4,396 research outputs found

    An improved constraint satisfaction adaptive neural network for job-shop scheduling

    Get PDF
    Copyright @ Springer Science + Business Media, LLC 2009This paper presents an improved constraint satisfaction adaptive neural network for job-shop scheduling problems. The neural network is constructed based on the constraint conditions of a job-shop scheduling problem. Its structure and neuron connections can change adaptively according to the real-time constraint satisfaction situations that arise during the solving process. Several heuristics are also integrated within the neural network to enhance its convergence, accelerate its convergence, and improve the quality of the solutions produced. An experimental study based on a set of benchmark job-shop scheduling problems shows that the improved constraint satisfaction adaptive neural network outperforms the original constraint satisfaction adaptive neural network in terms of computational time and the quality of schedules it produces. The neural network approach is also experimentally validated to outperform three classical heuristic algorithms that are widely used as the basis of many state-of-the-art scheduling systems. Hence, it may also be used to construct advanced job-shop scheduling systems.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and in part by the National Nature Science Fundation of China under Grant 60821063 and National Basic Research Program of China under Grant 2009CB320601

    Dynamic scheduling in a multi-product manufacturing system

    Get PDF
    To remain competitive in global marketplace, manufacturing companies need to improve their operational practices. One of the methods to increase competitiveness in manufacturing is by implementing proper scheduling system. This is important to enable job orders to be completed on time, minimize waiting time and maximize utilization of equipment and machineries. The dynamics of real manufacturing system are very complex in nature. Schedules developed based on deterministic algorithms are unable to effectively deal with uncertainties in demand and capacity. Significant differences can be found between planned schedules and actual schedule implementation. This study attempted to develop a scheduling system that is able to react quickly and reliably for accommodating changes in product demand and manufacturing capacity. A case study, 6 by 6 job shop scheduling problem was adapted with uncertainty elements added to the data sets. A simulation model was designed and implemented using ARENA simulation package to generate various job shop scheduling scenarios. Their performances were evaluated using scheduling rules, namely, first-in-first-out (FIFO), earliest due date (EDD), and shortest processing time (SPT). An artificial neural network (ANN) model was developed and trained using various scheduling scenarios generated by ARENA simulation. The experimental results suggest that the ANN scheduling model can provided moderately reliable prediction results for limited scenarios when predicting the number completed jobs, maximum flowtime, average machine utilization, and average length of queue. This study has provided better understanding on the effects of changes in demand and capacity on the job shop schedules. Areas for further study includes: (i) Fine tune the proposed ANN scheduling model (ii) Consider more variety of job shop environment (iii) Incorporate an expert system for interpretation of results. The theoretical framework proposed in this study can be used as a basis for further investigation

    Optimization Algorithms in Project Scheduling

    Get PDF
    Scheduling, or planning in a general perspective, is the backbone of project management; thus, the successful implementation of project scheduling is a key factor to projects’ success. Due to its complexity and challenging nature, scheduling has become one of the most famous research topics within the operational research context, and it has been widely researched in practical applications within various industries, especially manufacturing, construction, and computer engineering. Accordingly, the literature is rich with many implementations of different optimization algorithms and their extensions within the project scheduling problem (PSP) analysis field. This study is intended to exhibit the general modelling of the PSP, and to survey the implementations of various optimization algorithms adopted for solving the different types of the PSP

    Minimizing the makespan in a flexible flowshop with sequence dependent setup times, uniform machines, and limited buffers

    Get PDF
    This research addresses the problem of minimizing the makespan in a flexible flowshop with sequence dependent setup times, uniform machines, and limited buffers. A mathematical model was developed to solve this problem. The problem is NP-Hard in the strong sense and only very small problems could be solved optimally. For exact methods, the computation times are long and not practical even when the problems are relatively small. Two construction heuristics were developed that could find solutions quickly. Also a simulated annealing heuristic was constructed that improved the solutions obtained from the construction heuristics. The combined heuristics could compute a good solution in a short amount of time. The heuristics were tested in three different environments: 3 stages, 4 stages, and 5 stages. To assess the quality of the solutions, a lower bound and two simple heuristics were generated for comparison purposes. The proposed heuristics showed steady improvement over the simple heuristics. When compared to the lower bounds, the heuristics performed well for the smaller environment, but the performance quality decreased as the number of stages increased. The combination of these heuristics defiantly shows promise for solving the problem

    Analusis and Modeling of Flexible Manufacturing System

    Get PDF
    Analysis and modeling of flexible manufacturing system (FMS) consists of scheduling of the system and optimization of FMS objectives. Flexible manufacturing system (FMS) scheduling problems become extremely complex when it comes to accommodate frequent variations in the part designs of incoming jobs. This research focuses on scheduling of variety of incoming jobs into the system efficiently and maximizing system utilization and throughput of system where machines are equipped with different tools and tool magazines but multiple machines can be assigned to single operation. Jobs have been scheduled according to shortest processing time (SPT) rule. Shortest processing time (SPT) scheduling rule is simple, fast, and generally a superior rule in terms of minimizing completion time through the system, minimizing the average number of jobs in the system, usually lower in-process inventories (less shop congestion) and downstream idle time (higher resource utilization). Simulation is better than experiment with the real world system because the system as yet does not exist and experimentation with the system is expensive, too time consuming, too dangerous. In this research, Taguchi philosophy and genetic algorithm have been used for optimization. Genetic algorithm (GA) approach is one of the most efficient algorithms that aim at converging and giving optimal solution in a shorter time. Therefore, in this work, a suitable fitness function is designed to generate optimum values of factors affecting FMS objectives (maximization of system utilization and maximization of throughput of system by Genetic Algorithm (GA) approach

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development
    corecore