244 research outputs found

    Dealing with Anonymity in Wireless Sensor Networks

    Get PDF
    NowadaysWireless Sensor Networks (WSN) are used in many application contexts. Data handled by WSN are required to be protected for privacy reasons since they can be directly or indirectly related to individuals. The problem of pre-venting the identification of individuals starting from their data, known as anonymity, is a fundamental requirement for privacy aware systems. This paper proposes a solution to guarantee anonymity for a wide spread type of WSN by means of privacy policies. The solution is based on a UML model that introduces the conceptual elements and guidelines that are needed to build privacy policies for WSN. 1

    Wireless Multimedia Sensor Networks Applications and Security Challenges

    Get PDF
    The emergence of low-cost and mature technologies in wireless communication, visual sensor devices, and digital signal processing facilitate of wireless multimedia sensor networks (WMSNs). Like sensor networks which respond to sensory information such as humidity and temperature, WMSN interconnects autonomous devices for capturing and processing video and audio sensory information. WMSNs will enable new applications such as multimedia surveillance, traffic enforcement and control systems, advanced health care delivery, structural health monitoring, and industrial process control. Due to WMSNs have some novel features which stem the fact that some of the sensor node will have video cameras and higher computation capabilities. Consequently, the WMSNs bring new security of challenges as well as new opportunities. This paper presents WMSNs application and security challenges

    Clone Detection for Efficient System in WSN using AODV

    Get PDF
    Wireless sensor is wide deployed for a spread of application, starting from surroundings observance to telemedicine and objects chase, etc. For value effective sensing element placement, sensors are usually not tamperproof device and are deployed in places while not observance and protection, that creates them at risk of fully different attacks. As an example, a malicious user may compromise some sensors and acquire their private information. Then, it?ll duplicate the detectors and deploy clones in an exceedingly wireless sensor network (WSN) to launch a spread of attack that?s mentioned as clone attack. Because the duplicated sensors have an equivalent information, e.g., code and crypto graphical information, captured from legitimate sensors that may merely participate in network operation and launch attacks. Because of the low value for sensing components duplication and preparation, clone attacks became one in all the foremost essential security issues in WSNs. Thus, it?s essential to effectively detect clone attacks therefore to ensure healthy operation of WSNs

    Mobility Support 5G Architecture with Real-Time Routing for Sustainable Smart Cities

    Full text link
    [EN] The Internet of Things (IoT) is an emerging technology and provides connectivity among physical objects with the support of 5G communication. In recent decades, there have been a lot of applications based on IoT technology for the sustainability of smart cities, such as farming, e-healthcare, education, smart homes, weather monitoring, etc. These applications communicate in a collaborative manner between embedded IoT devices and systematize daily routine tasks. In the literature, many solutions facilitate remote users to gather the observed data by accessing the stored information on the cloud network and lead to smart systems. However, most of the solutions raise significant research challenges regarding information sharing in mobile IoT networks and must be able to stabilize the performance of smart operations in terms of security and intelligence. Many solutions are based on 5G communication to support high user mobility and increase the connectivity among a huge number of IoT devices. However, such approaches lack user and data privacy against anonymous threats and incur resource costs. In this paper, we present a mobility support 5G architecture with real-time routing for sustainable smart cities that aims to decrease the loss of data against network disconnectivity and increase the reliability for 5G-based public healthcare networks. The proposed architecture firstly establishes a mutual relationship among the nodes and mobile sink with shared secret information and lightweight processing. Secondly, multi-secured levels are proposed to protect the interaction with smart transmission systems by increasing the trust threshold over the insecure channels. The conducted experiments are analyzed, and it is concluded that their performance significantly increases the information sustainability for mobile networks in terms of security and routing.Rehman, A.; Haseeb, K.; Saba, T.; Lloret, J.; Ahmed, Z. (2021). Mobility Support 5G Architecture with Real-Time Routing for Sustainable Smart Cities. Sustainability. 13(16):1-16. https://doi.org/10.3390/su13169092S116131

    Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Get PDF
    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper

    REISCH: incorporating lightweight and reliable algorithms into healthcare applications of WSNs

    Get PDF
    Healthcare institutions require advanced technology to collect patients' data accurately and continuously. The tradition technologies still suffer from two problems: performance and security efficiency. The existing research has serious drawbacks when using public-key mechanisms such as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight signature algorithms. The results of the performance analysis indicate that our scheme provides high efficiency in data integration between sensors and server (saves more than 24% of alive sensors compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security analysis results confirm that REISCH is safe against some well-known attacks

    DARE: evaluating Data Accuracy using node REputation

    Get PDF
    Typical wireless sensor networks (WSNs) applications are characterized by a certain number of different requirements such as: data accuracy, localization, reputation, security, and confidentiality. Moreover, being often battery powered, WSNs face the challenge of ensuring privacy and security despite power consumption limitations. When the application scenario allows their use, data aggregation techniques can significantly reduce the amount of data exchanged over the wireless link at the price of an increased computational complexity and the potential exposition to data integrity risks in the presence of malicious nodes. In this paper, we propose DARE, an hybrid architecture combining WSNs with the wireless mesh networking paradigm in order to provide secure data aggregation and node reputation in WSNs. Finally, the use of a secure verifiable multilateration technique allows the network to retain the trustworthiness of aggregated data even in the presence of malicious node. Extensive performance evaluations carried out using simulations as well as a real-world prototype implementation, show that DARE can effectively reduce the amount of data exchanged over the wireless medium delivering up to 50% battery lifetime improvement to the wireless sensors

    Secure Communication in Wireless Multimedia Sensor Networks using Watermarking

    Get PDF
    Wireless multimedia sensor networks (WMSNs) are an emerging type of sensor networks which contain sensor nodes equipped with microphones, cameras, and other sensors that producing multimedia content. These networks have the potential to enable a large class of applications ranging from military to modern healthcare. Since in WMSNs information is multimedia by nature and it uses wireless link as mode of communication so this posse?s serious security threat to this network. Thereby, the security mechanisms to protect WMSNs communication have found importance lately. However given the fact that WMSN nodes are resources constrained, so the traditionally intensive security algorithm is not well suited for WMSNs. Hence in this research, we aim to a develop lightweight digital watermarking enabled techniques as a security approach to ensure secure wireless communication. Finally aim is to provide a secure communication framework for WMSNs by developing new

    Reliable and Energy Efficient Network Protocols for Wireless Body Area Networks

    Get PDF
    In a wireless Body Area Network (WBAN) various sensors are attached on clothing, on the body or are even implanted under the skin. The wireless nature of the network and the wide variety of sensors offers numerous new, practical and innovative applications. A motivating example can be found in the world of health monitoring. The sensors of the WBAN measure for example the heartbeat, the body temperature or record a prolonged electrocardiogram. Using a WBAN, the patient experiences a greater physical mobility and is no longer compelled to stay in a hospital. A WBAN imposes the networks some strict and specific requirements. The devices are tiny, leaving only limited space for a battery. It is therefore of uttermost importance to restrict the energy consumption in the network. A possible solution is the development of energy efficient protocols that regulate the communication between the radios. Further, it is also important to consider the reliability of the communication. The data sent contains medical information and one has to make sure that it is correctly received at the personal device. It is not allowed that a critical message gets lost. In addition, a WBAN has to support the heterogeneity of its devices. This thesis focuses on the development of energy efficient and reliable network protocols for WBANs. Considered solutions are the use of multi-hop communication and the improved interaction between the different network layers. Mechanisms to reduce the energy consumption and to grade up the reliability of the communication are presented. In a first step, the physical layer of the communication near the human body is studied and investigated. The probability of a connection between two nodes on the body is modeled and used to investigate which network topologies can be considered as the most energy efficient and reliable. Next, MOFBAN, a lightweight framework for network architecture is presented. Finally, CICADA is presented: a new cross layer protocol for WBANs that both handles channel medium access and routing
    • …
    corecore