120 research outputs found

    Privacy-aware relationship semantics–based XACML access control model for electronic health records in hybrid cloud

    Get PDF
    State-of-the-art progress in cloud computing encouraged the healthcare organizations to outsource the management of electronic health records to cloud service providers using hybrid cloud. A hybrid cloud is an infrastructure consisting of a private cloud (managed by the organization) and a public cloud (managed by the cloud service provider). The use of hybrid cloud enables electronic health records to be exchanged between medical institutions and supports multipurpose usage of electronic health records. Along with the benefits, cloud-based electronic health records also raise the problems of security and privacy specifically in terms of electronic health records access. A comprehensive and exploratory analysis of privacy-preserving solutions revealed that most current systems do not support fine-grained access control or consider additional factors such as privacy preservation and relationship semantics. In this article, we investigated the need of a privacy-aware fine-grained access control model for the hybrid cloud. We propose a privacy-aware relationship semantics–based XACML access control model that performs hybrid relationship and attribute-based access control using extensible access control markup language. The proposed approach supports fine-grained relation-based access control with state-of-the-art privacy mechanism named Anatomy for enhanced multipurpose electronic health records usage. The proposed (privacy-aware relationship semantics–based XACML access control model) model provides and maintains an efficient privacy versus utility trade-off. We formally verify the proposed model (privacy-aware relationship semantics–based XACML access control model) and implemented to check its effectiveness in terms of privacy-aware electronic health records access and multipurpose utilization. Experimental results show that in the proposed (privacy-aware relationship semantics–based XACML access control model) model, access policies based on relationships and electronic health records anonymization can perform well in terms of access policy response time and space storage

    Semantic-Based Policy Composition for Privacy-Demanding Data Linkage

    Get PDF
    Record linkage can be used to support current and future health research across populations however such approaches give rise to many challenges related to patient privacy and confidentiality including inference attacks. To address this, we present a semantic-based policy framework where linkage privacy detects attribute associations that can lead to inference disclosure issues. To illustrate the effectiveness of the approach, we present a case study exploring health data combining spatial, ethnicity and language information from several major on-going projects occurring across Australia. Compared with classic access control models, the results show that our proposal outperforms other approaches with regards to effectiveness, reliability and subsequent data utility

    Dynamic Privacy Management In Services Based Interactions

    Get PDF
    Technology advancements have enabled the distribution and sharing of users personal data over several data sources. Each data source is potentially managed by a different organization, which may expose its data as a Web service. Using such Web services, dynamic composition of atomic data items coupled with the context in which the data is accessed may breach sensitive data that may not comply with the users preference at the time of data collection. Thus, providing uniform access policies to such data can lead to privacy problems. Some fairly recent research has focused on providing solutions for dynamic privacy management. This thesis advances these techniques, and fills some gaps in the existing works. In particular, dynamically incorporating user access context into the privacy policy decision, and its enforcement

    Authorization schema for electronic health-care records: for Uganda

    Get PDF
    This thesis discusses how to design an authorization schema focused on ensuring each patient's data privacy within a hospital information system

    Hierarchical Group and Attribute-Based Access Control: Incorporating Hierarchical Groups and Delegation into Attribute-Based Access Control

    Get PDF
    Attribute-Based Access Control (ABAC) is a promising alternative to traditional models of access control (i.e. Discretionary Access Control (DAC), Mandatory Access Control (MAC) and Role-Based Access control (RBAC)) that has drawn attention in both recent academic literature and industry application. However, formalization of a foundational model of ABAC and large-scale adoption is still in its infancy. The relatively recent popularity of ABAC still leaves a number of problems unexplored. Issues like delegation, administration, auditability, scalability, hierarchical representations, etc. have been largely ignored or left to future work. This thesis seeks to aid in the adoption of ABAC by filling in several of these gaps. The core contribution of this work is the Hierarchical Group and Attribute-Based Access Control (HGABAC) model, a novel formal model of ABAC which introduces the concept of hierarchical user and object attribute groups to ABAC. It is shown that HGABAC is capable of representing the traditional models of access control (MAC, DAC and RBAC) using this group hierarchy and that in many cases it’s use simplifies both attribute and policy administration. HGABAC serves as the basis upon which extensions are built to incorporate delegation into ABAC. Several potential strategies for introducing delegation into ABAC are proposed, categorized into families and the trade-offs of each are examined. One such strategy is formalized into a new User-to-User Attribute Delegation model, built as an extension to the HGABAC model. Attribute Delegation enables users to delegate a subset of their attributes to other users in an off-line manner (not requiring connecting to a third party). Finally, a supporting architecture for HGABAC is detailed including descriptions of services, high-level communication protocols and a new low-level attribute certificate format for exchanging user and connection attributes between independent services. Particular emphasis is placed on ensuring support for federated and distributed systems. Critical components of the architecture are implemented and evaluated with promising preliminary results. It is hoped that the contributions in this research will further the acceptance of ABAC in both academia and industry by solving the problem of delegation as well as simplifying administration and policy authoring through the introduction of hierarchical user groups

    From Conventional to State-of-the-Art IoT Access Control Models

    Get PDF
    open access articleThe advent in Online Social Networks (OSN) and Internet of Things (IoT) has created a new world of collaboration and communication between people and devices. The domain of internet of things uses billions of devices (ranging from tiny sensors to macro scale devices) that continuously produce and exchange huge amounts of data with people and applications. Similarly, more than a billion people are connected through social networking sites to collaborate and share their knowledge. The applications of IoT such as smart health, smart city, social networking, video surveillance and vehicular communication are quickly evolving people’s daily lives. These applications provide accurate, information-rich and personalized services to the users. However, providing personalized information comes at the cost of accessing private information of users such as their location, social relationship details, health information and daily activities. When the information is accessible online, there is always a chance that it can be used maliciously by unauthorized entities. Therefore, an effective access control mechanism must be employed to ensure the security and privacy of entities using OSN and IoT services. Access control refers to a process which can restrict user’s access to data and resources. It enforces access rules to grant authorized users an access to resources and prevent others. This survey examines the increasing literature on access control for traditional models in general, and for OSN and IoT in specific. Challenges and problems related to access control mechanisms are explored to facilitate the adoption of access control solutions in OSN and IoT scenarios. The survey provides a review of the requirements for access control enforcement, discusses several security issues in access control, and elaborates underlying principles and limitations of famous access control models. We evaluate the feasibility of current access control models for OSN and IoT and provide the future development direction of access control for the sam

    Securing Distributed Systems: A Survey on Access Control Techniques for Cloud, Blockchain, IoT and SDN

    Get PDF
    Access Control is a crucial defense mechanism organizations can deploy to meet modern cybersecurity needs and legal compliance with data privacy. The aim is to prevent unauthorized users and systems from accessing protected resources in a way that exceeds their permissions. The present survey aims to summarize state-of-the-art Access Control techniques, presenting recent research trends in this area. Moreover, as the cyber-attack landscape and zero-trust networking challenges require organizations to consider their Information Security management strategies carefully, in this study, we present a review of contemporary Access Control techniques and technologies being discussed in the literature and the various innovations and evolution of the technology. We also discuss adopting and applying different Access Control techniques and technologies in four upcoming and crucial domains: Cloud Computing, Blockchain, the Internet of Things, and Software-Defined Networking. Finally, we discuss the business adoption strategies for Access Control and how the technology can be integrated into a cybersecurity and network architecture strategy
    • …
    corecore