444 research outputs found

    Application acceleration for wireless and mobile data networks

    Get PDF
    This work studies application acceleration for wireless and mobile data networks. The problem of accelerating application can be addressed along multiple dimensions. The first dimension is advanced network protocol design, i.e., optimizing underlying network protocols, particulary transport layer protocol and link layer protocol. Despite advanced network protocol design, in this work we observe that certain application behaviors can fundamentally limit the performance achievable when operating over wireless and mobile data networks. The performance difference is caused by the complex application behaviors of these non-FTP applications. Explicitly dealing with application behaviors can improve application performance for new environments. Along this overcoming application behavior dimension, we accelerate applications by studying specific types of applications including Client-server, Peer-to-peer and Location-based applications. In exploring along this dimension, we identify a set of application behaviors that significantly affect application performance. To accommodate these application behaviors, we firstly extract general design principles that can apply to any applications whenever possible. These design principles can also be integrated into new application designs. We also consider specific applications by applying these design principles and build prototypes to demonstrate the effectiveness of the solutions. In the context of application acceleration, even though all the challenges belong to the two aforementioned dimensions of advanced network protocol design and overcoming application behavior are addressed, application performance can still be limited by the underlying network capability, particularly physical bandwidth. In this work, we study the possibility of speeding up data delivery by eliminating traffic redundancy present in application traffics. Specifically, we first study the traffic redundancy along multiple dimensions using traces obtained from multiple real wireless network deployments. Based on the insights obtained from the analysis, we propose Wireless Memory (WM), a two-ended AP-client solution to effectively exploit traffic redundancy in wireless and mobile environments. Application acceleration can be achieved along two other dimensions: network provision ing and quality of service (QoS). Network provisioning allocates network resources such as physical bandwidth or wireless spectrum, while QoS provides different priority to different applications, users, or data flows. These two dimensions have their respective limitations in the context of application acceleration. In this work, we focus on the two dimensions of overcoming application behavior and Eliminating traffic redundancy to improve application performance. The contribution of this work is as follows. First, we study the problem of application acceleration for wireless and mobile data networks, and we characterize the dimensions along which to address the problem. Second, we identify that application behaviors can significantly affect application performance, and we propose a set of design principles to deal with the behaviors. We also build prototypes to conduct system research. Third, we consider traffic redundancy elimination and propose a wireless memory approach.Ph.D.Committee Chair: Sivakumar, Raghupathy; Committee Member: Ammar, Mostafa; Committee Member: Fekri, Faramarz; Committee Member: Ji, Chuanyi; Committee Member: Ramachandran, Umakishor

    Supporting Cooperative Caching in Disruption Tolerant Networks

    Full text link

    Adaptive search in mobile peer-to-peer databases

    Get PDF
    Information is stored in a plurality of mobile peers. The peers communicate in a peer to peer fashion, using a short-range wireless network. Occasionally, a peer initiates a search for information in the peer to peer network by issuing a query. Queries and pieces of information, called reports, are transmitted among peers that are within a transmission range. For each search additional peers are utilized, wherein these additional peers search and relay information on behalf of the originator of the search

    Provider-Controlled Bandwidth Management for HTTP-based Video Delivery

    Get PDF
    Over the past few years, a revolution in video delivery technology has taken place as mobile viewers and over-the-top (OTT) distribution paradigms have significantly changed the landscape of video delivery services. For decades, high quality video was only available in the home via linear television or physical media. Though Web-based services brought video to desktop and laptop computers, the dominance of proprietary delivery protocols and codecs inhibited research efforts. The recent emergence of HTTP adaptive streaming protocols has prompted a re-evaluation of legacy video delivery paradigms and introduced new questions as to the scalability and manageability of OTT video delivery. This dissertation addresses the question of how to enable for content and network service providers the ability to monitor and manage large numbers of HTTP adaptive streaming clients in an OTT environment. Our early work focused on demonstrating the viability of server-side pacing schemes to produce an HTTP-based streaming server. We also investigated the ability of client-side pacing schemes to work with both commodity HTTP servers and our HTTP streaming server. Continuing our client-side pacing research, we developed our own client-side data proxy architecture which was implemented on a variety of mobile devices and operating systems. We used the portable client architecture as a platform for investigating different rate adaptation schemes and algorithms. We then concentrated on evaluating the network impact of multiple adaptive bitrate clients competing for limited network resources, and developing schemes for enforcing fair access to network resources. The main contribution of this dissertation is the definition of segment-level client and network techniques for enforcing class of service (CoS) differentiation between OTT HTTP adaptive streaming clients. We developed a segment-level network proxy architecture which works transparently with adaptive bitrate clients through the use of segment replacement. We also defined a segment-level rate adaptation algorithm which uses download aborts to enforce CoS differentiation across distributed independent clients. The segment-level abstraction more accurately models application-network interactions and highlights the difference between segment-level and packet-level time scales. Our segment-level CoS enforcement techniques provide a foundation for creating scalable managed OTT video delivery services

    Understanding a large-scale IPTV network via system logs

    Get PDF
    Recently, there has been a global trend among the telecommunication industry on the rapid deployment of IPTV (Internet Protocol Television) infrastructure and services. While the industry rushes into the IPTV era, the comprehensive understanding of the status and dynamics of IPTV network lags behind. Filling this gap requires in-depth analysis of large amounts of measurement data across the IPTV network. One type of the data of particular interest is device or system log, which has not been systematically studied before. In this dissertation, we will explore the possibility of utilizing system logs to serve a wide range of IPTV network management purposes including health monitoring, troubleshooting and performance evaluation, etc. In particular, we develop a tool to convert raw router syslogs to meaningful network events. In addition, by analyzing set-top box (STB) logs, we propose a series of models to capture both channel popularity and dynamics, and users' activity on the IPTV network.Ph.D.Committee Chair: Jun Xu; Committee Member: Jia Wang; Committee Member: Mostafa H. Ammar; Committee Member: Nick Feamster; Committee Member: Xiaoli M

    User-activity aware strategies for mobile information access

    Get PDF
    Information access suffers tremendously in wireless networks because of the low correlation between content transferred across low-bandwidth wireless links and actual data used to serve user requests. As a result, conventional content access mechanisms face such problems as unnecessary bandwidth consumption and large response times, and users experience significant performance degradation. In this dissertation, we analyze the cause of those problems and find that the major reason for inefficient information access in wireless networks is the absence of any user-activity awareness in current mechanisms. To solve these problems, we propose three user-activity aware strategies for mobile information access. Through simulations and implementations, we show that our strategies can outperform conventional information access schemes in terms of bandwidth consumption and user-perceived response times.Ph.D.Committee Chair: Raghupathy Sivakumar; Committee Member: Chuanyi Ji; Committee Member: George Riley; Committee Member: Magnus Egerstedt; Committee Member: Umakishore Ramachandra
    • …
    corecore