̃) = ackMsg]

[snd(x̃) ≥lid]AwaitAck(id, elec, snd(x̃), idp),
AwaitAck(id, elec, lid, idp),

AwaitAck(id, elec, lid)
+ SendAck(id, elec, lid, idp)

/∗In a SendAck state a node may either send (unicast transmission) to its parent node an ack
message, with the current maximum node-id, or evolve into a SendLeader state if the node
disconnects from its parent node. In this case, it reports its current leader.∗/

SendAck(id, elec, lid, idp)
def
= σ!〈ackMsg, lid〉idp .Node(id, elec, lid) + SendLeader(id, elec, lid)
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election is triggered at a source node s (for instance, upon departure of its current
leader), the node broadcasts an election message. Each node, i, other than the
source s, designates the neighbour from which it first receives an election mes-
sage as its parent in the spanning tree. These nodes i then broadcast the received
election message. After sending an election message, a node awaits acks from its
children in the spanning tree, before sending an ack message to its parent. As
we will see shortly, the ack messages sent to the parents contains leader-election
information based on the ack messages received from children.

Once the spanning tree has completely grown, the spanning tree shrinks back
toward the source. Specifically, once all of i’s outgoing election messages have been
acknowledged, i sends its pending ack message to its parent node. Tree shrinkage
begins at the leaves of the spanning tree, which are parents to no other node.
Eventually, each leaf receives ack messages for all election messages it has sent.
These leaves thus eventually send their pending ack messages to their respective
parents, who in turn send their pending ack messages to their own parents, and so
on, until the source node receives all of its pending ack messages. In its pending
ack message, a node announces to its parent the node-id and the value of the most-
valued-node among all its downstream nodes. Hence the source node eventually
has sufficient information to determine the most-valued-node from among all nodes
in the network, since the spanning tree spans all network nodes. Once the source
node for a computation has received acks from all of its children, it then broadcasts
a leader message to all nodes announcing the node-id of the most-valued-node.

Our version of the encoding elects as leader the node with the maximum node-
id in a connected component at a specific security level σ, called σ-connected
component. In such a component, neighbouring nodes trust each other at security
level (at least) σ.

Definition 7.21 (σ-connected component). Let M be a network. A subnet-
work N of M is said to be a σ-connected component of M if

• for all m,n ∈ nds(N) there is a sequence of nodes m1, . . . ,mk ∈ nds(N),
with N ≡ N̂ | m1[P1]T1

| . . . | mk[Pk]Tk , such that m=m1, n=mk, and
Ti(mi,mi+1) ≥ σ, for 1 ≤ i ≤ k−1;

• whenever N ≡ N̂ | m[P ]Tm | n[Q]Tn with Tm(m,n) ≥ σ it holds that
Tn(n,m) ≥ σ.

In Figure 7.1 we provide our encoding of a secure version of the leader election
protocol for MANETs. We do not consider probe and reply messages as we can
model the effect of disconnection between nodes using the choice operator. Let us
explain more in detail the encoding of Figure 7.1. At the beginning, each node can
be in one of these two states:

• Source(id , elec, lid), if the node initiates the protocol;
• Node(id , elec, lid), otherwise.

While the protocol is executed, nodes may evolve into one of the following states:

• AwaitAckInit(id , elec, lid), a starting node waits for ack messages;
• SendLeader(id , elec, lid), a node broadcasts a leader message;



130 7 A Calculus of Trustworthy Ad Hoc Networks

• ElectionProcess(id , elec, lid , idp), a node rebroadcasts the election message
previously received by its parent;

• AwaitAck(id , elec, lid , idp), a node waits for ack messages;
• SendAck(id , elec, lid , idp), a node sends an ack message to its parent;
• LeaderProcess(id , elec, lid ,maxid), a node sets its leader parameter to the

value received.

The meaning of the parameters of the above states is the following: id is the
name of the node; elec indicates whether the node is part of the election process,
thus, elec = 1 if the node is participating in the election process, elec = 0 otherwise;
lid represents the node’s knowledge of the leader; idp is the name of the parent
node; maxid is maximum node-id in the spanning tree rooted at id .

A node may send and/or receive election, ack or leader messages. These mes-
sages are pairs of the following shape:

• elecMsg, id meaning an election message sent by node id ;
• ackMsg, lid meaning an ack message where lid is the current leader at that

stage;
• ldrMsg, lid meaning a leader message where lid is the current node’s knowledge

of the leader.

A starting node begins the protocol in the Source(id , 0 , lid) state, with
lid = id . In this state, it broadcasts the message 〈elecMsg, lid〉 moving into
the AwaitAckInit(id, 1, lid) state, waiting for the ack message. In this state the
starting node may receive ack messages of the form 〈ackMsg,maxid〉. When this
happens, the node checks the maxid variable contained in the ack message. If
maxid ≥ lid then the node evolves into the AwaitAckInit(id , elec,maxid) state
to record the maxid value, otherwise it remains in AwaitAckInit(id , elec, lid),
waiting for other ack messages. In the state AwaitAckInit(id , elec, lid) the
node may also nondeterministically evolves into the SendLeader(id, elec, lid)
when it has received all acks from its neighbours. In the SendLeader(id, ele-
c, lid) state a node broadcasts a leader message 〈ldrMsg, lid〉 and evolves into the
Node(id, 0, lid) state, waiting for other leader messages sent by its neighbours.

All the other nodes in the network begin the protocol in the Node(id, 0, lid)
state. In this state, they may receive an election message 〈elecMsg, idp〉 or a
leader message 〈leaderMsg,maxid〉. In the first case they evolve into the state
ElectionProcess(id, 1, lid, idp), where idp records the id of their parent node,
contained in the election message. In the second case they evolve into the
LeaderProcess(id, elec, lid,maxid) state, where maxid is the leader id contained
in the leader message. A node in the ElectionProcess(id, elec, lid, idp) state
broadcasts an election message containing its node id and then evolves into the
state AwaitAck(id, elec, lid, idp), waiting for acks. A node in the AwaitAck(id, e-
lec, id, idp) state may either receive ack messages of the form 〈ackMsg,maxid〉
or evolve into the SendAck(id, elec, lid, idp) state to model that all ack mes-
sages have been received. When the node receives an ack, it stores the max-
imum node-id received with the ack, checking if maxid ≥ lid . A node in the
SendAck(id, elec, lid, idp) state may send to its parent node idp an ack message
of the form 〈ackMsg, lid〉 with the current maximum node-id, and goes into the
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Node(id, elec, lid) state; otherwise the node may evolve into the SendLeader-
(id, elec, lid) state. This last state models the case when a node is disconnected
from its parent node. In this case, the node reports its current leader.

A node in the LeaderProcess(id, elec, lid,maxid) basically propagates the
received leader message by setting its lid parameter to the maxid values received
in the leader message. The most interesting case is when maxid < lid . In this
case, either the node was not part of the election process or it did not report
the ack message to its parent nodes, for example because it was disconnected. In
both case it broadcasts its lid as the maximum node-id sending a leader message
〈ldrMsg, lid〉 and evolves into Node(id, 0, lid).

Here, we report an example of the protocol.

Example 7.22. Let M be the following network:

M
def= l[Source(l, 0, l)]Tl | m[Node(m, 0,m)]Tm | n[Node(n, 0, n)]Tn

with l > m > n and Tl(l,m)=Tm(m, l)=Tm(m,n)=Tn(n,m)≥σ. Here, we report
the evolution M while running the protocol.

M
l!〈elecMsg,l〉.m
−−−−−−−−−−−−→σ l[AwaitAckInit(l, 1, l)]Tl |

m[ElectionProcess(m, 1,m, l)]Tm |
n[Node(n, 0, n)]Tn

def= M1 .

Node l starts the protocol broadcasting the election message 〈elecMsg, l〉, and
evolving into the state AwaitAckInit(l, 1, l). Only node m receives the election
message and evolves into the state ElectionProcess(m, 1,m, l). Node m has
marked l as its parent node.

M1
m!〈elecMsg,m〉.{l,n}
−−−−−−−−−−−−−−−−→σ l[AwaitAckInit(l, 1, l)]Tl | m[AwaitAck(m, 1,m, l)]Tm |

n[ElectionProcess(n, 1, n,m)]Tn
def= M2 .

Node m broadcasts the election message 〈elecMsg,m〉, and evolves into the state
AwaitAck(m, 1,m, l), waiting for acks. Node l ignores the message and remains in
the state AwaitAckInit(l, 1, l), whereas node n receives the message and evolves
into the state ElectionProcess(n, 1, n,m). Again the last parameter m indicates
the parent node of n.

M2
n!〈elecMsg,n〉.m
−−−−−−−−−−−−−→σ l[AwaitAckInit(l, 1, l)]Tl | m[AwaitAck(m, 1,m, l)]Tm |

n[AwaitAck(n, 1, n,m)]Tn
def= M3 .
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Node n broadcasts the election message 〈elecMsg, n〉 and then it evolves into the
state AwaitAck(n, 1, n,m), waiting for acks. Node m ignores the message and
remains in its state.

M3
n!〈ackMsg,n〉.m
−−−−−−−−−−−−→σ l[AwaitAcInit(l, 1, l)]Tl | m[AwaitAck(m, 1,m, l)]Tm |

n[Node(n, 1, n)]Tn
def= M4 .

As n has no children, it will not receive acks. Thus, it will eventually evolve into
the state SendAck(n, 1, n,m) sending the ack message 〈ackMsg, n〉 to its parent
node m. This message contains the current leader of node n, that is n itself. After
the sending, n evolves into the state Node(n, 1, n), waiting for leader messages.

M4
m!〈ackMsg,m〉.l
−−−−−−−−−−−−→σ l[AwaitAckInit(l, 1, l)]Tl | m[Node(m, 1,m)]Tm |

n[Node(n, 1, n)]Tn
def= M5 .

When m receives the message 〈ackMsg, n〉, it checks whether n is greater than its
current leader m. As m > n, m sends the ack message 〈ackMsg,m〉 to its parent l
and evolves into the state Node(m, 1,m). The message 〈ackMsg,m〉 contains the
current leader of m, that is m itself.

M5
l!〈ldrMsg,l〉.m
−−−−−−−−−−−→σ l[Node(l, 0, l)]Tl | m[LeaderProcess(m, 1,m, l)]Tm |

n[Node(n, 1, n)]Tn
def= M6 .

When l receives the message 〈ackMsg, n〉, it checks whether m is greater than its
current leader l. As l > m, node l broadcasts the leader message 〈ldrMsg, l〉 and
evolves into the state Node(l, 0, l). Node m receives the leader message and evolves
into the state LeaderProcess(m, 1,m, l).

M6
m!〈ldrMsg,l〉.{l,n}
−−−−−−−−−−−−−−→σ l[Node(l, 0, l)]Tl | m[Node(m, 0, l)]Tm |

n[LeaderProcess(n, 1, n, l)]Tn
def= M7 .

Node m checks whether l is greater than its current leader m. As l > m, then m
broadcasts the leader message 〈ldrMsg, l〉 with l as its current leader and evolves
into the state Node(m, 0, l). When l receives this message, as it is in Node(l, 0, l)
state, it has simply to check whether the received leader corresponds to its current
leader. This is the case, then it remains into Node(l, 0, l) state. When n receives
the leader message 〈ldrMsg, l〉, it evolves into the state LeaderProcess(n, 1, n, l).
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M7
n!〈ldrMsg,l〉.m
−−−−−−−−−−−−→σ l[Node(l, 0, l)]Tl | m[Node(m, 0, l)]Tm | n[Node(n, 0, l)]Tn .

Finally, node n verifies that l is greater than its current leader n. Thus, l becomes
the current leader of n that broadcasts the leader message 〈ldrMsg, l〉 with current
leader l, evolving into the state Node(n, 0, l). The leader message sent by n is
received by m that verifies that l is already its leader. So, it remains in the state
Node(m, 0, l).

7.9.2 The endairA Routing Protocol

Figure 7.2 An example of the operation and the messages of endairA

s −→ ∗ : rreq, s, d,nonce, [ ]
l −→ ∗ : rreq, s, d,nonce, [l]
m −→ ∗ : rreq, s, d,nonce, [l,m]
d −→ m : {rrep, s, d,nonce, [l,m]}Kd−
m −→ l : {{rrep, s, d,nonce, [l,m]}Kd−}Km−
l −→ s : {{{rrep, s, d,nonce, [l,m]}Kd−}Km−}Kl−

s l m d
rreq rreq rreq

rrep rrep rrep

We described in detail in Section 2.2.3 the routing protocols for wireless sys-
tems. We remember that ad hoc networks rely on multi-hop wireless communi-
cations where nodes have essentially two roles: (i) acting as end-systems, and (ii)
performing routing functions. A routing protocol is used to determine the appro-
priate paths on which data should be transmitted in a network. Routing proto-
cols for wireless systems can be classified into topology-based and position-based.
Topology-based protocols rely on traditional routing concepts, such as maintain-
ing routing tables or distributing link-state information. Position-based protocols
use information about the physical locations of the nodes to route data packets
to their destinations. Topology-based protocols can be divided into proactive and
reactive protocols. Proactive routing protocols try to maintain consistent routing
information within the system at any time. In reactive routing protocols, a route
is established between a source and a destination only when it is needed. For
this reason, reactive protocols are also called on-demand protocols. Examples of
proactive routing protocols for MANETs are OLSR [65] and DSDV [187], while
on-demand protocols are DSR [129] and AODV [186].

Initial work on routing in ad hoc networks has considered only the problem
of providing efficient mechanisms for finding paths, without considering security
issues. However, due to the lack of physical protection, some of the routers could
be corrupted affecting the routing paths. Obviously, this can have undesirable
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Figure 7.3 The encoding of the endairA protocol
/∗Starting node broadcasts a request message and evolves into the AwaitReply state waiting for
reply.∗/

Source(ids ,Ts , idd )
def
= σ!〈rreq, ids , idd , [ ]〉.AwaitReply(ids ,Ts , idd )

/∗The initiator node in the AwaitReply state receives a reply message; if the reply is successfully
returned, the node accepts the route, evolving into the state RouteSuccess. ∗/

AwaitReply(ids ,Ts , idd )
def
=

σ?(pkt, sigList).[Ts(ids, sigList)≥σ]
let (y1, y2, y3, y4)=get(pkt, sigList) in

[y1 = rrep]
[(tail(sigList) = y4)∧(head(sigList) = y3 = idd)∧(y2 = ids)]

RouteSuccess(ids, idd, y4),
Source(ids ,Ts , idd ),

AwaitReply(ids ,Ts , idd )
else AwaitReply(ids ,Ts , idd ),

AwaitReply(ids ,Ts , idd )
+ Source(ids ,Ts , idd )

/∗Intermediate nodes may receive a request or a reply message. ∗/

Node(id,T)
def
= σ?(req, ids , idd , path).RRequest(id, T, req, ids , idd , path)

+ σ?(pkt, sigList).RReply(id,T , pkt, sigList)

/∗ A node receiving a request message controls if it is the intended destination or not. ∗/

RRequest(id,T , req, ids , idd , path)
def
= [req = rreq]

[idd = id]
SendReply(id,T , path, ids),

σ!〈rreq, ids , idd , path]id〉.Node(id,T)
Node(id,T)

/∗After receiving the request, the destination unicasts a signed reply back along the reverse path
to the source. ∗/

SendReply(idd ,T , path, ids)
def
= σ!〈{rrep, ids , idd , path}Kidd− , idd〉last(path) + Node(idd ,T)

/∗A node receiving a reply message controls if the reply is successfully returned.∗/

RReply(id,T , pkt, sigList)
def
=

[T (id, sigList)≥σ]
let (y1, y2, y3, y4)=get(pkt, sigList) in

[y1 = rrep]
[(id ∈ y4)∧(tail(sigList) = succ(y4, id))∧(head(sigList) = y3)]

FwdReply(id, T, pkt, sigList,pred(y4, id, y2)),
Node(id,T),

Node(id,T)
else Node(id,T),

Node(id,T)

/∗If the reply has been successfully returned, a node forwards the reply back to its previous node,
adding its signature. ∗/

FwdReply(id,T , pkt, sigList, idn)
def
= σ!〈{pkt}Kid− , sigList]id〉idn + Node(id,T)
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effects on the operations of the network. A number of secure routing protocols
for MANETs have been proposed such as: SRP [184], Ariadne [121], endairA [9],
SAODV [238], and ARAN [209]. In this section, we use our calculus to formalise
the on-demand routing protocol endairA. In [9] Ács, Buttyán and Vajda have
presented a formal framework, in which security of routing is precisely defined, and
which can serve as the basis for rigorous security analysis of routing protocols both
for ad hoc and sensor networks. They also have developed the endairA protocol
for mobile ad hoc networks, and the framework is tested by proving the security
of this protocol.

The endairA protocol uses digital signatures. As usual, given a node n, we
write Kn+ and Kn− to mean the public key and the private key of n, respectively.
Moreover, given a message ṽ, we write {ṽ}Kn− meaning the message ṽ signed by
n. In the following, we refer to node-id or to node identifier to mean the name of
the node.

In Figure 7.2 we report a scheme of the endairA protocol with four nodes: a
source s, a destination d and two intermediate nodes l and m. We also provide a
graphical representation of the message flow, where the dashed arrows denote the
broadcast of route request messages, while the continuous arrows denote the uni-
cast sending of route reply messages. The protocol works as follows. The source
s broadcasts a route request message of the form 〈rreq, s, d,nonce, [ ]〉. Nonce
is a randomly generated request identifier, that helps in detecting replay mes-
sages, whereas [ ] is the list of intermediate nodes that have successfully received
the route request message. At the beginning this list is empty. When the inter-
mediate node l receives the route request for the first time, it broadcasts the
message 〈rreq, s, d,nonce, [l]〉, appending its node-id in the list. When m receives
the route request sent by l, it broadcasts a route request message of the form
〈rreq, s, d,nonce, [l,m]〉. When the request reaches the destination, the node d
replies with a unicast message for m (the last node in the route-list) of the form
{rrep, s, d,nonce, [l,m]}Kd− . When m receives this message, it verifies that the
digital signatures in the reply (the signature of the destination in this case) are
valid, and tries to extract the content of the signed message. Then, it verifies that
its node-id is in the node list of the reply, and that the previous identifier, l in
this case (or that of the source if there is no previous identifier in the node list),
and the following identifier, d in this case, belong to neighbouring nodes. Each
intermediate node also verifies that the digital signatures of the reply messages
received. If these verifications fail, then the reply message is dropped. Otherwise,
it is signed by the intermediate node and passed to the next node on the route
(towards the source). So, in our case, at the end of the protocol, node l sends to the
source s the following unicast message: {{{rrep, s, d,nonce, [l,m]}Kd−}Km−}Kl− .
When the source receives the route reply, after it has verified the signatures and
extracted the content of the message, it verifies if the first identifier in the route
is a neighbour, and that the reply message is the expected one. If some of these
verifications fail the message is dropped.

When writing the endairA protocol in our calculus, we consider a few simplifi-
cations. Our encoding is actually a secure variant of the original protocol as paths
are associated with security levels as they are composed only by trusted nodes.
For simplicity, we eliminate the field nonce in our messages, as it only helps in



136 7 A Calculus of Trustworthy Ad Hoc Networks

detecting replay attacks and here we do not explicitly deal with attacks. In order
to prevent invalid routes, in the original protocol, an intermediate node ni veri-
fies that the previous node ni−1 and the following node ni+1 in the accumulated
route are neighbouring nodes. In our encoding, we simply verify the nodes in the
accumulated route have the appropriate security level. This ensures that also re-
ply messages are forwarded on paths of nodes at security level at least σ. This is
guaranteed for free by our operational semantics.

For convenience, we extend the syntax of the matching construct as follows:

[(ũ1 op ũ
′
1)lc. . .lc(ũk op ũ′k)]P,Q

where lc is a binary logical operator. We also introduce the following destructor
construct

let x̃=g(u1, u2, . . . , uk) in P else Q

where g is a destructor function. A destructor function is defined using a finite
set of equations. When the application of a destructor g(u1, u2, . . . , uk) does not
match any of its equations, we write g(ũ1, ũ2, . . . , ũk) = ⊥. We add the following
two rules in the operational semantics:

(LetIn)
g(u1, . . . , uk) = ṽ n[{ṽ/̃x}P ]T

λ−−→ρ n[P ′]T ′

n[let x̃=g(ũ1, . . . , ũk) in P else Q]T
λ−−→ρ n[P ′]T ′

(LetElse)
g(u1, . . . , uk) = ⊥ n[Q]T

λ−−→ρ n[Q′]T ′

n[let x̃=g(ũ1, . . . , ũk) in P else Q]T
λ−−→ρ n[Q′]T ′

.

For our purposes, we only need a destructor get(·) that takes in input a signed
message and a list of node-ids and returns the content of the message if the sig-
natures of the message correspond to the node-ids in the list, ⊥ otherwise. For
instance,

get({. . . {{ũ}Kn1−
}Kn2−

} . . .}Knk− , n1, n2, . . . , nk) = ũ,

whereas get({. . . {{ũ}Kn1−
}Kn2−

} . . .}Knk− ,m1,m2, . . . ,mk) = ⊥, if mi 6= ni, for
some i. We assume that the destructor get is capable to get the corresponding
public keys from node-ids. This operation successes only if the list contains exactly
all nodes that have signed the message.

In the endairA protocol reply messages need to be signed by all nodes in the
route. Thus, for convenience, our reply messages contains the list of nodes that
have signed the messages, denoted with the variable sigList . We assume that if
a node m[P ]T knows a node n, that is T (m,n) is defined, then m knows the
public key of n. We remember that in our calculus we assume the presence of a
hierarchical key generation and distribution protocol. This implies that a signature
is produced with a private key at a specific security level. Thus, if m wants to verify
the validity of a signature produced by a node n at security level ρ, it simply has
to control whether T (m,n) ≥ ρ.

We use a number of notations. Let h = n, l, . . . , q be a list of node-ids and
m a node; we sometimes write T (m,h) ≥ ρ to mean T (m,n) ≥ ρ ∧ T (m, l) ≥
ρ∧ . . .∧T (m, q) ≥ ρ. Let h be a list and v a value; we write h]v for the list where
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v has been appended to h. We assume standard functions on lists such as head(·)
and tail(·), with the convection that head(h) = tail(h), if h is composed by just
one value. We also define two ad hoc functions pred(·, ·, ·) and succ(·, ·). More
precisely, the function succ(·, ·) takes in input a list of node-ids h and a node-id
id and returns the list of node-ids that follows id in h; this list can obviously be
empty. Whereas pred(·, ·, ·) takes in input a list h of node-ids and two node-ids
id and id ′, and returns the node-id that precedes id in h it it exists, otherwise
it returns id ′. Thus, if h = n, l, . . . , q is a list of node-ids and s a node-id; then
pred(h, l, s) = n, whereas pred(h, n, s) = s.

In Figure 7.3 we provide the encoding of the endairA protocol in our calculus.
Let us explain it in some detail.

At the beginning, each node can be in one of these two states:

• Source(ids ,Ts , idd), when a (source) node initiates the protocol; in this state
the node broadcasts a request message;

• Node(id ,T ), when a node participate receiving a request or reply message.

While the protocol is executed, nodes may evolve into one of the following states:

• AwaitReply(ids ,Ts , idd), the initiator node waits for the reply message;
• RouteSuccess(ids , idd , path), the source node has accepted the route;
• RRequest(id ,T , req , ids , idd , path), an intermediate node receives a request

message;
• SendReply(idd ,T , path, ids), the destination node sends the reply message;
• RReply(id ,T , pkt , sigList), an intermediate node receives a reply message;
• FwdReply(id ,T , pkt , sigList , idn), an intermediate node forwards a reply

message.

The source node s begins in the state Source(ids ,Ts , idd), where ids and idd

are the ids of the source and the destination, respectively, while Ts is the trust
table of s. In this state, the source node broadcasts a route request message of the
form 〈rreq, ids , idd , [ ]〉. The last element of the message is the accumulated route
so far; at the beginning this list is empty. After this transmission, the node evolves
into the state AwaitReply(ids ,Ts , idd), waiting for a reply message. In particular
the source nodes waits for a pair 〈pkt, sigList〉 composed by a signed reply packet
and the list of ids of the nodes that have signed the packet. When the source
receives a reply message, it first verifies the signatures. If the verification fails, the
source node returns into the state AwaitReply(ids ,Ts , idd), otherwise it tries to
extract the content of pkt . This packet should contain four values: the tag rrep,
the node-id of the source, the node-id of the destination, and the accumulated
route. If the initiator cannot extract these informations it returns into the state
AwaitReply(ids ,Ts , idd), otherwise it starts a number of checks. First, it verifies
if it has received a reply packet; then it verifies if the signatures correspond to the
ids appearing in the accumulated route; finally it verifies if the ids of the source and
the destination are the expected ones. If all these checks are successful the initiator
accepts the route, evolving into the state RouteSuccess(ids , idd , path), meaning
that the route from ids to idd contained in path has been accepted, otherwise the
reply is dropped and the node returns into the state Source(ids, Ts). The reply
may never arrive at the source; in this case the source can nondeterministically
return into the state Source(ids, Ts), starting again the protocol.
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The other nodes taking part in the protocol may be either intermediate nodes
or the destination node. In both cases, they begin the protocol in the state
Node(id ,T ), where id is the identity of the node and T is its trust table. In
this state, the node expects to receive either a route request message or a reply
message.

When a node receive a route request message it first verifies if it is the des-
tination of the route request. If this is the case, the node moves into the state
SendReply(idd ,T , path, ids), otherwise it rebroadcasts the request message, af-
ter adding its node-id in the route path path, returning into the state Node(id ,T ).
In SendReply(idd ,T , path, ids), the destination node prepares the reply message.
More precisely, it creates the list sigList of signing nodes, containing only its id,
and sends the unicast message 〈{rrep, ids , idd , path}Kidd− , [idd ]〉 to the last node
in path. The choice operator allows to avoid deadlocks in case the last node in path
becomes suddenly disconnected.

When a node in the state Node(id ,T ) receives a reply containing a pair
〈pkt , sigList〉, it evolves into the state RReply(id ,T , pkt , sigList). Here, it car-
ries out the same checks appearing in the state AwaitReply verifying the sig-
natures, and trying to extract the content of pkt . If everything is fine, the node
evolves into the state FwdReply(id ,T , pkt , sigList , idn), otherwise the node re-
turns into the state Node(id ,T ). The parameter pkt records the original signed
message previously received, whereas the parameter idn records the previous
node-id in path to which the node has to send back the reply. In the state
FwdReply(id ,T , pkt , sigList , idn) the node signs the reply message and adds its
id in the list sigList . Thus, it sends to idn the message 〈{pkt}Kid− , sigList]id〉.
Again, the choice operator in this state allows to avoid deadlocks in case of dis-
connections of idn .

Here we report an example of how the protocol works.

Example 7.23. Let M be the following network:

M
def= l[Source(l, Tl, n)]Tl | m[Node(m,Tm)]Tm | n[Node(n, Tn)]Tn

with Tl(l,m) = Tl(l, n) = Tm(m, l) = Tm(m,n) = Tn(n,m) ≥ σ. For convenience
we define: v1:={rrep, l, n,m}Kn− and v2:={{rrep, l, n,m}Kn−}Km− . Here, we re-
port the evolution of M while running the endairA protocol.

M
l!〈rreq,l,n,[ ]〉.{m,n}
−−−−−−−−−−−−−−−−→σ l[AwaitReply(l, Tl, n)]Tl |

m[RRequest(m,Tm, rreq, l, n, [ ])]Tm |
n[Node(n, Tn)]Tn

def= M1 .

Node l starts the protocol in the state Source(l, Tl, n), broadcasting the message
〈rreq, l, n, [ ]〉 and evolving into the state AwaitReply(l, Tl, n), waiting for a
reply. The accumulated route is still empty. Only node m receives the message
and evolves into RRequest(m,Tm, rreq, l, n, [ ]).
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M1
m!〈rreq,l,n,[m]〉.{l,n}
−−−−−−−−−−−−−−−−−→σ l[AwaitReply(l, Tl, n)]Tl | m[Node(m,Tm)]Tm |

n[SendReply(n, Tn,m, l)]Tn
def= M2 .

Node m broadcasts the message 〈rreq, l, n, [m]〉, where [m] is the accumulated
route so far. Then, node m evolves into Node(m,Tm), waiting for a reply. Node
l ignores the message sent by m and remains in the state AwaitReply(l, Tl, n),
whereas node n receives the message, it verifies to be the destination node and it
evolves into the state SendReply(n, Tn,m, l).

M2
n!〈v1,[n]〉.m
−−−−−−−−−−→σ l[AwaitReply(l, Tl, n)]Tl | m[FwdReply(m,Tm, v1,m, l)]Tm |

n[nil]Tn

def= M3 .

Node n sends the reply message, together with the list of nodes signing the reply,
back to m. Node m receives this message, verifies the signature and extracts the
content of v1. Then, it verifies that its name is in the accumulated route carried by
the received message and that the signature corresponds to the destination node.
Thus, it evolves into FwdReply(m,Tm, v1,m, l).

M3
m!〈v2,[n,m]〉.l
−−−−−−−−−−−−→σ l[RouteSuccess(l, n,m)]Tl | m[nil]Tm | n[nil]Tn .

Node m sends the reply message v2, together with the list of nodes signing
the reply, back to l. Node l receives the message and verifies the signatures of m
and n and that they correspond to the node in the path and to the destination,
respectively. It also verifies that the node-ids of the source and of the destina-
tion are the expected ones. Then it accepts the route and evolves into the state
RouteSuccess(l, n,m).

7.10 Related Work

In this section, we describe some related work according to the area in which they
have been developed.

Trust Models

Besides the models we described in Section 3.4.1, here we cite the work of Ko-
marova and Riguidel [139]. They have proposed a centralised trust-based access
control mechanism for ubiquitous environments. The goal of their work is to give
a service provider or a resource holder the opportunity to evaluate the trustwor-
thiness of each potential client, react to the client’s activity by adapting access
policies to the actual risk level, and derive user’s access rights from his previous
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behaviour, recommendations from third party and the actual circumstances. It is
supposed that the system is able to observe and to log the activity of each client
and use this information to estimate correspondent trust values.

In contrast to this approach, we proposed a completely decentralised trust
model in which each node is able (by itself and without the support of a service
provider or a resource holder) to perform a trust establishment process in order
to give a valuation of the neighbours’ behaviour in terms of security levels. Thus
observation of each user, log of the activities and estimation of trust values are all
actions performed by each single node and they are guaranteed by the presence
of a local trust manager component. Moreover we assumed a local policy that is
“static” because it does not adapted according to actual environment conditions.

Security in Multilevel Systems

The problem of protecting information and resources in multilevel systems [28] has
been extensively studied using different approaches. Some methodologies analysed
in Chapter 5 have been also successfully applied in this area. Bodei et al. [52]
applied flow analysis techniques. Reitman and Andrews [200] have used axiomatic
logic. Smith and Volpano in [229], Boudol and Castellani [54] and Heintz and
Riecke in [108] have instead focused on type systems for prototypical programming
languages.

Information flow properties aim at controlling the way in which information
may flow among different entities. They have been first proposed as a means to
ensure confidentiality. Excellent surveys are in [83,204]. As we described in Section
5.3, the Non Deducibility on Composition (NDC) property was introduced by
Focardi and Gorrieri [81] as a non-interference property based on trace semantics:
systems are deemed to be interference free if their trace sets, sequences of actions
labelled high or low, satisfy some properties. The notion of Bisimulation Non
Deducibility on Composition (BNDC) [81] is based on bisimulation rather than
trace semantics. More recently, Gorrieri et al. [99] have proposed a framework for
the specification of information flow properties for distributed systems, based on
the NDC and BNDC properties.

Crafa and Rossi [70] have introduced a notion of controlled information release
for a typed version of the π-calculus extended with declassified actions. The con-
trolled information release property scales to non-interference when downgrading
is not allowed. They have provided various characterisations of controlled release
property, based on typed behavioural equivalence, parameterised on security lev-
els, to model observers at a certain security level. Hennessy [110] has proposed a
typed version of the asynchronous π-calculus in which I/O types are associated to
security levels. A typed version of may and must equivalences are used to prove a
non-interference result.

On the contrary of the approaches in [110] and [70], we did not consider a
type systems for channel names (we remember that we have a unique channel)
and for transmitted values. Our definition of δ-high level network is reminiscent
of the formalisation of σ-high level source process in [70], with the difference that
we do not consider declassified primitives. Moreover in [70] a σ-high level source
is not prevented from communicating σ-low values along σ-high channels, as this
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is allowed to well-typed processes and the security level of transitions is not estab-
lished by the process but it can vary according to the security level of the channel.
In our calculus a δ-high level network can netheir receive nor transmit δ-low values
as the security level of transitions is directly related to the syntax of processes. As
in [110] and [70], our formalisation of non-interference result is reminiscent of the
non-interference BNDC property of [81]. However in CTAN only the general case
M | K ≈δ N | H holds and it is not true that M ≈δ N | H. This happens because
in M and N could not still know that some nodes in H are corrupted and then
they send them anyway a message. These nodes may be potential observers of the
action from M but not of the same action from N | K.

Process Calculi

We described some calculi for wireless networks [92,94,163,167,178,214] and their
relation with our work in Section 6.9. In Section 2.2.3 we described how some of
them [94,178,214] has been applied to the analysis of routing protocols.

Our mobility model is inspired by the one adopted in [92] which is in turn
based on the approach of [178]. We thus transfer topology concepts completely
to the semantics (similar to CBS] [178] and RBPT [92]). This means that each
state represents a set of valid topologies, and a network can be at any of those
topologies at any time. In addition, it is the network behaviour that defines a set of
valid topologies under which such behaviour is correct, rather than the underlying
topology dictates the network behaviour. A valid topology is a set of connectivity
relations between nodes. The advantages of this approach are that it should easily
enable the modelling of ad hoc protocol assumptions and the reduction of the
number of topologies that should be considered in an eventual verification. The
approach of CBS], in the definition of topology and topology changes, is the same
as ours and of RBPT, even if the LTS and equivalence relations are completely
different. In CBS], in any state, a transition to the next state is examined for all
possible valid configurations, those satisfying a topology invariant, while in our
approach a transition is examined for a subset of valid configurations (only the
connections involved in a broadcast are examined).

None of the calculi mentioned above deal with trust. CTAN is the first cal-
culus to contain a trust model for wireless networks then, while the trust model
has been developed to accomplish the most important features of trust manage-
ment systems for MANETs, its integration in a process calculus is a completely
novel contributions. In the following, we cite some process calculi using a “pre-
established” notion of trust but they do not deal with the development of trust
models. Carbone, Nielsen, and Sassone [59] have introduced ctm, a process calculus
which embodies the notion of trust for ubiquitous systems. In ctm each principal
is equipped with a policy, which determines its legal behaviour, formalised using
a Datalog-like logic, and with a protocol, in the process algebra style, which al-
lows interactions between principals and the flow of information from principals to
policies. Martinelli [157] has defined an integrated framework for the specification
and automated analysis for security and trust in complex and dynamic scenarios.
The author has used a variant of CCS equipped with an inference construct that
permits to the model to handle cryptographic primitives. He has showed how this
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calculus, usually used for the formal specification and verification of security pro-
tocol, may also be used to analyse a variety of access control approaches based
on trust management. Cirillo and Riely [64] have studied the relationship between
code identity, static analysis and trust in open distributed systems. Their main
result is a robust safety theorem expressed in terms of a distributed higher-order
π-calculus with code identity, a primitive for remote attestation, enriched by types
for the specification of access control policies.

Safety Properties

Access control [207] is a well-established technique to provide safety properties
ensuring that only principals with appropriate access rights can access informa-
tions. In [53] Boudol have argumented that, in order to develop “security-minded”
programming languages, it is necessary to define a safety property based on a no-
tion of a security error, namely that it should not be possible to put in a public
location a value elaborated using confidential information. Moreover, the author
have showed that this safety property is guaranteed by a standard security type
system and that it allows to give natural semantics to various security-minded
programming constructs. In [64] Cirillo and Riely have defined an extension to
the higher-order π-calculus for analysing protocols that rely on remote attesta-
tion. They have also provided a static analysis technique for ensuring robust safety
in the presence of arbitrary attackers. Their robust safety is defined in terms of
runtime errors and it requires that no valid process can lead to a runtime error
even in the presence of arbitrary attackers. In [154] Maffeis et al. have introduced
in the setting of a higher-order spi calculus an instance of the code-carrying au-
thorisation approach, according to which access-control decisions can partly be
delegated to untrusted code obtained at run-time. The dynamic verification of
this code ensures the safety of authorisation decisions. They have provided a for-
mal definition of robust safety relying on the operational semantics. They have
verified their results in terms of dynamic typechecking. In [87] Fournet, Gordon
and Maffeis have considered the problem of statically verifying the conformance of
the code of a system to an explicit authorisation policy. They have proposed policy
conformance criteria in terms of safety properties, that generalise specifications of
authentication protocols. They have formalised these criterions in the setting of a
process calculus, and presented a verification technique based on a type system.

In our approach we do not consider neither run-time errors nor type systems
to check if a safety property is ensured. Indeed our definitions and formalisations
just rely on the labelled transition systems and are expressed in terms of security
levels of synchronisations. However the intuitions behind them are the same ones
of the cited works: the safety property has to be ensured at run-time, while the
system evolves, and also in presence of compromised nodes.

7.11 Chapter Summary

For its potential to provide ubiquitous connectivity without the assistance of any
fixed infrastructure, ad hoc networks attract the attention of many researchers.
Lack of a fixed infrastructure, node mobility, shared wireless medium, cooperative
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behaviour, and physical vulnerability are some of the features that make challeng-
ing the design of a security scheme for mobile ad hoc networks. In this context,
trust management systems have been developed as an answer to the inadequacy
of traditional security systems.

In this chapter, we proposed a process calculus for mobile ad hoc networks
which embodies a behaviour-based multilevel decentralised trust model. We called
this calculus CTAN, standing for Calculus for Trustworthy Ad hoc Networks.
Our trust model supports both direct trust, by monitoring nodes behaviour, and
indirect trust, by collecting recommendations and spreading reputations. The op-
erational semantics of the calculus is given in terms of a labelled transition system,
where actions are executed at a certain security level. We define a labelled bisim-
ilarity parameterised on security levels. Our bisimilarity is a congruence and an
efficient proof method for an appropriate variant of reduction barbed congruence.
Communications are proved safe with respect to the security levels of the involved
parties. In particular, we ensure safety despite compromised nodes: compromised
nodes cannot affect the rest of the network. A non-interference result expressed in
terms of information flow is also proved.

In the next chapter we extend this calculus with a very simple notion of time
that allows us to expressed lifetime of the assertions. In this manner, more recent
trust informations should have more influence on the trust establishment process.
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Time vs Trust

8.1 Introduction

Time and trust are two very related concepts as trust information may change
over time. Indeed, trust relations can remain available only for some periods of
time. As a consequence, when considering this aspect in a trust model, it should
be useful to know the lifetime of the assertions carrying trust information. The
lifetime of an assertion indicates its validity, that is the amount of time during
which the assertion can be evaluated before it expires. In our previous trust model
of Section 7.2, we abstracted from this topic, considering that our assertions were
always valid. As we explained in Section 2.3, besides the concern with trust, in
the world of wireless networks time plays a central rôle. Indeed various issues are
greatly influenced by temporal relationships.

We now introduce a timed variant of the calculus presented in the previous
chapter. We call it TCTAN , standing for a Timed Calculus of Trustworthy Ad
hoc Networks. First of all, we extend the previous trust model with a very simple
notion of time to express the validity of trust information. Hence, we use time to
add timestamps to assertions. The use of timestamps is common in practice, e.g. in
cryptographic protocols, in which it is useful the distinction between long-term and
short-term secrets or to explicit lifetime of certificates. By adding timestamps to
assertions, more recent trust information should have more influence on the trust
establishment process. The policy should be implemented in order to give priority
to more recent assertions. Then, we develop appropriate changes in operational
semantics in order to distinguish between instantaneous and timed actions. As
in Chapter 6 for TCWS, we adopt fictitious clock approach of, e.g., [111]. As in
TCWS, time proceeds in discrete steps represented by occurrences of a simple
action tick, in the style of Hennessy and Regan’s TPL [111], to denote idling until
the next clock cycle. A global time is supposed to be updated whenever all the
processes agree on this, by globally synchronising on the special action, called tick,
representing the passing of one time unit. All the other actions are assumed to
be instantaneous. As described in Section 2.3, in order to achieve this, wireless
devices have to rely on a common notion of time among the devices, provided by
some clock synchronisation protocol.
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In TCTAN we assume the presence of a clock synchronisation protocol following
the untethered clock approach [75, 188, 202], achieving a common notion of time
without synchronisation. A global time scale is maintained while letting the local
clocks run untethered. The untethered approach is becoming popular, because a
considerable amount of energy can be saved by this approach. Protocols of this
type are design for mobile wireless networks thus they do not rely on network
connectivity. The basic idea of this protocol is not to synchronise the local clock
of each node but instead generate timestamps using unsynchronised local clocks.
When such locally generated timestamps are passed between devices, they are
transformed into the local time of the receiving device. More precisely, when a
message containing a timestamp in transferred between nodes, the timestamps
are first transformed from the local time to UTC (Universal Coordinated Time,
which is used as a common time transfer format) and then to the local time of the
receiver. In these protocols it is only required that all nodes in a network adhere
to a common notion of global time.

We now work with configurations. A configuration t .M is a pair composed by
a time indicator and a network.

Message transmissions do not require any amount of time because we assume
they are instantaneous. We follow a two-phase approach [181] separating the exe-
cution of actions from the passage of time. We provide the operational semantics
of our calculus in terms of a labelled transition system, where transitions for syn-
chronisation are of the form:

t . M
λ−−→ρ t . N

indicating that the configuration t.M can perform the action λ, ranging over send-
ing, reception and silent actions, at security level ρ, evolving into the configuration
t . N . For that concerns time passing, we have transitions of the form:

t . M
tick−−−→ρ t+1 . N

indicating that the configuration t . M can perform the action tick evolving into
the configuration t+1 . N , where the global time is updated.

We adapt the behavioural theory of CTAN in order to model it to timing
extensions. TCTAN preserves all the properties of CTAN and moreover, as TCWS,
it enjoys the basic time properties of (i) time determinism, (ii) patience and (iii)
maximal progress.

We end this introduction with an outline of the present chapter. In Section 8.2
we introduce our trust model with timed extensions. In Section 8.3 we describe
the timed calculus TCTAN and its operational semantics. In Section 8.4 we adapt
to TCTAN the notion of observational equivalence of Section 7.6. In Section 8.5
we propose a timed labelled bisimilarity as a proof method for our observations
equivalence. In Section 8.6 we discuss some properties. In Section 8.7 we use our
timed calculus to give an encoding of the ARAN protocol. In Section 8.8 we present
related work. Finally, in Section 8.9 we give a summary of the chapter.
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Table 8.1 Timed trust framework
m,n ∈ Nodes node name
〈S, <〉 complete lattice

bad,trust,low,high∈S security level
t ∈ Time timestamp

A ∈ Assertions = Nodes ×Nodes × S × Time timed assertion
T ⊆ ℘(Assertions) trust store

P : ℘(Assertions)→ Time → ℘(Assertions) timed policy function

8.2 Timed Trust Model

In order to add time to trust information, we extend the definition of the assertions
of our trust model proposed in Section 7.2. We simply provide an assertion with a
timing tag. This information will be useful to check its validity in a local trust store.
Then the set of assertions is now defined as Assertions = Nodes×Nodes×S×Time,
where Time ⊆ N. Here we use t ∈ Time to mean a timestamp. More precisely,
a timestamp indicates the instant of time at which the assertion has been added
in the local trust store of a node; its lifetime is calculated from that instant of
time. The generation of this timestamp is an abstraction of the mechanism used
by the assumed clock synchronisation protocol, for which timestamps are first
transformed from the current local time to UTC and then to the final local time
of the node. Following the approach of [95], we assume to have a global time.
The presence of this protocol ensure that the timestamps of the assertions in
a local trust store are always coherent with the global time. Now, an assertion
〈m,n, ρ〉t says that at istant of time t a node m has trusted a node n at security
level ρ. For simplicity, we assume that all the assertions have the same lifetime
and that all trust managers know it. The security policy P is now a function
that evaluates the current information collected by a node, the current time, and
returns a set of consistent and valid assertions. Formally, P : ℘(Assertions) →
Time → ℘(Assertions). We assume that the policy obtains the remaining lifetime,
and then the validity, of an assertion by comparing the current time and the timing
tag of the assertion. In this manner it is possible to infer whether the lifetime of
the assertion is expired or whether the assertion is more or less recent with respect
to other ones. We also assume that the policy is implemented in order to give
priority to more recent assertions. If the assertion is no more valid, as its lifetime
is expired, then the policy should provide to erase such an assertion from the local
trust store. The new definition of the policy ensures that a trust table always
contains information coherent with the current time.

Table 8.1 summarises our timing extension.

8.3 The Calculus: Syntax and Operational Semantics

The syntax of our calculus with timing extension does not change with respect
to that described in Table 7.2. As a consequence, also the structural congruence
of Table 7.3 is the same. All the pertaining about free and bound variables and
guarded recursion for CTAN are still valid here.
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Table 8.2 LTS - Synchronisation

(MCastT)
D := {n : T (m,n) ≥ σ} D 6= ∅

t . m[σ!〈ṽ〉.P ]T
m!ṽ.D−−−−−−→σ t . m[P ]T

(RcvT)
T (n,m) ≥ σ | x̃ |=| ṽ |

t . n[σ?(x̃).P ]T
m?ṽ.n−−−−−−→σ t . n[{ṽ/̃x}P ]T

(UCastT)
T (m,n) ≥ σ

t . m[σ!〈ṽ〉n.P ]T
m!ṽ.n−−−−−−→σ t . m[P ]T

(RcvParT)
t . M

m?ṽ.D−−−−−−→ρ t . M
′ t . N

m?ṽ.D′−−−−−−−→ρ t . N
′ bD := D ∪D′

t . M | N m?ṽ. bD−−−−−−→ρ t . M
′ | N ′

(SyncT)
t . M

m!ṽ.D−−−−−−→ρ t . M
′ t . N

m?ṽ.D′−−−−−−−→ρ t . N
′ D′ ⊆ D

t . M | N m!ṽ.D−−−−−−→ρ t . M
′ | N ′

(SumT)
t . m[P ]T

λ′−−−→σ t . m[P ′]T

t . m[P +Q]T
λ′−−−→σ t . m[P ′]T

(ParT)
t . M

λ′−−−→ρ t . M
′ sender(λ′) /∈ nds(N)

t . M | N λ′−−−→ρ t . M
′ | N

Table 8.3 LTS - Trust Management

(DTrustT)

T (m,n) > bad ṽ := 〈n, bad〉t
T ′ := P(T ∪ 〈m, ṽ〉, t) D := {n : T (m,n) > bad}

t . m[P ]T
m!ṽ.D−−−−−−→trust t . m[P ]T ′

(SndRcmT)
T (m,n) = ρ ṽ := 〈n, ρ〉t′ D := {n : T (m,n) > bad}

t . m[P ]T
m!ṽ.D−−−−−−→trust t . m[P ]T

(RcvRcmT)
T (n,m) > bad ṽ := 〈l, ρ〉t′ T ′ := P(T ∪ 〈m, ṽ〉, t)

t . n[P ]T
m?ṽ.n−−−−−−→trust t . n[P ]T ′

(LoseT)
T ′ ⊆ T T ′′ := P(T ′, t)

t . n[P ]T
τ−−→trust t . n[P ]T ′′

As we stated above, we assume the presence of a global time [95] t ∈ Time
with Time ⊆ N. Then, for that concerns the rules of our timed LTS, they are now
defined over configurations of the form t . M , where t ∈ Time is the global time
indicator and M is a network. The rules are of the form

t . M
λ−−→ρ t

′ . M ′
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Table 8.4 LTS - Time Passing

(Tick-0)
t′ := t+ 1 ρ 6= bad

t . 0
tick−−−→ρ t

′ . 0

(Tick)
t′ := t+ 1 T ′ := P(T, t′) P 6= P +Q t . m[P ]T 6

m!ṽ.D−−−−−−→σ ρ 6= bad

t . m[P ]T
tick−−−→ρ t

′ . m[P ]T ′

(SumTick)
t . m[P ]T

tick−−−→ρ t
′ . m[P ]T ′ t . m[Q]T

tick−−−→ρ t
′ . m[Q]T ′

t . m[P +Q]T
tick−−−→ρ t

′ . m[P +Q]T ′

(ParTick)
t . M

tick−−−→ρ t
′ . M ′ t . N

tick−−−→ρ t
′ . N ′

t . M | N tick−−−→ρ t
′ . M ′ | N ′

Table 8.5 LTS - Matching and Recursion

(ThenT)
t . n[P ]T

λ−−→ρ t
′ . n[P ′]T ′ ṽ1 op ṽ2 = true

t . n[[ṽ1 op ṽ2]P,Q]T
λ−−→ρ t

′ . n[P ′]T ′

(ElseT)
t . n[Q]T

λ−−→ρ t
′ . n[Q′]T ′ ṽ1 op ṽ2 = false

t . n[[ṽ1 op ṽ2]P,Q]T
λ−−→ρ t

′ . n[Q′]T ′

(RecT)
t . n[{ṽ/̃x}P ]T

λ−−→ρ t
′ . n[P ′]T ′ H(x̃)

def
= P

t . n[H〈ṽ〉]T
λ−−→ρ t

′ . n[P ′]T ′

where the metavariable λ ranges now over τ,m!ṽ.D,m?ṽ.D and tick. In the sequel,
we write λ′ to range over τ,m!ṽ.D and m?ṽ.D.

In the sequel, we adopt the following notation; let be ṽ := 〈n, ρ〉t, then we
write 〈m, ṽ〉 to mean 〈m,n, ρ〉t. Tables 8.2, 8.3 and 8.4 model respectively syn-
chronisation, trust management and time passing. Rules in Tables 8.2 and 8.3 are
instantaneous, that is assumed to take no time, whereas rules in Table 8.4 indi-
cates the moving from istant t to the next instant of time t+ 1. The rules of Table
8.2 are similar to the corresponding without time in Table 7.4. For that concerns
Table 8.3, in rule (DTrustT) models direct trust as rule (DTrust) of Table 7.5; a
timestamp t, indicating the current global time, is added to trust information, as
we explained above. Thus a new trust table is calculated applying the local policy
to T ∪ 〈m, ṽ〉 and t. In general, when it is necessary to calculate a new trust table,
the policy is always applied to the current trust table and the current global time.
This is due to the changes operate at the trust model, as stated in Section 8.2. Rule
(SndRcmT) models indirect trust (SndRcm) of Table 7.5; by sending a recommen-
dation that now contains also timing information. Similarly, in rule (RcvRcmT)

models the reception of a recommendation with timing information from a trusted
node: a new trust table T ′ is calculated, applying the local policy to T ∪ 〈m, ṽ〉
and t.
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Rules in Table 8.4 are quite simple: rule (Tick-0) is quite standard, rule (Tick)

models the passage of one time unit. Indeed the global time t is increased and a new
coherent trust table is calculated. The requirement t .m[P ]T 6

m!ṽ.D−−−−−−→σ is necessary
to ensure the maximal progress property. The requirement P 6= P +Q is necessary
as, with respect to tick actions, the choice operator + behaves different: for a node
m[P+Q]T time passes when both t.m[P ]T and t.m[Q]T are able to perform a tick
action, and in such a case by performing tick it is reached a configuration where
both the derivatives of the choice can still be chosen. In other words, if both the
derivatives are just idling before the environment requests one of them, the choice
between them will not be made by the passage of time alone. This is to say that
+ is not decided by the action tick. This is necessary to ensure that the passage
of time is deterministic. Rule (SumTick) models this. Rule (ParTick) ensures that
a clock-tick happens simultaneously in every branch of parallel composition. We
can notice that the security level of transmissions in Table 8.4 is arbitrary as it
does not depend on the syntax of the processes. Thus, tick actions can fire at every
valid security level.

Finally, Table 8.5 contains the standard rules for matching and recursion.

8.4 Behavioural Semantics

In this section, as in Section 8.5, we deal with very similar arguments to those
provided in Sections 7.6, 7.7 and 7.8. We need only to modify some definitions given
in those sections in order take into account the timing aspects recently introduced.
The results obtained for the timed calculus TCTAN are similar to those obtained
for CTAN. The behavioural semantics is now defined over configurations.

Let us start with our main behavioural equivalence, the σ-timed reduction
barbed congruence. First of all, we rewrite the rules (Red1) and (Red2) of the pre-
vious reduction semantics in terms of configurations:

(RedT1) t . M
m!ṽ.D−−−−−−→ρ t . M

′

t . M _ t . M ′
(RedT2)

t . M
τ−−→trust t . M

′

t . M _ t . M ′

We use the same notation _∗ of Section 7.6 to denote the reflexive and transitive
closure of _.

The following three definitions are very similar to Definitions 7.10, 7.11 and
7.12 respectively. The only difference is that they are reformulated according to
configurations.

Definition 8.1 (σ-timed barb). We write t .M ↓σn if either M ≡ m[σ!〈ṽ〉.P ]T |
N or M ≡ m[σ!〈ṽ〉n.P ]T | N , for some m,N, ṽ, P, T such that n /∈ nds(M), and
T (m,n) ≥ σ. We write t . M ⇓σn if t . M _∗ t . M ′ ↓σn for some network M ′.

Definition 8.2 (σ-timed barb preserving). A relation R is said to be σ-timed
barb preserving if whenever t .M R t . N it holds that t .M ↓σn implies t . N ⇓σn.

Definition 8.3 (Reduction closure). A relation R is said to be reduction closed
if t . M R t . N and t . M _ t . M ′ imply there is N ′ such that t . N _∗ t . N ′
and t . M ′ R t . N ′.
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A new definition is necessary because, when comparing two configurations,
time must pass in the same manner for both.

Definition 8.4 (tick-closure). A relation R is said to be tick-closed if t . M R
t.N and t.M

tick−−−→ρ t
′.M ′ imply there is N ′ such that t.N _∗

tick−−−→ρ_∗ t′.N ′
and t′ . M ′ R t′ . N ′.

Definition 8.5 (Contextuality). A relation R is said to be contextual if t.M R
t . N implies that t . M | O R t . N | O, for all configurations t . O.

Finally, everything is in place to define our σ-timed reduction barbed congruence.

Definition 8.6 (σ-Timed reduction barbed congruence). The σ-timed re-
duction barbed congruence, written ∼=′σ, is the largest symmetric relation over
configurations which is σ-timed barb preserving, reduction closed, tick-closed and
contextual.

8.5 A Bisimulation Proof Method

For similar reasons to those in the discussion of Section 7.7, we need to define
a proof technique based on labelled bisimilarity. In the sequel we define a new
notion of bisimilarity taking into account the timing aspects of our calculus. As a
main result, we prove that our new labelled bisimilarity is a proof-technique for
our σ-timed reduction barbed congruence.

We rewrite our rule (Shh) and (Obs) of Section 7.7 in terms of configurations.

(ShhT)
t . M

m!ṽ.D−−−−−−→ρ t . M
′ D⊆nds(M) ρ′ 6=bad

t . M
τ−−→ρ′ t . M

′

(ObsT)
t . M

m!ṽ.D−−−−−−→ρ t . M
′ D′:=D\nds(M) 6=∅

t . M
m!ṽID′−−−−−−−→ρ t . M

′

The meanings are the same to those in Section 7.7. Again, in the derivation
tree the rule (ObsT) can only be applied at top-level. In fact, we cannot use this
rule together with rule (ParT) of Table 8.2, because the label λ′ in rule (ParT) does
not range on this new action.

In the sequel, we use the metavariable α to range over the following actions:
τ, tick,m?ṽ.D, and m!ṽID. Since we are interested in weak behavioural equiva-
lences, that abstract over τ -actions, we adopt the same notion of weak action
previously introduced: then we write =⇒ρ denoting the reflexive and transitive

closure of
τ−−→ρ; we also write α==⇒ρ denotes =⇒ρ

α−−→ρ =⇒ρ;
α̂==⇒ρ denotes =⇒ρ if

α = τ and α==⇒ρ otherwise. It is important to notice that time must pass at the
same manner for the configurations, as our behavioural relations are defined over
configurations with the same global time.
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Definition 8.7 (δ-Timed Bisimilarity). The δ-timed bisimilarity, written ≈′δ,
is the largest symmetric relation over configurations such that whenever t . M ≈′δ
t . N if t . M

α−−→ρ t
′ . M ′, with ρ ≤ δ, then there exists a configuration t . N ′

such that t . N α̂==⇒ρ t
′ . N ′ and t′ . M ′ ≈′δ t′ . N ′.

Theorem 8.8 (≈′δ is contextual). Let t.M and t.N be two configurations such
that t . M ≈′δ t . N . Then t . M | O ≈′δ t . N | O for all configurations t . O.
Proof We prove that the relation

S def= {
(
t . M | O , t . N | O

)
for all t . O such that t . M ≈′δ t . N}

is a δ-timed bisimulation. We proceed by case analysis on the transition t . M |
O

α−−→ρ t
′ . M̂ , with ρ≤δ. The full proof can be found in Section A.3 at page

189. �

Theorem 8.9 (Soundness). Let t .M and t .N be two configurations such that
t . M ≈′δ t . N . Then t . M ∼=′σ t . N , for σ ≤ δ.
Proof The σ-timed barb preserving follows by Lemma A.13 at page 189, the
reduction-closure and the tick-closure follow by definition and contextuality follows
by Theorem 8.8. �

8.6 Properties

For that concerns safety properties discussed in Section 7.5, as they do not in-
volve time, they remain unchanged. For that concern the time properties, TCTAN
satisfies the same properties of TCWS described in Section 6.4, that is time de-
terminism, patience, and maximal progress.

Theorem 8.10 formalises the determinism nature of time passing: a configura-
tion can reach at most one new state by executing the action tick.

Theorem 8.10 (Time Determinism). Let t . M be a configuration. If t .

M
tick−−−→ρ t

′ .M ′ and t .M
tick−−−→ρ t

′ .M ′′ then M ′ and M ′′ are syntactically the
same.

Proof By induction on the length of the proof of t .M
tick−−−→ρ t

′ .M ′. The full
proof can be found in Section A.3 at page 190.

�

As in [111, 195], the maximal progress property says that processes commu-
nicate as soon as a possibility of communication arises. In TCWS this property
says that transmissions cannot be delayed. In this calculus this property says that
transmissions at level σ cannot be delayed. The transmissions at level trust do not
depend on the syntax of the processes, then the actions concerning with trust can
fire at any step of the computation and cannot be predicted in advance.

Theorem 8.11 (Maximal Progress). Let t . M be a configuration. If there is

N such that t . M
m!ṽ.D−−−−−−→σ t . N then t . M

tick−−−→ρ t
′ . M ′ for no network M ′

and ρ 6= bad.
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Proof By induction on the structure of M . The full proof can be found in
Section A.3 at page 190.

�

The last time property is patience. In [111,195] and in TCWS patience guaran-
tees that a process will wait indefinitely until it can communicate. In our setting,
as in TCWS, this means that if no transmission at level σ can start then it must
be possible to execute a tick-action to let time pass.

Theorem 8.12 (Patience). Let t.M be a configuration. If t.M
m!ṽ.D−−−−−−→σ t.M

′

for no network M ′ then there is a network N and ρ 6= bad such that t . M
tick−−−→ρ

t′ . N .
Proof By contradiction and then by induction on the structure of M . The full
proof can be found in Section A.3 at page 190. �

It is also possible to prove a very similar non-interference result to that de-
scribed in Section 7.8 using as process equivalence the notion of δ-time bisimilarity
previously defined. As we can notice in Table 8.4, the security levels of tick actions
are not related to the syntax of the processes. For this reason, we can say that the
non interference property is not related with time. Without loss of generality and
in order to simplify the notation of the following Definition 8.13 and Theorem 8.14,
we assume that tick actions are executed at security level trust. Thus, whenever
t . M

tick−−−→ρ t
′ . M ′ we assume that ρ = trust.

High-level configurations of our setting are very similar to high-level networks
presented in Definition 7.19, as we can notice from the following definition:

Definition 8.13 (δ-high level configuration). A configuration t.H is a δ-high

level configuration, written t .H ∈ H′δ, if whenever t .H
λ−−→δ′ t

′ .H ′ then either
δ′ = trust or δ′ > δ . Moreover, t′ . H ′ ∈ H′δ.

The new statement of non-interference result differs from that in Theorem 7.20
only for the presence of configurations:

Theorem 8.14 (Non-interference). Let t . M and t . N be two configurations
such that t . M ≈′δ t . N . Let t . H and t . K be two configurations such that
(i) t . H, t . K ∈ H′δ; (ii) t . H ≈′trust t . K and (iii) nds(H) = nds(K). Then,
t . M | H ≈′δ t . N | K.
Proof The full proof can be found in Section A.3 at page 191. �

8.7 Time at Work: the ARAN Routing Protocol

In this section, we use our calculus to formalise the secure, on-demand routing
protocol ARAN [209]. It uses cryptographic certificates to bring authentication,
message integrity and non-repudiation to the route discovery process. As usual,
given a node n, we write Kn+ and Kn− to mean the public key and the private
key of n, respectively. Moreover, given a message ṽ, we write {ṽ}Kn− meaning the
message ṽ signed by n. In the following, we refer to ip address to mean the name
of the node and we use the notation ipn and n with the same meaning.
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Figure 8.1 An example of the operation and the messages of ARAN

s → ∗ : {RDP, d ,Ns}Ks− , [certs ]
l → ∗ : {{RDP, d ,Ns}Ks−}Kl− , [certs , certl ]

m → ∗ : {{RDP, d ,Ns}Ks−}Km− , [certs , certm ]

d → m : {REP, s,Ns}Kd− , [certd ]
m → l : {{REP, s,Ns}Kd−}Km− , [certd , certm ]

l → s : {{REP, s,Ns}Kd−}Kl− , [certd , certl ]

s l m d
RDP RDP RDP

REP REP REP

ARAN requires the use of a trusted certificate server (tcs), whose public key is
known to all valid nodes. This server sends to each node a certificate, containing
the ip address of the node, its public key, a timestamp t of when the certificate was
created, and a time e at which the certificate expires, all signed with the private
key of tcs. For instance, let n be the node receiving a certificate from tcs; the
certificate certn has the form {ipn ,Kn+ , t, e}Ktcs− . Nodes use these certificates to
authenticate themselves to other nodes during the exchange of routing messages.

In Figure 8.1 we report a scheme of the ARAN protocol with four nodes: a
source s, a destination d and two intermediate nodes l and m. We also provide
a graphical representation of the message flow, where the dashed arrows denote
the broadcast of route discovery packet , while the continuous arrows denote the
unicast sending of reply packet . We do not report in the figure the preliminary
phase in which each node receives a certificate from tcs, assuming it has been al-
ready performed. The protocol proceeds as follows. The source s begins a route
instantiation to the destination d by broadcasting to its neighbours a route discov-
ery packet and its certificate. The packet is of the form 〈{RDP, d ,Ns}Ks− , [certs ]〉,
where RDP is the packet identifier, d is the ip address of the destination and Ns is
a nonce, all signed with the private key of the source. The purpose of the nonce is
to uniquely identify a RDP coming from a source and then it helps in detecting re-
play messages. Each time s performs a route discovery, it monotonically increases
the nonce. When a node receives a RDP message, it sets an entry in its routing
table with s as destination, and the neighbour from which it received the RDP for
the first time as next hop. This is useful for the reverse path back to the source,
in anticipation of eventually receiving a reply message that it will need to forward
back to the source. When the intermediate node l receives the request packet sent
by s, it verifies that the certificate has not expired. Then it uses the public key of
s, which it extracts from certs , to validate the signature. The receiving node also
checks the nonce to verify that it has not already processed this RDP: nodes do
not forward messages with already-seen tuples. If some of these verifications fail,
the message is dropped, otherwise the intermediate node l signs the received RDP
packet and appends its own certificate certl . Then l rebroadcasts a packet of this
form: 〈{{RDP, d ,Ns}Ks− }Kl− , [certs , certl ]〉. When m receives the route discovery
sent by l, it verifies if the certificates are still valid, then it validates the signatures
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for both the source s and the node l it received the RDP from, using the public
keys extracted by the certificates in the message. If some of these verifications fail,
the message is dropped, otherwise m removes the certificate and the signature of
l and records it as its parent node. Then it signs the message, originally sent by
the source, and appends its own certificate. Then m rebroadcasts a packet of this
form: 〈{{RDP, d ,Ns}Ks−}Km− , [certs , certm ]〉. Eventually the message is received
by the destination d, who replies to the first node from which it has received the
RDP for a source and a given nonce. In this case this node is m. Then the des-
tination sends to m a reply packet and its certificate. The message that d sends
has this form: 〈{REP, s,Ns}Kd− , [certd ]〉. It includes the packet type identifier REP,
the ip address of the source, and the nonce originally sent by the source, all signed
with the private key of the destination, and the certificate of d. When m receives
the reply packet from d, it verifies if the certificate is not expired and validates
its signature. If some of these verifications fail, the message is dropped, otherwise
m signs with its private key the message and appends its own certificate before
forwarding the packet to its parent node. Then m sends to l a message of this
form: 〈{{REP, s,Ns}Kd− }Km− , [certd , certm ]〉. Eventually the message is received
by l, that verifies if the certificates are not expired and validates the signatures on
the received message. If some of these verifications fail, the message is dropped,
otherwise node l removes signature and certificate of m. Then it signs with its
private key the message, originally sent by the destination, and appends its own
certificate before unicasting the reply to s. Then l sends a message of this form:
〈{{REP, s,Ns}Kd− }Kl− , [certd , certl ]〉. When the source receives the reply, it veri-
fies the certificates are still valid, then it validates the signatures and verifies the
nonce returned by the destination. If some of these verifications fail, the message
is dropped, otherwise the source notices that the intended destination was reached
and that l is the first next-hop towards the destination.

When writing the ARAN protocol in our calculus, we consider a few simpli-
fications. For simplicity, we eliminate the nonce field in our messages, as it only
helps in detecting replay attacks and here we do not explicitly deal with attacks.
The certificates we use in our encoding contain only the ip address of the node,
signed with the private key of the trust certificate server. It is not necessary to
include the public key and timing factors into certificates as we assume that if a
node m[P ]T knows a node n, that is T (m,n) is defined, then m knows the public
key of n. According to our timing extension described in Section 8.2, this means
that its certificate is still valid. We remember that in our calculus we assume the
presence of a hierarchical key generation and distribution protocol. This implies
that a signature is produced with a private key at a specific security level. Thus,
if m wants to verify the validity of a signature produced by a node n at security
level ρ, it simply has to control whether T (m,n) ≥ ρ.

We adopt the syntax extension for the matching operator

[(ũ1 op ũ
′
1)lc. . .lc(ũk op ũ′k)]P,Q

as we explained in Section 7.9.2. We also use the destructor construct

let x̃=g(u1, u2, . . . , uk) in P else Q

introduced in Section 7.9.2.
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For our purposes, we need the same destructor get(·) of Section 7.9.2, that
takes in input a signed message and a list of ip addresses and returns the content
of the message if the signatures of the message correspond to the ip addresses in
the list, ⊥ otherwise. We also need another destructor ipcert(·), that takes in input
a list of certificates and the ip address of the trust certificate server tcs and returns
a list with the ip addresses of the certificates if their signatures correspond to the
ip address of the trust certificate server, ⊥ otherwise. For instance,

ipcert({ipn1}Ktcs− , . . . , {ipnk}Ktcs− , iptcs) = ipn1 , . . . , ipnk ,

whereas ipcert({ipn1}Kip1− , . . . , {ipnk}Kipk , iptcs) = ⊥, if ipi 6= iptcs, for some i.
We assume that also the destructor ipcert , as well the destructor get , is capable
to get the corresponding public keys from ip addresses.

We use a number of notations, some of them are the same introduced in Section
7.9.2. Let h = n, l, . . . , q be a list of ip address and m an ip address; we sometimes
write T (m,h) ≥ ρ to mean T (m,n) ≥ ρ∧T (m, l) ≥ ρ∧ . . .∧T (m, q) ≥ ρ. Let h be
a list and v a value; we write h]v for the list where v has been appended to h. We
assume standard functions on lists such as head(·) and tail(·), with the convection
that head(h) = tail(h), if h is composed by just one value. We also define an ad
hoc function orig(·) that takes in input a signed message and eliminate all the
signatures but the first one. For instance, orig({. . . {u}Kn1−

. . .}Knk−
) = {u}Kn1−

and orig({u}Kn1−
) = {u}Kn1−

In Figure 8.2 we provide the encoding of the ARAN protocol in our calculus.
Let us explain it in some detail.

At the beginning, each node can be in one of these two states:

• Source(ips , ipd ,Ts , certs , iptcs), when a (source) node initiates the protocol.
In this state the node broadcasts a request message;

• Node(ip, cert ,T , iptcs , ipp), when a node participates receiving a request or
reply message.

While the protocol is executed, nodes may evolve into one of the following states:

• AwaitReply(ips , ipd ,Ts , certs , iptcs), the initiator node waits for the reply
message;

• RouteSuccess(ips , ipd , ipp), the source node has noticed that the intended
destination can be reached going through ipp as the first next hop;

• FwdRequest(ip, cert ,T , pkt , iptcs , certs , ipd , ips , ipp), an intermediate node
receives a request message;

• SendReply(ipd , certd ,Td , iptcs , ips , ipp), the destination node sends the reply
message;

• FwdReply(ip, cert ,T , iptcs , pkt , certd , ipp), an intermediate node forwards a
reply message.

The source node s begins in the state Source(ips , ipd ,Ts , certs , iptcs), where
ips , ipd , iptcs are the ip addresses of the source, the destination and the trust cer-
tificate server, respectively, while certs and Ts are the certificate and the trust
table of s, respectively. In this state, the source node broadcasts a route discov-
ery packet of the form 〈{RDP, ipd}Kips− , [certs ]〉. After this transmission, the node
evolves into the state AwaitReply(ips , ipd ,Ts , certs , iptcs), waiting for a reply
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Figure 8.2 The encoding of the ARAN protocol
/∗Starting node broadcasts RDP packet and evolves into AwaitReply state waiting for reply.∗/

Source(ips , ipd ,Ts , certs , iptcs)
def
= σ!〈{RDP, ipd}Kips− , [certs ]〉.AwaitReply(ips , ipd ,Ts , certs , iptcs)

/∗The initiator node in the AwaitReply state receives a reply message; if the reply is successfully
returned, the node accepts the route, evolving into the state RouteSuccess. ∗/

AwaitReply(ips , ipd ,Ts , certs , iptcs)
def
=

σ?(reppkt, certList).let x=ipcert(certList, iptcs) in
[Ts(ips, x)≥σ]

let (y1, y2)=get(reppkt, x) in
[y1 = REP]

[(y2=ips)∧(head(x)=ipd)]
RouteSuccess(ips, ipd, tail(x)),

Source(ips , ipd ,Ts , certs , iptcs),
AwaitReply(ips , ipd ,Ts , certs , iptcs)

else AwaitReply(ips , ipd ,Ts , certs , iptcs),
AwaitReply(ips , ipd ,Ts , certs , iptcs)

else AwaitReply(ips , ipd ,Ts , certs , iptcs)
+ Source(ips , ipd ,Ts , certs , iptcs)

/∗Intermediate nodes may receive a request or a reply message. ∗/

Node(ip, cert,T , iptcs , ipp)
def
=

σ?(rpkt, certList).let x=ipcert(certList, iptcs) in
[T (ip, x)≥σ]

let (y1, y2)=get(rpkt, x) in
[y1 = RDP]

FwdRequest(ip, cert,T , orig(rpkt), iptcs ,head(certList), y2 ,
head(x), tail(x)),

[y1 = REP]
FwdReply(ip, cert, T, iptcs, orig(rpkt),head(certList), ipp),

Node(ip, cert,T , iptcs , ipp)
else Node(ip, cert,T , iptcs , ipp),

Node(ip, cert,T , iptcs , ipp)
else Node(ip, cert,T , iptcs , ipp)

/∗ A node receiving a request message controls if it is the intended destination or not. ∗/

FwdRequest(ip, cert,T , pkt, iptcs , certs , ipd , ips , ipp)
def
=

[ipd = ip]
SendReply(ip, cert,T , iptcs , ips , ipp),

σ!〈{pkt}Kip− , [certs]cert]〉.Node(ip, cert,T , iptcs , ipp)

/∗After receiving the request, the destination unicasts a signed reply and its certificate back along
the reverse path to the source. ∗/

SendReply(ipd , certd ,Td , iptcs , ips , ipp)
def
=

σ!〈{REP, ips}Kipd− , [certd ]〉ipp+ Node(ipd , certd ,Td , iptcs , ipp)

/∗A node receiving a reply packet rebroadcasts the packet and its certificate∗/

FwdReply(ip, cert,T , iptcs , pkt, certd , ipp)
def
=

σ!〈{pkt}Kip− , [certd]cert]〉ipp+ Node(ip, cert,T , iptcs , ipp)
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message. In particular the source node waits for a pair 〈reppkt , certList〉 com-
posed by a signed reply packet and a list of certificates. When the source receives
a reply message, it extracts the ip addresses from the certificates and then it
verifies their validity. If these verifications fail, the source node returns into the
state AwaitReply(ips , ipd ,Ts , certs , iptcs), otherwise it tries to extract the con-
tent of reppkt . This packet should contain two values: the tag REP and the ip of
the destination. If the initiator cannot extract these information, it returns into
the state AwaitReply(ips , ipd ,Ts , certs , iptcs), otherwise it starts a number of
checks. First, it verifies if it has received a reply packet; if it is not the case, it
returns into the state AwaitReply(ips , ipd ,Ts , certs , iptcs). Otherwise it verifies
if the ip addresses of the source and the destination are the expected ones. If all
these checks are successful, the initiator accepts the route, evolving into the state
RouteSuccess(ips , ipd , ipp), meaning that the the intended destination ipd has
been reached and ipp is the first hop in the route towards it, otherwise the reply
is dropped and the node returns into the state Source(ips, ipd, Ts, certs, iptcs).
The reply may never arrive at the source; in this case the source can nondetermin-
istically return into the state Source(ips, ipd, Ts, certs, iptcs), starting again the
protocol.

The other nodes taking part in the protocol may be either intermediate nodes
or the destination node. In both cases, they begin the protocol in the state
Node(ip, cert ,T , iptcs , ipp), where ip, iptcs , ipp are the ip addresses of the node,
the trust certificate server and the parent node, respectively, whereas cert and T
are the certificate and the trust table of the node, respectively. In this state, the
node expects to receive either a route request message or a reply message. More
precisely, it expects for a pair 〈rpkt , certList〉 composed by a signed packet and a
list of certificates. When a node receives a message of this form, it first extracts the
ip addresses from the certificates and then it verifies their validity. If the verification
fails, the node returns into the state Node(ip, cert ,T , iptcs , ipp), otherwise it tries
to extract the content of rpkt . This packet should contain two values: a type iden-
tifier and an ip address. If the initiator cannot extract these informations it returns
into the state Node(ip, cert ,T , iptcs , ipp), otherwise it starts a number of checks.
First, it verifies if the type identifier is RDP; if is so, then the node evolves into
FwdRequest(ip, cert ,T , pkt , iptcs , certs , ipd , ips , ipp). If the type identifier is REP,
then the node evolves into FwdReply(ip, cert ,T , iptcs , pkt , certd , ipp). If these
checks are not successful, the message is dropped and the node returns into the
state Node(ip, cert, T, iptcs, ipp). Into the state FwdRequest(ip, cert ,T , pkt , iptcs ,
certs , ipd , ips , ipp), the parameter pkt records the original message signed by the
source, the parameter certs records the certificate of the source, whereas the pa-
rameter ipp records the parent node to which the node has to send back the reply.
This is the ip address of the last certificate contained in certList . In this state the
node first verifies if it is the destination of the route discovery packet. If this is
the case, the node moves into the state SendReply(ipd , certd ,Td , iptcs , ips , ipp),
otherwise it signs the original packet pkt and adds its certificate to certs . Thus,
it broadcasts the message 〈{pkt}Kip− , [certs]cert ]〉 and evolves into the state
Node(ip, cert ,T , iptcs , ipp), waiting for the reply. In SendReply(ipd , certd ,Td , iptcs ,
ips , ipp), the destination node prepares the reply message 〈{REP, ids}Kipd− , [certd ]〉
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and sends it to ipp. The choice operator allows to avoid deadlocks in case the node
ipp becomes suddenly disconnected.

When a node in the state Node(ip, cert ,T , iptcs , ipp) receives a reply, it evolves
into the state FwdReply(ip, cert ,T , iptcs , pkt , certd , ipp). The parameter pkt con-
tains the original reply packet signed by the destination and certd the certificate
of the destination, whereas ipp records the parent node to which the node has to
send back the reply. In the state FwdReply(ip, cert ,T , iptcs , pkt , certd , ipp) the
node signs the reply message pkt and adds to certd its certificate cert . Thus, it
sends to ipp the message 〈{pkt}Kip− , [certd]cert ]〉. Again, the choice operator in
this state allows to avoid deadlocks in case of disconnections of ipn .

Here we report an example of how the protocol works.

Example 8.15. Let M be the following network, where l,m and n are all valid
nodes, where s is the source and n is the destination:

t . M
def= l[Source(l ,n,Tl , certl , tcs)]Tl | m[Node(m, certm ,Tm , tcs, [])]Tm |

n[Node(n, certn ,Tn , tcs, [])]Tn

with Tl(l,m) = Tl(l, n) = Tm(m, l) = Tm(m,n) = Tn(n,m) = σ. The last parame-
ter of the Node state has to record the parent node to which the reply has to be
send. At the beginning it is empty. For convenience we define: v1:={RDP, n}Kl− ,
v2:={{RDP, n}Kl−}Km− , v3:={REP, l}Kn− , v4:={{REP, l}Kn−}Km− and w:=〈l, σ〉t′
Here, we report the evolution of M while running the ARAN protocol.

t . M
l!〈v1,[certl ]〉.{m,n}−−−−−−−−−−−−−−−→σ l[AwaitReply(l ,n,Tl , certl , tcs)]Tl |

m[FwdRequest(m, certm ,Tm , v1 , certl ,n, l , l)]Tm |
n[Node(n, certn ,Tn , tcs, []]Tn

def= t . M1 .

Node l starts the protocol in the state Source(l ,n,Tl , certl , tcs), broadcasting the
message 〈{RDP, n}Kl− , [certl ]〉 and evolving into the state AwaitReply(l ,n,Tl , certl ,
tcs), waiting for a reply. Only node m receives the message and evolves into
FwdRequest(m, certm ,Tm , v1 , certl ,n, l , l).

t . M1
m!w.{l,n}
−−−−−−−−−→trust l[AwaitReply(l ,n,Tl , certl , tcs)]T ′l |

m[FwdRequest(m, certm ,Tm , v1 , certl ,n, l , l)]Tm |
n[Node(n, certn ,Tn , tcs, []]T ′n

def= t . M2 .

We now consider that n has asked for recommendation on l. We remember that
we assume the presence of a trust manager component performing this kind of
operations. Node m knows l; then by rule (SndRcmT) of Table 8.3 it broadcasts
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the recommendation 〈l, σ〉t′ . Then, by rule (RcvRcmT) of Table 8.3, n can receive
this information. We assume that the policy is such that it allows to add in the
trust store of n the trust relation 〈n, l, σ〉t, then T ′n := Tn ∪ 〈n, l, σ〉t.

t . M2
m!〈v2,[certl ,certm ]〉.{l,n}
−−−−−−−−−−−−−−−−−−−→σ l[AwaitReply(l ,n,Tl , certl , tcs)]T ′l |

m[Node(m, certm, Tm, tcs, l)]Tm |
n[SendReply(n, certn, Tn, tcs, l,m)]T ′n

def= t . M3 .

Node m broadcasts the message 〈{{RDP, n}Kl−}Km− , [certl , certm ]〉. Then, node m
evolves into Node(m, certm, Tm, tcs, l), waiting for a reply. Node l ignores the mes-
sage sent by m and remains in the state AwaitReply(l, n, Tl, certl, tcs), whereas
node n receives the message, it verifies to be the destination node and it evolves
into the state SendReply(n, certn, Tn, tcs, l,m).

t . M3
n!〈v3,[certn ]〉.m
−−−−−−−−−−−−−→σ l[AwaitReply(l, n, Tl, certl, tcs)]T ′l |

m[FwdReply(m, certm ,Tm , tcs, v3 , certn , l)]Tm |
n[nil]T ′n

def= t . M4 .

Node n prepares the reply {REP, l}Kn− and sends it together with its certificate
back to m. Node m receives this message, verifies the validity of the certificate,
validates the signature and extracts the content of the message. Thus, it evolves
into FwdReply(m, certm, Tm, tcs, v3, certn, l).

t . M4
m!〈v4,[certn ,certm ]〉.l
−−−−−−−−−−−−−−−−−→σ l[RouteSuccess(l, n,m)]T ′l | m[nil]Tm | n[nil]T ′n .

Node m signs the original message received by the destination, adds its certifi-
cate and sends to l the message 〈{{REP, l}Kn−}Km− , [certn , certm ]〉. Node l receives
the message and verifies the validity of the certificates of m and n. It also verifies
that the ip addresses of the source and of the destination are the expected ones.
Then it accepts the route and evolves into the state RouteSuccess(l, n,m).

8.8 Related Work

Process Calculi

A similar notion of time passing of TCTAN has been adopted by the following
calculi. Gorrieri et al. in [100] have showed how the tCryptoSPA [98], a language
for the description of cryptographic protocols in a real time setting, may be suitable
to formally verify security aspects of wireless protocols. The authors have aimed
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at enhancing analysis technique in order to cope with wireless protocols where a
time synchronisation is required. Among the properties, they have checked timed
secrecy, requiring that a message is kept secret only for a certain amount of time,
and timed integrity, requiring that a message sent in a time interval has not been
altered during the communication. They have used the approach based on non-
interference developed in [86] as a method to express security properties. The
effectiveness of their approach has been shown by studying the timed integrity
property for µTESLA protocol [188]. They have follow the time synchronisation
approach of [188], where synchronisation is required between a base station and
the sensors in the network.

Godskesen and Nanz [95] have described how to extend a simple process cal-
culus with realistic mobility models. The semantics of the calculus incorporates a
notion of global time passing that allows to express a wide range of mobility mod-
els currently used in protocol development practice. The authors have considered
a minimal calculus around the idea of time, as it is only used to determine the po-
sitions of nodes. Then only mobility part of the calculus is time dependent. They
have developed a behavioural equivalence and pre-order that allow to compare the
strength of mobility models in the formal setting described in the paper.

Timed Trust Models

Chakraborty and Ray [61] have proposed a memory model taking into consider-
ation both the limitation set by the memory size dedicated to store trust-related
data and the timing factor. This model is based on a sliding window. This memory
model does not keep track of the user’s past behaviour and, in case of dealing with
a strategic attacker, such a user will be considered as a trusted one following a
time interval greater than the sliding window. A problem is related to the choice of
the window size. A small window size will lead to the fast “forgiving” of malicious
users, while a large window size increases the amount of data to be processed and
slows down the decision making.

An improvement of the memory model of [61] has been proposed by Giang
et al. in [93] by introducing a forgetting factor. A feedback or observation value
from each party is calculated as a sum of the current feedback and the product of
the forgetting factor and the previous feedback. In such a way an actual feedback
value contains information about previous interactions. A disadvantage of this
model is that the final feedback value does not depend on the time factor and
recent information has the same value as old information.

Another approach to the users behaviour history recording, based on fading
memories, is proposed in the TrustGuard system [217]. It is assumed that the
system stores a limited number of reputation-based trust values instead of results
of interactions. Recent past observations are aggregated over time intervals. Us-
ing this model, the system needs to recalculate the recorded history after each
interaction. Such a model prevents a malicious node from regaining trust quickly
by keeping track of the previous bad behaviour but by the same reason the trust
value for a malicious node decreases slowly if this node has shown good behaviour
in the past.

Gorla, Hennessy and Sassone in [97] have extended the RT approach of [147] to
include time validity and boolean guards that control the availability of credentials.
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In such an extended framework, credentials are conditional on the availability of
supporting credentials in the execution context. In addition to a set-theoretic and
a logic-programming semantics, they have developed for the extended language
a series of increasingly powerful inference systems for establishing these condi-
tional credentials. Thus they have given a purely operational interpretation of RT
credentials, giving a set of inference rules for deriving credentials from a set of
RT statements. This inference system is an explicit formalisation of the intuitive
meaning of RT statements and provides a convenient way of working with them.

8.9 Chapter Summary

In this chapter we introduced the TCTAN calculus, a timing extension of the
CTAN of Chapter 7. We focused on the relationship between time and trust in
the setting of MANETs. In trust models for ad hoc networks, the timing factor is
important because more recent trust information should have more influence on
the trust establishment process. We introduced a timed variant of our trust model
proposed in Section 7.2, where a timestamp on assertions allows to reason about
their validity. As in TCWS, time proceeds in discrete steps represented by occur-
rences of a simple action tick. A global clock is supposed to be updated whenever
all the nodes agree on this. We worked on configurations t . M , where t indicates
the global time and M is a network. Then we provided an operational semantics
separating instantaneous actions and actions involving time. We reformulated the
reduction barbed congruence of Section 7.6 and the bisimulation of Section 7.7 in
terms of configurations. Then we showed that the properties of CTAN are pre-
served by TCTAN. Moreover we proved that the same time properties of TCWS
of Section 6.4 are also satisfied by TCTAN. Finally, we applied the calculus to
formalise the ARAN protocol. This protocol uses digital certificates that contain
timing information expressing their validity.
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Conclusions

Wireless communication is a broad and dynamic field that has drawn the attention
of many researchers and has stimulated important technological advances over the
last few decades. Besides the enormous proliferation of “engineering” papers, in the
last years the “theoretical” computer science research community has addressed
particular attention to formal specification and analysis of wireless systems. This
constitutes a very good starting point to provide a comprehensive understanding
of the fundamental principles of wireless communication.

9.1 Contributions

In this dissertation, we dealt with the question of how apply the well-known tech-
nique of process calculus to the modelling of important features of wireless sys-
tems. Moreover, we dealt with trust-based security to develop security mechanisms
specifically tailored for wireless systems. Considering that these systems cover large
and complex areas, we proposed three different process calculi and in each of them
we focused on some specific aspects.

A Timed Calculus for Wireless Systems

We proposed a timed process calculus for wireless systems called TCWS in which
we focused on timing aspects and communication interferences. This is the first
calculus dealing with time and interferences for wireless systems. Other calculi rely
on the presence of some MAC-level protocol to remove interferences. However, in
wireless systems collisions cannot be avoided although there are protocols to reduce
their occurrences.

TCWS models local broadcast communications and time passing, operating
a distinction in the labelled transition system between transitions for modelling
sending and receiving actions and transitions for modelling the passage of time.
We showed that our calculus enjoys some desirable timed properties. We then pro-
posed a notion of well-formedness over the networks and we proved that it is
preserved at run-time. We illustrated the usability of the calculus to model the
Carrier Sense Multiple Access scheme [123], a widely used MAC level protocol in
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which a device senses the channel before transmitting. We provided as main be-
havioural equivalence a timed variant of the reduction barbed congruence [172]. As
usual, when working with barbed congruence, it is useful to define a labelled bisim-
ilarity as a proof-method. Thus we showed a soundness result which states that
our labelled bisimilarity implies our timed barbed reduction congruence. Then we
proved a number of algebraic laws on well-formed networks using our bisimulation
proof-technique.

A Calculus of Trustworthy Ad hoc Networks

We then proposed another process calculus for MANETs called CTAN in which we
focused on mobility of nodes and trust-based security. We embodied a trust model
in the calculus; trust relations among nodes are represented by an association of a
security level to them. Thus our networks are modelled as multilevel systems [28].
The main objective of the model is to isolate bad nodes, i.e. nodes which do not
behave as expected. For this reason, we supported node revocation. According to
our knownledge, this is the first process calculus for wireless networks embodying
a trust model.

We proposed a simple mobility model, following the approach of [92], for which
our calculus does not directly model the network topology neither in the syntax
nor in the semantics but topology changes are added at semantics level.

We showed that CTAN enjoys safety properties, aiming at guaranteeing that
only authorised nodes receive sensible information. We also provided security vari-
ants of reduction barbed congruence and labelled bisimilarity, proving as above a
soundness theorem. We used our bisimilarity to prove a non-interference result,
for which high-level behaviours can arbitrarily change without affecting low-level
equivalences. Finally, we used our calculus to formalise and analyse a secure ver-
sion of the leader election algorithm for MANETs [227]. We then provided an
encoding of the endairA routing protocol for ad hoc networks [9].

Time vs Trust

Our last process calculus TCTAN is a simple time extension of the previous calcu-
lus CTAN. We treated timing aspects to express the relationship between trust and
time. We used our calculus to formalise the secure, on-demand routing protocol
ARAN [209] that uses cryptographic certificates with a time validity.

9.2 Future Work

Many aspects could be considered for future directions.

Multiple channels

In TCWS we assumed the presence of a unique channel. However, new techniques
have been developed in the last years to provide several virtual channels. The most
known techniques [222] are Frequency Division Multiplexing (FDM), in which the
signal is split into many narrow bands, and Time Division Multiplexing (TDM), in
which the time domain is divided into several recurrent timeslots of fixed length,
one for each sub-channel. A generalisation of TCWS with multiple channels (à la
CCS) should be straightforward.
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Probabilistic models

Probabilistic models are nowadays widely used in the design and verification of
complex systems in order to quantify unreliable or unpredictable behaviour in se-
curity, performance and reliability analysis. Probability is taken into account when
analysing quantitative security properties (measuring, in a sense, the security level
of the protocol) or when dealing with probabilistic protocols. We can find many
probabilistic frameworks based on process calculus approach applied to security
analysis. Just as an example, we cite [11,12,101,173]. We believe that TCWS rep-
resents a solid basis to develop probabilistic theories to do quantitative evaluations
on collisions, and more generally on node failures.

Security analysis

The research community quite agrees on the belief that formal specification and
analysis are good directions for the development of secure systems. The formal-
ism of process calculus has been widely applied in this context, after that it has
been extended to cope with the possibility to detect flaws in communication and
security protocols. Just as an example of applications to wireless system security
analysis, we cite [94, 177, 178, 214]. In particular, in [177, 178] the authors have
sketched an attacker model that can be expressed in their calculus. Then they
have described the problem of communication protocol security as the ability to
provide the desired network service in an adversary environment. Hence a security
condition, fully integrated into the framework and then derivable automatically,
has been expressed via a notion of equivalence. This condition is parametric with
respect to the attacker model, the network topology, and the data format used
by the protocol. The authors have applied the calculus introduced in their works
to the modelling of real-world protocols and they have been able to detect some
distinct exploitable flaws and have detected omissions and ambiguities in the pro-
tocols they analysed.

We used our calculi CTAN and TCTAN to model routing protocols for
MANETs but we did not deal with their security properties. This is could be
a possible future direction of our research, along the lines of the papers cited
above.

History-based trust

We developed behavioural-based trust models for MANETs. Behaviour-based sys-
tems are often called experience-based as in these models an entity A trusts another
entity B based on its experience on B’s past behaviour. Then, besides the concept
of reputation, these systems heavily rely on the concept of history experience. Many
of the papers cited in Section 3.4 take into account also past evidence during the
evaluation process. In the same section we also cited some probabilistic approaches
to trust management. In general, probabilistic systems work by assuming a par-
ticular probabilistic model, say λ, for the behaviour of principals. The goal is to
predict the behaviour of principals in future interactions, given their behaviour in
past interactions and the model λ, i.e., computing a probability P (next | past, λ).
Thus probability and past behaviour aspects can be treated together. Another
possible future direction may be considering these aspects in our trust models.
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Appendix

A.1 Proofs of Chapter 6

In order to prove Proposition 6.10 on the Exposure consistency property, we use
the following auxiliary lemmas.

Lemma A.1. Let M
λ−−→ M ′ with λ ∈ {m!v,m?v} such that M ≡

∏
i∈ ni[Wi]

νi
ti

and M ′ ≡
∏
i∈I ni[W

′
i ]
νi
t′i

.

1. If λ = m?v then m 6= ni, for all i.
2. If λ = m!v then there is i ∈ I such that m = ni, Wi = !〈v〉.Pi and W ′i =
〈v〉δv .Pi.

3. If m 6∈ νi, for some i, then t′i = ti; if also m 6= ni, then W ′i = Wi.
4. If m ∈ νi, for some i, then t′i = max(ti, δv).
5. If m ∈ νi and W ′i=(x)w.Pi, for some i, and w 6=⊥, then w = m:v, ti = 0,
t′i = δv, and Wi ::= ?(x).Pi

∣∣ b?(x).PicQi,
6. If Wi = 〈w〉r.Pi, for some i, then W ′i = Wi.
7. If m 6= ni and W ′i = 〈w〉r.Pi, for some i, then Wi = W ′i .

Proof The results easily follow by transition induction. �

Lemma A.2. Let M
tick−−−→M ′ such that M ≡

∏
i∈ ni[Wi]

νi
ti

and M ′ ≡
∏
i∈I ni[W

′
i ]
νi
t′i

.

1. t′i = ti 	 1, for all i.
2. If W ′i = (x)v.P , for some i, then
• either Wi = W ′i
• or Wi ::= ?(x).P

∣∣ b?(x).P cQ and v = ⊥
3. If W ′i = 〈w〉r.P , for some i, then Wi = 〈w〉r+1.P .

Proof The results easily follow by transition induction. �
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Proof of Proposition 6.10

The proof proceeds by transition induction on the derivation of M
λ−−→ M ′,

for λ ∈ {m!v,m?v, tick}. We show the remaining cases. The other ones are at page
90.

• Let M
m?v−−−−→ M ′ by an application of rule (RcvPar) with M = M1 | M2,

M1
m?v−−−−→ M ′1, M2

m?v−−−−→ M ′2, and M ′ = M ′1 | M ′2, where both M ′1 and M ′2
are exposure consistent by inductive hypothesis. We have to prove that M ′

respects the clauses of Definition 6.5.
– Clauses 1-2. We reason as in the case of the the sending actionm!v examined

above.
– Clause 3. Let M ′ ≡

∏
i ni[W

′
i ]
νi
t′i
| h[〈v〉r.P ]νht′h | n[W ′]νnt′n , with h ∈ νn. We

have to prove that r ≤ t′n. We only consider the case when h ∈ nds(M1) and
n ∈ nds(M2) (or viceversa). The other cases are easier. By Lemma A.1(1)
it holds that m 6∈ nds(M ′). By A.1(7) it follows:

M ≡
∏
i

ni[Wi]
νi
ti
| h[〈v〉r.P ]νhth | n[W ]νntn

for appropriate processes and tags. Now, if m ∈ νn by Lemma A.1(4) we
have t′n = max(tn, δv). As M is exposure consistent it holds that r ≤ tn
and hence also r ≤ t′n. On the other hand, if m 6∈ νn by an application of
Lemma A.1(3) we have t′n = tn; as M is exposure consistent it follows that
r ≤ tn = t′n.

– Clause 4. Let

M ≡ N | n[W ]νt =
∏
i

ni[Wi]
νi
ti
| n[W ]νt

and
M ′ ≡ N ′ | n[W ′]νt′ =

∏
i

ni[W ′i ]
νi
t′i
| n[W ′]νt′

with t′ > 0 and active(k′, N ′) 6= t′ for all k′ ∈ ν ∩ actsnd(N ′). We have to
prove that there is k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for some i, then
t′i ≥ t′. There are two cases.
· Let m 6∈ ν. By Lemma A.1(3) we have t′ = t. By Lemma A.1(6), it

follows that actsnd(N) ⊆ actsnd(N ′). As a consequence, ν∩actsnd(N) ⊆
ν ∩ actsnd(N ′). Since t′ = t we can derive that for all k ∈ ν ∩ actsnd(N)
it holds that active(k,N ′) 6= t. By Lemma A.1(6) and Lemma A.1(7)
if k 6= m then active(k,N) = active(k,N ′). Since m 6∈ ν it follows that
for all k ∈ ν ∩ actsnd(N) it holds active(k,N) 6= t. Since M is exposure
consistent it follows that there is k̂ ∈ ν \ nds(N) such that if k̂ ∈ νi, for
some i, then ti ≥ t. Notice that ν \ nds(N) = ν \ nds(N ′). Moreover, by
Lemma A.1(3) and A.1(4) we have ti ≤ t′i, for all i. This allows us to
derive that there is k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for some i, then
t′i ≥ ti ≥ t = t′.

· Let m ∈ ν. By Lemma A.1(1) we have m 6∈ nds(M). By Lemmas A.1(6)
and A.1(7) for all k ∈ nds(N) it holds that active(k,N) = active(K,N ′).
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As a consequence, actsnd(N) = actsnd(N ′), and hence ν ∩ actsnd(N) =
ν ∩ actsnd(N ′). By Lemma A.1(4) we have t′ = max(t, δv). So, there are
two cases.
· Let δv ≤ t. Then t′ = t and for all k ∈ ν ∩ actsnd(N) it holds

active(k,N) 6= t. Since M is exposure consistent it follows that there
is k̂ ∈ ν \ nds(N) such that if k̂ ∈ νi, for some i, then ti ≥ t. Notice
that ν \ nds(N) = ν \ nds(N ′). Moreover, by Lemmas A.1(3) and
A.1(4) we have ti ≤ t′i, for all i. This allows us to derive that there is
k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for some i, then t′i ≥ ti ≥ t = t′.

· Let δv > t. Then t′ = δv. In this case, there is m ∈ ν \ nds(N ′)
such that if m ∈ νi, for some i, then by Lemma A.1(4) it holds that
t′i = max(ti, δv). Thus, t′i ≥ δv = t′.

• Let M
tick−−−→ M ′ by an application of rule (Par-tick) with M = M1 | M2,

M1
tick−−−→ M ′1 and M2

tick−−−→ M ′2, and M ′ = M ′1 | M ′2, where both M ′1 and
M ′2 are exposure consistent by inductive hypothesis. We have to prove that M ′

respects the clauses of Definition 6.5.
– Clauses 1-2. It is easy to show that M ′ is exposure consistent. The results

follow by inductive hypothesis.
– Clause 3. Let

M ′ ≡
∏
i

ni[W ′i ]
νi
t′i
| h[〈v〉r.P ]νht′h | n[W ′]νnt′n

with h ∈ νn. We have to prove that r ≤ t′n. We only consider the case when
h ∈ nds(M1) and n ∈ nds(M2) (or viceversa). The other cases are easier.
By Lemma A.2(1) and A.2(3) we have

M ≡
∏
i

ni[Wi]
νi
ti
| h[〈v〉r+1.P ]νhth | n[W ]νnt′n+1

for appropriate processes and tags. As M is exposure consistent, it follows
that r ≤ t′n.

– Clause 4. Let

M ≡ N | n[W ]νt =
∏
i

ni[Wi]
νi
ti
| n[W ]νt

and
M ′ ≡ N ′ | n[W ′]νt′ =

∏
i

ni[W ′i ]
νi
t′i
| n[W ′]νt′

with t′ > 0 and active(k′, N ′) 6= t′ for all k′ ∈ ν ∩ actsnd(N ′). We have to
prove that there is k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for some i, then
t′i ≥ t′. By Lemma A.2(1) we have t′ = t 	 1. Since t′ > 0 it follows that
t > 1. Moreover, by Lemma A.2(3), if W ′i = 〈w〉r′ .Q, for some i, then
Wi = 〈w〉r.Q, with r′ = r 	 1. As a consequence, actsnd(N ′) ⊆ actsnd(N).
By Lemma A.2(3) if active(k′, N ′) 6= t′ then active(k′, N) 6= t′ + 1 = t.
Notice also that active(k,N) = 1 for all k ∈ actsnd(N) \ actsnd(N ′). Thus,
since t > 1 for all k ∈ ν ∩ actsnd(N) it holds that active(k,N) 6= t. Since
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M is exposure consistent it follows that there is k̂ ∈ ν \ nds(N) such that
if k̂ ∈ νi, for some i, then ti ≥ t. Notice that ν \ nds(M) = ν \ nds(M ′).
Moreover, by Lemma A.2(1) we have t′i = ti 	 1, for all i. This allows us
to derive that there is k̂ ∈ ν \ nds(N ′) such that if k̂ ∈ νi, for some i, then
t′i ≥ t′.

�

Proof of Proposition 6.11
Let us consider all the possible values of λ. We show remaining cases. The other

ones are at page 92.

• Let M
m?v−−−−→ M ′ by an application of rule (RcvPar) with M = M1 | M2,

M1
m?v−−−−→ M ′1, M2

m?v−−−−→ M ′2, and M ′ = M ′1 | M ′2, where both M ′1 and M ′2
are transmission consistent by inductive hypothesis. We have to prove that M ′

respect the clauses of Definition 6.6.
– Clause 1. Let

M ′ ≡ N ′ | n[(x)w.Q]νnt′n =
∏
i

ni[W ′i ]
νi
t′i
| n[(x)w.Q]νnt′n

with w 6= ⊥. We have to prove that | actsnd(N ′) ∩ νn |≤ 1. There are two
possibilities.
· If m /∈ νn then by Lemma A.1(3) we have

M ≡ N | n[(x)w.Q]νntn =
∏
i

ni[Wi]
νi
ti
| n[(x)w.Q]νntn .

Since M is transmission consistent, we have | actsnd(N) ∩ νn |≤ 1. By
Lemmas A.1(6) and A.1(7) we derive actsnd(N ′) = actsnd(N). This
allows us to derive that | actsnd(N ′) ∩ νn |≤ 1.

· If m ∈ νn, since w 6= ⊥, by Lemma A.1(5) we have

M ≡ N | n[W ]νn0 =
∏
i

ni[Wi]
νi
ti
| n[?(x).Q]νn0

where t′n = δv and W =?(x).Q (the case W = b?(x).QcR is simi-
lar). By Lemmas A.1(6) and A.1(7) we derive actsnd(N ′) = actsnd(N).
Since M is exposure consistent, by clause 3 of Definition 6.5 we derive
| actsnd(N) ∩ νn |= 0. As a consequence, | actsnd(N ′) ∩ νn |= 0.

– Clause 2. Let

M ′ ≡
∏
i

ni[W ′i ]
νi
t′i
| h[〈w1〉r.P ]νht′h | n[(x)w2 .Q]νnt′n

with h ∈ νn and w2 6= ⊥. We have to show that w2 = m:w1 and r = t′n. By
Lemma A.1(1) we have h 6= m. By Lemmas A.1(7) we have

M ≡
∏
i

ni[Wi]
νi
ti
| h[〈w1〉r.P ]νhth | n[W ]νntn

for appropriate processes and tags. Now, there are two cases.
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· If m 6∈ νn then by Lemma A.1(3) we have W = (x)w2 .Q and t′n = tn.
Since M is transmission consistent it follows that w2 = m : w1 and
t′n = r.

· If m ∈ νn then by Lemma A.1(5) we have W =?(x).Q (the case W =
b?(x).P cQ is similar) and tn = 0. Since M is exposure consistent, by
clause 3 of Definition 6.5 it should be tn > 0. This contradiction shows
that this case is not possible.

– Clause 3. Let

M ′ ≡ N ′ | n[(x)w.P ]νnt′n =
∏
i

ni[W ′i ]
νi
t′i
| n[(x)w.P ]νnt′n

with | actsnd(N ′) ∩ νn |> 1. We have to show that w = ⊥. By Lemma A.1
we have

M ≡
∏
i

ni[Wi]
νi
ti
| n[W ]νntn

for appropriate processes and tags. Since | actsnd(N ′) ∩ νn |> 1 it follows
that W ′j = 〈wj〉rj .Pj and W ′k = 〈wk〉rk .Pk, for some j and k such that
{nj , nk} ⊆ νn. By Lemma A.1(1) and Lemma A.1(7) we have Wj = W ′j
and Wk = W ′k. At this point we reason by contradiction. Suppose w 6= ⊥.
Then, by Lemma A.1(5) we have W =?(x).P (the case W = b?(x).P cQ is
similar) and tn = 0. However, since M is exposure consistent, by clause 3
of Definition 6.5 it must be tn > 0. This contradiction allows us to derive
that w = ⊥.

• Let M
tick−−−→ M ′ by an application of rule (Par-tick) with M = M1 | M2,

M1
tick−−−→M ′1 and M2

tick−−−→M ′2, and M ′ = M ′1 |M ′2, where both M ′1 and M ′2
are transmission consistent by inductive hypothesis. We have to prove that M ′

respects the clauses of Definition 6.6. Let us examine the three clauses one by
one.
– Clause 1. Let

M ′ ≡ N ′ | n[(x)w.Q]νnt′n =
∏
i

ni[W ′i ]
νi
t′i
| n[(x)w.Q]νnt′n

with w 6= ⊥. We have to prove that | actsnd(N ′)∩νn |≤ 1. By Lemma A.2(2),
since w 6= ⊥, it must be

M ≡ N | n[(x)w.Q]νntn =
∏
i

ni[Wi]
νi
ti
| n[(x)w.Q]νntn

Since M is transmission consistent it follows that | actsnd(N) ∩ ν |≤ 1.
By Lemma A.2(3) it follows that actsnd(N ′) ⊆ actsnd(N). This implies
| actsnd(N ′) ∩ ν |≤ 1.

– Clause 2. Let

M ′ ≡
∏
i

ni[W ′i ]
νi
t′i
| h[〈w1〉r.P ]νht′h | n[(x)w2 .Q]νnt′n

with h ∈ νn and w2 6= ⊥. We have to show that w2 = m:w1 and r = t′n.
Since w2 6= ⊥, by Lemmas A.2(1), A.2(2), and A.2(3)
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M ≡
∏
i

ni[Wi]
νi
ti
| h[〈w1〉r+1.P ]νhth | n[(x)w2 .Q]νnt′n+1 .

Since M is transmission consistent we have w2 = m:w1 and r+ 1 = t′n + 1.
As a consequence, r = t′n.

– Clause 3. Let

M ′ ≡ N ′ | n[(x)w.P ]νnt′n =
∏
i

ni[W ′i ]
νi
t′i
| n[(x)w.P ]νnt′n

with | actsnd(N ′)∩νn |> 1. We have to show that w = ⊥. By an application
of Lemma A.2(2) there are two possibilities:
· Either

M ≡ N | n[(x)w.P ]νntn =
∏
i

ni[Wi]
νi
ti
| n[(x)w.P ]νntn .

In this case, by Lemma A.2(3) it follows that actsnd(N ′) ⊆ actsnd(N).
Thus | actsnd(N ′) ∩ νn |> 1 implies | actsnd(N) ∩ νn |> 1. Since M is
transmission consistent it follows that w = ⊥.

· Or
M ≡ N | n[W ]νntn =

∏
i

ni[Wi]
νi
ti
| n[W ]νntn

where W is either a receiver or a receiver with timeout, and w = ⊥.
�

In order to prove Theorem 6.15 on the Patience property, we use the following
auxiliary lemmas.

Lemma A.3. Let N be a well-formed network such that m /∈ nds(N). Then

N
m?v−−−−→ N ′, for some network N ′.

Proof Let us proceed by induction on the structure of N .

• Let N = 0. By an application of rule (Zero) we have N
m?v−−−−→ N .

• Let N = n[W ]νt , with W ::= P | A. Let us proceed by induction on the
structure of W .
– Let W = nil. There are two cases.
· If m 6∈ ν then by an application of rule (OutRng) we have N

m?v−−−−→ N ′.

· If m ∈ ν then by an application of rule (Exp) we have N
m?v−−−−→ N ′ with

N ′ = n[nil]νt′ , where t′ = max(t, δv).
– Let W = !〈v〉.P . This case is similar to the previous one.
– W = tick.P . This case is similar to the previous one.
– W = 〈v〉r.P . This case is similar to the previous one.
– Let W =?(x).P . There are three sub-cases.

· If m 6∈ ν by an application of rule (OutRng) we have N
m?v−−−−→ N .

· If t = 0 and m ∈ ν there are two cases:
· by an application of rules (RcvP) and (Rcv) we can derive N

m?v−−−−→
N ′, with N ′ = n[(x)v.P ]νδv ;
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· by an application of rule (Exp) we can derive N
m?v−−−−→ N ′, with

N ′ = n[?(x).P ]νδv .
· If t > 0 and m ∈ ν then by an application of rule (Exp) we have

N
m?v−−−−→ N ′, with N ′ = n[?(x).P ]νt′ where t′ = max(t, δv).

– Let W = b?(x).P cQ. This case is similar to the previous one.
– Let W = (x)w.P . There are two sub-cases.

· If m ∈ ν then by an application of rule (Coll), it holds that N
m?v−−−−→

N ′ = n[(x)⊥.P ]νt′ with t′ := max(t,δv).

· If m /∈ ν then by an application of rule (OutRng) we have N
m?v−−−−→ N .

– Let W = [v = v]P1, P2. By an application of rule (Then) we can apply the
inductive hypothesis to conclude that the statement holds.

– Let W = [v1 = v2]P1, P2, with v1 6= v2. By an application of rule (Else),
this case is similar to the previous one.

– Let W = H〈ṽ〉. The constraint on guarded recursion ensures us that by an
application of rule (Rec) we can apply the inductive hypothesis to conclude
that the statement holds.

• Let N = N1 | N2. By inductive hypothesis it holds that N1
m?v−−−−→ N ′1 and

N2
m?v−−−−→ N ′2, for some N ′1, N

′
2. By an application of rule (RcvPar) it holds

that N
m?v−−−−→ N ′, for N ′ = N ′1 | N ′2.

�

Lemma A.4. Let M be a well-formed network. If M
m!v−−−−→ M ′ then for all net-

work N such that M | N is a well-formed network it holds that M | N m!v−−−−→M ′ |
N ′ for some network N ′.
Proof The result follows by Lemma A.3 and an application of rule (Sync). �

Proof of Theorem 6.15
We show the remaining cases. The other ones are at page 95.

• Let M = n[W ]νt . We proceed by induction on the structure of P , showing the
remaining case. The other ones are at page 95.
– If W = nil and t > 0 then M

tick−−−→ n[P ]νt−1 by an application of rules
(Nil-tick) and (Time-t). Thus the statement does not apply.

– If W =?(x).P and t = 1 then M
tick−−−→ n[{⊥/x}P ]ν0 , by an application of

rules (RcvP) and (RcvFail). Thus the statement does not apply.

– If W =?(x).P and t > 1 then M
tick−−−→ n[(x)⊥.P ]νt−1, by an application of

rules (RcvP) and (RcvFail). Thus the statement does not apply.

– If W = tick.P and t > 0 then M
tick−−−→ n[W ]νt−1 by an application of rules

(Sigma) and (Time-t). Thus the statement does not apply.

– If W = b?(x).P cQ and t = 1 then M
tick−−−→ n[{⊥/x}P ]ν0 , by an application

of rules (RcvP) and (RcvFail). and the statement does not apply.

– If W = b?(x).P cQ and t > 1 then M
tick−−−→ n[(x)⊥.P ]νt−1, by an application

of rules (RcvP) and (RcvFail), Thus the statement does not apply.
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– If W = [v = v]P1, P2 then by an application of rule (Then) we can apply the
inductive hypothesis to conclude that we fall in one of the previous cases.

– If W = [v1 = v2]P1, P2, with v1 6= v2, by an application of rule (Else) we
can apply the inductive hypothesis to conclude that we fall in one of the
previous cases.

– If W = H〈ṽ〉 the constraint of guarded recursion ensures us that by an
application of rule (Rec) we can apply the inductive hypothesis and we fall
in one of the previous cases.

– If W = 〈v〉r.P , with r > 1, and t > 0 then by an application of rules

(ActSnd) and (Time-t) we have M
tick−−−→ n[〈v〉r−1.P ]νt−1 and the statement

does not apply.
– If W = 〈v〉.P and t = 0, then by an application of rules (ActSnd) and

(Time-0) we have M
tick−−−→ n[P ]ν0 and the statement does not apply.

– If W = 〈v〉.P and t > 0, then by an application of rules (ActSnd) and

(Time-t) we have M
tick−−−→ n[P ]νt−1 and the statement does not apply.

– If W = (x)v.P , with t = 0, then by an application of rules (ActRcv) and

(Time-0) we have M
tick−−−→ n[{v/x}P ]ν0 and the statement does not apply.

�

Proof of Theorem 6.24
We show the remaining cases. The other ones are at page 100.

• Let M | O τ−−→ M̂ , by an application of rule (Shh), because M | O m!v−−−−→ M̂
and ngh(m,M | O) ⊆ nds(M | O).
There are two possible cases:
– Let M | O m!v−−−−→ M̂ , by an application of rule (Sync), because M

m!v−−−−→M ′

and O
m?v−−−−→ O′, with M̂ = M ′ | O′ and

ngh(m,M | O) \ nds(M | O) = (ngh(m,M) \ nds(M)) \ nds(O) = ∅ .

Again there are two possibilities:
· Let ngh(m,M) \ nds(M) = ∅. Then, by an application of rule (Shh)

we have M
τ−−→ M ′. Since M ≈ N there is N ′ such that N =⇒ N ′

and M ′ ≈ N ′. We know that O
m?v−−−−→ O′. Let us assume O 6= 0 (the

case when O = 0 is simple). In a network composed by several parallel
components the action m?v can be derived only by an application of
rule (RcvPar). By definition of our networks there are ni, Wi, νi, and
ti, for 1 ≤ i ≤ k, such that O =

∏k
i=1 ni[Wi]

νi
ti

. By definition of rule

(RcvPar), O
m?v−−−−→ O′ if and only if for all i, 1 ≤ i ≤ k, there are W ′i ,

ν′i, and t′i such that

ni[Wi]
νi
ti

m?v−−−−→ ni[W ′i ]
ν′i
t′i

and O′ =
∏k
i=1 ni[W

′
i ]
ν′i
t′i

. Since M | O is well-formed, by node-
uniqueness it follows that ni 6∈ nds(M) for all i, 1 ≤ i ≤ k. Now,
since
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· ngh(m,M) \ nds(M) = ∅
· ni 6∈ nds(M), for all i
· M | O is connected (see clause 1 of Definition 6.4)
it follows that m 6∈ νi, for all i, 1 ≤ i ≤ k. This implies that the
transitions

ni[Wi]
νi
ti

m?v−−−−→ ni[W ′i ]
ν′i
t′i

can only be derived by applying rule (OutRng) with W ′i = Wi, ν′i = νi,
and t′i = ti. This implies O′ = O. Now, since N =⇒ N ′, by several
applications of Lemma 6.22 it follows that N | O =⇒ N ′ | O = N ′ | O′.
By Theorem 6.12, both M ′ | O′ and N ′ | O′ are well-formed. As M ′ ≈
N ′ it follows that

(
M ′ | O′ , N ′ | O′

)
∈ S.

· Let ν′ = ngh(m,M)\nds(M) 6= ∅. Then, by an application of rule (Obs)

we have M
m!vIν′−−−−−−−→ M ′ because M

m!v−−−−→ M ′. Since M ≈ N there
is N ′ such that N m!vIν′=======⇒ N ′, with M ′ ≈ N ′ and ν′ = ngh(m,N) \
nds(N). Since the actionm!vIν′ can be only generated by an application
of rule (Obs), there are N1 and N2 such that

N
τ−−→
∗
N1

m!v−−−−→ N2
τ−−→
∗
N ′ .

Since O
m?v−−−−→ O′, by several applications of Lemma 6.22 and one ap-

plication of rule (Sync) we have:

N | O τ−−→
∗
N1 | O

m!v−−−−→ N2 | O′
τ−−→
∗
N ′ | O′ .

As M | O is well-formed and m ∈ nds(M), by node-uniqueness it follows
that m 6∈ nds(O). Thus,

ngh(m,N | O) \ nds(N | O) = (ngh(m,N) \ nds(N)) \ nds(O)
= ν′ \ nds(O)
= (ngh(m,M) \ nds(M)) \ nds(O)
= ngh(m,M | O) \ nds(M | O)
= ∅ .

By an application of rule (Shh) we can derive

N | O τ−−→
∗
N1 | O

τ−−→ N2 | O′
τ−−→
∗
N ′ | O′ .

By Theorem 6.12, both M ′ | O′ and N ′ | O′ are well-formed. As M ′ ≈
N ′ it follows that

(
M ′ | O′ , N ′ | O′

)
∈ S.

– Let M | O m!v−−−−→ M̂ , by an application of rule (Sync) because M
m?v−−−−→M ′

and O
m!v−−−−→ O′, with M̂ = M ′ | O′. This case is similar to a previous one.

• Let M | O m?v−−−−→ M̂ , by an application of rule (RcvPar), because M
m?v−−−−→M ′,

O
m?v−−−−→ O′, and M̂ = M ′ | O′. This case is easy.

• Let M | O tick−−−→ M̂ by an application of rule (Par-tick) because M
tick−−−→ M ′,

O
tick−−−→ O′, and M̂ = M ′ | O′. This case is easy.

�
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Proof of Theorem 6.26
We show details only for Law 7; for the other ones we provide only the bisim-

ulation relation.

1. It is easy to prove that S

S def= {n[nil]νt , n[Sleep]νt for all t}

where Sleep def= tick.Sleep is a bisimulation.
2. It is easy to prove that S

S def= {n[nil]νt , n[P ]νt : for all P, t, and P does not contain sender processes}∪Id

where Id is the identity relation between network terms is a bisimulation.
3. It is easy to prove that S

S def= {n[tickr.P ]νs , n[tickr.P ]νt : for all r, s, t, s ≤ r and t ≤ r} ∪ Id

where Id is the identity relation between network terms, is a bisimulation.
4. Let us define:
• A

def= m[〈v〉r.P ]νt | n[(x)m:v.Q]ν
′

r |M , where m ∈ ν′ and for all k ∈ ν′ \m
it holds that M ≡ k[ticks.R]νktk |M

′, with s ≥ r.
• B

def= m[〈v〉r.P ]νt | n[tickr.{m:v/x}Q]ν
′

r | M , where m ∈ ν′ and for all
k ∈ ν′ \m it holds that M ≡ k[ticks.R]νktk |M

′, with s ≥ r.
Now, let

S def= {(A,B) : for all P, r, t, ν, . . .} ∪ Id

where Id is the identity relation between network terms. It is easy to prove
that S is a bisimulation.

5. The proof of this law can be found in Section 6.8 at page 103.
6. Let us define:
• A1

def= m[〈v1〉r.!〈v2〉.P ]νs | n[(x)w.Q]ν
′

t , with t > r,

• B1
def= m[〈v1〉r.!〈v2〉.P ]νs | n[(x)⊥.Q]ν

′

t , with t > r,

• A2
def= m[!〈v2〉.P ]νs | n[(x)w.Q]ν

′

t ,

• B2
def= m[!〈v2〉.P ]νs | n[(x)⊥.Q]ν

′

t

where m ∈ ν′. It is easy to prove that S

S def= {(A1, B1) : for all r, P, s . . .} ∪ {(A2, B2) : for all r, P, s . . .} ∪ Id

where Id is the identity relation between network terms, is a bisimulation.
7. Let us define:
• A1

def= m[!〈v〉.P ]νt | N , where for all n ∈ ν it holds that N ≡ n[W ]ν
′

t′ | N ′,
with t′ > 0

• B1
def= m[!〈w〉.P ]νt | N , where for all n ∈ ν it holds that N ≡ n[W ]ν

′

t′ | N ′,
with t′ > 0

• A2
def= m[〈v〉r.P ]νt | N , with r ≤ δv, where for all n ∈ ν it holds that

N ≡ n[W ]ν
′

t′ | N ′, with t′ ≥ r
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• B2
def= m[〈w〉r.P ]νt | N , with r ≤ δw, where for all n ∈ ν it holds that

N ≡ n[W ]ν
′

t′ | N ′, with t′ ≥ r
where δv = δw. Now, let

S def= {(A1, B1) : for all P, t, ν, . . .} ∪ {(A2, B2) : for all P, t, ν, . . .} ∪ Id

where Id is the identity relation between network terms. We prove that S is a
bisimulation. We proceed by case analysis on the possible transitions.
• Let us examine the most interesting transitions of A1. The reasoning for

the other transitions of A1 is simpler. Notice that by maximal progress the
term A1 cannot perform tick-actions.
– Let A1

τ−−→ A2 = m[〈v〉δv .P ]νt | N̂ , because A1
m!v−−−−→ A2 by an ap-

plication of rule (Shh). This is possible only by an application of rule
(Sync) with

· m[!〈v〉.P ]νt
m!v−−−−→ m[〈v〉δv .P ]νt

· N
m?v−−−−→ N̂ , where if n ∈ ν then N̂ ≡ n[Ŵ ]ν

′

t̂ | N̂ ′, with t̂ ≥ δv (by
definition of rules (Coll) and (Exp)).

Notice that since all nodes in ν ∩ nds(N) are exposed, it follows that
if Ŵ is an active receiver then it will be of the form (x)⊥.P , for some

P . Now, A2
τ−−→ B2 = m[〈w〉δw .P ]νt |

ˆ̂
N , because A2

m!v−−−−→ B2 by an
application of rule (Shh). This is possible only by an application of rule
(Sync) with

· m[!〈w〉.P ]νt
m!w−−−−→ m[〈w〉δw .P ]νt

· N
m?w−−−−→ ˆ̂

N , where if n ∈ ν then ˆ̂
N ≡ n[ ˆ̂

W ]ν
′

ˆ̂t
| ˆ̂
N ′, with ˆ̂t ≥ δv (by

definition of rules (Coll) and (Exp)).

Again, since all nodes in ν ∩ nds(N) are exposed, it follows that if ˆ̂
W

is an active receiver then it will be of the form (x)⊥.P , for some P .

Moreover, since δv = δw it follows t̂ = ˆ̂t. As a consequence, N̂ = ˆ̂
N and

(A2, B2) ∈ S.
• Let us examine the most interesting transitions of A2. The reasoning for

the other transitions is simpler.
– Let A2

tick−−−→ A′2 = m[〈v〉r−1.P ]νt	1 | N̂ by an application of rule
(Par-tick) because

· m[〈v〉r.P ]νt
tick−−−→ m[〈v〉r−1.P ]νt	1

· N
tick−−−→ N̂ .

In this case we have B2
tick−−−→ B′2 = m[〈w〉r−1.P ]νt	1 | N̂ . Now, inde-

pendently whether r > 1 or not we have (A′2, B
′
2) ∈ S.

�
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Proof of Proposition 7.6

1. The proof of this case can be found at page 118.
2. We separately prove that (⇒) if M

τ−−→ρ M
′ then M

τ−−→ρ,∅ M
′ and (⇐) if

M
τ−−→ρ,∅ M

′ then M
τ−−→ρ M

′. It is proved by induction on M
λ−−→ρ M

′, in

the first case, and on M
λ−−→ρ,C M ′, in the second case

(⇒) The base case is when M
τ−−→ρ M ′ is given by rule (Lose). By rule

(LoseR) it holds that M
τ−−→ρ,∅ M

′. As to the inductive case, we consider
M

τ−−→ρ M
′ given by rule (Par). Then M = M1 |M2, for some M1 and M2,

with M1 |M2
τ−−→ρ M

′
1 |M2, because M1

τ−−→ρ M
′
1 and M ′ = M ′1 |M2, for

some M ′1 (the converse is similar). By inductive hypothesis, it holds that
M1

τ−−→ρ,∅ M
′
1. Thus by rule (ParR) we have M1 | M2

τ−−→ρ,∅ M
′
1 | M2, as

required.
(⇐) The base case is when M

τ−−→ρ,∅ M
′ is given by rule (LoseR). By rule

(Lose) it holds that M
τ−−→ρ M

′, as required. As to the inductive case,
we consider M

τ−−→ρ,∅ M
′ given by rule (ParR). Then M = M1 | M2, for

some M1 and M2, with M1 | M2
τ−−→ρ,∅ M

′
1 | M2, because M1

τ−−→ρ,∅ M
′
1

and M ′ = M ′1 | M2, for some M ′1, (the converse is similar). By inductive
hypothesis, it holds that M1

τ−−→ρ M
′
1. Thus by rule (Par) we have M1 |

M2
τ−−→ρ M

′
1 |M2, as required.

�

In order to prove Theorem 7.8 of Safety preservation, we need the following
auxiliary lemma.

Lemma A.5. Let M
m?ṽ.D−−−−−−→ρ M

′ with M ≡
∏
i ni[Pi]Ti and M ′ ≡

∏
i ni[P

′
i ]T ′i .

1. If P ′i 6= Pi, for some i, then ni ∈ D and Ti(ni,m) ≥ ρ.
2. If T ′i 6= Ti, for some i, then ni ∈ D and Ti(ni,m) ≥ ρ.

Proof

1. This case applies only for transitions at level σ. It is proved by induction on
M

m?ṽ.D−−−−−−→σ M ′. The base case is when the transition M
m?ṽ.D−−−−−−→σ M ′

is given by rule (Rcv); thus M = n[σ?(x̃).P ]T , M ′ = n[{ṽ/̃x}P ]T ,D = n
and T (n,m) ≥ σ, as required. As to the inductive case, let us consider the

transition M
m?ṽ.D−−−−−−→σ M

′ given by rules (Sum), (RcvPar) or (Par). We show

details only for (RcvPar). Let be M
m?ṽ.D−−−−−−→σ M ′ given by rule (RcvPar)

with M = M1 | M2 and M ′ = M ′1 | M ′2, for some M1,M2,M
′
1 and M ′2,

because M1
m?ṽ.D′−−−−−−−→σ M ′1 and M2

m?ṽ.D′′−−−−−−−→σ M ′2, where D := D′ ∪ D′′.
More precisely, let

M ≡
∏
i

ni[Pi]Ti =
∏
k

nk[Pk]Tk |
∏
j

nj[Pj]Tj
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and
M ′ ≡

∏
i

ni[P ′i ]T ′i =
∏
k

nk[P ′k]Tk |
∏
j

nj[P ′j]Tj

for appropriate processes and tags, where

M1 =
∏
k

nk[Pk]Tk ,M
′
1 =

∏
k

nk[P ′k]Tk ,M2 =
∏
j

nj[Pj]Tj ,M
′
2 =

∏
j

nj[P ′j]Tj .

If P ′k 6= Pk, for some k or if P ′j 6= Pj , for some j, the result follows by inductive
hypothesis.

2. This case applies only for transitions at level trust. It is proved by induction
on M

m?ṽ.D−−−−−−→trust M
′. The proof is similar to the previous case.

�

All τ -actions propagate through parallel composition; it is easy to prove the
following lemma.

Lemma A.6. If M
τ−−→ρ M

′ then M | N τ−−→ρ M
′ | N and N |M τ−−→ρ N |M ′.

In order to prove Theorem 7.16 on the contextuality of δ-bisimilarity, we need the
following auxiliary lemmas.

Lemma A.7. If M
m!ṽ.D−−−−−−→ρ M

′ then there are N̂ , P and T such that M ≡ N̂ |
m[P ]T and D := {n : T (m,n) ≥ ρ}.

Proof The proof proceeds by induction on the transition M
m!ṽ.D−−−−−−→ρ M

′. The

case base is when M
m!ṽ.D−−−−−−→ρ M

′ is given by rules (MCast), (UCast), (DTrust),
or (SndRcm). We show details only for rule (MCast), the other ones are similar.
Then M = m[σ!〈ṽ〉.P ]T , for some P and T and D := {n : T (m,n) ≥ ρ}. As to the

inductive case, we consider when M
m!ṽ.D−−−−−−→ρ M

′ is given by rules (Sum), (Sync)

or (Par). We show details only for rule (Sync). Let M = M1 | M2 and M ′ = M ′1 |
M ′2, for some M1,M2,M

′
1 and M ′2, and M

m!ṽ.D−−−−−−→ρ M
′ by rule (Sync) because

M1
m!ṽ.D−−−−−−→ρ M

′
1 and M2

m?ṽ.D′−−−−−−−→ρ M
′
2 (the converse is similar), with D′ ⊆ D.

The result follows by inductive hypothesis, as it holds that M1 ≡ N̂ | m[P ]T , for
some N̂ , P, T and D := {n : T (m,n) ≥ ρ}. �

Lemma A.8. Let M,N be two networks such that M ≈δ N and O,O′ be two
networks such that O

m!ṽ.D−−−−−−→ρ O
′ and M | O m!ṽ.D−−−−−−→ρ M̂ , for some M̂ and

N | O m!ṽ.D−−−−−−→ρ N̂ , for some N̂ . Then D \ nds(M) = D \ nds(N).
Proof The proof proceeds by contradiction. Let us suppose that D \ nds(M) 6=
D \ nds(N). We can have the following cases:

• D \ nds(M) = ∅. This implies that D ∩ nds(M) = D. The set D ∩ nds(M)
indicates the potential receivers in M . Thus, in this case D is this set. Then
it may be that M

m?ṽ.D−−−−−−→ρ M
′, for some M ′. Now, as D \ nds(N) 6= ∅, this

implies that there exists a D̂ 6= D such that D ∩ nds(N) = D̂. Then it may

be that N
m?ṽ. bD−−−−−−→ρ N

′, for some N ′, in contradiction with the hypothesis
M ≈δ N ;
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• D \ nds(M) 6= ∅. This case is similar to the previous one.
�

Proof of Theorem 7.16
We prove that the relation

S def= {
(
M | O , N | O

)
for all O such that M ≈δ N}

is a δ-bisimulation. We proceed by case analysis on the transition M | O α−−→ρ M̂ ,
with ρ ≤ δ.

• Let M | O m!ṽID−−−−−−→ρ M̂ by an application of rule (Obs), with D 6= ∅, because

M | O m!ṽ. bD−−−−−−→ρ M̂ , with D := D̂ \ nds(M | O) 6= ∅. We have the following
possibilities:

– LetM | O m!ṽ. bD−−−−−−→ρ M̂ by an application of rule (Sync) becauseM
m!ṽ. bD−−−−−−→ρ

M ′ and O
m?ṽ.D′′−−−−−−−→ρ O

′, with M̂ = M ′ | O′ and D′′ ⊆ D̂. We showed this
case at page 123.

– LetM | O m!ṽ. bD−−−−−−→ρ M̂ by an application of rule (Sync) becauseM
m?ṽ.D′′−−−−−−−→ρ

M ′ and O
m!ṽ. bD−−−−−−→ρ O

′, with M̂ = M ′ | O′ and D′′ ⊆ D̂. As M ≈δ N then

there is N ′ such that N m?ṽ.D′′=======⇒ρ N
′ with M ′ ≈δ N ′. This implies that

there are N1 and N2 such that

N
τ==⇒ρ N1

m?ṽ.D′′−−−−−−−→ρ N2
τ==⇒ρ N

′.

Then by several applications of Lemma A.6 and one application of rule
(Sync), as D′′ ⊆ D̂, we have

N | O τ==⇒ρ N1 | O
m!ṽ. bD−−−−−−→ρ N2 | O′

τ==⇒ρ N
′ | O′.

By Lemma A.8 it holds that D̂ \ nds(M) = D̂ \ nds(N), then

D := D̂ \ nds(M | O)
= D̂ \ nds(M) \ nds(O)
= D̂ \ nds(N) \ nds(O)
= D̂ \ nds(N | O) 6= ∅.

Then by one application of rule (Obs) we have N | O m!ṽID======⇒ρ N
′ | O′

and (M ′ | O′, N ′ | O′) ∈ S, as required.

– LetM | O m!ṽ. bD−−−−−−→ρ M̂ by an application of rule (Par) becauseM
m!ṽ. bD−−−−−−→ρ

M ′, with M̂ = M ′ | O and m /∈ nds(O). The proof is similar to the first
case.

– Let M | O m!ṽ. bD−−−−−−→ρ M̂ by an application of rule (Par) because O
m!ṽ. bD−−−−−−→ρ

O′, with M̂ = M | O′ and m /∈ nds(M). By Lemma A.7, m ∈ nds(O); as we
assume that networks are node unique then m /∈ nds(N). By one application
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of rule (Par) we have N | O m!ṽ. bD−−−−−−→ N | O′. By Lemma A.8 it holds that
D̂ \ nds(M) = D̂ \ nds(N), then

D := D̂ \ nds(M | O)
= D̂ \ nds(M) \ nds(O)
= D̂ \ nds(N) \ nds(O)
= D̂ \ nds(N | O) 6= ∅.

Thus by one application of rule (Obs) we have N | O m!ṽID−−−−−−→ρ N | O′ and
(M | O′, N | O′) ∈ S, as required.

• Let M | O m?ṽ.D−−−−−−→ρ M̂ . This case is easy to prove.

• M | O τ−−→ρ M̂ by an application of rule (Shh), because M | O m!ṽ.D−−−−−−→ρ′ M̂ ,
with D ⊆ nds(M | O) and ρ′ 6= bad ≤ δ. We have the following possibilities:

– Let M | O m!ṽ.D−−−−−−→ρ′ M̂ by an application of rule (Sync) because

M
m!ṽ.D−−−−−−→ρ′ M

′ and O
m?ṽ.D′′−−−−−−−→ρ′ O

′, with M̂ = M ′ | O′,D′′ ⊆ D
and D \ nds(M | O) = ∅. Let D′ := D \ nds(M); as D \ nds(M | O) =
D \ nds(M) \ nds(O) = ∅ but it is easy to prove that D′′ ⊆ nds(O) 6= ∅
then D′ 6= ∅. Then we can apply (Obs) and obtain M

m!ṽID′−−−−−−−→ρ′ M
′. As

M ≈δ N then there is N ′ such that N m!ṽID′=======⇒ρ′ N
′ with M ′ ≈δ N ′.

Since the action m!ṽID′ can be generated only by an application of rule
(Obs) this implies that there are N1 and N2 such that

N
τ==⇒ρ′ N1

m!ṽ. bD−−−−−−→ρ′ N2
τ==⇒ρ′ N

′

with D′ := D̂ \ nds(N) 6= ∅. By Lemma A.7 we have M ≡ M̂ | m[P ]T and
N1 ≡ N̂ | m[Q]T , for some M̂, N̂ , T,Q and P and D := {n : T (m,n) ≥ ρ}
and D̂ := {n : T (m,n) ≥ ρ}. Then D̂ = D. Then by several applications of
Lemma A.6 and one application of rule (Sync), as D′′ ⊆ D, we have

N | O τ==⇒ρ′ N1 | O
m!ṽ.D−−−−−−→ρ′ N2 | O′

τ==⇒ρ′ N
′ | O′.

It holds that
D \ nds(M | O)

= D \ nds(M) \ nds(O)
= D \ nds(N) \ nds(O) = ∅.

Then by one application of rule (Shh) we have N | O τ==⇒ρ N
′ | O′ and

(M ′ | O′, N ′ | O′) ∈ S, as required.

– Let M | O m!ṽ.D−−−−−−→ρ′ M̂ by an application of rule (Sync) because

M
m?ṽ.D′′−−−−−−−→ρ′ M

′ and O
m!ṽ.D−−−−−−→ρ′ O

′, with M̂ = M ′ | O′ and D′′ ⊆ D.

As M ≈δ N then there is N ′ such that N m?ṽ.D′′=======⇒ρ′ N
′ with M ′ ≈δ N ′.

This implies that there are N1 and N2 such that

N
τ==⇒ρ′ N1

m?ṽ.D′′−−−−−−−→ρ′ N2
τ==⇒ρ′ N

′.
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Then by several applications of Lemma A.6 and one application of rule
(Sync), as D′′ ⊆ D, we have

N | O τ==⇒ρ′ N1 | O
m!ṽ.D−−−−−−→ρ′ N2 | O′

τ==⇒ρ′ N
′ | O′.

As by Lemma A.8 D \ nds(M) = D \ nds(N) it holds that

D \ nds(M | O)
= D \ nds(M) \ nds(O)
= D \ nds(N) \ nds(O) = ∅.

Then by one application of rule (Shh) we have N | O τ==⇒ρ N
′ | O′ and

(M ′ | O′, N ′ | O′) ∈ S, as required.

– LetM | O m!ṽ.D−−−−−−→ρ M̂ by an application of rule (Par) becauseM
m!ṽ.D−−−−−−→ρ′

M ′ with M̂ = M ′ | O. There are two possibilities:
· Let D ⊆ nds(M). Then M

τ−−→ρ M ′ by an application of (Shh). As
M ≈δ N , there is N ′ such that N τ==⇒ρ N

′, with M ′ ≈δ N ′. By several
applications of Lemma A.6 we have N | O τ==⇒ρ N

′ | O. Then (M ′ |
O,N ′ | O) ∈ S, as required.

· Let D * nds(M). Then by an application of rule (Obs) we have

M
m!ṽID′−−−−−−−→ρ′ M

′, with D′ := D \ nds(M) 6= ∅. As M ≈δ N , there

is N ′ such that N m!ṽID′=======⇒ρ′ N
′, with M ′ ≈δ N ′. Since the action

m!ṽID′ can be generated only by an application of rule (Obs) this im-
plies that there are N1 and N2 such that

N
τ==⇒ρ′ N1

m!ṽ. bD−−−−−−→ρ′ N2
τ==⇒ρ′ N

′

with D′ := D̂ \ nds(N) 6= ∅. By several applications of Lemma A.6 and
by one application of rule (Par) we have:

N | O τ==⇒ρ′ N1 | O
m!ṽ. bD−−−−−−→ρ′ N2 | O

τ==⇒ρ′ N
′ | O.

It holds that
D \ nds(M | O)

= D \ nds(M) \ nds(O)
= D′ \ nds(O)
= D̂ \ nds(N) \ nds(O) = ∅.

Then by one application of rule (Shh) we have N | O τ==⇒ρ N
′ | O and

(M ′ | O,N ′ | O) ∈ S, as required.

– LetM | O m!ṽ.D−−−−−−→ρ′ M̂ by an application of rule (Par) becauseO
m!ṽ.D−−−−−−→ρ′

O′ with m /∈ nds(M) and M̂ = M | O′. There are two possibilities:
· Let D ⊆ nds(O). Then O

τ−−→ρ O
′ by an application of (Shh). By one

application of rule (Par) we have N | O τ==⇒ρ N | O′. Then (M | O′, N |
O′) ∈ S, as required.
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· Let D * nds(O). By Lemma A.7 m ∈ nds(O); as we assume that
networks are node unique then m /∈ nds(N). By one application of

rule (Par) we have N | O m!ṽ.D−−−−−−→ρ′ N | O′. As by Lemma A.8
D \ nds(M) = D \ nds(N) it holds that

D \ nds(M | O)
= D \ nds(M) \ nds(O)
= D \ nds(N) \ nds(O) = ∅.

Thus by one application of rule (Shh) we have N | O τ==⇒ρ N | O′ and
(M | O′, N | O′) ∈ S, as required.

• Let M | O τ−−→ρ M̂ by an application of rule (Par). This case is easy to prove.
�

In order to prove Theorem 7.17 of Soundness, we need to prove the following
auxiliary lemmas.

Lemma A.9.

1. If M
m!ṽ.D−−−−−−→σ M ′, where D contains more than one node, then there are

N,P, T such that M ≡ m[σ!〈ṽ〉.P ]T | N .

2. If M
m!ṽ.D−−−−−−→σ M

′, with D = n, for some n, then there are N,P, T such that
M ≡ m[σ!〈ṽ〉.P ]T | N or M ≡ m[σ!〈ṽ〉n.P ]T | N .

Proof

1. By induction on the transition M
m!ṽ.D−−−−−−→σ M ′. The base case is when

M
m!ṽ.D−−−−−−→σ M ′ is given by rule (MCast); thus M = m[σ!〈ṽ〉.P ]T , for

some P and T . As to the inductive case, let us consider M
m!ṽ.D−−−−−−→σ M ′

given by rules (Sum), (Sync) or (Par). We only examine the case of rule

(Sync). Let M
m!ṽ.D−−−−−−→σ M

′ given by rule (Sync) because M1
m!ṽ.D−−−−−−→σ M

′
1

and M2
m?ṽ.D′−−−−−−−→σ M ′2, and M = M1 | M2 and M ′ = M ′1 | M ′2 for

some M1,M
′
1,M2,M

′
2 and D′. By inductive hypothesis it holds that M1 ≡

m[σ!〈ṽ〉.P ]T | N , for some N,P, T . Thus M ≡ m[σ!〈ṽ〉.P ]T | N | M2, as
required.

2. By induction on the transition M
m!ṽ.n−−−−−−→σ M

′. This case is similar to the
previous one.

�

Lemma A.10.

1. If M
m!ṽID−−−−−−→σ M

′ then M ↓σn, for all n ∈ D.
2. If M ↓σn then there is a value ṽ and a set of nodes D, with n ∈ D, such that

M
m!ṽID−−−−−−→σ M

′,
Proof By Lemma A.9 and by Definition 7.10. �
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Proof of Theorem 7.20

• Let M | H m!ṽID−−−−−−→ρ M̂ by an application of rule (Obs), with ρ 6= trust,

because M | H m!ṽ. bD−−−−−−→ρ M̂ . We show this case at page 126.

• Let M | H m!ṽID−−−−−−→ρ M̂ by an application of rule (Obs), with ρ = trust,

because M | H m!ṽ. bD−−−−−−→trust M̂ , with D := D̂ \ nds(M | H) 6= ∅. We have the
following possibilities:

– Let M | H m!ṽ. bD−−−−−−→trust M̂ by an application of rule (Sync) because

M
m!ṽ. bD−−−−−−→trust M

′ and H
m?ṽ.D′′−−−−−−−→trust H

′, with M̂ = M ′ | H ′,D′′ ⊆ D̂
and H ′ ∈ Hδ. We show this case at page 126.

– Let M | H m!ṽ. bD−−−−−−→trust M̂ by an application of rule (Sync) because

M
m?ṽ.D′′−−−−−−−→trust M

′ and H
m!ṽ. bD−−−−−−→trust H

′, with M̂ = M ′ | H ′,D′′ ⊆ D̂
and H ′ ∈ Hδ. As M ≈δ N then there is N ′ such that N m?ṽ.D′′=======⇒trust N

′

with M ′ ≈δ N ′. This implies that there are N1 and N2 such that

N
τ==⇒trust N1

m?ṽ.D′′−−−−−−−→trust N2
τ==⇒trust N

′.

Let D′ := D̂ \ nds(H); as D := D̂ \ nds(M | H) 6= ∅ then also D′ 6= ∅. By

rule (Obs) we have H
m!ṽID′−−−−−−−→trust H

′, with D′ := D̂ \ nds(H) 6= ∅. As

H ≈trust K then K
m!ṽID′=======⇒trust K

′, with H ′ ≈trust K
′ and K ′ ∈ Hδ.

This implies that there are K1 and K2 such that

K
τ==⇒trust K1

m!ṽ.cD′−−−−−−→trust K2
τ==⇒trust K

′.

By Lemma A.7 we have H ≡ Ĥ | m[P ]T and K1 ≡ K̂ | m[Q]T , for
some Ĥ, K̂, T,Q and P and D̂ := {n : T (m,n) ≥ trust} and D̂′ := {n :
T (m,n) ≥ trust}. Then D̂′ = D̂. By several applications of Lemma A.6
and one application of rule (Sync), as D′′ ⊆ D̂, we have

N | K τ==⇒trust N1 | K1
m!ṽ. bD−−−−−−→trust N2 | K2

τ==⇒trust N
′ | K ′.

As nds(K) = nds(H) and as by Lemma A.8 D̂ \ nds(M) = D̂ \ nds(N) it
holds that

D := D̂ \ nds(M | H)
= D̂ \ nds(M) \ nds(H)
= D̂ \ nds(N) \ nds(K) 6= ∅.

Then by one application of rule (Obs) we have N | K m!ṽID======⇒ρ N
′ | K ′

and (M ′ | H ′, N ′ | K ′) ∈ S, as required.

– Let M | H m!ṽ. bD−−−−−−→trust M̂ by an application of rule (Par) because

M
m!ṽ. bD−−−−−−→trust M

′ with M̂ = M ′ | H. The proof is similar to the case of

the transition M | H m!ṽ. bD−−−−−−→ρ M
′ | H, with ρ 6= trust.
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– Let M | H m!ṽ. bD−−−−−−→trust M̂ by an application of rule (Par) because

H
m!ṽ. bD−−−−−−→trust H

′ with M̂ = M | H ′, H ′ ∈ Hδ and m /∈ nds(M). Let
D′ := D̂ \ nds(H); as D := D̂ \ nds(M | H) 6= ∅ then also D′ 6= ∅. By rule

(Obs) we have H
m!ṽID′−−−−−−−→trust H

′. As H ≈trust K then K
m!ṽID′=======⇒trust

K ′, with H ′ ≈trust K
′ and K ′ ∈ Hδ. This implies that there are K1 and K2

such that

K
τ==⇒trust K1

m!ṽ.cD′−−−−−−→trust K2
τ==⇒trust K

′.

By Lemma A.7 we have H ≡ Ĥ | m[P ]T and K1 ≡ K̂ | m[Q]T , for
some Ĥ, K̂, T,Q and P and D̂ := {n : T (m,n) ≥ trust} and D̂′ := {n :
T (m,n) ≥ trust}. Then D̂′ = D̂. As m ∈ nds(K) and as we assume that
networks are node unique, then m /∈ nds(N). By several applications of
Lemma A.6 and by one application of rule (Par) we have:

N | K τ==⇒ρ N | K1
m!ṽ. bD−−−−−−→ N | K2

τ==⇒ρ N | K ′.

As nds(H) = nds(K) and by Lemma A.8 D̂ \ nds(M) = D̂ \ nds(N) it holds
that

D := D̂ \ nds(M | H)
= D̂ \ nds(M) \ nds(H)
= D̂ \ nds(N) \ nds(K) 6= ∅.

Thus by one application of rule (Obs) N | K m!ṽID======⇒ρ N | K ′ and (M |
H ′, N | K ′) ∈ S, as required.

• Let M | H m?ṽ.D−−−−−−→ρ M̂ with ρ 6= trust. The only possibility is that M |
H

m?ṽ.D−−−−−−→ρ M
′ | H by rule (Par) because M

m?ṽ.D−−−−−−→ρ M
′ with M̂ = M ′ | H

and m /∈ nds(H). This case is easy to prove.

• Let M | H m?ṽ.D−−−−−−→ρ M̂ with ρ = trust. We have the following possibilities:

– Let M | H m?ṽ.D−−−−−−→trust M̂ by rule (RcvPar) because M
m?ṽ.D′−−−−−−−→trust M

′

and H
m?ṽ.D′′−−−−−−−→trust H

′, with D := D′ ∪ D′′, M̂ = M ′ | H ′ and H ′ ∈ Hδ.
This case is easy to prove.

– Let M | H m?ṽ.D−−−−−−→trust M̂ by rule (Par) because M
m?ṽ.D−−−−−−→trust M

′

with M̂ = M ′ | H. The proof is similar to the case of the transition M |
H

m?ṽ.D−−−−−−→ρ M
′ | H, with ρ 6= trust.

– Let M | H m?ṽ.D−−−−−−→trust M̂ by rule (Par) because H
m?ṽ.D−−−−−−→trust H

′ with
M̂ = M | H ′,m /∈ nds(M) and H ′ ∈ Hδ. This case is easy to prove.

• M | H τ−−→ρ M̂ by an application of rule (Shh), because M | H m!ṽ.D−−−−−−→ρ′ M̂ ,
with D ⊆ nds(M | H) (and then D \ nds(M | H) = ∅). Let us consider

ρ′ 6= trust. The only possibility is that M | H m!ṽ.D−−−−−−→ρ′ M̂ by an application

of rule (Par) because M
m!ṽ.D−−−−−−→ρ′ M with M̂ = M ′ | H and m /∈ nds(H).

There are two possibilities:
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– Let D ⊆ nds(M). Then M
τ−−→ρ M

′ by an application of (Shh). As M ≈δ N ,
there is N ′ such that N τ==⇒ρ N

′, with M ′ ≈δ N ′. By several applications
of Lemma A.6 we have N | K τ==⇒ρ N

′ | K. Then (M ′ | H,N ′ | K) ∈ S, as
required.

– LetD * nds(M). Then by an application of rule (Obs) we haveM
m!ṽID′−−−−−−−→ρ′

M ′, with D′ := D \ nds(M) 6= ∅. As M ≈δ N , there is N ′ such that

N
m!ṽID′=======⇒ρ′ N

′, with M ′ ≈δ N ′. Since the action m!ṽID′ can be gen-
erated only by an application of rule (Obs) this implies that there are
N1 and N2 such that

N
τ==⇒ρ′ N1

m!ṽ. bD−−−−−−→ρ′ N2
τ==⇒ρ′ N

′

with D′ := D̂ \ nds(N) 6= ∅. By several applications of Lemma A.6 and by
one application of rule (Par), as m /∈ nds(K), we have:

N | K τ==⇒ρ′ N1 | K
m!ṽ. bD−−−−−−→ρ′ N2 | K

τ==⇒ρ′ N
′ | K.

As nds(H) = nds(K) it holds that

D \ nds(M | H)
= D \ nds(M) \ nds(H)
= D′ \ nds(H)
= D̂ \ nds(N) \ nds(K) = ∅.

Thus by one application of rule (Shh) we have N | K τ==⇒ρ N
′ | K and

(M ′ | H,N ′ | K) ∈ S, as required.

• M | H τ−−→ρ M̂ by an application of rule (Shh), because M | H m!ṽ.D−−−−−−→ρ′ M̂ ,
with D ⊆ nds(M | H) (and then D \ nds(M | H) = ∅). Let us consider
ρ′ = trust. We have the following possibilities:
– Let M | H m!ṽ.D−−−−−−→trust M̂ by rule (Par) because M

m!ṽ.D−−−−−−→trust M
′ with

M̂ = M ′ | H and m /∈ nds(H). This case is similar to the previous one.

– Let M | H m!ṽ.D−−−−−−→trust M̂ by rule (Par) because H
m!ṽ.D−−−−−−→trust H

′ with
M̂ = M | H ′ and H ′ ∈ Hδ and m /∈ nds(M). This case is similar to the
previous one. There are two possibilities:
· Let D ⊆ nds(H). Then H

τ−−→trust H
′ by an application of (Shh). As

H ≈trust K, there isK ′ such thatK τ==⇒trust K
′, withH ′ ≈trust K

′ and
K ′ ∈ Hδ. By several applications of Lemma A.6 we have N | K τ==⇒ρ

N ′ | K. Then (M | H ′, N | K ′) ∈ S, as required.
· Let D * nds(H). Then by an application of rule (Obs) we have

H
m!ṽID′−−−−−−−→trust H

′, with D′ := D \ nds(H) 6= ∅. As H ≈δ K, there is

K ′ such that K m!ṽID′=======⇒trust K
′, with H ′ ≈δ K ′ and K ′ ∈ Hδ. Since

the action m!ṽID′ can be generated only by an application of rule (Obs)

this implies that there are K1 and K2 such that

K
τ==⇒trust K1

m!ṽ. bD−−−−−−→trust K2
τ==⇒trust K

′
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with D′ := D̂\nds(K) 6= ∅. By Lemma A.7 we have H ≡ Ĥ | m[P ]T and
K1 ≡ K̂ | m[Q]T , for some Ĥ, K̂, T,Q and P and D̂ := {n : T (m,n) ≥
trust} and D̂′ := {n : T (m,n) ≥ trust}. Then D̂′ = D̂. As we assume
that networks are node unique then m /∈ nds(N). By several applications
of Lemma A.6 and by one application of rule (Par) we have:

N | K τ==⇒trust N | K1
m!ṽ.D−−−−−−→trust N | K2

τ==⇒trust N | K2.

As nds(H) = nds(K) and as by Lemma A.8 D \ nds(M) = D \ nds(N)
it holds that

D \ nds(M | H)
= D \ nds(M) \ nds(H)
= D \ nds(N) \ nds(K) = ∅.

Thus by one application of rule (Shh) we have N | K τ==⇒ρ N | K ′ and
(M | H ′, N | K ′) ∈ S, as required.

– Let M | H m!ṽ.D−−−−−−→trust M̂ by rule (Sync) because M
m!ṽ.D−−−−−−→trust M

′

and H
m?ṽ.D′′−−−−−−−→trust H

′, with M̂ = M ′ | H ′,D′′ ⊆ D and H ′ ∈ Hδ. As
D′ := D \ nds(M) 6= ∅ (because it is easy to prove that D′′ ⊆ nds(H) 6= ∅)
then we can apply (Obs) and obtain M

m!ṽID′−−−−−−−→trust M
′. As M ≈δ N

then there is N ′ such that N m!ṽID′=======⇒trust N
′ with M ′ ≈δ N ′. Since the

action m!ṽID′ can be generated only by an application of rule (Obs) this
implies that there are N1 and N2 such that

N
τ==⇒trust N1

m!ṽ. bD−−−−−−→trust N2
τ==⇒trust N

′

with D′ := D̂ \ nds(N) 6= ∅. As H ≈trust K then K m?ṽ.D′′=======⇒trust K
′ with

H ′ ≈trust K
′ and K ′ ∈ Hδ. Then there are K1 and K2 such that

K
τ==⇒trust K1

m?ṽ.D′′−−−−−−−→trust K2
τ==⇒trust K

′.

By Lemma A.7 we have M ≡ M̂ | m[P ]T and N1 ≡ N̂ | m[Q]T , for
some M̂, N̂ , T,Q and P and D̂ := {n : T (m,n) ≥ trust} and D̂′ := {n :
T (m,n) ≥ trust}. Then D̂′ = D. By several applications of Lemma A.6
and one application of rule (Sync), as D′′ ⊆ D, we have

N | K τ==⇒trust N1 | K1
m!ṽ.D−−−−−−→trust N2 | K2

τ==⇒trust N
′ | K ′.

As nds(K) = nds(H) it holds that

D \ nds(M | H)
= D \ nds(M) \ nds(H)
= D \ nds(N) \ nds(K) = ∅.

Then by one application of rules(Shh) we have N | K τ==⇒ρ N
′ | K ′ and

(M ′ | H ′, N ′ | K ′) ∈ S, as required.
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– Let M | H m!ṽ.D−−−−−−→trust M̂ by rule (Sync) because M
m?ṽ.D′′−−−−−−−→trust M

′

and H
m!ṽ.D−−−−−−→trust H

′, with M̂ = M ′ | H ′,D′′ ⊆ D and H ′ ∈ Hδ. As

M ≈δ N then there is N ′ such that N m?ṽ.D′′=======⇒trust N
′ with M ′ ≈δ N ′.

This implies that there are N1 and N2 such that

N
τ==⇒trust N1

m?ṽ.D′′−−−−−−−→trust N2
τ==⇒trust N

′.

As D′ := D\nds(H) 6= ∅ (because it is easy to prove that D′′ ⊆ nds(M) 6= ∅)
we can apply rule (Obs) and obtain H

m!ṽID′−−−−−−−→trust H
′, with D′ := D \

nds(H) 6= ∅. As H ≈trust K then K
m!ṽID′=======⇒trust K

′, with H ′ ≈trust K
′

and K ′ ∈ Hδ. This implies that there are K1 and K2 such that

K
τ==⇒trust K1

m!ṽ.cD′−−−−−−→trust K2
τ==⇒trust K

′.

By Lemma A.7 we have H ≡ Ĥ | m[P ]T and K1 ≡ K̂ | m[Q]T , for
some Ĥ, K̂, T,Q and P and D := {n : T (m,n) ≥ trust} and D̂′ := {n :
T (m,n) ≥ trust}. Then D̂′ = D. By several applications of Lemma A.6
and one application of rule (Sync), as D′′ ⊆ D, we have

N | K τ==⇒trust N1 | K1
m!ṽ.D−−−−−−→trust N2 | K2

τ==⇒trust N
′ | K ′.

As nds(K) = nds(H) and as by Lemma A.8 D \ nds(M) = D \ nds(N) it
holds that

D \ nds(M | H)
= D \ nds(M) \ nds(H)
= D \ nds(N) \ nds(K) = ∅.

Then by one application of rule (Shh) we have N | K τ==⇒ρ N
′ | K ′ and

(M ′ | H ′, N ′ | K ′) ∈ S, as required.
• Let M | O τ−−→ρ M̂ by an application of rule (Par). This case is easy to prove.

�
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A.3 Proofs of Chapter 8

Similarly to Lemma A.6, also in TCTAN all τ -actions propagate through parallel
composition.

Lemma A.11. If t . M
τ−−→ρ t . M ′ then t . M | N τ−−→ρ t . M ′ | N and

t . N |M τ−−→ρ t . N |M ′, for all networks N .
Proof of Theorem 8.8

• Let t . M | O α′−−−→ρ t . M̂ , for α′ ∈ {τ,m!ṽID,m?ṽ.D}. The proofs of these
cases are similar to the proofs of Theorem 7.16 at page 123.

• Let t . M | O tick−−−→ρ t
′ . M̂ by an application of rule (ParTick) because t .

M
tick−−−→ρ t

′ .M ′ and t .O
tick−−−→ρ t

′ .O′, and M̂ = M ′ | O′. As t .M ≈′δ t .N
then t . N

tick===⇒ρ t
′ . N ′, with t′ . M ′ ≈′δ t′ . N ′. This implies that

t . N =⇒ρ t . N1
tick−−−→ρ t

′ . N2 =⇒ρ t
′ . N ′.

Thus, by several application of Lemma A.11 and an application of rule (ParTick)

we have

t . N | O =⇒ρ t . N1 | O
tick−−−→ρ t

′ . N2 | O′ =⇒ρ t
′ . N ′ | O′.

Thus t.N | O tick===⇒ρ t
′ .N ′ | O′ and (t′ .M ′ | O′, t′ .N ′ | O′) ∈ S, as required.

�

In order to prove Theorem 8.9 of Soundness, we need to prove the following
auxiliary lemmas.

Lemma A.12.

1. If t . M
m!ṽ.D−−−−−−→σ t . M

′, where D contains more than one node, then there
are N,P, T such that M ≡ m[σ!〈ṽ〉.P ]T | N .

2. If t .M
m!ṽ.D−−−−−−→σ t .M

′, with D = n, for some n, then there are N,P, T such
that M ≡ m[σ!〈ṽ〉.P ]T | N or M ≡ m[σ!〈ṽ〉n.P ]T | N .

Proof Similar to the proof of Lemma A.9 at page 183. �

Lemma A.13.

1. If t . M
m!ṽID−−−−−−→σ t . M

′ then t . M ↓σn, for all n ∈ D.
2. If t .M ↓σn then there is a value ṽ and a set of nodes D, with n ∈ D, such that

t . M
m!ṽID−−−−−−→σ t . M

′,
Proof By Lemma A.12 and by Definition 8.1. �
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Proof of Theorem 8.10
By induction on the length of the proof of t . M

tick−−−→ρ t
′ . M ′. The base

cases are when the transitions are derived by the applications of rule (Tick-0),
(Tick) and (SumTick). It is straightforward to prove that the statement holds for

these rules. As to the inductive case, let t . M
tick−−−→ρ t

′ . M ′ by an application
of rule (ParTick). This implies that M = M1 | M2, for some M1 and M2, with

t .M1
tick−−−→ρ t

′ .M ′1, t .M2
tick−−−→ρ t

′ .M ′2 and M ′ = M ′1 |M ′2. As M = M1 |M2,

the transition t .M
tick−−−→ρ t

′ .M ′′ can be derived only by applying rule (ParTick)

where t .M1
tick−−−→ρ t

′ .M ′′1 , t .M2
tick−−−→ρ t

′ .M ′′2 and M ′′ = M ′′1 |M ′′2 , for some
M ′′1 ,M

′′
2 . By inductive hypothesis it holds that M ′i and M ′′i are syntactically the

same, for i ∈ {1, 2}. This implies that M ′ and M ′′ are syntactically the same. �

Proof of Theorem 8.11
By induction on the structure of M . If M = 0 the statement does not apply.

If M is composed by only one node and t .M
m!ṽ.D−−−−−−→σ t .N , this can be derived

only by an application of rule (MCastT), (UCastT), or (SumT). In all cases the

possibility that t .M
tick−−−→ρ t

′ .M ′, for some M ′ and ρ 6= bad, is excluded by the
requirement of rule (Tick). As to the inductive case, let M be composed by at least

two nodes and t . M
m!ṽ.D−−−−−−→σ t . N by an application of rule (SyncT) or (ParT).

We examine only the first case. The other one is similar. If t . M
m!ṽ.D−−−−−−→σ t . N

is given by an application of rule (SyncT), then M = M1 | M2 for some M1 and

M2, with t . M1
m!ṽ.D−−−−−−→σ t . M ′1, t . M2

m?ṽ.D′−−−−−−−→σ t . M ′2, for some D′, and
N = M ′1 |M ′2 (the converse is similar). As M = M1 |M2 the only rule for deriving
a tick-transition from M is (ParTick). However, the inductive hypothesis guarantees

that t .M1
tick−−−→ρ t

′ .M̂ for no network M̂ and ρ 6= bad; then t .M
tick−−−→ρ t

′ .M ′

for no network M ′ and ρ 6= bad. �

Proof of Theorem 8.12
By contradiction and then by induction on the structure of M . We prove that

if t . M
tick−−−→ρ t

′ . N for no network N and ρ 6= bad then there is a network M ′

such that t .M
m!ṽ.D−−−−−−→σ t .M

′. Let us proceed by induction on the structure of
M .

• Let M = 0. Then t . M
tick−−−→ρ t

′ . M by an application of rule (Tick-0). So,
the statement does not apply.

• Let M = m[P ]T . We proceed by induction on the structure of P .

– If P = nil or P = σ?(x̃).Q then t . M
tick−−−→ρ t

′ . M ′ by an application of
rules (Tick). Thus the statement does not apply.

– If P = σ!〈ṽ〉.P then t . M 6 tick−−−→ρ by requirement of rule (Tick). However,

t .M
m!ṽ.D−−−−−−→σ t .M

′, by an application of rule (MCastT), in contradiction
with the hypothesis.

– If P = σ!〈ũ〉n.P and T (m,n) ≥ σ then t . M 6 tick−−−→ρ by requirement of rule

(Tick). However, t .M
m!ṽ.n−−−−−−→σ t .M

′, by an application of rule (UCastT),
in contradiction with the hypothesis.
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– If P = σ!〈ũ〉n.P and T (m,n) < σ then t . M 6 m!ṽ.n−−−−−−→σ by requirement of

rule (UCastT) but t . M
tick−−−→ρ t

′ . M ′ by an application of rules (Tick).
Thus the statement does not apply.

– If P = P ′+Q then t.M
tick−−−→ρ t

′ .M ′ by an application of rules (SumTick)

because t . m[P ′]T
tick−−−→ρ t

′ . m[P ′]T ′ and t . n[Q]T
tick−−−→ρ t

′ . m[Q]T ′ .
Thus the statement does not apply.

– If P = P ′+Q and t .M 6tick−−−→ρ because either t .m[P ′]T 6
tick−−−→ρ or t .m[Q]T

6tick−−−→ρ. By inductive hypothesis it means that either t . m[P ′]T
m!ṽ.D−−−−−−→σ

t .m[P ′′]T or t .m[Q]T
m!ṽ.D−−−−−−→σ t .m[Q′]T , for some P ′′, Q′, then by rule

(SumT) t . M
m!ṽ.D−−−−−−→σ t . M

′ in contradiction with the hypothesis.
– If P = [ṽ op ṽ′]P ′, Q with ṽ op ṽ′ = true then by an application of rule

(ThenT) we can apply the inductive hypothesis to conclude that we fall in
one of the previous cases.

– If P = [ṽ op ṽ′]P ′, Q, ṽ op ṽ′ = false, by an application of rule (ElseT) we
can apply the inductive hypothesis to conclude that we fall in one of the
previous cases.

– If P = H〈ṽ〉 the constraint of guarded recursion ensures us that by an
application of rule (RecT) we can apply the inductive hypothesis and we
fall in one of the previous cases.

• Let M = M1 |M2. A transition of the form t .M
tick−−−→ρ t

′ .N can be derived
only by an application of rule (ParTick). If this action cannot be performed
then at least one of the premises of rule (ParTick) does not hold:

– If t . M1
tick−−−→ρ t

′ . M̂ for no network M̂ and ρ 6= bad, then by inductive

hypothesis we have t . M1
m!ṽ.D−−−−−−→σ t . M ′1, for some M ′1. By an appli-

cation of rule (ParT) it holds that t . M1 | M2
m!ṽ.D−−−−−−→σ t . M

′
1 | M2, in

contradiction with the hypothesis.
– If t .M2

tick−−−→ρ t
′ .M ′2 for no network M ′2 and ρ 6= bad then we can reason

as in the previous sub-case.
�

Proof of Theorem 8.14
We prove that the relation

S def= {
(
t . M | H , t . N | K

)
: t . H, t . K ∈ H′δ,

t . M ≈δ t . N, t . H ≈trust t . K and nds(H)=nds(K)}

is a δ-timed bisimulation. We proceed by case analysis on the transition t . M |
H

α−−→ρ t
′ . M̂ , with ρ≤δ.

• Let t . M | H α′−−−→ρ t . M̂ , for α′ ∈ {τ,m!ṽID,m?ṽ.D} and ρ 6= trust. The
proofs of these cases are similar to the proofs of Theorem 7.20 at page 125.

• Let t . M | H α′−−−→ρ t . M̂ , for α′ ∈ {τ,m!ṽID,m?ṽ.D} and ρ = trust. The
proofs of these cases are similar to the proofs of Theorem 7.20 at page 125.
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• Let t . M | H tick−−−→trust t
′ . M̂ by an application of rule (ParTick) because

t . M
tick−−−→trust t

′ . M ′ and t . H
tick−−−→trust t

′ . H ′, and M̂ = M ′ | H ′. As
t .M ≈′δ t .N then t .N tick===⇒trust t

′ .N ′, with t′ .M ′ ≈′δ t′ .N ′. This implies
that

t . N =⇒trust t . N1
tick−−−→trust t

′ . N2 =⇒trust t
′ . N ′.

Moreover, as t.H ≈trust t.K then t.K tick===⇒trust t
′ .K ′, with t′ .H ′ ≈′δ t′ .K ′

and H ′,K ′ ∈ H′δ. This implies that

t . K =⇒trust t . K1
tick−−−→trust t

′ . K2 =⇒trust t
′ . K ′.

Thus, by several applications of Lemma A.11 and an application of rule
(ParTick) we have

t . N | K =⇒trust t . N1 | K1
tick−−−→trust t

′ . N2 | K2 =⇒trust t
′ . N ′ | K ′.

Thus t . N | K tick===⇒trust t
′ . N ′ | K ′ and (t′ . M ′ | H ′, t′ . N ′ | K ′) ∈ S, as

required.
�
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202. Kay Römer. Time Synchronization in Ad hoc Networks. In MobiHoc, pages 173–182.
ACM, 2001.

203. Sini Ruohomaa and Lea Kutvonen. Trust Management Survey. In iTrust, volume
3477 of Lecture Notes in Computer Science, pages 77–92. Springer, 2005.

204. Peter Y. A. Ryan and Stanley A. Schneider. Process Algebra and Non-Interference.
In CSFW, pages 214–227. IEEE Computer Society, 1999.

205. Jordi Sabater and Charles Sierra. Regret: A Reputation Model for Gregarious
Societies. In AGENTS, pages 194–195. ACM Press, 2001.

206. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-
Based Access Control Models. IEEE Computer, 29(2):38–47, 1996.

207. Ravi S. Sandhu and Pierangela Samarati. Access Control: Principles and Practice.
IEEE Communications Magazine, 32:40–48, 1994.

208. Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

http://www.polyspace.com/
http://www.microsoft.com/whdc/devtools/tools/PREfast.mspx
http://www.microsoft.com/whdc/devtools/tools/PREfast.mspx


References 203

209. Kimaya Sanzgiri, Daniel LaFlamme, Bridget Dahill, Brian Neil Levine, Clay Shields,
and Elizabeth M. Belding-Royer. Authenticated Routing for Ad Hoc Networks.
IEEE Journal on Selected Areas in Communication, special issue on Wireless Ad
Hoc Networks, 23(3):598–610, 2005.

210. Dana Scott and Christopher Strachey. Toward a Mathematical Semantics for Com-
puter Languages. In Proceedings of the Symposium on Computers and Automata,
volume XXI, pages 19–46. Polytechnic Press, 1971.

211. Mohamed Shehab, Elisa Bertino, and Arif Ghafoor. Efficient Hierarchical Key Gen-
eration and Key Diffusion for Sensor Networks. In SECON, pages 76–84. IEEE
Communications Society, 2005.

212. Mihail L. Sichitiu and Chanchai Veerarittiphan. Simple, Accurate Time Synchro-
nization for Wireless Sensor Networks. In WCNC, pages 1266–1273. IEEE Computer
Society, 2003.

213. Barbara Simons, Jennifer L. Welch, and Nancy A. Lynch. An Overview of Clock
Synchronization. In Fault-Tolerant Distributed Computing, volume 448 of Lecture
Notes in Computer Science, pages 84–96. Springer, 1990.

214. Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. A Process Calculus for
Mobile Ad Hoc Networks. Science of Computer Programming, in press, 2009.

215. Elankayer Sithirasenan, Saad Zafar, and Vallipuram Muthukkumarasamy. Formal
Verification of the IEEE 802.11i WLAN Security Protocol. In ASWEC, pages 181–
190. IEEE Computer Society, 2006.

216. Dawn Xiaodong Song, Sergey Berezin, and Adrian Perrig. Athena: A Novel Ap-
proach to Efficient Automatic Security Protocol Analysis. Journal of Computer
Security, 9(1/2):47–74, 2001.

217. Mudhakar Srivatsa, Li Xiong, and Ling Liu. TrustGuard: Countering Vulnerabilities
in Reputation Management for Decentralized Overlay Networks. In WWW, pages
422–431. ACM, 2005.

218. William Stallings. Cryptography and Network Security Principles and Practices.
Pearson Education Inc., NJ, USA, 2006. 4th edition.

219. Ben Strulo. Process Algebra for Discrete Event Simulation. PhD thesis, Imperial
College, 1993.

220. Weilian Su and Ian F. Akyildiz. Time-Diffusion Synchronization Protocols for Sen-
sor Networks. IEEE/ACM Transactions on Networking, 13(2):384–397, 2005.

221. Bharath Sundararaman, Ugo Buy, and Ajay D. Kshemkalyani. Clock Synchroniza-
tion for Wireless Sensor Networks: a Survey. Ad Hoc Networks, 3(3):281–323, 2005.

222. Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, 2003.
223. George Theodorakopoulos and John S. Baras. On Trust Models and Trust Evalua-

tion Metrics for Ad Hoc Networks. IEEE Journal on Selected Areas in Communi-
cations, 24(2):318–328, 2006.

224. M. Llanos Tobarra, Diego Cazorla, Fernando Cuartero, Gregorio Dı́az, and Maŕıa-
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