thesis

Reliable and Energy Efficient Network Protocols for Wireless Body Area Networks

Abstract

In a wireless Body Area Network (WBAN) various sensors are attached on clothing, on the body or are even implanted under the skin. The wireless nature of the network and the wide variety of sensors offers numerous new, practical and innovative applications. A motivating example can be found in the world of health monitoring. The sensors of the WBAN measure for example the heartbeat, the body temperature or record a prolonged electrocardiogram. Using a WBAN, the patient experiences a greater physical mobility and is no longer compelled to stay in a hospital. A WBAN imposes the networks some strict and specific requirements. The devices are tiny, leaving only limited space for a battery. It is therefore of uttermost importance to restrict the energy consumption in the network. A possible solution is the development of energy efficient protocols that regulate the communication between the radios. Further, it is also important to consider the reliability of the communication. The data sent contains medical information and one has to make sure that it is correctly received at the personal device. It is not allowed that a critical message gets lost. In addition, a WBAN has to support the heterogeneity of its devices. This thesis focuses on the development of energy efficient and reliable network protocols for WBANs. Considered solutions are the use of multi-hop communication and the improved interaction between the different network layers. Mechanisms to reduce the energy consumption and to grade up the reliability of the communication are presented. In a first step, the physical layer of the communication near the human body is studied and investigated. The probability of a connection between two nodes on the body is modeled and used to investigate which network topologies can be considered as the most energy efficient and reliable. Next, MOFBAN, a lightweight framework for network architecture is presented. Finally, CICADA is presented: a new cross layer protocol for WBANs that both handles channel medium access and routing

    Similar works