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Analysis and Modeling of Flexible 
Manufacturing System 

Naveen Kumar Suniya, M. Tech 

National Institute of Technology-Rourkela, 2013 

Supervisor:  Professor Siba Sankar Mahapatra 

Abstract 

Analysis and modeling of flexible manufacturing system (FMS) consists of scheduling of 

the system and optimization of FMS objectives. Flexible manufacturing system (FMS) 

scheduling problems become extremely complex when it comes to accommodate 

frequent variations in the part designs of incoming jobs. This research focuses on 

scheduling of variety of incoming jobs into the system efficiently and maximizing system 

utilization and throughput of system where machines are equipped with different tools 

and tool magazines but multiple machines can be assigned to single operation. Jobs 

have been scheduled according to shortest processing time (SPT) rule. Shortest 

processing time (SPT) scheduling rule  is  simple, fast, and generally a superior rule in 

terms of minimizing completion time through the system, minimizing the average number 

of jobs in the system, usually lower in-process inventories (less shop congestion) and 

downstream idle time (higher resource utilization).  Simulation is better than experiment 

with the real world system because the system as yet does not exist and 

experimentation with the system is expensive, too time consuming, too dangerous. In 

this research, Taguchi philosophy and genetic algorithm have been used for 

optimization. Genetic algorithm (GA) approach is one of the most efficient algorithms that 

aim at converging and giving optimal solution in a shorter time. Therefore, in this work, a 

suitable fitness function is designed to generate optimum values of factors affecting FMS 

objectives (maximization of system utilization and maximization of throughput of system 

by Genetic Algorithm (GA) approach. 
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Chapter 1: Introduction 
 

In today's competitive global market, manufacturers have to modify their operations to 

ensure a better and faster response to needs of customers. The primary goal of any 

manufacturing industry is to achieve a high level of productivity and flexibility which can 

only be done in a computer integrated manufacturing environment. A flexible 

manufacturing system (FMS) is an integrated computer-controlled configuration in which 

there is some amount of flexibility that allows the system to react in the case of changes, 

whether predicted or unpredicted. FMS consists of three main systems. The work 

machines which are often automated CNC machines are connected by a material 

handling system(MHS) to optimize parts flow and the central control computer which 

controls material movements and machine flow. An FMS is modeled as a collection of 

workstations and automated guided vehicles (AGV). It is designed to increase system 

utilization and throughput of system and for reducing average work in process 

inventories and many factors affects both system utilization and throughput of system in 

this research system utilization and throughput of system has been optimized 

considering factors, which is discussed in next sections. 

1.1. Flexible manufacturing system 

 A system that consists of numerous programmable machine tools connected by an 

automated material handling system and can produce an enormous variety of items. A 

FMS is large, complex, and expensive manufacturing in which Computers run all the 

machines that complete the process so that many industries cannot afford traditional FMS 

hence the trend is towards smaller versions call flexible manufacturing cells. Today two or 

more CNC machines are considered a Flexible Manufacturing Cell (FMC), and two or 

more cells are considered a Flexible Manufacturing System (FMS) 

 “Flexible manufacturing system is a computer controlled manufacturing system, in which 

numerically controlled machines are interconnected by a material handling system and a 

master computer controls both NC machines and material handling system.”[1] 

The primary goal of any manufacturing industry is to achieve a high level of throughput, 

flexibility and system utilization. System utilization computed as a percentage of the 

available hours (Number of the machines available for production multiplied by the 

number of working hours), it can be increased by changing in plant layout, by reducing 
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transfer time between two stations and throughput, defined as the number of parts 

produced by the last machine of a manufacturing system over a given period of time. If 

the no of parts increases throughput also increases and also system utilization 

increases. Flexible manufacturing system consist following components 

Work station: work station consist computer numerical controlled machines that 

perform various operations on group of parts. FMS also includes other work station like 

inspection stations, assembly works and sheet metal presses. 

Automated Material Handling and Storage system: Work parts and subassembly 

parts between the processing stations are transferred by various automated material 

handling systems. Many automated material handling devices are used in flexible 

manufacturing system like automated guided vehicle, conveyors, etc. there are two 

types of material handling system 

Primary handling system - establishes the basic layout of the FMS and is 

responsible for moving work parts between stations in the system. 

Secondary handling system - consists of transfer devices, automatic pallet 

changers, and similar mechanisms located at the workstations in the FMS. 

Computer Control System: It is used to control the activities of the processing 

stations and the material handling system in the FMS. 

 

1.2. Flexible manufacturing system layouts 
Flexible manufacturing system has different layouts according to arrangement of 

machine and flow of parts. According to part flow and arrangement of machine, layout of 

flexible manufacturing system are discussed below 

 

1.2.1. In-line FMS layout 

  The machines and handling system are arranged in a straight line. In Figure 

1(a) parts progress from one workstation to the next in a well-defined sequence 

with work always moves in one direction and with no back-flow. Similar operation 

to a transfer line except the system holds a greater variety of parts. Routing 

flexibility can be increased by installing a linear transfer system with bi-directional 

flow, as shown in Figure 1(b). Here a secondary handling system is provided at 

each workstation to separate most of the parts from the primary line. Material 

handling equipment used: in-line transfer system; conveyor system; or rail-guided 

vehicle system. 
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(a) 

 

Figure 1 in line FMS layout 

 

1.2.2. Loop FMS layout 
 Workstations are organized in a loop that is served by a looped parts handling 

system. In Figure 2, parts usually flow in one direction around the loop with the 

capability to stop and be transferred to any station.  

 

 

Figure 2: Loop FMS layout 

Each station has secondary handling equipment so that part can be brought-to 

and transferred from the station work head to the material handling loop. 

Load/unload stations are usually located at one end of the loop. 

 

1.2.3. Rectangular FMS layout 
 This arrangement allows for the return of pallets to the starting position in a 

straight line arrangement. 
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Figure 3: Rectangular FMS layout 

1.2.4. Ladder FMS layout 
 This consists of a loop with rungs upon which workstations are located. The 

rungs increase the number of possible ways of getting from one machine to the 

next, and obviate the need for a secondary material handling system. It reduces 

average travel distance and minimizes congestion in the handling system, thereby 

reducing transport time between stations. See Figure 4. 

 

 

Figure 4: Ladder FMS layout 

1.2.5. Open field FMS layout 
It consists of multiple loops and ladders, and may include sidings also. This layout 

is generally used to process a large family of parts, although the number of 

different machine types may be limited, and parts are usually routed to different 

workstations depending on which one becomes available first. See Figure 5. 
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Figure 5: Open Field FMS layout 

 

1.2.6. Robot centered FMS layout 
This layout uses one or more robots as the material handling system. See figure 6 

 

Figure 6: Robot centered FMS layout 
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1.3. Sequencing of jobs 
 

The machines are arranged in a typical layout in a given FMS environment. The set of 

jobs are processed, those have different operations. According to their processing time, 

due dates these jobs scheduled to minimize make span.There are following rules 

selected from many existing priority scheduling rules to obtain optimum sequence. 

 

First-Come, First-Serve (FCFS) - the job which arrives first, enters service first (local 

rule). It is simple, fast, “fair” to the customer. And  disadvantage of this rule is, it is least 

effective as measured by traditional performance measures as a long job makes others 

wait resulting in idle downstream resources and it ignores job due date and work 

remaining (downstream information). 

 

 Shortest Processing Time (SPT) - the job which has the smallest operation time 

enters service first (local rule). Advantages of this sequencing rule is  simple, fast, 

generally a superior rule in terms of minimizing completion time through the system, 

minimizing the average number of jobs in the system, usually lower in-process 

inventories (less shop congestion) and downstream idle time (higher resource 

utilization), and usually lower average job tardiness and disadvantages is, it ignores 

downstream, due date information, and long jobs wait (high job wait-time variance). 

 

 Earliest Due Date (EDD) - the job which has the nearest due date, enters service first 

(local rule) and it is simple, fast, generally performs well with regards to due date, but if 

not, it is because the rule does not consider the job process time. It has high priority of 

past due job and it ignores work content remaining.  

 Critical Ratio (CR) Rule - sequences jobs by the time remaining until due date 

divided by the total remaining processing time (global rule). The job with the smallest 

ratio of due date to processing time enters service first. The ratio is formed as (Due 

Date-Present Time)/Remaining Shop Time where remaining shop time refers to: 

queue, set-up, run, wait, and move times at current and downstream work centers. it 

recognizes job due date and work remaining (incorporates downstream information)but 

in this sequencing, past due jobs have high priority, does not consider the number of 

remaining operations 
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 Slack Per Operation - is a global rule, where job priority determined as (Slack of 

remaining operations) it recognizes job due date and work remaining (incorporates 

downstream information) 

 

Least Changeover Cost (Next Best rule) - sequences jobs by set-up cost or time 

(local rule).it is simple, fast, generally performs well with regards to set-up costs. it 

does not consider the job process time, due date and work remaining. 

 

1.4.  Simulation modeling 

“Simulation is the process of designing a model of real system and conducting 

experiments with this model for the purpose either of understanding the behaviors of 

the system or of evaluating various strategies (within the limits imposed by criterion or 

set of criteria) for the operation of the system”. Definition has given by R.E. Shannon.  

We simulate rather than experiment with the real world system because the system as 

yet does not exist and experimentation with the system is expensive, too time 

consuming, too dangerous. Experimentation with the system is appropriate is 

inappropriate. A system is defined as a group of objects that are joined together some 

regular interaction or interdependence toward the accomplishment of some purpose. 

A system that does not vary with time is static whereas another one varies with time is 

dynamic system. A system consist following components 

• Entity: An entity is an object of interest in the system. 

• Attribute: AN attribute is a property of an entity. A given entity can process 

many attributes. 

• Activity: An activity represents a time period of specified length 

• State of a system: it is defined to be that collection of variables necessary to 

describe the system at any time, relative to the objectives of the study 

• Event: An event is defined as an instantaneous occurrence that may change 

the state of the system 

•  Progress of the system: The progress of the system is studied by following 

the changes in the state of the system. 

Simulation is a powerful problem solving technique. It can be used to experiment 

with systems which are not yet in existence, or with existing systems without 

actually altering the real system; and therefore offers valuable reductions in terms 



Flexible Manufacturing system 
 

17 | P a g e  
 

of time, cost, and risk involved in modeling systems, designing experiments and 

playing scenario analysis games.  

Although simulation analysis is limited in some aspects, its popularity as a 

decision making aid is increasing in direct relation to the capability and 

accessibility of today's high speed digital computers. Computer simulations are 

assuming the role of traditional experiments in many areas of business and 

scientific investigations as coding and running simulation models of large, complex 

real life systems (both in the manufacturing and service sectors) is becoming more 

and more profitable with the improving technology.  

Generally, the real life systems we analyze are composed of closely 

interconnected sub-systems. There are various -seemingly independent- sources 

of information and multiple points of decision making. What is more, randomness 

is a very important, non-negligible factor in life: real systems are usually 

hierarchical, distributed, and contain a large number of relatively independent, but 

still implicitly coordinated decision makers operating under great uncertainty. The 

complexity of real world problems are such that in a lot of cases, the simplifying 

assumptions made by the corresponding analytic model might not be realistic, or 

the appropriately formulated model cannot be solved analytically.  

When the uncertainty encountered in a system is sufficiently small, existing 

analytical methods can be suitably modified to cope with them: In fact, many of the 

algorithms dealing with stochastic systems are closely related to their counterparts 

in deterministic systems. However, when uncertainty is large, modifying existing 

algorithms is not enough: new paradigms have to be considered to take care of 

the random environment, and simulation modeling is a very promising alternative 

to capture the real stochastic behavior of the system under study. 

 

1.5. Genetic algorithm 

 Genetic Algorithms (GA) are direct, parallel, stochastic method for global search 

and optimization, which imitates the evolution of the living beings, described by 

Charles Darwin. GA is part of the group of Evolutionary Algorithms (EA). The 

evolutionary algorithms use the three main principles of the natural evolution: 

reproduction, natural selection and diversity of the species, maintained by the 

differences of each generation with the previous.  
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 Genetic Algorithms works with a set of individuals, representing possible 

solutions of the task. The selection principle is applied by using a criterion, giving an 

evaluation for the individual with respect to the desired solution. The best-suited 

individuals create the next generation. It optimizes with both continuous and discrete 

variables efficiently. It doesn’t require any derivative information. It searches from a 

wide sampling of the cost surface simultaneously. It handles a large no. of variables at 

a time. It optimizes variables with extremely complex cost surfaces. It provides a list of 

optimum variables, not just a single solution. Genetic algorithm has following steps 

1.  Generate initial population – in most of the algorithms the first generation is 

randomly generated, by selecting the genes of the chromosomes among the 

allowed alphabet for the gene. Because of the easier computational 

procedure it is accepted that all populations have the same number (N) of 

individuals.   

2.  Calculation of the values of the function that we want to minimize of 

maximizes.  

3.  Check for termination of the algorithm – as in the most optimization 

algorithms, it is possible to stop the genetic optimization by:  

• Value of the function: the value of the function of the best individual is 

within defined range around a set value. It is not recommended to use 

this criterion alone,  because of the stochastic element in the search 

the procedure, the optimization  might not finish within sensible time 

• Maximal number of iterations: this is the most widely used stopping 

criteria. It  guarantees that the algorithms will give some results within 

some time, whenever it  has reached the extreme or not 

• Stall generation: if within initially set number of iterations (generations) 

there is no improvement of the value of the fitness function of the best 

individual the algorithms stops. 

4.  Selection – between all individuals in the current population are chose those, 

who will continue and by means of crossover and mutation will produce 

offspring population. At this stage elitism could be used – the best n 

individuals are directly transferred to the next generation. The elitism 

guarantees, that the value of the optimization function cannot get worst (once 

the extreme is reached it would be kept).  

5.  Crossover – the individuals chosen by selection recombine with each other 

and  new individuals will be created. The aim is to get offspring individuals 

that inherit the best possible combination of the characteristics (genes) of 

their parents.  
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6.  Mutation – by means of random change of some of the genes, it is 

guaranteed  that even if none of the individuals contain the necessary gene 

value for the  Figure 2.7 – General scheme of the evolutionary algorithms 8 

extreme, it is still possible to reach the extreme.  

7.  New generation – the elite individuals chosen from the selection are combined 

with those who passed the crossover and mutation, and form the next 

generation. It works smoothly with both numerical and experimental data. it is 

well suited for parallel computing. 

 

1.6. Objectives of research 

 The primary goal of any manufacturing industry is to achieve a high level of 

productivity and flexibility which can only be done in a computer integrated 

manufacturing environment. The objective of this research is to maximize machine 

utilization, maximizing throughput of system and optimize factors those affects system 

utilization and throughput of system by using taguchi philosophy and genetic algorithm 
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Chapter 2: Literature Review 
2.1.  Scheduling of flexible manufacturing system 

Han et al. [8] presents  the setup and scheduling problem in a special type  of flexible 

manufacturing system, where all the machines are of the same type, and tools are 

'borrowed'  between machines and from the tool crib as needed. In their model, there 

were limited tools. The objective of their model is to assign tools and jobs to machines so 

that the 'borrowing' of tools is minimized while maintaining a 'reasonable' workload 

balance. This is a nonlinear integer programming problem, and is computationally 

expensive. To solve the problem efficiently, the authors propose to decompose the 

problem. The two sub-problems each have the same objective as shown above. But the 

constraints are divided. The first problem finds an optimum tool allocation, given the job 

allocation. The second problem finds an optimal job allocation, given the tool allocation. 

Phrased in this way, both problems become linear. The first problem is a capacitated 

transportation problem, and the second is a generalized assignment problem. It is 

suggested to solve the two problems iteratively. The flexible manufacturing system 

investigated by Han et al., is special. All machine tools are assumed identical. hence, the 

jobs remain at one machine, and the tools are moved to the machines as needed.  

Kimemia and Gershwin [9] report on an optimization problem that optimizes the routing 

of the parts in a flexible manufacturing system   with the objective of maximizing the flow 

while keeping the average in-process inventory below a fixed level. Operation has 

different processing time for different machines in cell. Network of queues approach is 

used. The technique showed good results in simulation. Chen and Chung [10] evaluate 

loading formulations and routing policies in a simulated environment. Their main finding 

was that flexible manufacturing system is not superior to job shop if the routing flexibility 

is not utilized. Avonts and Van Wassenhove [11] present a unique procedure to select 

the part mix and the routing of parts in a FMS. A LP model is used to select the part mix 

using cost differential from producing the part outside the FMS. The selected loading is 

then checked by a queuing model for utilization in an iterative fashion.  

 Hutchison et al. [12] provide a mathematical formulation of the random FMS scheduling 

problem, where random jobs arrive at the FMS.  Their formulation is a static one in which 

N jobs are to be scheduled on M machines. The objective is to minimize the make span. 

They present a mixed integer 0-1 programming formulation. They solve this problem by a 

branch and bound scheme. A single formulation solves the allocation of the operations to 

the machines and the timed sequence of the operations. However, their study assumes 
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that material handling devices, pallets, buffers, and  tool  magazines do not constrain the 

system. Further, at most one alternative is allowed for any operation.  An alternative 

approach to this problem is to divide it into two sub problems.  The first problem is the 

allocation of the jobs to the machines in the routings. The second problem is the time 

bound sequencing of the jobs, the standard job shop problem. Hutchison et al. [12] 

report on a comparison of the performance of the above two methodologies and another 

methodology which was based on dispatching rule (SPT). A novel feature of their 

simulation experiment is their use of a measure of flexibility, probability of an alternate 

machine option for any operation. They concluded that the programming formulations 

produced substantial improvement in make span over the dispatching rules. However, as 

compared to the decomposed problem, the unified formulation did not produce 

significant improvement in make span to justify the additional computational effort 

required.  

 In the above approach, the tool magazines do not constrain the system.  Hence the first 

sub problem of the decomposition can allocate all the jobs to their machines. However, 

when the tool magazine is considered restraining, it may not 8 be possible to allocate all 

the jobs for one tooling setup. Then this sub problem resolves to a selection problem. 

Out of the pool of waiting jobs, jobs are selected to be processed in the next planning 

period (part type selection problem). The selected parts are then sequenced. The 

process is repeated period by period. In this approach, it is assumed that at the 

beginning of each planning period all the tools are reassigned and replaced in the tool 

magazine.  Shanker and Tzen [13] propose a mathematical programming approach to 

solve this part selection problem for random FMS. Their approach is similar to Stecke, 

Stecke assumes the part ratio as given and the planning horizon as indefinite whereas 

Shanker and Tzen consider individual parts and a fixed planning horizon. They have a 

constraint on the tool magazine capacity which is very similar to Stecke's. They constrain 

the model to find a unique routing for each part type (in contrast to Stecke). Two 

objectives are considered: 1) Balancing the workload, and 2) Balancing the workload and 

minimizing the number of late jobs. The resulting problems are, again, non-linear integer 

problems. Even after linearization, the problems are computationally too sumptuous, and 

they further propose two heuristics corresponding to the two objectives. For balancing 

the workload, they propose essentially a greedy heuristic which attempts to allocate to 

the most lightly loaded machine the longest operation first. For the second objective, the 

same heuristic is modified to include the overdue jobs with the highest priority. Their 

computational experience showed that the analytical formulations would be too 

formidable to be of practical use. Shanker and Srinivasulu [14] modify the objective to 
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consider the throughput also. A computationally expensive branch and backtrack 

algorithm is suggested as well as heuristics.  

 In the above approaches for random FMS, the scheduling of the FMS is decomposed 

into two problems, part type selection, and sequencing of jobs. The nine sequencing is 

done using one of the dispatching rules. Of course, some (e.g. branch and bound) 

search could be used to solve the sequencing problem too. Hwan and Shogun [15] 

present the part selection problem for a random FMS with machines of a single general 

purpose type capable of producing all part types.  They include the due date and the 

quantity of parts needed to be produced in their formulation. By ignoring the tool 

overlapping Stecke [16], they considerably simplify the tool magazine constraint. Their 

objective is to maximize the number of part types selected over a planning horizon. They 

take care of due dates by weighting on the selected part types. By assuming a single 

machine type, their problem essentially boils down to maximizing the utilization of the 

tool slots in the tool magazines. They report computational experience on two 

Lagrangian relaxation techniques they used to solve the problem. Their heuristics and 

Lagrangian methods obtained solutions close to optimal solutions found by the branch 

and bound method. The CPU times required by the three methods are successively 

order of magnitudes higher.  

 Sarin and Chen [17] approach the loading problem from the viewpoint of machining 

cost. Computational methodologies to solve the integer programming formulation are 

proposed. Ram et al. [18] consider this problem as a discrete generalized network and 

present a branch and bound procedure. Co et al. [19] have suggested a four pass 

approach to solve the batching, loading and tool configuration problems of random FMS. 

In this approach, compatible jobs are batched together using integer programming. The 

solution is then improved upon in three further stages. Jaikumar and Van Wassenhove 

[20] propose a hierarchical planning and scheduling decomposition of FMS operation 

problems. In the first level, an aggregate production model is used. This is a linear 

programming model that chooses parts to be produced in a FMS during the next 

planning period. The ten remaining parts are assumed to be produced elsewhere at a 

cost difference. The objective is to maximize the cost difference while allowing for the 

inventory cost for work in process. The essential constraints are the demand for the parts 

and the machine capacity. Put simply, the objective of the second level is to minimize 

tool changeover. The production requirements and the tool and machine allocation are 

determined in levels one and two. All that remains in the third level is to determine a 

feasible schedule that will fulfill the above requirements. Detailed requirements such as 

buffer requirements, and material handling constraints, are taken care of at this level. 
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Jaikumar and Wassenhove recommend simulation using some dispatching rule to carry 

out this level. If a feasible schedule cannot be obtained, the planning process is 

reiterated. They discuss the application of their framework in an existing FMS and point 

out that the primary problem is at the first level - selection of parts. Once this is decided 

upon, the other two problems can be solved by simple heuristics.  

 Mathematical models in the literature are not efficient for reasonably sized problems. 

Further, they make simplifying assumptions which are not always valid in practice. The 

assumptions, of course, change with the models: some models assume automatic tool 

transport, some others will neglect delays caused by automated guided vehicles (AGV), 

still others will assume that tool magazines, pallets and fixtures do not constrain the 

models in any way, and so on. The models also take a static view of the shop floor. It is 

assumed that all the planned activities will be carried out exactly, or the disruptions are 

infrequent enough that periodic solution of the problems will be practical. Quite often the 

flexible manufacturing system scheduling problem is seen as part of a larger 

(hierarchical) planning system, taking care of e.g. the part types to be processed at the 

same time, the set-up of machines and the scheduling. An example of such an approach 

is the model presented in Stecke [16], in which the objective of the scheduling is to 

minimize the maximal lateness of processing the jobs. Another approach is to consider 

the flexible manufacturing system scheduling as a separate problem, taking the batches 

and the set-up of the system as given. Examples of such a model include the integer 

programming model presented in Sarin and Chen [17] and the model presented in 

Stecke [16]. In both of these papers the objective is to minimize the maximal completion 

time of the jobs. Finally, one of the often used scheduling approaches is to use 

dispatching rules. Here a dispatching/priority rule is used to choose the course of action 

every time the status of the system changes. Montazeri and Van Wassenhove [21] give 

an extensive simulation study of numerous dispatching rules under several objectives. 

As a conclusion to this brief overview of literature dealing with flexible manufacturing 

system scheduling one can say that what is to be understood as the scheduling problem 

in an flexible manufacturing system is not clearly defined and consequently it is very bard 

to assess the quality of the different approaches. Hierarchical models for production 

planning usually discriminate between an aggregate capacity planning decision on the 

tactical level and a detailed scheduling decision on the operational level. Planning 

decisions may be taken at the Master Production Scheduling level and usually assume 

fixed lead times at the operational level VolIman et al.[22]. This lead time is then 

controlled by some form of input-output or workload control Bensana et al., [6]. In order 

to keep track of the lead times which will be realized, adequate aggregate models of the 
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detailed production situation need to be available. In job shops, stochastic queuing 

network models are used to investigate these issues Shaw [23]. 

2.2. Taguchi Philosophy 

Taguchi technique is step by step approach to identify causal relationship between 

design factors and performance, which results to increased quality performance into 

processes and products at development as well as production level. Taguchi’s technique 

used by a many industries to optimize their process design, through identifying 

independent and dependent variables with the help of identified factors and factor levels. 

Design of Experiment is an approach that facilitates analytically alters in number 

of inputs and output variables and examines the impact on response variables. The 

authors like Taguchi [24,25] and Ross [27] discovered analytical techniques to design 

highly efficient and cost effective experiments. The foundation of Taguchi's philosophy is 

the loss function concept. “The quality of a product is the (minimum) loss imparted by the 

product to society from the time the product is shipped." [26].The main reason behind 

loss is not only non–conformance of products, rather loss increases further if one of the 

parameter deviates from specification (objective value/ reading/ degree).Quality should 

be implanted to products. The author also pointed that quality is best accomplished by 

increasing accuracy and the cost of quality should be calculated as a function of the 

divergence from the desired specifications. The robust design concept given by Taguchi 

can be realized with design of experiments. This design refers to design a process or a 

product in a way that it has minimal sensitivity to the external nuisance factors .Klien, I.E 

[28] has emphasized the importance signal-to-noise ratio analyses which was given by 

Taguchi to develop a design for Rayleigh surface acoustic wave (SAW) gas sensing 

device operated in a conservative delay-line configuration. Recently Chen [29] calculated 

signal-to-noise ratio on the basis of ANOVA. In this paper author has used 10 step 

methodologies as mention by koilakuntla [30] for deploying robust Taguchi design in 

process optimization of a molding operation by using MINITAB. 

2.3. Genetic Algorithm 

A genetic algorithm is simply a search algorithm based on the observation that sexual 

reproduction, and the principle of survival of the fittest, enables biological species to 

adapt to their environment and compete effectively for its resources. While it is a 

relatively straight forward algorithm, the algorithm is an effective stochastic search 

method, proven as a robust problem solving technique [31] that produces better than 

random results [32]. 
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This observation was first mathematically formulated by John Holland in 1975 in his 

paper, "Adaptation in Natural and Artificial Systems" [33]. Usually the algorithm breeds a 

predetermined number of generations; each generation is populated with a 

predetermined number of fixed length binary strings. These binary strings are then 

translated (decoded) into a format that represents suitable parameters either for some 

controller, or as output. 

The product resulting from evolution (whether natural or simulated) is not simply 

discovered by a random search through the problem state space, but by a directed 

search from random positions in that space. In fact, according to Goldberg, the simulated 

evolution of a solution through genetic algorithms is, in some cases, more efficient and 

robust than the random search, enumerative or calculus based techniques. The main 

reasons given by Goldberg are the probability of a multi-modal problem state space in 

non-linear problems, and that random or enumerative searches are exhaustive if the 

dimensions of the state space are too great [34]. 

An additional advantage of the genetic algorithm is that the problem solving strategy 

involves using “the strings’ fitness to direct the search; therefore they do not require any 

problem-specific knowledge of the search space, and they can operate well on search 

spaces that have gaps, jumps, or noise” [35]. As each individual string within a 

population directs the search, the genetic algorithm searches, in parallel, numerous 

points on the problem state space with numerous search directions. 

According to Koza, “the fact that the genetic algorithm operates on a population of 

individuals, rather than a single point in the search space of the problem, is an essential 

aspect of the algorithm. The advantage conferred by the existence of a population is not 

merely the obvious benefit of dropping 1,000 [i.e., population size] parachutists, rather 

than one, on the landscape. The population serves as the reservoir of the probably-

valuable genetic material that the crossover operation needs to create new individuals 

with probably-valuable new combinations of characteristics” [39, 37]. 
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Chapter 3: Methodology 
 

In this research methodology has been adopted as shown in figure 3.1, it starts with 
scheduling of job by using sequencing rules, and then according to scheduling a 
simulated small flexible manufacturing has been developed. The process variables 
those affects FMS objectives were designed by using Taguchi philosophy has been 
treated as input function for simulation model of FMS to generate the throughput and 
working hours for each machine per year and then system utilization and throughput 
has been optimized as discussed below 
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Figure 7: Flowchart of analysis of FMS 
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3.1 Sequencing of jobs on machines 
 

In this research, four part types and five machines has been used. Processing time for 

each operation on different part types on different machines are as shown in table 1, in 

this research shortest processing time sequencing rule has been used for scheduling.  

Table 1: Processing time of each operation on each machine (min.) 

Part/Machine Operation M/C 1 M/C 2 M/C 3 M/C 4 M/C 5 
P1 (n1=3) O11 2 5 4 1 2 
 O12 5 4 5 7 5 
 O13 4 5 5 4 5 
P2(n2=3) O21 2 5 4 7 8 
 O22 5 6 9 8 5 
 O23 4 5 4 5 5 
P3(n3=4) O31 9 8 6 7 9 
 O32 6 1 2 5 4 
 O33 2 5 4 2 4 
 O34 4 5 2 1 5 
P4(n4=2) O41 1 5 2 4 12 
 O42 5 1 2 1 2 

 

According to shortest processing time rule, the job with the shortest processing time is 

processed first and here each operation can processed on each machine with different 

processing time. Operation on part will be processed on that machine which machine 

takes less processing time for operation.  

Table 2: Sequencing of operation of jobs on machines 

M/Ck Sequence of  operation 

M/C1 O21-O41-O23 

M/C2 O12-O42-O32 

M/C3 O31 

M/C4 O11- O13-O33-O34 

M/C4 O22 

 

For example operation O11 will be processed on machine 4 because machine 4 takes 

less processing time than other machine. Similarly for all operations of different jobs 

can be sequence on machine. Sequencing of operation of jobs on different machine is 

as shown in figure 8.  
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Figure 8: Gantt chart of operation on machines 

3.2 Modeling of flexible manufacturing system 

 

In this research, five machines and four different part types has been used. As 

shown in figure 3.4 there are five machines, and in this model, simulation has been 

run for 1 year with 3820 hours warm up period which is calculate by using Welch’s 

method. According to this method we obtained moving average of work in process 

then plot graph and at 3820 hours, this graph almost smooth. So it is the warm up 

period  

 

 

 

Figure 9: Graph between average work in process and time 
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Figure 10: Small manufacturing system 

AGVs has been used for transfer parts from one station to other station and in figure 3.5 

shows logical data module those has been used in simulation modeling. 

 

Figure 11: Simulation model of small manufacturing system 

 

To build a FMS model and to carry out simulation runs with Arena, a user performs the 

following steps: 
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1. Construction of a basic model. Arena provides the model window flowchart view, 

which is a flowchart-style environment for building a model. The user selects and 

drags the flowchart module shapes into the model window and connects them to 

define process flow of the model. 

2. Adding data to the model parameters. The user adds actual data (e.g., processing 

times, resource demands, others) to the model. This is done by double-clicking on 

module icons and adding data. 

3. Performing a simulation run of the model. The user runs the simulation and 

examines the results. 

4. Analysis of the simulation results provided by the automatic reports of Arena. The    

user can expand the statistics. 

5. Modifying and enhancing the model according to the user needs 

  In this research we have used 5 work station and 5 machines those 

produces 4 part types having different operations. The processing time of operation is 

exponentially distributed as shown in table 1.  

 In this research, processing time taken as exponentially distributed. Arrival of 

demand also taken as exponentially distributed. It means that demand of part will come 

exponentially distributed here in this research, arrival demand time taken as 10, 15 and 

20 minutes that means each demand come in 10, 15, 20 minutes and the parts will 

process according to given sequence. 

 

3.3 Experiment and model development 

Small manufacturing system modeled in this thesis is taken from [2]. Which consists 

five work stations and five machines and there is four parts produced by these 

machines. Every work station consist one machine. 

Here we have used four factors which affects the objective of FMS: these factors and 

there levels are as follows: 

1. Distance preference (X1): distance preference means what distance between 

two stations. It can be smallest distance between two stations or largest 

distance between two stations or the distance in cyclic order as shown in figure. 

So the level of distance preferences is smallest distance(S), largest distance 

(L), cyclic distance (C). 

2. Arrival (demand) time (min.) (X2): it’s the time of arriving demand of parts. Here 

for in simulation three levels of demand time were assumed 10 min., 15min. 

and 20 min. 
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Fig. 3.6: Distance preferences 

 

3. No. of carts(X3) = No. of carts used in simulation, here in simulation three levels 

of no. of carts were assumed 2, 3 and 4. 

4. Speed of carts (feet/min.) (X4)=it’s the speed of carts or AGVs, which is also 

affects the FMS objectives. Here in this thesis three level of speeds were 

assumed 60, 65 and 70. 

 

From above each factor at three level so the degree of freedom of each factor is 2, and 

three interaction of arrival demand time and other three factors (distance preferences, 

no. of carts, velocity of carts) so each interaction have 4 degree of freedom . Hence the 

total degree of freedom factors is 20. The degree of freedom of model should be equal 

to or greater than the total degree of freedom of factors. So in this research for precise 

results ‘L27’has been selected, and the process variables as designed by using Taguchi 

philosophy has been treated as input function for simulation model of FMS to generate 

the throughput and working hours for each machine per year, as shown in table 3 and 

table 4 respectively, and the system utilization of system should be carried out by 

following formula 

 

Where i = No. of machine 

         n = Total no. of machine 

 

Here total no. of machine is five. System utilization for each treatment has been 

calculated by using above formula.  

Machine 
 

Machine 
 

Machine 
 

Machine 
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Figure 12: Distance preferences 
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Table 3: Experimental design of L27 array for throughput 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distance 

preference 

Demand 

time 

No. of 

Carts 

Velocity of 

Carts 

Throughput 

Small 10 2 60 29586 
Small 10 3 65 29733 
Small 10 4 70 29552 
Small 15 2 60 19463 
Small 15 3 65 19586 
Small 15 4 70 19812 
Small 20 2 60 14870 
Small 20 3 65 14778 
Small 20 4 70 14976 
Large 10 2 65 29373 
Large 10 3 70 29284 
Large 10 4 60 29380 
Large 15 2 65 19844 
Large 15 3 70 19623 
Large 15 4 60 19749 
Large 20 2 65 14595 
Large 20 3 70 14670 
Large 20 4 60 14594 
Cyclical 10 2 70 29285 
Cyclical 10 3 60 29595 
Cyclical 10 4 65 29285 
Cyclical 15 2 70 19875 
Cyclical 15 3 60 19865 
Cyclical 15 4 65 19770 
Cyclical 20 2 70 14764 
Cyclical 20 3 60 14732 
Cyclical 20 4 65 14885 
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Table 4: Experimental design of L27 array for System utilization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distance 

preference 

Demand time No. of 

Carts 

Velocity of 

Carts 

System 

utilization 

Small 10 2 60 0.106313 
Small 10 3 65 0.106346 
Small 10 4 70 0.105746 
Small 15 2 60 0.070139 
Small 15 3 65 0.070316 
Small 15 4 70 0.070486 
Small 20 2 60 0.055483 
Small 20 3 65 0.052751 
Small 20 4 70 0.053747 
Large 10 2 65 0.105842 
Large 10 3 70 0.105249 
Large 10 4 60 0.105111 
Large 15 2 65 0.071236 
Large 15 3 70 0.070445 
Large 15 4 60 0.071466 
Large 20 2 65 0.052381 
Large 20 3 70 0.052368 
Large 20 4 60 0.052429 
Cyclical 10 2 70 0.10518 
Cyclical 10 3 60 0.106638 
Cyclical 10 4 65 0.105174 
Cyclical 15 2 70 0.071295 
Cyclical 15 3 60 0.071832 
Cyclical 15 4 65 0.070563 
Cyclical 20 2 70 0.052861 
Cyclical 20 3 60 0.05335 
Cyclical 20 4 65 0.054687 
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3.4 Optimization:  
Optimization of system utilization and throughput has been done by genetic algorithm. 

Regression equation generate by taguchi philosophy for system utilization and 

throughput were used as fitness function for genetic algorithm and genetic algorithm 

gives the optimize value of factors for maximizing throughput and system utilization 

discuss in next chapter. 

Apart from the single objective functions considered for this problem, a 

combined function is also used to perform the multi-objective optimization for the FMS 

parameters. The function and the variable limits are given using following function. 

Equal weights are considered for all the responses in this multi-objective optimization 

problem. Hence W1 and W2   are equal to 0.5.  
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Chapter 4: Results and Discussions 
 

4.1. Scheduling 

In this research, Shortest Processing Time (SPT) has been used. In Shortest 

Processing Time (SPT), the job which has the smallest operation time enters service 

first (local rule). SPT rule is simple, fast, generally a superior rule in terms of minimizing 

completion time through the system, minimizing the average number of jobs in the 

system, usually lower in-process inventories (less shop congestion) and downstream 

idle time (higher resource utilization), and usually lower average job tardiness. 

Scheduling of flexible manufacturing system according to SPT rule is as shown in table 

5.  According to this sequence make span is 12 min. 

Table 5: Sequencing of Operation on jobs 

M/Ck Sequence of  operation 

M/C1 O21-O41-O23 

M/C2 O12-O42-O32 

M/C3 O31 

M/C4 O11- O13-O33-O34 

M/C4 O22 

  

 

4.2. Experimental design 
In this research L27 array has been used as discussed in previous chapter. When the 

process variable designed by using Taguchi philosophy has been treated as input 

function for simulation model of FMS to generate the working hours for every machine 

per year, and also gives the throughput of system. According to objective of FMS 

throughput and system utilization are larger is better. So using larger is better in L27 

array in taguchi philosophy following plots and regression equations obtained.  



Flexible Manufacturing system 
 

36 | P a g e  
 

321

30000

25000

20000

15000

201510

432

30000

25000

20000

15000

706560

A

M
ea

n 
of

 M
ea

ns

B

C D

Main Effects Plot for Means
Data Means

 

Figure 13: Main effect plot for means of throughput of system 

Main effect plot for means of throughput shows that distance preference should be at 

first level means distance preference should be smallest for this simulated flexible 

manufacturing system for maximizing throughput of system and throughput of system 

is maximum at demand time is 10 min. and no. of carts is 4 and velocity of cart is 65 

feet/min. 
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Figure 14: Interaction plots between demand arrival time (B) and no. of carts(C) for 
throughput 

Interaction plots for means between demand arrival demand time (B) and no. of carts 

(C) gives that as arrival demand time increases throughput of system decreases there 

is very less effect of no. of carts on throughput according to this research in this 

problem. 



Flexible Manufacturing system 
 

37 | P a g e  
 

321

30000

27500

25000

22500

20000

17500

15000

A

M
ea

ns

10
15
20

B

Interaction Plot for Means
Data Means

 

Figure 15:  Interaction plots between and distance preference (A) and demand 
arrival time (B) for throughput 

Interaction plots for means between demand arrival demand time (B) and distance 

preference (A) gives that as arrival demand time increases throughput of system 

decreases and when arrival demand time is 20 min., throughput maximum at level 1 

means when the distance preference is smallest but when arrival demand time is 15 

min., throughput maximum at level three means the distance preference is cyclical, and 

when arrival demand time is 10 min. and distance preference is smallest so throughput 

of system is maximum. It means as arrival time increases, throughput of system 

decreases 
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Figure 16: Interaction plots for means between demand arrival time (B) and 
velocity of carts (D) for system throughput 

Interaction plots for means between demand arrival demand time (B) and velocity of 

carts (D) gives that as arrival demand time increases throughput of system decreases 
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there is very less effect of velocity of carts on throughput according to this research in 

this problem. 
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Figure 17: Main effect plot for means of system utilization 

Main effect plot of system utilization shows that distance preference should be at first 

level means distance preference should be smallest for this simulated flexible 

manufacturing system for maximizing system utilization of system is maximum at 

demand time is 10 min. and no. of carts is 2 and velocity of cart is 60 feet/min. 
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Figure 18:  Interaction plots for means between and distance preference (A) and 
demand arrival time (B) for system utilization 

Interaction plots for means between demand arrival demand time (B) and distance 

preference (A) gives that as arrival demand time increases throughput of system 

decreases and when arrival demand time is 20 min., throughput maximum at level 1 

means when the distance preference is smallest but when arrival demand time is 15 

min., throughput maximum at level three means the distance preference is cyclical, and 

when arrival demand time is 10 min. and distance preference is smallest so throughput 
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of system is maximum. It means as arrival time increases , throughput of system 

decreases 
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Figure 19: Interaction plots for means between demand arrival time (B) and no. 
of carts(C) for system utilization 

Interaction plots for means between demand arrival demand time (B) and no. of carts 

(C) gives that as arrival demand time increases throughput of system decreases there 

is very less effect of no. of carts on system utilization according to this research in this 

problem. 
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Figure 20: Interaction plots for means between demand arrival time (B) and 
velocity of carts(D) for system utilization 
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Interaction plots for means between demand arrival demand time (B) and velocity of 

carts (D) gives that as arrival demand time increases throughput of system decreases 

there is very less effect of velocity of carts on throughput according to this research in 

this problem. 

As shown in response table for means gives that demand time is more influencing 

factor than other factors. Than velocity of carts affects the system utilization and 

distance preference is very less influencing factor for throughput.  

Table 6: Response table for means for throughput 

Level A B C D 
1 0.07681 0.10573 0.07675 0.07697 
2 0.07628 0.07086 0.07659 0.07659 
3 0.07684 0.05334 0.0766 0.07638 
Delta 0.00056 0.05239 0.00016 0.0006 
Rank 3 1 4 2 

 

 

As shown in response table for means gives that demand time is more influencing 

factor than other factors. Than velocity of carts affects the system utilization and 

distance preference is very less influencing factor for system utilization 

Table 7: response table for system utilization 

Level A B C D 
1 21373 29453 21295 21315 
2 21235 19732 21318 21317 
3 21340 14763 21334 21316 
Delta 138 14690 39 2 
Rank 2 1 3 4 

 

4.3. Optimization 

In this research, system throughput of system and system utilization both are optimized 

by genetic algorithm, using genetic algorithm following results obtained as shown in 

table 4.4 and table 4.5 respectively for maximum throughput 

Throughput = 43321 - 17*distance preferences (X1) - 1469 *arrival demand + 19* no. of 

carts (X3) + 0.1 * velocity of carts (X4)     
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Table 8: factor and their level for maximizing throughput through genetic algorithm 

Factors Level value 

Distance preference Level 1 Smallest distance 

Demand arrival time Level 1 10 minutes 

No. of carts Level 3 4 

Velocity of cart - 62.501 

 

Throughput obtained by value of above factor in simulation is 30013.  

System utilization = 0.159 + 0.00001 *distance preferences (X1) - 0.00524*arrival 

demand time (X2) - 0.00007 * no. of carts (X3) - 0.000060 * velocity of carts (X4) 

 

Table 9: factor and their level for maximizing throughput through genetic algorithm 

 

Factors Level value 

Distance preference Level 1 Smallest distance 

Demand arrival time Level 1 10 minutes 

No. of carts Level 3 4 

Velocity of cart - 69.941 

 

System utilization obtained by value of above factor in simulation is 0.1071%  

Apart from the single objective functions considered for this problem, a 

combined function is also used to perform the multi-objective optimization for the FMS 

parameters. The function and the variable limits are given using following function. 

Equal weights are considered for all the responses in this multi-objective optimization 

problem. Hence W1 and W2  are equal to 0.5.  

 

Using above function a following combined function obtained which is optimized by 
using genetic algorithm and gives results as shown in table 4.6 

ZMulti = 0.5 * (1.49155 - 0.0000938 * X(1) distance preferences - 0.049155 * X(2) arrival 
demand time + 0.0006566 * X(3) No. of carts + 0.0005628*X(4) Velocity of carts )-
0.75*(1.4642 - 0.0005717 * X(1) distance preferences -0.49406 * X(2) arrival demand time +19 
* X(3) No. of carts +0.0006390 * X(4) Velocity of carts ) 
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Table 10: factor and their level for maximizing throughput  and system utilization 
through genetic algorithm 

Factors Level value 

Distance preference Level 1 Smallest distance 

Demand arrival time Level 1 10 minutes 

No. of carts Level 3 4 

Velocity of cart - 62.495 

Throughput  30018 

System utilization  0.1085% 
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Chapter 5: Conclusions 
 

In this research, we presented a simulation modeling and optimization of FMS 

objectives for evaluating the effect of factors such as demand arrival time, no. of carts 

used in system, velocity of carts, and distance preference between two stations. 

System utilization and throughput both are affected by these factors. System utilization 

and throughput is more affected by demand arrival time comparatively other three 

factors. Distance preference also affects throughput and system utilization. For both 

system utilization and throughput distance preference should be smallest. And as the 

demand arrival time increases both system utilization and throughput of system 

decreases. No of carts and velocity of carts are less affected. 
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