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CHAPTER 1 INTRODUCTION

Technology advancements facilitate the online collection and publication of data about individ-

uals, which could potentially be distributed among several organizations (e.g., testing labs, research

institutes, etc.). Each organization may manage it’s data access and usage through a specialized

Web service. In line with the different data sharing environments, health science data is a prime

example, where the focus has been on transforming the data into ontology-based repositories us-

ing RDF (as a universal healthcare exchange language). Each repository defines an ontology (in

OWL format) of all the concepts that can be searched for in a requester’s query. OWL defines

classes as a generic concept of individuals (e.g., Patient) and data type properties to link individu-

als of those classes to their data values (e.g., hasPatientStatus). For example, the Bio2RDF project

incorporates data from the following ontologies (NCBIGene,PharmKGB, DrugBank, CDT, and

GeneCDS). Each of the above mentioned repositories manages data access through a SPARQL

endpoint. Table 1.2 shows examples of concepts from these ontologies including both data classes

and data type properties. To query instances in a data repository, a requester can ask for any of

the data type properties by which those instances can be identified. For example, an instance in

a pharmacogenomics repository (e.g., PharmGKB, Table. 1.1) can be identified by the set of data

type properties (drug, disease, gene, etc.) defined on the set of classes (Dosage, Drug, DrugGene-

Associations, etc.).

1.1 Data Access Patterns

In such services-based interactions, data can be accessed in several ways, including manual

query submission (Fig. 1.1,I) through SPARQL endpoints (e.g., Bio2RDF), automated analysis

pipelines and scientific workflows (e.g.,Taverna), and mashup service APIs (e.g., AIDSInfo) with

minimal human interaction (Fig. 1.1,II). We briefly explain each access pattern:

SPARQL End points. SPARQL Endpoints are RESTful Web services that allow SPARQL queries

to be executed against RDF datasets. They accept queries and return results via http. Some end

points are generic (query any Web-accessible RDF data), while others are specific (hardwired to

query against particular datasets). Results are often rendered as XML, JSON, RDF, HTML etc.

Accessing Endpoints can be done via a command interface, an API, or on a graph. SPARQL end-
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Table 1.1: Ontology concepts from health data projects.

Project (Ontology)
Bio2RDF (NCBI Gene)

Classes DataType properties
Gene, ProtienCodingGene, GenefunctionAssociation Symbol, function, startPosition, endPosition,

Chromosome
Bio2RDF (DrugBank)

Classes DataType properties
Drug, DrugDosage, DrugTarget Label, Function, Dosage, Enzyme, Gene, Protien,

Chromosome
Bio2RDF (PharmGKB)

Classes DataType properties
Variant, Gene, Drug, Association, Disease, Disea-
seVariantLocAssociation, DiseaseGeneAssociation,
GeneGeneAssociation, DrugGeneAssociation, Drug-
VariantLocAssociation

gene, symbol, protien, drug, variant location, disease,
isgenotyped

Bio2RDF (GeneCDS)
Classes DataType properties
Gene, Allele, Phenotype, Drug, Polymorphism, Hu-
manWGeneticPolymorphism

Gene Symbol, rs, SPLTarget.

Bio2RDF (CDT)
Classes DataType properties
Chemical Disease Association, Chemical Gene Asso-
ciation, Gene, Chemical, Disease

gene symbol, disease, chemical, function, location,
participant,

E-Hip (HPMS)
Classes DataType properties
Cardiologist, Date Helper, ElderCareSpecialist, GP,
MedicalPersonnel, Nurse, Oncologist, Patient, Pa-
tientStatus, Person, Pysician

patientstatus, discharged, dischargeddate, location,
treated, treatedbyteam, treatedInLastSixMonths,
department, Emergency

points allow for federatedqueryprocessing by querying a mediator which distributes subqueries

to relevant data sources and integrates the results. We take the Bio2RDF project as an example. In

Bio2RDF project data sources are exposed as DaaS services. RDF views are incorporated within

service’s WSDL files as annotations. Users can then issue SPARQL queries on a mediated ontol-

ogy. Then, a mediator service uses WSDL files of those services for service selection.

Scientific Workflows and Online Analysis Pipelines. Analysis pipelines and workflows rely on

downloading multiple datasets from public databases, copying and pasting from one web-based

tool to another, integrating data, and transferring it into another tool. Scientific workflows have

emerged as a paradigm for scientists to formalize and structure complex and distributed scientific

processes to enable and accelerate scientific discoveries. Org4 (Fig 1.1,D) best describes this data

access scenario.

Mashup Service APIs. Mashups are composed of easy to integrate data sources. A data source
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Table 1.2: Selected data type properties from the ontologies in Table 1.1.

Ontology DataType properties
NCBI Gene Symbol, function, startPosition, endPosition, Chromosome
DrugBank Drug Label (DL), Function, Dosage, Enzyme, Gene, Protien
PharmGKB Gene, Symbol, Protien, Drug, Price (PR), variantLocation (SNP), disease (DI)
GeneCDS GeneSymbol (GS), SNP, SPLTarget.
CDT gene symbol, disease, chemical, function, location, participant,
E-Hip PatientStatus (PS), Discharged (D), DischargedDate (DD), Location (L), Gender (G),

Department (DE)
US Census Age (A), Address (AD), Income(IN), Employer(EM), MaritalStatus(MS)

Org 2

Private 
data

(II) Minimal human interaction (Web service composition): Analysis pipelines, scientific workflows, data mashups

Purpose: 
research

Org 1

Private 
data

getGeneInfo()

patientStatus

Purpose: 
diagnosis

Org 3

Private 
data

Disease“cancer”

getPrice(medicine) 

Genomic 
Service

Clinical 
Service

Pharma
Service<rdf:RDF mc="http://www.michcare.com/michcare.owl#">

<mc:Patient rdf:about="patient1">
 <mc:hasGene>HLA-B</mc:hasGene>
<mc:hasGenePreference>yes</mc:hasGenePreference>
<mc:GenePreference>
<mc:canDisclose>yes</mc:canDisclose>
<mc:hasPurpose>Research</mc:hasPurpose>
</mc:GenePreference>
</mc:hasGenePreference>
</rdf>

(I) Human interaction (Web Service Endpoints): SPARQL <rd:fRDF xmlns:mc="http://www.michcare.com/michcare.owl#" >
<mc:Patient rdf:about="patient1">
<mc:hasPatientStatus>Bad</mc:hasPatientStatus>
<mc:hasStatusPreference>
 <mc:StatusPreference>
  <mc:canDisclose>yes</mc:canDisclose>
  <mc:hasPurpose>Diagnosis<mc:hasPurpose>
  </mc:StatusPreference>
 </hasStatusPreference>
</rdf>

Alicepolicy patient1Policy { 
apply firstApplicable
rule patientStatusAccessRule{
target clause Attributes.resourceId=="hasPatientStatus" 
and actionId=="view" 
condition canDisclose="yes" and 
subjectPurpose==purpose 
permit} }

Pay
Service

Private 
data

A

SELECT ?gender ?status ?location
WHERE {
?patient rdf:type mc:Patient .
?patient mc:hasGender ?gender .
?patient mc:hasLocation ?location.
?patient mc:patientStatus ?status.
?patient mc:patientStatus ’Bad’ .}

SELECT ?gender ?gene ?geneloc
WHERE {
?patient rdf:type mc:Patient .
?patient mc:hasGender ?gender .
?geneinfo rdf:type mc:PatientGenomics .
?patient mc:hasGene ?gene.
?patient mc:hasGene ’HLA’ .
?geneinfo mc:hasGene ’HLA’ .
?geneinfo mc:hasGeneLocation ?geneloc}

Q1

Q2
Gene, GeneLoc

i1

i2

p

Org 4 (GVD Analysis Pipeline)

WS1/getGeneInfo() 

WS1/getVariantInfo() 

WS1/getGenPhenAsso() 

WS2/getDrugInfo() 

WS3/getPatientInfo() 

buy(price) 

C

D

B

E

Figure 1.1: Different data access scenarios in Services-based interactions.

could be an in-house database, a web page, a web service, etc.. Using mashup technology, the

mashup Web application receives a service request, dynamically determines the service providers,

requests the required data through their APIs, integrates the collected data, and returns it to the

original requester. A good example of this is BioCatalogue. BioCatalog provides a set of public

RESTful endpoints that allow you to query the registry programmatically and integrate the data

and functionality into your own scripts, workflows, apps, tools and mashups. Scientific workflows

(e.g. taverna) are integrated with service registries, such as BioCatalog, and analysis pipelines,

such as MyExperiment.

1.2 Dynamic Web Service Composition

In all scenarios mentioned above, dynamic Web service composition [73] may be involved,

especially since the queried data may not necessarily get retrieved from a single Web service. Dy-

namic composition enables the specification of composite services without knowing a priori which
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Web services will be actually used at run-time. Therefore, each composite service should have a

composition plan CP . Fig. 1.2 depicts one CP, where nodes represent services and edges repre-

sent functional dependencies between services based on relations between their input and output

parameters. Several composition plans CP = {CP1, ..., CPn} can be returned by an execution

engine to answer a query Q. In a CP, any service WS1 which depends on another service WS2 is

considered a user of the data provided by WS2. Thus, WS1 can be viewed as a client and WS2

can be viewed as a provider.
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Figure 1.2: A sample composition.

For example, Org3 (Fig. 1.1) is composed of a payment service (PayService), which depends

on a pharmacy service (PharmaService) to accomplish its task. Similarly, in SPARQL endpoints,

a mediator service uses WSDL files of those services for service selection and CP formation. In all

cases, a query gets decomposed into several sub queries if the data asked for in the query should

be retrieved from multiple Web services (Fig. 1.3).
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Figure 1.3: A sample composition plan that breaks a query down into subqueries against several services.
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1.3 Private Dynamic Web Service Composition

Dynamic composition of services in those environments also requires appropriate privacy mech-

anisms to guarantee the confidentiality of all participants along the composition chain. Thus, before

providing WS1 with a data item, WS2 should check the data owners privacy policy rule regarding

that item. Checking for privacy rules should hold along the composition chain until all the data

items requested in the original query initiated by the user are retrieved. Thus, privacy requirements

should hold for all the dependencies among the services in CP, and our role becomes to validate CP

in terms of privacy. If at least one dependency in CP violates a privacy rule, then CP is discarded

from CP and the corresponding data item is discarded from the query results.

For instance, consider the query Q=”What are the ages, genders, zip, DNA, and income for

patients infected with cancer and what are the prices paid by patients who reside in that area. A

subset of the services that might be involved in answering this query are depicted by the composi-

tion plan in Fig. 1.3, which takes the query Q = {A,G,Z,N} and combines the results and returns

the output. The data item DR (i.e. drug) is an input for WS6, WS7 and WS8 and it is an output

for WS5.. Thus, WS6, WS7, and WS8 depend on WS5, for example, for providing DR.

Assume that Actiq (which is a cancer medication) is one of the very few medicines that costs

$45.89. It is very easy for an adversary to use the above query to deduce that a patient has been

diagnosed for cancer if they know how much they paid for a medicine (via a payment service) that

is used for cancer. However, a smart privacy management engine should track the query history

against all participating Web services to fulfill that query and use that history to learn more about

the motives of the requester. If we treat each subquery aginst each sub Web service as a request

and apply our inference algorithm to those requests.

A PEP at the composition orchestrator or mediator level as well as individual PEPs at compo-

nent service levels can help propagate that query history information and infer context from the

query history. Each component service may be in itself a composition of another group of services

and so on. Since the inferred context is tied to the data resource, and since a data source can be

shared by multiple services our approach works regardless of which Web services participated in

the plan.
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1.4 Problem Statement

The research problem discussed in this dissertation is motivated by adversarial data access

scenarios that may take place in collaborative service-based data sharing environments. Namely,

we study environments in which the participating services host different sets of data about the same

users, identified by some common properties. We generalize two of the main privacy issues from

which such environments may suffer:

• First, transforming such data sets into semantic data makes data linkage easier and machine

processable.

• Second, dynamic composition of different data items (retrieved through participating Web

services) may be misused by adversaries to reveal sensitive information, which was not

deemed as such by the data owner at the time of data collection. Atomically, these data

items may not reveal personally identifiable information, but linking those items may lead to

unintended breach of privacy.

Thus, the user’s consent that is statically defined in a privacy policy may not be enough for

restricting data disclosure. We need a privacy management solution that is, dynamic, context-

sensitive, and semantic-based.

1.5 Contributions To Research and Practice

This thesis makes the following contributions and focuses on dynamic privacy management

in services based interactions. The thesis deemphasizes the role of applying cryptography and

security techniques in achieving privacy, focusing instead on using data mining techniques to make

privacy management smarter. I assume that the proposed techniques can be complemented by

existing security and cryptography techniques, but these contributions are not in the scope of this

thesis:

• We build a dynamic, context-aware, semantic-based privacy policy management framework

on the top of the XACML reference architecture for policy-based access control. We evaluate

implement the proposed framework using an existing deployment engine that incorporates

the proposed context handling model into the privacy management module, and we incorpo-

rate the implemented framework into both a Web based and mobile based prototypes. We

evaluate the feasibility of the implemented approach in two case studies in comparison to
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similar existing works.

• We build an approach for private Web service selection that leverages the notion of K-

Anonymity to the level of a Web service operation. We generalize the approach to the level

of business process by solving the problem of protecting privacy in Web service outsourc-

ing. We integrate the proposed model into an existing framework to achieve privacy at the

level of the outsourced data, the outsourced operation, and the outsourced business process

logic. We provide an implementation of our approach using an existing process management

framework and provide an empirical evaluation of the feasibility of the approach.

• We introduce Pri-calculus, as an extension of the Pi-calculus with privacy level types;

We define a data flow analysis for private service composition, including the lattice model,

the abstract syntax, and dynamic semantics of our extended calculus; We also present a

prototype implementation of our analysis as a privacy level annotations-based type checker

and incorporate it into a composition engine;

1.6 Dissertation outline

The dissertation proposal is divided into six chapters. Chapter 2, introduces some background

information. The chapter first introduces some mathematical concepts that we apply in this disser-

tation. It then describes a standard privacy policy language. Chapter 3, explains an approach for

dynamic privacy management at the data access level. Chapters 4 and 5 explain two approaches

for dynamic privacy management at the operation level. Chapter 6, discusses some related works.

Finally, Chapter 7 concludes and highlights future research directions.
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CHAPTER 2 BACKGROUND

This dissertation proposal utilizes several mathematical frameworks and techniques and this

chapter highlights those techniques through an example. We also give a brief background about

some Web service standards and privacy policy languages.

2.1 Information Theory

We briefly list basic definitions from information entropy theory followed by examples from

our scenario.

2.1.1 Entropy

Entropy is a measure of uncertainty of a random variable [31]. The entropy H(DA) of a discrete

random variable DA is defined by:

H(DA) = �
X

d
a

2D
A

Pr(da)log2Pr(da)

2.1.2 Joint Entropy and Conditional Entropy

The notion of entropy can be extended to two random variables. The joint entropy H(DA, DB)

of two discrete random variables DA and DB with joint probability Pr(da, db) is defined as:

H(DA, DB) = �
X

d
a

,d
b

2D
A

,D
b

Pr(da, db)log2Pr(da, db)

Conditional entropy of one random variable given another is defined as:

H(DA|DB) = �
X

d
a

,d
b

2D
A

,D
b

Pr(da, db)log2Pr(da|db)

2.1.3 Data Diversity

Diversity of a set of data depends on the number of homogeneous groups of data and the pro-

portion of attributes in each group. Entropy can be used as a measure of data diversity. According

to Shannon: First, if there are multiple possible options which are equally likely, there is more

uncertainty (monotonicity). Thus, the smaller the entropy, the fewer the number of different data

items or the more regular the data items are. Second, if a data set is defined as the combination of
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Table 2.1: A set of queries QS collected over several submissions.

phase Qi Pi Di

I 0 Research IncomeLevel,age
I 0 Diagnosis name,testResult
I 0 Research employer, incomeLevel
I 0 FederalTax name,incomeLevel
II 1 Research age,incomeLevel
II 0 Research employer,incomeLevel
II 1 Diagnosis name,testResult
II 2 Research incomeLevel,testResult

several disjoint data sets, the entropy for them combined should be at least the weighted sum of

the individual entropy values for the individual sets. For two data sets denoted by DI and DII , the

overall entropy should be higher, or at least equal to the weighted entropy of the individual data

sets involved:

H(D) = H(a, b) + aH(DI) + bH(DII), where a =

DI

D
, b =

DII

D

For example, we can use entropy as a measure of irregularity among a set of queries in a query

space QS by determining the constant and varying attributes of QS. The attributes in our case are

the query’s purpose P and the set of data type properties D in the query and a combination of both.

For instance, assume a set of queries that are gathered from several submissions (Table 2.1). In the

following, we explain how we calculate the diversity based on each of these attributes:

RR            
D
F
    

RRR            
D

RRRRR            
DD
F              

2/4,1/4,1/4 2/4,1/4,0/4

5/8,2/8,1/8

4/8               4/8 

Figure 2.1: Diversity of combining queries from different phases. We assume the number of queries per phase is 4.

Diversity of queries by purpose P. Assume a set of queries gathered from several submissions

(Table 2.1). We divide the queries into two phases assuming the number of queries per phase is

4. First, for the P attribute, in phase I, we have 4 queries two of which are for research purposes,
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while the other two are for two different purposes so the initial entropy of QS with respect to

attribute P is:

HP (QSI) =
2

4

log
2

4

+

1

4

log
1

4

+

1

4

log
1

4

In phase II, two queries are for research purpose, one is for diagnosis purpose, and one is for

federalTax purpose:

HP (QSII) =
2

4

log
2

4

+

1

4

log
1

4

+ 0

If we combine both phases, the diversity increases (Fig. 2.1):

HP (QS) = H(

4

8

,
4

8

) +

4

8

H(

2

4

,
1

4

,
1

4

) +

4

8

H(

2

4

,
1

4

)

Diversity of queries by data D broken up by purpose P. Next, for each purpose, we calculate

entropy for each subset of the data as broken up by that purpose. For example, our data suggest

that of the queries that are for research purpose, one is asking for {income,age} while the other is

asking for other data. For the other two purposes the entropy is 0.

HD|P=Research(QSI) = �
1

2

log(
1

2

)� (

1

2

)log(
1

2

)

HD|P=Other(QSI) = �(1)log(1) = 0

If we include the queries from phase II, three queries are for research purposes. Of these, two are

asking for {age,income}. One is for diagnosis and it asks for {name,test}:

HD|P=Research(QSII) = �(
2

3

)log(
2

3

)� (

1

3

)log(
1

3

)

HD|P=Diagnosis(QSII) = �(1)log(1) = 0

Then, we combine data from both phases HD|P (QS) for each purpose P and monitor the change

in diversity.

Diversity of queries by Purpose P and Data D combined. Then, we consider both attributes
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combined. Our collection shows that in phase I the requester’s set of queries contain one query that

is asking for {income level,age} for research purpose, one query asking for name and testResult

for diagnosis purpose, one asking for employer and income for research purpose and one asking for

{name,incomeLevel} for federalTax purpose. Thus, the initial entropy of QS is 1 which implies

regularity of the query data:

HD,P (QSI) = 1

We calculate the entropy HD,P (QSII) by combining results from phase II. Then, we combine data

from both phases H(QSD,P ) and monitor the change in diversity.

2.1.4 Information Gain

Information gain I is a measure of mutual information between two random variables DA and

DB. In terms of entropy, mutual information is the reduction in the uncertainty of DA due to

the knowledge of DB. Thus, I can be calculated based on entropy values H of each variable as

follows:

I(DA, DB) = H(DA)�H(DA|DB)

H(DA) = �
X

d
a

2D
A

Pr(da)log2Pr(da)

H(DA|DB) = �
X

d
a

,d
b

2D
A

,D
b

Pr(da, db)log2Pr(da|db)

2.2 Data Mining

2.2.1 Naiive Bayes Calssification

To classify the queries in the above scenario as malicious or legitimate, we can use a classifica-

tion model. Bayesian classification is appropriate for our purposes. We assume that the presence

of one data type property in a classification is conditionally independent of another data type prop-

erty. We make the same assumption regarding the purpose of a query. Based on this assumption,

we construct a Naive Bayesian Classification model. We convert a query Qi into a Bayesian

Network BN (Fig. 2.2), where the root node represents the query’s purpose Pi and the children

represent the data type properties dk in that query. In the rest of this dissertation, we treat the

data type properties in a query as a set Di. Based on our assumption, Pr(Di|Cj) is equivalent to
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Pr(d1, d2, .., dk|Cj) which is equivalent to Pr(d1|Cj)Pr(d2|Cj)...P r(dk|Cj).

Purpose Pi

Query Qi

   Pr[Pi]

 


Pr[d1|Pi]

Data 
type property dn

...


 


Pr[dn|Pi]

Data 
type property d1


 


Di={d1,…,dn.}

Figure 2.2: A bayesian network that reflects our query classification model. The line Di = d1, d2, ..., dk is just added
for clarification purpose and is not part of the network structure.

We then apply the Naiive Bayesian learning algorithm 1. The input to the learning algorithm

is a set of labeled data (training data) and the instance to be classified (query) and the output is a

classification Cj of that instance. For each query Qi the learning algorithm is given the purpose Pi

and the set of data type properties Di. The parameters to be estimated are the purpose probabil-

ities Pr(Pi) and the conditional probabilities Pr(Di|Pi). For example, given the training data in

Table 2.2, we wish to predict the class label of a newly submitted query Qi+1:

Qi+1 = [Cj+1 =?, Pi+1 = Research,Di+1],

where Di+1 = {incomeLevel, age, employer}

The prior probabilities can be computed based on the training samples. From the prior probabili-

ties, we compute the posterior probabilities. The goal is to maximize Pr(Cj|Pi,Di)Pr(Cj), for

j = {malicious, legitimate}. First, we compute the prior probability Pr(Cj) for each classifi-

cation from the training set. Then, to compute P (Cj|Pi,Di)P (Cj) we compute the conditional

probabilities Pr(Pi,Di|Cj) for all values of Pi and Di assuming conditional independence be-

tween the two random variables Pi and Di. We summarize the results in a conditional probability

table CPT (Table 2.3). A CPT correspond directly to the learned parameters mentioned earlier.

Based on the estimated parameters, the learning algorithm computes:
1The algorithm is implemented in several software packages including weka [44], matlab and orange
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Table 2.2: Sample training data in the form of a set of queries data and previously determined classification

No. Qi Pi Di Ci

1 0 Research Income,age Legitimate
2 1 Research age Legitimate
3 0 Diagnosis name Malicious
4 0 Research employer Malicious
5 0 Diagnosis name Legitimate
6 1 Diagnosis age Malicious
7 0 Diagnosis Testresult Legitimate
8 0 Diagnosis Testresult Legitimate
9 0 Diagnosis Testresult Legitimate
10 0 Diagnosis Testresult Legitimate
11 0 Research Age,employer, incomelevel ?

Table 2.3: Conditional Probability Table

Pi,Di Ci Marg.

dist.

for

Pi, Di

Malicious Legitimate

Research, incomeLevel 0 0 0
Research, name 0 0 0
Research, age 0 1/10 1/10
Research, employer 1/10 0 1/10
Research, incomeLevel,age 0 1/10 1/0
Diagnosis, incomeLevel 0 0 0
Diagnosis, name 1/10 1/10 2/10
Diagnosis, testResult 0 4/10 4/10
Diagnosis, age 1/10 0 1/10
Marg. dist. for Ci 3/10 7/10 1

Pr(Qi+1|Cj)Pr(Cj), forj = {malicious, legitimate}

Qi+1 = (Pi+1 = Research,Di+1)

, where Di+1 = {incomeLevel, age, employer}

If the probability of malicious, malicious is greater than legitimate, legitimate, then we deduce that

the NBC predicts the new query Qi+1 to be malicious.

2.2.2 Feature Selection

Feature or attribute selection (significance) is a contrast data mining technique that assess the

discriminative power of a certain feature or attribute in representing the entire data set. The tech-
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nique is often used to enhance classification accuracy or speed up the model training. The metric

can be measured in two ways: information measures including signal to noise, information gain

ratio, etc. or statistical tests such as t-tests, Kolmogorov-Smirnov, Chi squared, etc.

In our case, for example, if the query is classified as malicious, feature selection can be used to

filter out the subset of data type properties D0
j in the query that resulted in a malicious classifica-

tion.

2.2.3 Hierarchical Clustering

Hierarchical Clustering is a technique to group a set of data into groups based on similar at-

tributes [9]. The technique produces a set of nested clusters organized as a hierarchical tree, which

is often visualized as a dendrogram (a tree like diagram that records the sequences of merges or

splits) at each stage in the algorithm. The power of Hierarchical Clustering lies in the fact that it

does not assume a particular number of clusters. Any desired number of clusters can be obtained

by “cutting” the dendogram at the proper level.

Hierarchical clustering can be classified into two main techniques: Agglomerative and Divi-

sive. Agglomerative clustering starts with the data points as individual clusters. Then, at each

sage, merges the closest pair of clusters until only one cluster (or k clusters) are left. Divisive clus-

tering, on the other hand, starts with one, all-inclusive cluster. Then, at each stage, splits a cluster

until each cluster contains a data point (or there are k clusters). In this dissertation, we focus on

Agglomerative clustering.

The key operation in hierarchical clustering is calculating the similarity or distance matrix,

through which a merge or split decision is made. Different approaches to defining the distance

between clusters distinguish the different algorithms. The widely studied algorithm in this category

are the following: single linkage, complete linkage, average linkage among others. Single linkage

algorithm computes similarity of two clusters based on the two most similar (closest) points in the

different clusters. So, it is determined by one pair of points, i.e., by one link. Average linkage, on

the other hand, is determined based on the average of pairwise similarity between points in the two

clusters. We focus on these techniques for the purpose of this dissertation.



15

2.3 Privacy Policy Languages

Several privacy policy languages have been proposed, including P3P, Reni, etc. Our focus in

this dissertation is on the Access Control Markup Language XACML.

2.3.1 XACML Context Handling

One of the most widely used privacy policy languages is XACML [91]. According to a stan-

dard XACML-based privacy policy management model, the organization hosting the Web service

should define a Policy Administration Point (PAP), through which policies can be defined and

deployed to a Policy Decision Point (PDP). Context handling in XACML is a protocol of commu-

nication between a PDP and a Policy Enforcement Point (PEP) (located either on the user agent

side, the Web service side, or on a gateway between the user and the service). The PEP forms

an XACML request and sends it to the PDP through the Context Handler, which collects initial

attributes from the Policy Information Points (PIP). The PDP then uses those attributes to evaluate

policies. The PDP requests additional attributes from the context handler as needed and finally

returns a Permit or Deny decision to the PEP, which enforces the final decision.

2.3.2 XACML Static Privacy Policy Definitions

In XACML, a policy consists of a set of rules, each of which consists of a subject, object, action,

and a set of optional obligations. An XACML request consists of attributes including the subject,

object, action, and environment. The PDP evaluates the request against the deployed policies in it’s

policy store based on the predefined rules. In case of “permit” decisions, the PEP performs obli-

gations specified in a policy rule. We posit that we need a mechanism to dynamically identify the

context of data usage and make a decision regarding data disclosure based on the inferred context

at run-time. Context has been defined in the literature in terms of trust, affiliation, query history,

temporal or spatial relationships [96]. Some of these solutions base access control decisions on

static information, such as particular users or roles, and are therefore pre-determined. Recently,

few researchers proposed solutions to dynamically handle context. However, the dynamicity of

these solutions is not achieved at the privacy policy rule level. Moreover, these rules are not de-

fined in semantic terms and do not infer context based on previous data usage behavior. We aim

to extend the XACML PEP to be dynamic, context-sensitive, and semantic-based. Example of a

policy with obligation is shown below:
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Listing 2.1: A privacy policy that governs the usage of the instance in Listing 3.1 written in ALFA

namespace obligations{ obligation QRObligation = "edu:wayne:obligation:ch"}

policy patient1Policy {

rule patientStatusAccessRule{

target clause Attributes.resourceId=="patientStatus" and actionId=="view

"

condition canDisclose="yes" and subjectPurpose==purpose

permit}

on permit{

obligation obligations.QRObligation{

Attributes.resourceId = "hasContext"

}}}

XACML Requests. An XACML request consists of a set of attributes. An attribute can have

one of three categories: resource, subject, and action. A request can also have a content element

as we will explain later. Listing 2.2 depicts a simplified XACML request that corresponds to the

SPARQL query in Listing 3.2.

Listing 2.2: An XACML request corresponding to Q6

<Request>

<Attributes Category="resource">

<Attribute AttributeId="resource-id">

<AttributeValue>patientStatus</AttributeValue>

</Attribute>

<Attribute AttributeId="mc:canReleaseStatus">

<AttributeValue>yes</AttributeValue>

</Attributes>

<Attributes Category="access-subject">

<Attribute AttributeId="subject-purpose">

<AttributeValue>Diagnosis</AttributeValue>

</Attribute>

</Attributes>

<Attributes Category="action">
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<Attribute AttributeId="action-id">

<AttributeValue>view</AttributeValue></Attribute>

</Attributes>

</Request>

Request handling in XACML is done in two different forms:

• In the first form, a PEP uses the Content element in XACML to send data directly to the

XACML engine (PDP) together with the request and the PDP takes care of it. The PEP adds

the retrieved data under the content element of the request and indicates the requested data

as a resource attribute using XPath expressions. Finally, the PEP sends the request over to

the PDP, who does policy evaluation by looking at the content element. The PDP extracts

data from the content element using XPath. For example it can extract the hasGene data

from content element. In this case AttributeSelector elements are used to define the

policies. Figures. 2.3 and 2.4 show a sample policy and it’s corresponding request.

• In the second form a PEP parses the content of the matching data and extracts the values

and sends them over to PDP. In this case, AttributeDesignators are used in XACML

policy definitions to refer to data within files since the PDP can not parse the file content.

This is called direct attribute matching, where the PEP uses a parser for fetching data from

the data file then puts the desired attributes in the XACML request using the PEP client code.

Figures 2.5 and 2.6 show a sample policy and it’s corresponding request.

In both cases, the PEP creates a XACML request with the set of attributes of one or more

category ( subject, resource, action, environment). For example, we can define policies whose

target will check if resource attribute hasGene can be released and then there will be a permit

effect rule which will check if resource attribute “canReleaseGene” is yes.

2.4 Private Data Publishing

2.4.1 K-Anonymity

K-Anonymity is an effective privacy requirement that has been first proposed by Samarati and

Sweeny [92] to prevent linking an individual to a record in a data table through a quasi-identifier

QID. A data table satisfies k-anonymity if every combination of values on a unique identifier is

shared by at least k records in the table, where the identifier is a set of data items that could
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<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" xmlns:xacml="
urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"

PolicyId="policy1"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-

algorithm:first-applicable" Version="1.0">
<PolicyDefaults>
<XPathVersion>http://www.w3.org/TR/1999/REC-xpath-19991116</XPathVersion>
</PolicyDefaults>
<Target>
</Target>
<Rule RuleId="gender_disclosure_rule" Effect="Permit">
<Target>
<AnyOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
//mc:Patient/mc:hasGene</AttributeValue>
<AttributeDesignator MustBePresent="false" Category="

urn:oasis:names:tc:xacml:3.0:attribute-category:resource" AttributeId="
urn:oasis:names:tc:xacml:1.0:resource:resource-id" DataType="http://www.w3
.org/2001/XMLSchema#string">

</AttributeDesignator>
</Match>
</AllOf>
</AnyOf>
</Target>
<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
yes</AttributeValue>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
<AttributeSelector MustBePresent="false"
ContextSelectorId="urn:oasis:names:tc:xacml:3.0:content-selector" Category="

urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
Path="//mc:Patient/mc:canReleaseGene/text()"
DataType="http://www.w3.org/2001/XMLSchema#string">
</AttributeSelector>
</Apply>
</Apply>
</Condition>
</Rule>
<Rule RuleId="rule2" Effect="Deny">
<Description>Deny rule</Description>
</Rule>
</Policy>

Figure 2.3: Policy defined using XACML AttributeSelectors.
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<Request xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"

CombinedDecision="false"
ReturnPolicyIdList="false">
<Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource

">
<Content>
<rdf:RDF xmlns:mc="http://localhost:9443/GenomicWS/michcare.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<mc:Patient rdf:about="http://localhost:9443/GenomicWS/michcare.owl#patient1"
>

<mc:hasIncome>50K</mc:hasIncome>
<mc:hasLocation>UnitedStates</mc:hasLocation>
<mc:canReleaseGene>yes</mc:canReleaseGene>
<mc:hasGene>HLAB</mc:hasGene>
<mc:hasRace>White</mc:hasRace>
<mc:hasEducation>Bachelors</mc:hasEducation>

</mc:Patient>
</rdf:RDF>
</Content>
<Attribute IncludeInResult="false"
AttributeId="urn:oasis:names:tc:xacml:3.0:content-selector" >
<AttributeValue
XPathCategory="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="urn:oasis:names:tc:xacml:3.0:data-type:xpathExpression">
//mc:Patient/mc:hasGene
</AttributeValue>
</Attribute>
</Attributes>
</Request>

Figure 2.4: Request corresponding to the policy in Fig. 2.3. The matching instances should be appended to the request
as content elements.

potentially identify a record in the table. Formally, a table is called K-Anonymous if for one

record in the table that has some value QID, at least k-1 other records also have the value QID.

In a K-Anonymous table, each record is indistinguishable from at least k-1 other records, with

respect to QID. For example, Table 2.4 is 2-anonymous with respect to QID={Race,Birth, Sex,

ZIP}.

Table 2.4: k-Anonymity for k=2 and QI={Race, Birth, Gender, ZIP}
Race Birth Gender ZIP disease
black 1965 m 0214* short breath
black 1965 m 0214* chest pain
White 1964 m 0213* obesity
White 1964 m 0213* depression
White 1964 m 0213* cancer
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<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
PolicyId="policy2" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-

combining-algorithm:first-applicable" Version="1.0">
<Target>
<AnyOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
hasGene</AttributeValue>
<AttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0

:resource:resource-id" Category="urn:oasis:names:tc:xacml:3.0:attribute-
category:resource"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true">
</AttributeDesignator>
</Match>
</AllOf>
</AnyOf>
</Target>
<Rule Effect="Permit" RuleId="rule-1">
<Target>
<AnyOf>
<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">yes</

AttributeValue>
<AttributeDesignator AttributeId="mc:canReleaseGene"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="false">
</AttributeDesignator>
</Match>
</AllOf>
</AnyOf>
</Target>
</Rule>
<Rule RuleId="rule2" Effect="Deny">
<Description>Deny rule</Description>
</Rule>
</Policy>

Figure 2.5: Policy defined using XACML AttributeDesignators.
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<Request xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
CombinedDecision="false"

ReturnPolicyIdList="false">
<Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource

">
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

IncludeInResult="false">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
hasGene</AttributeValue>
</Attribute>
<Attribute AttributeId="mc:canReleaseGene" IncludeInResult="false">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
yes</AttributeValue>
</Attribute>
</Attributes>
</Request>

Figure 2.6: Request corresponding to the policy in Fig. 2.5. The matching instances do not have to be appended to the
request as content elements. Rather, a direct attribute matching is performed.
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CHAPTER 3 DYNAMIC PRIVACY AT THE MANUAL DATA QUERY LEVEL

Of the Web service data access patterns described in Section 1.1, this chapter focuses on manual

data access via query submission and how privacy can be achieved in that case.

3.1 Privacy at The Data Level

All the scenarios mentioned above involve Web service operation invocation which takes data as

input and provides other data as output. For example, a requester may ask for the Geneomic data of

patients who have a specific employer, then he asks for demographic information of those patients.

The request first gets directed to a lab WS with hasGene as Di(input) and hasDiagnosis as

Di(output). It then goes to a demographics WS with hasDiagnosis as Di(output) and hasName

as Di(input). Considering the analysis pipeline scenario , the following Web services are involved

in the analysis process:

WS1 = (Symbol, {Location,OMIM,Symbol}, getGeneInfo())

WS1 = (rs, {rs, location, gene}, getSNPInfo())

WS1 = (trait, {trait, rsno., gene, location}, getGenPhenAssoc())

WS2 = ({Drug,Gene, SNP,CoMedication}, getDrugInfo())

WS3 = ({HGV S,Disease,OMIM,Date, Treatment, LabResult}, getDiagnosis())

WS4 = ({Dosage,Drug,GeneDrugAsso,GenPhenAsso}, getPharmInfo())

If we abstract away the operation names and input, output parameters, and focus on the data items

that flow between the different services, we get the following queries:

Q1 = (Research, {Location,OMIM,Symbol})

Q2 = (Research, {rsno., location, gene})

Q3 = (Research, {Trait, rsno., gene, location})

Q4 = (Marketing, {Drug,Gene, SNP,CoMedication}, )

Q5 = (Diagnosis, {HGV S,Disease,OMIM, V isitDate, T reatment, LabResult}

Q6 = (Marketing, {Dosage,Drug,GeneDrugAsso,GenPhenAsso})
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3.2 Motivating Scenario

Data collection. Assume that Alice is a recently diagnosed ’cancer’ patient, who uses a wearable

device to monitor her status by instantly collecting her data and publishing it to a clinical service

(Fig. 1.1, A). Alice also visits a Genomic lab (Fig. 1.1, Org2), which might also interact with her

clinic. Alice conducts most of her purchases online using various devices (smart phone, laptop,

etc) (Fig. 1.1,B) via an online service provider (Fig. 1.1, Org3) that is a composite service that

dynamically discovers and selects its providers (e.g., a pharmacy service and a payment service)

from a pool of competing services. Other organizations that might have Alice’s data include re-

search institutes, insurance companies, census databases, etc.. Thus, each of these organizations

has a subset of Alice’s data.

Listing 3.1: An ontology instance of a patient from our scenario with no context detected

<rdf:RDF xmlns:mc="http://www.michcare.com/MC.owl#">

<mc:Patient rdf:about="patient1">

<mc:hasName>George</mc:hasName>

<mc:hasNamePreference>

<mc:NamePreference>

<mc:canDisclose>No</mc:canDisclose>

<mc:hasPurpose>None</mc:hasPurpose>

</mc:NamePreference>

</hasNamePreference>

<mc:hasStatus>Bad</mc:hasStatus>

<mc:hasStatusPreference>

<mc:StatusPreference>

<mc:canDisclose>yes</mc:canDisclose>

<mc:hasPurpose>Research</mc:hasPurpose>

</mc:StatusPreference>

</hasStatusPreference>

</rdf>

Listing 3.2: A SPARQL query corresponding to the request in Listing 3.2

PREFIX mc: <http://192.168.0.8:9763/com.medi.sample.webapp-1.0.0/

generatedpatient.owl#>
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PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?s ?l

WHERE {

?patient rdf:type mc:Patient .

?patient mc:hasLocation ?l.

?patient mc:patientStatus ?s.

?patient mc:patientStatus ’Bad’ .

?patient mc:canReleaseStatus ’yes’}

Private Data Publishing. Each of the above mentioned organizations expose data as a Web ser-

vice WSi using a set of operations Op1, ...Opj that get invoked upon Web service usage. For

example, a physician can inquire about a patient’s status (Fig. 1.1,C) and a researcher can use a

Genetic Variation Detection (GVD) analysis pipeline (Fig. 1.1, D). Regardless of the data access

technique used by a user, a query Qj gets submitted to WSi, which searches it’s ontology-based

repository and returns a set of data type properties Dj to the user. Assume that the set of all

data type properties that a requester can search for are defined in a generic ontology. The on-

tology has a taxonomy for purposes P (e.g., P = {Research,Diagnosis,Marketing}) and

another for data type properties D that can be obtained from several data repositories (e.g., Ge-

nomic, Drug, Pharmacy, Clinicial, and demographic). For simplicity, we refer to these prop-

erties as D = {PS,D,DD,L,G,DE,GS, SNP,DI,DL, PR, A,AD,EM, IN,MS} (Ta-

ble 1.2).

To manage data privacy, WSi defines a privacy policy for each patient instance ij in it’s repos-

itory, including Alice. Together with every instance, WSi records patients predefined disclosure

preferences over each data type property dk in ij , including whether dk should be disclosed, and

the purpose of disclosure Pj . For example, Alice’s RDF file under a clinical service repository

indicates that she has chosen to disclose the hasPatientStatus data type property for Diagnosis

purposes (Fig. 1.1, i1). The usage governance of hasPatientStatus is defined as a rule in Alice’s

policy file (written in ALFA [1]) (Fig. 1.1, p).

Adversarial Scenario. Assume that an adversary aims at linking genomic data of a victim with
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Table 3.1: A subset of the Web services in CP

Service description
WS1.1(?L,?OMIM,?GS) returns gene location, OMIM, and gene symbol for all

genes
WS1.2 ($RS,?RS,?L,?GS) returns gene symbol, location, and RS no. for genes with

“RS”
WS1.3($TR,?TR,?RS,?GS,?L) returns trait, RS no., gene symbol, and gene location for

a trait “TR”
WS2($GS,?DR,?SNP,?CM) returns drug, SNP, and co medication associated with

gene $GS
WS3($DI,?HGVS,?DI,?OMIM,?T) returns HGVS, Disease, OMIM, and Treatment for a dis-

ease DI.
WS4(?DO,?DR,?GDA,?GPA) returns dosage,drug,gene drug and genotype phenotype

associations.
WS5($DI,?DR) returns medicine for disease “DI”
WS6($DR,?A,?G) returns Age and gender for patients who are covered for

medicine “DR”
WS7.1($DR,?Z,?I) returns zip and income for patients who ordered medicine

“DR”
WS7.2($DR,?P) returns price for medicine “DR”
WS8($DR,?N) returns DNA for patients who has subscriptions for

medicine “DR”
WS9($Z,?P) returns price “p” for orders from patients who live in zip

“Z”

other clinical, pharmacy, and demographic data. He may ask for ”the ages, genders, zip, genomic

data, and income for cancer patients”. He can also use his background knowledge. For instance,

if he knows that Actiq is one of the very few cancer medications that costs $45.89, he can craft a

query to deduce that a patient has been diagnosed for cancer if he knows how much he paid for a

medicine that is used for cancer. He submits a query to know ”the price ranges paid for certain

medicines by patients who reside in a certain area”. Alternatively, he asks for ”Gene variation

data of patients within an area and the genotype phynotype associations” to get to a certain disease

then link that with other demographic data. To accomplish his task he submits queries (e.g., Q1

and Q2 in Fig. 1.1, E) or invokes operations on several data services (Fig 1.1, Org2, Org3, ...) and

analysis pipelines (Fig 1.1, Org4). A subset of the services that might be involved are shown in

Table 3.1.

Several composition plans CP = {CP1, ..., CPn} can be returned by the execution engine

to answer the adversary queries. Fig. 4.4 depicts one possible CP. The CP takes a query (e.g.,

Q = {A,G,Z,N, I}) and combines the results and returns the output. The data item s (e.g.

medicine) is an input parameter for WS6, WS7 and WS8, and an output for WS5. Thus, WS6,
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WS7 and WS8 depend on WS5 for providing DR. Thus, before providing WS6 with DR, WS5

should check the data owner’s privacy policy rule regarding that item. Checking for privacy rules

should hold along the composition chain until all the data items requested in the original query

initiated by the user are retrieved. The privacy management engine should validate CP in terms of

privacy, and if at least one dependency in CP violates a privacy rule, then CP should be discarded

from CP and the corresponding data item should be discarded from the query results.

Table 3.2: Sample queries from our adversarial scenario

Qj Pj Dj

1 Research PS,DD,SNP,DI,A,IN
2 Research D,L,G,DE,DI,DL,PR,A,EM,IN,MS
3 Research L,DI,MS
4 Marketing D
5 Research D
6 Research PS
7 Diagnosis G
8 Research PS,D,G
9 Diagnosis PS,D
10 Diagnosis PS,D,L,MS

3.3 Why Context Matters?

For illustration purposes we abstract away the operation names, input (denoted by $), and output

(denoted by ?) parameters in Table 3.1, and represent the data type properties that flow between

the different services as queries. Table 3.2 shows a subset of those queries. Without context

information, the data type properties requested by the adversary will be disclosed as long as the

static privacy policy rules tied to those properties match the purpose of usage. For example, upon

receiving Q10 (Table 3.2), the Web service looks up its repository for a set of matching instances

I10={i101, i102, i103, ..., i10k} (including Alice). Then, for each instance in I10 it checks the policy

rules tied to each of the data type properties in Q10. In the case of Alice, the hasPatientStatus

property can be disclosed for the purpose indicated in Q10. Thus, the adversary can continue

to submit queries asking for more data type properties by repeating some of these properties in

subsequent queries, with the goal of linking them to other properties available from other data

sets (e.g. hasAddress). For example, in Q1 he asks for D1={PS, DD, SNP , DI, A, IN} and

indicates the purpose as P1={Research}. Then, in Q2 he repeats some of the data type properties

as well as the purpose (D2={D, L, G, DE, DI, DL, PR, A, EM , IN , MS} and indicates the
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purpose as P2={Research}). In Q3 he repeats some of the data type properties in the previous

queries as well as the purpose (D3={L, DI, MS}, P3={Research}). Later, in Q10 he repeats the

data type properties in the previous queries but with a different purpose (D10={PS, D, L, MS},

P10={Diagnosis}).

To avoid the above scenario, we need to make WSi context-sensitive by tracking the query

history against all participating Web services, including each subquery against each sub service,

and use that history to infer context. A PEP at the composition orchestrator level as well as indi-

vidual PEPs at component service levels can then help propagate that query history information.

Each component service may be in itself a composite service. Since the inferred context is tied to

the data resource, and since a data source can be shared by multiple services our approach works

regardless of which Web services participated in a CP.

Our definition of context is inspired by the above mentioned adversarial query behavior. First,

our intuition is that a learning engine can be beneficial for the Web service by inferring the context

of a query based on previous queries to make the inferred context a function of prior contexts. The

Bayesian learning and updating mechanism helps achieve this capability. Second, we argue that

an adversary is likely to submit several queries asking for data items that are not in themselves

sensitive but may reveal, when combined, information about predetermined sensitive data items.

Conditional Entropy helps achieve this goal. Third, we argue that an adversary may ask for data

in subsequent phases seeking more sensitive data in each phase. In an initial phase, the requester

may submit initial exploratory queries that do not explicitly ask for sensitive data. The purpose

of those queries is to get an overall view of the data. For example, an adversary can first ask for

hasPatientStatus of all patients that are within some hasAge range for Research purposes. In

later phases, he may look for patients who have been diagnosed for a certain disease for Diagnosis

purpose. To this effect, he changes the purpose of the query. Therefore, in each phase some query

attributes are expected to change abnormally. So, we use Data Diversity as an indicator of the

difficulty in identifying sensitive data. We combine, in a novel way, existing techniques from the

fields of probability theory and information theory. We Next, we present our solution by defining

the system architecture, our notion of context, and how we incorporate it into dynamic privacy

management.
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3.4 Architecture

We build a dynamic, semantic-based privacy policy management framework on the top of the

XACML reference architecture for policy-based access control (Fig. 3.1). According to a standard

XACML engine, whenever a user submits a query, the query first goes to the PEP, which wraps it

into an XACML request and forwards the request to the PDP, which communicates with the PIP to

fetch the required attributes. For example, Listing 2.2 shows the XACML request that corresponds

to Q6 (Table 3.2).

Listing 3.3: An XACML request corresponding to Q6

<Request>

<Attributes Category="resource">

<Attribute AttributeId="resource-id">

<AttributeValue>patientStatus</AttributeValue>

</Attribute>

<Attribute AttributeId="mc:canReleaseStatus">

<AttributeValue>yes</AttributeValue>

</Attributes>

<Attributes Category="access-subject">

<Attribute AttributeId="subject-purpose">

<AttributeValue>Diagnosis</AttributeValue>

</Attribute>

</Attributes>

<Attributes Category="action">

<Attribute AttributeId="action-id">

<AttributeValue>view</AttributeValue></Attribute>

</Attributes>

</Request>

System components. In our system, the PIP communicates with the Semantic Handler (SH),

which looks up the required attributes in the service’s repository (More details in Section. 3.5.3).

The PDP then uses the attribute values to evaluate the request. If a permit decision is returned, the

PDP consults the semantic handler (via the PIP) for previously recorded context of the matching

data instances. The retrieved context is considered as a resource bag of context elements. The PDP
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Figure 3.1: Dynamic Semantic-based Privacy Management.

then wraps the context bag as an XACML obligation element and sends it over to the PEP together

with the obligation logic to be performed (i.e., handle context).
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Figure 3.2: Approach.

The PEP uses the obligation to perform further check by communicating with the Semantic

Handler (Fig. 3.2, 1). The Semantic handler passes the set of instances Ij that match the query

together with the query Qj to the Context Handler (Fig. 3.2, 2). The context handler consists

of two sub components: the Classifier, which dynamically classifies a query as being potentially

malicious or legitimate, and the Sensitive Data Detector, which dynamically determines the

subset of data type properties in a query that could potentially be sensitive (More details in Sec-

tion. 3.5.2). The PEP uses the context CTXT (inferred by the context handler) to update the

context of each instance ik in the set Ij that matches Qj via the Semantic Handler (Fig. 3.2,

4). The PEP then uses CTXT to make the final decision through the Dynamic Rule Evaluator
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(Fig. 3.2, 5) (More details in Section 3.5.4). Finally, the PEP then sends the final response back to

the requester.

3.5 Formal Model Definition

3.5.1 Dynamic Privacy Policy Rule Definition.

We define a privacy policy of an instance as a set of rules. A privacy rule consists of the

following:

• Property: the data type property of a data owner for which the rule is defined.

• Condition: the condition(s) that must be satisfied for a data type property before access can

be granted. A condition is expressed using concepts and relationships from the ontology.

Namely, the patient preference regarding the disclosure of a data type property. A patient

Preference includes the following: Disclosure, which is a boolean property disclosure indi-

cating whether a data type property dk can be disclosed. Purpose, which limits the purpose

of usage Pi for dk.

• Obligation: We define obligation elements for each policy rule to be dynamically fulfilled

only when a rule evaluation yields a “permit” decision. PDP uses Obligations to tell the PEP

to not only rely on statically defined rules by the data owner, but to further apply the context

inference algorithm.

Context: The inferred context consists of previous requester’s behavior, including previous

queries (Qj), previous classifications (Cj), previous relatively sensitive sets (DB), and previous

diversity triggers.

• Qj: the submitted query. This query is fed into the context handler to infer the next context.

• Cj: is the query classification. This item helps to check if a data type property dj resulted in

a malicious classification of the submitted query.

• DB: this is the detected set of sensitive data type properties relative to the requested set Dj .

It helps to check if any of the data type properties dj in Dj is included in DB.

• trigger: this helps to check if dj caused irregularity in the query diversity values. In summary:
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Policy = (Pid, Rule1, Rule2, ..., Rulen)

Rule = (Property, Condition,Obligation)

Condition = (disclosure, purpose)

Obligation = (Oid, Context1, Context2, ..., Contextn)

Context = (Qj , Cj , DB , trigger)

3.5.2 Context Handling

We express a query Qj as a tuple hPj, Dji that consists of the purpose Pj and the set Dj (Ta-

ble 3.3). We represent Pj by a numerical value, and represent the set Dj by a vector of binary

values, where 1 indicates that dk appears in the query and 0 indicates that it does not.

Table 3.3: Queries from Table 3.2 as tuples.

Qj Pj Dj
PS D DD L G DE GS SNP DI DL PR A AD EM IN MS

1 1.0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0
2 1.0 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1
3 1.0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1
4 3.0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1.0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 2.0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
8 1.0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
9 2.0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 2.0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Algorithm 1 summarizes our context inference algorithm. We break our solution to context

inference into the following two sub problems:

Query Classification. For classifying queries we use the Naive Bayesian learning (NBL) algo-

rithm. The input to the learning algorithm is the query space QS and the output is a classification

Cj . We assume that the presence of one data type property in a classification is conditionally inde-

pendent of another data type property. We also assume that the data type properties asked for in a

query are dependent on a query’s purpose. Based on that, we construct a Naive Bayesian Classifi-

cation model by converting a query Qi into a Bayesian Network, where the root node represents a
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query’s purpose Pi and the children represent data type properties d1, ..., dk. In the rest of this the-

sis, we treat the data type properties in a query as a set Di. So, based on our definition, Pr(Di|Cj)

is equivalent to Pr(d1, d2, .., dk|Cj) which is equivalent to Pr(d1|Cj)Pr(d2|Cj)...P r(dk|Cj). For

each query Qi the learning algorithm is given the purpose Pi and the set of data type proper-

ties Di. The parameters to be estimated are the purpose probabilities Pr(Pi) and the condi-

tional probabilities Pr(Di|Pi). Therefore, to predict the class label Cj+1 for a newly submitted

query Qi+1 with purpose Pi+1 and set of data type properties Di+1, the NBL algorithm computes

Pr(Pi+1, Di+1|Cj)Pr(Cj), for j = {malicious, legitimate} based on the estimated parameters

from the training data.

Sensitive Data Detection. Our goal for sensitive data detection is to determine the set of data type

properties in a query that could potentially be sensitive, even though those properties have not been

deemed sensitive at the time of data collection. This problem reduces to two sub-problems:

Relative Sensitivity of a Set of Data Type Properties: Algorithm 2 summarizes the relative

sensitivity algorithm. We apply conditional entropy to measure the relative sensitivity of a set of

data type properties Di that is asked for in a newly submitted query with respect to two things.

First, users are often asked to make privacy decisions regarding their sensitive data (e.g., Name)

at the time of data collection. Let DA be the set of predetermined sensitive data type properties.

We apply conditional entropy to measure the relative sensitivity of Di with respect to DA. Second,

we measure the relative sensitivity of Di with respect to all sets of data type properties D1, ..., Dk

in the previously submitted queries in QS. In both cases, we use the notion of information gain

as a measure of the mutual information between two random variables. We define the information

gain I(DA, Di) for Di with respect to DA, as the reduction in uncertainty about the value of DA

Algorithm 1 Context Inference Algorithm
1: Input: QS,Qj

2: Output: CTXT
3: Cj  QUERYCLASSIFICATION(QS,Qj)
4: DB  RELATIVESENSITIVITY(QS,Qj , t,DA)
5: if i mod M equals 0 then
6: trigger  QUERYDIVERSITY(QS, t,M )
7: end if
8: CTXT  Cj [DB [ trigger



33
when the requester knows the value of Di. Formally:

I(DA, Di) = H(DA)�H(DA|Di)

H(DA) = �
X

d
a

2D
A

Pr(da)log2Pr(da)

H(DA|Di) = �
X

d
a

,d
i

2D
A

,D
i

Pr(da, di)log2Pr(da|di)

We apply the same formulas above to measure I(Dk, Di). The relative sensitivity algorithm first

computes the information gain between the sets Di and DA. It then computes the information

gain between Di and each set of data type properties D1, ..., Dk in the set of previously submitted

queries QS. If either case results in an information gain that is higher than a threshold t, the

algorithm distills the data type properties in Di that caused the highest information gain (Dsig).

The resulting data type properties (Dsig) are then added to the subset of relatively sensitive data

DB.

Algorithm 2 Relative Sensitivity Algorithm
1: input: QS,Qj , t,DA

2: output: DB

3: DB  �
4: if I(Dj , DA) � t then
5: Dsig  SIGNIFICANTSUBSET(Dj , DA)
6: DB  DB [Dsig

7: end if
8: for each Qk in QS do
9: if I(Dj , Dk) � t then

10: Dsig  SIGNIFICANTSUBSET(Dj , Dk)
11: DB  DB [Dsig

12: end if
13: end for

To get the most significant subset Dsig, we iterated through each set, and moved one element at a

tiem from each set. We then calculated the gain of the new sets and observed the difference from the

principal gain. We did this step for all elements in each set and observed which element(s) (when

removed) affected the gain the most. This metric was justified since information gain ignores the

population size, so it is valid to directly compare the information gain computed from a vector

of n elements with another of n � 1 elements. Other methods that could be applied to find the

most interacting subsets between Di and DA or Dk. For example, we could calculate the Singular
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Vector Decomposition (SVD) of the conditional probability matrix (CPM) of Di and Dk or DA,

respectively. The singular vectors with the largest values indicate which subset of Di and Dk or

DA interact the most with each other.

Table 3.4 shows an example of applying the relative sensitivity algorithm to a set of queries

from three iterations. In the in the 3rd iteration, the query {Marketing, yes, yes,

yes, yes, yes, yes, yes, yes, no, no, yes, yes, no, yes, no} was in-

dicated as being related to both DA and to the set of data type properties in the

query {Marketing, yes, no, yes, no, yes, yes, no, yes, no, no, yes,

yes, no, yes, no} that was submitted previously in the same iteration. In the 4th iteration,

the query {Diagnosis, yes, no, yes, no, yes, no, yes, yes, yes, yes,

no, no, no, no, no} was indicated as being related to the query {Research, yes,

yes, yes, yes, no, no, no, no, no, no, no, no, no, no, no} from itera-

tion 3.

Data diversity for a set of queries. The diversity detection part of the sensitive data detector

provides an extra check for data sensitivity. The query diversity algorithm calculates the entropy

for each criterion in a and creates a map of entropy values for each phase. It then uses the resulting

phase diversity map to monitor the change in diversity between phases by comparing the change

to a threshold t. The query diversity algorithm takes the query space QS, the threshold t, and the

number of queries M to consider in each phase as inputs and returns a boolean value to the context

inference algorithm indicating whether there is an attempt to breach sensitive data in the recently

submitted query.

Algorithm 3 summarizes the query diversity algorithm. We use the notion of joint entropy as a

measure of data diversity. The diversity of a set of data depends on the number of homogeneous

groups of data and the proportion of attributes in each group. The data set in our case is a set

of submitted queries QS. Our desired metric shares some properties that Shannon sought in his

measure of information uncertainty [89]. First, if there are multiple possible options which are

equally likely, there is more uncertainty. Thus, the smaller the entropy, the fewer the number

of different queries or the more regular the queries are. Second, if a data set is defined as the
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combination of several disjoint data sets, the entropy for them combined should be at least the

weighted sum of the individual entropy values for the individual sets. In our case, for a query set

QS composed of query subsets QSI and QSII submitted in two phases, the overall entropy should

be higher, or at least equal to the weighted entropy of the query sets involved. Formally:

H(QS) = H(x, y) + xH(QSI) + yH(QSII), s.t x =

QSI

QS
, y =

QSII

QS

We use the above formula to measure the change in diversity among a set of queries by determining

the constant and varying attributes of QS assuming all queries are submitted by the same source.

The attributes in our case are the purpose Pi and the set Di. In each phase either of these attributes

is expected to change abnormally. To measure this change we track the entropy for both query

attributes. Formally, for a query set QS we calculate the entropy H for each group of homogeneous

queries. We determine the homogeneity of a group of queries based on the following criteria:

• The purpose regardless of the data (P );

• The data given a purpose (D|P );

• Both attributes combined (PD).

Algorithm 3 Query Diversity Algorithm
1: input QS, t,M
2: output: trigger
3: QSselected  �, QSprevious  �, count 0, phase 1

4: while count < size(QS) do
5: for each Qk in QS such that k M do
6: QSselected  QSselected [Qk

7: k  k + 1

8: end for
9: Calculate diversity maps HP , HPD, HP |D

10: Update phase diversity map Hphase

11: Update QSprevious

12: phase phase+ 1

13: count count+M
14: end while
15: if DIVERSITYCHANGEDETECTION(Hphase) � t then
16: trigger  1

17: end if

We calculate the entropy for each criteria a as:
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Ha(QS) = �
nX

i=0

Pr(ai)log2Pr(ai) where a = {P,D|P, PD}

3.5.3 Semantic Handling

For dynamic rule evaluation the semantic handler gets invoked in two cases.

Updating Instance Context. The semantic handler interprets the submitted query Qj as a

SPARQL query and runs it be the RDF repository. If Qi matches a set of instances Ij , the se-

mantic handler keeps a log of Ij (Fig. 3.2). After inferring the context, the Web service PEP

updates the context block of each matching instance in it’s repository (Fig. 3.2).

Checking updated context. If a query Qi matches an instance, the PDP first checks the policy

rules that govern each of the data type properties in Di of that instance to see if the purpose Pi of

the query matches the purpose indicated in each rule. If any of the data type properties di in Di

does not match any of the rule conditions, a “deny” response is returned and the corresponding

data type property will not be disclosed. However, if a “permit” response is returned, the PDP

consults the semantic handler (via the PIP) to retrieve the contents of the hasContext data type

property of each matching instance ik in Ij . The result is returned as a bag of context elements

that are added as attribute assignments in the obligations stated in the policy rule. The PDP sends

the response together with the obligations over to the PEP. The PEP performs the obligation by

iterating through the context block of each of the data type properties in each of the matching

instances and checking the components of a context block. For example, suppose that the set

of instances that match a query Q1 is denoted by I1 = i11, i1n. If we take instance i11 =<

d1, CTXT1, d2, .., dn, CTXTn > as an example, it consists of several data type properties each

of which has a set of contexts. For example, the context set associated with d1 is CTXT1 =

ctxt1, .., ctxtn, where ctxt1 = (Q1, C1, DB1, trigger1) and ctxt2 = (Q2, C2, DB2, trigger2),

etc.. So if a newly submitted query Q2 asks for d1(i.e., Q2 =< P2, D2 = d1, d2, , dn >, the

algorithm checks the previously submitted queries Q1, , Qn, that also asked for d1, which are

stored in the context block CTXT1 of d1, and that is done for every dk that appears in a newly

submitted query.
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First, the PEP checks if any of the data type properties di in Di is included in a previously

detected relatively sensitive data set DB. It then checks if di has resulted in the classification of

a malicious query (Ci). Finally, it checks if di caused irregularity in the query diversity values

(trigger). If at least one match is found, the PEP rejects the disclosure of di. For example, the

policy in Figure 1.1 permits the disclosure of the PatientStatus property for the purpose stated

by the requester. However, a previously inferred context indicates that PatientStatus has been

marked to be potentially sensitive as indicated in the DB part. Thus, the PEP denies access to

PatientStatus.

3.5.4 Dynamic Rule Evaluation

In this section, we explain how the inferred context can be used to achieve dynamicity at the

rule level. After receiving the obligations from the PDP, the PEP uses the set Ij and the query Qj to

perform Dynamic Rule Evaluation (Fig. 3.2, 5). Algorithm 4 explains the dynamic rule evaluation

algorithm. First, if the query is classified as malicious, a feature selection is used to filter out the

subset of data type properties D0
j in the query that resulted in such a classification. Second, a

check is made to see if any of the data type properties dk of Di is included in a previously detected

relatively sensitive data set DB. Finally, the diversity trigger is checked to determine if there has

been irregularity in the query sets due to the newly submitted query. If any data type property dk

requested in the query is either sensitive, relatively sensitive, resulted in a malicious classification,

or caused irregularity in the query set, the set Dj in the query Qj is revised to exclude dk and the

new data set D00
j is returned to the requester (Fig. 3.2, 8).

3.6 Prototype Implementation

In developing our privacy management framework, we took into account the technical implica-

tions that we need to be aware of in Services based environments. Namely, Web browsing entails

that privacy protection need to be performed while the individual is on-line or when a developer

is using a Web service based API, etc. Also, we were aware of existing standards such as pri-

vacy policy languages, etc. Therefore, we developed an XACML-compliant Web sites driven by

PEP-enabled Web services as well as end user analysis tools that are compliant with those Web

site policies and users privacy preferences. This way those sites can advise the user if there are

potential privacy issues.
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Algorithm 4 Dynamic Rule Evaluation Algorithm
1: Input: Qj , I
2: Output: Q0

j

3: for each Ik in I do
4: for each Rk in Ik do
5: if Pk not equals Pj then
6: Dj  Dj \ dk
7: end if
8: for each CTXTk in CTXT do
9: if Ck equals malicious then

10: DSelected  FEATURESELECTION(Dj)
11: for each ds in DSelected do
12: D0

j  Dj \ ds
13: end for
14: end if
15: for each db in DB do
16: D0

j  Dj \ db
17: end for
18: end for
19: end for
20: end for

The privacy management framework can be developed in several ways. It can be developed as

a downloadable plug-in for all service providers. So, an organization does not need to implement

its own privacy management component. Alternatively, it can be implemented as yet another cloud

service that is operated by an independent organization.

3.6.1 Extending XACML PEP

We implemented the proposed solution in Java (Fig. 3.3) with the following main compo-

nents:

Context handler: We implemented the classifier component using the Weka API [44] and the

query diversity and relative sensitivity components using the JavaMI API [24]. For relative sensi-

tivity, we used an implementation of the Chi-Squared test [74] to measure the significance of the

mutual information between two sets of data type properties with an alpha level of 0.05. For query

diversity, we chose an M value of 5 (as detailed in Algorithm 3).

PEP: We used the WSO2 Identity Server 4.5 (WSO2 IS) [7] as our XACML engine. WSO2 IS

acts as combination of PDP , PAP and PIP components. The PIP uses an LDAP-based user store

embedded with the server. We implemented two forms of request handling in our PEP client:

• In the first implementation our PEP uses the Content element in XACML to send RDF

data directly to the XACML engine (PDP) together with the request and the PDP takes
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care of it. The PEP adds the RDF data retrieved from running the SPARQL query under

the content element of the request and indicates the requested data as a resource attribute

using XPath expressions. Finally, the PEP sends the request over to WSO2 PDP, who does

policy evaluation by looking at the content element. The PDP extracts data from the content

element using XPath. For example it can extract the hasGene data from content element.

In this case we used AttributeSelector elements to define the policies. Figures. 2.3 and 2.4

show a sample policy and it’s corresponding request.

• In the second implementation our PEP parses the RDF content of the matching instances and

extracts the values and sends them over to PDP. Therefore, we used AttributeDesignators in

XACML policy definitions to refer to data within the RDF files since the PDP can not parse

an RDF content. In this case, we designed our PEP based on direct attribute matching, where

the PEP uses an RDF parser for fetching data from the RDF file and then puts the desired

attributes in the XACML request using the PEP client code. Figures 2.5 and 2.6 show a

sample policy and it’s corresponding request.

PAP, PDP, PIP

PEP

(1) invoke

(2) authorization request (3) authorization decision

(4) allowed request to backend service

Proxy 
Service 1

PEPProxy 
Service 2

PEPProxy 
Service 3

Malicious user

Benign users

Backend 
service 3

Backend 
service 2

Backend 
service 1

Figure 3.3: WSO2 based implementation of our framework

In both cases, the PEP creates a XACML request with the set of attributes of one or more

category ( subject, resource, action, environment). For example, we defined policies whose target

will check if resource attribute hasGene can be released and then there will be a permit effect

rule which will check if resource attribute “canReleaseGene” is yes. In our implementation the
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PDP makes a decision based on the XACML policies stored for each instance, which also take the

updated context into account and the PEP enforces the final decision. Based on that final decision

the PEP calls the appropriate Web service operation, which in turn generates a SPARQL query

against an RDF file.

Web Portal: We built a portal for health data inquiry. Since the PDP functionality of the WSO2 IS

is exposed as a web service, our Portal functioned as a PEP. We used the WSO2 PEP agent library

that provides a client side API to communicate with the WSO2 IS PDP. For request handling, we

used AttributeDesignators in XACML policy definitions to refer to data within the RDF

files since this technique is faster and more reusable than using AttributeSelectors with

XPath expressions. The former technique is based on direct attribute matching, where the PEP

uses an RDF parser for fetching data from the RDF file and then puts the desired attributes in the

XACML request.

Web Services: We implemented five Web services which expose a set of operations to retrieve the

patient’s data. Each service provides an end point to query data. We used the WSO2 Application

Server 4.1 to host the Web services and the portal.

3.6.2 MobiDyc: Private Mobile Based Cloud Based Framework

With the emergence of the Participatory Sensing paradigm [33], and the widespread use of

mobile phones, users can now share their data, e.g., health data. The success of cloud service

models increased the adoption of mobile healthcare applications [4, 5], which instantly record and

analyze patients data. Mobile applications collect data from ubiquitous devices and combine it

with other data about users for different purposes. Atomically, these data sources may not reveal

personally identifiable information for individuals, but linking a number of distributed sources

may lead to unintended consequences and breach of privacy. A malicious request, for instance,

can benefit from combining atomic data items even if it claims a purpose that complies with a

patient’s privacy preference for each of the atomic items. Thus, the patient’s consent and his

privacy policy at the time of data collection may not be enough for data disclosure. According to

governmental reports, around eight million records of patient’s health data was leaked in the past

few years [79]. Therefore, in order to encourage users to share their data we need to provide them
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with privacy-enabled infrastructures.

This section contributes a privacy framework for mobile health care applications with support

for dynamic privacy management of health data sharing. We provide an implementation of our

approach that builds on top of the Google App Engine cloud platform.

Architecture We build a semantic privacy policy management framework on the top of the Google

App Engine reference architecture for Mobile App development and the XACML reference archi-

tectures for policy-based access control. Fig. 3.4 illustrates the main components of our system.

The data generated by the users is eventually stored and managed by the GAE data store. The data

store also stores the users data and associated access policies, and the later are deployed in the

PDP. A requester using our system uses his mobile device to query data. The application forwards

the request to the PEP component, which forwards the request to the PDP, which retrieves the

policies from the data store and evaluates them. In case of a Permit decision, a set of obligations

is sent to the PEP for further check. The PEP then communicates with the Semantic Handler

(SH), which interprets the request as a SPARQL query Qj and looks up attributes in the service’s

ontology-based repository and passes the set of instances I that match the query together with

the query Qj to the Context Handler (CH). The Context Handler consists of two sub components.

The Classifier, which dynamically classifies a query as being potentially malicious or legitimate,

and the Sensitive Data Detector, which dynamically determines the subset of data type properties

in a query that could potentially be sensitive. WSi uses the context CTXT inferred by it’s sub

components to update the context of each instance in I . The PEP uses CTXT to make the final

decision by performing Dynamic Rule Check (DRC). The PEP then notifies the PDP, which looks

up the updated rule context and sends the response back to the PEP.

Implementation We programmed all projects in Java using Eclipse 3.4 and instrumented it with

the Google plugin for Eclipse and the Android Development Tools. We detail the main parts of our

project below:

• Context Handler: we implemented the classifier component using the Weka API [44] and the

query diversity and relative sensitivity components using the JavaMI API [24]. For relative

sensitivity, we used the Chi-Squared test to measure the significance of the mutual informa-
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Figure 3.4: Dynamic privacy policy management solution.

tion between two sets of data type properties with an alpha level of 0.05. For query diversity,

we chose an M value of 5.

• PEP Agent We implemented a PEP agent client using the SunXACML engine [3], and we

incorporated our context handler implementation into the PEP implementation. In XACML,

a policy rule does not control data retrieval. For policy enforcement, we used XACML

obligations at the PEP level to ensure only desirable data type attributes are returned to the

user. We define our own obligation for query rewriting (QRObligation) by extending

the Obligation class. We execute an instance of QRObligation at the PEP in case of

permit decisions by calling the evaluate()method. The method reads the rewritten query

Q0
j returned by the QueryRewriting algorithm and returns the subset D0

j of the requested set

Dj to the user.

• MobiDyc is the Android client through which the user can query data (Fig. 3.5). The ap-

plication allows users to retrieve health data stored in the cloud through an Android mobile

device or emulator. The client communicates with the App Engine in the background to

gather stored information requested by the user. We created an object-relational mapping in-

terface which interacts with the backend data repository to enable users to query data using

their mobile devices. Each user query gets inserted to the backend data store.
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• The MobiDyc-AppEngine is the backend project through which we provide the service in the

cloud. We implemented a service that exposes patients data as operations and we deployed

our services as backends to the GAE repository.

Figure 3.5: Dynamic privacy policy management solution.
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Table 3.4: Results from different components for the iterations 3, 4, and 5.

3 4 5
Q Cluster Rel. Sen. data de-

tected? (DB)
Class Rel. Sen. data de-

tected? (DB)
Class Rel. Sen. data de-

tected?
1 1 no malicious yes (Research, no,

no, yes, yes, yes, no,
no, no, no, no, no, no,
no, no, no)

malicious no

2 1 yes (Research, no,
no, yes, yes, yes, no,
no, no, no, no, no, no,
no, no, no)

legitimate yes (Research, no,
no, yes, yes, yes, no,
no, no, no, no, no, no,
no, no, no)

legitimate yes (Research, no,
no, yes, yes, no, no,
no, no, no, no, yes,
yes, no, no, no)
p¡¡0.05, IGain: 0.49

3 1 yes (Research, no,
yes, yes, yes, no, no,
no, no, no, no, no, no,
no, no, no)

legitimate yes (Research, no,
yes, yes, yes, no, no,
no, no, no, no, no, no,
no, no, no)

legitimate yes (Diagnosis, yes,
no, yes, no, yes, no,
yes, yes, yes, yes, no,
no, no, no, no)
p 0.02, IGain: 0.31

4 0 no (conflict) legitimate yes (1.0, 1.0, 0.0,
1.0, 0.0, 1.0, 0.0, 1.0,
1.0, 1.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0) Highest
IGain of 1.

legitimate yes

5 0 yes (Research, no,
no, yes, yes, no, no,
no, no, no, no, yes,
yes, no, no, no)

legitimate no legitimate no

6 0 no (conflict) legitimate no legitimate yes
7 1 no legitimate yes (Research, no,

no, yes, yes, no, no,
no, no, no, no, yes,
yes, no, no, no)

legitimate yes

8 1 no legitimate yes (Diagnosis, yes,
no, yes, no, yes, no,
yes, yes, yes, yes, no,
no, no, no, no)
p 0.02, IGain: 0.31

legitimate yes

9 1 no malicious yes (Research, no,
no, yes, yes, no, no,
no, no, no, no, yes,
yes, no, no, no)
p¡¡0.05, IGain of 0.8

malicious yes

10 1 yes (DA) malicious no (conflict) malicious yes
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Table 3.5: Web services implemented in our experiment

Service Dinput Doutput Op Description
WSGenomic hasGene {hasGeneLocation, ha-

sOMIM, hasGene, has-
Gender, hasAge}

getGeneInfo(x) Returns detailed gene
info of patients who
have gene x

hasRS {hasRS, hasSNPLoca-
tion, hasGene, hasGen-
der, hasAge}

getSNPInfo(x) Returns detailed SNP
info of patients who
have RS x

hasTrait {hasTrait, hasRS, has-
Gene, hasRSLocation,
hasGender, hasAge}

getGenPhenAssoc(x) Returns Genotype Phe-
notype associations of
patients who have trait x

WSDrug hasDrug {hasDrug, hasGene, has-
SNP, hasCoMedication,
hasGenderhasAge}

getDrugInfo(x) Returns Drug info of
Drug x

WSClinical hasTrait {hasHGVS, hasDis-
ease, hasOMIM, has-
Date, hasTreatment,
hasTestResult, hasGen-
der, hasAge}

getDiagnosis(x) returns clinical details
of trait x

WSPharma hasDrug {Dosage, hasDrug,
hasGeneDrugAsso,
hasGenPhenAsso,
hasGender, hasAge}

getPharmInfo(x) returns pharamy info
about a drug x

WSClinical {hasTrait,
hasDrug,
hasT}

{hasName, hasAddress,
hasGender, hasAge}

getClinicalPersonalInfo(x,y,z)

WSDemog {hasAge, has-
Gender}

{hasName, hasAddress,
hasGender, hasAge}

getPersonalInfo(x,y)
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3.7 Evaluation

We conducted two case studies using two XACML engines and two performance testing frame-

works, as detailed in the following:

3.7.1 Case Study 1: Bio2RDF

The purpose of the first study is to evaluate the performance of our context handler and the

overall performance of our PEP implementation with the context handler included.

Study Setup. In this section we discuss study setup.

Environment. We ran our tests on a 2GHz Intel Dual-Core i7, 8GB RAM, 64bit OS X 10.8 Mac

machine. We used one WSO2 IS instance with a policy store which is running on the same ma-

chine. We ran Jmeter on the same machine with a memory foot print of -Xms1024m -Xmx2048m

-XX:MaxPermSize=1024m. To measure scalability, we used a 2.83GHz Intel Quad-Core CPU,

8GB RAM, 32bit Windows Server 2007 machine.

Data sets. As for the request sets, we generated synthetic sets to simulate practical cases in which

one data type property appears repeatedly in different requests. To generate a set of n requests we

first generated k core requests, with m data type properties each, such that all properties within

a single request, as well as across multiple requests are completely different. Then, we permuted

the n � k remaining requests from the k previous ones. For the instance sets, we created RDF

files using concepts from several ontologies of the Bio2RDF project (Table 1.2), including NCBI-

Gene,PharmKGB, DrugBank, CDT, and GeneCDS available from [22]. We created an adversarial

model through a set of queries modeled on the data type properties in Table 1.2 and the purposes in

Table 3.2. For the policy sets, we generated several policies using an ALFA-generated core policy

template. We feed the policy generation code with the set of data type properties in Table 1.2 and

the purposes in Table 3.2.

Context Handler Evaluation. We evaluated each of the context handler components, detailed as

under:

Clusterer. To build our classification model we needed a set of labeled queries. Since we did not

have labeled queries, we applied clustering to an initial set of queries. Since our query data consists

mostly of binary attributes, and since we want to measure similarities between queries based on
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the ‘1’ value of the query attributes, hierarchical clustering is most suitable in our case. To cluster

the first set of queries we applied four configurations of Agglomerative Hierarchical Clustering as

implemented in Matlab: Single linkage/Jaccard Coefficient (SLJ), Average linkage/ Jaccard Co-

efficient (ALJ), Single linkage/Euclidean distance (SLE), and Average linkage/Euclidean distance

(ALE). We used the query sets from the first three iterations to evaluate our clustering model. We

first performed clustering based on the first set of queries (training set). For the validation stage

we used the second set of queries (validation data) and we evaluated the clustering model based on

the previous clusters. We compared the robustness of several clustering algorithms by means of an

ROC curve by comparing a partition QSc of the query set QS obtained by the clustering algorithm

to a true partition QSt labeled based on our knowledge of the queries. The ROC curve indicates

that ALE clustering is the most robust (Fig. 3.6, a). Finally, we used another set of queries (test

data) to perform the actual clustering based on unseen labels.

Classifier. We used the clustering results as labels to train our classification model. The results

of running the NB classification model on the query sets from the third, fourth, and fifth iterations

indicate that 60% of the queries in the third and fourth iterations, and 80% of the queries in the

fifth iteration were labeled as malicious while the rest were labeled as legitimate.
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Figure 3.6: ROC curve comparison

Relative Sensitivity. The relative sensitivity results agreed with the classification results 60% of

the time for the third iteration, 30% of the time for the fourth iteration, and 40% of the time for

the fifth iteration. Moreover, the relative sensitivity results detected that 80% of the queries in the

third iteration contained a subset of data type properties that is relatively sensitive. In the fourth

iteration, only 20% of queries contained relatively sensitive data. In both cases, half of the queries
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contained data that was sensitive relative to DA while the rest contained data that was sensitive

relative to some other set Dk in a previously submitted query. 40% queries in the fifth iteration

contained relatively sensitive data, most of which contained data sensitive relative to DA.

Table 3.6: Diversity handler results for first three iterations.

Iteration1 Iteration2 Iteration3
Ph HP HPD HDIP Ph HP HPD HDIP Ph HP HPD HDIP

1 0.97 1.92
P1 1.58

3 1.5 2.32
P1 0.0 5 1.37 2.32 P1 1.6

P2 0.0 P2 1.0 P2 0.0
P3 0.0 P3 1.0 P3 0.0

2 0.0 0.72
P1 0.0 H 2.0 3.22 P1 1.14 H 2.08 4.1 P1 1.5
P2 0.0 P2 1.53 P2 1.56
P3 0.0 P3 0.13 P3 1.0

H 1.48 2.32
P1 0.474 1.37 2.32 P1 0.0 6 1.44 3.32 P1 1.6
P2 0.86 P2 1.6 P2 0.0
P3 0.0 P3 0.0 P3 0.0

H 2.15 3.64 P1 1.1 H 2.08 3.28 P1 1.8
P2 1.6 P2 2.0
P3 1.0 P3 1.1

Diversity. Table 3.6 provides details of query diversity results for each phase of the third, fourth,

and fifth iterations. The table shows both entropy values per phase and diversity changes between

phases. We focus on the cases where the entropy values are 0 which suggest that all queries had the

same value for an attribute and the cases where the entropy is 1 which suggest that the queries had

equal number of each attribute value. For example, entropy values for the purpose attribute (HP) in

the second phase of the third iteration match the relative sensitivity results for the last four queries

of the third iteration. The diversity results indicate that in the third iteration, the purposes of the

submitted queries were equally likely for phase one while in phase two all submitted queries were

for the same purpose. The diversity in purposes increased until phase 4 when it remained around 2.

For the purpose and data combined (HPD), the results did not indicate interesting entropy values

or significant increase or decrease in diversity. A closer look at the entropy results for the data per

purpose (HPID) suggest that for most of the purposes in the third iteration the entropy per phase

is 0 and so is the diversity which indicate similarities among queries in the initial phases which

match the results from the other components.

PEP Evaluation.

Jmeter Test Plan. We used Apache Jmeter 2.8 and we configured it to simulate 100 concurrent
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3 4 5

Q Cluster Rel. Sen. data
detected? (DB)

Class Rel. Sen. data
detected? (DB)

Class Rel. Sen. data
detected?

1 1 no malicious yes malicious no
2 1 yes legitimate yes legitimate yes

p 0.05,IGain:
0.49

3 1 yes legitimate yes legitimate yes
p 0.02, IGain:
0.31

4 0 no (conflict) legitimate yes
Highest IGain of
1.

legitimate yes

5 0 yes legitimate no legitimate no
6 0 no (conflict) legitimate no legitimate yes
7 1 no legitimate yes legitimate yes
8 1 no legitimate yes legitimate yes
9 1 no malicious yes

p 0.05,IGain of
0.8

malicious yes

10 1 yes (DA) malicious no (conflict) malicious yes

users, starting a new thread and sending parallel SOAP/XML-RPC Requests every 30 seconds (by

setting the ramp up period to 3000 seconds) for varying number of requests. Since the WSO2 IS

PDP is exposed via a Web service, we configured Jmeter to call that service API. We imported

XACML policies associated with RDF instances into the PDP policy store using a tool that auto-

mates the WSO2 IS EntitlementPolicyAdminService API. Since the PDP uses caching

to improve the performance, each time we ran the tests we loaded the PDP with different XACML

requests stored in a CSV file. We used two transaction controllers. One (PEP+CH) had three

Java Request samplers to test our implementation of the different context handler components (Ta-

ble. 3.7), while the other (PEP) had a SOAP/XML-RPC sampler to test XACML request evaluation

by comparing them to the 10 published policies.

In the test plan of our context handler we used two transaction controllers. One controller had

three Jmeter Java Request samplers to test our implementation of the different context handler

components (Table. 3.7). For each component we implemented a Java class that implements the

JavaSamplerClient interface then we configured the JavaRequest sampler in Jmeter to test

our classes. The other controller had both the first controller and a SOAP/XML-RPC sampler to
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test XACML request evaluation. We created a similar version of our test plan but with the Web

portal included. We created an HTTPS Request sampler to record user navigations through our

Web portal, which in turn communicates with our PEP agent client. To avoid the overhead created

through navigating through the Web portal, we show the results from testing only the context

handler Java code.

Table 3.7: Setup for Jmeter test plan

XACML version 3.0
XACML Engine WSO2 IS
PIP attribute store LDAP store
Threads (Users) 100
Iterations (no. of test runs) 5, 10, 20
Ramp-up time 3000 sec
Transport SOAP over HTTPS
Sampler(s) Soap/XML-RPC and Java Re-

quest
Policies (Instances) 10
Requests 10, 50, 100
Data type properties/request 14, 28

Metrics. We defined different metrics and, for each implementation, we measured the average

evaluation time over different runs. The evaluation time measures the elapsed time from the mo-

ment a given request is sent to the server until the moment the last bit of information has returned

to the client. Our metrics are:

• Cost of context inference (CCI). This metric measures the cost incurred in the context infer-

ence phase relative to the total evaluation time.

• Accuracy (ACC). This metric measures the percentage of permit decisions vs. deny decisions

in our implementation compared to that of the standard implementation provided by WSO2

IS.

• Scalability (SCA). We define the scalability point as the minimum number of concurrent

users from which any increase no longer increases the Throughput per second.

Results. We present results for PEP evaluation time for each of the metrics mentioned above.

• CCI. The results of running the test plan for 5, 10, and 20 iterations indicate that the dif-

ference in average evaluation time between the two implementations did not change signif-

icantly (Fig. 3.7). Also, the overhead introduced by the context handler is not significant.
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The evaluation time varies between the different context handler components. The relative

sensitivity component has the largest evaluation time followed by the diversity handler then

the classifier. The PEP slightly outperforms the PEP+CH implementation at the cost of pro-

ducing less accurate decisions as the ACC metric indicates.
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Figure 3.7: Cost of Context Inference over several test runs.

• ACC. The results for different number of requests for a fixed number of 14 data type prop-

erties and 3 purposes (Fig. 3.8) show that, on average, the percentage of the decisions that

came as permit using a standard PEP is always higher than that of PEP with our context han-

dler incorporated. Same is observed for different number of data type properties for a fixed

number of 100 requests and 3 purposes (Fig. 3.8). This metric justifies the results obtained

from the CCI metric above.
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52
• SCA. To measure scalability, we ran one test on a local machine with the specifications pro-

vided in Sec. 3.7.1 and another on a cloud version of Jmeter. In the first case, we scheduled

our load test to start a new thread every 30 seconds. After 30 min of running the test, we

found that the throughput increased until it reached about 70 requests per second (50 on

average) with 53 active users. It then hardly increased as more users were added with an

increasing error rate. In the second case, we scheduled the test with 50 users (due to Jme-

ter limitations) where a new thread starts every 2 seconds. We found that the throughput

increased until it reached more than 50 hits/sec on average with all 50 users active (Fig. 3.9).

!"#
$%

&$
'& (

")&*&

%&$'& +,,-.$&/01&$-!"#$-234 +,,-(")&*&-234

56789 5678: 5678; 56786 5678< 5678=
>-#&

8>>-#&

:>>-#&

6>>-#&

=>>-#&

5>>>-#&

58>>-#&

>

5>

8>

9>

:>

;>

6>

>

5>

8>

9>

:>

;>

6>

Figure 3.9: Scalability

3.7.2 Case Study 2: E-HIP

In this study, we compared our PEP implementation to a similar work, in Decat et al [36]. We

used the Home Patient Monitoring System (HPMS) available from E-HIP [6] as our subject sys-

tem. The E-HIP project provides an information platform for sharing patient’s medical data across

several healthcare providers including hospitals, general practioners, and screening centers.

Study Setup. In this section we discuss study setup.

Environment. We used the same environment settings used in the first study (Section. 3.7.1). We

used an optimized version of SunXACML [3] to implement our PEP. We incorporated the context

handler into the PEP implementation. For the PIP module, we used a JDBC-based attribute store

using a MySQL database in the case of Decat et al. and an ontology-based repository in our case.

As a PIP attribute store we used a MySQL database running on the same machine.
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Data sets. We used the request generation technique used in the first study to generate XACML

requests. As for the instance sets, we generated RDF files. For requests, instances, and policies

we used the classes and data type properties from the E-HIP project (Table 1.2) and the 3 purposes

shown in Table 3.2. For the policy set, we used a realistic policy set provided by the Ehip project,

which consists of 19 atomic policies. The policies are designed to require 30 attributes in total.

Since our approach requires fixed query sizes, we chose 16 of those attributes to represent the

resource attributes. Of the 30 attributes, 8 are considered sensitive, so we chose those as our initial

set of sensitive data DA and assigned the remaining 8 properties 0 values.

Java Metrics Test Plans. For performance testing we used the Java Metrics library. Table 3.8

shows the test plan.

Table 3.8: Setup for Java metrics library test plan.

Subject system E-HIP HPMS
XACML version 2.0
Environment 2GHz Intel Dual-Core i7 Mac, 8GB

RAM, 64bit OS X 10.8.
XACML Engine SunXACML
PIP attribute store MySQL database
Threads (Users) 1, 2, 4, 8, 16, 32
Warm-up runs 10
Iterations (no. of test runs) 100
Policies (instances) 19 policies
Requests 3
Data type properties/ request 3, 6, 11

Metrics. We compared the average evaluation time and average throughput of both implementa-

tions (SunXACML, SunXACML+CH) for each of the metrics defined in Sec. 3.7.1. The through-

put measures either the number of requests per second that are sent to the PEP or the number of

classified queries that are written to an output file during a test. For this study, we measured the

following additional metrics:

• Dimensionality (DIM). In this metric, we record the time and the throughput for varying

input sizes. Namely, the number of requests and the number of data type properties in a

request.

• Overhead Cost of Semantic Handler (OCSH). Based on our discussion of obligations above,
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the overhead incurred by the Semantic handler (SH) is due to three steps: retrieving the

required data type properties in the request (e.g. hasPurpose); retrieving the Context for the

obligation (PDP, SH); and retrieving the instances that match the query (PEP, SH) (Fig. 3.1).

This measure reflects the attribute fetch time of the PIP, which is in our case the overhead

added by searching through the RDF repositories for matching instances. It measures the

overhead of PEP parsing RDF repositories looking for attributes and generating requests

from them.
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Figure 3.10: PEP performance for different number of data type properties for different threads

Results. We present results of comparing our implementation of PEP (SunXACML+CH) to that

of Decat et al. (SunXACML) for each of the above mentioned metrics.

• CCI. The results of both the evaluation time and throughput (Fig. 3.10) indicate that the

overhead introduced by the context handler is not significant.

• DIM. Fig. 3.10 illustrate that the average evaluation time and throughput of our PEP im-

plementation did not change significantly between our implementation and that of Decat et

al.

• OCSH. Fig. 3.11 shows the total evaluation time, the portion of time spent in fetching at-

tributes, the portion spent on processing the rules of our PEP implementation compared to

that of Decat et al. It also illustrates the evaluation times in terms of the number of data type
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properties. The total evaluation time grows linearly and so does the overhead of fetching

attributes as the number of data type properties increases. The figure also confirms that the

overhead of processing requests through context inference (CCI metric) is not significant

compared to Decat et al.
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Figure 3.11: Attribute fetch time in Decat et al (left) compared to our implementation (right)

• ACC. Fig. 3.12 illustrates the accuracy of our implementation (PEP+CH) compared to that

of Decat et al. (PEP) for different number of requests. The results indicate that our imple-

mentation filters out more denied queries compared to Decat et al.

0%
12.5%

25%
37.5%

50%
62.5%

75%
87.5%
100%

Av
g.

 %

No. Of requests

Permit Deny

10                10              50                50              100              100
PEP       PEP+CH          PEP      PEP+CH        PEP      PEP+CH
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3.7.3 Case Study 3: Comparison to Dynamic Data Publishing

We compare our approach to two representative algorithms for K-Anonymity and HDB.

Namely, the K-Anonymity algorithm in [60] and the HDB algorithm in [58]. Since none of

the algorithms add context to the data we cannot compare to our context inference algorithm.

The candidate algorithm for comparison becomes the dynamic rule evaluation algorithm (Algo-

rithm 4). Some of the parameters that vary between the three algorithms are the the data set size
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(|Ij|) (the size of the original table |T | in their case), the number of attributes in a query |Dj|

(dimension(QID) in [60] and number of columns |C| in [58]), the number of rules |Rj| (for each

dk in Dj of an instance i in Ij), which is the closest equivalent to the size of the choices table

(choice %) in [58], and k. The only common parameter among all algorithms is |Ij|. However, the

results cannot be reproduced entirely unless we use an environment similar to theirs (which makes

a precise comparison hard).

In terms of metrics we can compare our algorithm to HDB in terms of execution time. Since

Mondrian is a fast algorithm (nlogn) we can focus on the utility loss metric.

Execution time. A major limiting factor in HDB can be attributed to the cost incurred by translat-

ing policy files into choice tables and storing them in the database, rewriting queries, and fetching

the privacy meta-data. Thus, we expect an overhead cost to be incurred by those modules accord-

ing to the worst case conditions reported in [58]. We can estimate the overhead cost of privacy

translation and choice retrieval based on their experiments. We expect the results to vary based on

the storage method of the choice table (CPU processing time in case of internal storage of choices

as case statements or I/O time in case of external storage of choices), the percentage of attributes

(columns) on which a user chooses to add a restriction (size of a choice table), and the disclosure

model (query vs. table semantics). None of which applies in our case.

The only overhead cost that we expect by running our Dynamic Rule Evaluation algorithm is

the overhead cost added by the semantic handler which we reported in our experiments. In addition

to |Ij|,|Dj|,|Rj|, our algorithm further relies on the size of the context block |CTXTj| for each

attribute dk of each instance in the set Ij.

Utility loss. As a measure of quality in terms of query answerability, the discernibility metric

has been applied to Mondrian. We expect that for a large value of k the utility loss will decrease

when |QID| (Dj in our case) increases and we expect it to increase when k increases for a fixed

|QID|.This measure does not apply in our case, so a better measure need to be defined and applied

to both algorithms for precise comparison.
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CHAPTER 4 K-ANONYMITY BASED PRIVATE WEB SERVICE SELECTION

Unlike Chapter 3, this chapter focuses on how we solve privacy issues in automatic or semi-

automatic data access environments as described in Section 1.1. In service oriented environments,

interaction occurs between two entities: clients and providers. Clients submit input data to invoke

providers operations, who in turn return output data. Privacy can be achieved on input data, output

data, or operation invocation. To guarantee privacy of operation invocation, it is essential to know if

there is compatibility between a client’s privacy requirements and the Web service privacy policies

before the client invokes the operation. The client can then use the results of such a comparison

to decide whether to invoke the operation. In this chapter, we focus on privacy at the Web service

operation invocation level, then we generalize the approach to the business process level.

4.1 Motivating Scenario

Assume a collaborative Web service environment that consists of five web services:

WS1,WS2,WS3,WS4andWS5, each of which has a set of operations Op1, ..., Opn. Accord-

ing to a naiive Web service conversation model, an initially invoked operation initiates a chain

of subsequent operation invocations according to a configuration defined in a WSCL file (e.g.,

Listing 4.1).

Listing 4.1: A 5-Operation WSCL Definition. Interactions show all operations and Transitions show which operation

calls which other operation

<ConversationTransitions>

<Transition>

<SourceInteraction href="getLab1Results"/>

<DestinationInteraction href="getLab3Results"/>

</Transition>

<Transition>

<SourceInteraction href="getLab2Results"/>

<DestinationInteraction href="getLab3Results"/>

</Transition>

<Transition>

<SourceInteraction href="getLab3Results"/>

<DestinationInteraction href="getLab4Results"/>

</Transition>
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<Transition>

<SourceInteraction href="getLab5Results"/>

<DestinationInteraction href="getLab4Results"/>

</Transition>

</ConversationTransitions>

Fig. 4.1 depicts an abstract choreography of the conversations defined in Listing 4.1. Based on

the figure, we have the following orders of operation invocations:

WS1/OP1! WS3/OP3! WS4/OP4,

WS2/OP2! WS3/OP3! WS4/OP4,

WS3/OP3! WS4/OP4,

WS5/OP5! WS4/OP4,

WS4/OP4

Given all possible end to end routes, for each possible operation invocation, there may exist one

or more downstream operations along the route to the operation destination. For example, for the

route 1! 4, Op1 has one downstream operation Op3, which in turn has one downstream operation

Op4. Therefore, invoking Op4 indicates that Op3 was invoked, and thus that Op1 was invoked.

If we assume that Op1 is a private resource, the above mentioned invocation scenario is not pri-

vate, since for the source operation Op1 there are at least 2 operations leading to the downstream

operation Op3 which it invokes. Similarly, there are 4 operations leading to the downstream op-

eration Op4 which it invokes. For example, if a requester Bob wants to detect a disease with

which a patient Alice was diagnosed, he can use a service composition chain which involves the

operation sequence getPrescriptionPrice(patientid) on WSclinical, getPrice(medicine) on WSdrug,

getMedicine(disease) on WSdrugPhenoAssoc, etc. Since some diseases can be inferred form the price

of their medicine (e.g., cancer), the operation getPrescriptionPrice(patientid) can be considered a

private resource, and knowing that the operation getPrice(medicine) has been invoked can reveal

that getPrescriptionPrice has been invoked. Thus, a standard WSCL configuration does not guar-

antee the privacy of the data hosted by a Web service neither at the operation level nor the data
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(operation input and output parameters) level. It is crucial to privacy to know the extent to which

the invoking an operation can be inferred if one knows that a downstream operation was invoked.

We propose an approach that takes into account k-Anonymity at the operation level in determining

compatibility within privacy frameworks.

Figure 4.1: A choreography of a 5-operation (left) and 9-operation (right) invocation configurations.

4.2 Web Service Composition Standards

Two main composition models can be applied to obtain value-added services: orchestration

(e.g., BPEL) and choreography (e.g., WSCL). In the orchestration model there is a centralized

orchestrator that manages the invocations, while in the model it is more of a decentralized style

and each Web service has it’s own WSCL definition. Fig. 4.2 depicts a model that combines both

models.

4.2.1 Web Service Conversation Language (WSCL)

WSCL definitions defined and accessed on the Web service side reflect the relationships be-

tween web service operations; by indicating which operations call which other operations. For

instance, in a composition consisting of nine Web services: WS1, . . .WS9, and a set of opera-

tions Op1, ..., Op9 corresponding to each service, an initially invoked operation initiates a chain

of subsequent operation invocations according to a configuration defined in a 9-Operation WSCL

Definition (Listing. 4.2). The WSCL definition specifies interactions (all possible operations) as

well as transitions (which operation calls which other operation). Fig. 4.2 depicts an abstract chore-

ography of the conversations defined in a 5-Operation and a 9-Operation WSCL models employed

by the composite services CS2 and CS3, respectively.
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Figure 4.2: A hybrid composition model using BPEL orchestration and WSCL choreography.

Listing 4.2: A 9-Operation WSCL Definition. Interactions show all operations and Transitions show which operation

calls which other operation

<ConversationTransitions>

<Transition>

<SourceInteraction href="Op1"/>

<DestinationInteraction href="Op3"/>

</Transition>

<Transition>

<SourceInteraction href="Op2"/>

<DestinationInteraction href="Op3"/>

</Transition>

<Transition>
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<SourceInteraction href="Op3"/>

<DestinationInteraction href="Op4"/>

</Transition>

<Transition>

<SourceInteraction href="Op3"/>

<DestinationInteraction href="Op5"/>

</Transition>

<Transition>

<SourceInteraction href="Op6"/>

<DestinationInteraction href="Op5"/>

</Transition>

<Transition>

<SourceInteraction href="Op5"/>

<DestinationInteraction href="Op7"/>

</Transition>

<Transition>

<SourceInteraction href="Op8"/>

<DestinationInteraction href="Op7"/>

</Transition>

<Transition>

<SourceInteraction href="Op9"/>

<DestinationInteraction href="Op7"/>

</Transition>

</ConversationTransitions>

4.2.2 Business Process Execution Language (BPEL)

In BPEL, the composition result is called a process (Listing. 4.3, participating services are

partners, and message exchange or intermediate result transformation is called an activity. BPEL

also defines the data used by a process as variables. A process thus consists of a set of activities and

interacts with external partner services through WSDL interfaces. Business processes can be either

Executable business processes, which model actual behavior of a service in a business interaction

and business protocols, which describe process logic in terms of message exchange between the

interacting services, without exposing their implementation details. Fig. 4.2 depicts an abstract
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orchestration of two processes in a composite service CS1.

Each step of a process is represented by an activity, which is implemented as either an out-

bound web service invocation on an external partner service or as an inbound web service re-

quest. According to BPEL data model, a process consists of a sequence of activities. Those

activities represent units of processing (e.g. receive and reply) and show what the process

actually does. External partner services are defined by WSDL interfaces. Activities map to oper-

ations defined in WSDL files. Some of these activities are invocations to external Web services.

In BPEL these external services are called partnerlinks, and represent the web services with

which the process (composite service) interacts. If an activity involves invoking an operation de-

fined in a WSDL of an external service, the operation is considered an outsourced operation. For

instance, the invocation Op2,1 ! OS1 illustrates an outsourced communication link between CS1

and CS3. A process in BPEL can communicate with either a Web service or with another BPEL

process. For instance, the invocation Op1,6 ! Op2,1 illustrates a communication link between

BP1 and BP2.

The web service operations exposed by the process can aggregate other web services in per-

forming the business tasks associated with the process. Thus, the flow of the process includes a set

of Web service interactions between the process itself, internal Web services, and external partner

Web services. BPEL processes interact with WSDL services exposed by business partners. Thus,

we distinguish between interfaces exposed by the BPEL process and interfaces consumed by the

BPEL process. The later may involve outsourcing. Composition in BPEL is recursive; it consists

of structured activities, which can be nested. For instance, activities contained in a flow are exe-

cuted in parallel, partially ordered through control structure activities contained in a sequence are

performed sequentially in lexical order. In an if then else, exactly one branch of activity is selected

from a set of choices.

Listing 4.3: BPEL definition from our scenario

<process name="outsourcedOperationCallScenario">

<partnerLinks>

<partnerLink name=client/>

<partnerLink name=serviceA/>
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<partnerLink name=serviceB/>

<partnerLink name=serviceC/>

</partnerLinks>

<variables>

<variable name=processInput/>

<variable name=AInput/>

<variable name=AOutput/>

<variable name=BCInput/>

<variable name=BOutput/>

<variable name=COutput/>

<variable name=processOutput/>

</variables>

<sequence>

<receive name=receiveInput variable=

input/>

<assign><copy>

<from variable=processInput/>

<to variable=AInput/>

</copy></assign>

<scope>

<sequence>

<invoke name=invokeA partner-

Link=serviceA

inputVariable=AInput output-

Variable=AOutput/>

</sequence>

</scope>

<assign><copy>

<from variable=AOutput/>

<to variable=BCInput/>

</copy></assign>

<flow>

<sequence>

<invoke name=invokeB partner-Link=serviceB
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inputVariable=BCInput/>

<receive name=receive_invokeB

partnerLink=serviceB

variable=BOutput/>

</sequence>

<sequence>

<invoke name=invokeC partner-Link=serviceC

inputVariable=BCInput/>

<receive name=receive_invokeC

partnerLink=serviceC

variable=COutput/>

</sequence>

</flow>

<invoke name=reply

partnerLink=client

inputVariable=processOutput/>

</sequence>

</process>

4.3 Private Web Service Selection Model

In this section, we present the privacy management framework proposed in [94, 95], and how we

extend it using K-Anonymity. The model accounts for privacy at both the data (input and output)

and operation usage levels. We also provided a matching protocol and a negotiation model to

resolve incompatibility between client’s requirements and provider’s policies. We briefly describe

the model and we refer the reader to [94, 95] for further details.

According to the model, a provider WS defines a privacy policy PPWS . For each provider

WS, a client C defines privacy requirements PRC/WS regarding WS input output and operations.

C may demand full compatibility between PPWS and PRC/WS or a partial compatibility with

certain threshold. In case of incompatibility, C and WS have two options: either discontinue the

interaction or initiate a negotiation process to reconcile privacy policies and requirements. The

model consists of the following concepts:

• Resource: we refer to private information as resources, including input parameters submitted
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Table 4.1: Two business processes (BP1 is from Org1’s perspective, BP2 is from a competitor’s perspective) and
constituent activities.

CS BP Activity flow type WS Operation input output
1 1 receive client Op1,1
1 1 invoke AB:

performed by
providers A,B

PAR ServiceA Op1,5 processInput/AInput Aoutput

1 1 invoke AB:
performed by
providers A,B

PAR ServiceB OS1 processInput/BInput BOutput

1 1 invoke C:
performed by
provider C

SEQ ServiceC OS2 Aoutput

1 2 receive client Op2,1
1 2 invoke DBE:

performed
by providers
DBE

PAR ServiceD Op2,2 processInput/DInput Doutput

1 2 invoke DBE:
performed
by providers
DBE

PAR ServiceB OS1 processInput/BInput BOutput

1 2 invoke DBE:
performed
by providers
DBE

PAR ServiceE Op2,3 processInput/EInput EOutput

1 2 invoke F:
performed by
provider F

SEQ ServiceF Op2,4 BOutput FOutput

1 2 invoke C:
performed by
provider C

SEQ ServiceC OS2 FOutput COutput

to providers, the fact that a client invoked an operation, or the output data. The type of

resource is determined using the notion of a privacy level.

• Privacy level: resources can be either data or operations that the Web service invokes to re-

trieve such data. We handle both cases. Privacy at the data level handles handles privacy poli-

cies or requirements imposed on data resource that a client and a provider exchange, whereas

privacy at the operation level handles privacy policies or requirements imposed on the in-

voked operation. Data resources can be operation input and output parameters defined by a

service (i.e., WSDL). For instance, an input parameter to an operation getLabResults

could be patient id and the output could be test results (Fig. 4.3). patient id

and test results are data resources whereas the operation getLabResults is an op-

eration resource. The operation getLabResults can be considered a private resource by
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Figure 4.3: Web service privacy model.

the organization hosting the Web service that defines that operation (e.g., a hospital), espe-

cially when disclosing the invocation of this operation to other organizations (e.g., research

institutes) can cause liability issues for the hospital.

• Privacy Rule: We define a rule Ri as a tuple hTi, Li, Di, Sii, where Ti is the topic, and

it can have any of the values {Purpose, Retention,Recipient,KAnon}, Li is the pri-

vacy level and it takes the values {data, operation}, Di is the domain and contains the

possible values that can be taken by a topic {no � retention, indefinitely, stated �

purpose , public, government, research, federaltax, same, and otherservices}, and Si

is the scope of a rule and defines the granularity of the resource that is subject to pri-

vacy constraints, and it can be any of the values {total, partial, GTE1, GTE2, GTE3,

GTE4, GTE5, GTE6, GTE7, GTE8, GTE9, GTE10, INFINITE}. The values

GTEx are only assigned in cases where the topic is indicated as KAnon, and they indicate

that the KAnonymity value should be at least as large as this value and INFINITE means that

the operation does not invoke any other operations (there are no downstream operations).

In the case of data rules (i.e., Li = data), we consider data resources as atomic. Hence,

the only scope value allowed is total. Partial scope may be assigned only to operations (i.e.,
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Li = operation) and complex data resources (e.g., a data structure). If an operation resource

is assigned a total scope for a given rule, then the whole entry of that operation in the service

log is private. An example privacy rule is R1 = hT1 = Recipient, L1 = Data,D1 =

{public, government, federaltax}, S1 = {total}i

• Privacy Assertion: A privacy assertion A(Ri, rs) is the application of a rule Ri =

hT i, Li,Di, Sii on a resource rs, where rs has a level Li, domain Di, and scope Si. A privacy

assertion A(Ri, rs) on a resource rs determines the granularity of a resource that is subject to

privacy. The granularity g of a resource is determined by the scope Si of a rule. An assertion

on rs according to Ri = hT i, Li,Di, Sii is defined by the pair hpf, gi; pf = di ^ · · · ^ dj

where di, . . . , dj 2 Di; g 2 Si. The assertion A1(R1, patient id) = (government ^

research), for instance states that patientid can be shared with government and research

institutes.

• Privacy Policy: a privacy policy PPi of a service provider WSi is a set of assertions that the

service specifies on the resources that it hosts. For instance, for a Lab service PPLabService =

{A1(R1, patient id) = (government ^ research, total), A2(R2, getLabResult()) =

(federaltax ^ research, total)}.

• Privacy Requirement: clients perceive privacy not only on resources but also on services. For

each service WS, a client C defines a privacy requirement PRC/WS stating C’s assertions

about resources provided by WS. PRC/WS assertions describe two requirements. First, C’s

expectation about how WS will treat the privacy of resources (noted as A(Ri, rsE)) (e.g.,

patient id). Second, C’s practices regarding how C treats the privacy of output data returned

by WS (noted as A(Ri, rsP )) (e.g. test result). Clients may unequally value the assertions

specified in PRC/WS by assigning a weight wj to each A(Ri, rs) in PRC/WS . The weight

is a decimal value between 0 and 1 that determines the importance of the corresponding

assertion. The total of weights assigned to all assertions is equal to 1. We give clients the

possibility to control their privacy requirements by associating a mandatory attribute mj to

each assertion (Aj(Ri, rsk), wj,mj) in PRC/WS .

Subsumption Matching Protocol. We use the notion of privacy subsumption defined in [94] to
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Table 4.2: Domain subsumption relationships

subsumed domain subsuming domain
government public

research public
federal tax public
federal tax government

capture the semantic relationship among domain values. For a set of domains Di={di,dj}, di is

subsumed by dj iff dj is more general than di. For instance, in the set of domains Di={public,

government, federal tax, research} the value public is more general than the other values in Di.

Subsumption can also be generalized to assertions [94]. Two Assertions A(Ri, rs) = (pf, g)

and A(Ri, rs) = (pf, g) are compatible if their is a subsumption between them. Namely, A’ is

subsumed by A (A v A) , if Ri = Ri, rs = rs, g = g, and pf ) pf .

Privacy Preserving Composition Plan. In a service composition plan CP, any service WS which

depends on another service WS 0 is considered a consumer of the data provided by WS 0. Thus,

WS can be viewed as a client and WS 0 can be viewed as a provider. We have previously proposed

a Privacy Compatibility Matching PCM algorithm to check the compatibility between the PR

of WS and PP of WS 0. The algorithm considers a CP as privacy compatible if the privacy

compatibility is fully satisfied for all the dependencies among the services in CP. If at least one

dependency in CP has an incompatible assertion then CP violates privacy and is discarded from

CP. Fig. 4.4 depicts a sample CP. The data resource drug DR is an input parameter to WS6, WS7

and WS8, and an output for WS5. Thus, those services depend on WS5 for providing DR.
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Figure 4.4: A sample CP with dependencies.

Privacy Compatibility Matching (PCM) Algorithm. Upon request of a resource rs, the PCM

algorithm extracts the resource rs and the assertions associated with that resource. For full com-

patibility, the algorithm requires that all assertions A in both PRWS and PPWS0 are fully com-

patible. For each A 2 PRWS and A0 2 PPWS0 , the algorithm checks if A subsumes A0 and

returns the set InC of incompatible assertion pairs . The algorithm follows the subsumption pro-
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tocol described above. For instance, for the composition in Fig. 4.4, the PCM algorithm checks

the compatibility of the assertions defined on resource rs = DR in PRWS5 and PPWS6 etc. If

PRWS5 = (A1(R1, DR) = hospital) and PPWS6 = (A01(R1, DR) = researchLab), then the

two assertions are incompatible since hospital is not v researchLab. Hence, PCM adds both asser-

tions to the set of incompatible assertions (i.e., InC = (A1, A10)).

The above check works in the case of total matching. However, some clients may be willing to

use a service even if some of their privacy constraints are not satisfied. To that end, the PCM also

enables partial matching by incorporating the notion of a privacy matching degree. The privacy

matching degree estimates the ratio of client assertions (PRC/WS) that match the service assertions

(PPWS). We refer to M ⇢ PRC/WS as the set of all such PRC/WS assertions. The privacy degree

is mathematically defined as:

Degree(PRC/WS , PPWS) =

X
wj8(Aj(Ri, rsk), wj ,mj) 2M

The threshold ⌧ is provided by a service client and illustrates the minimum value allowed for a

matching degree. The PCM determines that PRC/WS and PPWS are compatible if any of the

following holds:

• The privacy matching degree is above the threshold set by C: Degree(PRC/WS, PPWS) �

⌧ .

• Every non-matched PRC/WS assertion is optional: 8(Aj(Ri, rsk), wj,mj) 2 (PRC/WS �

M) : mj = “False”

4.4 K-Anonymity Based Privacy Compatibility Matching (KPCM)

We extend our Privacy Compatibility Matching (PCM) algorithm to also incorporate k-

anonymity check. Motivated by the notion of K-Anonymity at the relational data table level (Sec-

tion 2.4.1), we leverage that notion to a Web service operation invocation level. Our architecture

is shown in Fig. 4.5.

K-Anonymity at the Operation level: K-Anonymity beyond relational data. Since QIDs can

be indicators of a data owner’s identity (Section 2.4.1, downstream operation invocations can be

indicators of source operation invocations. Analogous to linkability through QIDs, we use des-

tination operation invocations as a basis for calculating K-Anonymity scores. We leverage the
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Figure 4.5: KPCM Architecture.

notion of k-anonymity to the level of Web service operation. We define k-Anonymity of an op-

eration as the value that determines the extent to which an operation invocation can be inferred if

one knows that a downstream operation was invoked. To determine k-anonymity counts, we use

operation invocation route configuration stored in Web Services Conversation Language (WSCL)

definitions.

Definition Let G = {Op1, ..., Opn} be a WSCL graph of n operations. For each source operation

Opi 2 G, there exists a k-anonymity score k if, for each destination (downstream operation), there

are at least k occurrences of that operation. Opi is called k-Anonymous .

To cover all possible invocation scenarios we take into account the cases where all operations

can be invoked (including those that are invoked in the middle), the case where all operations can

be invoked (excluding middle operations), and the case where only end point operations can be

invoked. Next, we explain how we determine K-Anonymity values.
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Table 4.3: Transisitions (left) and all possible routes (right)

Opsrc Opdst
getLab1Results getLab3Results
getLab2Results getLab3Results
getLab3Results getLab4Results
getLab5Results getLab4Results

Opsrc Opdst
getLab1Results getLab3Results
getLab1Results getLab4Results
getLab2Results getLab3Results
getLab2Results getLab4Results
getLab3Results getLab4Results
getLab5Results getLab4Results

Table 4.4: KAnonymity counts for All WSCL Methods can Be called (Pass-Through Methods Counted)

Source Destination KAnon Scope
getLab1Results getLab3Results 2 GTE2
getLab1Results getLab4Results 4 GTE4
getLab2Results getLab3Results 2 GTE2
getLab2Results getLab4Results 4 GTE4
getLab3Results getLab4Results 2 GTE2
getLab5Results getLab4Results 4 GTE4

Calculating k-Anonymity Values. K-Anonymity values are derived based on both WSCL defini-

tions and K-Anonymity types.

• WSCL Definition Selection. First, the transitions are extracted from the WSCL

file (e.g., Table 4.3). Then, for each source and destination combination a row is

added to the table WSCL Transitions. Then, the same information is put onto table

WSCL Transition AllPossibleRoutes. Next, we add additional rows that represent the cases

where the source of one row is equal to the destination of another row. For instance, if the

transitions 1! 3, 3! 4, and 4! 5, are found, then 1!5 is considered as an end-to-end

route. Therefore, a row with the source operation 1 and the destination operation 5 is added

to the table. Table 4.3 indicates all the possible end to end routes derived from the transitions

shown in Table 4.3.

• Determine K-Anonymity Type. The user then selects the desired k-Anonymity type from

the following options:

PTOC - All WSCL Operations Can Be Called (Pass-Through Operations Counted). For

this K-Anonymity type, we first classify the end-to-end routes derived in Table 4.3 by the

number of nodes that they have in the middle (middlemen). Following our running example,

the route 1! 5 consists of three sub routes 1! 3, 3! 4, and 4! 5. In this case, there are

two middlemen: Op3 and Op4. Then for each case, we get a count of all the routes leading
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to the destination of the source operation that we are invoking (count in Table 4.10). Then

we subtract from this count the number of routes that lead to the source operation that we

are invoking (KAnon1 in Table 4.10). For example, from the perspective of Op3, when we

calculate k-Anonymity for an operation to which it leads, we subtract the count of operations

leading to Op3 (i.e. Op1 and Op2) since we need k-Anonymity from the perspective of

Op3. For the 5-Operation WSCL file, these operations can be called: 1, 2, 3, 4 and 5 and

the operations that we pass through are part of the k-Anonymity count. Table 4.4 expands

upon the information in table 4.3, indicating all possible end-to-end routes and k-Anonymity

values.

Table 4.5: WS Privacy Ruleset Items derived from Table 4.4

WS rule item topic level domain scope
1 3 10 k-Anon operation other services GTE2
2 3 10 k-Anon operation other services GTE2
3 3 10 k-Anon operation other services GTE2
4 3 28 k-Anon operation other services INFINITE
5 3 11 k-Anon operation other services GTE4

The rows in Table 4.4 are then added to set of WS Privacy Ruleset Items in order to be

used in Web service assertions later on (Table 4.5). For each source Web service operation

we choose the rows with smallest GTE values, which define the minimum KAnonymity

Privacy Policy Rule Item for each operation. Since these represent KAnonymity rules, we

indicate the topic as “K-Anonymity”, the level as “operation”, and the domain as “other Web

services”.

Table 4.6: KAnonymity counts for All WSCL Operations can Be called (Pass-Through Operations Not Counted)

source destination KAnon scope
getLab1Results getLab3Results 2 GTE2
getLab1Results getLab4Results 3 GTE3
getLab2Results getLab3Results 2 GTE2
getLab2Results getLab4Results 3 GTE3
getLab3Results getLab4Results 2 GTE2
getLab5Results getLab4Results 3 GTE3

PTONC- All WSCL Operations Can Be Called (Pass-Through Operations Not Counted).

For this K-Anonymity type, we start with the set of rows resulting from the PTOC stage

(Table 4.4). Then, as an additional step, we subtract out the number of middlemen from
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the k-Anonymity count for the initial operation (source operation) for each route. For the

5-Operation WSCL file, these operations can be called: 1, 2, 3, 4 and 5, and the operations

that we pass through are not part of the k-Anonymity count. Table 4.6 expands upon the

information in table 4.3, indicating all possible end-to-end routes and k-Anonymity values.

Table 4.6 represents the set of WS Privacy Ruleset Items that will be used in Web service

assertions.

Table 4.7: WS Privacy Ruleset Items derived from Table 4.6

WS rule item topic level domain scope
1 3 10 k-Anon operation other services GTE2
2 3 10 k-Anon operation other services GTE2
3 3 10 k-Anon operation other services GTE2
4 3 28 k-Anon operation other services INFINITE
5 3 11 k-Anon operation other services GTE3

Table 4.8: KAnonymity counts-Only Endpoint Operations can Be called

source destination KAnon scope
getLab1Results getLab3Results 2 GTE2
getLab1Results getLab4Results 3 GTE3
getLab2Results getLab3Results 2 GTE2
getLab2Results getLab4Results 3 GTE3
getLab5Results getLab4Results 3 GTE3

EPOC- Only Endpoint WSCL Operations Can Be Called. This k-Anonymity type is a subset

of the above case (PTONC), with k-Anonymity values for only endpoint operations. For the

5-Operation WSCL file, these operations can be called: 1, 2, and 5, and operations that we

pass through are not part of the k-Anonymity count. Table 4.8 expands upon the information

in table 4.3, indicating all possible end-to-end routes and k-Anonymity values. Table 4.8

represents the set of WS Privacy Ruleset Items that will be used in Web service assertions.

Table 4.9: WS Privacy Ruleset Items derived from Table 4.8

WS rule rule item topic level domain scope
1 rule 3 10 k-Anonymity operation other services GTE2
2 rule 3 10 k-Anonymity operation other services GTE2
5 rule 3 11 k-Anonymity operation other services GTE3

4.4.1 K-Anonymity Based PCM (KPCM)

Following the above scenario, before a Web service operation can be called (e.g.,

getLab1Results() on WS1), the KPCM algorithm is invoked (Algorithm. 5). The KPCM
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algorithm takes as input a Web service WSi and an operation (Opj). The algorithm first retrieves

the client assertions array PRC/WS from the client database. A call is then made to retrieve the

Web service assertions array PPWS for the specified operation. Then the system goes through

each assertion in both arrays looking for mismatches. The matching check occurs on mandatory

items in each assertion A including the following:

• Resource R: Client PR Practices and WS PP Expectations are treated as special cases.

• Rule Topic, Level, Scope: As defined in Client PR and Web service PP; need full match. If

scope is “k-Anonymity” a special check is performed by calling the K�AnonymityCheck

algorithm. The KPCM algorithm extracts the WSCL transitions table TR from the WSCL

file (e.g., Table 4.3) and passes it to the KAnonymityCheck algorithm.

• Domain: a check is performed per propositional formula. For the domain, a full, partial or no

match may be required. If there is no direct match, the algorithm checks for a subsumption

match by calling the SubsumptionMatchProtocol algorithm.

Algorithm 5 KPCM
1: input WSi, Opj
2: output: match
3: PR �, PP  �, A0  �, compatible true
4: PR GETPRIVACYREQUIREMENTARRAY
5: PP  GETPRIVACYPOLICYARRAY(WSi, Opj)
6: for each Ai in PR do
7: for each Aj in PP do
8: if Mi then
9: if Ai[rs] == Aj [rs] & Ai[R][T ] == Aj [R][T ] & Ai[R][L] == Aj [R][L] & Ai[R][S] ==

Aj [R][S] then
10: if Ai[R][S] =0 KAnonymity0 then
11: TR GETWSCLTRANSACTIONS
12: KANONYMITYCHECK(TR, type)
13: end if
14: if Ai[D]! = Aj [D] then
15: SUBSUMPTIONMATCHPROTOCOL(Ai, Aj)
16: end if
17: end if
18: end if
19: end for
20: end for
21: return compatible

If a mismatch is found, a false compatibility trigger is returned together with the set of assertions

A0 that are incompatible. If there is compatibility, the desired web service operation is called. For
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Table 4.10: K-Anonymity values for the WSCL configuration in Table 4.3

WS Opsrc Opdes midmen count KAnon1 KAnon2 KAnon3
1 1 3 0 2 2 2 2
1 1 4 1 4 4 3 3
2 2 3 0 2 2 2 2
2 2 4 1 4 4 3 3
3 3 4 0 4 2 2 0
5 5 4 0 4 4 4 4

example, a service privacy policy array may include the assertions:

PP Service
lab = A1(R1, patientid), A2(R2, getLabResult)

, where A1(R1, patientid) = (gov ^ research, total),

and A2(R2, getLabResult) = (fedtax ^ research, total)

The KAnonymityCheck algorithm (Algorithm 6) takes as input a WSCL transitions table

(TR[Op1, ..., Opn]) and a previously configured kanonymity type (PTMC,PTMNC,EPMC).

The algorithms first generates the end-to-end routes table (TRroutes). To generate TRroutes the

algorithm copies all the rows from TR to TRroutes. It then adds additional rows that represent the

cases where the source of one row is equal to the destination of another row (Table 4.3). Then, for

each row in TRroutes, it calculates the midmen, the count, and based on the selected type, it gener-

ates the kanon count and appends the newly created row to a new table TRKAnon with k-anonymity

counts included. The algorithm returns the table TRKAnon.

4.5 Private Web Service Outsourcing Approach

In this section, we present our approach, including the system architecture (Section 4.5.2). We

also provide two definitions of K-Anonymity: at the operation level (Section 4.5.3) and at the

business process level (Section 4.5.4) and the K-Anonymity score calculation in each case. Then,

we introduce uncertain operation invocation precedence graphs in Section 4.5.9, the different K-

Anonymity types in Section 4.5.7, and the K-Anonymity check algorithm. Finally, we explain how

all of that fits into our model for private service outsourcing.

4.5.1 Running Example

We consider the case of a composite service CS in which the invocation of an operation may

result in the execution of part of a process that includes various activities. We look into several
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Algorithm 6 KAnonymityCheck
1: input TR, type
2: output: TRKAnon

3: row  �, TRroutes  �, TRKAnon  �, count 0,KAnon 0, scope INFINITE
4: TRroutes  TRroutes [ TR
5: for each rowi in TR do
6: for each rowj in TR do
7: if rowi[Opdst] == rowj [Opsrc] then
8: row  (rowi[Opsrc], rowj [Opdst])
9: TRroutes  TRroutes [ row

10: end if
11: end for
12: end for
13: for each rowi in TRroutes do
14: for each rowj in TRroutes do
15: if rowi[Opdst] == rowj [Opdst] then
16: count count+ 1

17: end if
18: if type == PTOC then
19: KAnon count
20: end if
21: if type == PTONC then
22: KAnon count�midmen
23: end if
24: if type == EPOC then
25: KAnon count�midmen
26: end if
27: Scope KAnon
28: row  row [KAnon [ Scope
29: TRKAnon  TRKAnon [ row
30: end for
31: end for
32: return TRKAnon

outsourcing instances from the perspective of one process as well as different process within CS.

Assume that, given that a process BPi has outsourced to a provider WSi as part of a business

process execution route, an adversary would like to guess (with probability p) how likely that the

same outsourcing had occurred in other processes or other routes within the same process, and to

which providers a process has outsourced.

We look into the cases where a process may outsource to the same provider or to different

providers. We also look into the cases where an outsourcing occurred in two routes in two pro-

cesses or two routes within the same process. A process may or may not go down a certain route

(due to a conditional activity for example), but in each route it may outsource certain operations.

In each process, we classify operations as either outsourced or inhouse. Fig 4.2 depicts a com-

posite service CS1 that uses an orchestration model of two business processes. The invocation
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graph shows that both processes outsource to similar services. The problem occurs when different

competitors, attempt to monitor the outsourcing behavior of each other and infer to whom other

competitors are outsourcing or whom they are partnering with.

Listing 4.3 shows a BPEL configuration representing a scenario in which there are three Web

service providers, A, B, and C that outsource to a client, who requests access to a customers data

from each service in order to accomplish subsequent outsourced activities. Table. 4.1 explains

each activity. One practical example of this could be several telemarketing companies (clients)

requesting customer data access from several bank services. The example below shows one process

and one client.

4.5.2 System Architecture

The proposed approach can be utilized either by developers and service administrators at de-

sign time or by the composition engine at runtime (Fig. 4.6). At design time, a developer designs

an application that involves composition. At deploy time, the service admins implement the Web

service logic and deploys it to the registry. They also specify the different parameters used by

the K-Anonymity check algorithm, including K-Anonymity types. K-Anonymity types account

for three different possible invocation scenarios on an operation invocation precedence graph.

Namely, PTOC (All Operations Can Be Called (Pass-Through Operations Counted), PTONC (All

Operations Can Be Called (Pass-Through Operations Not Counted)), and EPOC (Only Endpoint

Operations Can Be Called) as we shall explain later.

At run-time, the composition engine parses BPEL or WSCL definitions for operation invo-

cations depending on the composition style applied. Since in BPEL activities represent units of

processing, the algorithm parses the BPEL definition and instead of getting all the operations it

tracks the invoke and receive activities. Different processes interact with each other via partner

link ports. It tracks partner links as indicators of the WSDL services with which processes inter-

act and may involve outsourcing. It relies on language constructs at an individual process level

to handle all possible scenarios. It parses Process execution flows of each process of CS looking

for operation invocations including both inhouse and outsourced ones. It differentiates between

inhouse and outsourced operations using partner links.
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Figure 4.6: A framework for private Web service outsourcing.

4.5.3 K-Anonymity At the Operation Invocation Level (Revisited)

We leverage the notion of k-anonymity to the level of Web service operation. We define k-

Anonymity of an operation as the value that determines the extent to which an operation invocation

can be inferred if one knows that a downstream operation was invoked. To determine k-anonymity

scores, we use operation invocation route configuration stored in Operation Invocation Precedence

Graph (OIPG) definitions (e.g., WSCL).

Definition Let G = (Op, TR) be be a directed operation invocation precedence graph, OIPG, that

consists of n operations (vertices), Op, and m transitions (edges), TR. Each vertex is an operation

2 Op and each edge is a pair of source/destination operations (Opi, Opj) where Opi, Opj 2 Op.

For each source operation Opi 2 TR, there exists a k-anonymity score k if, for each destination

(downstream) operation Opj of Opi, there are at least another k�1 occurrences of that operation.

Opi is called k-Anonymous with respect to Opj .

Definition An end point operation in an OIPG is an operation that is not invoked by any other

operations or that does not invoke a downstream operation.
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4.5.4 K-Anonymity At the Business Process Level

We define K-Anonymity as the extent to which outsourcing an operation (by a service) in one

process (route) can be inferred if one knows that an outsourcing of that operation has occurred in

another process. Formally:

Definition Let G be a graph with several components Gi, . . . , Gn corresponding to a set of

business processes BP = {BP1, . . . , BPn} in a composite service CS. Each component

Gi consists of a subset of invoke activities corresponding to inhouse Web service operations

Op = {Opi,1, . . . , Opi,m} in BPi, and another that corresponds to outsourced operations OS =

{OS1, . . . , OSw} in BPi. For each process BPi 2 BP there exists a k-anonymity score k with

respect to an outsourced operation OSw, if for that outsourced operation there exists at least k� 1

other outsourcing occurrences of that operation. There exists also a score k with respect to an

inhouse operation Opi,j , if for that operation there exists at least another k�1 occurrences of that

operation. BPi is called k-Anonymous with respect to OSw or Opi,j .

4.5.5 K-Anonymity Score calculation for Inhouse Operations

To determine k-anonymity scores, we do the following:

Table 4.11: TR table (left) from the graph in Fig. 4.2 and TEERouts table derived from it.

Opi Opj
Op1 Op3
Op2 Op3
Op3 Op4
Op3 Op5
Op6 Op5
Op5 Op7
Op8 Op7
Op9 Op7

Opi Opj
Op1 Op3
Op2 Op3
Op3 Op4
Op3 Op5
Op6 Op5
Op5 Op7
Op8 Op7
Op9 Op7
Op1 Op5
Op2 Op5
Op2 Op5
Op3 Op7
Op6 Op7
Op6 Op7
Op6 Op7
Op6 Op7

• For each CS, for each BP, the algorithm generates source/destination operation transitions by

parsing transitions in WSCL files (Table 4.11) or invoke activities in execution flows defined
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in BPEL files (Table 4.12).

• From those transition tables, the algorithm generates a table of all possible end-to-end routes

TEERouts (Tables 4.11 and 4.12).

• Each end-to-end route is then classified based on the number of intermediate operations

along each source-destination path. Classes could be 0, 1, 2, 3, 4, etc. depending on

the number of intermediate operations (column midmen, Table A.3 ). For example, in the

9-Operation WSCL graph in Fig. 4.2, the route Op1 ! Op7 consists of three sub routes

Op1 ! Op3, Op3 ! Op5, and Op5 ! Op7. Thus, there are two middlemen: Op3 and Op5.

So, this route falls under the 2-middlemen class.

• Then for each source/destination operation transition Opi ! Opj , the algorithm calculates

a count of all the routes leading to the destination Opj of the source operation being invoked

(|TOp
jRouts

|). For example, for Op1,1 ! Op1,5 in Fig. 4.2, |TOp
jRouts

| for Op1,5 is 1 (column

|TOp
jRouts

|, Table A.3).

• To find the K-Anonymity score k, the algorithm subtracts from |TOp
jRouts

| the number of

routes that lead to the destination through that source operation |TOp
iRouts

|.

Algorithm 7 MidmenClassSupression
1: /*search for the row in EERoutes that has midmenOp as source and Opj as destination and they have a direct link*/
2: for each rowi in TREERoutes do
3: if rowi[midmen] > 0 then
4: for each op in rowi[midmenOp] do
5: for each rowj in TREERoutes do
6: if op == rowj [Opi] AND rowi[Opj ] == rowj [Opj ] AND rowj [midmen] == 0 then
7: /*mark that row for supression*/
8: rowj [Opi] =0 S0

9: rowj [Opj ] =0 S0

10: end if
11: end for
12: end for
13: end if
14: end for

4.5.6 K-Anonymity Score Calculation for Outsourced Operations

To calculate K-Anonymity scores for outsourced operations, we take the Business process BPi

into account, in selecting the end-to-end routes to consider for the K-Anonymity score calculation

of an outsourced operation. The reason for this is that an outsourced operation is common between

the two processes, which may produce excessively more routes (thus introduce negative number of
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OIPG OIPG with 1 midman supression

Opi Opj midmen midman Op Opi Opj
1 3 0 1 3

1 4 1 3 1 4

1 5 1 3 1 5

1 7 2 3,5 1 7

2 3 0 2 3

2 4 1 3 2 4

2 5 1 3 2 5

2 7 2 3,5 2 7

3 4 0 S S

3 5 0 S S

3 7 1 5 3 7

routes). An inhouse operation (e.g., Op1,1), on the other hand, is local to the current process (e.g.,

BP1). For each outsourced operation, the score is k if there are at least k � 1 routes pointing to

that operation in another process (k occurrences of that operation). We generate two counts: one

count from the perspective of OSi as a destination and one from the perspective of OSi as a source.

Table 4.14 explains how K-Anonymity scores are calculated.

In our running example (Table 4.1), an competitor may be interested in the possibility that a

competitor service provider had outsourced operation OS2. They can use the fact that the provider

had invoked Op2,1 to infer that the competitor outsourced OS2. In this case, the operation OS2

is 2-Anonymous, since it could have been invoked through at least two other routes, which is an

indicator that at least two other providers have outsourced that operation.

4.5.7 K-Anonymity Types

In this section, we describe the three K-Anonymity types used by the algorithm to generate K-

Anonymous (Uncertain) operation invocation precedence graphs, and the K scores or uncertainties

associated with each. We apply the same calculations to both operation level and business process

level K-Anonymity.

PTOC - All Operations Can Be Called (Pass-Through Operations Counted). For this K-
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Table 4.12: Transitions table (left) from the graph in Fig. 4.2 and TEERouts table derived from it.

CS BP Opi Opj
1 1 1,1 1,5
1 1 1,1 OS1
1 1 1,1 1,6
1 1 1,5 OS2
1 1 1,5 1,6
1 1 OS2 1,6
1 1 1,6 2,1
1 2 2,1 OS2
1 2 2,1 2,3
1 2 2,1 OS1
1 2 OS1 2,4
1 2 OS2 2,2
1 2 2,2 2,4
1 2 2,3 OS1

CS BP OPi Opj
1 1 1,1 1,5
1 1 1,1 OS1
1 1 1,1 1,6
1 1 1,5 OS2
1 1 1,5 1,6
1 1 OS2 1,6
1 1 1,5 1,6
1 2 2,1 OS2
1 2 2,1 2,3
1 2 2,1 OS1
1 2 OS1 2,4
1 2 OS2 2,2
1 2 2,2 2,4
1 2 2,3 OS1
1 1 1,1 OS2
1 1 1,1 OS2
1 1 1,1 OS2
1 1 1,1 1,6
1 2 2,1 2,4
1 2 2,1 2,4
1 2 2,1 2,4
1 2 2,1 OS1

Anonymity type, we consider all operation invocations, including the intermediate operations that

lead to the destination (i.e., middlemen). For the 9-Operation WSCL file, the following operations

can be called: Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, and Op9 and the operations that we pass

through are part of the k-Anonymity score (column kPTOC , Table 4.13). Similarly, for the BPEL

in Fig. 4.2, the PTOC k scores are shown in Table A.3.

PTONC- All Operations Can Be Called (Pass-Through Operations Not Counted). For this K-

Anonymity type, we start with the set of rows resulting from the PTOC stage (kPTOC , Table 4.13

or kPTOC , Table A.3). Then, as an additional step, we subtract the number of middlemen from

the k-Anonymity score for the source operation Opi for each route. The number of middlemen

corresponds to the intermediary nodes that lead from Opi to Opj , and does not include the in-

termediary nodes that lead to Opj through other source operations. For the 9-Operation WSCL

file, the following operations can be called: Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, and Op9,

and the operations that we pass through are not part of the k-Anonymity score (column kPTONC ,

Table 4.13). For example, in calculating k score for Op1 in the invocation Op1 ! Op4, we exclude

the route that passes through Op3 from Op1 but not the route that passes through Op3 from Op2.
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Table 4.13: K-Anonymity scores derived from the WSCL configuration in Table 4.11

Opi Opj midmen |TOp
iRouts

| |TOp
jRouts

| kPTOC kPTONC kOEOC

1 3 0 0 2 2 2 2
1 4 1 0 3 3 2 2
1 5 1 0 4 4 3 3
1 7 2 0 7 7 5 5
2 3 0 0 2 2 2 2
2 4 1 0 3 3 2 2
2 5 1 0 4 4 3 3
2 7 2 0 7 7 5 5
3 4 0 2 3 1 1 -
3 5 0 2 4 2 2 -
3 7 1 2 7 5 4 -
5 7 0 4 7 3 3 -
6 5 0 0 4 4 4 4
6 7 1 0 7 7 6 6
8 7 0 0 7 7 7 7
9 7 0 0 7 7 7 7

Similarly, for the BPEL in Fig. 4.2, kPTONC scores are shown in Table A.3.

EPOC- Only Endpoint Operations Can Be Called. This k-Anonymity type is a subset

of the above case (PTONC), with k-Anonymity values for only endpoint operations. For

the 9-Operation WSCL transactions in Fig. 4.2, only the following operations can be called:

Op1, Op2, Op4, Op6, Op8, and Op9, and operations that we pass through are not part of the k-

Anonymity score (column k EPOC, Table 4.13). Similarly, for the BPEL in Fig. 4.2, only

Op1,1, Op1,6, and OS1 in BP1 and Op2,1, Op2,4 in BP2 can be invoked. The kEPOC scores are

shown in Table A.3.

4.5.8 K-Anonymity as a Measure of Uncertainty

We use k-Anonymity as a measure of uncertainty. The higher the K-Anonymity score the higher

the uncertainty and the more private the invocation. Recall from our scenario, since some diseases

can be inferred form the price of their medicine (e.g., cancer), the operation getPrice(medicine)

can be considered a private resource, since knowing that this operation has been invoked can reveal

that getMedicine() has been invoked. Similarly, getMedicine() can reveal that getDisease() has

been invoked (Fig. 4.7). However, if at least one more operation getMedicine() has been invoked,

the probability of knowing that getMedicine has been invoked through getDisease() becomes

50%, which increases the uncertainty.

Definition A transition table TR consists of a multiset of source/destination pairs. An equivalence
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Table 4.14: K-Anonymity scores derived from the BPEL configuration in Table 4.12

CS BP Opi OpType Opj OpType midmen |TOp
jRouts

| |TOp
iRouts

| PTOC PTONC OEOC
k k k

1 1 1,1 inhouse 1,5 inhouse 0 1 0 1 1 1
1 1 1,1 inhouse OS1 outsourced 0 4 0 4 4 4
1 1 1,1 inhouse 1,6 inhouse 0 4 0 4 4 4
1 1 1,5 inhouse OS2 outsourced 0 5 1 4 4 -
1 1 1,5 inhouse 1,6 inhouse 0 4 1 3 3 -
1 1 OS2 outsourced 1,6 inhouse 0 4 5
1 1 1,5 inhouse 1,6 inhouse 0 4 1 3 3 -
1 2 2,1 inhouse OS2 outsourced 0 5 0 5 5 5
1 2 2,1 inhouse 2,3 inhouse 0 1 0 1 1 1
1 2 2,1 inhouse OS1 outsourced 0 4 0 4 4 4
1 2 OS1 outsourced 2,4 inhouse 0 5 4 1 1 1
1 2 OS2 outsourced 2,2 inhouse 0 1 5
1 2 2,2 inhouse 2,4 inhouse 1 5 1 4 3 -
1 2 2,3 inhouse OS1 outsourced 1 4 1 3 2 -
1 1 1,1 inhouse OS2 outsourced 1 5 0 5 4 4
1 1 1,1 inhouse OS2 outsourced 2 5 0 5 3 3
1 1 1,1 inhouse OS2 outsourced 1 5 0 5 4 4
1 1 1,1 inhouse 1,6 inhouse 1 6 0 6 5 5
1 1 1,1 inhouse 1,6 inhouse 2 6 0 6 4 -
1 2 2,1 inhouse 2,4 inhouse 1 5 0 5 4 4
1 2 2,1 inhouse 2,4 inhouse 2 5 0 5 3 3
1 2 2,1 inhouse 2,4 inhouse 2 5 0 5 3 3
1 2 2,1 inhouse OS1 inhouse 1 4 0 4 3 3

class for TR with respect to Opj is the set of all pairs in TR containing identical values Opj .

Definition K-Anonymity property states that Table TR is k-anonymous with respect to Opi, Opj

if every unique pair (Opj) in TR occurs at least k times. That is, the size of each equivalence class

in TR with respect to Opj is at least k.

We explain how the algorithm generates a probability (uncertainty) table depending on the k

score for each operation. We can group the Opj invocations in TREERoutes table into equivalence

classes based on the source operation Opi. Then, we calculate the probability of a destination

operation Opj leading to (can be an indicator of) Opi based on the other operations that also lead to

Opi. Thus, from the perspective of the ith operation in TEERoutes, the probability Pr(Opj ! Opi)

can be calculated as follows:

Pr(Opj ! Opi) = 1/|TOp
j

!Op
i

|

where TOp
j

!Op
i

is the table of only the routes that has Opi as their source operation. For instance,

in Table 4.12, Pr(Opj = 1, 5 ! Opi = 1, 1) = 1/7 (14%) since there are 7 routes of it’s

equivalence class 1,1. Similarly, Pr(Opj = OS1 ! Opi = 1, 1) = 1/7, Pr(Opj = OS2 !
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Figure 4.7: K-Anonymity as uncertainty from our scenario.

Opi = 1, 1) = 3/7, and Pr(Opj = 1, 6 ! Opi = 1, 1) = 2/7. Thus, for any equivalence class

Opi, we can generalize the probability of knowing that Opi was invoked given that an operation

Opdst has been invoked to the formula:

Pr(Opdst ! Opsrc) =
1

n
⇥

nX

s=1

Pr(Opdst ! Opi), where n is the size of the equivalence class

The resulting probability values represent uncertainty in detecting that an invocation occurred

in a route given that an invocation had occurred in another route (Table A.3). If an invocation

involves a single service/process invocation, an adversary can deduce with certainty 100% that an

invocation or an outsourcing had occurred. However, if at least two processes are involved, then

the probability will be 50%, and the uncertainty increases.

4.5.9 Anonymous (Uncertain) Operation Invocation Precedence Graph

We introduce the notion of an operation precedence graph as a generic abstraction for model-

ing relationships between Web service operation invocations in standards like BPEL and WSCL.

We add the calculated uncertainty values as labels on the precedence graph edges to produce an

uncertain precedence graph. Fig. 4.8 shows the precedence graph for the 9-Operation WSCL with

uncertainty values added to edges. Figures. 4.9, 4.10, and 4.11 depict the precedence graph from

our running example corresponding to the PTOC, PTONC, and OEOC K-Anonymity types, re-

spectively. The graph includes uncertainty values on edges. For instance, the operation OS2 is

2�Anonymous, so this leaves the adversary with 50% uncertainty (two outsourcing invocations)
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Table 4.15: Different Equivalence classes in TREERoutes and their sizes (Derived from Table A.3).

equivalence class size
Opi Opj
Op1 Op3 2
Op1 Op5
Op2 Op5 3
Op2 Op5
Op2 Op3
Op3 Op7 3
Op3 Op4
Op3 Op5
Op5 Op7 1
Op6 Op7 5
Op6 Op7
Op6 Op7
Op6 Op7
Op6 Op5
Op8 Op7 1
Op9 Op7 1

Table 4.16: Routes in the Opi = 1, 1 Equivalence class (derived from Table 4.14)

CS BP Opi Opj
1 1 1,1 1,5
1 1 1,1 OS1
1 1 1,1 1,6
1 1 1,1 OS2
1 1 1,1 OS2
1 1 1,1 OS2
1 1 1,1 1,6

about the exact same process that outsourced the operation.

The uncertainty values on the precedence graph introduce several observations:

Observation 1 The uncertainty decreases by excluding the routes leading to the source operation

for which we calculate the K-Anonymity score. Since we calculate K-Anonymity from the per-

spective of the an outsourced operation by counting the number of other routes that lead to it’s

destination, we subtract the number of those routes that lead to the operation itself. For example,

by subtracting the two routes that lead to the outsourced operation OS2 (Table A.3), the score

Table 4.17: Routes in the OS1 Equivalence class (derived from Table 4.14).

CS BP Opi Opj
1 1 1,1 OS1
1 2 2,1 OS1
1 2 2,3 OS1
1 2 2,1 OS1
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Table 4.18: Uncertainty probabilities derived from the End-To-End Routes table TEERouts (Table 4.12)

CS BP Opi Opj |TOp
j

!Op
i

| Pr(Opj ! Opi) Pr(Opdst ! Opi)
1 1 1,1 1,5 7 1/7 7/49
1 1 1,1 OS1 7 1/7 7/49
1 1 1,1 1,6 7 1/7 7/49
1 1 1,5 OS2 2 1/3 3/9
1 1 1,5 1,6 2 1/3 3/9
1 1 OS2 1,6 2 1/2 2/4
1 1 1,5 1,6 2 1/3 3/9
1 2 2,1 OS2 3 1/3 7/21
1 2 2,1 2,3 3 1/3 7/21
1 2 2,1 OS1 3 1/3 7/21
1 2 OS1 2,4 1 1 1
1 2 OS2 2,2 2 1/2 2/4
1 2 2,2 2,4 1 1 1
1 2 2,3 OS1 1 1 1
1 1 1,1 OS2 7 1/7 7/49
1 1 1,1 OS2 7 1/7 7/49
1 1 1,1 OS2 7 1/7 7/49
1 1 1,1 1,6 7 1/7 7/49
1 2 2,1 2,4 3 1/3 7/21
1 2 2,1 2,4 3 1/3 7/21
1 2 2,1 2,4 3 1/3 7/21
1 2 2,1 OS1 3 1/3 7/21

reduces from 4 to 2 which decreases the uncertainty from 25% to 50% thus increases the privacy

risk.

Observation 2 The uncertainty varies from route to another. For instance, in Table A.3, operation

OS1 has three scores corresponding to operations Op1,1, Op2,1, and Op2,3. In particular, it is 4-

Anonymous (25% uncertainty) with respect to operations Op1,1 and Op2,1 (since at least four other

routes exist), while it is 3-Anonymous (33% uncertainty) with respect to Op2,3. So, the route that

passes through Op2,3 is more private. The algorithm uses the lower uncertainty percentage as a

threshold to guarantee a private composition. The notion of K-Anonymity threshold is explained
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Figure 4.8: Operation precedence graphs for the three K-Anonymity types with uncertainties added to edge labels.
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Figure 4.9: Operation precedence graph (PTOC) with uncertainties added to edge labels.
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Figure 4.10: Operation precedence graph (PTONC) with uncertainties added to edge labels.

in detail in Sec. 4.5.11.
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Figure 4.11: Operation precedence graph (OEOC) with uncertainties added to edge labels.

Observation 3 The uncertainty value depends on the K-Anonymity type.

For instance, the graphs in Figures. 4.9, 4.10, and 4.11 depict that the uncertainty decreases as we

move from the K-Anonymity type PTOC to PTONC and from PTONC to OEOC. The reason for

this is that when we move from PTOC to PTONC we limit the invocations to only direct invoca-
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tions, so we exclude some edges (e.g., the indirect edge from Op1,1 ! Op1,6). The uncertainty

calculations exclude the routes that go through the middlemen that lead from Opi to Opj , and

includes only the routes that pass through the middlemen that lead to Opj through other source op-

erations. For instance in the precedence graph of the 9-Operation WSCL (Fig. 4.8), the uncertainty

for the invocation Op1 ! Op4 decreases (33% to 50%) since it excludes the route that passes

through Op3 from Op1 and considers only the indirect route that passes through Op3 from Op2 and

the direct route Op3 ! Op4. Same thing applies to the graphs corresponding to the BPEL graphs.

Fig. 4.10 highlights the invocation edges that are included in the uncertainty value calculation for

some operation pairs (e.g., Op1,1 ! Op1,6). Also, when we move from PTONC to OEOC we

get limit the number of operations that can be invoked, so we exclude some operations. Fig. 4.11

highlights the operation nodes that are included in the uncertainty value calculation.

4.5.10 K-Anonymity Check Algorithm (Revisited)

For a composite service CSi in which an invocation Op0 initiates a business process BPj , the K-

Anonymity check algorithm (Algorithm 8) generates a transitions table TR from the execution flow

in BPj . Then, it traverses the resulting table to produce TREERoutes. The algorithm initializes k

score of all operations to 0 and the corresponding thresholds to1. Then, it iterates the TREERoutes

table, and for each operation the algorithm calculates k. It then selects the minimum value of k as

a threshold.

Table 4.19: Example of K-Anonymity rules that can be applied to Web service definitions.
WSi BPi Opsrc Opdst input output KAnon type level operation type Threshold
CS1 1 Op1,1 OS1 d1 d2,d3 PLOC process outsourced GTE2
CS1 1 Op1,2 Op1,4 d2 d5 PTONC process in house GTE2
CS1 1 Op1,3 Op1,1 d6 d7 EPOC process in house GTE2
CS1 2 Op2,4 Op2,2 d1 d2 EPOC process in house 1
CS1 2 Op2,5 Op2,1 d7 d8 PTOC process in house GTE4
CS2 - Op1 Op2 d1 d5,d6 PLOC operation - GTE3
CS2 - Op2 - d2,d8 d3,d4 PTONC operation - GTE2
CS2 - Op3 Op1 d1,d2,d4 d9,d3 EPOC operation - GTE2
CS3 - Op1 Op2 d1 d4,d7 - data - -
CS3 - Op4 Op2 - d1,d2,d3 - data - -

4.5.11 Private Web Service Outsourcing Model

After deriving k-anonymity scores, we can incorporate them into rules that govern the usage

of business processes or operations for each composite service in the system. Table 4.19 shows a

sample set of rules. According to our model, we define the following:
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• Privacy level: resources could be data (BPEL variables or operation parameters), BPEL

business processes, or WSCL operations.

• Operation type: in addition to privacy level being operation, we add the operation type as

{outsourced,inhouse} to indicate whether the invoked operation is local to the Web service

or is an outsourced operation invoked on an external Web service.

• K-Anonymity threshold: Unlike traditional K-Anonymity, our approach accounts for all pos-

sible invocation routes, so one operation can have two different K-Anonymity scores with

respect to two different source (invoking) operations along a certain route. Moreover, those

scores vary within the same business process as well as across different processes. For

instance, in the BPEL example in Table A.3, OS1 has two scores corresponding to opera-

tions Op1,1, Op2,1, and Op2,3. In particular, it is 4 anonymous with respect to operations

Op1,1 and Op2,1 since at least four other routes exist, while it is 3 anonymous with respect

to Op2,3. Thus, our algorithm traverses the scores and determines a threshold value based

GTEX based on the minimum score min(k). Thus, a service admin can choose among the

set {GTE1, GTE2, GTE3, GTE4, GTE5, GTE6, GTE7, GTE8, GTE9, GTE10,1}.

Thresholds indicate that the K-Anonymity value should be at least as large as this value.

1 means that the operation does not invoke any downstream operations.

4.6 Prototype Implementation

The proposed K-Anonymity check algorithm can be incorporated into any service composition

middleware. It could be integrated either in a composition development environment to assist

developers during process design by performing compile-time process validation or in a run-time

environment (composition engine) to perform run-time validation during process execution. We

provide two implementations of our framework.

4.6.1 Design-time Validation System

We implemented the first system in Microsoft Visual C sharp using Visual Studio 2010. We

used ASP.Net for our web application and Windows Communication Foundation (WCF) for Web

service implementation. We used ASP.Net Development Server to deploy our Web application

and Web services and we used SQL Server 2008 to store our database. Both SOAP and WSDL

protocols were used. The prototype consists of the following subviews:
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Main console is where the K-Anonymity check is performed. Through this view the user selects a

Composite service, then all the business process that comprise the composition in that service are

displayed. From those processes, the user can execute a composition. The system populates the

K-Anonymity scores table for each operation. The results of the K-Anonymity check as well as the

results of the composition are then displayed. For each operation in the table, the user is presented

with information on whether there is an indicator of outsourcing in other routes. It also indicates

the uncertainty.

Admin console on the Web service side allows the user to select a BPEL file and a k-Anonymity

type. The file is then parsed and used together with the K-Anonymity type to calculate k-

Anonymity scores for each of the defined operations. The system displays the results as well

as the precedence graph of operation invocations.

!

A

B

C

D

Figure 4.12: Prototype main view

Home (default) view is where compatibility check between PR and PP is performed. Through this
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view the user selects a Web service, then all the operations for that service are displayed along with

the corresponding parameters (Fig. 4.12, A). The user then enters the comma-delimited parameters

and clicks submit (Fig. 4.12, B). Then the system populates client assertions array from the client

database as well as the Web service assertions array for the specified operation. Then the system

goes through each item in both arrays, looking for matches. The results of the compatibility check

(Fig. 4.12, C) as well as the results of invoking the selected operation (Fig. 4.12, D) are then dis-

played. For each client item, the user is presented with information on whether there is an overall

match or overall mismatch, and whether the matching is mandatory or non-mandatory; topic, level,

resource, domain and scope, and client-specified weight are also shown. It also indicates whether

simple or complex subsumption match was performed depending on the domain. Special output

Messages from compatibility checks include:

����
���������������	����	���	�������������

�������	���
���������������	�����	������������������

�������	���
���������������	����
�	��	��������������������

Figure 4.13: K-Anonymity compatibility messages

• K-Anonymity compatibility checks: in this case, three results can be returned depending on

the WS and client scope values (Fig. 4.13). A match is returned if k-Anonymity scopes are

identical or if a client’s k-Anonymity scope is less than that of WS. A mismatch is returned

if client’s k-Anonymity scope is greater than that of WS.

• Threshold compatibility checks: if the Web service privacy matching degree is less than the

threshold specified by the client, a mismatch is reported. In this case, the user is prompted

to resubmit with three options. First, is to make a change in the area(s) of incompatibility
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(i.e., client side assertions or threshold level) and resubmit without determining the GUID

“Unique Identifier for Resubmission” value. This tells the system that the incentive is not

desired. For example, the user can change the client threshold amount by entering a value

in the field “Client Threshold (0 to 1)”. Second, is to make a change in the area(s) of in-

compatibility, provide the GUID, and resubmit. This tells the system that the incentive is

desired. Third, is to leave the areas of incompatibility unchanged, provide the GUID and

submit in order to be presented with a different incentive retrieved from the Web service

database. If incompatible again, another offer is made. The user can continue to resubmit

until all incentives stored in the WS database are exhausted and no more offers are made.

WSCL Admin view on the Web service side allows the user to select a WSCL file and a k-

Anonymity type (Fig. 4.14, A). The WSCL file is then parsed and used together with the K-

Anonymity type to calculate k-Anonymity scores for each of the defined operations. The system

displays the results as well as a choreography of operation interactions and transitions (Fig. 4.14,

B).

!

A

B

Figure 4.14: WSCL admin view
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Table 4.20: Examples of Web Service and Client Assertions. W and M are only in the case of client assertions.

WS operation resource W ⇤ M⇤ R T L D S
1 getLab1Res get lab results 0.1 No 1 recipient data public total
1 getLab1Res get lab results 0.1 Yes 3 K-Anon op services GTE2
1 getLab1Res patient id 0.1 Yes 1 recipient data govrnmt total
1 getLab1Res test results EXP 0.1 No 1 recipient data govrnmt total
1 getLab1Res test results PR 0.1 Yes 1 recipient data research total
2 getLab2Res get lab results 0.2 yes 2 recipient op public partial
2 getLab2Res get lab results 0.1 yes 3 K-Anon op services GTE1
3 getLab3Res get lab results 0.2 yes 2 recipient op public partial
3 getLab3Res get lab results 0.1 yes 3 K-Anon op services GTE4

Client and Web Service Reference View serves as a client and WS assertion configuration panel.

Each Web service provides the user with the ability to select from a set of preferences whenever

they want to add a WS PP Assertion or a Client PR Assertion (which is identical to a WS assertion

except for the mandatory flag M and the weight W ) (Table 4.20). The newly added row then

becomes available in the lists of client PR and WS PP views .

Client Privacy Requirements (PR) view is located on the client side. Using this view, a user first

selects from the full set of privacy rule constituent items that can be assigned to a client, assuming

these choices have been added via the Client and WS Preference view. When an individual item

is chosen, it is added to the list of entitled privacy rule items for that client. Items on this list are

now available to be used in client assertions (PRs). One can add to the list of Client Assertions by

selecting a client privacy rule item, the Web service, and the desired operation. The set of client

assertions is later compared with Assertions for WS via the Home (default) view for compatibility

check.

WS Privacy Policies (PP) view is located on the Web service side and the client obtains access to

it by invoking an operation on the selected Web service. This view displays a list of PP items for

a WS. This way, the k-Anonymity information reflected in the WSCL file is made available to be

used for defining WS PP assertions.

4.6.2 Run-time Verification System

We implemented the second system in Java using Eclipse and SQL server as our database server.

Since most of the K-Anonymity check code is implemented as stored procedures we invoked those

procedures from our code. We incorporated the K-Anonymity check algorithm into the composi-
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tion middleware provided by the WSO2 business process server (WSO2 BPS) [7]. WSO2 BPS pro-

vides a comprehensive web-based console to manage, deploy, view and execute processes within

a single server instance. WSO2 BPS implements an Apache ODE-powered BPEL engine. WSO2

BPS supports the BPWS4J [34] implementation of the IBM, Microsoft and BEA BPEL4WS spec-

ification. The BPWS4J platform is an Eclipse plug-in that consists of an engine and an editor. The

BPWS4J engine takes the BPEL document for each process to be executed, a WSDL description

of the interface that the process presents to the external clients or service partners (without binding

information), and several WSDL documents of the partner services with which the process may

interact. We extended the RESTful management APIs to include the K-Anonymity checks.

4.7 Experiments

4.7.1 Environment

We conducted the experiments using a 2.83GHz Intel Quad-Core CPU, 8GB RAM, 32bit Win-

dows Server 2007 machine. We ran Jmeter on the same machine with a memory foot print of

-Xms1024m -Xmx2048m -XX:MaxPermSize=1024m. We used an SQL server 2008 instance and

a WSO2 BPS server 3.5 instance running on the same machine.

4.7.2 Jmeter Test Plan

We configured Apache Jmeter 2.8 with threads to simulate 100 concurrent users, starting a new

thread and sending parallel XML documents (WSCLs and BPELs) every 30 seconds (by setting

the ramp up period to 3000 seconds) for varying number of documents. Since the WSO2 BPS is

exposed via a Web service, we configured Jmeter to call that service API. We imported 30 BPEL

files associated with 10 services into the BPEL store using the WSO2 BPS API. Since BPS uses

caching to improve the performance, each time we ran the tests we loaded BPS with different

BPELs stored in a CSV file. We used a transaction controller with a SOAP/XML-RPC sampler to

test WSCL and BPEL K-Anonymous graph generation (Table. 4.21).

4.7.3 Data Set

We investigated 2507 real world services from the QWS data set [13]. Since the dataset does

not take service composition into account, we generated random service compositions from the

available services. We used the BPELUnit Framework [72] to generate BPEL compositions while

we implemented our own WSCL generator. We generated synthetic compositions to simulate cases
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Table 4.21: Jmeter test plan setup

BPEL version 3.0
BPEL Engine WSO2 BPS
Database SQL server
Threads (Users) 100
Iterations (no. of test runs) 10
Ramp-up time 3000 sec
Transport SOAP over HTTPS
Sampler(s) Soap/XML-RPC and HTTP Request
Services 10
BPEL files 30
Operations/BPEL 20

in which an operation appears as both a source and destination along a certain route. To generate

a set of n composition documents (BPEL and WSCL) we first generated k core documents, with

m operations each, such that all operations within a single document, as well as across multiple

documents are different. Then, we permuted the n � k remaining documents from the k pre-

vious ones. We generated 30 different WSCL documents (WSCL01, . . . ,WSCL30, Table A.4),

each of which defines operations identified by 20 collaborating services. We generated 30 BPEL

documents (BPEL1, . . . , BPEL30, Table A.5), each of which defines a process identified by 15

inhouse, 5 outsourced operation invocations, and 10 variables from several collaborating partner

services from the QWS service repository. Each generated BPEL document started with a receive

activity and ended with a reply activity and was generated using a nested structure of flow and

sequence activities, each of which included a set of random number of invoke activities. The ser-

vices and their operations were randomly selected such that there is overlap between the services

used in each document. The parameters of each generated document are shown in Tables A.4

and A.5.

4.7.4 Variables and Metrics

The performance of our K-Anonymity check algorithm depends on the size of the composition.

We measure the size of the composition in terms of both number of Web services involved in a

composition |WS| which is proportional to the number of operations |Op|. We also measured the

size of the composition in terms of the number of operation invocations |Transitions| and the

total possible routes |TEERoutes|. We analyzed the evaluation time, throughput, and scalability

of the K-Anonymity check algorithm as the above variables increase and we compared the results

among the different K-Anonymity types (PTOC, PTONC, and OEOC).
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Figure 4.15: Evaluation time of different WSCL compositions

4.7.5 Results
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Figure 4.16: Performance results of different BPEL compositions

K-Anonymity check time. The K-Anonymity check algorithm (algorithm 8) depends on |TR|

(N ) and |TEERoutes| (M ). The time complexity is O(M2) since M � N . The results show that

the time grows linearly with the number of routes regardless of the size of the composition (|Op|,

which is equivalent to the number of services as per our assumption). for both WSCL (Fig. 4.15)

and BPEL (Fig. 4.16) compositions. Table. A.1 illustrates that the time different is due to the

number of routes that have to be traversed by the algorithm in each case.
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Figure 4.17: Performance results of different CP sizes.
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Figure 4.18: Performance results of different TREERoutes table sizes for a fixed CP of size 5.

Privacy compatibility check time. We evaluated the feasibility of our approach with k-

anonymity included (KPCM). The performance of the KPCM algorithm depends on the total

number of assertions that must be compared and the size of the composition plan CP . The number

of comparisons among a PR set containing N assertions and a PP set containing M assertions

in a composition plan CP of size |CP | is equal to N x M . We analyzed the scalability of our

KPCM as the size of PR and PP increases in terms of both the number of resources and number

of assertions as well as the size of CP . We generated several composition plans in which we varied

the number of services (|CP |). We measured the performance of KPCM as the composition CP

size increases in terms of the number of services. We also measured how the time changes as the

size of PR and PP increase in terms of the number of assertions |A|.

The time requirement grows almost linearly with the number of services, and we expect the

KPCM to scale well on larger PR and PP sets. The reported time is the time to check the pri-
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Figure 4.19: KPCM Performance

vacy compatibility of PR and PP of all services in CP. The running time of the algorithm has

slightly increased from 135ms for |A|=10 to 250ms for |A|=30, when 100 services were processed

(Fig. 4.19).

4.8 Conclusion

WSCL and BPEL definitions can play a very important role in determining privacy compatibil-

ity between a client and a Web service at the operation invocation and business process levels. We

presented formal definitions and prototype implementations of two approaches: one that integrates

k-Anonymity scores calculated from Web service compositions defined in WSCL and BPEL into

a privacy management framework.
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Algorithm 8 KAnonymityCheck
1: input CSi, BPj , Op0, Otype,Ktype
2: output: TRKAnon

3: TR GETTRANSACTIONS(BPj)
4: row  �, TEERouts  �, TKAnon  �, TOpiroutes  0, TOpjroutes  0, count 0, k  0,K⌧  1
5: /*get all end to end routes*/
6: TEERouts  TEERouts [ TR
7: for each rowi in TR do
8: for each rowj in TR do
9: if rowi[Opdst] == rowj [Opsrc] then

10: midmen midmen+ 1

11: row  (rowi[Opsrc], rowj [Opdst])
12: TEERouts  TEERouts [ row
13: end if
14: end for
15: TKAnon  TKAnon [ rowi [midmen
16: end for
17: for each rowi in TKAnon do
18: for each rowj in TKAnon do
19: if rowi[Opdst] == rowj [Opdst] then
20: TOpjroutes  TOpjroutes + 1

21: end if
22: end for
23: rowi  rowi [ TOpjroutes

24: end for
25: for each rowi in TKAnon do
26: for each rowj in TKAnon do
27: if rowi[Opsrc] == rowj [Opsrc] then
28: TOpiroutes  TOpiroutes + 1

29: end if
30: end for
31: rowi  rowi [ TOpiroutes

32: end for
33: for each rowi in TKAnon do
34: for each rowj in TKAnon do
35: count rowi[TOpjroutes]� rowi[TOpiroutes]

36: rowi  rowi [ count
37: if Ktype == PTOC then
38: k  count
39: rowi  rowi [ k
40: end if
41: if Ktype == PTONC then
42: k  count� rowi[midmen]
43: rowi  rowi [ k
44: end if
45: if Ktype == EPOC then
46: k  count� rowi[midmen]
47: rowi  rowi [ k
48: end if
49: end for
50: end for
51: return TKAnon
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CHAPTER 5 PRIVACY FLOW ANALYSIS

In services-based data analytics environments, multiple services may be dynamically composed

to enable scientific data discovery. This composition requires appropriate privacy mechanisms to

guarantee the confidentiality of all participants along the composition chain. Since services on the

Web interact through process executions that trigger operation invocations by providing input data

and retrieving output data, a mechanism is needed to ensure that the data privacy is maintained as

it flows between those services. To this end, we propose a static privacy flow analysis between

the composition plan generation and its execution phases, that uses dataflow concepts from pro-

gramming languages. We formally define our static analysis using Pri-calculus, which extends the

Pi-calculus for process algebra with privacy level types for private flow enforcement.

Using cloud-based services for data analytics makes them increasingly data-intensive. Main-

taining privacy in such environments is a challenging task, since that data could potentially be

distributed among several organizations, some of which manages the data access and usage via a

service. Privacy of health science data is of a major importance. For instance, scientific workflows

are formalizations of complex scientific processes distributed among several services that need to

be dynamically composed to enable scientific discoveries (data search and analysis tasks). Com-

position of such services requires appropriate privacy mechanisms to guarantee the confidentiality

of all participants along the composition chain. Scientific workflows are different from business

workflows in several ways. First, unlike business workflows, which tend to be controlflow oriented,

scientific workflows are dataflow oriented [39]. Second, they are often based on service and do-

main ontologies to support semantic discovery of workflows (e.g., MyGrid tools and BioWeb [86]).

In fact, the Linked Open Data (LOD) initiative have focused on transforming health science data

into ontology-based repositories using RDF as a universal exchange language to support semantic

discovery of data. In such repositories an ontology is defined in OWL format including classes

(e.g., Disease) and data type properties to link instances of those classes to their data (e.g.,

hasMedicine). The Bio2RDF project [22] provides a good example as it incorporates data from

several domain ontologies, including PharmKGB, DrugBank, and GeneCDS. Therefore, services

in such environments can be characterized by their computation logic, their data repositories, and
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input and output data types. Several service composition (orchestration and choreography) lan-

guages have been proposed, including OASIS BPEL4WS (BPEL) [14] and W3C WS-CDL [53].

BPEL is a result of a large industry consensus and can be used for creating composite services

in the form of business processes in a centralized service orchestration manner. While BPEL has

been proposed as a standard for business workflows, a few efforts have been made to add language

abstractions (e.g., hierarchical composition) to the BPEL syntax to make it more expressive as a

Scientific Process Execution Language [105, 90, 108].

Table 5.1: Web services involved in our scenario.

Service Dinput Doutput Op Description
GenomicWS hasGene {hasGeneLocation, ha-

sOMIM, hasGene, has-
Gender, hasAge}

getGeneInfo(g) Returns detailed gene
info of patients who have
gene g

hasRS hasRS, hasSNPLoca-
tion, hasGene, hasGen-
der, hasAge

getSNPInfo(rs) Returns detailed SNP
info of patients who
have RS rs

hasTrait hasTrait, hasRS, has-
Gene, hasRSLocation,
hasGender, hasAge

getGenPhenAssoc(d) Returns Genotype Phe-
notype associations of
patients who have trait
(disease) d

DrugWS hasDrug hasDrug, hasGene, has-
SNP, hasCoMedication,
hasGenderhasAge

getDrugInfo(m) Returns Drug info of
Drug m

ClinicWS hasTrait hasHGVS, hasDisease,
hasOMIM, hasDate, has-
Treatment, hasTestRe-
sult, hasGender, hasAge

getDiagnosis(d) returns clinical details of
trait t

PharmaWS hasDrug Dosage, hasDrug,
hasGeneDrugAsso,
hasGenPhenAsso,
hasGender, hasAge

getPharmInfo(m) returns pharamy info
about a drug m

ClinicWS hasTrait,
hasDrug

hasName, hasAddress,
hasGender, hasAge

getClinicPersonInfo(d,m)

DemogWS hasAge,
hasGen-
der

hasName, hasAddress,
hasGender, hasAge

getPersonalInfo(a,gd)

A typical chain of operation invocations on those services is shown in Table 5.1. Phenotypes

such as diseases and traits are associated to genes or variants (SNPs). Assume a service Ge-

nomicWS that provides both variation phenotype and gene phenotype lists which serve as sources

of phenotype associations. Genetic disorders can be identified by linking genotypes to pheno-

types, so an adversary can obtain a list of Gene information by invoking the getGeneInfo()

operation which returns the data type properties GeneLocation,OMIM, etc. of the class
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Gene. To further analyze the results, he invokes the getSNPInfo() operation which returns

(rsno., Location,Gene) of the SNP class. He can then invoke the getGenPhenAssoc() opera-

tion which searches a Phenotype Genotype Association dataset by a phenotype Trait and returns

(Trait, rsno., Gene, Location) of the PhenGenoAssoc class. The adversary can conduct the

above analysis in any order. For example, he can search the PhenGenAssoc dataset by a pheno-

type Trait. Similarly, he can search the Gene data set by Gene IDs retrieved from the association

results. OMIM provides a catalog for human genes and genetic disorders. Thus, he can link

genes or SNPs to diseases contained in the OMIM disease dataset through the OMIM number. He

can also search an SNP dataset by SNP rs numbers retrieved from the association results. Later,

he analyzes the data using DrugWS which queries a data set that combines a drug with drug

target (e.g. a gene sequence) information. A sample data set has the properties (DrugLabel,

InteractingGene, SNP , CoMedication). For example, Citalopram can be used for the treat-

ment of major depression and is associated with Gene symbol GRIK2 and SNP rs2518224. The

adversary can then consult PharmWS to query a pharmacogenomics knowledge base that en-

compasses clinical information including dosing guidelines and drug labels, potentially clinically

actionable gene-drug associations and genotype-phenotype relationships. Finally, he can confirm

the desired victim names by cross-referencing the possible last names with public records of peo-

ple of similar ages and locations. He consults DemographicWS for that and he indicates the age

and gener to identify people who participated in Genomic studies and detect that those people has

been diagnosed for a certain disease.

Listing 5.1: RDF instance from our scenario

<rdf:RDF xmlns:mc="http://www.michcare.com/michcare.owl#" >

<mc:Patient rdf:about="Alice">

<mc:hasDisease>depression</mc:hasDisease>

<mc:hasPrivacyLevel>H</mc:hasPrivacyLevel>

<mc:hasDisease>flu</mc:hasDisease>

<mc:hasPrivacyLevel>L</mc:hasPrivacyLevel>

</rdf>
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5.1 Privacy Policies

Privacy policies govern the usage of data owner’s information and are often deployed by a

privacy management engine implemented by the hosting service. Using those engines, services

hosting the RDF-based data repositories can tie each data type property of each data instance to

privacy policy rules based on the data owner’s privacy preferences. For instance a patient Alice

may indicate that the fact that she has been diagnosed with a disease (hasDisease data type

property) is highly private (hasPrivacyLevel, H) for the depression disease but not as such

(hasPrivacyLevel, L) for flu (Listing 5.1). However, in a composite system, process executions

rely on service interactions via operation invocations by providing data as input parameters and

retrieving output data which is supplied to the following operation as input and so on. Privacy

can be achieved on input data, output data, and operation invocation; and to guarantee privacy

at operation level, it is essential to know if there is compatibility between the invoking service’s

privacy requirements and the privacy policies of the invoked service.

5.2 Composition Logic As Program Execution

Processes are based on constructs that are equivalent to declarations in most programming lan-

guages (Fig. 5.1). Similar to a class definition in object-oriented languages, a process provides

generic service interfaces (e.g.,DrugWS) to be called (classes) and the variables to be used (fields).

Actual instantiation of a service is similar to an object of a class. Each service can be viewed as a

control structure describing it’s behavior according to an interface to be able to communicate with

other services. However, it is unpredictable how a composite system will behave at run-time. An

instance of a service (e.g., S1) can be identified by an instance of a process definition (e.g., P1)

providing a service located at S1. Mapping service interfaces to actual services is achieved through

Endpoint references. In a BPEL-based workflow, for instance, an implemented GenotypePheno-

typeAssociation process would have an instance for each actual query or analysis task being

processed. Each instance has its own state which is captured in BPEL variables. Since multi-

ple service operations can be invoked by different clients, several instances of the same process

can run simultaneously. Analogous to Object-Oriented programming, in which several program

instances may produce different execution traces, a service composition may produce several out-

puts even if given the same input and initial state. Thus, we can analyze a composite system as a
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Process P{ 
 Partners Client c,GenoWS S1,DrugWS S2,
 ClinicWS S3, PharmWS S4,DemoWS S5 
 Variables g,d,gd,a,m,n 
 sequence { 
   p.recieve(g) 
   flow { 
     invoke(S1.getGeneInfo,g,gd) 
     invoke(S2.getDrugInfo,m,g,d) 
     invoke(S4.getDiagnoInf,d,gd,a) 
   } 
   invoke(S3.getPharmInf,m,gd,a) 
   invoke(S4.getClinPersInf,d,m,n,a) 
   invoke(S5.getPersInfo,a,gd,n,a) 
   c.Reply(n,a) 
 } 
} 
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Figure 5.1: Composition as a program execution with dataflow communication links corresponding to variable read
(recieve), variable write (assign) and operation invocation (invoke) expressions. The label g:L indicates a flow of
variable g (due to operation invocation) with low privacy level. A prohibited flow link to the requesting client is due
to the fact that the process is returning a variable with high privacy level.

program.

One form of program analysis is static analysis, which covers all possible execution scenarios

of a program. Moreover, applying the analysis to different program instances (e.g. Main class in

Java) may produce completely different results. Thus, we can use static analysis to analyze all

possible executions of a process, and analyze a composite system in the context of each process

instance. Since each process instance concerns particular set of data instances, and since those

data instances can be tied to privacy preferences, we can extract privacy preferences from those

policies and use them to supply the analysis (Fig. 5.2). For example, g:L in Fig. 5.1 indicates a

flow of variable g with low privacy level. A prohibited flow link to the requesting client is due to

the fact that the process is returning a variable with high privacy level. To this end, we propose
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a static privacy flow analysis at the level of the composition engine, that uses data flow concepts

from programming languages. The underlying framework is based on the Pi-Calculus for process

algebra [75], which models a core for most service composition languages.

CompositeSystem { 
 Client c, GenPhenAssoc GPA,  
 GenoWS S1,DrugWS S2, ClinicWS S3,  
 PharmWS S4, DemoWS S5 
Process Client{ 
 S1.invoke(S1.getGenePhenAssocInfo,g:MH) 
 receive(returnFinalResult,resultTuple) 
  } 
Process GenoPhenAssoc { 
  Variables g:MH,d:MH,gd:<MH,MH>,a:MH, 
            m:MH,n:MH 
 sequence { 
   recieve(S1.getGeneInfo,g:MH,gd:MH)  
   flow { 

 invoke(S1.getGeneInfo,g:MH,gd:H) 
 assign(gd:H,gd:MH)  
 invoke(S2.getDrugInfo,m,g,d) 
 invoke(S4.getDiagnoInf,d,gd,a) 

   } 
   invoke(S3.getPharmInf,m,gd,a) 
   invoke(S4.getClinPersInf,d,m,n,a) 
   invoke(S5.getPersInfo,a,gd,n,a) 
   c.Reply(n,a) 
 } 
} 

<rdf:RDF mc=
http://www.michcare.com/genows.owl#>
<mc:Patient rdf:about="patient1">
 <mc:hasGene>GRIK2</mc:hasGene>
 <mc:privLevel>H</mc:privaLevel>
</rdf>

<rdf:RDF mc=
http://www.michcare.com/drugws.owl#>
<mc:Patient rdf:about="patient1">
 <mc:hasDrug>Citalopram</mc:hasDrug>
 <mc:privLevel>H</mc:privLevel>
 <mc:hasDrug>Actic</mc:hasDrug>
 <mc:privLevel>H</mc:privLevel>
  <mc:hasDrug>Cold drug</mc:hasDrug>
 <mc:privLevel>L</mc:privLevel>
</rdf>

<rdf:RDF mc=
http://www.michcare.com/clinicws.owl#>
<mc:Patient rdf:about="patient1">
 <mc:hasDisease>Cancer</mc:hasDisease>
 <mc:privLevel>H</mc:privLevel>
<mc:hasDisease>Cold</mc:hasDisease>
 <mc:privLevel>L</mc:privLevel>
<mc:hasDisease>Depression</mc:hasDisease>
 <mc:privLevel>H</mc:privLevel>
</rdf>

Figure 5.2: Composition as a program execution with privacy levels derived from policy files.

5.3 Contributions

This chapter’s contribution is three-fold. First, we introduce Pri-calculus, as an extension

of the Pi-calculus with privacy level types; Second, we define a data flow analysis for private

service composition, including the lattice model, the abstract syntax, and dynamic semantics of

our extended calculus; Third, we present a prototype implementation of our analysis as a privacy

level annotations-based type checker and incorporate it into a composition engine;

The rest of this chapter is organized as follows: we provide background about the BPEL and

WSDL standards used to model services and their composition. The proposed approach is then

described in terms of the analysis formalization (Section 5.5). We present the prototype imple-

mentation in Section 5.6.

5.4 Business Process Execution Language

Business Process Execution Language (BPEL) describes business logic in terms of activities

and interaction scenarios to be executed for a service to complete it’s task. A service task could
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be a reaction to another service invocation. Thus, a service can result from orchestrating other

available services. BPEL enables inter-service communication via PartnerLinks, which provide

a process with the ability to provide operations or invoke operations provided by other services.

According to a BPEL describing the scenario above (Listing B.1), five participating services may

be involved: GenomWS, DrugWS, and PharmaWS, ClinicWS, and DemoWS. Each service is

expressed through a Web Services Description Language (WSDL) interface.

WSDL is a W3C standard that express the services functionality in terms of operation signatures

as well as data variables used as parameters or return values by those operations. The roles within

collaborations are specified at a PortType level via PartnerLink constructs. Port types are collec-

tions of web service operations. Listing B.2 shows excerpts from a WSDL definition. Variables

in BPEL can be either entire messages, whose type is declared as a WSDL message in the WSDL

description of the service using that message or a primitive XML type (e.g., string). Processes

perform structured activities and primitive activities. Primitive activities include receive, invoke,

and reply while structured activities perform primitive activities in sequences, in parallel, or based

on a conditional. Invoke and receive activities specify three arguments: a partner link identifying

the partner service, the invoked or provided operation and a tuple of variables for storing the sent

or received variable values. A process instance is created by triggering one activity at a time using

the createInstance=“yes” attribute. For instance, our example process gets instantiated through

the receive activity.

BPEL performs service composition either statically or dynamically depending on the service

selection style. Static composition involves static binding in which the service URL is hardcode as

part of the composite service specification. Dynamic binding, on the other hand, can be done in two

ways: either by reference by determining the URI of the service to be invoked from the value of a

specified variable (e.g., assigned to a variable by a previously executed operation or passed by the

client) or by lookup (e.g., definition of a query whose result will be used to determine the service

to be invoked). PartnerLinkTypes are defined at the WSDL level, where the actual partner service

may be dynamically determined. Since multiple service operations can be invoked by different

clients, several instances of the same process can run simultaneously. Thus, responses to operation

invocations need to be sent back to the corresponding service partner and to the corresponding
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process instance provided by that partner. Therefore, WSDL interfaces can be directly compared to

interfaces in Object-Oriented Programming languages, concrete services that result from dynamic

binding can be compared to concrete classes implementing those interfaces, and an instance of a

BPEL process can be used to resemble a main program.

The abstract syntax of BPEL (Fig. 5.3) expresses the composition of two or more activities using

sequence, parallel, conditional, and alternative constructs. BPEL process syntax relies on sets of

ports ranged over by x, y, z. An activity A receives a tuple ũ and handles an action related to a port

x. A port is a service identifier identifying a specific operation (end point) of that service. Thus, a

port on a service S is expressed as xS . A port receives operation invocation (invoke(xS,˜i, õ)), input

(receive(xS, i)), or output (reply(xS, o)) actions.

A ::=empty (empty)

|invoke(xS,˜i, õ) (invoke)

|receive(xS,˜i) (receive)

|reply(xS, õ) (reply)

|sequence(A,A) (sequence)

|flow(A,A) (parallel)

|switch(xS = y

0
S)A;A (conditional)

|pick(x, ˜i1,A), (x, ˜i2,A) (alternative)

Figure 5.3: Abstract Syntax of the BPEL calculus.

5.5 Formalization of the Analysis

In this section we describe the abstract syntax and the dynamic semantics of Pi-calculus

(Sec. 5.5.1). The type system (Sec. 5.5.2) of our extended calculus is then provided. Finally, we

describe our data flow analysis formalization (Sec. 5.5.3) illustrated through a series of examples

from our scenario.

5.5.1 Pri-calculus Abstract Syntax

We formally define Pri-Calculus using the ⇡-Calculus as a core of the BPEL language syntax.

In Pi-calculus (Fig. 5.4), P,Q,R, . . . range over process names, processes interact over channels

ranged over by x, y, . . ., and exchange tuples ranged over by ũ, ṽ, . . .. Processes perform actions
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�1, �2, . . .. The syntax of processes and actions is given by:

P ::= (vx)P | P |P |
X

i2I

�i.P i| A

� ::= 0| [x = y] | x(y) | x̄[ũ]

Figure 5.4: Abstract Syntax of the Pi-calculus.

(�x)P introduces the new name x with scope P , I is a finite index set, and � takes one of four

forms: a null action, a match of two names, an output action, or an input action. x(ū) denotes

receiving tuple ū on channel x, x̄[ū] denotes sending tuple ū on channel x. Summation states that

only one element is selected from a set of pending communications while the others are aborted.

Several processes can execute in parallel and communicate via compatible channels. Parallel pro-

cess composition is denoted as P |Q. For example, x̄ [u].P |x(v).Q contains two parallel processes.

The first is ready to send u over the channel x; after this it continues executing P . The second,

x(v).Q, is ready to receive v over the same channel x, then continue with Q. The name v is the

formal argument and it is local to Q. Matching allows P to proceed only if channels x and y are

the same channel. !P denotes parallel composition of an infinite number of copies of P . Using

Pi-calculus, we can describe our composition as follows:

(� c, S1, S2, S3, S4, S5)(S1(g). ¯S1[gd]|S2(m). ¯S2[g, d]|

S4(d). ¯S4[gd, a].S3(m). ¯S3[gd, a].S4(d). ¯S4[m, n, a].

S5(a). ¯S5[gd, n, a].c(n, a)

where the dotted notation specifies an action sequence in which the process receives the variable g

on the channel c then sends it to channel S1 whose components are bound to the variable g, and

so on.

The behavior of BPEL processes can be modeled using Pi-calculus dynamic semantics

(Fig. 5.5). The first two rules state that we can reduce under both parallel composition and re-

striction. The communication rule R-COMM takes two processes, which communicate over a
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channel x, and binds v1, ..., vn (a.k.a., free names f(n)) to the variables u1, ..., un (a.k.a., bound

names b(n)). Processes P and Q get discarded since at most one process in a summation is allowed

to execute.

Q 7! R

P | Q 7! P | R [R-PAR]

P 7! Q

(�x)P 7! (�x)Q [R-REST]

ũ = u1, ..., un, ṽ = v1, ..., vm, n = m

(P + x̄[ũ].Q)|(x̄[ṽ].R +Q) 7! {ṽ/ũ}Q|R [R-COMM]

x̄[ṽ]|!x(ũ).P 7! P{ṽ/ũ}|!x(ũ).P [R-REPL]

x = y

if (x == y) then P else Q 7! P [R-BRANCH-T]

x 6= y

if (x == y) then P else Q 7! Q [R-BRANCH-F]

Figure 5.5: Dynamic semantics through reduction rules.

We introduce Pri-Calculus, which extends the Pi-Calculus abstract syntax (Fig. 5.4) with pri-

vacy level types. The metavariables T1, ..., Tn range over types, e ranges over expressions, and �

ranges over actions. Types can be assigned to channel names (e.g., x : Ti) or variables in a tuple

(e.g., ui : Ti). The constituent parts of a process (i.e., variables, channels, operations, etc.) may

have different privacy types at different locations in a process instance. Thus, we introduce the

meta variable ` to range over locations. ` represents a result of computation, which eventually

reduces to a value. � is a store typing that maps names to types. A store M maps locations ` to

their contents: the defining service of the operation and the values stored in its variables. M [`]

denotes the store entry for `. The store also holds the actual privacy level parameters for each

location.

Privacy level parameters. Unlike java programs where classes are the basic unit of execution, in

service composition there are two levels of definitions, the service definition and the process def-

inition. We look at both processes and partners as services. Each service communicates through

a port type and the communication link is identified by the partner link type. Also, each service

provides an internal implementation of a process then that process gets instantiated and executed.

Thus, there is a recursive process execution since composite services are themselves services and
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P ::= P |P (parallel composition)
| (� x : Ti) P (restriction)

|
X

�i.Pi (alternative composition)

� ::= 0 (nill)
| [x == y] (Conditional)
| x(u1 : T1, ..., un : Tn) (input)
| x̄[u1, ..., un] (output)

e ::= � | ` (expression)
` 2 locations (store location)
T ::= (T1, ..., Tn) (privacy types)
� ::= � (empty)

| �, x : Ti (typed name)
M ::= ` 7! S < ↵̄ > (v̄) (store Map)
� ::= ` 7! Ti ( store typing)
⌘ ::= x 7! Ti ( type environment)

Figure 5.6: Abstract Syntax of Pri-Calculus (Pi-calculus with privacy types)

can be used as participants in other compositions at higher levels of abstraction. Thus, we param-

eterize both the process definition (BPEL process) and the service definition (WSDL interface) by

a list of privacy level parameters ↵̄ that can be bound to actual values at run-time.

5.5.2 Privacy Levels Type System

The aim of the privacy levels type system is to formally encode privacy levels as types, and

check whether a composite system is well-typed after binding abstract services in the orchestration

to the corresponding concrete services in the service registry.

Typing and Subtyping Rules. A series of operations cause the value of a variable u to be

derived from a value of another variable i. Thus derivation causes a flow from i to u.Typing rules

guarantee private explicit (e.g., assign) and implicit (e.g., receive) flows. All services that would

like to use users private data should possess the corresponding types before data transfer. We

define type inference rules for making judgments to ensure private flow of data between services

in a composition. We use those rules to formally reason on data privacy types and to propagate

those types along the execution plan to newly computed data. Processes are well-formed under a

set of privacy constraints on their bound b(n) and free names f(n). By adding types we restrict
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a channel to certain types of input or output in a given context. The appropriate behavior of each

participating process in a composite system can be ensured by statically type checking it in an

environment ⌘ where the type of x allows only inputs of type T1 that match it’s type T .

The privacy levels type system defines rules that enable proving both typing judgments (i.e.,

⌘ ` e : T ), which indicate that an expression e has type T under environment ⌘, and subtyping

judgments (i.e., T1 <: T2). Data can flow only if both channel names or variables agree on their

privacy levels or if the privacy level for one is a subtype of the other. We can define a subtyping

relation <: on types which states that an output action x̄[y] is well-typed only if Ty <: Tx, where

y : Ty and x : Tx. Similarly and input action x(y : T ) is well typed if Tx <: T where x : Tx. The

subtyping rule encodes the partial ordering relation v between the privacy levels lattice elements

and the annotation semantics as we shall explain in Sections 5.5.3 and 5.5.3.

The typing rules (Fig 5.7) follow directly from the reduction rules, and express how they ma-

nipulate the privacy levels type system. All the typing rules are of the form ⌘,� ` e : Ok, which

means “in environment ⌘ and store typing � expression e is well-typed (is Ok). Parallel composi-

tion is well-typed if each participating process is well-typed in isolation. The summation behavior

under typing is the same as Parallel composition. A replication is well typed if a single copy of the

process is well-typed. An input expression x(u1 : T1, ..., un : Tn).P is well typed if the type of x in

the current context guarantees that a tuple of values read from x will have types or <: T1, ..., Tn.

It is also necessary to check that the body of P is well-typed assuming that the channels u1, ..., un

behave consistently with the types T1, ..., Tn. Similarly, for an output expression x̄[u1, ..., un].P

to be well-typed we check whether the process P is well-typed and that the type of x in ⌘ allows

x to be used for outputting the tuple ũ. This implies that the type of x should be a subtype of the

tuple of types �(u1), ...,�(u2).

5.5.3 Private Data Flow Analysis

In this section, we define our data flow analysis. The lattice model and a more precise descrip-

tion of the core annotation system are provided by the formal semantics in Sec 5.5.3 and 5.5.3,

respectively. Then, we describe the annotation-based transfer functions and the worklist algo-

rithm.

The Privacy Levels Lattice Model. Our privacy levels lattice is a tuple (LPA,v,t,?,>), where
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⌘,� ` P : Ok ⌘,� ` Q : Ok

⌘,� ` P | Q : Ok [T-PAR]

⌘,� ` P : Ok

⌘,� `!P ; : Ok [T-REPL]

⌘,�, x : T ` P : Ok

⌘,� ` (�x : T ) P : Ok [T-REST]

⌘ ` �(x) <: (T1, ..., Tn) �, u1 : T1, ..., un : Tn ` P : Ok

⌘,� ` x(u1 : T1, ..., un : Tn).P : Ok [T-INPUT]

⌘ ` �(x) <: (�(u1), ...,�(un)) � ` P : Ok

⌘,� ` x̄[u1, ..., un].P : Ok [T-OUTPUT]

Figure 5.7: Typing rules

LPA is a set of abstract elements corresponding to privacy levels, v is a partial ordering relation

between elements in LPA and indicates an at least as precise as relation. t is the least upper bound

that should exist for every two elements in LPA. t merges two abstract values in LPA, ? is the

least element of LPA and means part of the program (composition) that we have not yet analyzed.

> is the greatest element of LPA and means that we do not know anything about the program

(composition) yet. Our lattice consists of the following:

LPL = {?, H, L,MH}, where > = MH

? v H,? v L,L vMH,H vMH

? t X = X,> t X = >,X t X = X, H t L = MH

Annotations for Private Data Flow. Annotations encode the privacy level types and have no se-

mantic significance; they only serve as labels into the Pri-calculus language syntax to facilitate the

analysis. A simplified annotation syntax is shown in Fig. 5.8. Annotations correspond to abstract

elements in LPA, so they may be H,L,MH , or a parameter ↵. Actual privacy level parameters

on variables in the source process must be parameters of the enclosing service definition. During

reduction, these parameters may be replaced with locations `, indicating the variable that corre-

sponds to that actual privacy level parameter. Annotations can be on channel names x as well as
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tuples (variables) u. Examples of the concrete annotation language are shown in Sec. 5.6.

CS 2 compositeSystem ::=(P̄ , e)

P 2 ProcessDefinition ::= P < ↵̄ > {T̄ , S̄, v̄, �̄}
S 2 ServiceDefinition ::=S < ↵̄ > {x̄S}
� 2 ActionDeclaration ::=0| [xS1 = yS2] | xS(v) | x̄S[ũ]

T 2 PrivLevelDecl ::=privacyLevel Ti

xS 2 ServicePortDecl ::=xS (̃i, õ)

v, u, i, o 2 V ar ↵ 2 PrivacyLevelParam

Figure 5.8: Simplified Annotation Syntax adapted from the formal system in Fig. 5.6.

Table 5.2 summarizes the constraints that the privacy type annotations place on value flow. The

various annotations are listed along the left side and the top of the table. An X indicates that

the data can flow from a location with the annotation on the left to a location with an annotation

above. The table shows that H is a universal source (a variable with any privacy level value can

be assigned a high privacy level value), and that L is a universal sink (variables with low privacy

levels can be assigned a value with any type annotation). The other privacy level annotations must

be kept separate from each other. The subtyping rule encodes the annotation semantics (Table 5.2),

where H is a subtype of any other annotation, L is a supertype of any other annotation, and all

other annotations must match exactly.

Table 5.2: Value flow between privacy levels

To
H L ↵ MH

From

H X X X X
L X
↵ X

MH X X

Abstract interpretation. A composition system CS is defined with a list of process definitions

P̄ , a list of Web service interface definitions S̄, and a main expression e (Fig. 5.8). A process

definition gives the process a unique name P and defines it’s constituent services as well as activ-

ities between those services and the variables that they exchange. A Web service definition gives
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the service a unique name S and defines its operations and input and output variables and their

types. The analysis starts with a root expression eroot that explicitly instantiates the root process

Proot (the action associated with createInstance=”yes”). The analysis starts by creating the pro-

cess instance Proot from the main process definition then it abstractly interprets eroot in the context

of Proot. First, the process creates all global channels that will be used by the participating pro-

cesses. In our running example, a client initiates a process, which creates five channels with fresh

names (� GenomWS,PharmaWS, DrugWS, ClinicWS, DemoWS), sends the variable g along

GenomWS, waits for response on GenomWS, then passes the output over to DrugWS, and so

on.

The abstraction function maps each concrete expression e to an element in LPA. A composition

lattice in our case � is a tuple lattice, and it is the set of all maps from variables to LPA. �1 vPA �2

iff 8u 2 V ar �1(u) vPA �2(u). Also, �1 tPA �2 = {u 7! �1(u) tPA �2(u)|u 2 V ar}. For

example, for the two tuple lattice values [u 7! H, i 7!MH] and [u 7!MH, i 7! L]:

[u 7! H, i 7!MH] 6v [u 7!MH, i 7! L]

[u 7! H, i 7!MH] t [u 7!MH, i 7! L] = [u 7!MH, i 7!MH]

In our case, the abstraction function derives abstract values from the privacy preferences attached

to the data. Flow (transfer) Functions then compute dataflow information after executing an ex-

pression e from the dataflow information before executing that expression. Formally, we map a

lattice element and a control flow graph (CFG) node corresponding to a process node to a new

lattice element (i.e., fPA(�, [e]) = �0), where � is the old lattice, e is the expression that we are

transferring over, and �0 is the new lattice. The intuition behind building a CFG is to connect

nodes in order of operation defined by the language. For example, in a BPEL4WS conditional we

evaluate the condition first.

We employ Killdal’s worklist algorithm [55], which keeps track of nodes (expressions) to which

we need to propagate dataflow information. The algorithm computes a results array, which keeps

track of the dataflow value for each node i in the system. The algorithm initialize the lattice values

for all nodes to the bottom element in LPA. For the first expression to be executed in the process

the results will be whatever the initial information is. We assume that initially any of the variables
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Algorithm 9 Worklist Algorithm

1: worklist = new Set();
2: for all node indexes i do
3: results[i] = ?PA;
4: end for
5: results[entry] = >PA //MH;
6: worklist.add(all nodes);
7: while (!worklist.isEmpty()) do
8: i = worklist.pop();
9: before = tk2pred(i) results[k];

10: after = fPA(before, node(i));
11: if (!(after v results[i])) then
12: results[i] = after;
13: for all k 2 succ(i) do
14: worklist.add(k);
15: end for
16: end if
17: end while

could be highly private (i.e., may be, may be not). Next, the algorithm takes each node off the list

and takes the join of the lattice values for all its predecessors. For instance, if it reaches the end of

a conditional, the algorithm does a join on the lattice information obtained from the then branch

and the else branch. So, if the privacy level type on a variable was H in one branch, and L in the

other, the algorithm assumes that it is MH.

This provides the results for the lattice information obtained before executing a node. The

algorithm then applies the transfer function fPA to that before information, and the node that is at

position i and computes the after lattice information based on that. Next, the algorithm determines

how this information propagates in the system. If the results remain the same as they were before,

it stops analyzing that particular node. However, if a change is indicated, it needs to add all the

successors of this node to the worklist since they need to be analyzed with the new information.

If the results got worse from before (i.e, they are not at least as precise as they were before), the

algorithm updates the results array based on the newly computed after value, then it pushes all

successors onto the worklist. The analysis terminates if all nodes are visited and the values do not

change any more.
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Table 5.3: Results of running the worklist algorithm (Listing 9) on the sample process execution in Listing 5.2

position worklist channels tuples/variables
c S1 S2 S3 S4 S5 g d gd a m n

0 1 MH MH MH MH MH MH MH MH MH MH MH MH
1 2 MH MH MH MH MH MH MH MH MH MH MH MH
2 3 MH MH MH MH MH MH MH MH MH MH MH MH
3 4,5,9,10,11,12 MH MH MH MH MH MH MH MH MH MH MH MH
4 5,9,10,11,12 MH MH MH MH MH MH L MH MH MH MH MH
5 6,7,8,9,10,11,12 MH MH MH MH MH MH L MH MH MH MH MH
6 7,8,9,10,11,12 MH L MH MH MH MH L MH L MH MH MH
7 8,9,10,11,12 MH L H MH MH MH MH H L MH H MH
8 9,10,11,12 MH L H MH H MH MH H MH H H MH
9 10,11,12 MH L H H H MH MH H MH H H MH

10 11,12 MH L H H H MH MH H MH H H MH
11 12 MH L H H H H MH H MH H H H
12 H L H H H H MH H MH H H H

5.5.4 Working Example

We simulate the privacy flow analysis execution on the sample composition in Listing. 5.2. The

labels 1,2,3,4,5,6,7,8,9,10,11,12 correspond to positions in the process execution. Table 5.3

shows the results of running the worklist algorithm (Listing 9) on a sample process execution

(Fig. 5.1). First, we assume that all variables may have a high privacy level (MH). expressions

1 and 2 have no impact on the composition lattice since they are only declaration expressions.

Expression 3 is a sequence activity, so it leaves the lattice as is. Next, the algorithm pushes all

nested actions of that sequence on the worklist (i.e., expressions 4, 5, 9, 10, 11, and 12). Next,

expression 4 initializes the gene variable g (assume that the client sent the value GRIK2 which has

a low privacy level), so the algorithm changes it’s lattice value to L. Expression 5 is a flow activity,

so it leaves the lattice as is, and all it’s nested expressions get pushed onto the worklist (i.e., 6,7,8).

The next expression to be analyzed is the invoke expression at position 6, which takes g:L as input.

Since the invoke is on S1, which is instance of GenomWS, the analysis propagates the privacy

level type L to the subsequent operation invocations inside GenomWS (if any). Since S1 is the

receiver of this invocation, it also gets assigned a privacy level type L. Also, the output variable gd

gets assigned that value.

Listing 5.2: Example composition

[Partners Client c,GenoWS S1,DrugWS S2,ClinicWS S3,PharmWS S4, DemoWS S5]1

[Variables g,d,gd,a,m,n]2



118
sequence[

[ p.recieve(g)]4

flow[

[invoke(S1.getGeneInfo,g,gd)]6

[invoke(S2.getDrugInfo,m,g,d)]7

[invoke(S4.getDiagnoInf,d,gd,a)]8

]5

[invoke(S3.getPharmInf,m,gd,a)]9

[invoke(S4.getClinPersInf,d,m,n,a)]10

[invoke(S5.getPersInfo,a,gd,n,a)]11

[Reply(c,n,a)]12

]3

The main process continues with other executions to be instantiated, and the analysis continues

analyzing each of those expressions based on the initial privacy level type on the received variable

and propagating the privacy level types to the invoked services. Assume that the next invoke

expression (expression 7) receives the value Citalopram for the medicine variable m with a high

privacy level. The invoke expression takes m:H as input and propagates that to DrugWS. Since

the operation returns the tuple g,d, and since g previously had an L lattice value, the algorithm

takes the join of the two (i.e., Lt H=MH) and replaces the lattice value of g with this new value.

For some of the following expressions the values flow from the previous results within the running

process instance. For example, the disease input variable d in the invoke expression at position

10 is obtained from the output d of the invoke expression at position 7. Thus, it gets assigned the

same privacy level type that d had. The analysis reaches a termination state whenever any further

execution of the program does not change the composition lattice. The analysis may produce

completely different results if the value of the supplied g variable was an indicator of a different

disease (e.g.,flu).

5.6 Implementation

Fig. 5.9 depicts the architecture of the proposed system. In our scenario, a client initiates a

business process then a service agent parses the abstract definitions of each of the collaborating

services (S={GenomWS, PharmaWS, DrugWS, ClinicWS, DemogWS}) and looks up the
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matching services to get the concrete BPEL composition (concrete processes). Each process in-

stance communicates with the composition engine when it receives an action and when it finally

replies. Upon receiving a query, a process is instantiated and the corresponding invoked services

are looked up in the service registry. The run-time environment executes the service logic by

invoking other services (through SOAP and HTTP modules). Upon receiving an operation invo-

cation, each service looks up it’s data repository for the matching instances (e.g. RDF files). Data

owners specify minimum input by informing the hosting service about their privacy preferences.

Thus, each data instance indicates a privacy level for each data type property.
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Figure 5.9: Composition with Private data flow

The annotator uses the initial privacy levels indicated at the data type properties of each of the

data instances (required for the process execution) to generate the initial set of annotations. In

our scenario, for instance, each of the variables gene, disease,medicine, gender, age, name has

an actual privacy level. Annotations are then added to both the variables involved in the process

instance as well as service definitions in WSDL files. The privacy flow analysis uses the annotated

process instance to analyze the actions in the context of that instance and infer privacy levels as

they flow between services. Since data type properties flow as input or output variables throughout

a process instance execution and throughout the entire composition, the analysis keeps track of

the privacy levels needed for every process instance and uses those to propagate privacy level

annotations to each subsequent activity in the process execution. The analysis uses an internal type

checker that uses the annotations to enforce private flow of data between services. In the following,

we explain how we implemented each component.
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5.6.1 The Privacy Flow Analysis

We implemented our framework in Java using the Crystal static dataflow analysis frame-

work [2]. We extended the Crystal framework to support our model. Crystal’s dataflow anayl-

sis works on any control flow graph (CFG) and intermediate representation (Three Address Code

TAC) of a language’s Abstract Syntax Tree (AST), on which it performs AST-walking analy-

ses. We refactored the core classes of the crystal framework to abstract away the concept of

an ASTNode to work generically on any AST node, including both the BPEL4WS constructs

and the WSDL constructs. We also extended the ControlFlowGraph interface to support the

model generated from BPEL4WS and WSDL. We utilized the capability of the dataflow anal-

ysis infrastructure provided in Crystal to implement a forward analysis that is context-sensitive

(it distinguishes between different invocation sites), flow-sensitive (the order of the execution af-

fects the result of the analysis), and branch sensitive (to avoid loss of precision in handling con-

ditional expressions). The PrivacyFlowAnalysis algorithm (Algorithm. 10) runs an instance of

the worklist algorithm implemented in Crystal (Algorithm 9) on each process expression if it

is not yet analyzed. The analysis core functionality lies in both the PAASTVisitor and the

Annotation-BasedPATransferFunction.

Algorithm 10 AnnotatedPrivacyFlowAnalysis
1: Input Proot

2: output: result
3: worklist = createWorkList(Proot)
4: result = worklist.performAnalysis();
5: labeledResultsBefore=result.getLabeledResultsBefore();
6: labeledResultsAfter = result.getLabeledResultsAfter();
7: nodeMap = result.getNodeMap();
8: currentLattice = result.getLattice();
9: cfgStartNode = result.getCfgStartNode();

10: cfgEndNode = result.getCfgEndNode();

We implemented several privacy flow transfer functions that are aware of the privacy level

annotations added to each ASTNode expression. Based on those function the PAASTVisitor

checks each variable. For instance, the transfer function for an Invoke expression invoke(xS, ĩ, õ)

takes as arguments the invocation expression invoke and the tuple lattice, which maps a variable

to it’s abstract lattice value. The visitor checks whether parameters of the operation invocation are

safe based by comparing their incoming actual privacy level annotations and the formal privacy
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level requirements on that operation parameters. Given the operation binding the visitor obtains a

summary of annotation info for that operation definition. It then looks up the annotation summary

for the operation xS , and for each parameter variable in i, it adds to the lattice the variable and it’s

corresponding lattice value.

5.6.2 The Privacy Analysis Type Checker

We implemented the type checker as a plugin to the Crystal framework. The type checker relies

on an initially generated set of annotations added to a process instance based on initial set of privacy

levels annotations. The annotation generator starts by adding the first round of annotations based

on privacy preferences of the requested data in the concrete process instance that is being executed.

It annotates every bound variable or service instance in the process instance with a privacy type.

The annotation generation tool implements support for annotating process definitions as well as

WSDL interface definitions of external services referenced in the BPEL process.

Annotations on BPEL processes are added to operation invocations, input, and output vari-

ables. Annotations on WSDL interfaces are added to operations input and output variables. The

annotation generator rewrites BPEL and WSDL ASTNode expressions with the annotations. For

BPEL process instances the annotation generator feeds the annotations as concrete privacy level

types. Whereas for BPEL and WSDL definitions it defines formal privacy level parameters. For

the WSDL definition in our scenario, the annotator adds the formal privacy level parameters G,D

corresponding to the operation input and output variables, respectively. Upon receipt of the gene

variable in the BPEL instance with actual privacy level H, the formal parameter G gets bound to

to the actual value H.

<receive partner-Link="client" portType="GenoWSPT" Variable="gene"

privacyLevel="H" createInstance="yes"/>

<wsdl:definitions>

<privacylevelparams>

<privacylevelparam name="G"/>

<privacylevelparam name="D"/>

</privacylevelparams>

<portType name="GenomWSPT">

<operation name="getGenePhenAssoc">
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<input privacyLevel="G" message="gene"/>

<output privacyLevel="D" message="disease"/>

</operation>

</portType>

</wsdl:definitions>

The type checker then performs the analysis by feeding the process instance as an input to the

analysis. Type checking is performed on annotations to guarantee that dataflow between services

can only flow according to Table 5.2. The PAASTVisitor implements a method that is used by

the type checker to report either a warning or an error based on the severity of the privacy violation.

The errors and warnings get displayed in the Eclipse problems view.

5.6.3 Technology Implications

The proposed privacy flow analysis implementation can be incorporated into any service com-

position middleware. It could be integrated either in a composition development environment

to assist developers during process design by performing compile-time process validation or in

a run-time environment (composition engine) to perform run-time validation during process exe-

cution. For instance, it could be incorporated into the composition middleware provided by the

WSO2 business process server (WSO2 BPS), which provides a comprehensive web-based console

to manage, deploy, view and execute processes within a single server instance. WSO2 BPS im-

plements an Apache ODE-powered BPEL engine and provides extensible RESTful management

APIs. WSO2 BPS supports the BPWS4J [34] implementation of the IBM, Microsoft and BEA

BPEL4WS specification. The BPWS4J platform is an Eclipse plug-in that consists of an engine

and an editor. The BPWS4J engine takes the BPEL document for each process to be executed,

a WSDL description of the interface that the process presents to the external clients or service

partners (without binding information), and several WSDL documents of the partner services with

which the process may interact.
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CHAPTER 6 LITERATURE REVIEW

We discuss some of the existing approaches for privacy policy management organized by the

following axes: context-awareness, dynamic rule evaluation, relative sensitivity, semantic-based,

and implementation and evaluation.

6.1 Context Awareness

The literature has several works that have proposed context-aware privacy management sys-

tems [23, 40, 43, 12]. Some of these approaches dynamically handle a user request by applying

techniques that regulate rather than prevent the data access such as HDB [58]. The dynamic trust

adjustment model proposed in [23] also dynamically handles context, but they focus on access

control, in terms of who has access to the information as opposed to what is being collected. Also,

their approach relies on inferring context using sensed spatial and temporal information and they

do not achieve dynamicity at rule level. Several technologies have been applied to achieve privacy

policy enforcement by considering the requester’s permission, the owner’s consent, and the con-

text [61, 43, 12]. Grandison [43] and Agrawal [12] leverage the Active Enforcement module of

the Hippocratic Database technology (HDB) by transforming an original query to another query

that is policy-compliant. Similar to our approach, those approaches do not rely on a third party for

enforcement purposes. They also track the purpose of a query to determine if a query is suspicious

or not, but do not keep track of usage context.

6.2 Dynamic Rule Evaluation.

Few researchers have started looking at dynamic policy rule evaluation as opposed to static

policies [16, 51]. Among the relatively few researchers who took dynamicity of a context to a

higher level by considering dynamicity of a rule is Pallapa et al. [80]. They proposed a context

aware scheme for privacy preservation by maintaining a model of the user’s environment, which

is characterized by user’s activities and situations. Their solution accounts for fine grained rules

and they apply a dynamic rule generator. However, both the rule and the context types are still

predetermined based on a set of activities and states in which the user could be. Also, these

rules are not defined in semantic terms and do not govern what is potentially sensitive data. Our

approach implicitly updates policy rules based on dynamically inferring a query’s classification,

what is considered relatively sensitive data, and diversity of queries.
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6.3 Relative Sensitivity.

Some notable techniques that applied machine learning, data mining, or information theory for

sensitive data detection include [10, 92, 70, 52]. Agrawal et al. [10] have done valuable work in that

respect. In their work they defined conditional privacy using conditional entropy and information

loss. We leverage similar techniques to partially define our context. Their notion of conditional

privacy compares the distribution of the original data to that of the perturbed data to test if the

original value can be guessed from the perturbed value. In contrast, our approach uses only the

original data by comparing the data that appears in a newly submitted query to both the previ-

ously determined set of sensitive data and all the previously submitted data sets to dynamically

identify potential breach of more sensitive data, and we incorporate the context into our privacy

policy rule evaluation. Our approach for sensitive data detection is complementary to other ap-

proaches [69, 19]. Machanavajjhala et al. [69] have proposed the notion of perfect privacy using

query containment mapping to ensure perfect privacy for relational data. Based on that, Barhamji

et al. [19] developed a query rewriting approach for data mashup services and applied it to RDF

views.

6.4 Semantic Policy Definitions

Few recent researchers have started using semantic concepts for defining privacy policies. For

instance, Ferrini et al. [40] used XACML obligations to add axioms to an ontology using semantic

functions to check for inconsistencies introduced in the ontology due to adding those axioms. We

use a similar approach to dynamically add contextual information to an instance to make the rules

that govern the data type properties of that instance smarter. However, our approach adds the

inferred context to the instance and uses the inferred context to impose more strict rules in the

corresponding policy. Thus, both the ontology instance and the policy definition of that instance

stay in sync. Among the approaches that proposed solutions for defining policies on top of domain

ontologies are [29, 85, 19, 101]. The work by Rahmouni et al. [85] stemmed from issues of

diversity, complexity, and dynamicity of the rules governing privacy protection. They proposed

a modeling approach to abstract rule complexities and facilitate the automation and enforcement

of rules at the process level. The closest approach to ours is the one by Barhamji et al. [19],

which ensures the dynamicity of a decision by query rewriting. Still, they rely on predefined user
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preferences and do not incorporate dynamically inferred context. Tumer et al. [97] have proposed

a semantic based privacy framework which takes into account hierarchies of nodes in an ontology

and how they inherit policies from parent to child.

6.5 XACML Enhancements.

Several researchers have provided enhancements to the performance of XACML PEP and PDP

components, such as efficiency and scalability [36, 77, 65] and adaptation [38, 56], but there exist

very few works that have provided enhancements to the accuracy of the PEP by enhancing the

context handler, which is the essence of our approach. Baily et al. and Laborde et al. [56] have

recently implemented Self-Adaptive Authorization Frameworks based on XACML that improves

the accuracy of a PEP by tracking malicious behaviors. Both works use obligations. Our work

is different in that it does not dynamically update the original policy definitions, but implicitly

incorporate context into rule evaluation. Brucker and Petritsch [25] enhanced the context handling

protocol used in XACML, but they focus on the efficiency of attribute resolution strategies either

via the PIP or the XACML context handler.

6.6 Dynamic Private Data Publishing.

Privacy preserving data publishing approaches can be classified into two major categories: data

disclosure and anonymization. Our approach falls under the limited disclosure category. One

representative approach in this regard is Hippocratic databases (HDB) technology, which enforces

privacy at the database level rather than the application level. While they do dynamic privacy

disclosure at the cell, column, and row levels, they do not incorporate previously inferred context

into future query evaluation.

Anonymization techniques can be further classified into generalization and suppression tech-

niques. One of the first approaches to anonymization is k-Anonymity [92]. Several researchers

have provided practical implementations of these algorithms ranging from top-down vs. bottom-

up to global vs. local to optimal vs. greedy to hierarchy-based vs. partition based. All these

algorithms prevent uniquely identifying individuals through record linking, but do not prevent

sensitive attribute disclosure. L-diversity [70] alleviates this problem by ensuring that sensitive

attribute values in each equivalent class are diverse. However, it is possible to infer sensitive at-

tributes when the distribution in a class is very different from the overall distribution of the same
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attribute. T-closeness [62], on the other hand, considers the sensitive attribute distribution in each

class, and its distance to the overall attribute distribution. The distance is measured using similarity

scores for distributions.

LKC-Privacy [76] provides a generalization over the aforementioned approaches with more

reasonable constraints on parameters. In essence, the main drawback to all generalization and

suppression algorithms lie in the utility or information loss incurred. Since these approaches rely

on frequency of an item, in some cases, certain co-occurrences of items are considered the source

of utility especially when record linkage is performed.

6.7 XACML-based Privacy for Mobile Applications.

We are not the first to provide privacy-aware solutions for mobile applications. Anh et al. [15]

implemented a middleware for building privacy-aware mobile applications. They built their solu-

tion on top of GAE and they used XACML obligations to define several functions to determine to

what extent users can share their data with their friends in social networking environments based on

similarity or filtering. De Cristofaro et al. [32] proposed a privacy-aware infrastructure for building

participatory sensing applications to protect the data of both the data user and the provider. Their

solution relies on a tagging mechanism that builds on the top of Identity-Based Encryption (IBE).

Similar to these approaches, our approach defines fine-grained privacy policies rules at the level

of each data item. Our approach further provides dynamicity at the rule rather than the decision

level. also, our approach defines rules using semantic concepts and defines preferences partially at

the instance level.

6.8 Anonymization Techniques

Anonymization techniques can be classified into generalization (replacing a value with a less

specific but semantically consistent one) and suppression (not releasing a value at all) tech-

niques.

6.8.1 K-Anonymity

One of the first approaches to anonymization is k-Anonymity [92]. Several researchers have

provided practical implementations of these algorithms ranging from Top-down specialization vs.

bottom-up generalization to Global (single dimensional) vs. local (multidimensional) to Com-

plete (optimal) vs. greedy (approximate) to Hierarchy-based vs. partition based [61, 59, 20].
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K-anonymity ensures that individuals cannot be uniquely identified by a record linking attack,

but does not necessarily prevent sensitive attribute disclosure. The algorithm primarily provides

a clustering of nodes into equivalence classes where each node is indistinguishable in its quasi-

identifying attributes QID from some minimum number of other nodes. When there is not much

diversity in the sensitive attributes inside an equivalence class, the sensitive attribute of everyone

in the equivalence class becomes known with high certainty.

6.8.2 L-Diversity and T-Closeness

L-diversity [71] alleviates the problem of sensitive attribute disclosure inherent to k-anonymity

by ensuring that sensitive attribute values in each equivalent class are diverse. A set of records in an

equivalence class C is l-diverse if it contains at least l well-represented (measured by several ways

including frequency counts and entropy). One drawback thus lies in the possibility to infer sensitive

attributes when the sensitive distribution in a class is very different from the overall distribution

of the same attribute. If the overall distribution is skewed, then the belief of someones value may

change drastically in the anonymized data. Also, the possibility to detect equivalent classes which

contain very similar sensitive attribute values. Also, l-diversity based approaches implicitly assume

that each sensitive attribute takes values uniformly over its class, so when frequencies of sensitive

attribute values are not similar there may be large utility loss on data. For example, consider

a dataset that contains 1000 patients with some quasi-identifying (QID) attributes and a single

sensitive attribute disease with two possible values cancer or flu. If there are only 5 patients with

cancer in the table, to achieve 2-diversity, at least one patient with cancer is needed in each QID

group. So at most 5 groups can be formed which causes information loss. T-closeness [63], on the

other hand, considers the sensitive attribute distribution in each class, and its distance to the overall

attribute distribution. The distance is measured using similarity scores for distributions.

All these algorithms prevent uniquely identifying individuals through record linking. The main

drawback, on the other hand, to all generalization and suppression algorithms lie in the utility

or information loss incurred, since they rely on frequency of an item, in some cases, certain co-

occurrences of items are considered the source of utility especially when record linkage is per-

formed. If an item occurs in no frequent itemset, then suppressing that item (attribute) incurs no

information loss. However, if an item occurs in many frequent itemsets (tuples) then suppress-
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ing the item incurs a large information loss, since all frequent itemsets containing that item are

removed from the data.

6.8.3 K-Anonymity Applied to Relational Data

k-anonymity has been initially proposed by Samarati and Sweeny [92] to prevent linking an

individual to a record in a relational data table through a quasi-identifier. Later, several researchers

have applied the notion of K-Anonymity to privacy. However, most of the K-Anonymity protection

models are at the relational data table level not at the Web service operation level. Therefore, the

private resource in their case is the identity of the subject whose information is contained in the

data. The K-Anonymity concept have been implemented in several real world systems, including

DataFly, mArgus, and K-Similar. Recentrly, few researchers have studied probabilistic notions of

k-Anonymity [49].

6.8.4 K-anonymity Applied to Graphs

The literature has a number of definitions derived from anonymity tailored to structural prop-

erties of network data. For example, k-degree anonymity [66], k-candidate anonymity [45], k-

automorphism anonymity [110], k-neighborhood anonymity [109], and (k,l)-grouping [30]. k-

degree anonymity indicates a graph as k degree anonymous if for every node v in V there exist

at least k 1 other nodes that have the same degree as v. This anonymization technique can pre-

serve privacy by preventing the re-identification of individual nodes by adversaries with a priori

knowledge of the degree of certain nodes. However, the anonymized graph may not be useful.

k-neighborhood anonymity has been first proposed by Wu et al. [109] and states that a graph is

k-neighborhood anonymous if every node has a 1.5-hop neighborhood graph isomorphic to the

1.5-hop neighborhood graph of at least k-1 other nodes. k-candidate anonymity states that an

anonymized graph satisifies k-candidate anonyity with respect to a structural query Q if there is a

set of at least k nodes which match Q, and the likelihood of every candidate for a node in this set

with respect to Q is less than or equal to 1/k. Zou et al. have proposed k-automorphism anonymity.

A graph is k-automporphic if every node has the same subgraph signature as at least k-1 other graph

nodes, and the likelihood of every candidate for that node is less than or equal to 1/k. Finally, (k,l)-

grouping is a privacy mechanism that has been proposed by Cormode et al. to handle attacks in

affiliation networks. It assumes that affiliation links can be predicted based on node attributes and
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the structure of the network. They use a greedy algorithm that generalizes node attributes without

modifying the network structure. They assume that each node is indistinguishable from at least k-1

other nodes in terms of node attributes.

6.9 Private Service outsourcing

Few researchers have studied privacy control in service outsourcing environments [54, 47, 107].

Hung et al [47] provided a private service outsourcing interaction protocol that enables sending

only the desired parts of data for each outsourced invocation. Their approach focuses on data level

privacy rather then the logic. Xiong et al. [107] have focused on outsourcing in data aggregation

services by proposing several protocols for private data sharing between service-hosted databases.

Recently, Jammalamadaka et al. [50] have developed a middleware for enforcing security con-

straints on outsourced data. They also defined an abstract secure service model. Ke et al. [54]

have proposed an algorithm to enhance service trust by detecting conflicts due to privacy incom-

patibility in cloud service composition. They apply the Tablue algorithm to OWLS documents.

Other researchers focused on outsourcing in other domains, including image reconstruction and

databases. Cong et al. [103] studied outsourcing from image reconstruction perspective.

6.10 Operation Invocation Correlation

Other research have tackled similar questions about Web service related operation invocations

but from different perspectives. Some of the questions that they tried to answer is given a service

I plan to use, what other services are usually used together? and given several services I want to

use together, can I find an operation invocation path to connect them, based on others past usage?

and what do people who use these services also use? they have applied techniques such as as-

sociation rule mining. Since we are tackling the problem from privacy perspective to anonymize

invocations KAnonymity is a good solution. A few researchers have looked into services as net-

works, especially for analyzing scientific analysis reuse [93]. Tan et al. [93] studied service-service

interactions and service-workflow interactions to identify possibilities for reuse. Their work incor-

porate metrics similar to ours, such as betweenness centrality, to measure services that occur the

most between different source and target service or workflow nodes. In fact, our approach can be

applied to that domain as well.
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6.11 Model Checking of Services Based Interactions

Model checking of services-based interactions, in general, has received enough attention[102,

64, 98, 81, 82]. The goal of those analyses is to analyze whether composite Web services are

well-formed from different perspectives, including concurrency, integration, failures, security, and

privacy. Some of these works focused on privacy and security using language-based analyses [87].

Several researchers provided implementations of verification tools, including the WebJet checker

by Gao et al. [42] and the verification tool by Abouzaid [8]. WebJet checker [42] is based on a

type system and a mapping from BPEL to pi-calculus and performs three formal verification steps.

Namely, open bisimulation, property checking and compatibility checking.

6.11.1 Process Calculi

Quite a few researchers extended the Pi-calculus by defining process calculi, including ⇡⇣-

calculus proposed in [68], Web⇡1 by Lucchi and Mazzara [67] and the recent WS-calculus by

Lapadula et al. [57]. ⇡⇣-calculus models more expressive composition concepts (e.g., processes

as objects and encapsulation). Web⇡1 is a web-based extension of pi-calculus that takes into

account the timing dimension. WS-calculus is a formalization for the constructs provided by both

WS-BPEL and WSDL, with the purpose of verifying conformance between WS-BPEL programs

and the associated WSDL definitions. Woodman et al. [106] proposed two XML languages based

on the Pi-calculus. One language is an extension to the WSDL language to enable specifying the

order in which operations should be invoked. The other is a composition language to define a

composite service structure. The former verifies whether a given composite service is free from

deadlocks and livelocks. Abouzaid [8], on the other hand, introduced the ⇡-logic based the µ-

logic associated with ⇡-calculus in order to express properties to verify whether a composition is

well-formed.

6.11.2 Type systems

Several researchers have defined type systems for Web service definitions, including Mil-

ner [75], Turner [99], Honda et al. [100], and Pierce et al. Milner proposed a type system based on

channel names. Pierce and Sangiorgi [84] revised Milner’s system by adding restrictions to read

and write from channels. While Milner’s typing is name-based, Pierce and Sangiorgi’s language

is structure-based and is more suitable to avoid misuse by processes that share a common resource
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(e.g., a printer). Volpano et al. [102] proposed a type system for a procedural programming lan-

guage to verify the noninterference security property. Their work was inspired by the works of

Denning [37] and Bell and La Padula [21]. Bell and La Padula proposed a model for multi-level

security based on which Denning proposed a lattice model. Hutter and Volkamer [48] leveraged

Volpanao et al.’s type calculus to dynamic Web service composition plans. They used a semantic

Web service composition language (OWLS-XPlan).

6.11.3 Dataflow Analyses an Lattice Models

Dataflow analysis for security purposes has attracted several researchers attention. Aziz et

al. [17] used denotational semantics to statically analyze the security of mobile systems at the level

of the communicated data. They assign security levels and apply a nonuniform dataflow analysis to

detect two privacy breaches: information leakage and insecure communications. They also define

a data flow framework in terms of a security levels lattice, abstraction and transfer functions. Their

lattice has infinite width of security levels and their transfer function is in the form of a policy

that localizes names depending on the level of the process to which those names are bound. They

also use the notion of location to differentiate between the different copies of the same name

(channel). Nielson et al. [78] developed a static data flow analysis to verify security properties that

are different from ours. For example, they validate that messages are only received after a login

action. They verify an action by checking whether there exists a path on the graph where an edge

with label a precedes another edge with label b.

6.11.4 Privacy in Scientific Workflows

Privacy in Scientific workflow based data analysis have been explored in few research

works [28, 35]. The majority of the solutions were to guarantee the privacy of the workflow logic

rather than the privacy of data that flows between processes. None of the above works tackled the

problem of privacy in Web service composition using data flow analyses that utilize annotation-

based transfer functions in the manner described in this thesis. Thus, their analyses are not modular

and do not propagate the analysis results to service definitions based on concrete process instances

and concrete service endpoint references in those processes. Also, some of the above approaches

provided theoretical frameworks to fix issues only at the design time while our approach works at

run-time.
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CHAPTER 7 CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis I defined possible solutions for dynamic privacy management in services based

interactions. I defined and implemented three main components for dynamic, context-aware,

semantic-based privacy policy management that build on top of existing Web service standards

and technologies. I have also evaluated the feasibility of the implemented components in several

case studies in comparison to similar existing works.

The evaluation results are promising and, in the future I would like to explore practical ap-

plications of the implemented systems. Future work also includes exploring other challenges that

services based environments involve including privacy in service based social data sharing environ-

ments and services as collaborating networks. I would also like to explore some techniques includ-

ing applied security and cryptography and sticky policies to enforce traveling constraints.
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APPENDIX A K-ANONYMITY BASED PRIVATE WEB SERVICE SELECTION

A.1 GENERATED BPEL AND WSCL FILES

Table A.1: Results of 10 test runs of the KAnonymity algorithm on WSCL files of different sizes.
WSCL Op TR TEERoutes time PTOC time PTONC time OEOC
wscl01 5 3 4 2983 3169 2981
wscl02 6 3 5 2806 2812 2792
wscl03 12 3 4 2834 2805 2810
wscl04 7 4 8 2768 2808 2780
wscl05 5 4 8 2818 2642 2832
wscl06 5 3 5 2824 2797 2794
wscl07 8 5 8 2792 2866 2795
wscl08 12 6 8 2829 2956 2787
wscl09 5 3 4 2874 2813 2794
wscl10 9 4 5 2961 2840 2818
wscl11 12 5 8 2887 2727 2629
wscl12 5 2 2 2828 2823 2812
wscl13 5 3 5 2775 2775 2948
wscl14 4 4 8 2710 2825 2763
wscl15 10 4 6 2858 2651 2812
wscl16 12 7 10 2776 2906 2832
wscl17 11 3 3 2878 2862 2777
wscl18 10 6 11 2802 2664 2847
wscl19 5 2 4 2788 2866 2628
wscl20 6 4 8 2831 2648 2842
wscl21 5 5 10 2725 2765 2812
wscl22 5 4 7 2791 2815 2800
wscl23 7 4 7 2752 2827 2815
wscl24 12 6 9 2823 2883 2771
wscl25 4 3 5 2734 2835 2749
wscl26 6 3 4 2894 2979 2860
wscl27 8 4 7 2755 2929 2886
wscl28 4 3 3 2668 2911 2786
wscl29 13 4 5 2875 2830 2873
wscl30 4 2 3 2685 2839 2695
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Table A.2: Results of 10 test runs of the KAnonymity algorithm on BPEL files of different sizes.
BPEL Op TR TEERoutes time PTOC time PTONC time OEOC
bpel01 7 40 80 526 546 570
bpel02 9 36 60 378 407 381
bpel03 9 42 90 409 415 421
bpel04 8 32 68 392 454 484
bpel05 7 46 72 409 465 415
bpel06 9 20 54 386 412 425
bpel07 7 35 76 408 412 427
bpel08 10 50 80 410 489 469
bpel09 8 34 57 358 403 384
bpel10 9 45 76 408 437 432
bpel11 9 38 76 412 410 425
bpel12 11 50 84 401 493 406
bpel13 9 41 80 412 446 444
bpel14 10 42 76 408 405 500
bpel15 5 40 72 383 537 389
bpel16 7 32 65 396 434 387
bpel17 7 29 54 370 399 385
bpel18 9 30 72 406 390 393
bpel19 8 52 95 448 441 447
bpel20 9 46 85 409 449 441
bpel21 10 42 74 386 402 458
bpel22 7 55 100 536 467 449
bpel23 10 31 80 446 500 573
bpel24 8 45 72 453 402 420
bpel25 11 41 80 432 468 422
bpel26 8 26 51 378 403 399
bpel27 8 33 68 368 400 449
bpel28 8 53 100 462 439 438
bpel29 6 31 76 457 421 500
bpel30 11 48 90 499 430 424
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APPENDIX B PRIVACY FLOW ANALYSIS SCENARIO EXAMPLES

B.1 BPEL AND WSDL EXAMPLES

Listing B.1: Excerpts from the BPEL definition in our scenario

<process name="GeneticVariationDetection">

<partnerLinks>

<partnerLink name="client"/>

<partnerLink name="GenoWS"/>

<partnerLink name="DrugWS"/>

<partnerLink name="PharmWS"/>

<partnerLink name="ClinicWS"/>

<partnerLink name="DemoWS"/>

</partnerLinks>

<variables>

<variable name="g"messageType="integer"/>

<variable name="m" messageType="Drug"/>

<variable name="d" messageType="Disease"/>

<variable name="dm" messageType="ClinicPersInfo"/>

<variable name="agd" messageType="DemoInfo"/>

</variables>

<sequence>

<receive partner-Link="client" port-Type="SearchWSPT" Variable="g"

createInstance="yes"/>

<sequence>

<flow>

<invoke partner-Link="GenoWS" port-Type="GenoWSPT" operation="getGenInfo"

inputVariable="g" outputVariable="gd"/>

<invoke partner-Link="DrugWS" port-Type="DrugWSPT" operation="getDrugInfo"

inputVariable="m" outputVariable="gd"/>

</flow>

<invoke partner-Link="ClinicWS" port-Type="ClinicWSPT" operation="

getDiagnosisInfo" inputVariable="m" outputVariable="a"/>

<invoke partner-Link="PharmWS" port-Type="PharmWSPT" operation="getPharmInfo"

inputVariable="d" outputVariable="gd"/>

<invoke partner-Link="ClinicWS" port-Type="ClinicWSPT" operation="
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getClinicPersonInfo" inputVariable="dm" outputVariable="agd"/>

<invoke partner-Link="DemoWS" port-Type="DemoWSPT" operation="getDemoInfo"

inputVariable="agd" outputVariable="na"/>

</sequence>

</process>

Listing B.2: Excerpts from the WSDL definition in our scenario

<wsdl:definitions>

<message name="Disease">

<part name="disease" type="mc:Disease"/>

</message>

<message name="GenInfo">

<part name="gene" type="mc:Gene"/>

<part name="drug" type="mc:Drug"/>

</message>

<message name="DemoInfo">

<part name="address" type="mc:Address"/>

<part name="gender" type="mc:Gender"/>

</message>

<message name="ClinicPersInfo">

<part name="disease" type="mc:Disease"/>

<part name="drug" type="mc:Drug"/>

</message>

<portType name="GenomWSPT">

<operation name="getGenePhenAssoc">

<input message="GeneInfo"/>

<output message="result"/>

</operation>

</portType>

<portType name="ClinicWSPT">

<operation name="getDiagnoInfo">

<input message="getDiagnoInfo" />

</operation>

</portType>

<partnerLinkType name="ClinicWSLT">
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<role name="PharmaWS" portType="PharmaWSPT" />

<role name="ClinicWS" portType="ClinicWSPT" />

</partnerLinkType>

<partnerLinkType name="GenomWSLT">

<role name="GenomWS" portType="GenomWSPT"/>

<role name="client" />

</partnerLinkType>

</wsdl:definitions>
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