
APPLICATION ACCELERATION FOR WIRELESS AND MOBILE

DATA NETWORKS

A Thesis
Presented to

The Academic Faculty

by

Zhenyun Zhuang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
December 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4747579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

APPLICATION ACCELERATION FOR WIRELESS AND MOBILE

DATA NETWORKS

Approved by:

Dr. Raghupathy Sivakumar,
Committee Chair
Department of ECE
Georgia Institute of Technology

Dr. Umakishore Ramachandran
College of Computing
Georgia Institute of Technology

Dr. Raghupathy Sivakumar, Advisor
Department of ECE
Georgia Institute of Technology

Dr. Chuanyi Ji
Department of ECE
Georgia Institute of Technology

Dr. Mostafa H. Ammar
College of Computing
Georgia Institute of Technology

Dr. Faramarz Fekri
Department of ECE
Georgia Institute of Technology

Date Approved: August 25th, 2010

To my family.

iii

ACKNOWLEDGEMENTS

I am grateful to the help of many individuals, without whom this dissertation would not

have been possible.

First and foremost, I would like to express my sincere gratitude to my PhD advisor,

Professor. Raghupathy Sivakumar. He instructed me the methodologies and approaches

both for performing academic research and presenting research works. He also gave me

freedom in making my own decisions and supported me along the way. During my PhD

study years, I have always been inspired by his strive for excellence, passion for research,

and his innovative mind.

I am also indebted to Dr. Sivakumar for the precious opportunity of conducting my

research in GNAN group, an inspiring and productive research group he created and man-

age. Thanks to his thoughtful guidance and management, our research group is a great

environment for developing skills, exchanging ideas, and eventually generating high-quality

research works. I remember the numerous insightful paper discussions, the idea-stimulating

brainstorming sessions, and the constructive presentation dry-runs. It is my great honor to

be a member of the GNAN group. This is an unique experience that I will always be proud

of and benefit from for my entire life.

I would like to thank my dissertation committee members: Dr. Mostafa H. Ammar,

Dr. Chuanyi Ji, Dr. Faramarz Fekri, and Dr. Umakishore Ramachandran for serving in

my thesis proposal and defense committee. I am grateful for the time they spent in reading

my thesis and their valuable advices and comments, which helped me improve the quality

of this thesis.

I extend my thanks to my current and past labmates in the GNAN research group.

Special thanks to Tae-Young Chang, Yujie Zhu, Ramanuja Vedantham, Sandeep Kakumanu,

Aravind Velayutham, Sriram Lakshmanan, Cheng-Lin Tsao, Shruti Sanadhya, Karthikeyan

Sundaresan, and Dr. Yeonsik Jeong for their collaborations and suggestions in my thesis

iv

research. Finally I would like to thank my family: my wife, my son, my parents, my siblings

and my nieces, for always being there for me. Their encouragement and advices helped me

through the good times and bad times. Their care and support will always accompany me

through my adventures.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xii

LIST OF FIGURES . xiii

SUMMARY . xvi

I INTRODUCTION . 1

1.1 Thesis Contribution and Summary . 4

II ACCELERATING CLIENT-SERVER APPLICATIONS FOR WIRELESS DATA
NETWORKS: DESIGN ELEMENTS AND PROTOTYPE IMPLEMENTATION 5

2.1 Summary . 5

2.2 Introduction . 5

2.3 Motivation . 7

2.3.1 Evaluation Model . 7

2.3.1.1 Applications . 7

2.3.1.2 Traffic generator . 9

2.3.1.3 Testbed . 9

2.3.1.4 Transport protocols . 9

2.3.1.5 Parameters . 9

2.3.2 Quantitative Analysis . 10

2.3.3 Impact of Application Behavior 10

2.3.3.1 Thin session control messages 11

2.3.3.2 Block-based data fetches 11

2.3.3.3 Flow control bottlenecked operations 12

2.3.3.4 Other reasons . 12

2.4 A3 Design . 16

2.4.1 Transaction Prediction (TP) . 16

2.4.2 Redundant and Aggressive Retransmissions (RAR) 17

2.4.3 Prioritized Fetching (PF) . 18

vi

2.4.4 Infinite Buffering (IB) . 18

2.4.5 Application-aware Encoding (AE) 19

2.5 A3 Solution . 20

2.5.1 Deployment Model and Architecture 20

2.5.2 Application Overviews . 21

2.5.3 A3 Realization . 22

2.5.3.1 Transaction Prediction 22

2.5.3.2 Redundant and Aggressive Retransmissions 23

2.5.3.3 Prioritized Fetching . 24

2.5.3.4 Infinite Buffering . 25

2.5.3.5 Application-aware Encoding 26

2.5.4 A3 Point Solution - A3• . 27

2.6 Performance Evaluation . 30

2.6.1 Setup . 30

2.6.2 Transaction Prediction . 33

2.6.3 Redundant and Aggressive Retransmissions 34

2.6.4 Infinite Buffering . 35

2.6.5 Prioritized Fetching . 37

2.6.6 Application-aware Encoding . 39

2.6.7 Integrated Performance Evaluation 41

2.7 Conclusions and Discussion . 43

2.8 Related Work . 45

III ACCELERATING PEER-TO-PEER APPLICATIONS WITH MOBILE HOSTS
PARTICIPATING IN NETWORKS: CHALLENGES AND SOLUTIONS . . . 48

3.1 Summary . 48

3.2 Introduction . 48

3.3 Background and Scope . 51

3.3.1 Scope of this work . 51

3.3.2 BitTorrent . 53

3.3.3 Other P2P Data Networks . 54

3.4 Motivation . 54

vii

3.4.1 Testbed & Methodology . 55

3.4.2 Issues with Bi-directional traffic 56

3.4.2.1 Bi-directional TCP . 56

3.4.2.2 Uploads-based Incentives 60

3.4.3 Downloader-side issues . 62

3.4.3.1 Incentives and Mobility 62

3.4.3.2 Rarest-first Fetches . 62

3.4.4 Uploader-side Issues . 64

3.4.4.1 Power-saving Mode and Server Functionality 64

3.4.4.2 Server Mobility . 66

3.4.5 Relevance to Other P2P Networks 67

3.5 wP2P Design . 69

3.5.1 Insights into the problems . 69

3.5.2 Role Reversal . 70

3.5.3 Age-based Manipulation . 72

3.5.4 Incentive aware operations . 74

3.5.5 Mobility-aware fetching . 75

3.5.6 Integrated Operations . 76

3.6 Performance Evaluation . 77

3.6.1 Evaluation Methodology . 77

3.6.1.1 Simulation Setup . 77

3.6.1.2 Prototype Setup . 78

3.6.2 Role Reversal . 82

3.6.3 Age-based Manipulation . 83

3.6.4 Incentive Aware Operations . 84

3.6.5 Mobility-Aware Fetching . 86

3.7 Related Work . 88

3.7.1 P2P Data Sharing Networks . 88

3.7.2 P2P Enhancements . 88

3.7.3 Mobility . 89

3.7.4 PSM . 89

viii

3.8 Conclusions and Future Work . 90

IV IMPROVING ENERGY EFFICIENCYOF LOCATION-BASEDAPPLICATIONS
ON SMARTPHONES . 91

4.1 Summary . 91

4.2 Introduction . 91

4.3 Motivation . 94

4.3.1 GPS Energy Consumption . 94

4.3.2 Multiple Location-Based Applications 95

4.3.3 Multiple Sensing Mechanisms . 96

4.3.4 Sensing Intervals . 97

4.3.5 Problem Characterization . 98

4.4 Design . 99

4.4.1 Sensing Substitution (SS) . 99

4.4.2 Sensing suppRession (SR) . 102

4.4.3 Sensing Piggybacking (SP) . 103

4.4.4 Sensing Adaptation (SA) . 105

4.4.5 Integrated Operation . 106

4.4.6 Inherent Tradeoffs . 107

4.5 Software Architecture and System Implementation 108

4.5.1 Architecture and Deployment Model 108

4.5.2 Implementation Overview . 109

4.5.3 Sensing Substitution (SS) . 111

4.5.4 Sensing suppRession (SR) . 113

4.5.5 Sensing Piggybacking (SP) . 114

4.5.6 Sensing Adaptation (SA) . 115

4.5.7 Mobility Profiling . 116

4.6 Performance Evaluation . 117

4.6.1 Analysis . 117

4.6.2 Sensing Substitution (SS) . 119

4.6.3 Sensing suppRession (SR) . 120

4.6.4 Sensing Piggybacking (SP) . 120

ix

4.6.5 Sensing Adaptation (SA) . 121

4.6.6 Integrated Results . 121

4.6.7 Profiling results . 122

4.7 Related Work . 123

4.8 Conclusion . 124

V WIRELESS MEMORY: ELIMINATING COMMUNICATION REDUNDANCY
IN WI-FI NETWORKS . 131

5.1 Summary . 131

5.2 Introduction . 131

5.3 Motivation . 132

5.3.1 Methodology . 135

5.3.2 User-user Redundancy . 137

5.3.3 User-time redundancy . 137

5.3.4 Memory size . 138

5.3.5 Distribution of redundancy . 138

5.3.6 Application/protocols/data types 139

5.3.7 Summary . 140

5.4 Wireless Memory . 140

5.4.1 Concept . 140

5.4.2 Basic design elements . 141

5.4.3 Advanced design elements . 142

5.4.3.1 AP . 144

5.4.3.2 Clients . 145

5.4.4 Memory structure . 145

5.5 Design of advanced elements . 146

5.5.1 Memory Filter (MF) . 146

5.5.2 Memory Fidelity Enhancer (MFE) 146

5.5.3 Memory Sizer (MS) . 147

5.5.4 Memory Localizer (ML) . 148

5.5.5 Memory Replacer (MR) . 148

5.5.6 Memory Advertiser (MA) . 149

x

5.6 Performance Evaluation . 150

5.6.1 Aggregate network throughput . 151

5.6.2 Impact of redundancy level . 151

5.6.2.1 Low redundancy . 151

5.6.2.2 Medium redundancy . 151

5.6.2.3 High redundancy . 152

5.6.3 Adoption curve . 152

5.7 Related Works . 152

5.8 Conclusion . 153

VI CONCLUSION AND FUTURE WORK . 159

6.1 Conclusion . 159

6.2 Future Work . 159

REFERENCES . 161

VITA . 167

xi

LIST OF TABLES

1 Statistics of 100 Emails Sent by Ten Users 19

2 User-pairs (Dominant user vs. other top users) 134

3 Applications and protocols . 138

xii

LIST OF FIGURES

1 Application acceleration dimensions . 2

2 Impact of Wireless Environment Characteristics on Application Throughput 8

3 Application Traffic Patterns . 14

4 Motivation for TP and RAR . 15

5 Motivation for PF (a) and IB (b, c) . 17

6 Deployment Model . 20

7 A3 Deployment Model with NetFilter and Software Architecture 28

8 TP and RAR (Shaded blocks are storage space and timer, white blocks are
operations.) . 29

9 PF and IB (Shaded blocks are storage space and timer, white blocks are
operations.) . 29

10 Application-aware Encoding . 29

11 Simulation Network . 30

12 Simulation Results of Transaction Prediction (CIFS) 31

13 Simulation Results of Redundant and Aggressive Retransmissions (CIFS) . 32

14 Prototype Results of TP and RAR . 34

15 Emulation Results of Infinite Buffering (CIFS) 36

16 Emulation Results of Prioritized Fetching (HTTP) 37

17 Prototype Results of IB and AE . 38

18 Prototype Results of Prioritized Fetching (Internet Explorer) 39

19 Simulation Results of Application-aware Encoding (SMTP) 40

20 Integrated A3 Results in WWAN . 41

21 Effectiveness of AE . 42

22 Network Testbed for P2P Evaluation (All six BitTorrent peers are inside
Georgia Tech campus) . 52

23 Impact of Bi-directional TCP . 55

24 Effect of upload traffic on downloads (a,b), Effect of Incentive and Mobility (c) 59

25 Impact of Rarest-first Fetching . 63

26 PSM on Server side . 64

27 Impact of server mobility . 66

xiii

28 Pseudo-code : (a) Role Reversal, (b) Age-based Manipulation, (c) Incentive
Aware Operations, (d) Mobility-aware Fetching 80

29 Integrated operations . 81

30 Role Reversal: Simulation results (a) and Prototype results (b) 81

31 Simulation Setup . 81

32 Testbed used in prototyping . 82

33 Age-based Manipulation: Simulation results (a,b) and Prototype results (c) 83

34 Incentive aware Operations: Simulation results 85

35 Incentive aware Operations: Prototype results 86

36 Mobility-aware Fetching (100 MB files) . 87

37 Energy Consumption of Gps . 93

38 Energy consumption of Gps and Net . 96

39 Problem characterization . 98

40 Sensing Substitution . 99

41 Sensing Piggybacking . 104

42 Integrated Operations . 107

43 Software Architecture . 109

44 Two prototype interfaces . 110

45 Prototype on G1 Android Phone . 111

46 Pseudo-code : (a) Sensing Substitution, (b) Sensing suppRession, (c) Sensing
Piggybacking, and (d) Sensing Adaption 125

47 Merging operations . 126

48 Sensing Substitution (Events) . 126

49 Sensing Substitution . 126

50 Sensing Suppression (Events) . 127

51 Sensing Suppression . 127

52 Sensing Piggybacking (Events) . 127

53 Sensing Piggybacking . 128

54 Sensing Adaptation (Events) . 128

55 Sensing Adaptation . 128

56 Integrated Results . 129

57 Battery level of integrated results . 129

xiv

58 Merging operations . 129

59 Profiling Results . 130

60 User-user dimension (Dominant user vs all other users) 133

61 User-time dimension (Dominant user) . 134

62 Redundancy size (a), Memory size (b), and Clustered pattern of redundancy(c)135

63 Dimension of data type . 139

64 Basic elements of WM . 141

65 Pseudo code for Basic WM Elements . 143

66 Software Architecture . 144

67 Memory structure for clients and AP . 154

68 Pseudo code for Advanced Design Elements: MF (a), MFE (b), MS (c), ML
(d), MR (e) and MA (f) . 155

69 Aggregate network throughput based on three data sets 156

70 Low redundancy . 156

71 Medium redundancy . 157

72 High redundancy . 157

73 Adoption curve . 157

xv

SUMMARY

This work studies application acceleration for wireless and mobile data networks.

The problem of accelerating application can be addressed along multiple dimensions. The

first dimension is advanced network protocol design, i.e., optimizing underlying network

protocols, particulary transport layer protocol and link layer protocol.

Despite advanced network protocol design, in this work we observe that certain appli-

cation behaviors can fundamentally limit the performance achievable when operating over

wireless and mobile data networks. The performance difference is caused by the complex

application behaviors of these non-FTP applications. Explicitly dealing with application

behaviors can improve application performance for new environments. Along this overcom-

ing application behavior dimension, we accelerate applications by studying specific types

of applications including Client-server, Peer-to-peer and Location-based applications. In

exploring along this dimension, we identify a set of application behaviors that significantly

affect application performance. To accommodate these application behaviors, we firstly ex-

tract general design principles that can apply to any applications whenever possible. These

design principles can also be integrated into new application designs. We also consider spe-

cific applications by applying these design principles and build prototypes to demonstrate

the effectiveness of the solutions.

In the context of application acceleration, even though all the challenges belong to the

two aforementioned dimensions of advanced network protocol design and overcoming appli-

cation behavior are addressed, application performance can still be limited by the underlying

network capability, particularly physical bandwidth. In this work, we study the possibil-

ity of speeding up data delivery by eliminating traffic redundancy present in application

traffics. Specifically, we first study the traffic redundancy along multiple dimensions using

traces obtained from multiple real wireless network deployments. Based on the insights

obtained from the analysis, we propose Wireless Memory (WM), a two-ended AP-client

xvi

solution to effectively exploit traffic redundancy in wireless and mobile environments.

Application acceleration can be achieved along two other dimensions: network provision-

ing and quality of service (QoS). Network provisioning allocates network resources such as

physical bandwidth or wireless spectrum, while QoS provides different priority to different

applications, users, or data flows. These two dimensions have their respective limitations

in the context of application acceleration.

In this work, we focus on the two dimensions of overcoming application behavior and

Eliminating traffic redundancy to improve application performance. The contribution of

this work is as follows. First, we perform experimental analysis of the new and orthogonal

dimensions of application behavior and traffic redundancy to establish them as both vi-

able and necessary optimization avenues for performance in wireless data networks beyond

conventional protocol optimization. Second, we extract generalized design principles and

develop application-aware acceleration and wireless memory algorithms to exploit the new

optimization dimensions. Third, we design and develop real-world solutions that manifest

the principles and algorithms to lend a strong systems-oriented focus to the solutions and

to serve as credible evaluation platforms.

xvii

CHAPTER I

INTRODUCTION

This work studies application acceleration for wireless and mobile data networks. The

problem of accelerating application can be addressed along multiple dimensions. The first

dimension is advanced network protocol design. As applications have to rely on underlying

network protocols (e.g., transport layer) for data delivery, the straightforward approach for

application acceleration is to optimize underlying network protocols, particulary transport

layer protocol and link layer protocol. Compared to their wired and fixed counterparts,

wireless and mobile environments typically have unique characteristics such as mobility, high

loss rate, large delay and low bandwidth. Because of this, conventional network protocols

such as TCP do not perform effectively in wireless and mobile environments. To deal with

such characteristics, a significant amount of research has been done toward the development

of better lower layer network protocols including transport layer protocols [44,66,70,108] and

link layer protocols [36, 53, 119] over the past several decades. Such protocols, and several

more, have novel and unique design components that are indeed important for tackling the

unique characteristics of wireless environments.

Despite advanced network protocol design, in this work we observe that certain appli-

cation behaviors can fundamentally limit the performance achievable when operating over

wireless and mobile data networks. Specifically, though advanced transport protocols can

significantly improve the throughput of FTP, certain non-FTP applications do not see much

improvement even when advanced transport protocols are applied. The performance differ-

ence is caused by the complex application behaviors of these non-FTP applications. Such

behaviors stem from the design of the applications, which is typically tailored for operation

in either conventional fixed and wired environments or certain usage scenarios. Explicitly

dealing with application behaviors can improve application performance for new environ-

ments. Along this overcoming application behavior dimension, we accelerate applications by

1

Figure 1: Application acceleration dimensions

studying specific types of applications. First, many conventional applications such as web-

based applications are designed for conventional environments, but they suffer performance

degradation when moving into wireless and mobile environments. These applications can

be largely divided into two categories: Client-server and Peer-to-peer. In addition to con-

ventional applications, there are also mobile-specific applications that specifically designed

for mobile environments. One important type of such applications are location-based ap-

plications for smartphones. These applications also face challenges that prevent them from

working efficiently. Our work optimizes all these three types of applications. In explor-

ing along this dimension, we identify a set of application behaviors that significantly affect

application performance. To accommodate these application behaviors, we firstly extract

general design principles that can apply to any applications whenever possible. These de-

sign principles can also be integrated into new application designs. We also consider specific

applications by applying these design principles and build prototypes to demonstrate the

effectiveness of the solutions.

In the context of application acceleration, even though all the challenges belong to

the two aforementioned dimensions of advanced network protocol design and overcoming

application behavior are addressed, application performance can still be limited by the un-

derlying network capability, particularly physical bandwidth. In other words, even with

2

perfect designs of protocols across all layers (i.e., from application layer to physical layer),

the raw data delivery rate is still constrained by the physical available bandwidth. In this

work, we study the possibility of speeding up data delivery by eliminating traffic redun-

dancy present in application traffics. Specifically, Several recent studies [51, 87, 105, 111]

have shown the presence of considerable amounts of redundancy in Internet traffic con-

tent. Such redundancies in content can be explicitly eliminated to improve communication

performance. There are various approaches [37, 38, 87, 102, 111] that have been proposed

to eliminate such redundancy. Ranging from application-layer to network layer strategies,

these works invariably focus on fixed wireline networks. Similar to the above works, we too

explore leveraging network traffic redundancy, but exclusively focus on wireless and mobile

environments. Unlike wireline networks, wireless and mobile environments exhibit unique

challenges and opportunities in the context of redundancy elimination. On one hand, the

broadcast nature of wireless communication enables techniques such as packet sniffing to

be performed with ease, while on the other hand, mobility and location based channel vari-

ances could impose challenges that have to be effectively addressed. In this work, we first

study the traffic redundancy along multiple dimensions using traces obtained from multi-

ple real wireless network deployments. Based on the insights obtained from the analysis,

we propose Wireless Memory (WM), a two-ended AP-client solution to effectively exploit

traffic redundancy in wireless and mobile environments.

Application acceleration can be achieved along two other dimensions: network provision-

ing and quality of service (QoS). Network provisioning allocates network resources such as

physical bandwidth or wireless spectrum, while QoS provides different priority to different

applications, users, or data flows. These two dimensions have their respective limitations

in the context of application acceleration. Network provisioning may incur substantial cost

(e.g., cost of applying new wireless spectrum) and oftentimes is hard to justify. QoS typically

provides resource reservation control mechanisms for certain high-priority applications by

essentially penalizing other low-priority applications. Two distinctly different philosophies

were developed to engineer preferential treatment for packets which require it: IntServ [48]

and DiffServ [47].

3

In this work, we focus on the two dimensions of overcoming application behavior and

Eliminating traffic redundancy to improve application performance, and such focus is pri-

marily because of the comparatively less work available along these dimensions.

1.1 Thesis Contribution and Summary

The contribution of this work is as follows. First, we perform experimental analysis of the

new and orthogonal dimensions of application behavior and traffic redundancy to establish

them as both viable and necessary optimization avenues for performance in wireless data

networks beyond conventional protocol optimization. Second, we extract generalized design

principles and develop application-aware acceleration and wireless memory algorithms to

exploit the new optimization dimensions. Third, we design and develop real-world solutions

that manifest the principles and algorithms to lend a strong systems-oriented focus to the

solutions and to serve as credible evaluation platforms.

In summary, our thesis involves the experimental analysis of the new dimensions of

application behavior and traffic redundancy for performance optimization in wireless data

networks, and design of application-acceleration and wireless memory solutions guided by a

strong systems-focus to exploit those dimensions using generalized principles derived from

the analysis.

The remainder of the thesis is organized as follows. The next three chapters are along

the dimension of overcoming application behavior. Specifically, Chapters 2 and 3 presents

the acceleration of client-server applications and peer-to-peer applications, respectively.

Chapter 4 focuses on the acceleration of location-based applications. The dimension of

eliminating traffic redundancy is explored in Chapter 5. Finally, we conclude the thesis and

discuss future work in Chapter 6.

4

CHAPTER II

ACCELERATING CLIENT-SERVER APPLICATIONS FOR

WIRELESS DATA NETWORKS: DESIGN ELEMENTS AND

PROTOTYPE IMPLEMENTATION

2.1 Summary

A tremendous amount of research has been done toward improving transport-layer per-

formance over wireless data networks. The improved transport layer protocols are typi-

cally application-unaware. In this chapter, we argue that the behavior of applications can

and does dominate the actual performance experienced. More importantly, we show that

for practical applications, application behavior all but completely negates any improve-

ments achievable through better transport layer protocols. In this context, we motivate an

application-aware, but application transparent, solution suite called A3 (application-aware

acceleration) that uses a set of design principles realized in an application specific fashion to

overcome the typical behavioral problems of applications. We demonstrate the performance

of A3 through both emulations using realistic application traffic traces and implementations

using the NetFilter utility.

2.2 Introduction

A significant amount of research has been done toward the development of better trans-

port layer protocols that can alleviate the problems Transmission Control Protocol (TCP)

exhibits in wireless environments [44, 66, 70, 108]. Such protocols, and several more, have

novel and unique design components that are indeed important for tackling the unique

characteristics of wireless environments. However, in this work we ask a somewhat orthog-

onal question in the very context the above protocols were designed for: How does the

application’s behavior impact the performance deliverable to wireless users?

Toward answering this question, we explore the impact of typical wireless characteristics

5

on the performance experienced by the applications for very popularly used real-world appli-

cations including File Transfer Protocol (FTP), the Common Internet File Sharing (CIFS)

protocol [4], the Simple Mail Transfer Protocol (SMTP), and the Hyper-Text Transfer Pro-

tocol (HTTP). Through our experiments, we arrive at an impactful result: Except for FTP,

which has a simple application layer behavior, for all other applications considered, not

only is the performance experienced when using vanilla TCP-NewReno much worse than

for FTP, but the applications see negligible or no performance enhancements even when

they are made to use the wireless-aware protocols.

We delve deeper into the above observation and identify several common behavioral

characteristics of the applications that fundamentally limit the performance achievable when

operating over wireless data networks. Such characteristics stem from the design of the

applications, which is typically tailored for operation in substantially higher quality local

area network (LANs) environments. Hence, we pose the question: if application behavior is

a major cause for performance degradation as observed through the experiments, what can

be done to improve the end-user application performance?

In answering the above question, we present a new solution called Application-Aware

Acceleration (A3, pronounced as “A-cube”), which is a middleware that offsets the typical

behavioral problems of real-life applications through an effective set of principles and design

elements. A3’s design has five underlying design principles including transaction prediction,

prioritized fetching, redundant and aggressive retransmissions, application aware encoding,

and infinite buffering. The design principles are derived explicitly with the goal of addressing

the aforementioned application layer behavioral problems. We present A3 as a platform

solution requiring entities at both ends of the end-to-end communication, but also describe

a variation of A3 called A3• (pronounced as “A-cube dot”), which is a point solution but is

not as effective as A3. One of the keystone aspects of the A3 design is that it is application-

aware, but application transparent.

The rest of the chapter is organized as follows: Section 2.3 presents the motivation

results for A3. Section 2.4 presents the key design elements underlying the A3 solution.

Section 2.5 describes the realization of A3 for specific applications. Section 2.6 evaluates

6

1% 2% 3%
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Loss (%)

Th
rou

gh
pu

t (M
bit

/s)

4% 8% 12%
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Loss (%)

Th
rou

gh
pu

t (M
bit

/s)

1% 3% 5%
0

0.05

0.1

0.15

0.2

0.25

Loss (%)

Th
rou

gh
pu

t (M
bit

/s)

NewReno
TCP−ELN

NewReno
WTCP

NewReno
STP

(a) FTP (WLAN, WWAN, and SAT)

1% 2% 3%
0

200

400

600

800

1000

1200

Loss (%)

Th
rou

gh
pu

t (K
bit

/s)

NewReno
TCP−ELN

4% 8% 12%
0

1

2

3

4

5

6

7

8

9

10

Loss (%)

Th
rou

gh
pu

t (K
bit

/s)

NewReno
WTCP

1% 3% 5%
0

0.5

1

1.5

2

2.5

3

3.5

4

Loss (%)

Th
rou

gh
pu

t (K
bit

/s)

NewReno
STP

(b) CIFS (WLAN, WWAN, and SAT)

A3 and presents a proof-of-concept prototype of A3 using the NetFilter utility. Section 2.8

discusses related works, and Section 2.7 concludes the chapter.

2.3 Motivation

The focus of this work is entirely on applications that require reliable and in-sequence pack-

ets delivery. In other words, we consider only applications that are traditionally developed

with the assumption of using the TCP transport layer protocol.

2.3.1 Evaluation Model

We now briefly present the setting and methodology employed for the results presented in

the rest of the section.

2.3.1.1 Applications

For the results presented in this section, we consider four different applications: FTP, CIFS,

SMTP and HTTP.

7

1% 2% 3%
0

200

400

600

800

1000

1200

1400

Loss (%)

Th
rou

gh
pu

t (K
bit

/s)

4% 8% 12%
0

1

2

3

4

5

6

7

8

9

10

11

Loss (%)

Th
rou

gh
pu

t (K
bit

/s)

1% 3% 5%
0

0.5

1

1.5

2

2.5

3

3.5

Loss (%)

Th
rou

gh
pu

t (K
bit

/s)

NewReno
TCP−ELN

NewReno
WTCP

NewReno
STP

(c) SMTP (WLAN, WWAN, and SAT)

1% 2% 3%
0

200

400

600

800

1000

1200

1400

1600

Loss Rate (%)

Th
rou

gh
pu

t (M
bit

/s)

4% 8% 12%
0

1

2

3

4

5

6

7

Loss Rate (%)

Th
rou

gh
pu

t (K
bit

/s)

1% 3% 5%
0

0.5

1

1.5

2

Loss Rate (%)

Th
rou

gh
pu

t (K
bit

/s)

NewReno
TCP−ELN

NewReno
WTCP

NewReno
STP

(d) HTTP (WLAN, WWAN, and SAT)

Figure 2: Impact of Wireless Environment Characteristics on Application Throughput

• CIFS Common Internet File System is a platform-independent network protocol used

for sharing files, printers, and other communication abstractions between computers.

While originally developed by Microsoft, CIFS is currently an open technology that

is used for all Windows workgroup file sharing, NT printing, and the Linux Samba

server1.

• SMTP Simple Mail Transfer Protocol is used for the exchange of emails either be-

tween mail servers, or between a client and its server. Most email systems that use

the Internet for communication use SMTP.

• HTTP HyperText Transfer Protocol is the underlying protocol used by the World

Wide Web (WWW).

1Samba uses SMB, on which CIFS is based.

8

2.3.1.2 Traffic generator

We use IxChariot [73] to generate accurate application specific traffic patterns. IxChariot

is a commercial tool for emulating most real-world applications. It is comprised of the Ix-

Chariot console (for control), performance end-points (for traffic generation and reception),

and IxProfile (for characterizing performance).

2.3.1.3 Testbed

We use a combination of a real test-bed and emulation to construct the test-bed for the

results presented in the section. Since IxChariot is a software tool that generates actual

application traffic, it is hosted on the sender and the receiving machines as shown in Fig-

ure 10(b). The path from the sender to the receiver goes through a node running the

Network Simulator (NS2) [114] in emulation mode. The network emulator is configured

to represent desired topologies including the different types of wireless technologies. More

information on the test-bed is presented in Section 2.6.

2.3.1.4 Transport protocols

Since we consider wireless LANs (WLAN), wireless WANs (WWAN), and wireless satellite

area networks (SAT), we use transport layer protocols proposed in related literature for

each of these environments. Specifically, we use TCP-ELN (NewReno with Explicit Loss

Notification) [44], WTCP (Wide-area Wireless TCP) [108], and STP (Satellite Transport

Protocol) [66] as enhanced transport protocols for WLANs, WWANs, and SATs respectively.

2.3.1.5 Parameters

We use average RTT values of 5 ms, 200 ms, and 1000 ms, average loss rates of 1%, 8%, and

3%, and average bandwidths of 5 Mbps, 0.1 Mbps, and 1 Mbps for WLANs, WWANs, and

SATs, respectively. We simulate wireless channels by introducing various link parameters

to packet level traffic with NS2 emulation. The default Ethernet LAN MAC protocol is

used. The purpose for such simplified wireless setup is to examine the impact of application

behaviors better by isolating the effect of complicated wireless MAC protocols. We use

9

application-perceived throughput as the key metric of interest. Each data point is taken as

an average of 10 different experimental runs.

2.3.2 Quantitative Analysis

Figure 2(a) presents the performance results for FTP under varying loss conditions in

WLANs, WWANs, and SAT environments. The tailored protocols uniformly show consid-

erable performance improvements. The results illustrate that the design of the enhancement

protocols such as TCP-ELN, WTCP, and STP, is sufficient enough to deliver considerable

improvements in performance for wireless data networks, when using FTP as the applica-

tion. In the rest of the section, we discuss the impact of using such protocols for other

applications such as CIFS, SMTP, and HTTP.

Figures 2(b)-(d) show the performance experienced by CIFS, SMTP, and HTTP, re-

spectively, under varying loss conditions for the different wireless environments. It can be

observed that the performance improvements demonstrated by the enhancement protocols

for FTP do not carry over to these three applications. It also can be observed that the

maximum performance improvement delivered by the enhancement protocols is less than

5 % across all scenarios.

While the trend evident from the results discussed above is that the enhanced wireless

transport protocols do not provide performance improvements for three very popularly used

applications, we argue in the rest of the section that this is not due to any fundamental

limitations of the transport protocols themselves, but due to the specifics of the behavior

of the three applications under consideration.

2.3.3 Impact of Application Behavior

We now explain the lack of performance improvements when using enhanced wireless trans-

port protocols with applications such as CIFS, SMTP, and HTTP. We use the conceptual

application traffic pattern for the three applications in Figure 3 for most of our reasonings.

10

2.3.3.1 Thin session control messages

All three applications, as observed in Figure 3, use thin session control message exchanges

before the actual data transfer occurs, and thin request messages during the actual data

transfer phase as well. We use the term “thin” to refer to the fact that such messages are

almost always contained in a single packet of MSS (maximum segment size).

The observation above has two key consequences:

• When a loss occurs to a thin message, an entire round trip time (RTT) is taken to

recover from such a loss. When the round-trip time is large like in WWANs and SATs, this

can result in considerably inflating the overall transaction time for the applications. Note

that a loss during the data phase will not have such an adverse impact, as the recovery from

that loss can be multiplexed with other new data transmissions whereas for thin message

losses, no other traffic can be sent anyway.

• Most protocols, including TCP, rely on the arrival of out-of-order packets to infer

packet losses and hence trigger loss recovery. In the case of thin messages, since there are

no packets following the lost message, the only means for loss detection is the expiry of

the retransmission timer. Retransmission timers typically have coarse minimum values to

keep overheads low. TCP, for example, typically uses a minimum Retransmission Time Out

(RTO) value of one second.2

2.3.3.2 Block-based data fetches

Another characteristic of the applications, especially CIFS and HTTP, is that although the

total amount of data to be fetched can be large, the data transfer is performed in blocks,

with each block including a “request-response” exchange. CIFS uses its request-data-block

message to send the block requests, with each request typically requesting only 16 KB to

32 KB of data.

Such a block-based fetching of data has two implications to performance: (i) When the

size of the requested data is smaller than the Bandwidth Delay Product (BDP), there is

2While newer Linux releases have lower minimum RTO values, they still are in the order of several
hundred ms.

11

a gross underutilization of the available resources. Hence, when the SAT network has a

BDP of 128 KB, and CIFS uses a 16 KB request size, the utilization is only 12.5 %. (ii)

Independent of the size of each requested data block, one rtt is spent in sending the next

request once the current requested data arrives. When the RTT of the path is large like in

WWANs and SATs, this can inflate the overall transaction time and hence lower throughput

performance.

2.3.3.3 Flow control bottlenecked operations

Flow control is an important function in communication that helps in preventing the source

from overwhelming the receiver. In a mobile/wireless setting, flow control can kick in

and prove to be the bottleneck for the connection progress due to two reasons: (i) If the

application on the mobile device reads slowly or is temporarily halted for some other reason,

the receiver buffer fills up and the source is eventually frozen till the buffer empties. (ii)

When there are losses in the network, and the receiver buffer size is of the same order as

the BDP (which is typically true), flow control can prevent new data transmissions even

when techniques such as fast recovery are used due to unavailability of buffer space at the

receiver. With fast recovery, the sender inflates the congestion window to compensate the

new ACKs received. However, this inflation may be curbed by the flow control mechanism

if there is no buffer space on the receiver side.

2.3.3.4 Other reasons

While the above discussed reasons are behavioral “acts of commission” by the applications

that result in lowered performance, we now discuss two more reasons that can be seen as

behavioral “acts of omission”. These are techniques that the applications could have used

to address conditions in a wireless environment, but do not.

Non-prioritization of data: For all three applications considered, no explicit prioritiza-

tion of data to be fetched is performed, and hence all the data to be fetched are given equal

importance. However, for certain applications prioritizing data in a meaningful fashion can

have a profound impact on the performance experienced by the end-system or user. For

example, consider the case of HTTP used for browsing on a small-screen PDA. When a

12

webpage URL request is issued, HTTP fetches all the data for the webpage with equal

importance. However, the data corresponding to the visible portion of the webpage on the

PDA’s screen is obviously of more importance and will have a higher impact on the perceived

performance by the end-user. Thus, leveraging some means of prioritization techniques can

help deliver better performance to the user. With such non-prioritization of data, HTTP

suffers performance as defined by the original data size and the low bandwidths of the

wireless environment.

Non-use of data reduction techniques: Finally, another issue is applications not using

knowledge specific to their content or behavior to employ effective data reduction techniques.

For example, considering the SMTP application, “email vocabulary” of users has evolved

over the last couple of decades to be very independent of traditional “writing vocabulary”

and “verbal vocabulary” of the users. Hence, it is an interesting question as to whether

SMTP can use email vocabulary based techniques to reduce the actual content transferred

between SMTP servers, or a SMTP server and a client. Not leveraging such aspects prove

to be of more significance in wireless environments where the baseline performance is poor

to start with.

13

Client Server
Establish NetBIOS Session

Positive Session Ack
Negotiate CIFS Dialect
Choose CIFS Dialect

User Login
User ID

Connect to Resource
Tree ID

Open A File
File ID

Request Data Block 1
Data 1
Data 1

Request Data Block 2
Data 2
Data 2
Data 2

Data 1

CIFS-1

CIFS-2

CIFS-3

CIFS-4

CIFS-5

CIFS-6

CIFS-7

CIFS-8

CIFS-9
CIFS-10
CIFS-11
CIFS-12

(a) CIFS

Client Server

200 smtp.receiver.com Ready
HELO mail.sender.com
250 smtp.receiver.com

MAIL FROM: david@sender.com
250 OK

RCPT TO: bod@receiver.com
250 OK

DATA

250 OK

DATA

SMTP-1

SMTP-2

SMTP-3

SMTP-4

SMTP-5

SMTP-6

SMTP-7

SMTP-8

SMTP-9

Connect to server

SMTP-10

SMTP-11

SMTP-12

SMTP-13

SMTP-14

End of Data

Quit
221 Service Closing

(b) SMTP

HTTP 200 OK
HTTP Request (GET)

DATA
DATA
DATA

HTTP Request (GET)
HTTP 200 OK

DATA
DATA

HTTP Request (GET)
HTTP 200 OK

DATA
DATA

Client Server
HTTP-1

HTTP-2

HTTP-3

HTTP-4

DATA

HTTP-5

HTTP-6

(c) HTTP (Single connection case)

Figure 3: Application Traffic Patterns

14

2 4 6 8 10 12
0

5

10

15

20

25

30

35

File Size (MBytes)

T
hr

ou
gh

pu
t (

M
bp

s)

CIFS
FTP

(a) Throughput of FTP and CIFS

2 4 6 8 10 12
0

100

200

300

400

500

File Size (MBytes)

N
um

be
r

of
 R

eq
ue

st
s

Number of Requests

(b) Number of Requests of CIFS

0 1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Loss Rate (%)

T
hr

ou
gh

pu
t (

M
b/

s)

Ideal
Real

(c) Throughput of SMTP

Figure 4: Motivation for TP and RAR

15

2.4 A
3 Design

Since we have outlined several behavioral problems with applications in Section 2.3, an ob-

vious question to ask is: “Why not change the applications to address these problems?” We

believe that is indeed one possible solution. Hence, we structure the presentation of the A3

solution into two distinct components: (i) the key design elements or principles that under-

lie A3; and (ii) the actual realization of the design elements for specific applications in the

form of an optimization middleware that is application-aware, but application transparent.

The design elements generically present strategies to improve application behavior and can

be used by application developers to improve performance by incorporating changes to the

applications directly. In the rest of this section, we outline the design of five principles in

the A3 solution.

2.4.1 Transaction Prediction (TP)

Transaction prediction (TP) is an approach to deterministically predict future application

data requests to the server, and issue them ahead of time. Note that this is different from

techniques such as “opportunistic pre-fetching” where content is heuristically fetched to

speed up later access but is not guaranteed to be used 3. In TP, A3 is fully aware of

application semantics and knows exactly what data to fetch and that the data will be used.

TP will aid in conditions where the BDP is larger than the default application block fetch

size and where the RTT is very large. Under both cases, the overall throughput will improve

when TP is used. Figure 4(a) shows the throughput performance of CIFS when fetching

files of varying sizes in a 100Mbps LAN network. It can be seen that the performance is

substantially lower than that of FTP, and this is due to the block based fetching mechanism

described in Section 2.3. Figure 4(b) shows the number of transactions it takes CIFS to

actually fetch a single file, and it can be observed that the number of transactions increases

linearly with file size. Under such conditions, TP will “parallelize” the transactions and

hence improve throughput performance. Good examples of applications that will benefit

from using TP include CIFS and HTTP for reasons outlined in Section 2.3.

3We further discuss on this issue in Section 2.7.

16

1 2 3 4 5 6 Page
0

50

100

150

200

250

Screen Number

D
a

ta
 S

iz
e

 (
K

B
yt

e
s)

(a) Transfer Size per Screen

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Application Rate (Mb/s)

T
hr

ou
gh

pu
t (

M
b/

s)

Ideal
Newreno

(b) Impact of Application Reading Rate

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Loss Rate (%)

T
hr

ou
gh

pu
t (

M
b/

s)

Ideal
TCP−Newreno

(c) Impact of Loss Increase

Figure 5: Motivation for PF (a) and IB (b, c)

2.4.2 Redundant and Aggressive Retransmissions (RAR)

Redundant and aggressive retransmissions (RAR) is an approach to protect thin session

control and data request messages better from losses. The technique involves recognizing

thin application messages, and using a combination of packet level redundancy, and aggres-

sive retransmissions to protect such messages. RAR will help address both issues with thin

messages identified in Section 2.3. The redundant transmissions reduce the probability of

message losses and the aggressive retransmissions that operate on tight RTT granularity

timeouts reduce the loss recovery time. The key challenges in RAR is to recognize thin

messages in an application-aware fashion. Note that only thin messages require RAR be-

cause of reasons outlined in Section 2.3. Regular data messages should not be subjected

to RAR both because their loss recovery can be masked in the overall transaction time by

performing the recovery simultaneously with other data packet transmissions, and because

17

the overheads of performing RAR will become untenable when applied to large volume

messages such as the data. Figure 4(c) shows the throughput performance of SMTP under

lossy conditions in a WWAN setup. The dramatic effect of a 35 % drop in throughput

performance for a loss-rate increase from 0 % to 7 % is much higher than the 15 % drop in

performance in the FTP performance for the same corresponding loss-rate increase shown

in Section 2.3. Typical applications that can benefit from RAR include CIFS, SMTP, and

HTTP.

2.4.3 Prioritized Fetching (PF)

Prioritized fetching (PF) is an approach to prioritize subsets of data to be fetched as being

more important than others and to fetch the higher priority data faster than the lower

priority data. A simple approach to achieve the dual-rate fetching is to use default TCP-like

congestion control for the high priority data, but use congestion control like in TCP-LP [78]

for low priority data. An important consideration in PF is to devise a strategy to prioritize

data intelligently and on the fly. Figure 5(a) shows the average transfer sizes per screen as

well as the entire web page for the top fifty accessed webpages on the World Wide Web [5].

It can be seen that nearly 80 % of the data (belonging to screens 2 and higher) are not

directly impacting response time experienced by the user and hence can be de-prioritized in

relation to the data pertaining to the first screen. Note that the results are for a 1024x768

resolution laptop screen, and will in fact be better for smaller screen devices such as PDAs.

Good examples of applications that can benefit from PF include HTTP and SMTP.

2.4.4 Infinite Buffering (IB)

Infinite buffering (IB) is an approach that prevents flow control from throttling the progres-

sion of a network connection terminating at the mobile wireless device. IB prevents flow

control from impacting performance by providing the sender the impression of an infinite

buffer at the receiver. Secondary storage is used to realize such an infinite buffer, with the

main rationale being that reading from the secondary storage will be faster than fetching

it from the sender over the wireless network when there is space created in the actual con-

nection buffer at a later point. With typical hard-disk data transfer rates today being at

18

around 250 Mbps [15], the abovementioned rationale is well justified for wireless environ-

ments. Note that the trigger for using IB can be both due to application reading slowly

or temporarily not reading form the connection buffer, and due to losses on the wireless

path. Figures 5(b)-(c) show the throughput performance of SMTP under both conditions.

Note that the ideal scenarios correspond to an upper bound of the throughput. 4 It can be

observed that for both scenarios, the impact of flow control drastically lowers performance

compared to what is achievable. In the rest of the chapter we focus on IB specifically in the

context of the more traditional trigger for flow control − application reading bottleneck.

Typical applications that can benefit from IB include CIFS, SMTP, and HTTP - essentially,

any application that may attempt to transfer more than a BDP worth of data.

2.4.5 Application-aware Encoding (AE)

Table 1: Statistics of 100 Emails Sent by Ten Users
ID Unique Words Total Words Chars / Word Bits / Email Simple Coding

1 1,362 6,383 6.22 3,176 665
2 3,554 5,907 7.12 10,984 2,275
3 2,645 12,653 7.08 7,167 1,439
4 4,536 25,481 6.15 12,537 3,095
5 966 4,728 11.46 4,335 469
6 1,205 6,413 5.48 2,811 656
7 798 3,346 4.40 1,178 323
8 1,527 6,836 5.72 3,128 723
9 1,758 9,171 4.91 3,602 989

10 1,402 8,320 7.30 4,859 870

Application-aware encoding (AE) is an approach that uses application specific informa-

tion to better encode or compress data during communication. Traditional compression

tools such as zip operate on a given content in isolation without any context for the appli-

cation corresponding to the content. AE, on the other hand, explicitly uses this contextual

information to achieve better performance. Note that AE is not a better compression algo-

rithm. However, it is a better way of identifying data-sets that need to be operated on by a

given compression algorithm. Table 1 shows the average email vocabulary characteristics of

ten different graduate students based on 100 emails sent by each person during two weeks.

4In Figure 5(c), the throughput drop is caused by both flow control and congestion control related
mechanisms, and flow control mechanism contributes significantly.

19

It is interesting to see the following characteristics in the results: (i) the email vocabulary

size across the ten people is relatively small − a few thousand words; and (ii) even a simple

encoding involving this knowledge will result in every word being encoded with only 10 to

12 bits, which is substantially lower than using 40 to 48 bits required using standard binary

encoding. In Section 2.6, we show that such vocabulary based encoding can considerably

outperform other standard compression tools such as zip as well. Moreover, further bene-

fits can be attained if more sophisticated compression schemes such as Huffman encoding

is employed instead of a simple BINARY encoding. Typical applications that can benefit

from using AE include SMTP and HTTP.

2.5 A
3 Solution

2.5.1 Deployment Model and Architecture

The A3 deployment model is shown in Figure 6. Since A3 is a platform solution, it requires

two entities at either end of the communication session that are A3-aware. At the mobile

device, A3 is a software module that is installed in user space. At the server side, while A3

can be deployed as a software module on all servers, a more elegant solution would be to

deploy a packet processing network appliance that processes all content flowing from the

servers to the wide-area network. We assume the latter model for our discussions. However,

note that A3 can be deployed in either fashion as it is purely a software solution.

This deployment model will help in any communication between a server behind the

A3 server and the mobile device running the A3 module. However, if the mobile device

communicates with a non-A3 enabled server, two options exist: (i) As we discuss later in

the chapter, A3 can be used as a point-solution with lesser effectiveness; or (ii) the A3 server

Internet
A3-Enabled Client

A3-Enabled Client

AP

Application Server

Wireless Access
Network

A3 ServerEnterprise
Network / Content

Network

Figure 6: Deployment Model

20

is brought closer to the mobile device, perhaps within the wireless network provider’s access

network. In the rest of the chapter, we do not delve into the latter option. However, we do

revisit the point-solution mode of operation of A3.

We present an A3 implementation that resides in user-space, and uses the NetFilter

utility in Linux for the capturing of traffic outgoing and incoming at the mobile device.

NetFilter is a Linux specific packet capture tool that has hooks at multiple points in the

Linux kernel. The A3 hooks are registered at the Local-In and Local-Out stages of the

chain of hooks in NetFilter. While our discussions are Linux-centric, our discussions can be

mapped on the Windows operating system through the use of the Windows Packet Filtering

interface, or wrappers such as PktFilter that are built around the interface. Figure 7(a)

shows the A3 deployment on the mobile device using NetFilter.

The A3 software architecture is shown in Figure 7(b). Since the design elements in A3

are to a large extent independent of each other, a simple chaining of the elements in an

appropriate fashion results in an integrated A3 architecture. The specific order in which the

elements are chained in the A3 realization is TP, RAR, PF, IB, and AE. While RAR protects

the initial session control exchanges and the data requests, it operates on traffic after TP,

given that TP can generate new requests for data. PF manipulates the priority with which

different requests are served, and IB ensures that data responses are not throttled by flow

control. Finally, AE compresses any data outgoing, and decompresses any data incoming.

2.5.2 Application Overviews

Since we describe the actual operations of the mechanisms in A3 in the context of one of

the three applications, we now briefly comment on the specific message types involved in

typical transactions by those applications. We then refer to the specific message types when

describing the operations of A3 subsequently.

For simplicity, instead of presenting all message types again, we refer readers back to

Figure 3 to observe the message exchanges for the three applications. The labels such as

CIFS-x refer to particular message types in CIFS and will be referred to in the A3 realization

descriptions that follow.

21

CIFS, also sometimes known as Server Message Block (SMB), is a platform independent

protocol for file sharing. The typical message exchanges in a CIFS session are as shown

in Figure 3(a). Overall, TP manipulates the CIFS-11 message, RAR operates on CIFS-1

through CIFS-11, and IB aids in CIFS-12.

SMTP is Internet’s standard host-to-host mail transport protocol and traditionally oper-

ates over TCP. The typical message exchanges in an SMTP session are shown in Figure 3(b).

Overall, RAR operates on SMTP-1 through SMTP-8, and SMTP-12 through SMTP-14, IB

and AE operates on SMTP-9 and SMTP-10.

The HTTP message exchange standard are relatively simple, and typically consist of

the messages shown in Figure 3(c). A typical HTTP session consists of multiple objects,

as well as the main HTML file, and hence appear as a sequence of overlapping exchanges

of the above format. Overall, RAR operates on HTTP-1,2,3,5; and PF and IB operate on

HTTP-3,5.

2.5.3 A3 Realization

In the rest of the section, we take one design element at a time, and walk through the

algorithmic details of the element with respect to a single application. Note that A3 is

an application-aware solution, and hence its operations will be application specific. Since

we describe each element in isolation, we assume that the element resides between the

application and the network. In an actual usage of A3, the elements will have to be chained

as discussed earlier.

2.5.3.1 Transaction Prediction

Figure 8(a) shows the flow chart for the implementation of TP for CIFS at the A3 client.

When A3 receives a message from the application, it checks to see if the message is CIFS-9,

and records state for the file transfer in its File-TP-States data structure. It then passes

through the message. If the message was a request, TP checks to see if the request is for a

locally cached block, or for a new block. If the latter, it updates the request for more blocks,

stores information about the predicted requests generated in the Predicted-Request-States

data structure, and forwards the requests.

22

In the reverse direction, when data comes in from the network, TP checks to see if the

data is for a predicted request. If yes, it caches the data in secondary storage and updates

its state information, and forwards the data to the application otherwise.

The number of additional blocks to request is an interesting design decision. For file

transfer scenarios, TP generates requests asking for the entire file 5. The file size information

can be retrieved from the CIFS-10 message. If the incoming message is for an earlier

retrieved block, TP retrieves the block from secondary storage, and provides it to the

application.

While CIFS servers accept multiple data requests from the same client simultaneously,

it is possible that for some applications, the server might not be willing to accept multiple

data requests simultaneously. In such an event, the A3 server will let only one of the client

requests go through to the server at any point in time, and will send the other requests one

at a time once the previous requests are served.

2.5.3.2 Redundant and Aggressive Retransmissions

Figure 8(b) shows the flow chart for the implementation of RAR for CIFS. When A3 receives

a message from the application, it checks to see if it is a thin message. The way A3 performs

the check is to see if the message is one of the messages between CIFS-1 and CIFS-11. All

such messages are interpreted as thin messages.

If the incoming message is not a thin one, A3 will let it through as-is. Otherwise, A3

will create redundant copies of the message, note the information about current time, start

retransmission alarm, and send out the copies in a staggering fashion. When a response

arrives, A3 checks the timestamp for the corresponding request, and updates its estimated

RTT . A3 then passes on the message to the application. If the alarm expires for a particular

thin message, the message is again subjected to the redundant transmissions. A3 server is

responsible for filtering the successful arrivals of redundant copies of the same message.

The key issues of interest in the RAR implementation are: (i) How many redundant

transmissions are performed? Since packet loss rates in wireless data networks rarely exceed

5We further discuss on this issue in Section 2.7.

23

10 %, even a redundancy factor of two (two additional copies created) reduces the effective

loss-rate to about 0.1 %. Hence, A3 uses a redundancy factor of two. (ii) How should the

redundant messages be staggered? The answer to this question lies in the specific channel

characteristics experienced by the mobile device. However, at the same time, the staggered

delay should not exceed the round-trip time of the connection, as otherwise the mechanism

would lose its significance by unnecessarily delaying the recovery of losses. Hence, A3 uses

a staggering delay of RTT
10 between any two copies of the same message. This ensures that

within 20 % of the RTT duration, all messages are sent out at the mobile device. (iii) How is

the aggressive timeout value determined? Note that while the aggressive timeout mechanism

will help under conditions when all copies of a message are lost, the total message overhead

by such aggressive loss recovery is negligible when compared to the overall size of data

transferred by the application. Hence, A3 uses a timeout value of the RTTavg + α, where

α is a small guard constant, and RTTavg is the average RTT observed so far. This simple

setting ensures that the timeout values are tight, and at the same time the mechanism

adapts to changes in network characteristics.

2.5.3.3 Prioritized Fetching

Figure 9(a) shows the flow chart for the implementation of PF in the context of HTTP.

Once again, the key goal in PF for HTTP is to retrieve web objects that are required for

the display of the visible portion of the webpage quickly at the expense of the objects on

the page that are not visible.

Unlike in the other mechanisms, PF cannot be implemented without some additional

interactions with the application itself. Fortunately, browser applications have well defined

interfaces for querying state of the browser including the current window focus, scrolling

information, etc. Hence, the implementation of PF relies on a separate module called

the application state monitor (ASM) that is akin to a browser plug-in to coordinate its

operations.

When a message comes in from the application, PF checks to see if the message is a

request. If it is not, it is let through. Otherwise, PF checks with the ASM to see if the

24

requested content are immediately required. ASM classifies the objects requested as being

of immediate need (i.e., visible portion of webpage) or as those that are not immediately

required. PF then sends out fetch requests immediately for the first category of objects and

uses a low-priority fetching mechanism for the remaining objects.

Since A3 is a platform solution, all PF has to inform the A3 server is that certain ob-

jects are of low priority through A3-specific piggybacked information. The A3 server then

de-prioritizes the transmission of those objects in preference to those that are of higher pri-

ority. Note that the relative prioritization is used not only between the content of a single

end-device, but also across end-devices as well to improve overall system performance. Ap-

proaches such as TCP-LP [78] are candidates that can be used for the relative prioritization

between TCP flows, although A3 currently uses a simple priority queuing scheme within

the same TCP flow at the A3 server.

Note that while the ASM might classify objects in a particular fashion, changes in the

application (e.g. scrolling down) will result in a re-prioritization of the objects accordingly.

Hence, the ASM has the capability of gratuitously informing PF about priority changes.

Such changes are immediately notified to the A3 server through appropriate requests.

2.5.3.4 Infinite Buffering

Figure 9(b) shows the flow chart for the implementation of IB in the context of SMTP.

IB keeps track of TCP connection status, and monitors all ACKs that are sent out by the

TCP connection serving the SMTP application for SMTP-9 and SMTP-10. If the advertised

window in the ACK is less than the maximum possible, IB immediately resets the advertised

window to the maximum value, and appropriately updates its current knowledge of the

connection’s buffer occupancy and maximum in-sequence ACK information.

Hence, IB prevents anything less than the maximum buffer size from being advertised.

However, when data packets arrive from the network, IB receives the packets and checks

to see if the connection buffer can accommodate more packets. If the condition is true, IB

delivers the packets to the application directly. If the disk cache is non-empty, which means

the connection buffer is full, the incoming packet is directly added to the cache. In this

25

case, IB generates a proxy ACK back to the server. Then, if the connection buffer has space

in it, packets are retrieved from the disk cache and given to the application till the buffer

becomes full again. When the connection sends an ACK for a packet already ACKed by IB,

IB suppresses the ACK. When the connection state is torn down for the SMTP application,

IB resets the state accordingly.

2.5.3.5 Application-aware Encoding

Figure 10 shows the flow-chart for the implementation of AE for SMTP. When AE receives

data (SMTP-9) from the SMTP application, it uses its application vocabulary table to

compress the data, and marks the message as being compressed and forwards it to the

network. The marking is done to inform the A3 server about the need to perform de-

compression. Similarly, when incoming data arrives for the SMTP server, and the data is

marked as compressed, AE performs the necessary de-compression.

The mechanisms used for the actual creation and manipulation of the vocabulary tables

are of importance to AE. In A3, the SMTP vocabulary tables are created and maintained

purely on a user pair-wise basis. Not only are the table created in this fashion, but the data

sets over which the vocabulary tables are created is also restricted to this pair-wise model.

In other words, if A is the sender and B is the receiver, A uses its earlier emails to B as the

data set on which the A-B vocabulary table is created, and then uses this table for encoding.

B, having the data set already (since the emails were sent to B), can exactly recreate the

table on its side and hence decode any compressed data. This essentially precludes the need

for exchanging tables frequently, and also takes advantage of changes in vocabulary sets that

might occur based on the recipient. Though the tables are created on both sides implicitly

and synchronized in most cases, a backup mechanism used to explicitly synchronize the

tables is also needed. The synchronization action is triggered by a mismatch of table hashes

on both sides, and the hash is sent along each new email and updated when the table

changes.

26

2.5.4 A3 Point Solution - A3•

While the A3 deployment model assumed so far is a platform model requiring participation

by A3 enabled devices at both the client and server ends, in this section we describe how

A3 can be used as a point-solution, albeit with somewhat limited capabilities. We refer to

the point-solution version of A3 as A3•.

Of the five design elements in A3, the only design element for which the platform model

is mandatory is the application-aware encoding mechanism. Since compression or encoding

is an end-to-end process, A3• cannot be used with AE. However, each of the other four

principles can be employed with minimal changes in A3•.

TP involves the generation of predictive data requests, and hence can be performed

in A3• as long as the application server can accept multiple simultaneous requests. For

CIFS and HTTP, the servers do accept simultaneous requests. IB is purely a flow control

avoidance mechanism, and can be realized in A3•. RAR involves redundant transmissions

of messages, and hence can be implemented in A3• as long as application servers are capable

of filtering duplicate messages. If the application servers are not capable of doing so (e.g.

HTTP servers, which would respond to each request), the redundant transmissions will have

to be performed at the granularity of transport layer segments as opposed to application

layer messages, since protocols such as TCP provide redundant packet filtering. Finally,

PF can be accomplished in A3• in terms of classifying requests and treating the requests

differently. However, the slow fetching of data not required immediately has to be realized

through coarser receiver based mechanisms such as delayed requests as opposed to the best

possible strategy of slowing down responses as in A3.

27

��
�� �����	

3

���� �����

2

���� �������	�������� ������� �� ���������2 3

1 4

4

!�"�� #� !�"�� $�� 1%����&
%����&

(a) Deployment with Netfilter'(()*+,-*./
012345 678 9455:7;5 1;< 0=> 9?1?45@A
AB: Application Aware Acceleration

CDEFEG'DEHI
JKJ AL MN KOPQQ3:R1?:7; S4R7T;:?:7; 1;< PU V1;1T4W4;?PQQ3:R1?:7;S4R7T;:?:7; SX345 PQQ3:R1?:7;PRR43481?:7; SX345

YZZ[\]
(b) Software Architecture

Figure 7: A3 Deployment Model with NetFilter and Software Architecture

28

Application

File open? ^_`ab Retrieve from
local cache

Network

c_de_`fgbh ibjkilibjmn ^_` Give to
application

Update
TP states opqrst utvwtxsyzu {zut |}z~�x�szut��yzu{rs�z�r|zws putq�~stqutvwtxsx

Data?
�bh�h_��jf���h_dn EOF?

Close file TP
state

Local cache

File TP states

Predicted
request
states

Store in
local cache ^_`

ab
^_` ababab ^_`

(a) Transaction Prediction

Application������������ ���������������������������������
Network

����� ����� �������� ����������������������� ����� ����� ��¡�����¢¡���� �� ������¡ ����� ���
 �������£¤����¥�¦����� ������ �������������

 �����¥� �����������
(b) Redundant and Aggressive Retransmissions

Figure 8: TP and RAR (Shaded blocks are storage space and timer, white blocks are
operations.)

Application§¨©ª«©ª¬«®«¯ª° ±²³´µ ¶«ª·¸ «©ª¹¬«·¨©ª«©ª¹ºº«»¹¼ª«½¾ ¿«¬À¨¬º ¨ÁÂ«·ªÃ¬¹̈ ¬¹ª¹Ä¼ª¹¨©
Network

Å½½ ·¨©ª«©ª¬«®¹¬«»°±²³ ´µ ¿«¬À¨¬ºÃ¬¹¨¬¹ª¾ÆÁ¼¯«»À«ª·¸¹©ÇÅ½½ ·¨©ª«©ªÀ«ª·¸«»°ÈÉ ±²³ Ê«®«¯ª«»¨ÁÂ«·ª°ËÃ»¼ª« ¨ÁÂ«·ª¼··«¯¯ ¹©À¨ÌÍ«Î ·¨©ª«©ª¼··«¯¯°´µ±²³ ±²³ ´µÏÁÂ«·ª ¼··«¯¯¹©À¨¬º¼ª¹¨©
(a) Prioritized Fetching

ApplicationÐÑÒÒÓÔÕÖÑÒ×ØÙÓ×ÚÛ ÑÜÓÒÝ Þßàáâ
Network

ãäåæçèéê Þßà ëìí ìîïðñòçîéñê äóìçôõ ãäåöé ÷ìí ñòçîéñáâøùîìöõ æúûöìöüû ýöéþõ ÿüèèõþé��üùìç�� ìçîãäå ûõ�ð ûöìöõáâ ãäå �÷ìí ãäåê áâ ýùì�õòç ÿüèèõþê�þéù �õöþòõïõ èþé÷�é�ì� �ì�óõ ýöéþõ òç�é�ì� �ì�óõÞßàÞßàÞßà �ìöìê�õçõþìöõãäåýùì�õòç ÿüèèõþê�ÜÜØÖÔ×ÕÖÑÒ 	ÙÑ
�ÑÔ×Ø Ô×Ô�Ó ÕÖØØ�		ÓÙ 	�ØØ ÑÙ ØÑÔ×ØÔ×Ô�Ó Ó
ÜÕÛ Þßàáâ áâ�é�ì� äì�óõ �×�� �Ó�� �Ð� ��		ÓÙ ÑÔÔ�Ü×ÒÔÛ�Õ×ÕÓ �ÑÔ×Ø Ô×Ô�ÓÓ
ÜÕÛ ×ÒÚ�Ü×ÔÓ ÖÒ �		ÓÙÝáâÞßà
áâ Þßà

(b) Infinite Buffering

Figure 9: PF and IB (Shaded blocks are storage space and timer, white blocks are opera-
tions.)

Application����� ���� !""#�"!$ �%���&'(��'�%)�(�#*&� + �����%��#&!,"! (�$'%-��#&!.!/ /� $""��(!01234 5� 6 �"(��� !""!$
Application vocabulary

���� !""!$��!(��� !""#�"!$ �%���&'(��'�%)�(�#*&� +012 34
Network

Figure 10: Application-aware Encoding

29

A2

NS2 Emulation

B2B1

AE
IB
PF
RAR
TP

AE
IB
PF
RAR
TP

A1

AppEm
(Client)

N1 N2

A3Em

WNetEm
AppEm
(Server)

A3Em

Figure 11: Simulation Network

2.6 Performance Evaluation

In this section we evaluate the performance of A3. The evaluation is performed with

application-specific traffic generators which are modeled based on traffic traces generated

by the IxChariot emulator and documented standards for the application protocols. Since

each application protocol in the study has various software implementations, and differ-

ent implementations may differ in certain aspects of protocol standards, we believe such

simulations with abstracted traffic generators can help capture the trend of performance

enhancement delivered by A3.

In addition to the emulation, we also build a proof-of-concept prototype of A3. The

prototype implements all five of A3 design principles and works with the following applica-

tions: SCP (Secure Copy), Internet Explorer, Samba, and SendMail. The primary goal of

building such a prototype is to prove that the proposed A3 architecture does indeed work

with real applications. We also use the prototype to obtain system level insights into A3

implementation.

2.6.1 Setup

• Emulation: The experimental setup for the emulation is shown in Figure 11. The setup

consists of three desktop machines running the Fedora Core 4 operating system with the

Linux 2.6 kernel. All the machines are connected using 100 Mbps LAN.

An application-emulator (AppEm) module runs on both the two end machines. The

AppEm module is a custom-built user-level module that generates traffic patterns and

30

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
ELN
Newreno with TP

(a) WLAN

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
WTCP
Newreno with TP

(b) WWAN

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
STP
Newreno with TP

(c) SAT

Figure 12: Simulation Results of Transaction Prediction (CIFS)

content for three different application protocols: CIFS, SMTP, and HTTP. The AppEm

module also generates traffic content based on both real-life input data-sets (for email and

Web content) and random data-sets (File transfer)6. The traffic patterns shown in Figure 3

are representative of the traffic patterns generated by AppEm.

The system connecting the two end-systems runs the emulators for both A3 (A3-Em) and

the wireless network (WNetEm). Both emulators are implemented within the framework of

the ns2 simulator, and ns2 is running in the emulation mode. Running ns2 in its emulation

mode allows for the capture and processing of live network traffic. The emulator object

in ns2 taps directly into the device driver of the interface cards to capture and inject real

packets into the network. All five A3 mechanisms are implemented in the A3-Em module,

6While the IxChariot emulator can generate representative traffic traces, it does not allow for specific
data sets to be used for the content, and hence the need for the custom built emulator.

31

0 2 4 6 8 10 12
0

1

2

3

4

5

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
ELN
Newreno with RAR

(a) WLAN

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
WTCP
Newreno with RAR

(b) WWAN

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
STP
Newreno with RAR

(c) SAT

Figure 13: Simulation Results of Redundant and Aggressive Retransmissions (CIFS)

and each mechanism can be enabled either independently or in tandem with the other

mechanisms. The WNetEm module is used for emulating different wireless network links

representing the WLAN, WWAN, and SAT environments. The specific characteristics used

to represent wireless network environments are the same as those presented in Section 2.3.

The primary metrics monitored are throughput, response time (for HTTP) and confi-

dence intervals for the throughput and response time. Each data point is the average of

20 simulation runs and in addition we show the 90 % confidence intervals. The results of

the evaluation study are presented in two stages. We first present the results of the perfor-

mance evaluation of A3 principles in isolation. Then, we discuss the combined performance

improvements delivered by A3.

• Proof-of-concept Prototype: The prototype runs on a testbed consisting of five PCs

connected in a linear topology. The first four PCs run Fedora Core 5 with 2.6.15 Linux

32

kernel. The fifth PC has dual OS of both Fedora Core 5 and Windows 2000. All machines are

equipped with 1 GHz CPU and 256 MB memory. The implementation utilizes NetFilter [21]

Utility for Linux platform. The first PC works as the application server for the SMTP

(Sendmail server), CIFS (Samba server) and SCP (SCP server). The A3 server module and

client module are installed on the second and fourth PCs, respectively. The third PC works

as a WAN emulator, and the fifth PC has the email client, sambaclient, SCP client and

Internet Explorer running on it.

The prototype implementation makes use of two netfilter libraries: libnfnetlink (version

0.0.16) and libnetfilter queue (version 0.0.12) [21]. The registered hook points that we use

are NF IP FORWARD. For all the hooks, the registered target is the NF QUEUE, which

queues packets and allows user-space processing. After appropriate processing, the queued

packets will be passed, dropped, or altered by the modules.

2.6.2 Transaction Prediction

We use CIFS as the application traffic for evaluating the performance of Transaction Pre-

diction. The results of the TP evaluation are shown in Figure 12. The x-axis of each graph

shows the size of the transferred file in MBytes and the y-axis the application throughput in

Mbps. The results show several trends: (i) Using wireless-aware transport layer protocols

(such as ELN, WTCP, and STP), the increase in throughput is very negligible. This trend

is consistent with the results in Section 2.3. (ii) Transaction Prediction improves CIFS

application throughput significantly. In the SAT network, for instance, TP improves CIFS

throughput by more than 80 % when transferring a 10 MByte file. (iii) The improvement

achieved by TP increases with increase in file size. This is because TP is able to reduce

more the number of request-response interactions with increasing file size. (iv) TP achieves

the highest improvement in SAT network.

• Proof-of-concept Results: The prototype works with a Smbclient and a Samba server.

The scenario considered in the prototype is that of the Smbclient requesting files of various

sizes from the Samba server. The implementations for CIFS are working with SMB protocols

running directly above TCP (i.e. by connecting to port 445 of Samba servers) instead of

33

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

File Size (KBytes)

T
hr

ou
gh

pu
t (

M
b/

s)

Original
With TP

(a) TP (Samba Server)

2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

Loss Rate (%)

T
hr

ou
gh

pu
t (

K
b/

s)

Original
With RAR

(b) RAR (SendMail)

Figure 14: Prototype Results of TP and RAR

over NetBIOS sessions. The Samba server version is 3.0.23, and smbclient version is 2.0.7.

One of the non-trivial issues faced while implementing the prototype is the TCP sequence

manipulation. The issue is caused by the TP acceleration requests generated by A3. SMB

sessions use TCP to request/send data, thus the Samba server is always expecting TCP

packets with correct TCP sequence numbers. The acceleration request have to predict

not only the block offset for SMB sessions, but also the TCP sequence numbers, failing

which the Samba server would see a TCP packet with an incorrect TCP sequence number

and behave unexpectedly. The prototype implementation addresses this problem by also

keeping track of TCP state and using the appropriate TCP sequence numbers. This is an

indication of the application-awareness of A3 potentially needing to be extended to include

transport layer awareness as well. Since some of the principles in A3 are directly transport

layer dependent (e.g. infinite buffering) we believe that this extension still falls within the

scope of A3.

The proof-of-concept results are shown in Figure 14(a). TP helps deliver more improve-

ment for larger files, and the throughput improvement achieved when requesting a 5 MBytes

file is up to 500%.

2.6.3 Redundant and Aggressive Retransmissions

We evaluate the effectiveness of RAR using the CIFS application protocol. The results of

the RAR evaluation is presented in Figure 13. The x-axis in the graphs is the requested

34

file size in MB and the y-axis is the CIFS application throughput in Mbps. We observe

that RAR delivers better performance when compared to both TCP-NewReno and the

tailored transport protocols, delivering up to 80% improvement in throughput performance

for SATs. RAR is able to reduce the chances of experiencing a timeout when a wireless

packet loss occurs. The reduction of TCP timeouts leads to better performance using RAR.

• Proof-of-concept Results: The prototype implementation of RAR includes components

for performing the following functions: recognizing session control messages, retransmission

control, and redundancy removal. On the sender side, the retransmission control component

maintains current RTT values, sets timers, and retransmits the possibly lost messages when

timers expire. The transmission of the redundant messages is done using raw sockets. On

the receiver side, the redundancy removal component identifies redundant messages when

the retransmission is a false alert, i.e., the original message being retransmitted was not

lost, but the RAR aggressively performs retransmission.

The prototype is built with a SendMail server and an email client. An email of 5.2 KB is

sent to SendMail server over the network of 200 ms RTT , 100 Kbps bandwidth and varying

loss rates. Throughput with and without RAR is shown in Figure 14(b). We observe a

250% throughput improvement when loss rate is 8%. More interestingly, the throughput of

RAR is not affected much by the loss rate since RAR effectively hides the losses.

2.6.4 Infinite Buffering

The effectiveness of IB is evaluated using CIFS traffic, and the results are shown in Figure 15.

The x-axis is requested file size in MBytes and the y-axis are the application throughput in

Mbps. We can see that: (i) Transferring larger data size with IB achieves higher throughput.

This is because that IB helps most during the actual data transfer phase, and will not help

when the amount of data to be transferred is less than a few times the BDP of the network.

(ii) IB performs much better in a SAT network than the other two networks, delivering

almost a 400 % improvement in performance. Again, the results are as expected because

IB’s benefits are higher when the BDP of the network is higher.

• Proof-of-concept Results: We choose an SCP implementation to build the prototype of

35

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
ELN
ELN with IB

(a) WLAN

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
WTCP
ELN with IB

(b) WWAN

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
STP
ELN with IB

(c) SAT

Figure 15: Emulation Results of Infinite Buffering (CIFS)

IB. The IB component on the client side provides virtual buffers, i.e. local storage, in user

space. It stores data on behalf of the data sender (i.e., SCP server). On the other hand, it

supplies stored data to the data receiver (i.e., SCP client) whenever it receives TCP ACKs

from it.

In the experiments, a 303 KBytes file is sent from the SCP server to SCP client over

the network of 100 Mbps bandwidth and varying RTTs. The tests are performed to learn

the impact of RTT on the performance improvement. The results are shown in Figure

17(a). We see considerable improvements are achieved by IB. An interesting observation

is IB delivers more improvements with small RTT values. As RTT increases, the actual

throughput of SCP also decreases even with IB enabled.

36

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Web Page Size (KB)

R
es

po
ns

e
T

im
e(

s)

TCP Newreno
ELN
Newreno with PF

(a) WLAN

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

50

Web Page Size (KB)

R
es

po
ns

e
T

im
e(

s)

TCP Newreno
WTCP
Newreno with PF

(b) WWAN

0 100 200 300 400 500 600
0

10

20

30

40

50

60

Web Page Size (KB)

R
es

po
ns

e
T

im
e(

s)

TCP Newreno
STP
Newreno with PF

(c) SAT

Figure 16: Emulation Results of Prioritized Fetching (HTTP)

2.6.5 Prioritized Fetching

The performance of PF is evaluated with HTTP traffic and results are shown in Figure 16.

We consider the Top 50 Web Sites as representatives of typical web pages, and measure their

web characteristics. We then use the obtained web statistics to generate the workload. The

x-axis in the graphs is the requested web-page size in KBytes, and the y-axis is the response

time in seconds for the initial screen. In the figure, it can be seen that as a user accesses

larger web pages, the response time difference between default content fetching and PF

increases. PF consistently delivers a 15 % to 30 % improvement in the response time

performance. PF reduces aggressive traffic volumes by de-prioritizing the out-of sequence

fetching of the off-screen objects. Note that PF, while improving the response time, does

not improve raw throughput performance. In other words, only the effective throughput,

37

100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20

RTT (ms)

T
hr

ou
gh

pu
t (

M
b/

s)

Original
With IB

(a) IB (SCP)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

Email Size (Kbytes)

T
hr

ou
gh

pu
t (

K
b/

s)

Original
With AE

(b) AE (SendMail)

Figure 17: Prototype Results of IB and AE

as experienced by the end-user, increases when using PF.

• Proof-of-concept Results: PF is a client-side solution, which does not require any

modification at the server side, but requires the integration with the application at the

client side. In the prototype, we use WinAPI with Internet Explorer 6.0 on the Windows

operating system (running on PC-5).

The PF prototype consists of three main components. The first component is the

location-based object prioritization. The current prototype initially turns off the display

option of multimedia objects by changing the associated registry values. After the initial

rendering is completed without downloading multimedia objects, it calculates the location

of all the objects. The second component is the priority-based object fetching and dis-

playing. The current prototype uses the basic on-off model, which fetches the high-priority

objects first and then fetches the other objects. If the pixel-size information of the object

is inconsistent with the definition in the main document file, the prototype performs the

reflow process that renders the entire document layout again. The third component is the

re-prioritization. When a user moves the current focus in the application window, PF de-

tects the movement of the window and performs the re-prioritization for the objects that

are supposed to appear in the newly accessed area.

The web clients are connected to the Internet and access two web sites: www.amazon.com

and www.cnn.com. To highlight the features of PF, we show the results of both transferred

size and response time for the first screen in Figures 18(a) and (b), respectively. Note that

38

Amazon Cnn
0

100

200

300

400

500

600

700

800

Websites

T
ra

ns
fe

rr
ed

 S
iz

e
(K

B
)

Non−PF
PF

(a) Transferred Size

Amazon Cnn
0

2

4

6

8

10

12

Websites

R
es

po
ns

e
T

im
e

(S
ec

on
d)

Non−PF
PF

(b) Response Time

Figure 18: Prototype Results of Prioritized Fetching (Internet Explorer)

PF can reduce the response time by prioritizing data on the web pages and transferring only

high-priority data first. PF sees about 30% improvements on both of these two metrics.

2.6.6 Application-aware Encoding

AE is designed primarily to accelerate email delivery using SMTP and hence we evaluate the

effectiveness of AE for SMTP traffic. In the evaluation, emails of sizes ranging from 1 KBytes

to 10 KBytes (around 120 to 1200 words) are used. We show the results in Figure 19 where

the x-axis is the email size in KBytes and y-axis is the application throughput in Mbps.

Varying degrees of throughput improvements are achieved, and in WWAN, an increase of

80 % is observed when transferring a 10 KBytes email. We can see that AE achieves the

highest improvement in WWAN due to its relatively low bandwidth.

We also show the effectiveness of AE in terms of compression ratio in Figure 21. In

the figure, the results of ten persons’ emails using three compression estimators (WinRAR,

WinZip and AE) are shown. We can see that WinRAR and WinZip can compress an email

by a factor of 2 to 3, while AE can achieve a compression ratio of about 5.

• Proof-of-concept Results: The prototype of AE maintains a coding table on either side,

and these two tables are synchronized in order to provide encoding and decoding functions.

AE monitors the DATA message in SMTP protocol to locate the email contents. The email

content is textual in nature, and is expressed using the US-ASCII standard. AE uses the

Extended ASCII Codes to provide encoding. We employ a simplified Huffman-style coding

mechanism for the sake of operation complexity. The total coding space size is 5,008.

39

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Email Size (KB)

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

TCP Newreno
ELN
Newreno with AE

(a) WLAN

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

Email Size (KB)

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

TCP Newreno
WTCP
Newreno with AE

(b) WWAN

0 2 4 6 8 10 12
0

0.002

0.004

0.006

0.008

0.01

0.012

Email Size (KB)

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

TCP Newreno
STP
Newreno with AE

(c) SAT

Figure 19: Simulation Results of Application-aware Encoding (SMTP)

The AE component scans an incoming email, and if a word is contained in the coding

table, it is replaced by the corresponding tag. If several consecutive words are covered by

coding tables, their codes will be concatenated, and necessary padding will be added to

the codes to form full bytes. For the words that are not covered by the coding tables,

they will stay unchanged with their ASCII representations. Since the email-vocabulary of a

user may change with time, AE incorporates a table updating mechanism. AE periodically

performs updating operations for every 500 emails. To maintain table consistency between

the client and the server, a table synchronization mechanism is employed. Since a user’s

email vocabulary is expected to change slowly, the AE performs incremental synchronization

rather than copying the entire table.

SendMail is used to build the prototype. Purely text-based emails of various sizes are

sent from a email client to SendMail server, and the network is configured with 100 ms RTT

and 50 Kbps bandwidth. The results are shown in Figure 17(b). Every data point is the

40

0 2 4 6 8 10 12

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

File Size (MB)

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

TCP Newreno
WTCP
ELN with RAR+TP+IB

(a) CIFS

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

Email Size (KB)

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

TCP Newreno
WTCP
Newreno with RAR+IB+AE

(b) SMTP

0 100 200 300 400 500 600
0

10

20

30

40

50

Web Page Size (KB)

R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

TCP Newreno
WTCP
Newreno with RAR+IB+AE

(c) HTTP

Figure 20: Integrated A3 Results in WWAN

average value of five emails of similar sizes.The throughput is improved by 80% with AE.

2.6.7 Integrated Performance Evaluation

We now present the results of the combined effectiveness of all applicable principles for the

three application protocols, CIFS, SMTP and HTTP. We employ RAR, TP, and IB on the

CIFS traffic in the emulation set-up. For SMTP, the RAR, AE and IB principles are used.

For HTTP, the A3 principles applied are RAR, PF and IB. As expected, the throughput of

the applications (CIFS and SMTP) when using the integrated A3 principles is higher than

when any individual principle is employed in isolation, while the response time of HTTP is

lower than any individual principle. The results are shown in Figure 20, with A3 delivering

performance improvements of approximately 70 %, 110 %, and 30 % for CIFS, SMTP, and

HTTP, respectively.

41

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Person ID

C
om

pr
es

si
on

 R
at

io
 (%

)

RAR
ZIP
AE

Figure 21: Effectiveness of AE

42

2.7 Conclusions and Discussion

In this chapter, we motivate the need for application acceleration for wireless-data networks,

and present the A3 solution that is application-aware, but application transparent. We

further discuss a few issues in the rest of the section.

• Insights into A3 Principles In this work we present a set of five A3 principles. We

realize that this set is not an exclusive set of all A3 principles. Hence, we further explore

the design space of a general application acceleration framework. Specifically, we argue that

the general A3 framework consists at least five orthogonal dimensions of principles, namely,

Provisioning, Protocol Optimization, Prediction, Compression and QoS. In this context,

RAR and IB belong to the dimension of Protocol Optimization, TP belongs to Prediction

dimension, AE belongs to Compression dimension, and PF belongs to QoS dimension. More

principles, as well as more dimensions, are left as part of our future work.

The principles of RAR, IB and AE are application independent, meaning that they can

be used to accelerate any application; while PF and TP are application specific and can

only help certain applications. We believe such classifications can help gain more insights

into the A3 design, so that the A3 principles can be incorporated into the design of new

applications.

• TP vs. Opportunistic Pre-fetching TP is designed to do deterministic pre-fetching

rather than opportunistic pre-fetching. Opportunistic pre-fetching techniques aggressively

request data that might be used by the end user in the future. For example, some web-

access products (e.g. web browsers) pre-fetch data by requesting web contents based on

some hints. Our design goal of TP is to do deterministic pre-fetching since otherwise the

design will incur overhead incurred by requesting unnecessary contents.

Ensuring deterministic pre-fetching is non-trivial. We now present several approaches

to this problem and will explore other approaches in future work. One simple approach is to

apply TP only to file transfer operations where users always request a file in its entirety. The

second approach is to let TP be fully aware of the application software being accelerated

and only pre-fetch data that are definitely needed. In other words, TP can be designed to be

sufficiently intelligent so that it can recognize the specific application implementations and

43

avoid the unnecessary data fetching. For example, CIFS protocol may have various software

implementations. Some software may support the range-locking functions, but others may

not. If TP is aware of these differences, it can act correspondingly to ensure its deterministic

behaviors. But surely, the downside of this approach is the associated design overhead

required for such intelligence. In practical deployment, the overhead can be affordable only

if the benefits gained are larger than the cost of the overhead. An alternative approach is to

relax the strictness of deterministic pre-fetching by tolerating some degree of opportunistic

pre-fetching. The corresponding solution is “constrained acceleration”. With constrained

acceleration, instead of pre-fetching the entire file, TP pre-fetches a “chunk” which is larger

than a block. Thus, even if some portion of the pre-fetched chunk is not used, the cost is

constrained. The chunk size is defined by acceleration degree, the design of which requires

further work. In our proof-of-concept prototype, we adopted such an approach with fixed

value of acceleration degree.

• Preliminary Complexity Analysis One of the important issues when considering de-

ployment of a technique is the complexity. A3 can be deployed/realized in multiple ways.

For instance, it can be realized in either user space or kernel space, and it can be deployed as

either a full platform model or a point model (i.e., A3•). Different deployment or realization

models are associated with different degrees of complexity and performance tradeoff.

We now perform certain preliminary complexity analysis in term of lines of codes, mem-

ory usage and computation overhead. Our prototype implements A3 framework in user

space and is deployed as a platform solution. (i) The prototype is implemented with about

4.5K lines of c codes. Specifically, PF and TP each has about 1K lines of codes, and other

elements each has about 600 to 900 lines. (ii) The memory usage varies with different

A3 elements. Specifically, TP uses more memory than other elements since it needs to

temporarily hold the returned data corresponding to the accelerated requests, hence the

memory size is a function of the acceleration degree and the receiver’s consumption rate.

IB also stores application data temporally to compensate the receiver’s TCP buffer, and

the memory size depends on the receiver buffer size and receiver’s reading rate. AE needs

to allocate a space to store the coding table, so the memory usage is proportional to the

44

table size. RAR and PF use relatively less memory than other three elements since they

maintain little application data and state. (iii) In terms of the computation overhead, we

observe little change on the CPU usage when running the prototype. Specifically, AE uses

relatively more CPU since it needs to perform data compression. For PF, the CPU usage

is higher at the moment of user scrolling up or down since PF needs to re-prioritize the

objects.

2.8 Related Work

• Wireless-aware Middleware and Applications The Wireless Application Protocol (WAP)

is a protocol developed to allow efficient transmission of WWW content to handheld wireless

devices. The transport layer protocols in WAP consists of the Wireless Transaction Protocol

and Wireless Datagram Protocol, which are designed for use over narrow band bearers in

wireless networks and are not compatible with TCP. WAP is highly WWW-centric, and

does not aim to optimize any of the application behavioral patterns identified earlier in the

chapter.

Browsers such as Pocket Internet Explorer (PIE) [26] are developed with capabilities

that can address resource constraints on mobile devices. However, they do not optimize

communication performance, which is the focus of A3. Work in [89] aims to save bandwidth

and power by adapting the contents based on user semantics and contexts. The adaptations,

however, are exposed to the end-applications and users. This is different from the A3

approach which is application-transparent.

The Odyssey project [90] focuses on system support for collaboration between the op-

erating system and individual applications by letting them both be aware of the wireless

environment, and thus adapt their behaviors. Comparatively, A3 does not rely on the re-

design of the OS or protocol stack for its operation, and is totally transparent both to the

underlying OS and the applications. The Coda file system [106] is based on the Andrew

File System (AFS), but supports disconnected operations for mobile hosts. When the client

is connected to the network, it hoards files for later use during disconnected operations.

During disconnections, Coda emulates the server, serving files from its local cache. Coda’s

45

techniques are specific to file systems, and require applications to have changed semantics

for the data that they use.

• Related Design Principles Some related works in literature have been proposed to

accelerate applications with various mechanisms [57, 58]. We present a few of them here,

and identify the differences vis-a-vis A3. (i) TP-related: In [56], the authors propose to

“upload” clients’ task to the server side, thus eliminating many RTTs required for applica-

tions like SMTP. This approach is different from the A3 approach in terms of application

protocols applied and the overall mechanism. (ii) RAR-related: Mechanisms like FEC

(Forward Error Control) use error control coding for digital communication systems. A

link-layer retransmission approach to improve TCP performance is proposed in [96]. An-

other work [116] proposes aggressive retransmission mechanism to encourage legitimate

clients to behave more aggressively in order to fight attack against servers. Compared to

these approaches, A3 only applies RAR to control messages in application protocols, and

it does so by retransmitting the control messages when a maintained timer expires. We

present arguments earlier in the chapter as to why protecting control message exchanges is

a major factor affecting application performance. (iii) PF-related: To improve the web-

access performance, tremendous work have been done [103], [26], [19], [42]. Work in [89]

proposes out-of-order transmission of HTTP objects above UDP, and break the in-order de-

livery of an object. However, unlike the A3 framework, it requires the cooperation of both

client and server sides. (iv) IB-related: The mechanisms such as [101], TCP Performance

Enhancing Proxy (TCP PEP) [28] are proposed to shield the undesired characteristics of

various networks, particularly wireless networks. IB is different from these approaches,

which aim at fully utilizing the network resources by removing the buffer length constraint.

IB specifically applies to applications with bulk data transfer, such as FTP, and is meant

to counter the impact of flow control. Some work also observe that applications suffer from

poor performance over high latency links due to flow control. For example, [101] proposes

to change the SSH implementations to remove the bottleneck caused by receive buffer. (v)

AE-related: Companies like Converged [6] provide application-aware compression solu-

tions through compressing the data for some applications based on priority and application

46

nature. These mechanisms share the property of being application aware, meaning only a

subset of applications will be compressed. However, AE has the property of being user-

aware, that is, taking into consideration user-specific information, and thus can achieve

better performances.

• Commercial WAN Optimizers Several companies, such as Riverbed [29] and Ju-

niper [14], sell WAN-optimization application-acceleration products. However, (i) Almost

all the commercial solutions are proprietary ones; (ii) The A3 principles such as RAR, IB,

AE and PF are not seen in commercial solutions; and (iii) Many of the techniques used

in commercial solutions, such as bit-level caching and compression, are hardware-based

approaches, and require large amounts of storage. These properties render the commer-

cial solutions inapplicable for environments where easy deployment is required. A3 is a

middleware approach requiring small amounts of storage.

47

CHAPTER III

ACCELERATING PEER-TO-PEER APPLICATIONS WITH MOBILE

HOSTS PARTICIPATING IN NETWORKS: CHALLENGES AND

SOLUTIONS

3.1 Summary

Peer-to-peer (P2P) data networks dominate Internet traffic, accounting for over 60% of the

overall traffic in a recent study. In this work, we study the problems that arise when mobile

hosts participate in P2P networks. We primarily focus on the performance issues as experi-

enced by the mobile host, but also study the impact on other fixed peers. Using BitTorrent

as a key example, we identify several unique problems that arise due to the design aspects

of P2P networks being incompatible with typical characteristics of wireless and mobile envi-

ronments. Using the insights gained through our study, we present a wireless P2P (wP2P)

client application that is backward compatible with existing fixed-peer client applications,

but when used on mobile hosts can provide significant performance improvements.

3.2 Introduction

Over the last few years, peer-to-peer (P2P) data sharing applications have experienced an

explosive growth. In recent years, a staggering 60% of the Internet data traffic constituted

of P2P file sharing [25]. While copyright concerns had earlier brought down popular P2P

applications such as Napster, several content owners and providers have of late started

embracing new types of P2P technology that have come to stay [3]. P2P data sharing is

now not only being considered as a means for consumer level data exchange, but also as

a viable means of delivering data from professional content producers to their consumers

([2,11,17]). Hence, the dominance of P2P traffic in the Internet is expected to continue to

grow in the near future.

48

With P2P data sharing applications securing a dominant position in the Internet land-

scape, a natural question to ask is: what is the performance of mobile users when participat-

ing in P2P data sharing? The question is significant because of the following two reasons.

First, as with any Internet application with emerging or established popularity, wireless

and mobile users are increasingly adopting P2P data sharing applications on devices such

as laptops and PDAs [67]. With the number of users using wireless technologies for Internet

access growing rapidly, it is inevitable that P2P data sharing over wireless and mobile envi-

ronments will assume significance. Second, there are several efforts underway to deliver P2P

data sharing as the next killer application for mobile devices ([18,22]). Initial instantiations

of such efforts focus on sharing of ring-tones and music files, but are expected to evolve into

other types of content including video. Thus, in both contexts, it is important to consider

what levels of performance such users will enjoy, and investigate the match-ups between

the typical designs of P2P data sharing applications and the characteristics of wireless and

mobile environments.

Thus, in this work, we first investigate the following question: what is the performance

of a mobile user in a wireless environment using a P2P data sharing application? As a

corollary, we also investigate the following question: what is the performance of a fixed peer

in a P2P network when using a mobile host as a corresponding peer? In answering the

above questions, we find that several of the fundamental design principles and peculiarities

used in P2P data sharing applications are inconsistent with the key limiting characteristics

of typical wireless and mobile environments. Briefly, some of these issues include: (i) P2P

applications, unlike in typical scenarios where a mobile host functions as a client, create a

scenario requiring the mobile host to function as a server. This raises several implications

including mobility and Power Save Mode (PSM) on server sides. (ii) P2P data sharing

uniquely involve simultaneous bi-directional data transfer. This consequently results in the

use of bi-directional TCP, a form of TCP not studied extensively for wireless environments.

(iii) P2P data networks, by virtue of being almost entirely supported by end-hosts, typically

use incentive-based performance delivery. Because of this, a mobile host that has uploaded

more data is provided with higher performance. Such a mechanism exposes issues when

49

applied as-is to a wireless and mobile environment. (iv) While incentives encourage P2P

users to stare data longer, P2P data fetching is also adapted to increase the uniquely

shareable data available at a user. One such approach is performing random or rarest-first

fetching. However, such techniques have severe implications to the mobile user, especially

during disconnections. With a real-life P2P data sharing network, we study the performance

of mobile users with respect to the above issues.

Using insights gained through the aforementioned study, we present a deployable solution

suite called wP2P that addresses the issues by only changing the P2P application at the

mobile host. wP2P uses techniques transparent to the fixed peer, but uniquely relevant

to the specific issues pertaining to wireless and mobile hosts functioning in a P2P data

network. Specifically, wP2P uses a combination of four design principles including Age based

Manipulation, Incentive Aware operations, Mobility-aware Fetching, and Role Reversal.

We evaluate the effectiveness of wP2P through both simulations and prototyping, and the

evaluations show that significant throughput performance improvements can be achieved for

mobile hosts and fixed peers, when using wP2P at the mobile hosts. Thus, the contributions

of this work are twofold:

• We consider the specific scenario of mobile hosts participating in P2P data sharing

networks, and investigate performance issues such hosts face due to the unique design ele-

ments embedded in typical P2P applications. Using real-life P2P experiments, we identify

these design elements that when combined with the unique characteristics of wireless envi-

ronments render the performance delivered to mobile users sub-par.

• We present a deployable solution called wP2P that is required to be instantiated only

at the mobile host and can deliver enhanced P2P data sharing performance to mobile users.

Using a prototype implementation, we characterize the performance of wP2P and show that

considerable improvements can indeed be achieved.

The rest of the chapter is organized as follows: Section 3.3 presents the scope of this work

and describes key background material. Section 3.4 presents in detail the motivation results

that show the limiting performance that existing P2P application design imposes on mobile

users. Section 3.5 presents the key design principles of wP2P and the realizations of the

50

principles. Sections 3.6 presents the evaluation results with both simulation and prototype

implementation. Finally, Section 3.7 discusses related work and Section 3.8 concludes the

work.

3.3 Background and Scope

In this section, we describe the scope of this work, as well as the necessary backgrounds of

P2P networks.

3.3.1 Scope of this work

• P2P Networks: While there are several forms of P2P networks ranging from those that

help in computing (e.g., grids) to those that help in communication (e.g., Skype) to those

that help in data-sharing, this work is entirely focused on P2P data sharing networks. Data

sharing P2P networks are primarily used for sharing files containing audio (e.g., mp3 files),

video (e.g., mpeg2 files), or data (e.g., Linux distributions). Examples of such networks

include BitTorrent [3], eDonkey [7], Gnutella [13], and FastTrack [10]. Interestingly, the

above four example networks account for almost all the P2P traffic in the Internet and

together constituted more than 60% of the Internet traffic in recent studies [25]. Specifically,

traffic carried using BitTorrent account for over 30% of the overall Internet traffic. Also,

video files account for more than 62% of P2P traffic.

In this work, while we identify characteristics of P2P networks that are generically ap-

plicable to all four of the above networks, we use BitTorrent as the primary example for

all discussions, experiments, and trials. However, as necessary we also step back and inves-

tigate relevance of our discussions and interpretations for the other networks as well. We

believe that this choice of BitTorrent as the key representative is justifiable from multiple

standpoints including its dominance in terms of traffic carried, and its relative sophistica-

tion. Example (and popular) clients that implement BitTorrent are Linux-based Azureus

and Windows-based BitSpirit.

• Data Types: While BitTorrent is primarily used for sharing video files that are large

in size (e.g., few hundreds of megabytes or more), a non-trivial amount of its traffic also

includes audio (e.g., few megabytes or more) and software distribution. Hence, in this work,

51

Figure 22: Network Testbed for P2P Evaluation (All six BitTorrent peers are inside
Georgia Tech campus)

we consider file data sizes that represent both ends of the above spectrum.

• Wireless Technologies and Mobile Devices: Measurement studies conducted recently

(such as [67]) observe far more wireless and mobile users on the network than ever before.

While mobile users with any type of wireless access can participate in P2P networks, the

access technology typically used is wireless LANs (WLANs). This is because of both the

higher bandwidths available on WLANs, and the relatively lower or no-cost models associ-

ated with such networks. Hence, we consider WLANs for the wireless environment in this

chapter. However, we revisit this assumption later in the chapter to discuss implications of

our inferences and proposed strategies for other types of wireless environments. Similarly,

while other mobile devices such as PDAs and IP-enabled cell phones become more practical

for assuming membership in P2P networks, we primarily consider laptops as the mobile

device in this work.

• Metrics: We consider throughput performance as the main metric in our evaluation

and optimization considerations. While the focus is more on the question: what is the

performance of a mobile host when it participates in a P2P network? We also consider a

corollary question: what is the performance of a fixed peer when it uses a mobile host as a

peer to download data from?

52

3.3.2 BitTorrent

BitTorrent, like other P2P data sharing protocols, uses peers that have downloaded a certain

content as the sources for the content subsequently for other peers that need the same

content. Any peer that implements the BitTorrent protocol can participate in a BitTorrent

network. We now outline some of the key elements of the BitTorrent protocol that are

relevant to the focus of this work.

• Torrent file: Any peer that wants to share a file through the BitTorrent network

creates a “.torrent” file that consists of some meta data information (e.g., certificates for

different portions of the file that downloading clients can use to check for the validity of

downloads) and the address of the tracker that will act as the directory server for the file.

• Tracker: The tracker is the entity that maintains, for any given file that it tracks,

all current peers that have the file either in its entirety or in parts. When it receives a

request from a client for a specific file, it furnishes the client with the addresses of the peers

associated with the file. The list of peer addresses is updated periodically to accommodate

peers leaving and joining the network. Since peers download parts of the file out of sequence,

two peers that start downloading at approximately the same time can still provide data to

each other quickly.

• Swarm: All peers currently connected to each other in the process of downloading a

particular file form a swarm for that file. From the standpoint of a single client, it uploads

to some members in the swarm and downloads from some members in the swarm. Because

of the incentive policy discussed later in this section, a downloading client is likely to be

uploading to members it is downloading from.

• Tit-for-Tat: BitTorrent uses a tit-for-tat incentive policy that controls the upload rate

of one peer to other peers based on the download rate the peer enjoys from that other peer.

• Rarest-first fetch: BitTorrent peers do not fetch parts of the file in sequence. Instead,

each peer picks the rarest of the blocks (in terms of the number of peers in the swarm that

have the block) preferably to download. This ensures that the rarest blocks of a file are

propagated in the swarm faster, reducing bottlenecks at the few peers that have the block

and increasing the availability of those blocks if the peers that have them shutdown.

53

• Seeds and leeches: Seeds are peers that have a complete copy of a file, and leeches

are peers that have a partial copy of the file, which typically means that the peers are

downloading other parts as they are uploading the parts they already have.

Thus, when a peer wants to download a particular file, it downloads the torrent file,

contacts the tracker specified, receives a list of addresses to contact, and joins the swarm

for downloads. As soon as it receives blocks of the file, it also begins uploading to other

peers that require those blocks. When the entire file is downloaded, the peer may decide to

leave the swarm or stay back as a seed.

3.3.3 Other P2P Data Networks

While BitTorrent has a centralized aspect to its operation in the form of the tracker,

Gnutella and FastTrack belong to the category of decentralized P2P networks where peers

search for content in directories distributed around the network. Gnutella and FastTrack

albeit differ in the way peers act as content directories. Any peer can act as a host for the di-

rectory of content in Gnutella Network. On the other hand FastTrack distinguishes between

peers that have slow connectivity to those peers (i.e., super nodes) that have faster and

stable connections. FastTrack achieves robust content search service by using the ultra-peer

architecture where only super nodes act as content directories.

Although the above mentioned P2P networks vary in the way content search is per-

formed, all of them rely on direct downloading and uploading of content. Single HTTP

connections are employed for data transfer from the content source to the requesting peer.

The third generation of P2P data networks use multiple downloads from several peers to ac-

celerate the content fetching process, and networks like eDonkey (and BitTorrent) fall under

this category. An important difference between eDonkey and BitTorrent is the way multi-

ple fetches are performed for a particular content. eDonkey performs contiguous downloads

from multiple peers as opposed to random fetches performed by BitTorrent.

3.4 Motivation

In this section, we use experiments performed on a BitTorrent network to study the perfor-

mance of a mobile host in a P2P data network. We identify several design characteristics

54

of P2P data networks that are incompatible with typical characteristics of a wireless envi-

ronment. We also use the insights gained as the basis for the design of the wP2P solution

presented later in the chapter. While we present all the discussions in the context of Bit-

Torrent, we revisit the implications of the discussions on the other P2P networks at the end

of the section.

3.4.1 Testbed & Methodology

0 1 2 3

x 10
−5

0

0.2

0.4

0.6

0.8

1

1.2

Bit Error Rate

T
hr

ou
gh

pu
t (

M
bp

s)

Uni−TCP
Bi−TCP
Double TCP

(a) Throughput Comparison

0 1 2 3 4 5
0

5

10

15

20

25

30

35

Time (Seconds)

N
um

be
r

of
 p

ac
ke

ts

Buffer drop
Packets sent from client

(b) Uni-directional TCP: Packets

0 1 2 3 4 5
0

5

10

15

20

25

30

35

Time (Seconds)

N
um

be
r

of
 p

ac
ke

ts

Buffer drop
Packets sent from client

(c) Bi-directional TCP: Packets

Figure 23: Impact of Bi-directional TCP

The main network testbed used in the experiments is shown in Figure 22. The testbed

under our control consists of six BitTorrent peers, three of which run the Azureus client

2.3.0.4 on Linux, and other three peers run the BitSpirit 3.2.215 client on Windows. All six

peers are inside Georgia Tech campus. They are all connected to Internet through wireless

LAN and thus participating in larger P2P networks. To evaluate the performance under

various network conditions, we also introduce an emulator for each BitTorrent client. The

55

emulators run Linux-based Ubuntu OS with kernel modules to mimic the wireless-related

characteristics including bit error rate, mobility, delay and bandwidth.

We identify totally six issues when mobile hosts participate in P2P networks, and each

of them will be elaborated in this section. Based on where the particular issue arises,

we broadly classify these issues into three categories: Issues with Bi-directional traffic,

Downloader-side issues, and Uploader-side issues.

3.4.2 Issues with Bi-directional traffic

Issues with Bi-direction traffic are caused by the data exchange between two peers over

wireless media. Two issues fall into this category: Bi-directional TCP and Uploads based

Incentives.

3.4.2.1 Bi-directional TCP

As described in Section 3.3, most peers in BitTorrent upload and download at the same

time, and because of the tit-for-tat policy used by BitTorrent, several of the uploads are to

peers from which downloads are being done. Hence, it is common for data to be exchanged

simultaneously between peers in both directions. Given that BitTorrent (or for that matter

the other P2P applications) uses TCP, and that TCP is inherently designed to be a bi-

directional protocol, BitTorrent uses TCP in its true bi-directional mode. Thus, a single

TCP connection is used to transfer data in both directions between the peers. While TCP is

designed to be a bi-directional transport protocol, few extensive studies of its behavior have

been performed. More importantly, in the context of this work, very little is understood

about the behavior of bi-directional TCP in a wireless environment.

In this context, we identify two issues with the use of bi-directional TCP by BitTorrent.

These two issues are centered around the behavior of TCP with respect to ACK piggybacking

and fast-retransmit under bi-directional conditions.

• ACK Piggybacking: When bi-directional TCP is used, TCP ACKs in the reverse path

are piggybacked on the data packets being sent in the reverse direction to avoid sending

separate ACK and data packets. In a wireless environment, where random errors rates

can be non-trivial, this potentially has an adverse impact on the connection performance.

56

More specifically, when ACKs are piggybacked on data packets, the effective “length” of

the ACKs is longer than if they were sent as pure ACKs (non-piggybacked). Hence, for the

same bit error rate (BER) in a wireless environment, the effective packet error rate (PER)

for the ACK traffic is larger. This in turn results in more ACK packets being lost on the

reverse path just because they were piggybacked. Specifically, for a given packet of size S

bytes, assuming the uniform BER is b, the PER can be calculated as 1− (1− b)S .

While it is true that TCP uses cumulative ACKs, and hence is relatively robust to

ACK losses, there still is a negative impact in terms of the overall throughput enjoyed by

a connection in the presence of higher number of ACK losses. More importantly, in a P2P

network peers typically have a large number of TCP connections ongoing even for a single

swarm (BitTorrent trackers typically provide addresses of 50 peers in response to a request,

but the overall swarm size can easily grow to numbers greater than 1000, as we observed

from our experiments), resulting in the average congestion window size of a TCP connection

to be relatively small. And, it is for connections with small congestion window sizes that

a higher ACK loss rate can result in a non-trivial degradation in throughput. Thus, the

download rate for a TCP connection from a particular peer will be smaller just because of

ACKs being piggybacked in the reverse direction.

We setup experiments to obtain the results with respect to the use of uni-directional TCP

and bi-directional TCP. The network setup is as follows. To study the impact of bit error

rate, we implement a kernel module with NetFilter [21] to probabilistically drops packets

based on packet lengths and assumed bit error rates. To simulate the special feature of

shared-media in 802.11, we implement a shared-bandwidth emulation module which embeds

at the NF IP FORWARD point inside the NetFilter framework. The maximum bandwidth

is set to 300 KB per second (i.e., 2.4 Mbps). 1

We consider three scenarios: single uni-directional TCP, single bi-directional TCP and

double uni-directional TCP. We manipulate the shared data file on the testbed to create

all scenarios. (i) For uni-directional TCP, we ask a peer to seed a file, and another peer

1Note that though we could perform experiments by relying on the “ture” shared-media of the WiFi
networks, experimenting under more-controlled environments help filter out other irrelevant factors such as
interferences from other WiFi networks.

57

purely downloads the file. (ii) For bi-directional TCP, we use two other peers to download

the file for a period of time. After these two peers have downloaded about half of the

file, we remove other peers and only keep the two peers. Since these two peers each has a

random portion of the file, they begin to exchange data between them. We observe that

the two peers are sending and receiving data on a single TCP connection. For this scenario,

we only consider the throughput of one direction (i.e., the larger one). (iii) For double

uni-directional TCP, we first set up the scenario of single uni-directional TCP, then creates

another uni-directional TCP along the opposite direction with Iperf. Given two peers A

and B, A is downloading from B with BitTorrent, and concurrently A is also uploading to

B with Iperf. For this scenario, we consider the aggregate throughput.

Figure 23(a) presents results of the download rate experienced by a peer under varying

conditions of bit error rate. Each data point is the average of five 10-minute runs. We

observe that the aggregate throughput of double uni-directional TCPs result in highest

throughput, which can be easily explained by the higher usage of the bandwidth with two

connections.. The bi-directional TCP has the lower throughput than uni-directional TCP,

which indicates the impact of ACK piggybacking. What is more interesting is that the

degradation in throughput performance with increasing BER is faster in the case of bi-

directional TCP. In addition, while it might appear that peers are better off not uploading

for this reason, recall that the tit-for-tat policy used by BitTorrent will render such a

strategy ineffective.

• Fast Retransmit: The second issue with BitTorrent using bi-directional TCP occurs

during congestion. TCP’s fast retransmit mechanism is based on the arrival of DUPACKs

(duplicate ACKs) at the sender. When bi-directional TCP is used, TCP specifications

stipulate that DUPACKs should not be piggybacked. The reason for this stipulation is that

otherwise the sender has no way of knowing whether piggybacked DUPACKs are due to

losses, or due to the receiver sending multiple data packets between two data packet arrivals

(and hence piggybacking the same ACK sequence number on those data packets).

Hence, a TCP receiver will send only pure ACKs when DUPACKs have to be transmitted

due to losses. While this design has no issues in a wired environment, it results in problems

58

0 500 1000
0

200

400

600

800

1000

1200

D
ow

nl
oa

di
ng

 T
hr

ou
gh

pu
t (

K
bp

s)

Uploading Limit (Kbps)

Run 1
Run 2
Run 3

(a) Wired Network

0 500 1000
0

200

400

600

800

1000

1200

D
ow

nl
oa

di
ng

 T
hr

ou
gh

pu
t (

K
bp

s)

Uploading Limit (Kbps)

Run 1
Run 2
Run 3

(b) Wireless Network

0 10 20 30 40
0

20

40

60

80

100

120

140

160

D
ow

nl
oa

de
d

S
iz

e
(M

B
)

Time (Minutes)

No Mobility, Uploading
No Mobility, No Uploading
Mobility, Uploading
Mobility, No Uploading

(c) Downloading Process of a 100 MB File

Figure 24: Effect of upload traffic on downloads (a,b), Effect of Incentive and Mobility
(c)

when performed as-is in a WLAN environment. This is because, when congestion has

occurred in the WLAN resulting in a packet drop, the DUPACKs sent back will be explicitly

de-coupled from the data stream in the reverse path, thus actually increasing the number

of packets in transit on the wireless leg. While it is true that the TCP sender, when it

receives the DUPACKs will reduce its number of outstanding packets in the network by

half according to TCP specification, the new transmissions of pure ACKs essentially offsets

the decrease in the number data-packets. Hence, as far as the wireless leg is concerned, the

number of packets in transit stays approximately the same even after a congestion event.

Figures 23 (b,c) show the number of packets sent by a client on the wireless leg with

time for two BitTorrent connections, one uni-directional TCP and one bi-directional TCP,

respectively. For the connection using uni-directional TCP, the client is sending data to

another BitTorrent peer. For the connection using bi-directional TCP, the client is both

59

sending to and receiving from another peer. The congestion events are indicated as buffer

drops in the figure as well. It can be observed that while the number of packets on the

wireless leg in general decreases after congestion events for the uni-directional connection,

this is not true for the bi-directional TCP connection. This “mis-behavior” can potentially

result in performance degradation for the connections due to deviation from the intended

behavior of TCP’s congestion control.

We have thus far discussed the negative impact of using bi-directional TCP connections.

While it is true that the above problems will be issues for any application that uses simul-

taneous data transfer with bi-directional TCP, it is noteworthy that P2P data networks are

perhaps one of the few instances (if not the only) where such bi-directional data transfer

does happen simultaneously and in large volumes. Applications (or protocols) such as http

or secure-shell, while using bi-directional TCP, do not exercise the bi-directionality the same

way as P2P networks do. For example, both the above applications have distinct request-

response patterns that render simultaneous data transfers at high volumes unnecessary in

both directions.

3.4.2.2 Uploads-based Incentives

The tit-for-tat incentive mechanism in BitTorrent encourages higher rates for uploads to

enjoy better download rates. In a wired environment, it can be shown that peers enjoy their

best download rates when their upload rates are high. Figure 24(a) shows the aggregate

download rates of 4 simultaneous tasks (i.e., top 4 torrents of Fedora 10 [32]) as a function of

the upload rate limit in a wired setting. The network is set up with the kernel-module-based

bandwidth emulator we discussed before. Specifically, the bandwidth is capped to 2.4 Mbps

for both uplink and downlink. We show the results of three separate runs, and each data

point shows the result of 1-hour running. We observe that the download rate is an increasing

function of the upload limit. Since with wired links, the uplink and downlink physically do

not affect each other, we believe that the results are caused by the incentive mechanism

embedded in BitTorrent. This inference is further supported by variable software manuals

and user-experiences, most of which state that the recommended uploading rate should be

60

typically around 80% of the upload capacity. The remaining 20% capacity is reserved to

allow for the pure TCP ACK traffic on the reverse path for other connections.

For a wireless environment, however, the relationship between the enjoyed download

rate and the upload rate limit changes. Using the same kernel module but with a shared

bandwidth-cap between uplink and downlink, we show the aggregate download rate of the

same four tasks in Figure 24(b). As shown, while the download rates initially increase with

higher upload rates, beyond a much smaller upload rate (400Kbps, much less than 80%

in wired networks) the download rates actually drop. This is due to the shared channel

nature of the wireless link, where the uploads and downloads are contending for the same

wireless channel bandwidth. This is in contrast to a wired setting where the uploads and

downloads do not share the same bandwidth resources. The same figure also demonstrates

that shutting down the upload is not a solution either as the tit-for-tat strategy of BitTorrent

will kick-in punishing the peer with low download rates.

This problem of uploads contending with the downloads also goes beyond the incentives

mechanism in BitTorrent. In a wired environment, peers have a relatively low dis-incentive

to continue as a seed once the downloads are completed with the argument being that

upload bandwidth is anyway largely unused under most conditions except for TCP ACK

traffic. Thus, peers in wired networks are more willing to upload other peers by acting as

servers. However, in a wireless setting, a mobile peer functioning as a seed can potentially

impact its download rates for other non-P2P applications without any direct counter-benefit

for the user. While this contention between P2P uploads and other application downloads

is true even when the mobile peer is a leech, it can be argued that the mobile user is at least

receiving the benefit of the tit-for-tat scheme. However, when the wireless peer converts to

a seed, this advantage no longer remains. Hence, any viable solution to motivate mobile

peers to continue as a seed has to ensure that the uploads do not negatively affect the

downloads of other applications.

61

3.4.3 Downloader-side issues

Downloader-side issues occur in the downloading process on P2P clients. These issues

include: Incentives and Mobility and Rarest-first Fetches.

3.4.3.1 Incentives and Mobility

The tit-for-tat mechanism in BitTorrent is associated with a unique identifier for the peer

called the peer-id. The peer-id is typically constructed as either a function of the IP address

of the host and a random value, or simply as a function of a mobile host specific random

value. The peer-id is regenerated every time fetch tasks are re-initiated. Thus when a

mobile host experiences a hand-off and receives a new IP address, the ongoing tasks are

terminated and the tasks are re-initiated2 thus generating a new peer-id. However, since

the peers track the goodness of corresponding peers based on the peer-id, this results in the

mobile peer losing all the credit it has built with its corresponding peers.

Figure 24(c) shows the effect of incentives on the downloaded sizes of a 100MB file as

a function of time. Under the no-mobility scenario, we observe that the download size is

lower when there is no upload traffic. This is the normal incentive behavior. However when

we introduce mobility by switching IP address every one minute, we see that the incentive

mechanism is rendered ineffective. Not only is the actual download size lower than the

no-mobility case, there is marginal difference between the download rates with or without

uploading. This is because every time the IP address changes, tasks are re-initiated and

thus the host acts as a new peer without any previous incentives. Thus, the mobility of a

peer can have an adverse impact on the incentive mechanism of a P2P network.

3.4.3.2 Rarest-first Fetches

As outlined in Section 3.3, BitTorrent employs a rarest-first fetching paradigm. This results

in any snapshot of the downloaded content for a file not having any significant “in-sequence”

data from the head of the file till a large percentage of the file download is completed. Many

media formats, on the other hand, allow for partial playback of content provided the partial

2We assume here that mobile IP [97] is not used to handle mobility.

62

information is in sequence. For example, for an MPEG file of a 2 hour video, the download

of the first 30 minutes worth of the video will still allow for a playback of that part of the

video. Figure 25(a) shows the playable fraction of two files being downloaded with increasing

fraction of the actual downloads using rarest fetch. It can be observed that until a large

percentage of the whole file download is complete, a significant percentage of the file still

remains unplayable. For 5 MB file, even with a 60% download fraction, less than 20% of

the file remains playable. In fact, for the 100 MB file size scenario, more than 90% of the

file size needs to be downloaded to playback the first 5% of the video.

While this property of BitTorrent is an irritant even for a fixed peer, it is justifiable for

two reasons: (a) this enables the peer to contribute well to the P2P network as it is likely

to have blocks that are different from those at other peers; and (b) fixed peers do not have

to concern themselves with wireless disconnections thus ensuring that the downloads will

eventually complete and will not be in vain.

However, for a mobile peer, this property can have more serious implications. In the

example of the 100 MB file, if the mobile peer gets disconnected from its wireless network

(and remains so) after 90% of the file has been downloaded, the user still cannot playback

more than 5% of the content. Furthermore, the 90% of the file size downloaded thus far

using the rarest-first algorithm in the interest of the well being of the rest of the P2P

network cannot be served back to the P2P network anyway because of the disconnection.

0 20 40 60 80 100
0

20

40

60

80

100

Downloaded Percentage (%)

P
la

ya
bl

e
P

er
ce

nt
ag

e
(%

)

5MB File
100MB File

Figure 25: Impact of Rarest-first Fetching

63

256KB 512KB 1MB 5MB
0

20

40

60

80

100

120

140

160

180

Data Size

T
hr

ou
gh

pu
t (

K
B

ps
)

Server PSM OFF
Server PSM ON

(a) Effect of PSM (Client PSM OFF)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7
x 10

4

Time (Seconds)

TC
P

Se
q.

 N
um

be
r

Server PSM ON (BT Msg)
Server PSM ON (Data)
Server PSM OFF (BT Msg)
Server PSM OFF (Data)

(b) Progress of packet sequences

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

Time (Seconds)

P
ac

ke
ts

Server PSM ON (BT Msg)
Server PSM ON (Data)
Server PSM OFF (BT Msg)
Server PSM OFF (Data)

(c) Microscopic progress

Figure 26: PSM on Server side

3.4.4 Uploader-side Issues

Uploader-side issues are caused by the fact that P2P clients are also serving as “servers”

in the sense that they supply data to other clients. We identify two issues in this category:

Power-saving Mode and Server Functionality, and Server Mobility.

3.4.4.1 Power-saving Mode and Server Functionality

Most mobile devices employ a power-saving mode (PSM) of operation to shutdown their

radios and conserve energy. In the 802.11 PSM operation, the radio goes to sleep when there

is no data to send or receive, and wakes up after a 100 ms interval or when there is data to

send, whichever event occurs first. During the period of sleep, if the access-point receives

packets meant for the mobile device, it buffers the packets and advertises the presence of

the buffered packets in periodic beacons to the mobile devices. A mobile device that wakes

up after the 100 ms interval will poll the access-point for data if it finds that the beacons

64

advertise data buffered for that device.

When a mobile device is merely acting as a client (as in traditional client-server appli-

cations), the use of the PSM does not severely impact the initiation of connections because

the radios are required to wake-up when there is data (or in this case TCP SYNs) to be

transmitted, and clients always initiate connections. However, in a P2P network, where a

mobile host can act as the server, when other peers initiate connections to the mobile host,

the mobile host has no way of knowing that connection initiation messages are pending for

reception at the access point till it wakes up from its fixed sleep interval, polls the access-

point, receives all buffered data ahead of the initiation message one by one, and finally

receives the initiation message.

Thus, the start-up time during connection initiation for the corresponding peers, when

attempting to connect to a mobile peer that acts as a server can be strongly influenced

by the PSM operations at the mobile host because of three reasons. First, each of the

message/packet exchanges can be delayed in the form of inflated transaction time. Second,

if the available bandwidths are low this problem is exacerbated because of the need to drain

the buffered data at the access point that is queued ahead of the initiation message(s).

Third, if the access-point PSM buffer is full when the initiation messages arrive, potential

message drops and associated delays will arise as well.

Such adverse impact on the connection during its infancy also has other implications.

For example, TCP’s rtt and rttavg calculations are significantly impacted by even a small

number of samples during connection initiation because of the small congestion windows

during start-up. Figure 26(a) shows the impact of PSM on the performance experienced by

peers trying to use the mobile peer as a server. We observe that turning on the PSM at the

mobile peer acting as the server results in a throughput reduction of up to 40% depending

on downloaded file size. Thus we see that the PSM can potentially harm the peer-to-peer

connection. Figure 26(b) shows the actual time instants at which different TCP packets

(both for BitTorrent protocol messages and actual data) are received when the PSM is

either turned on or off for a single TCP connection. We observe that the TCP sequence

number increases much faster when PSM is turned on, which proves that the impact on the

65

start up delay has a significant impact on the connection progress. In addition to Figure

5(b), we also provide the microscopic view of the start-up delay in Figure 5(c). The figure

shows 6 BitTorrent protocol messages and the first data packet along the time line. We

observe that the start-up delay of the data transmission is about 1 second.

3.4.4.2 Server Mobility

P2P peers update address list of other peers to establish connections to them. Peer address

updates in BitTorrent typically happen at the granularity of minutes when a peer goes back

to the tracker for an updated set of peers to use in its swarm. Even within that period, the

decision on whether to use a peer or not for downloads is adjusted at the granularity of tens

of seconds. Note that this is understandable in a wired environment where disconnections

of peers may not occur frequently. However, when a mobile peer undergoes a hand-off

or simply gets disconnected, the fixed peers who were clients with respect to the mobile

peer will continue to try to reach the mobile peer till either the peer selection algorithm

chooses an alternate peer (after 10-20 seconds) or the tracker provides alternate addresses

or alternate peers (after a few minutes if not longer).

Figure 27 shows the effect of server side mobility on the throughput performance for

fixed peers. The client is receiving data from three other peers (i.e., the servers). The

IP address of the server is changed every fixed time interval and the resultant throughput

as enjoyed by the fixed peers is measured. We observe that as the time interval between

No Mobility 3 Min. 2 Min. 1.5 Min.
0

500

1000

1500

2000

2500

Mobility Rate

T
hr

ou
gh

pu
t (

K
bp

s)

One peer is mobile
All peers are mobile

Figure 27: Impact of server mobility

66

successive IP change decreases (reflecting higher mobility) the throughput falls. Specifically,

with current BitTorrent peer-updating model, the time required for a practical IP-address

update of a serving neighbor takes the following three sequential steps: (i) the peer acquires

a new IP address and reports to the tracker; (ii) the downloading peer requests for peer-list

update from the tracker; and (iii) the downloading peer chooses the peer with a new IP

and initiates the connection. These steps can take as much as several minutes depending

on factors such as swarm size. Furthermore, the degradation due to mobility is amplified

when the number of mobile peers amongst the corresponding peers is increased.

3.4.5 Relevance to Other P2P Networks

Thus far, we have investigated properties of the BitTorrent P2P data network that nega-

tively impact performance of a mobile peer. While we use BitTorrent, a popular flavor of

P2P systems, to describe the various challenges faced by P2P applications in wireless and

mobile environments, we feel that it is necessary to broaden our research results to other

P2P systems. Admittedly, a thorough investigation requires considerable research efforts

and we view this as future work. Briefly, while not all the properties discussed thus far are

directly relevant in the context of the other popular P2P data networks such as Gnutella,

FastTrack, and eDonkey, many of the issues discussed in this work apply with varying

extents. Specifically, (i) Any P2P network that uses TCP and allows data exchange on

the same connection has issue of bi-directional TCP. We do notice that many current P2P

softwares use TCP due to TCP’s advantages when compared to UDP. (ii) P2P networks

that accumulate incentives based on the amount of data transmitted to other peers has the

upload-based incentive. For example, many flavors of Gnutella have incentive mechanisms.

Such incentive mechanisms might suffer from mobility depending on the exact realizations.

(iii) When media files that allow partial playback are shared by P2P networks, fetching

sequences affect the playback performance. If non-sequential fetching algorithm is used,

the playable percentage will be much smaller than the downloaded percentage. (iv) The

proper functioning of P2P networks relies on the contributions of all peers. So when up-

loading data, server mobility and PSM on mobile hosts can have impact on the uploading

67

performance.

68

3.5 wP2P Design

In this section, we first summarize the limitations with current P2P designs by characterizing

the limitations into four problem classes. We then outline the key design aspects of the

proposed wP2P solution that are targeted to address the limitations of existing P2P data

networks identified in Section 3.4. We present the design basis for wP2P in the form of

four principles that address the above four categories of problems. These principles are

Role Reversal, Age-based Manipulation, Incentive Aware operations and Mobility-aware

Fetching.

For each of the four principles, we first highlight the design rationales that serve as the

basis of the each design principle. We then present the algorithmic details of the realizations

of the different principles. We denote the realizations of the different design principles as

components. We present the realizations in the context of a P2P client application, and

hence, an implementation of the mechanisms would involve updating the P2P application.

We believe that such a deployment model is very justifiable in the context of P2P data

networks where it is not uncommon to receive updates to the P2P client application. Also,

we present any specific implementation details with respect to the BitTorrent protocol.

However, all the realizations presented are purely local to the mobile host and backward

compatible to all existing BitTorrent P2P client applications on fixed peers.

3.5.1 Insights into the problems

Before we proceed to the design, we characterize the insights into the problems identified

in Section 3.4 by categorizing the different limitations into four problem classes. Problems

within a class all have a common underlying cause. We use the categorization to then posi-

tion the design basis for wP2P. The limitations identified in Section 3.4 can be categorized

as follows:

• Mobile host as a server: Unlike in other applications, in P2P data networks, the

mobile host uniquely functions as a server that can be accessed by other peers. Hence, several

problems attributed to wireless and mobile environments that can be (and have been) solved

have to be solved differently. Moreover, some other problems related to such environments

69

that do not exist when the mobile host acts only as a client arise newly. Instantiations of

this category of problems include the impact of PSM on the server performance, and server

mobility.

• Use of bi-directional TCP: While bi-directional TCP has been in use by other appli-

cations such as http or secure-shell, P2P data networks uniquely use bi-directional TCP to

transfer large volumes data in both directions simultaneously. Hence, several quirks of bi-

directional TCP that do not arise in wireless environments otherwise have to be addressed.

Instantiations of this category of problems include the ACK piggybacking problem and the

DUPACK decoupling and overload during congestion.

• Failure of incentives: While P2P data networks heavily rely on incentives based mecha-

nisms to encourage peers to contribute to the network, such mechanisms are not tailored for

the unique characteristics of wireless and mobile environments. Specifically, the problems

of upload-download self-contention and identity loss after mobility fall under this category

of problems.

• Disconnections and fetching: The newest generation of P2P data networks use multiple

simultaneous fetches from different peers and fetch blocks in a non-sequential order. While

such strategies have obvious benefits in a wired environment, they compromise performance

in a wireless setting. Problems that fall under this category include lack of playable content

during disconnections and redundant fetching of partial blocks after reconnections.

3.5.2 Role Reversal

The problem of mobile host as a server primarily impacts connections either when the

mobile host uses PSM or when the mobile host moves (and hence undergoes an IP address

change). In this context, the role reversal design principle of wP2P involves the mobile host

switching its role to that of a client at specific points in time to address the above problems.

Note that the fact that a mobile host switches to acting as a client will not have any impact

on the mobile host still serving content to the peers it connects to, as peers can serve traffic

irrespective of whether or not they initiated the connection.

Essentially, for both the problems in this category, the TCP connection “suffers” due

70

to delays or disruptions, and the impact of the delays or disruptions can have a non-trivial

impact even on the overall performance of the connection, especially when the file size or

the remaining file size is small. Under role reversal, a mobile host acting as a server, upon

detecting a connect request (i.e., TCP SYN) delayed by the PSM or a hand-off, explicitly

issues a TCP-Reset to the corresponding peer for previous connection. Further, the mobile

host re-initiates a new connection to that same peer, thus acting as the client. Once the

new connection is setup, because of the bi-directional nature of the application semantics

and the bi-directional nature of the TCP connection, the mobile host can serve the content

as a server. However, having replaced a “suffering” (i.e., the progress of the connection

is unnecessarily delayed, in the case of PSM) or stalled (in the case of server mobility)

connection with a newly formed “healthy” connection (i.e., the progress of the connection

is smooth) allows the peers to achieve much better performance.

The Role Reversal (RR) component realizes this design principle and kicks in during

connection setup and during mobility-induced network changes. Figure 28(a) shows the

pseudo-code of the RR component. During connection initiation, the RR component cap-

tures packets and checks the TCP flag in the captured packet. If the SYN flag is set in the

TCP packet and PSM mode is enabled on the wireless transceiver, then the RR compo-

nent issues an application-close (Line 4 of Figure 28(a)) to the TCP layer triggering a TCP

RST packet to the peer which initiated the connection through the SYN packet. After the

application close, the RR component sends an application-open (Line 5 of Figure 28(a)) to

establish a P2P connection to the corresponding peer. In this fashion, the RR component

changes the mobile host to act as a TCP client as opposed to a TCP server. The RR

component ignores the SYN packet if PSM mode is not turned on.

The RR component also monitors the IP address of the wireless interface. If it detects a

change in the IP address, the RR component: (i) stores the necessary information of all the

corresponding peers with which P2P TCP connections have been established, (ii) transmits

application termination messages to all the stored peers, and (iii) issues application setup

messages to the stored peers.

71

3.5.3 Age-based Manipulation

The bi-directional TCP problem arises because of specific quirks of the TCP design and

how they relate to the wireless environment. However, at the same time, bi-directional

TCP’s performance otherwise is desirable since it eliminates ACK overheads under normal

conditions. In other words, the solution to the problems with bi-directional TCP is not to

switch back to dual uni-directional TCP connections, as doing so would render the overall

performance worse than when using bi-directional TCP as pure ACKs in both directions

and consume precious bandwidth resources.

In this context, the age-based manipulation design element of wP2P involves the adap-

tive manipulation of the bi-directional TCP connections for better performance. Essentially,

recalling the discussion on ACK loss rates in Section 3.4, an argument can be made that

TCP’s throughput performance is vulnerable to ACK losses only when the congestion win-

dow is small. At larger congestion windows, the higher ACK loss rates do impact progress,

but not significantly. Hence, under age-based manipulation, explicit conversion of piggy-

backed ACKs to pure ACKs is performed when the connection congestion window (i.e.,

cwnd) is small. Note that although this manipulation is done at the receiver, standard

techniques exist to track the sender congestion window at the receiver. Piggybacked ACKs

are let through as-is when the congestion window is larger than a threshold. A straightfor-

ward value for the threshold is 6 as it can be shown that congestion windows less than 6

are highly vulnerable to losses in either direction [69].

Similarly, the use of pure ACKs during fast retransmit and the associated wireless

link overload is addressed by throttling the number of packets down explicitly such that

the total number of packets (including the pure DUPACKs) outstanding amounts to half

the number of outstanding packets before the congestion detection. This is performed

by explicitly dropping one-fourth of the DUPACKs in the reverse path during the first

round-trip time after the first DUPACK is generated. For example, if the cwnd is 100

on congestion detection (assume one packet loss), 99 DUPACKs will be generated by the

receiver. If one-fourth of the DUPACKs are dropped, approximately 24 DUPACKs will

be dropped resulting in 75 DUPACKs reaching the sender. The sender, when it performs

72

fast retransmit and fast recovery, will thus send out 25 (i.e., (100/2)+75-100) new packets.

Thus, even if the 25 new packets generate 25 pure DUPACKs (assuming the receiver still is

in loss recovery), that amounts to a total of 50 total packets equalling half of the number

of packets outstanding before congestion detection.

Finally, the age-based manipulation principle also applies to one other technique of

controlling when PSM is employed, and when it is not. Essentially, when a mobile peer

has TCP connections in their infancy, PSM is turned off at the mobile. This includes

the period right after role reversal is performed. The PSM is turned back on after the

connections cross the infancy threshold in terms of their cwnd. Note that though there

is an apparent performance tradeoff between the network performance (i.e., as measured

by throughput) and power saving (i.e., as measured by operation time), in this work we

explicitly focus on the network performance. We also note that it is possible to further

study the throughput-vs-power tradeoff, as the qualitative impacts of PSM on throughput

and power saving are not obvious, and we put this as future work.

The pseudo-code for the Age-based Manipulation (AM) component is listed in Figure

28(b). First the AM component constantly monitors the congestion window of the TCP

connection. If the current connection congestion window is less than a specified threshold

value γ (set to 6 in our evaluations [69]), the connection status is set to YOUNG (Line

3 in Figure 28(b)) and disables PSM on the wireless interface of the mobile host. If the

congestion window is greater than the threshold γ, the connection status is set to MATURE

(Line 6 in Figure 28(b)).

The AM component also maintains state about the TCP connection and captures TCP

packets transmitted by the mobile host. If the connection status is YOUNG, the AM module

conveys any new ACK information piggybacked on DATA packets transmitted by the mobile

host as separate pure ACKs (Line 13 in Figure 28(b)). This achieves better robustness for

the ACKs given a finite error rate in the wireless channel. The AM component also detects

losses experienced by the TCP connection and performs the following operation during loss

recovery. If the status of the connection encountering loss is MATURE, the AM module

drops one DUPACK every four DUPACKs (Line 20). Specifically, wP2P captures and

73

manipulates TCP packets in wP2P using frameworks such as WinpkFilter [35] (for Windows

OS) and NetFilter [21] (for Linux OS) that act transparently to the existing protocol stack

of the network.

3.5.4 Incentive aware operations

The problem of failure of incentives stems from the two distinct conditions of the self con-

tention in a wireless link and mobility-related identity loss. The incentive-aware operations

principle in wP2P is used to address both problems.

Essentially, one technique under incentive aware operations in wP2P involves the adap-

tation of the upload rate in order to find the smallest upload rate possible to achieve the

maximum download rate. While this value for the upload rate is trivial to determine in a

wired setting, a more sophisticated algorithm is required in a wireless environment.

Since a wireless host uses a shared channel, the upload and download traffic contend

with each other and hence increased uploads might reduce the downloads possible. In order

to strike the balance between the two competing issues (i.e., incentives and self-contention)

wP2P performs a Linear Increase History-based Decrease (LIHD) algorithm that adapts

the uploading rate. The intuition behind the LIHD algorithm is that while increasing the

upload rate, it is better to be conservative so that the mobile host does not upload more

than necessary. At the same time while reducing the uploads it is desirable to be aggressive,

while at the same time performing as close to the optimal rate as possible. LIHD hence

increases upload rates linearly when there is a positive correlation between the uploads and

downloads, while decreasing the upload rates with increasing aggressiveness when decreasing

the uploads does not cause a decrease in the downloads.

LIHD can also be used for controlling the rate of uploads when the mobile peer becomes a

seed, such that the uploads do not impact negatively any of the downloads being performed

by other non-P2P applications on the mobile peer. We do not consider this aspect of the

mechanism in this chapter, and leave it for future work.

The Incentive Aware (IA) component monitors upload and download rates achieved

by the P2P application and uses window-averaged throughput to determine the upload

74

rate control of the P2P application. Specifically, as shown in Figure 28(c), the component

is invoked periodically. For each period, the downloading throughput is calculated and

compared to the previous period. if the downloading throughput sees an increase, then

it suggests that the uploading is unlikely interfering with the downloading and a larger

uploading rate likely results in even better downloading throughput. Thus the uploading

rate is increased linearly by a guard value of α (Line 6 in Figure 28(c)). Otherwise, if the

downloading throughput decreases, then it suggests the opposite, and the uploading rate is

curbed more aggressively. Specifically, the upload rate counter is decremented by a value

proportional to the number of consecutive cutdowns of the upload rate (Line 8 in Figure

28(c))

IA also identities retention across hand-offs and within the same swarm. The rationale

for generating uniquely different peer-ids in BitTorrent is to be able to identify and dis-

tinguish between clients with the same IP address (say, if the clients are behind a NAT),

but at the same time confine the benefits of incentives accumulated by a peer to only that

swarm in which the peer contributed. Since the typical scenario for task initiation in wired

environments is when a peer wants to download another data file, generating a new peer-id

is reasonable. However, in mobile environments task re-initiations can occur just because

IP addresses have changed. wP2P, in this context, performs identity retention within a

swarm, whereby even when task re-initiation is performed, as long as it is for a swarm the

mobile peer was a member of before, the old peer-id is retained. This enables the mobile

peer to leverage its previously accumulated incentives. The IA component stores the peer

ID of the mobile host when the application is started and when there is IP layer handoff,

the IA component restores the stored peer ID to maintain incentives.

3.5.5 Mobility-aware fetching

In Section 3.4 we observed how in a mobile peer (as a client) mobility can impact the

performance of downloads in BitTorrent. In this context, wP2P uses a mobility-aware

fetching principle that explicitly controls how data is fetched both during steady-state, and

upon re-connections after disconnections.

75

The mechanism that falls under this principle is that of exponentially increasing altruism

or exponentially decreasing selfishness. Essentially, a mobile peer fetches blocks in sequence

with a probability ps (=1 − pr), and fetches the rarest-first block with a probability pr.

During the initial phases of the download, the mobile peer uses a small value (say, 0.1) for

pr, and exponentially increases pr as it downloads increasing fractions of the total file.

The rationale for this design is as follows: during the initial stages of downloads, if

the mobile host gets disconnected, there is no benefit due to the rarest-fetch mechanism

either for the mobile host (in terms of playability) or to the P2P network (in terms of

availability). Hence, it is more desirable to fetch sequentially. However, as the mobile host

stays connected for a longer period of time, its utility to the P2P network has more stability

and hence it is more meaningful to have available rare blocks. Furthermore, if the mobile

host now gets disconnected, the user still has a considerable portion of in-sequence data for

playback.

Mobility-aware Fetching (MF) component, as the final piece of the wP2P framework,

helps in achieving ideal fetching of file sequences by being aware of the connection stability

of the mobile host. The pseudo-code for the MF component is listed in Figure 28(d). The

MF component performs rarest-first fetches with a specific probability Pr. This probability

Pr is a function of the network stability of the mobile host as measured by the amount

of time elapsed since the last network disconnection of the mobile host (or the start of

the download). This mobility-aware adaptive content fetching achieves an optimal tradeoff

between sequential content availability for disconnected usage of content and usability of

content for other peers to download.

3.5.6 Integrated Operations

We can classify the operation of the four components of the wP2P framework with respect

to the different periods of the P2P connection. The operation of the four components

are illustrated in Figure 29. The Role Reversal component is employed during connection

establishment and immediately after mobility-induced IP handoffs. The operations of the

Incentive Aware component are performed during steady-state of the TCP connections.

76

Age-based Manipulation component kicks in during early stages of the connection and

during congestion recovery periods. Finally, the Mobility-aware Fetching component is

active during the steady-state period of the TCP connection and also after IP address

change due to reconnection.

3.6 Performance Evaluation

In this section we evaluate the performance of wP2P.

3.6.1 Evaluation Methodology

The evaluation is performed both with NS2-based [114] simulations and prototype-based

experiments. Since BitTorrent protocol in the study has various software implementations,

and different implementations may differ in certain aspects of protocol standards, we believe

such simulations with embedded design principles can help capture the trend of performance

enhancement delivered by wP2P.

To further evaluate the effectiveness of our proposed wP2P solution, we built a prototype

which implements most of the mechanisms contained in wP2P. The primary goal of building

such a prototype is to prove that the proposed wP2P architecture does indeed work with

real applications.

The metrics we study in this evaluation are average throughput, download size for a

given time and percentage of playable content for media files. We compare our results with

a default-P2P application under various scenarios.

3.6.1.1 Simulation Setup

We use the NS2-based simulator to evaluate all our algorithms. The topology used in our

simulations is shown in Figure 31. The network consists of both wired and mobile hosts.

All our algorithms are added as modules to the wireless nodes in the simulator. Unless

otherwise specified, all the wireless links have a bandwidth of 2Mbps and use the IEEE

802.11b standard. The wired network has 50ms-delay links between the individual hosts.

The mobile hosts M1 and some other peers contains the new wP2P implementation. The

maximum number of upload connections fromM1 is set to be 4, and the number of download

77

connections can range from 1 to 100. All traffic is generated using FTP over TCP, and data

points in all results are averaged over 5 runs unless otherwise specified.

3.6.1.2 Prototype Setup

We use a prototype implementation of wP2P that is built as an enhancement to the CTor-

rent client version 1.2 [8]. CTorrent is a lightweight C++ implementation of BitTorrent

protocol with about 10K lines of code. The four components of wP2P are implemented

by either modifying the source code of CTorrent or adding a separate module which works

with a packet filtering utility widely available in Linux distributions. Specifically, the Role

Reversal, Incentive Aware Operations and Mobility-aware Fetching components are imple-

mented by directly modifying the CTorrent source code, and the Age-based Manipulation

component is realized with the assistance of Netfilter utility [21]. We now describe the

network setup of our implementation followed by descriptions of the four individual wP2P

components.

• Implementation details. (I) The prototype realizes RR by modifying the source code

of CTorrent. IP address change induced by mobility will render all current connections

unusable, and CTorrent client will eventually lose all live peers. Thus, the prototype stores

the remote peers to which it is serving data, monitors the number of live peers, and infers

mobility when there are no live peers existing. Once mobility is detected, the mobile host

will immediately attempts to build new connections to the stored remote peers to resume

serving data. (II) AM needs to determine connection ages, and the determination is based on

the measurement of current congestion window. Since the information of congestion window

typically is not available to the application itself, the realization of this component has to

obtain such information from certain networking entities. Specifically, we choose Netfilter

utility to assist the implementation of the component partly due to its wide deployment in

Linux distributions. A module in the user space keeps track of the amount of data sent by

the remote peer in every round trip time (rtt), and uses the current value as an estimate

of that peer’s TCP congestion window for the next rtt. We chose a congestion widow of

size 9k bytes (approximately 6 full packets) as an indicator of the age of the flow. If the

78

window size is less than the threshold, the connection is considered to be young, and TCP

ACKs are decoupled from the data packets. Otherwise, the connection is set as mature,

and the packets are sent as such without modifications. (III) IA prototyping employs two

techniques: identity retention and LIHD rate control. For identity retention a static peer

ID is used in lieu of a randomly generated peer ID every time the IP address changes. For

LIHD we modify CTorrent’s in-built capability to control upload and download limits. The

default CTorrent client allows uses to specify the upload and downloads limits. We modify it

to allow the adaptive LIHD rate control algorithm described in the previous Section. We use

bandwidth monitors to check the current upload and download rates for the algorithm. (IV)

The basic CTorrent client does not implement the rarest-first fetching algorithm commonly

used by BitTorrent clients. Hence we first implement the rarest-first fetching algorithm for

the default client. We then modify this algorithm to prototype MF by including sequence

information and awareness of download progress.

• Prototype Testbed: We use two wireless clients in a popular BitTorrent network to

compare the performances of wP2P with a default version of BitTorrent. One of the clients

has the modified CTorrent version and the other has a plain vanilla version of the CTorrent,

which we refer to as default-P2P. Linux machines connected to the Internet through NS2

based wireless emulators are used for the two clients. An illustration of the network setup

is shown in Figure 32. We use NS2 emulation [62] to study the impact of various issues of

wireless environments like random wireless losses, mobility and bandwidth. Specifically, we

emulate random wireless losses using random bit errors. We emulate mobility by changing

the IP addresses of the clients using the “ifup/ifdown” commands in Linux. We also monitor

the bandwidth consumed at each client to enforce bandwidth limitations.

79

(a) Role Reversal Component
1 Monitor packets received
2 If captured packet has TCP-SYN flag set
3 If PSM is turned on
4 Send Application Close;
5 Send Application Open to peer;
6 End If
7 End If
8 Monitor IP-addr of wireless NIC;
9 If IP-addr changes
10 Issue Application Close to the peers;
11 Send Application Fetch of partial blocks;
12 End If

(b) Age-based Manipulation Component
Variables

CWND: Congestion window of TCP connection
γ: Connection status threshold
STATUS: Status of the TCP connection
DUPACK CNT : Number of DUPACKs sent by MH

1 Calculate CWND of TCP connections;
2 If CWND < γ

3 Set STATUS to Y OUNG;
4 Store PSM status and Turn PSM OFF;
5 Else
6 Set STATUS to MATURE;
7 Set PSM of wireless NIC to stored status;
8 End If
9 Capture TCP packet transmitted by MH;
10 If the packet is piggybacked ACK
11 If STATUS is Y OUNG

12 Decouple ACK from DATA;
13 Send pure ACK;
14 End If
15 End If
16 If DUPACK is transmitted by MH
17 If STATUS is MATURE

18 DUPACK CNT ++;
19 If DUPACK CNT % 4 ==0
20 Drop DUPACK;
21 End If
22 End If
23 End If

(c) Incentive Aware Operations Component
Variables

Umax: Maximum upload limit
Ucur, Uprev : Current, previous upload state
Dcur, Dprev : Current, previous download state
α, β: Upload increment and decrement factor
Udec cnt: Upload decrement count

Initialization
1 Ucur = Uprev = 0.5*Umax;
2 Dcur = Dprev = 0; Udec cnt = 0;

Update
3 Determine current P2P download rate and store;
4 If Dprev <> 0
5 If Dprev < Dcur

6 Ucur = Ucur + α; Udec cnt = 0;
7 Else
8 Increment Udec cnt; Ucur = Ucur − β ∗ Udec cnt;
9 End If
10 End If

(d) Mobility-aware Fetching Component
Variables

Pr: Probability of performing rarest-first fetch
σ: Probability increment value
∆: Aging timer interval

Initialization
1 Pr = 0.1;
Maturity-timer Expired
2 Pr = Pr + σ;
3 Reset maturity-timer from ∆ seconds;
4 Pick a random number r (0 < r < 1);
5 If r < Pr

6 Perform rarest-first fetch;
7 Else
8 Request the next in-sequence piece;
9 End If

Mobile Handoff
10 Set Pr = 0.1;
11 For each request stored
12 End For

Figure 28: Pseudo-code : (a) Role Reversal, (b) Age-based Manipulation, (c) Incentive
Aware Operations, (d) Mobility-aware Fetching

80

789:7:;:<=>9
789: 7:;:<=>9

?@AABCDE@AFBDGH IJ:KL>=:MN>OPQR9>SP8O ?@ATBUDE@AIJ:KL>=:MN>OPQR9>SP8O
N8LP9PSVK>W><: X:SYZPOJ

[@\E]ED^_`Aa@bb cBd?@AABCD IJ:KL>=:MN>OPQR9>SP8O
eOY:OSP;:K>W><: fQ:<>SP8O= N8LP9PSVK>W><: X:SYZPOJeOY:OSP;:K>W><: fQ:<>SP8O= gEhB

Figure 29: Integrated operations

256KB 512KB 1MB 5MB
0

20

40

60

80

100

120

140

160

180

Data Size

U
pl

oa
di

ng
 T

hr
ou

gh
pu

t (
K

bp
s)

Default P2P (PSM ON)
Default P2P (PSM OFF)
wP2P

(b) Impact of data size (No mobility)

No Mobility 8 Min. 6 Min. 4 Min. 2 Min.
0

50

100

150

Mobility Rate

U
pl

oa
di

ng
 T

hr
ou

gh
pu

t (
K

bp
s)

Default P2P
wP2P

(a) Impact of server mobility

Figure 30: Role Reversal: Simulation results (a) and Prototype results (b)

Internet
ij kl km

nopp …...

q rsr ituvwx kyy
z {|{}~~��
�~�����{|{{~~��

��wt�u���
�tq �wt�u���

Figure 31: Simulation Setup

81

Internet��
��

��…...��������������� ������
���������� ���¡�¢£ � �������� ������ �¤

¥�����¡¡¦§������
¥�����¡¡¦§������

Figure 32: Testbed used in prototyping

3.6.2 Role Reversal

When a mobile host serves as a server, it receives requests from clients and sends data back.

Figure 30(a) shows throughput obtained for varying file sizes at the server for default-P2P

with PSM turned ON, default-P2P with PSM turned OFF and wP2P. The figure shows

that PSM turned OFF gives the best performance. This is expected because when there is

no PSM, packets can be sent as and when required. However, the presence of PSM affects

default-P2P. This is because the startup delay for connection establishment increases initial

rtt estimation, which results in lesser throughput. Using the role reversal component, a

new connection is established with lower initial rtt thus improving throughput performance.

Smaller file sizes show greater improvements because the effect of the start up delay is more

significant.

• Prototype Results. To evaluate the role reversal technique we setup two mobile seeds

in a live swarm which shares the file of Fedora-7-KDE-Live-i686.iso image [32]. Figure

30(b) shows the 10-run averaged uploading throughput of the two clients with different

disconnection rates (i.e., rate of change of the IP address). As the rate of connection

disruptions increases the upload throughput naturally drops. The role reversal technique

of wP2P allows the client to achieve far more upload rates when compared to the default

client. We observe that with increasing rate of disruptions the performance improvement of

wP2P is higher. This is because when there are frequent disruptions, the re-establishment

time for default-P2P becomes a significant factor, whereas in wP2P the re-establishment

82

0 0.2 0.4 0.6 0.8 1

x 10
−5

0

50

100

150

200

Bit Error Rate

Th
ro

ug
hp

ut
 (K

bp
s)

Uni−directional
Bi−directional
wP2P

(a) Impact of BER

11 11.5 12 12.5 13 13.5 14 14.5 15
0

5

10

15

20

25

Time

N
um

be
r o

f p
ac

ke
ts

Buffer drop
Packets sent from client

(b) Microscopic-view of packets

0 0.5 1 1.5

x 10
−5

0

5

10

15

20

25

30

35

Bit Error Rate

Th
ro

ug
hp

ut
 (K

bp
s)

Default P2P
wP2P

(c) Impact of BER

Figure 33: Age-based Manipulation: Simulation results (a,b) and Prototype results (c)

time is reduced. We observe improvements of up to 50% in wP2P when connections are

disrupted every 2 minutes.

3.6.3 Age-based Manipulation

For bi-directional TCP, piggybacked ACKs are more susceptible to losses than individual

ACKs. Figure 33(a) compares the downloading throughput observed using a uni-directional

TCP connection, bi-directional TCP connection and wP2P as a function of bit error rate.

The wP2P algorithm requires the receiver to know the sender’s congestion window. In

the simulation we assume the receiver side can obtain the current sender side congestion

window size. Based on this value, the receiver opportunistically adapts the piggybacking

of ACKs. In real life, TCP behavior inference tools such as TBIT [92] can be used to

identify the sender side congestion window size at the receiver. With increasing bit error

rates, the packet loss rates increase and results in smaller congestion windows. In this case

83

uni-directional TCP will give the best performance because ACKs suffer lesser losses than

in the bi-directional case. wP2P performs very close to uni-directional performance.

In bi-directional TCP flows, we observe that the number of packets in transit originating

from the mobile host does not reduce even when congestion occurs. Figure 33(b) shows the

number of packets sent by the mobile host running wP2P at different times when there is

a bi-directional TCP flow between the mobile host and a wired host. We also show the

congestion events on the same graph. We observe that when a congestion event (i.e., buffer

drop at the AP) happens the number of packets in transit decreases for wP2P, albeit with a

small time shift. This is because of the time taken for the information about the congestion

event to reach the mobile host.

• Prototype Results. wP2P addresses the problems of Bi-directional TCP in wireless

environments using the AM component. We study the impact of this component under

varying random loss conditions emulated by varying the BERs ranging from 0 to 1.5e−5.

We compare the download rates observed and show the averaged results in Figure 33(c).

We observe that wP2P outperforms the default CTorrent under all bit error rates be-

cause decoupling ACKs result in smaller ACK losses for the connection, and in turn, larger

throughput. Specifically, with all the four BER values, wP2P achieves about 15% to 20%

more throughput.

3.6.4 Incentive Aware Operations

For evaluating the benefits of the LIHD algorithm in wP2P, we study the download through-

put by varying two different parameters: α (i.e., Upload increment) and bottleneck bandwidth.

We compare wP2P for two different upload rates, 50kbps and 800kbps, signifying low and

high uploads. Figure 34(a) shows the effect of different bottleneck bandwidths. In the

Figure, two default-P2P clients having fixed uploading rate are compared to wP2P. At

low bottleneck bandwidths all three show similar download rates. This is because of the

contention between uploads and downloads. However when the bottleneck bandwidths are

higher, wP2P adapts to higher uploading rate, which leads to more downloads and thus

wP2P achieves maximum download rate. In Figure 34(b) we vary the incentive parameter

84

0.2 Mbps 0.5 Mbps 1 Mbps 2 Mbps 50 Mbps
0

20

40

60

80

100

120

140

160

180

200

Different Bandwidth (α=10)

T
hr

ou
gh

pu
t (

K
bp

s)

Default P2P (Upload 50 Kbps)
Default P2P (Upload 800 Kbps)
wP2P

(b) Impact of physical bandwidth

4 6 8 10 12
0

20

40

60

80

100

120

140

160

180

200

α

T
hr

ou
gh

pu
t (

K
bp

s)

Default P2P (Upload 50 Kbps)
Default P2P (Upload 800 Kbps)
wP2P

(a) Impact of α

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

D
ow

nl
oa

de
d

S
iz

e
(M

B
)

Time (Minutes)

Default P2P
wP2P

(c) Maintaining incentives

Figure 34: Incentive aware Operations: Simulation results

α. A large value of α results in higher downloads even for small uploads. wP2P would

operate at the optimal upload rate that results in maximum download rates. We find that

wP2P gives the best performance for all values of α. Figure

Figure 34(c) shows the total downloaded size as a function of time for default-P2P

where incentives are lost during connection disruptions (due to mobility) and wP2P where

incentives are maintained. We assume that the connection disrupts every one minute. For

default-P2P whenever incentives are lost the download rate is reset to the minimum value

unlike in wP2P where the incentives are maintained. Thus we find a larger total downloaded

size for the same time using wP2P.

• Prototype Results. As discussed in the previous section identity retention and LIHD

rate control address the issue of failure or loss of incentives. To evaluate the benefits of

LIHD we vary the bandwidth of the wireless emulator from 50Kbps to 200Kbps. Figure

85

50 100 150 200
0

20

40

60

80

100

Physical Wireless Bandwidth (Kbps)

D
ow

nl
oa

di
ng

 T
hr

ou
gh

pu
t (

K
bp

s) Default P2P
wP2P

(a) Impact of physical bandwidth

0 10 20 30 40 50
0

100

200

300

400

500

Downloading Time (Minutes))

D
ow

nl
oa

de
d

S
iz

e
(M

B
)

Default P2P
wP2P

(b) Maintaining incentives

Figure 35: Incentive aware Operations: Prototype results

35(a) shows the averaged results over 10 runs for the case when α = β = 10Kbps (refer to

Section 3.5 for definitions of α and β). We observe that, initially as the available bandwidth

increases both wP2P and the default client show increased download throughput, but be-

yond a certain point the default client starts losing achieved throughput. With a bottleneck

bandwidth of 200Kbps we observe that wP2P outperforms the default by as much as 70%.

To evaluate identity retention we use the two CTorrent clients to simultaneously down-

load a Fedora-7-KDE-Live-i686.iso image [?], a 688MB file shared among more than two

hundreds peers when our experiments were conducted. The IP addresses of the two clients

are changed every one minute to emulate mobility. Figure 35(b) shows the total downloaded

size of a typical run for these two peers. The downloaded size is plotted as a function of

time. After 50 minutes of download we observe that wP2P downloaded about 100MB more

than the default.

3.6.5 Mobility-Aware Fetching

Mobility-aware Fetching is capable of achieving two benefits from the client’s perspective:

enhanced playable percentage and improved downloading time. We show the effectiveness

of adaptive fetching in Figures 36 (a) with respect to the playable percentage. The figure

shows the result of a 100 MB file. We observe that adaptive fetching can achieve far better

performance than default P2P fetching. For instance, when 50% of data has been down-

loaded, Adaptive fetching can achieve about 20% of playable percentage; on the contrary,

86

0 20 40 60 80 100
0

20

40

60

80

100

Downloaded Percentage (%)

P
la

ya
bl

e
P

er
ce

nt
ag

e
(%

)

Default P2P
wP2P

(a) Simulation results

0 20 40 60 80 100
0

20

40

60

80

100

Downloaded Percentage (%)

P
la

ya
bl

e
P

er
ce

nt
ag

e
(%

)

Default P2P
wP2P

(b) Prototype results

Figure 36: Mobility-aware Fetching (100 MB files)

default-P2P fetching only attains 1.4%: a 14-fold difference.

• Prototype Results. Figures 36 (b) shows the results of the Mobility-aware Fetching

of the content being downloaded and compare them against the default rarest first fetch

algorithm. The results are averaged over 20 runs. In these experiments we set the value

of pr (i.e., the rarest-first fetching probability) to be equal to the downloaded percentage

of file. We observe that MF can achieve significantly better performance compared to the

default P2P. For instance when 50% of the data has been downloaded, MF can result in

about 20% of playable content while the default rarest first technique can achieve only about

0.5%.

87

3.7 Related Work

3.7.1 P2P Data Sharing Networks

Peer-to-peer data sharing networks have evolved in the way content searches and data

transfer are performed. The first generation of P2P data sharing networks such as Usenet,

Napster, etc performed a centralized search for content. The second generation of P2P

networks like Gnutella [13] and FastTrack [10] use decentralized content searches. The third

generation of P2P data networks (eDonkey [7], BitTorrent [3]) use both distributed searches

and multiple downloads from several peers to accelerate the content fetching process.

3.7.2 P2P Enhancements

There are many works in literature that propose to improve performance of P2P systems.

Some of these works focus on incorporating better incentive schemes to encourage coop-

erative behavior and penalize free riders. Reputation-based trust systems ([59, 81, 112])

and key sharing protocol ([123]) are works in this category and these work try to prevent

non-contributing nodes from gaining undeserved benefits from the system. Other work

([85,118]) design mechanisms to generate unique peer-IDs that feature desired properties.

Some work ([46,79,95,98]) analyze the performance characteristics of the BitTorrent pro-

tocol. In comparison with these works, our work is focused on the unique challenges arise

as mobile hosts join the p2p networks. These challenges are not seen in fixed hosts and

in wired networks. For instance, we deal with the incentive loss problem experienced by

mobile hosts instead of proposing a new incentive mechanism.

Recently more and more p2p users go mobile and are connected with wireless links. The

authors in [67] analyze the traffic pattern of a well-established 802.11 WLAN network and

show that P2P traffic including P2P data sharing and streaming has increased dramatically.

The authors in [55] propose a cross-layer optimization of Gnutella for deployment in purely

mobile ad hoc networks. [71] designs an algorithm to select a new resource provider for

mobile peers when mobility occurs to the remote peers. Our work on the other hand looks

at the effect of mobile peers on an existing P2P network.

88

3.7.3 Mobility

Works abound to address the mobility issue. Mobile IP (RFC 2002) [97] is the current IETF

standard for supporting mobility on the Internet. It provides transparent support for host

mobility by inserting a level of indirection into the routing architecture. Work [109] deals

with end-to-end applications and designs an architecture for Internet host mobility. It uses

dynamic updates to the Domain Name System to track host location. Work [122] addresses

the issue of mobility in an ongoing transport connection by providing transparent network

connection mobility using reliable sockets (rocks) and reliable packets (racks). In work [60]

a mobility-aware file system for partially connected operation is presented. Specifically, it

allows applications to maintain consistency on only the critical portions of its data files. In

work [71] the authors design an algorithm to select a new resource provider for mobile peers

when mobility disconnects remote peers. In comparison, our work looks at issues faced by

generic P2P data sharing applications on mobile hosts, identifying a variety of challenges

that arise when mobile hosts join the P2P networks and act as P2P server.

3.7.4 PSM

Power save mode in 802.11 is proposed to save energy on mobile clients. To maximize

the efficiency of PSM, work in [77] proposes BSD (bounded slowdown) to adapt sleeping

durations depending on past activities to ensure no connections are punished more than

a factor of p. Work in [39] suggests a set of design elements to turn on or off power

save mode according to applications. Work in [124] introduces proxies to buffer data in

order and proposes a new scheduling algorithm to decide which flow should be served at

which time, thus mobile clients can sleep as long as possible. Similarly [52] performs traffic

shaping for applications and help the prediction approach more efficient. Work [120] adjusts

the waking up and sleeping time of the NIC based on prediction of the next incoming

packets. In streaming systems, this approach is less effective because data are typically

received continuously. One solution is to transmit data packets as bursts, which allows

NIC to sleep more time between bursts. However the bursty-ness may cause unnecessary

congestion. Work [76] studies these impacts and adapt burst length to achieve improved

89

trade-off between power efficiency and congestion tolerance.

3.8 Conclusions and Future Work

In this chapter we have investigated the issues with using mobile hosts as peers in the

P2P network. We identify several insights into the issues such hosts face using a real-life

BitTorrent P2P data network. We then propose a solution called wP2P that significantly

improves performance.

Open research issues include the exact translation of the solutions to other P2P data

networks, and consideration of the issues and solutions for other wireless network environ-

ments.

90

CHAPTER IV

IMPROVING ENERGY EFFICIENCY OF LOCATION-BASED

APPLICATIONS ON SMARTPHONES

4.1 Summary

Over the years, location-based applications (LBAs) have become increasingly popular. The

usage of these applications, however, can cause severe battery drain in mobile devices owing

to their power-intensive location-sensing operations. This chapter presents an adaptive

location-sensing framework that significantly improves the energy efficiency of smartphones

when running LBAs. The underlying design principles of the proposed framework involve

suppression, substitution, piggybacking, and adaptation of applications’ location-sensing

requests to conserve energy. We have implemented these design principles on Android-

based smartphones as a middleware. Our evaluation results on our implementation show

that the design principles reduce the usage of the power-intensive GPS (Global Positioning

System) by up to 98%, and improve battery life by up to 75%.

4.2 Introduction

With smartphones becoming increasingly pervasive over the past years, many Location-

Based Applications (LBAs) have been adopted by mobile users for always-on contact such

as social-networking, businesses needs, and entertainment. Some instances of popular LBAs

include mobile social networking (e.g.,Twitter, FaceBook [9, 12, 33, 34]), healthcare (e.g.,

HealthMate [1]), local traffic (e.g., [27,68,72,88,121]), and local restaurants (e.g., OpenTable

[24]).

In spite of increase in processing power, feature-set, and sensing capabilities, the smart-

phones continue to suffer from battery life limitations, which hinders the active usage of

LBAs. Typical battery capacity of smartphones today is barely above 1000mAh (e.g., the

lithium-ion battery of HTC Dream smartphones has the capacity of 1150 mAh). Unfortu-

nately, GPS (Global Positioning System), the core enabler of LBAs, is power-intensive, and

91

its aggressive usage can cause the complete drain of the battery within a few hours [45,54].

Though the aggressiveness of GPS usage depends on specific applications, several flavors of

LBAs such as local traffic (e.g., [27]) and social networking (e.g., [33]) particularly benefit

from the continuous location updates. Real Time Traffic [27], for instance, requires con-

tinuous GPS location updates. Twidroid [33], a mobile version of Twitter, features a GPS

accuracy booster, which provides the option to enable/disable continuous GPS sensing.

Numerous solutions have been proposed to improve the battery life of mobile devices

[40, 107, 110, 115], but little attention has been given in the context of LBAs, simply re-

lying on the intelligence of application developers. The LBA developers are suggested to

reduce the use of GPS by increasing location-update intervals (say, to more than a minute),

thus allowing GPS hardware to sleep between successive location-updates. Such a simple

solution can improve battery life by forcing applications to request less frequent location

information, but it has fundamental limitations. For instance, although reducing GPS in-

vocation frequencies of each LBA saves energy, the effectiveness of this approach could

be compromised when multiple LBAs are running, as the asynchronous use of GPS from

different LBAs unnecessarily leads to an increased number of invocations.

In this chapter, we present an energy-efficient location-sensing framework that effectively

conserves energy for smartphones running LBAs. In its core, the proposed framework in-

cludes four design principles: Suppression, Piggybacking, Substitution, and Adaptation.

Briefly, Suppression uses other less power-intensive sensors such as accelerometer to sup-

press unnecessary GPS sensing, when the user is in static state. Piggybacking synchro-

nizes the location sensing requests from multiple running LBAs. Substitution makes use of

another location-sensing mechanism (e.g., network-based location sensing) that consumes

lower power than GPS does. Adaptation aggressively adjusts system-wide sensing parame-

ters such as time and distance, when battery level is low.

We have implemented the four design principles on G1 Android Developer Phone (ADPs)

as a middleware and have evaluated the implementation extensively via measurements.

While the proposed design principles are general enough to be applied to any layer, the

92

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60

B
at

te
ry

 le
ve

l (
%

)

Time (minutes)

GPS disabled
GPS enabled

(a) Real Time Traffic

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180

P
ow

er
 le

ve
l (

m
W

)

Time (Sec)

GPS power measure (every 50ms)

(b) Power spikes

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60

B
at

te
ry

 le
ve

l (
%

)

Time (Minute)

One application
Two applications

(c) Multiple LBAs

Figure 37: Energy Consumption of Gps

middleware approach allows for better application transparency in the sense that applica-

tions can be kept as-is. We choose Android-based smartphones for prototyping, mainly

because of its openness and predicated popularity in smartphone markets [23]. Our evalua-

tion results with the implementation show that the proposed framework significantly saves

energy in location sensing. For instance, in various scenarios, our prototype reduces the

number of GPS invocations by up to 98%, and thus improves the battery life by up to 75%.

To summarize, this work makes the following contributions:

• We introduce an energy efficiency issue in location sensing for smartphones running

multiple LBAs. To our best knowledge, this present work is the first to consider the

energy issues under multiple LBAs environments on smartphones.

• We present four design principles that reduce energy consumption on location-sensing

for resource-constrained smartphones. We further show that the integration of the

proposed design principles provides significant amount of energy saving.

93

• We prototype the proposed design in Android-based smartphones, which are open to

both practice and research, and demonstrate its effectiveness through real-life mea-

surements.

The remainder of the chapter is organized as follows. Section 4.3 describes the motiva-

tion of this chapter. Section 4.4 presents the key design principles as well as their integrated

operations. Section 4.5 describes our implementation. Section 4.6 shows evaluation results

of our prototype. Section 4.7 discusses related work, and finally Section 4.8 concludes this

chapter.

4.3 Motivation

In this section, we highlight the motivation of this work by presenting a set of experimental

results. We first show the impact of several factors on the energy efficiency in location

sensing using G1 ADP phones. Then, we summarize the limitations of existing smartphone

usage with respect to energy-efficient location-sensing.

4.3.1 GPS Energy Consumption

We first assess the impact of using power-intensive GPS on smartphones. We consider a

scenario where a user is driving with a traffic-monitoring LBA called “Real Time Traffic”

running. The application is popularly used to determine traffic speed on the road network

based on anonymous collection of users’ locations, speed, and direction information [27].

While running this LBA (version 1.0.2e(17)), we measure instantaneous battery levels of

the phone over an hour, using power-APIs provided by Android Software Development

Kit (SDK).1 For comparison, we also run the same LBA on the second phone with GPS

disabled. For both experiments, we start with a fully charged battery after charging for

same amount of time. The screens of the phones are always kept on. The map refreshing

rate and GPS invocation interval of the LBAs are set to 5 seconds.

We use two brand-new ADP phones to perform experiments 2. Figure 37(a) shows the

1Though the power-APIs of Android SDK only provide coarse-grained measurement of battery
levels, we use them to show macro-scale impact, which is an interesting factor in this work.

2We also switch the phones to accommodate possible battery difference, and we observe similar results
in our experiments. So in later presentation, we will only show the one run of results for simplicity.

94

instantaneous battery level of the phones during the run. As shown in the figure, when

GPS is used, the battery level drops to 79% within one hour, whereas the battery with

disabled GPS drops to only 94%. Note that although we run the experiment multiple times

with different setups such as charging time, we employ no aggregated metric as each result

varies, depending on the uncertainty in the battery mechanics (e.g., how many times the

battery has been charged). However, we always see the same trends in battery drops across

all runs.

We also measure instantaneous power-spikes of GPS sensing using a digital multi-meter

(Agilent 34410A) to see microscopic power usage. Figure 37(b) shows the power spikes of the

phone (measured once every 50 ms) when running a LBA requesting GPS. As shown in the

figure, a typical GPS invocation consists of a locking period and a sensing/reporting period.

The lengths of these two periods are about 4-5 seconds and 10-12 seconds, respectively. More

importantly, GPS sensing consumes about 600mW of power. For a typical battery capacity

of 1000mAh such high power consumption is very expensive as continuous GPS sensing can

deplete the battery in merely 6 hours (i.e., 1000mAh∗3.7V
600mW

).

4.3.2 Multiple Location-Based Applications

GPS power consumption might become even more significant if multiple LBAs are running

simultaneously.3 Let us consider the following scenario. A user is initially running a social

network LBA such as FaceBook on his Android phone and continuously publishing his

locations. After a while, he begins to drive and launches a traffic-monitoring LBA such as

“Real Time Traffic”. Now both LBAs are running concurrently. Assuming both applications

invoke GPS sensing every 2 minutes (i.e., with 2-minute invocation interval), GPS ideally

needs to wake up every two minutes. However, if these two applications are not synchronized

on GPS sensing requests, then GPS might need to wake up every one minute.

In Figure 37(c), we show the impact of multiple LBAs with two scenarios. In the first

scenario (‘One application’), only one LBA is running and requests GPS sensing every 2

3Smartphones such as those based on Android or Symbian support multitasking. The background
LBAs still triggers location sensing.

95

One LBA

Two LBAs

 0 100 200 300 400 500 600

G
P

S
 S

en
si

ng
 E

ve
nt

s

Time (Second)

One application
Two applications

(a) Sensing events

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60

B
at

te
ry

 le
ve

l (
%

)

Time (Minute)

GPS
Network provider

(b) Gps vs. Net

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60

B
at

te
ry

 le
ve

l (
%

)

Time (Minute)

Every 15 seconds
Every two minutes

(c) Sensing intervals

Figure 38: Energy consumption of Gps and Net

minutes. In the second scenario (‘Two applications’), two such LBAs are running without

synchronizing GPS sensing request. As shown in the figure, when one LBA is running,

the battery level drops to about 92% after 1 hour. With two LBAs running, however, the

battery level drops to 87%.

To better understand the results, we plot the GPS invocation events during the first 10

minutes for both scenarios in Figure 38(a). As shown in the figure, when the sensing events

of multiple applications are not synchronized, the GPS is indeed totally invoked 10 times

rather than the desired 5 times, thus causing more energy consumption than when multiple

LBAs are synchronized.

4.3.3 Multiple Sensing Mechanisms

Today’s smartphones typically support multiple location-sensing mechanisms (or location

providers). Android, for example, supports two mechanisms: GPS and Network-based

triangulation. Network-based mechanism collects information about reachable cell towers

96

(or WiFi access points) from a mobile device and determines location from a location

database. For simplicity, in the following presentation, we use ‘Gps’ and ‘Net’ to refer to

these two location-sensing mechanisms, respectively. For clarification, we use GPS to refer

to the physical device of Global Positioning System.

These two mechanisms have different accuracy and power consumption levels. In Figure

38(b), we show the power consumption of each mechanism, as one LBA is running with

a location sensing interval of 15 seconds. The Net mechanism uses GSM cell towers to

determine locations as both WiFi and 3G are turned off for both experiments. Net only

causes the battery to drop to about 93% and consumes much less power than Gps does

(i.e., 83%).

We also perform experiments to show the two mechanisms’ accuracy. As shown in several

prior studies, Gps can achieve an accuracy of as high as 10m in outdoor areas, while Net’s

accuracy varies depending on environments. To further understand such characteristics,

we also perform experiments to measure Net’s accuracy as follows. Due to the lack of a

more accurate measure, we use Gps as ground truth to measure the accuracy of the Net.

We perform experiments in an urban area around Silicon Valley, California. Net accuracy

is measured as the average distance between the Gps-reported location and Net-reported

locations. We observe that Net achieves an accuracy of about 30 meters to 100 meters

during most of the time. Although Net still provides much coarser accuracy than Gps does,

such accuracy might be sufficient for many LBAs (e.g., weather information).

4.3.4 Sensing Intervals

For many mobile platforms including Android, applications are allowed to explicitly specify

the location sensing granularity in terms of updating time interval and distance interval.

Intuitively, larger time and distance intervals can help save energy. In some scenarios,

particularly when the battery level is low, LBAs can cooperate by explicitly increasing

location-sensing intervals of time and distance (e.g. updating every 1 minute or 20 meters

rather than every 30 seconds or 10 meters). To study the impact of adapting sensing

intervals, we consider two LBAs with GPS invocation intervals of 15-second and 2-minute,

97

respectively. Figure 38(c) shows the progression of battery level. As shown in the figure,

by simply enlarging the update interval from 15 seconds to 2 minutes, the application can

help conserve 9% of battery level in one hour.

4.3.5 Problem Characterization

Figure 39 summarizes the problems identified above and additional intuitions in the energy

efficiency of location sensing.

• Static use of location sensing mechanisms: In many cases, mobile platforms lack

the dynamic selection of location sensing mechanisms. Many smartphones today

support two major types of location-sensing mechanisms—Gps and Net. These sensing

mechanisms have performance tradeoffs in terms of accuracy, power consumption, and

dynamics. However, mobile platform statically uses its sensing mechanism, and this

static use can lead to energy inefficiency in many scenarios.

• Non-use of power-efficient sensors to optimize location-sensing: Depending on spe-

cific environments (e.g., inside buildings) or contexts (e.g., phones being static), cer-

tain location-sensing operations may be impossible or unnecessary to perform, and

thus blindly requesting location sensing wastes power. The environment and context

information, interestingly, can be obtained by using other types of sensors that are

more power-efficient. Many smartphones are typically equipped with multiple sen-

sors such as accelerometer and orientation sensors, which consume much less power

than those used for location sensing. Therefore, leveraging these sensors can optimize

location sensing and conserve energy.

Figure 39: Problem characterization

98

Can decide
M-Area ?

Y
N

Area Profiles

Y
N

Is Net
available ?

Substituting

LBA accuracy requirement

Y
N

Is Net
accurate ?

(a) LBA requesting Gps

Can decide
M-Area ?

Y
N

Area Profiles

Y
N

Is Gps
available ?

Substituting

(b) LBA requesting Net

Figure 40: Sensing Substitution

• Lack of sensing cooperation among multiple LBAs: When multiple LBAs run and

request location sensing independently, they are not aware of each other, and their

location-sensing operations are not coordinated. This results in redundant location

sensing invocations and causes unnecessary energy consumption.

• Unawareness of battery level: When the battery power level is low, users are usually

willing to tolerate degradation of location-accuracy or, at least, seek such an option in

favor of longer operation time. Current mobile platforms, including Android, typically

lack advanced battery-aware location management to strike a balance between location

sensing accuracy and operation life.

4.4 Design

To overcome the limitations characterized in the previous section, we present four design

principles and their integrated operations in a smartphone. Furthermore, we discuss per-

formance tradeoffs in employing these design principles.

4.4.1 Sensing Substitution (SS)

Current smartphones lack the capability of selecting the most appropriate location sensing

mechanism on-the-fly to strike the performance balances amongst energy consumption,

availability and accuracy. LBAs are allowed to choose location-sensing mechanisms at

the moment when they register their location-sensing requests to underlying systems. For

instance, current Android SDK 1.5 allows an application to specify criteria indicating the

applications’ requirement about accuracy, power consumption, bearing (e.g. direction) and

speed. Based on such criterion, the underlying framework chooses the most appropriate

99

mechanism (e.g. Gps or Net). Thereafter, the chosen mechanism will be always invoked,

irrespective the changing environments or contexts.

Lack of dynamic selection of location sensing mechanisms leads to energy inefficiency as

well as failure in satisfying LBA requirements. For example, in certain indoor environments

and dense urban areas, Gps may not be able to provide accurate location information.

Similarly, the performance of Net is heavily affected by the environment. For instance, in

certain urban areas, studies have shown that Net can achieve as much accuracy as Gps does.

On the other hand, in rural areas with a few cell tower available, Net shows low accuracy.

Thus, with static selection of location sensing mechanisms, applications may not be able

to effectively function, especially when the user moves around with LBAs running. For

example, when Gps is used, applications expect to receive accurate location information all

the time. However, if the environment prevents Gps from working, continuously invoking

GPS apparently is wasteful in terms of battery energy. The same is true for using Net.

Our solution to these problems is a dynamic selection approach which we refer to as

“Sensing Substitution (SS)”. SS can choose the most appropriate location sensing mecha-

nism on-the-fly. Specifically, SS is context-aware and can learn the characteristics of the

location providers along the routes where phones move. It then performs location sensing

in a more energy efficient manner by choosing the best sensing mechanism, given the con-

text. Because typical mobile users routinely follow certain routes (e.g., commuting between

offices and home) and visit familiar locations (e.g., restaurants, malls), and because these

places exhibit consistent location-sensing related environment characteristics, such as GPS,

signal strength and the number of APs, utilizing the environmental information can assist

in choosing the most appropriate location provider.

To achieve dynamic selection of location providers, SS relies on learning environmental

characteristics such as the availability and accuracy of location providers (e.g., Gps and

Net). For this reason, the design of SS includes a location-sensing characteristic profiler.

The profiler monitors and stores relevant information, including current locations, visit

frequency, and sensing characteristics (e.g., availability, positioning accuracy) of location

providers. The profiled data consists of a list of entries, and each entry corresponds to a

100

profiled area which we refer to as M-Area. M-Areas represents physical areas with geograph-

ical boundaries. In particular, the locations in the same area exhibit similar location-sensing

characteristics. We will detail the rationale and data structure of M-Area in Section 4.5.7.

With the profiled areas, SS dynamically decides an optimal location-sensing mechanism

as follows. For ease of illustration, we consider Android platform and show the high-

level operations of SS as shown in Figure 40. Specifically, let’s assume that the currently

registered location-sensing mechanism is Gps. When the user moves into an area where Net

is available and its accuracy can fulfill the LBA’s requirement, then the LBA uses Net to

replace Gps. As shown in Figure 40(a), SS first attempts to decide the most appropriate

M-Area. Then, it checks Net’s availability and accuracy. If Net’s accuracy can satisfy the

requirement of the LBA, SS performs substitution. Similarly, as shown in Figure 40(b),

when the current location-sensing mechanism is Net and the phone moves into areas where

Net is not working, SS invokes Gps, instead of Net. Since GPS consumes more power, SS

uses less frequent GPS sensing to maintain the same level of energy consumption.

The characteristic profiler can be designed to be automatically obtaining profiling re-

sults including physical locations and availability/accuracy of location providers. To ensure

higher degree of accuracy and energy efficiency, the profiler design also includes the follow-

ing mechanisms. (i) The profiler may also involve users to explicitly control the profiling

process. For example, users may specify the area boundaries of the profiler. (ii) The profiler

calibrates either periodically or conditionally, depending on the changes in the profile char-

acteristics. Essentially, whenever there is need to run profiling, the process will be invoked

on demand. For instance, when the user moves to a new city to join a new job, the profiler

will detect that change and proactively initialize the profiling process to accommodate the

environmental change. In particular, when the profiler is first initialized, it performs profil-

ing. After that, the profiling process keeps monitoring the necessity of performing profiling

again. The necessity is measured by an opportunistic verification process. Specifically, it is

periodically invoked to measure the location-sensing characteristics and compare them with

the information stored in the profiler database. If the comparison results in a large discrep-

ancy value, it indicates that another profiling is needed. The periodical verifications are

101

piggybacked on the existing location-sensing requests, and thus they do not incur additional

sensing requests.

4.4.2 Sensing suppRession (SR)

Smartphone users may use the phones in various scenarios, and continuous location sensing

may often not be needed. For instance, when the smartphone is in static state such as being

put on a table in an office, continuous location sensing is unnecessary. It is desirable to

“suppress” the sensing from energy efficiency standpoint. The design principle of Sensing

suppRession (SR) is to detect phones’ mobility state by using less-power-intensive sensors

and to suppress unnecessary invocation of location sensing. The basic mobility-state in-

formation is whether the phone is static or moving, but it can contain more sophisticated

information such as moving speed and direction.

The fundamental requirement of this design principle is to learn the mobility state (e.g.,

static or moving) of a phone with energy-efficient sensors. There are many existing research

efforts ([117], [84], [75]) that attempt to profile users’ mobility pattern. For example,

SoundSense [84] uses the microphone to determine the user’s logical location. In this work,

we are primarily interested to use low-power sensors to suppress high-power location sensing.

Specifically, we attempt to use sensors such as accelerometer and orientation sensors to

profile smartphones’ states. Other sensors such as camera and microphone used by the

mentioned works, typically consume much more power than the low-power sensors, and

thus are not considered in this work.

A challenge that arises is to ensure the correctness of mobility state detection. False

positives of the extraction (i.e., falsely detecting that the phone is moving while it is not)

will lead to the unnecessary location sensing, while false negatives will cause more serious

consequences on LBA performance for changing locations. We propose various methodolo-

gies to reducing these errors, particularly the false negatives. First, a configuration option

is exposed to a user, allowing the user to manually enable/disable a suppression option.

Second, the aggressiveness of suppression is automatically adjusted based on information

such as the confidence levels of the learned mobility context. The confidence levels reflect

102

the familiarity with the current mobility contexts such as commuting routes. Third, sup-

pression is adjusted based on the application requirements. For example, if the application

requires very coarse-grained location information, the suppression will be invoked. Fourth,

a verification mechanism is employed to verify the correctness of the detection. Briefly,

location sensing is periodically invoked for verification purpose even in a suppression mode.

4.4.3 Sensing Piggybacking (SP)

Sensing Piggybacking (SP) is designed to improve the energy efficiency of location sensing

when multiple LBAs are concurrently running. It can re-use the existing sensing reg-

istrations by piggybacking new sensing requests on existing ones, thus eliminating some

location-sensing invocations. For example, let us assume that a existing LBA registers GPS

location-sensing every 2 minutes. When a new LBA starts and requests Gps with the same

time interval, it can simply piggyback on the existing registered requests, thus avoiding sep-

arate sensings. Reducing the number of separate sensing can help save the energy associated

with sensing as the sensing hardware can go to sleep between consecutive invocations.

Applications may request and register location sensing in various ways, as supported

by the underlying framework or system. Android platform, for example, allows application

designers to perform two types of sensing registration. In the first type, the application

statically registers a location listener to the underlying framework, and the framework will

periodically notify the listener of location updates based on the specified parameters such

as time interval and distance interval. This method is simple, but it relies on the underlying

framework for GPS to sleep between two sensing invocations. For example, if a Gps request

takes 30 seconds to perform one invocation of sensing and if the specified time interval is

more than 30 seconds, then the framework can turn off the GPS and put it into sleep to

conserve energy.

The other type of registration is to explicitly register/unregister GPS requests to enable

hardware sleeping. For instance, if the preferred location update interval is 1 minute, the

application can register/unregister the request every one minute. Assuming unregistering

Gps will turn GPS off, this method does not rely on the underlying framework to support

103

Figure 41: Sensing Piggybacking

energy conservation through GPS sleeping. The downside of this method is the increased

complexity of application design. It needs more involvement from the applications by requir-

ing the application to control when to start and stop location sensing. But such involvement

also gives the user/application more control over when and how to perform location sens-

ing. For instance, the user may require different degrees of accuracy and frequency when

performing locations sensing in different scenarios. Such requirements are hard to satisfy

with single-time registration and not supported by current APIs and systems. We refer to

the first type of registration as One-time Registration, while the second type as Multi-time

Registration. For One-time Registration, depending on the mobile systems, optimizations

might be applied to save energy. Whether and how to apply the techniques depends on

the GPS location management of multiple registrations. Specifically, when there are multi-

ple sensing registrations, the underlying location manager needs to accommodate multiple

registrations with different sensing requirements. For example, if there are two registra-

tions with 2-minute and 1-minute update interval, respectively, the location manager may

combine these two registrations by simply considering the finer one, i.e., every 1 minute.

In this work, we focus on Multi-time Registration, as mobile platforms such as Android

have already employed mechanisms to synchronize the location sensing actions for One-time

Registration scenarios. For Multi-time Registration, we propose to piggyback the otherwise

wasteful sensing on other sensing invocations. Specifically, we present Sensing Piggybacking

(SP) with respect to the following two scenarios which involve the joining of a new LBA.

We assume the joining LBA has location sensing requirement of (G1, T1,D1), where G1 is

104

the granularity of sensing (e.g., fine (or Gps) and coarse (or Net)), T1 is the minimum time

interval and D1 is the minimum distance interval for location updating. We also consider

the cases where other applications are running when the LBA joins. We use (Gf , T2,D2) to

denote the finest existing Gps registration, where T2 and D2 are the finest sensing intervals.

Similarly, we use (Gc, T3,D3) to denote the finest Net registration.

• The joining LBA has Gps request: When a new Gps registration with (T1,D1) comes,

the currently registered requests (Gf , T2,D2) are retrieved. (i) If Gps requests have

been registered so far with (T2,D2) and if (T1,D1) > (T2,D2), SP does not invoke

sensing in response to the new request, but wait for the next sensing of (T2,D2)

request. Statistically, the new registration request waits, on average, for T2

2 time.

If (T1,D1) < (T2,D2), the new request is registered immediately. (ii) If only Net

requests are registered, then SP immediately registers the new Gps request. Figure

41 illustrates one piggybacking scenario where both Gps and Net registrations have

been maintained. The joining LBA requests Gps, and the new registration is delayed

to piggyback on other Gps registrations.

• The joining LBA has Net request: When a Net registration with (T1,D1) comes, the

current registered requests are checked. (i) If there are Net requests registered so far

and (T1,D1) > (T3,D3), SP waits for the firing of next sensing. On average, the new

request waits for T3

2 time. (ii) If only Gps requests are registered, then SP check to

see whether Gps registrations satisfy its requirement. If so, SP uses the current one;

otherwise, it registers a Net request.

4.4.4 Sensing Adaptation (SA)

There are different ways to save phone battery power and each of these focus on adapting a

specific phone attribute. Such measures may include adjusting the screen light, sleep-time,

or even the volume of ringtones. In this work, we focus on energy-saving methodologies in

the context of location sensing.

The key idea of Sensing Adaptation (SA) principle is to adapt the location sensing

frequency based on the current battery level. The main rationale behind such adaptation is

105

user’s preference of longer phone-operating time over higher location accuracy. Except for

running several accuracy-critical applications, users are most likely willing to trade accuracy

for longer battery life. For instance, when the battery level is low and a user is running

Twitter on his mobile phone and using the Gps for the location sensing, the user might be

more willing to run the LBA with less-accuracy in return for longer phone use time.

SA is designed to respect the preference for longer operation time. When the battery

level is low, SA is invoked and adapts the location sensing parameters to save energy.

SA can be implemented in three ways: (i) changing the sensing frequency or interval;

(ii) changing the sensing distance interval; and (iii) adjusting the aggressiveness of other

design principles. The first two ways adapt the sensing intervals of location requests and

registrations. For newly joining LBAs, this can be done by hooking into the registration

process and directly changing the registration requests. For already-running LBAs, SA

needs to remove existing registrations and add new registrations with adjusted parameter

values. Specifically, when the battery level is low and the user wants to conserve energy,

the sensing time intervals and distance intervals will be increased correspondingly based on

two adaptation functions ftime and fdist, respectively. Denoting the requested time update

interval, distance interval, and current battery level by Ti, Di, and Lb, respectively, Ti and

Di can be obtained by (Ti,Di) = (ftime(Lb), fdist(Lb)). Furthermore, users may be given

the opportunity to manually input the desired adaptation degrees rather than using pre-

defined ones. For this, the user can be greeted by a GUI interface which allows user input

for controlling the adaptation degree.

4.4.5 Integrated Operation

So far we have separately described four design principles to improve energy efficiency. The

four design principles can work together for better energy saving in various scenarios. We

show the integrated operation for an examplary scenario in Figure 42. In the scenario, the

user is initially moving and the battery level is high. After the user starts LBA-1 at time

T0, SS begins to work. After the second LBA starts at T1, SP becomes operational. When

the user becomes static, SR kicks in. When the battery level becomes low, SA comes into

106

Figure 42: Integrated Operations

play. As the user starts moving again, SR stops, and SS is invoked if possible.

4.4.6 Inherent Tradeoffs

So far we have presented four design principles and their integrated operation to save energy

associated with location sensing. These design principles essentially trade accuracy and

timeliness of location sensing for energy saving. Along these lines, we do note that some

applications might be sensitive to the location accuracy and sensing timeliness, regardless

of the battery level and power consumption. Examples of such applications include health-

care and military LBAs. For these applications, all adaptation techniques have to respect

application requirements. Thus, one way to safely perform the adaptation without violating

the application requirement is to be application-aware and application-specific. In other

words, the four design principles can be selectively adopted by application designers, when

LBAs are developed. For instance, an LBA can be designed to detect the phone’s mobility

state and perform SR when possible. In this way, the decision about whether to apply a

specific design principle and how to apply is made by the designer, and the application

requirement regarding location sensing accuracy is not violated.

However, the aforementioned application-layer adoption has an associated implemen-

tation cost and is not scalable, particularly because of the vast amount of existing and

future applications. Realizing this, we propose another adoption model—a middleware

approach—which maintains transparency of application requirements. We will elaborate

107

on this functionality in Section 4.5. With the middleware approach, smartphone users are

explicitly asked to decide whether to apply a design principle or not to maintain application

requirement about accuracy. Practically, users may be greeted with an user-interface asking

the preferred action. Users can even be given finer controls such as deciding the adaptation

parameters.

The primary reason for users’ involvement is to equip them with final decision-making

authority. For any LBA, different users may require different levels of location accuracy.

For example, given a health-care LBA, a healthy teenager may think that high location-

accuracy is unnecessary, while an elder patient may think otherwise. Furthermore, even

for the same application and the same user, the importance of location accuracy also vary.

For instance, when a person is sick, the health-care LBA becomes more important. A more

intelligent design is to remember or even predict the users’ selection, thus reducing the

users’ overhead in such decision making. We see this enhancement as future work.

4.5 Software Architecture and System Implementation

We now present the software architecture of a system that incorporates the design princi-

ples discussed in the previous section. We explain its detailed system implementations on

Android Development Phones (ADPs).

4.5.1 Architecture and Deployment Model

Even though our solution can potentially be applied to any mobile platforms that deploy

location-based services, we specifically present the architecture on Android platforms for

the ease of presentation and the concreteness. Such a selection is also justified by Android’s

open nature and increasing popularity. Note that the architecture and design principles can

be applied to other platforms such as Symbian, Windows Mobile. As illustrated in Figure 43,

the system is realized as a middleware solution, residing between applications and underlying

Linux kernels. Specifically, Android platform includes Application Framework that packages

many useful classes in Java. The solution is implemented inside the Android Application

Framework by modifying existing classes as well as creating new classes. As illustrated in

Figure 43, SA supplies the other three design principles with adaptation information, and

108

Sensing
Piggybacking

Sensing
Substitution

LBA

Application Framework

Sensing
Adaptation

LBA LBA LBA

Library, Virtual Machine

Linux Kernel

SensorManager

LocationManager

Broadcast Receiver

Sensing
Suppression

Figure 43: Software Architecture

all principles work closely with several existing components such as LocationManager and

SensorManager in Android Framework.

With this deployment model, the adoption of the proposed solution on Android phones

is through a new system image, which includes both new Application Framework and em-

bedded applications. Users may choose to re-compile the source code to obtain the new

system image or simply download the system image from Internet, and then update the

phones with fastboot utility provided in Android SDK to flash the phones.

4.5.2 Implementation Overview

We prototype the proposed solution on G1 Android Developer Phone (ADP1) with OS

version 1.5 Cupcake. All the four design principles are implemented in Java inside Android

Framework. The prototype contains Graphic User Interface (GUI) which allows a user to

enable, disable and finely configure the prototype. Figure 44(a) shows the interface for

enabling/disabling the adaptive location-sensing framework. The interface is implemented

inside the default “Security & location” setting menu of G1 phones. The new menu item,

called “Smart Energy Saving”, has been added. Figure 44(b) shows the configuration

interface for the desired SA degree in time (TIME) and distance (DIST). The interface also

shows the expected battery saving time with the current LBA requests and SA degrees.

Briefly, the prototype first calculates the expected number of saved GPS invocations with

109

(a) Enable/Disable interface (b) Configuration

Figure 44: Two prototype interfaces

SA. Then, assuming a typical operation of making a phone call and its associated power

level, the prototype estimates the improved battery life from the saved energy.

With current Android APIs, GPS is invoked through a major function call, requestLo-

cationUpdates(), which takes at least four input parameters: LocationProvider (i.e., Gps

or Net), reporting frequencies in term of time and distance, and an PendingIntent or Lo-

cationListener. Our prototype mainly captures this function call and embeds intelligence

inside the function as well as other relevant functions. Specifically, SS may substitute an-

other LocationProvider for the requested one, SR may freeze the further execution of the

function when necessary, SP may piggyback the current call on existing registrations and

freeze further execution of the function call, and SA may adjust reporting frequency based

on battery level or user preference,

We illustrate the high-level operations of the four design principles, as well as the major

data structure, information flows and the function calls in Figure 45. SP is hooked into the

location-sensing registration function, requestLocationUpdate(). Whenever the framework

detects a new location sensing registration, SP records the registrations into Registration

110

Applications

Sensing PiggybackingRegistration
State

Sensing SubstitutionArea
Profiles

Location Providers

Sensing Adaptation

Sensing Suppression

Battery
State

Broadcast Receiver

LBA Running State

Mobility
State

Other Sensors

requestLocationUpdates()

requestLocationUpdates()
removeUpdates()

onLocationChanged() onLocationChanged()

registerListener()
unregisterListener()

onSensorChanged()

registerReceiver()

onReceive()
getPiggyTime()

addReg()

getProvider()

getAppState()

getBattery()

Figure 45: Prototype on G1 Android Phone

State and obtains the piggybacking time by checking this state. SA and SR are implemented

in separate threads, and their invocations are triggered by battery level changes and timers.

SA registers for battery change updates with Broadcast Receiver. SR periodically checks

the user’s mobility state for the purpose of registering or unregistering sensor readings. SS

reads the state of Area Profiles, periodically determines the current M-Area and selects the

most appropriate location provider.

4.5.3 Sensing Substitution (SS)

SS aims to determine the most appropriate location provider on-the-fly, irrespective of

what location provider LBAs request. Specifically, when Net is available and currently

Gps is being used, SS may decide to use Net to replace Gps for location sensing. The

decision of whether to perform SS is controlled by the user with an pop-up dialog informing

the Net accuracy and asking for actions. Similarly, when Net is being used and becomes

unavailable, SS may turn to Gps. Since Gps consumes more power, Gps is requested with

reduced location update frequency to maintain the same level of power consumption as the

Net consumes.

In order to perform dynamic selection of location providers and accommodate the mo-

bility of the phone, SS needs to be invoked periodically. The Handler class in Android SDK

is used to implement a separate thread inside the LocationManager Class for this purpose.

As shown in Figure 46(a) line 1-2, whenever the task is invoked, SS attempts to determine

111

the most appropriate M-Area where the phone is residing. After finding such an M-Area,

SS then determines the available location provider with getProvider() call. Specifically, the

prototype captures the registration of the provider, and records the registered provider, the

listener, the registered time update interval and the distance interval. These information

are used for new registrations (with the same interval values and the same listener). If the

available provider is Net and the requested provider is Gps and if the Net can satisfy the

LBA’s requirement (Lines 3-4), then SS unregisters the current provider and registers the

available one (Lines 5-6). If the available provider is Gps and the requested provider is Net,

then SS unregisters Net and registers Gps appropriately (Lines 7-10).

Area Profiles are initialized with training data and updated by monitoring the sensed

environmental characteristics when running LBAs. A separate profiler process keeps run-

ning when the user carries the phone and moves around. The process records GPS locations,

network-based locations, and the time. The profiled data are stored in files, and then fur-

ther extracted into M-Areas. Area Profiles are read into the memory whenever the instance

of LocationManager is created. Profiled locations are organized as a list of M-Areas, each of

which has the same characteristics of the two location providers. In other words, locations

inside the same area has the same physical characteristics of Gps and Net (i.e., availability,

accuracy, precision). The structures and operations of the M-Areas are presented in Section

4.5.7.

To reduce false negatives of area determination, the prototype uses both current location

and mobility properties to decide the current M-Area. The mobility properties include

current moving speed and direction. For each invocation of SS, if the current location is

inside the same M-Area and if the moving direction and speed suggest that the user will

be in this area for a while, then the M-Area is determined to be a candidate M-Area. If

multiple candidate M-Areas exist, the most appropriate one is chosen based on a set of

criteria including visiting frequency, most recent visit time and area size.

112

4.5.4 Sensing suppRession (SR)

SR monitors user’s context with less-energy-intensive accelerometer and orientation sensors.

When the user is in a static state, the prototype saves energy by suppressing the new location

sensing. When LBAs are running and the location services are registered, a thread is created

to monitor and identify whether the phone is in static or moving state. If the current state is

static, then it removes the current location sensing registration; if the state is non-static, SR

re-registers the previous sensing request, as shown in Figure 46(b) (Lines 8-12). The thread

is invoked periodically (e.g., every 1 minute) and the reading for each invocation last for

several seconds. The reason for doing so rather than continuous monitoring is that otherwise

the continuous sensor reading and computation also consumes more energy. However, the

disadvantage of periodic reading rather than persistent reading is that short-term static

states might not be detected. Thus, periodic invocations work best for long-term static

state.

Inside the thread, the prototype reads accelerometers and orientation sensors to detect

mobility (Lines 1-7). The basic rationale is that whenever there is change of the state,

these sensors will see big changed values. As the motion sensors may report updates quite

frequently (e.g., 20 times per second), the user state is detected to be static only when

both microscopic state and macroscopic state are static. Microscopic state is determined by

finer neighboring sensor readings, while macroscopic state is determined by coarser reading

changes (e.g., 2 second). We notice that both microscopic and macroscopic checking are

necessary since there are scenarios where slow change (i.e., macroscopic) is happening, but

such changes cannot be detected by microscopic checking. For instance, the most infrequent

sensor reading rate (i.e., by supplying SENSOR DELAY NORMAL in the registerListener()

call) on Android platform is about 10-20 times per second, as observed by our experiments.

When the state change is slow, simply comparing two continuous readings is not able to

detect the state change. Furthermore, to reduce the false negative (i.e., mobility being

detected as being static) probability, our prototype takes one step further. If no mobility

is detected, then the user state is considered to be transiently static, and this state has to

sustain for certain period before inferring that the state is static.

113

4.5.5 Sensing Piggybacking (SP)

LBAs request the location sensing through a registration function call of requestLocationUp-

dates(), which takes several parameters including the location provider, time interval and

distance interval. The essential idea of SP is to force the incoming registration request

to synchronize with existing location-sensing registrations. SP predicts the next sensing

registration request from currently running LBAs and asks the incoming LBA to delay the

registration. SP learns and maintains the location-sensing registration history, stored in

two array lists—one for Gps and the other for Net. Each element of the lists contains three

values: registration time, time interval and distance interval.

SP firstly needs to determines the validity of the maintained states. Since the prediction

of future registrations is based on historically maintained states, the state might be invalid

as it can be outdated because the requesting LBAs might stop running or change the

registration. A state is valid only when the most recent registration time recorded is no

more than certain time earlier than the current time. The default threshold value for

determining the validity is 200% of the time interval. In other words, if the predicted

registration which is supposed to occur after T time does not come in 2T time, then the

state is invalid, indicating either the application changed the registration pattern or the

application has stopped running.

As shown in Figure 46(c), SP is hooked into the registerLocationUpdate() function in

the LocationManager Class of Android Framework. When receiving the above function

call, SP checks the validity of the maintained registration state (Lines 1-2). If the state

is invalid, the request is passed through and is added to the registration history by the

addReg() function. If the state is valid, then SP determines the piggybacking time (i.e.,

the delay) with getPiggyTime() function (Lines 4-16). The current prototype determines

the piggybacking time in six different usage scenarios, based on the currently maintained

registration-state types as well as the incoming new registration type. In the following,

we will discuss each of the six scenarios below. For simplicity, we use the notation of

{(Maintained states), Incoming state} to denote each scenario. We use (t, T0,D0) to denote

the incoming request, where t is the time, T0 is the requested update time interval, and D0

114

is the requested distance interval. For the maintained states, we use (Gps, T1,D1) to denote

the Gps state with the finest time interval being T1 and finest distance interval being D1.

We use (Net, T2,D2) to denote the Net state with the finest time interval being T2 and the

finest distance interval being D2.

• {(Gps), Gps}: The prototype checks whether the (Gps, T1,D1) state is valid. If so,

then it compares (T1,D1) to (T0,D0). If T1 < T0 and D1 < D0, then piggybacking is

enabled, and the piggybacking time is calculated.

• {(Gps), Net}: As Net typically has coarser location information than Gps, the opera-

tions are similar to the ({Gps},Gps) scenario, but the comparison is between (T2,D2)

and (T0,D0).

• {(Net), Net}: Similar to {(Gps), Gps} case by replacing Gps with Net.

• {(Net), Gps}: Since Gps is typically finer than Net, the request cannot piggyback on

existing Net registrations. The new registration is passed through immediately.

• {(Gps, Net), Gps}: Similar to that of {(Gps), Gps}.

• {(Gps,Net), Net}: The prototype firstly checks the Net state, which is similar to that

of {(Net), Net}. If not possible to piggyback, then it checks the Gps state, which is

similar to {(Gps), Net} scenario.

4.5.6 Sensing Adaptation (SA)

The operations of SA are shown in Figure 46(d). SA is invoked when Gps is used and the

phone’s battery level is low. When the battery level is below a user-specified threshold (e.g.

20%), SA determines the preferred adaptation degree for both time and distance intervals

of Gps registrations (Lines 1-3). SA also asks a user’s intention on whether to perform SA

or not. If adaptation is enabled, the user can choose the preferred adaptation degrees. The

prototype then functions based on the decision and values provided by the user (Lines 4-7).

SA learns the current battery level information with Android power-APIs. It registers a

BroadcastReceiver to handle the Intent of ACTION BATTERY CHANGED. The function

115

used to register is registerReceiver(), which is a method of the Context class in Android

SDK. Because of this, the prototype piggybacks the registration on an existing application

in Android platform: SecuritySettings, which is extended from Context. Specifically, in the

onCreate() method, SecuritySettings registers the BroadcastReceiver and an IntentFilter.

Whenever the battery level changes, the receiver is notified and appropriate information is

recorded.

Applications running on Android platforms are essentially independent in the sense that

each application has a private directory and each application runs in a separate Java virtual

machine. For communications between activities within a single application and between

different applications, Android SDKs provide several mechanisms including shared prefer-

ences, content providers and database. Unfortunately, none of these mechanisms works

neatly for the communication between application layer and framework layer. Our proto-

type uses files (under /proc) as the intermediate media for these two layers to communicate.

Specifically, applications and frameworks both access the same files under the data directory

of the system, which can be obtained by getDataDirectory() call. There are various types

of data that need to be shared. For simplicity, we use a separate file for each type of data.

4.5.7 Mobility Profiling

Both SR and SS use the M-Area structure to organize the locations. Each M-Area contains

three types of properties. The first type is boundary property. Each M-Area is a rectangle

area bounded by a starting point, an ending point, and a width value. The points are spec-

ified with latitude and longitude coordinates. The second type is usage property. M-Areas

also contain the number of visits and the last visit time (i.e., LastTime). The third type

is provider property. M-Areas also maintain the sensing characteristics, such as availability

and accuracy, of Gps and Net.

The construction of M-Area consists of the two steps. Initially, each M-Area is con-

structed as a rectangle, based on the two neighboring location readings from the mobility

traces. Later, M-Area can be merged and replaced. Two M-Areas can merge into one when

they have compatible boundary-related properties and same provider-related properties.

116

There are two types of merging scenarios: Horizontal and Vertical. Horizontal merging

occurs when the starting point of one M-Area is adjacent to the ending point of the other

M-Area or the starting point is inside of the other M-Area. Vertical merging occurs when

the two neighboring areas have adjacent starting-points and ending points. When condi-

tions are met, merging is performed and the properties of the new M-Area are updated.

The two merging operations are illustrated in Figure 47. Specifically, the starting/ending

points and the width are updated to represent the new M-Area. The LastTime is updated

to the more recent LastTime of the previous two M-Areas, and the Frequency is set to be

the average of the two Frequency values.

One important design issue is the size of the profiled M-Areas. Since the size impacts the

efficiency of processing speed and suppression effectiveness, there is a performance tradeoff

with regard to the number of M-Areas maintained. Specifically, increasing the size results

in higher suppression probability. However, it also occupies more storage space and inflates

the processing time. We propose to adjust this size based on the hardware capability of the

smartphones. If smartphones can afford to provide more space and process the operations

sufficiently fast, maintaining in general more M-Areas benefits Sensing Substitution. In

addition, replacement mechanism that only maintain higher-utility M-Areas can be easily

applied to alleviate the storage concern and maintain scalability. The prioritization is

enforced in the following order: Frequency, LastTime, and Area size.

4.6 Performance Evaluation

We evaluated the effectiveness of our prototype. We first model the energy saving when

each of the four design principles is being applied. Then, we show the effectiveness of each

design principle by considering a typical scenario where each design principle works. Finally,

we evaluate the integrated operations of the prototype and show its aggregated saving.

4.6.1 Analysis

We analyze energy-saving benefits coming from reduced GPS invocations. For simplicity,

we assume that LBAs request r number of GPS invocations per hour by default and that

the energy cost of per-GPS invocation is Eg. Similarly, we use En to denote the energy

117

cost of per-Net invocation, and use Eo to denote the energy cost of running each design

principle in an hour. The energy-saving benefits are expressed in the reduced number of GPS

invocations and, for a more concrete understanding, they are translated into the extended

battery life when other tasks are performed. Specifically, we choose the representative task

of making phone calls, and the power consumption level of the task is denoted by Pc. We

use Ng to denote the number of GPS invocations reduced by each design principle in an

hour, and use Tc to denote the extended operation time, when making calls.

• Sensing Substitution Assuming pu percentage of GPS invocations are replaced by Net

invocations:

Ng = rpu , and Tc =
rpu(Eg − En)− Eo

Pc

• Sensing Suppression Assuming ps percentage of GPS invocations are suppressed, we

have,

Ng = rps , and Tc =
rpsEg − Eo

Pc

• Sensing Piggybacking Assuming pg percentage of otherwise-independent GPS invo-

cations can piggyback on other invocations. We have,

Ng = rpg , and Tc =
rpgEg − Eo

Pc

• Sensing Adaptation Assuming the time-interval adaptation degree is dt(%), we have,

Ng = r(1−
100

dt
) , and (1)

Tc =
r(dt − 100)Eg − Eo

dtPc
(2)

We now show exemplary values based on experiments and assumptions mentioned

above. Our measurements show that each GPS invocation costs about 9 Joules (i.e., 150

mA×3.7V×15 seconds). The average energy overhead of running the design principles on

our smartphone prototype is negligible (i.e., a few mW), compared to GPS sensing power,

so for simplicity in the following presentation we ignore this cost. Next, though the power

level of making phone calls varies on different phones and conversation scenarios, we choose

an averaged value of 600 mW, measured in an ADP. For an LBA requesting Gps every

118

half minute, we have r = 120. Thus, with SA and dt = 300, the energy saved per hour is

Es = 120 × 2
3 × 9 = 720 (J) with Equation 1. We have Tc = 720

0.6 = 1200 (seconds) with

Equation 2. In other words, with SA, for every hour of running an LBA, about 20 minutes

of phone-call time can be saved.

4.6.2 Sensing Substitution (SS)

We evaluate SS by asking a person carrying a smartphone to walk along a route. The route

is manually split into four areas with pre-defined different characteristics of Gps and Net.

For ease of evaluation, we pre-set the characteristics of the four areas as follows. In Area 1,

both Gps and Net are available, with Net being much less accurate than Gps. In Area 2,

both Gps and Net are available, with Net having accuracy similar to Gps. In Area 3, only

Gps is available. In Area 4, only Net is available. We run an LBA requesting Gps updates

every 5 seconds. The substitution checking thread uses an interval of 15 seconds. We then

record the events of SS and location updates in Figure 48. As shown in the figure, in Area

1, Gps is used to perform location updating. As the user moves into Area 2, since Net has

accuracy similar to Gps’s, Gps is replaced by Net. Then, as the user moves into Area 3,

the component substitutes Gps for Net, since only Gps is available. Finally, when in Area

4, Net again replaces Gps to perform location sensing.

Figure 49 shows the recorded GPS invocation times and improved battery life in our

experiments. Because SS replaces Gps with Net only when Net provides the desired location

sensing accuracy, we vary the location accuracy required by LBAs from 50 meters to 300

meters. We set the Net accuracy according to the traces collected from a particular user

who commutes along a walking route. The user lives and works in Bay Area of California,

USA. As shown in the figures, with coarser requirements, the number of GPS invocations

decrease. While 50-meter accuracy requirement does not see much improvement, 300-meter

requirement effectively reduces the number of invocations by about 50%. Correspondingly,

improved call-making time increases as accuracy requirements become coarser.

119

4.6.3 Sensing suppRession (SR)

SR is invoked only when the phone is in static state. We consider a scenario where an

LBA is running and user’s mobility states vary between being static and moving. The

State-Checking thread is invoked every 1 minute. Figure 50 shows the various events such

as thread invocations, starting and stopping of the application, and the user’s mobility.

As shown in the figure, the phone is initially static. After LBA starts, accelerometer is

invoked. Since the phone is not moving, the State-Checking thread puts the phone into

a suppression mode, after a while. Once the phone starts moving, the thread detects the

mobility and takes the phone out of the suppression mode. Finally, after the application

stops, the accelerometer is unregistered.

Figure 51 shows the recorded GPS usage with varying GPS intervals requested by LBAs.

Note that we put the phone into static state for half of the entire period (i.e., 30 minutes in a

hour). We plot the improved battery life when making calls in Figure 51(b). SR effectively

suppresses about half of the GPS sensing, which improves the battery life when making

calls by up to 400 seconds.

4.6.4 Sensing Piggybacking (SP)

SP can help reduce the number of GPS invocations by piggybacking GPS sensing requests

from multiple LBAs. We run two LBAs concurrently but with different starting time. Both

applications are requesting GPS sensing every 2 minutes. Figures 52(a) and (b) show the

sensing updates received by the two applications. We see that when SP is not working,

GPS is invoked totally 10 times in 10 minutes, while when SP is used, GPS is only invoked

6 times. Note that in Figure 52(b) the last two GPS invocations notify both applications

about the new location updates.

Figures 53(a) and (b) show the GPS invocation times and improved battery life time

during experiments. We vary the GPS requesting frequencies of LBAs from every 1 minute

to every 3.5 minutes. With SP, the number of GPS invocations is reduced by half, and

correspondingly, call-making time is improved by up to 910 seconds.

120

4.6.5 Sensing Adaptation (SA)

We evaluate SA by considering two scenarios with different battery levels. We set the

adaptation degree for time interval to dt = 200. The Gps location updates received by the

applications are plotted in Figure 54. As shown in the figure, the LBA requests the location

sensing updates every 1 minute, and with this component, the update interval is increased

to every 2 minutes.

Figure 55(a) shows the GPS invocation times at low battery level. We vary the adap-

tation degree from 100% (i.e., without SA) to 350%. We observe that no-adapting results

in about 60 times of GPS sensing, as requested by the applications. The higher adaptation

degree results in the less number of GPS invocations, and specifically, with dt = 350, GPS

is only invoked 15 times. As shown in Figure 55(b), SA helps improve call-making time by

up to 650 seconds per hour.

4.6.6 Integrated Results

We also evaluate the effectiveness of integration operations in energy saving. We run two

LBAs concurrently at low battery level to enable corresponding components of SA and

SP. The adaptation degree is set to be 200%. The two LBAs request GPS sensing with

same frequency of every 30 seconds, but start with 15-second difference. We use the traces

collected from a particular user who commutes along a route. We also vary the user states

to invoke the SR. Specifically, we vary the time length of the user being static. The GPS

usages are plotted in Figures 56. We see that by default GPS is invoked about 240 times

per hour. By invoking all the four components, GPS invocations can be reduced to about

one-fifth even when the phone is constantly moving (i.e., SR is not invoked). Even more

significant reduction on the number of GPS invocations can be achieved when the phone is

put in longer static state (i.e., up to 98%). Also, with our prototype, improved call-making

time is more than 2,700 seconds for all considered scenarios.

Even though the above evaluation results show the savings in terms of GPS invocation

times and predicted operation time, it is also necessary to show the improved battery life

since operating the design components (e.g. computation) also consumes energy. We show

121

the improved battery life with our prototype with a scenario where two LBAs are running,

each requesting GPS every 1 minute. The two LBAs start with 30-second difference. To

show the effect of SA, we invoke the component for all battery levels, i.e., the battery level

threshold is set to 100%. A user carries the phone and walks along the commuting route

with different moving/static time. As shown in Figure 57(a), our prototype can improve

the battery life from 81% to 92% after an hour.

We also use the LBA of Real Time Traffic to measure the effectiveness of our prototype.

Using the same configurations as described in Section 4.3. The user carrying the phone

follows the commuting route and spends half time walking and half time being static. The

instantaneous battery level results are shown in Figure 57(b). We observe that our prototype

can improve the battery life from 79% to 88% after an hour—up to 75% improvement.

4.6.7 Profiling results

To evaluate the location-sensing characteristic profiler in SS, we ask three users to carry

phones with our prototype installed, and we continuously obtain their location information

on a daily basis for 3 weeks. The users live and work in the Bay Area of California, U.S.A.

We show part of a M-Area map both before and after the merging operations in Figure 58.

We see that there are totally 5 M-Areas before merging, and these areas result in 3 new

M-Areas after merging.

The profiling process has several pre-defined parameters for extracting and merging M-

Areas. One of the parameters is the initial width of extracted M-Areas. The setting of

this value particularly affects the merging operations since only adjacent M-Areas can be

merged. A larger width value encourages merging and leads to smaller M-Area sets, while

the accuracy of the M-Area extraction might be compromised since all the locations inside

the same M-Area are supposed to have the same characteristics. As shown in Figure 59(a),

setting the width to 10 meters rather than 30 meters increases the resulting M-Area set by

more than 70%.

We also measure the Net accuracy with profiled data of 3 users, and we show CDF

in Figure 59(b). We see that for the locations visited, more than 70% of locations have

122

a Net-accuracy finer than 100 meters. This suggests that for an LBA requiring location

accuracy coarser than 100 meters, SS can be invoked most of time.

4.7 Related Work

Recently the use of smartphones (e.g., iPhones, Windows Mobile, Symbian and Android)

becomes pervasive. These smartphones are equipped with location sensing capability to

enable LBAs. But to the best of our knowledge, the systems don’t employ techniques

similar to our designs to improve energy efficiency of LBAs. Users are increasingly adopting

a wide variety of LBAs on smartphones [9, 20, 34]. Several research efforts exist regarding

the design and use of LBAs. For example, work in [68,72,88,121] presents traffic monitoring

designs. BikeNet [61] describes an extensible mobile sensing system for cyclist experience

mapping. StarTrack [41] extracts users’ sequences of locations in the form of tracks so that

other applications can take advantage of the information. Other works aim to improve the

performance of positioning mechanisms such as GPS. For instance, Skyhook [31] improves

the response time of positioning by combining the unique benefits of GPS, Cell Tower

triangulation and WiFi Positioning.

Since typical smartphones are equipped with multiple types of sensors, applications that

take advantage of these sensors are booming, and many existing works attempt to detect

and extract users’ states and context based on the readings from these sensors [43,49,65,80].

Many approaches are proposed to combine the information obtained from sensors including

Bluetooth, Accelerometer, Audio, Camera and GPS [50,64,75,86,117].

Realizing the battery shortage problem of mobile systems, various solutions have been

proposed to save energy [40, 107]. The challenges and general approaches for energy man-

agement on handheld devices are described in [115]. Turducken [110] presents a hierarchical

power management architecture for mobile systems.

To address the power consumption problem of GPS sensing, some works attempt to trade

accuracy of GPS for energy [45, 54, 63, 82, 91]. Work [45] proposes to use accelerometers

to sense movements for saving energy, and the mechanism bears similarity with Sensing

suppRession. ENloc [54] addresses the optimal location sensing problem given an energy

123

budget. Micro-Blog [63] proposes to balance the competing goals of accurate location

coordinates and long battery life by infrequently using more accurate, but power-hungry

localization services such as WiFi to offset the error introduced by less accurate, but more

power-efficient localization services (e.g., GSM localization). These two works share certain

features with Sensing Adaptation. In addition, work [100] selects between two data services

driven by history, which bears the idea of substitution. Parallel to our work, work [82]

proposes to choose the most suitable positioning mechanism based on locations as LBAs

may require different positioning accuracy depending on specifical locations, and work [91]

proposes to only invoke GPS when it is available and sufficiently accurate. Though sharing

certain degree of similarity with the above approaches, our work differs from them in the

exact usage scenarios and detailed designs. Particularly, compared to these approaches, our

work provides a comprehensive energy-saving solution tailored for smartphones running

multiple LBAs, and implemented as a middleware on Android smartphones.

4.8 Conclusion

In this chapter, we consider the problem of energy efficient location-sensing on smartphones.

We first identify critical factors that affect energy efficiency of location-sensing with GPS

through extensive experiments. These factors are static use of location sensing mechanisms,

non-use of power-efficient sensors to optimize location-sensing, lack of sensing cooperation

among multiple LBAs, and unawareness of battery level. Then, we present an adaptive

location-sensing framework that includes the design principles of Sensing suppRession, Sens-

ing Substitution, Sensing Piggybacking, and Sensing Adaptation to reduce the usage of GPS

in various scenarios. We implement these design principles as a middleware on Android-

based smartphones by modifying the Application Framework. Our evaluation results on

the implementation show that our prototype can significantly reduce the GPS usage by up

to 98% and improve battery life by up to 75%.

124

(a) Sensing Substitution (SS)
Variables

provider: Requested location provider
SetArea: Profiled M-Areas
Areaprev: Previous M-Area
Areacur: Current M-Area

1 Obtain most recently sensed location
2 Determine Areacur based on SetArea

3 If provider == Gps
4 If Areacur’s Net can satisfy LBA
5 Unregister the Gps
6 Register a new Net
7 Else (// provider == Net)
8 If Gps unavailable & Net available
9 Unregister the Net
10 Register a new Gps
11 End
12 End
13 End

(b) Sensing suppRession (SR)
Variables

Statecur: Current state (static or moving)
Stateprev: Current state (static or moving)
Statemicro: Micro transient state
Statemacro: Macro transient state
StateGps,Reg: Cur. requested Gps state

1 Obtain motion sensor readings
2 Determine Statemicro and Statemacro

3 If Statemicro and Statemacro == static
4 Statecur = static
5 Else
6 Statecur = moving
7 End
8 If Stateprev and Statecur == static
9 Unregister the corresponding Gps
10 Else
11 Register a Gps based on StateGps,Reg

12 End
13 Stateprev = Statecur

(c) Sensing Piggybacking (SP)
Variables

StateGps: Gps registration state
StateNet: Net registration state
time: Requested location sensing frequency
dist: Requested location sensing distance

1 Received requestLocationUpdate(provider, time,...)
2 Store information about provider, time, distance
3 Check validity of StateGps and StateNet

4 If provider == Gps
5 Compare StateGps to time and dist

6 If StateGps allows piggybacking
7 Delays the registration to enable piggybacking
8 End
9 Else (//provider == Net)
10 Compare StateNet to time and dist

11 If StateNet allows piggybacking
12 Delays registration to enable piggybacking
13 Else
14 Compare StateGps to time and dist

15 If StateGps allows piggybacking
16 Delays the reg. to enable piggybacking
17 End
18 End
19 End

(d) Sensing Adaptation (SA)
Variables

Batcur: Current battery level
Batthr: Battery level threshold to trigger SA
ftime: Function to adjust time parameter
fdist: Function to adjust distance parameter

1 If provider == Gps AND Batcur ¡ Batthr
2 time = time * ftime

3 dist = dist * fdist
4 Obtain user preference
5 If SA is allowed
6 Unregister the current Gps
7 Register a new Gps with time and dist

8 End
9 End

Figure 46: Pseudo-code : (a) Sensing Substitution, (b) Sensing suppRession, (c) Sensing
Piggybacking, and (d) Sensing Adaption

125

Figure 47: Merging operations

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300 350

E
ve

nt
s

Time (Second)

Area 1 Area 2 Area 3 Area 4

Gps Sensing
Net Sensing

Gps -> Net
Net -> Gps

Figure 48: Sensing Substitution (Events)

 0

 10

 20

 30

 40

 50

 60

50 100 150 200 250 300

G
P

S
 in

vo
ca

tio
ns

 p
er

 h
ou

r

Application-required location accuracy (Meter)

No substituting
With substituting

(a) GPS invocation times

 0

 200

 400

 600

 800

 1000

 1200

50 100 150 200 250 300

Im
pr

ov
ed

 b
at

te
ry

 li
fe

 (
S

ec
on

d)

Application-required accuracy (Meter)

(b) Improved call time

Figure 49: Sensing Substitution

126

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000

E
ve

nt
s

Time (Second)

LBA

starts

LBA

stops

Mobility

occurs

Sensors
activated

Sensors
stopped

GPS
Suppressing

GPS
Sensing

GPS
Sensing

State checking

Figure 50: Sensing Suppression (Events)

 0

 10

 20

 30

 40

 50

 60

1.0 1.5 2.0 2.5 3.0 3.5

G
P

S
 in

vo
ca

tio
ns

 p
er

 h
ou

r

Requested sensing interval (Minute)

No Suppressing
With Suppressing

(a) GPS invocation times

 0

 200

 400

 600

 800

 1000

 1200

1.0 1.5 2.0 2.5 3.0 3.5

Im
pr

ov
ed

 b
at

te
ry

 li
fe

 (
S

ec
on

d)

Requested sensing interval (Minute)

(b) Improved call time

Figure 51: Sensing Suppression

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600

G
P

S
 r

ea
di

ng
 b

y
ap

pl
ic

at
io

ns

Time (Second)

App 1
App 2

(a) No piggybacking

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600

G
P

S
 r

ea
di

ng
 b

y
ap

pl
ic

at
io

ns

Time (Second)

App 1
App 2

(b) With piggybacking

Figure 52: Sensing Piggybacking (Events)

127

 0

 20

 40

 60

 80

 100

 120

1.0 1.5 2.0 2.5 3.0 3.5

G
P

S
 in

vo
ca

tio
ns

 p
er

 h
ou

r

Requested sensing interval (Minute)

No Piggybacking
With Piggybacking

(a) GPS invocation times

 0

 200

 400

 600

 800

 1000

 1200

1.0 1.5 2.0 2.5 3.0 3.5

Im
pr

ov
ed

 b
at

te
ry

 li
fe

 (
S

ec
on

d)

Requested sensing interval (Minute)

(b) Improved call time

Figure 53: Sensing Piggybacking

App-1

App-2

 0 100 200 300 400 500 600

G
P

S
 r

ea
di

ng
 b

y
ap

pl
ic

at
io

ns

Time (Second)

No adapting
With adapting

Figure 54: Sensing Adaptation (Events)

 0

 10

 20

 30

 40

 50

 60

100 150 200 250 300 350

G
P

S
 in

vo
ca

tio
ns

 p
er

 h
ou

r

Adaptation degree (%)

(a) GPS invocation times

 0

 200

 400

 600

 800

 1000

 1200

100 150 200 250 300 350

Im
pr

ov
ed

 b
at

te
ry

 li
fe

 (
S

ec
on

d)

Adaptation degree (%)

(b) Improved call time

Figure 55: Sensing Adaptation

128

 0

 50

 100

 150

 200

 250

 300

0 10 20 30 40 50 60

G
P

S
 in

vo
ca

tio
ns

 p
er

 h
ou

r

Time length of phone being static (Minute)

No optimization
With optimization

(a) GPS invocation times

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 10 20 30 40 50 60

Im
pr

ov
ed

 b
at

te
ry

 li
fe

 (
S

ec
on

d)

Time length of phone being static (Minute)

(b) Improved call time

Figure 56: Integrated Results

 80

 85

 90

 95

 100

0 10 20 30 40 50 60

B
at

te
ry

 le
ve

l (
%

)
af

te
r

1
ho

ur

Time length being static (Minute)

No optimization
With optimization

(a) Custom-built LBA

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60

B
at

te
ry

 le
ve

l (
%

)

Time (Minute)

No optimization
With optimization

(b) Real Time Traffic

Figure 57: Battery level of integrated results

(a) Before merging (b) After merging

Figure 58: Merging operations

129

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 a

re
as

 a
fte

r
m

er
gi

ng

Days

Width = 10 meters
Width = 30 meters
Width = 50 meters

(a) Num. of areas

 0

 20

 40

 60

 80

 100

1030507090 120150180210240270>300

C
D

F
 (

%
)

Net accuracy (Meter)

CDF of Network Accuracy

(b) Net Accuracy

Figure 59: Profiling Results

130

CHAPTER V

WIRELESS MEMORY: ELIMINATING COMMUNICATION

REDUNDANCY IN WI-FI NETWORKS

5.1 Summary

Studies have shown the presence of considerable amounts of redundancy in Internet traffic

content. Recent works are exploring possibilities for exploiting network traffic redundancy,

but these works invariably focus on fixed wireline networks. Unlike wireline networks,

wireless and mobile environments exhibit unique challenges and opportunities in the context

of redundancy elimination.

In this chapter, we explore leveraging network traffic redundancy, but exclusively focus

on wireless and mobile environments. We first analyze real Wi-Fi traces, and based on

insights obtained from the analysis, we propose Wireless Memory (WM), a two-ended AP-

client solution to effectively exploit traffic redundancy for such environments. Our trace-

driven evaluation results show that Wireless Memory can help deliver up to 93% throughput

improvement for a typical Wi-Fi setup.

5.2 Introduction

Several recent studies [51,87,102,105,111] have shown the presence of considerable amounts

of redundancy in Internet traffic content. Such redundancies in content can be explicitly

eliminated to improve communication performance. There are various approaches [37, 38,

51,87,93,94,102,111,113] that have been proposed to eliminate such redundancy. Ranging

from application-layer to network layer strategies, these works invariably focus on fixed

wireline networks.

Similar to the above works, we too explore leveraging network traffic redundancy, but

exclusively focus on wireless and mobile environments. Unlike wireline networks, wireless

and mobile environments exhibit unique challenges and opportunities in the context of

redundancy elimination. On one hand, the broadcast nature of wireless communication

131

enables techniques such as packet sniffing to be performed with ease, while on the other

hand, mobility and location based channel variances could impose challenges that have to

be effectively addressed. Perhaps most importantly, given the typical resource constraints

of wireless environments, redundancy elimination could have a profound impact on perfor-

mance delivered to users.

In this chapter, we focus on one popular type of wireless networks: 802.11b/g (or Wi-

Fi). We first study the traffic redundancy along multiple dimensions using traces obtained

from multiple real wireless network deployments. Specifically, we consider three buildings

and two Wi-Fi network deployments in a major university campus. One of the buildings

is a mixed-use environment that houses several small-medium businesses. Based on the

insights obtained from the analysis, we propose Wireless Memory (WM), a two-ended AP-

client solution to effectively exploit traffic redundancy in wireless and mobile environments.

Generically, WM equips AP and clients with memory to enable memorization of content as

it flows naturally through the wireless network, and more importantly use the memory to

lower the actual cost of delivering any content to its intended destination. We evaluate WM

through simulations driven by the collected Wi-Fi traces, and show that WM can improve

the network throughput by up to 93% in certain scenarios.

The remaining chapter is presented as follows. In Section 5.3, we motivate the wireless

memory design by presenting a set of observations and challenges. In Section 5.4, we

describe the basic design and operations of wireless memory. Then we present the advanced

design elements in Section 5.5. We perform trace-driven evaluation and show the results in

Section 5.6. Finally we present related work and conclude the work in Section 5.7 and 5.8,

respectively.

5.3 Motivation

In this section we motivate our design of Wireless Memory by analyzing collected Wi-Fi

traces. The use of Wireless Memory helps only when content stored in the memory will be

referenced for “future” communications. Consequently, a necessary condition for Wireless

Memory to provide benefits is redundancy in traffic content. Though an extensive study of

132

 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

50

Days

Im
pr

ov
em

en
t (

%
)

(a) Building A

 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

50

Days

Im
pr

ov
em

en
t (

%
)

(b) Building B

 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

50

Days

Im
pr

ov
em

en
t (

%
)

(c) Building C

Figure 60: User-user dimension (Dominant user vs all other users)

the nature of redundancy in wireless traffic is a non-trivial task, we present some preliminary

indicators of traffic redundancy that motivate the design of Wireless Memory. We perform

studies primarily to verify that redundancy does exist for practical users. In addition, these

results also shed light on our Wireless Memory design.

Data redundancy has long been observed and studied in literature, and depending on

the nature of redundancy, there are two types of redundancy: intra-redundancy and in-

ter -redundancy. It is well known that data redundancy inside a data unit (e.g., a packet)

can be eliminated by applying compression mechanisms such as GZip. However, conven-

tional compressions are unable to eliminate redundancy that exists across data units (e.g.,

between two packets or two html files) unless these data units are processed with the same

compression session. We show that, by effectively eliminating inter-redundancy, data size

can be significantly reduced, and in turn, the throughput can be improved.

133

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Days

Im
pr

ov
em

en
t (

%
)

(a) Building A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Days

Im
pr

ov
em

en
t (

%
)

(b) Building B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Days

Im
pr

ov
em

en
t (

%
)

(c) Building C

Figure 61: User-time dimension (Dominant user)

In this section we study the potential improvement on data reduction by eliminat-

ing inter-redundancy. Specifically, we compare the resultant data size of eliminating all

redundancy (both intra- and inter-) to that of eliminating only intra-redundancy. For sim-

plicity, we refer to an ideal compression that eliminates both intra- and inter- redundancy

as memory-based compression, since the elimination of inter redundancy essentially treats

the previous data as “memories”. Correspondingly, we refer to the naive compressions that

only remove intra-redundancy as non-memory-based compression.

Table 2: User-pairs (Dominant user vs. other top users)
User Pair 1 2 3 4 5 6 7 8 9

Building A 12 12 14 27 7 3 19 11 17
Building B 8 13 10 7 10 14 9 27 11
Building C 49 42 33 26 17 31 29 11 8

134

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

Redundant segments

R
ed

un
da

nc
y

si
ze

(a) Redundancy size

 1 2 5 20 50 100 150 200 300 400
10

20

30

40

50

60

70

80

90

R
ed

uc
ed

 s
iz

e
(%

)

Cache size (MB)

(b) Dimension of memory size

0 50 100 150
0

10

20

30

40

50

60

70

80

90

Data pieces of the first user

M
ax

im
um

 c
or

re
la

te
d

re
du

nd
an

cy
 (

%
)

(c) Clustered pattern of redundancy

Figure 62: Redundancy size (a), Memory size (b), and Clustered pattern of redundancy(c)

5.3.1 Methodology

Our study is based on real Wi-Fi traces. Specifically, we perform a 4-month wireless sniffing

in 3 buildings of a major university campus. The Wi-Fi networks sniffed are two 802.11g

networks, and we use four Ubuntu PCs equipped with Wi-Fi cards and MadWifi [16] in

Managed mode. The two networks use WEP to encrypt traffic. By running MadWifi in

Managed mode, the PCs are able to decode the live traffics of other wireless users in the

same network. Though by associating to an AP, the sniffing desktop is able to see the

decrypted traffics of other users, we explicitly perform hashing operations to store only the

hash values of captured data to ensure anonymity.

To evaluate the potential improvement of eliminating inter-redundancy, we adopt the

following process. First, the captured live data stream is split into packets. We consider

a naive approach to redundancy-elimination by compressing each individual packets before

135

transmission. Note such compression is independent from application-layer compression, as

the captured live traffic is the as-is traffic, and they may have been “compressed” by appli-

cations. Such a naive packet-based compression can effectively eliminate intra-redundancy

(i.e., redundancy inside the packet) only. Second, an ideal approach would eliminate both

intra- and inter- redundancy. So to mimic such an approach, we treat the previous packets

as memory, and compress the current packet based on the memory. This method is based

on the fact that most typical compression algorithms (e.g., LZW [125, 126]) process byte

streams sequentially, memorize encountered byte sequences, and represent later repeated

byte sequences with codes. Thus, with such a method, the packet size after eliminating both

types of redundancy is estimated as the incremental coded size, which is the size difference

of: (i) only compressing the data consisting all previous packets, and (ii) compressing the

data consisting all previous packets and the current packet.

We choose a compression utility of Rzip [30] 1. Specifically, for a particular live traffic

data set, we treat the trace as a byte stream of D and split it into data pieces of di, where

0 ≤ i ≤ I. We also use Di to denote the set of data pieces from d0 to di, so we have

Di = {d0+, ...,+di}. Assuming existing compression algorithm (e.g., Rzip) can remove all

intra-redundancy, the coded size of di is thus Rzip(di). Similarly, the coded size of Di is

Rzip(Di). The incremental coded size of di is the difference of the codes of Di and Di−1.

Denoting the incremental coded size is Ci, we have Ci = Rzip(Di) − Rzip(Di−1), and we

assume Ci is the ideal coded size of di with memory of Di−1. So compared to the non-

memory-based solution which has the coded size of Rzip(di), the effectiveness of an ideal

memory-based solution is measured by 1− Ci

Rzip(di)
= 1− Rzip(Di)−Rzip(Di−1)

Rzip(di)
. The value also

shows the degree of data reduction by using memory-based solution when compared to the

non-memory-based solution, and the larger the value is, the higher benefit can be achieved

by eliminating inter-redundancy. For all the following results, we choose d = 1.5KB for the

simple reason that a typical IP packet is about that size.

In the following, we will study the potential improvements of an ideal memory-based

1RZip is a huge-scale compression software designed to find and encode duplicated data over very long
distances (e.g., 900 MB) in the input file.

136

approach in multiple dimensions including user-user, user-time, memory size, redundancy

distribution, and application/protoco/data-types. We correspondingly show representative

results which will be used to motivate our design.

5.3.2 User-user Redundancy

User-user dimension studies the potential benefits of eliminating the redundancy between

users. Briefly, considering a Wi-Fi network, for a particular user Uk, other users’ data can

be used as the base for compressing Uk’s data. We analyze the potential improvement of

compressing each user’s trace by eliminating the user-user redundancy with other users.

Specifically, given a data piece of di which contains multiple users’ traffic, considering a

user Uk we denote his data as di,k and other users’ data as d′i,k, so we have d′i,k = di − di,k.

Similarly we denote the cumulative data that eliminate Uk’s data as D′

i,k = Di −Di,k. For

the particular user Uk and his data piece of di,k, the compressed size with non-memory-

based compression is Rzip(di,k), and we can get the incremental coded size of d(i, k) as

Ci,k = Rzip(D′

i−1,k + di,k)−Rzip(D′

i−1,k).

We show the results in Figures 60 for all 3 buildings. For each building, we choose

1-week of traces and study the dominant user (i.e., having the largest portion of traffic)

by eliminating user-user redundancy between himself and all other users. We observe that

there are substantial improvements by exploiting user-user redundancy, and the improvement

ranges between 7% to 22%.

We further study the redundancy between individual users for the same day. For each

of the 3 data sets, we choose the dominant user and study the redundancy between himself

and the other top 9 users. The results are shown in Table 2. We see that some user-pairs

have more user-user redundancy than other user-pairs. More studies into this dimension

suggest that the results relevant to user-pairs are caused by the web access patterns of these

users. Briefly, users with higher user-user redundancy tend to visit the same set of web sites.

5.3.3 User-time redundancy

We also study the temporal user-time redundancy for individual users. We consider the top

user in data sets, and choose a representative 15-day period. Starting from the second day,

137

Table 3: Applications and protocols
Protocol TCP SSL HTTP UDP DNS DHCP

Improvement 19% 3% 20% 44% 47% 81%

for each day we treat the previous day’ data as the base data (i.e., memory), and compress

the particular day’s data by eliminating the inter-redundancy between the base data and

the particular day’s data. The results are shown in Figure 61, we observe that there are

considerable inter-redundancy across time for individual users, and in certain days it can

be 75%.

We further study the nature of user-time redundancy by recording the byte-lengths of

redundancy units that are larger than 50 bytes, and show the redundancy sizes Figure 62(a).

We observe that most of the redundancy is at sub-packet level. Thus, these redundancy

cannot be removed by application-level caching.

5.3.4 Memory size

Eliminating inter-redundancy requires memorization of repeated byte sequences, and the

size of this memory affects the compression. Since every piece of redundancy requires a code

to represent it, and the code size depends on the memory size (i.e., the number of memory

entries), there is a performance tradeoff between the memory size and the compression size.

Specifically, though memorizing more data helps eliminate more redundancy, the code size

also inflates.

To study the impact of memory size, we examine the compressed size of incoming data

pieces. Some representative results are shown in Figures 62(b). We fill the memory with

history trace data of fixed sizes for a Wi-Fi data set. We observe that: (i) Increasing memory

size in general brings benefit in the forms of reduced coded size. For the particular data set

we studied, the coded size can be 85% smaller than naive compression. (ii) Increasing

memory size indefinitely will incur more cost, which negates the benefit. Specifically, the

performance gets worse for the particular data set after 200 MB of memory.

5.3.5 Distribution of redundancy

We also study the distribution of inter-redundancy by examining the locations of redun-

dant byte-sequences, and we find that the inter-redundancy shows clustered pattern. One

138

representative result is shown in Figure 62(c). In the figure, we consider the data streams

of two users (i.e., UA and UB) and split both stream into data pieces of 15 KB. For each

data piece of UA, we identify the maximum correlated data piece of UB (i.e., the data piece

showing maximum inter-redundancy with the studied UA’s data piece). We then output

the amount of inter-redundancy between these two data pieces. As shown in the figure, for

many data pieces of UA, UB has a data piece that has very high inter-redundancy with it -

a pattern we refer to as “clustered” pattern.

5.3.6 Application/protocols/data types

We then study the redundancy degrees of separate applications. We consider a specific Wi-

Fi data set and choose the top six protocols (applications). We show the results in Table

3 in the order of traffic percentages. These protocols are: (i) TCP (excluding HTTP and

SSL), (ii) SSL, (iii) HTTP, (iv) UDP, (v) DNS, (vi) DHCP.

We observe that different protocols/applications have different degree of improvement

when eliminating inter-redundancy. Specifically, (i) SSL sees very little improvement, this

is caused by the fact that all application data are encrypted; (ii) TCP and HTTP see some

amount of improvement, and the degrees depend on the redundancy patterns of upper-layer

applications and data types; and (iii) UDP, DNS and DHCP see significant improvement,

and most redundancies are identical byte sequences corresponding to protocol segments,

such as “www.google.com” in the case of DNS and “Subnet Mask: 255.255.240.0” in the

case of DHCP.

We then consider different data types (i.e., Binary/Plain text) for the same applica-

tion/protocol and observe that data types also matter. For instance, we observe that most

Figure 63: Dimension of data type

139

of inter-redundancy comes from plain text contents, while binary data such as gziped con-

tents see little redundancy. To better understand this, we consider a representative part

of HTTP trace for a particular web user, and show the improvements for 10 neighboring

objects in Figure 63. These objects are either plain-text HTTP responses or binary objects.

We observe that when the contents are plain texts, there are significant improvement on

the reduced data size. For binary contents, little improvement is observed.

5.3.7 Summary

Traffic redundancy occur in multiple dimensions, and users’ actually transmitted data sizes

can be reduced by eliminating redundancy. Reduced data size will result in improved

network performance including increased throughput and lower response time. This is

particularly true for wireless networks, since the wireless media is often shared by multiple

users, and data transmission is subject to various collision scenarios where smaller packet

sizes are preferred.

5.4 Wireless Memory

We now present the solution of Wireless Memory (WM), including the concept, basic ele-

ments, and advanced elements.

5.4.1 Concept

Though many elements of WM can be applied to any wireless data networks, the basic

network model we consider is the popular Wi-Fi networks with APs and mobile clients.

In the following we will use Wi-Fi to describe WM. The overall benefits of using WM are

better network delivery performance in terms of higher throughput, lower response time,

and higher network utilization levels, through the exploitation of redundancy that naturally

exists in wireless traffic.

With the basic network model, WM works between AP and clients. The simplest fashion

in which the wireless memory works is as follows. Assume the AP S has to deliver certain

data d to a client C at time T1. That data is memorized by both S and C. Later at time

T2, S sends another information which contains d, S can retrieve d from the C’s memory

140

Figure 64: Basic elements of WM

by sending d’s reference to C. The retrieval command sent from S to C is generally much

smaller than the raw data. For the data that are not available in memory, S sends them

directly.

5.4.2 Basic design elements

The basic elements of WM are illustrated in Figure 64. WM maintains memory space on

both AP and clients. When AP communicates with multiple clients, it maintains separate

memory for each of the clients. For any AP-client pair, their memories are synchronized

in the sense that they contain identical data. The synchronization is achieved implicitly

as both AP and the client see identical data being transmitted and received. In addition,

identical memory operations such as data referencing and replacement will be performed.

WM works at packet-level and has two types of operations: Memory Referencing and

Memory De-referencing to encode and decode the data packets, respectively. Their pseudo-

codes are shown in Figure 65. Specifically, (i) Memory Referencing sequentially invokes

three components of Delimitation, Memory Lookup and Packet Composition. When WM

receives a data packet, it firstly delimitates (i.e., splits) the data payload into a sequence of

data segments (i.e., data pieces). For each segment, it performs memory lookup to determine

whether the segment is in memory or not. If present, the segment will be replaced with

a code, and the code can be simply the index of the corresponding memory entry. If not

present, then the segment is left as-is. After all segments are processed, a new packet will be

composed containing both raw segments and codes. (ii) Memory De-referencing contains

the complementary components of Packet De-composition, Memory Lookup and Packet

141

Assembly. When a coded packet is received, WM firstly separates the raw segments and

codes. For each code, it performs memory lookup to recover the corresponding segment.

When all segments are recovered, it assembles them to form the original data packet.

There are some other details regarding the aforementioned operations. (i) The Delim-

itation component is based on Rabin-based delimiters [99], which has been shown to have

many advantages over fixed delimiters when used to identify redundancy [102]2. (ii) Packet

Composition results in a coded packet which consists of two regions. The first region is

the data region, which contains all segments that cannot be found in memory. The second

region is the code region, which consists of a list of <code, offset> entries. Each entry

represents a redundant segment with the code and the starting offset in the data region.

(iii) When Packet De-composition receives a coded packet, it can insert the recovered seg-

ment back to the data region to recover the original packet. (iv) WM works in a per-packet

fashion and does not perform packet partition or packet-aggregation. Given a packet, if the

coded packet is larger than or equal to the original one, WM will send the original packet.

(v) When a WM-enabled client firstly associates to a WM-enabled AP, they exchange

certain WM-related information to initialize and synchronize WM operations. These in-

formation include the memory space size, delimitation parameters, replacement algorithm.

(vi) Though memories maintained on both sides are designed to enforce synchronization,

when errors do occur (e.g., a reference being unable to decode), WM will report error back

to the sender and the sender will retransmit the original packet.

5.4.3 Advanced design elements

The advanced design of WM enhances the aforementioned basic elements by six advanced

components. For clarification, from now on, we will use WM to refer to the advanced design

of WM, while refer to the basic elements of WM as Memory Referencing and De-referencing

(MRD). The software architecture of WM is shown in Figure 66. WM is designed to be

application transparent, meaning no application needs to be changed, and WM can improve

the performance of all applications. We assume a design residing at layer-2.5 between the

2A more detailed description can be found in Appendix-5.8.

142

Variables

P : Current packet
SetP : Segment set of P
SetC : Code set of P

Received a packet P :
If P is an outgoing packet

Delimitate P into segment set of SetP
For each segment S in SetP

Do memory-lookup
If Cache-hit

Reference the segment with code
Update the corresponding memory entry

Else (// Cache miss)
Create and enqueue the memory entry

End
Else (// Incoming packet)

Extract code set SetC
For each code C in SetC

Do memory-lookup
If found in memory

De-referencing the code
Update the memory entry

Else (// Cache miss)
Report error back to sender

End

Figure 65: Pseudo code for Basic WM Elements

Network layer and Link layer.

Though we defer presenting the detailed design of the six advanced components to

Section 5.5, briefly: (i) Memory Filter (MF) filters out data that have low redundancy to

conserve memory space. (ii) Memory Fidelity Enhancer (MFE) allows clients to eliminate

user-user redundancy by overhearing other clients’ traffic. (iii) Memory Localizer (ML)

further reduces the code size by using localized references. (iv) Memory Replacer (MR)

helps only maintain most-useful memory entries. (v) Memory Sizer (MS) determines the

optimal memory size to maximize compression effectiveness; and (vi) Memory Advertiser

(MA) pro-actively tells the sender that the local host has certain memory entries so that

the sender can remove more redundancy.

143

Components of MF, MR and MS have same operations on both sides. The identical

operations are essential to synchronized memory states. For instance, both sides need to

filter out the same type of traffic to ensure memory synchronization. The operations of

other components, which include MRD, MFE, ML and MA, complement each other on

both sides. These complementary are necessary to ensure correct coding/decoding. For

instance, on the sender side, redundant data are identified and represented with codes,

while on the receiver side, they are decoded to recover the original data.

We now briefly describe the overall operations on both sides. For simplicity, we only

consider the downlink traffic, with AP sending and clients receiving. The processing of the

other direction of traffic only differs slightly.

5.4.3.1 AP

When AP receives a packet destined for a client from the data source, it first determines

whether the packet should be filtered out or not. If so, it is let through without further

processing. Otherwise, the packet will be delimited into segments with MRD and replaced

with codes when possible. If succeeding segments result in cache-hit and they belong to the

same cluster, then a smaller localized version of code will be used to replace the original

code. The size of the memory is determined by MS and set to a optimal value so that

the resultant packet size can be minimized. If the current memory space is full, then

appropriate replacement will be done by MR to maintain highest-utility memory entries.

Figure 66: Software Architecture

144

MFE will determine whether other clients are able to overhear this packet. If another client

can overhear the packet, the corresponding segments will be put into the client’s memory.

Finally, MA processes advertisement information from a client and enqueue corresponding

memory entries from other clients’ memories into the particular client.

5.4.3.2 Clients

When clients receives a encoded packet from AP, MRD extracts the codes and decode

them back to original segments. This process also involves the ML to obtain the original

codes. The operations of MS and MR are the same as AP. MFE requires clients to actively

overhear other clients’ traffic whenever possible, and the overheard data will be put into its

memory. If the client notices that the segments being received form clusters, then MA will

pro-actively notify AP its other memory entries that are in the same cluster but are not

known by AP.

5.4.4 Memory structure

The memory structure maintained by clients and AP are shown in Figure 67. AP maintains

separate memory for each associated client. Memory is split into two parts: (i) Main

Memory and (ii) Shadow Memory. Main Memory of clients and AP are synchronized and

contain the identical information. At any time, the encoding and decoding is performed

based on Main Memory of the AP and the client. Shadow Memory consists of two types of

traffics: local traffic and fidelity-based traffic. Local traffic refers to the previously passed

traffic between AP and the client, but they are not used for coding. Fidelity-based traffic

refers to the traffic that belong to other AP-client pairs. AP and clients may have different

views of fidelity-based traffic, and part of these data can be moved to main memory after

synchronizing between both sides. We will elaborate on this when describing MFE.

Memory space consists of a set of memory entries, and each memory entry contains im-

portant information including data segment, code, MD5 hash, and other useful information

such as frequency. A field of Synchronization-bit (Syn-Bit) is used to indicate the validity

of fidelity-based entries, and a “true” value indicates that both AP and the client has that

entry and will be moved to Main Memory.

145

5.5 Design of advanced elements

We now present the design highlights and the operations of each of the advanced compo-

nents.

5.5.1 Memory Filter (MF)

The purpose of Memory Filter (MF) is to reduce the processing overhead of other mod-

ules by removing some of the received data that result in low compression effectiveness.

Encrypted data, for instance, are expected to show very little inter-redundancy and intra-

redundancy, which is also confirmed in Section 5.3. Thus, these data should be filtered out.

We also observe in Section 5.3 that binary data typically contain little intra-redundancy

just like encrypted data, but they may exhibit inter-redundancy when the same data are

transmitted more than once. Thus, binary data are removed only when the memory space

is full. In addition, in Section 5.3 we observe that users exhibit different degrees of user-user

redundancy and some of the users are more correlated than others. Thereby when space is

a concern, only traffic belonging to highly correlated users will be further processed.

The pseudo-code of MF is shown in Figure 68(a). MF can be configured to filter out all

three types of data: (i) Data encrypted by upper-layer protocols such as SSL, and they can

be identified by protocol port numbers (e.g., TCP 443) or application-specific intelligence.

(ii) Binary data such as compressed files and pictures. The identification of binary data

is through the byte values, as text bytes are almost always between 0 and 127. (iii) Data

belong to less correlated users. The correlation levels can be calculated based on history

data, assuming users exhibit consistent access patterns.

5.5.2 Memory Fidelity Enhancer (MFE)

Since user-user redundancy exists, clients can exploit such redundancy to reduce the sizes

of their own data. Memory Fidelity Enhancer (MFE) is designed for this purpose. To learn

about other users’ traffic, a client should explicitly sniff network traffic. Such sniffing is a

trivial task in non-encrypted networks, as all data are transmitted openly. For encrypted

146

traffics such as WEP-based, a client can still easily decode other users’ raw data. 3

After a client learns other users’ traffic, in order to encode his traffic with AP, AP

needs to know what the particular client has overheard. Though a straightforward solution

is to ask clients to acknowledge the packets overheard, the additional traffic associated

with such acknowledgement makes the approach prohibitive. Instead, MFE allows the

AP to “intelligently” estimate what clients overhear which clients’ downloading traffic. The

pseudo-code is shown in Figure 68(b). Specifically, each client Ci has an associated data rate

Ri which is determined solely by the channel situation. Since clients can always overhear

and decode traffics that are sent with lower rates, a client Cj can learn another client

Ck’s traffic provided that Rj ≥ Rk. Since AP knows each client’s rate, it can estimate

the overhearing capability of each client at any time. The advantage of such technique is

that it eliminates the necessity of explicitly verifying the overhearing results. In scenarios

where this technique incorrectly estimates the results and results in non-decodable data,

appropriate error handling techniques can be applied to retransmit original data.

5.5.3 Memory Sizer (MS)

The memory size impacts the coding efficiency in two conflicting ways. On one hand, a

larger memory leads to more redundancy being exploited. On the other hand, the code

size also inflates with increased memory, as the code size is expected to be in the order of

log(M), where M is the number of memory entries. To strike the performance tradeoff on

the code size and the removed amount of redundancy, the size of main memory needs to be

optimized so that the resulting data size can be minimized. For this, appropriate memory

resizing operations are required.

Memory Sizer (MS) can deterministically compute the ideal memory size based on the

past redundancy exploitation statistics. The operations are displayed in Figure 68(c).

Specifically, assuming during past period, each repeated segment Mi (1 ≤ i ≤ I) has

associated properties of usage probability pi and data size si. Also assuming the number of

memory elements is M , so the code size is logM . The optimal M value can be determined by

3For more advanced encryptions such as WPA, further efforts are required and we see this as future work.

147

maximizing the following effectiveness expression which counts the aggregate reduced data

amount:
∑I

i=1 pi(si − logM). If the algorithm keeps track of pi and si, then it can easily

determines the optimal M value. To reduce the performance load of memory sizing, MS is

only triggered periodically or when the effectiveness of WM is below certain threshold.

5.5.4 Memory Localizer (ML)

Since the nature of WM is to use short codes to replace long segments, it is desirable to

use shortest codes. In its default form, each code is a global value in the sense that each

code can be decoded independently. To further reduce code size, Memory Localizer (ML)

is designed to use localized shorter code rather than global longer value.

ML works as shown in Figure 68(d), and segments are firstly split into clusters based on

receiving time. For redundant segments (i.e., repeated ones), since they may belong to more

than one clusters, they might be tagged using an array of cluster IDs. Whenever continuous

cache-hit segments are found to belong to the same cluster, they are referenced using an

offset code value rather than a complete code. Specifically, the offset can be any value that

allows the receiving end to decode the segment uniquely. Since both ends maintain identical

Main Memory, the offset value can be much small when compared to the code size. For

instance, the offset can be the last few digits of the segment’s hash value.

5.5.5 Memory Replacer (MR)

Both storage space and performance (e.g., memory lookup) may put constraints on mem-

ory size. With limited memory, it is desirable to only maintain most-useful memory entries

to maximize redundancy exploitation. Thus, Memory Replacer (MR) (as shown in Fig-

ure 68(e)) is used to replace less-useful memory entries by more-useful ones. Though a

straightforward approach to replacement is to simply adopt popular algorithms such as

Least Frequently Used (LRU), the special properties of WM requires a more advanced de-

sign. Specifically, MR works by keeping track of each memory entry’s utility. For this, each

memory entry is associated with an utility value that represents its “usefulness” in terms of

how much data can be saved by using it. The utility is calculated as the saved bytes over

the past period of time, i.e., pi(si − logM).

148

5.5.6 Memory Advertiser (MA)

As clients may be mobile and associate to multiple APs at different time, when a client

associates with an AP, either side may have accumulated certain memory but does know

whether the other side has it also or not. Such memory cannot be utilized unless its

existence can be verified on both ends. As WM creates synchronized memory states only

based on past in-network data, to make these out-of-network memory useful, one side needs

to explicitly inform (i.e., advertise) the other side what memory it has. Though a naive

solution is to simply transmit these memory to the other end, the performance overhead is

forbidding. More importantly, blindly transmitting memory does not guarantee benefit, as

the advertised memory may not be used at all!

Sketched in Figure 68(f), Memory Advertiser (MA) can selectively advertise the memory

in an on-demand fashion. First, observations made in Section 5.3 show that data redundancy

exhibits clustered pattern. MA is only triggered when such clustered patterns are present.

Second, it further only advertises relevant memory as they are more likely to be used. Third,

MA advertises a short representation of each memory entry rather than the raw data. When

memory advertisement is needed, MA can identify the appropriate relevant “knowledge”

and propagate the knowledge to the other side. The basic idea is to monitor the cache-hit

segments and cluster pattern. If there are a sequence of cache-hit segments, and they all

come from the same cluster, then other segments of the same cluster will be extracted and

sent to the other side.

For simplicity, the advertising amount is limited to one packet size, and each advertised

segment is represented using a MD5 hash. The receiving side will extract these hashes and

locate the corresponding segments. If the segments are found and they are not in Main

Memory, they will be enqueued into the corresponding Main Memory. There is also error-

processing operations. Briefly, if the receiving side detects error due to reasons including

failure of locating a segment, then it will notify the sending side.

149

5.6 Performance Evaluation

We evaluate WM with trace-driven simulations, and the traces are described in Section

5.3. The direct result of applying WM is the reduced data size, which in many network

environments translates to higher throughput. Thus, the performance metrics we consider

are the resultant data size and the network throughput with a typical network setup. The

simulation software we use is NS2 [114], with which an 802.11 Wi-Fi network is configured.

We integrate the seven components of WM inside NS2 so that the input traces can be

processed by WM before being transmitted by NS2.

We compare WM to a baseline scenario where data packets are sent as-is. For WM, we

evaluate each of the seven components separately, as well as the integrated solution. Except

the baseline scenario, we assume all clients are WM-enabled, unless otherwise stated. To

ensure consistency of various evaluations, we always use the following network setup. The

802.11 network consists of a AP and 8 wireless clients with random placement. Each of the

clients sets up a single TCP connection with another fixed host behind AP. The RTT of

the wired network is 60ms and bandwidth is 100Mbps. Some other important parameters

about the 802.11 setup are Congestion-Window between 15 and 1023, Slot-Time 20us, SIFS

10us, Preamble-Length 72 bytes, Data-Rate 11Mbps, and no RTC/CTS.

With our collected traces, we evaluate WM along the following dimensions. First, we

choose the same data sets as used in Section 5.3.2 (i.e., three buildings) and study the

aggregate network throughput. Second, we study the impact of redundancy level on both

coded packet size and aggregate throughput. Since our data set is very diversified in terms

of varying redundancy degrees, we choose three typical users who have comparatively low,

medium and high redundancy, respectively. We also study the improvement achieved by

each individual WM component. Third, we evaluate the impact of the adoption curve.

Briefly, though ideally WM should be deployed on all clients for maximum performance,

the progressive adoption of WM brings varying degree of benefits.

150

5.6.1 Aggregate network throughput

We use the same data sets as described in Section 5.3.2. For each data set, we choose the

top 8 users based on traffic volumes and use their traffics as the simulation inputs. The

results are shown in Figure 69. We observe that the aggregate throughput for the baseline

scenario is about 6.24 Mbps. For all data sets and different days, the improved throughput

vary between 7.25 Mbps and 12.03 Mbps, or an improvement between 16% and 93%. The

average improvement is about 40%. Note that the throughput results are the effective

throughput as experienced by applications rather than raw throughput. Since WM can

significantly reduce packet size by eliminating traffic redundancy, the effective throughput

can be larger than the physical bandwidth limit of 11 Mbps.

5.6.2 Impact of redundancy level

We now examine the impact of redundancy level on both coded packet size and aggregate

throughput. We choose three representative users that exhibit different levels of redundancy

and use their respective data as the inputs of all clients. The redundancy level is estimated

based on the averaged packet sizes when coded by MRD. Specifically, the three users have

about 10%, 35% and 60% redundancy, respectively.

5.6.2.1 Low redundancy

Figures 70 show the low-redundancy results. From Figure 70(a), we observe that though

MRD can effectively reduce the data size by 11%, complete solution of WM can achieve

17% of reduction. Figure 70(b) shows the corresponding aggregate throughput. We see

that WM improves the default throughput of 6.24 Mbps by more than 11%, or 6.90 Mbps.

5.6.2.2 Medium redundancy

Figures 71 show the medium-redundancy results. We observe that WM can achieve more

than 40% of data size reduction. The throughput improvement, as seen from Figure 70(b),

is about 32% (i.e., 8.22 Mbps vs. 6.24 Mbps).

151

5.6.2.3 High redundancy

Figures 72 show the high-redundancy results. We see that WM can reduce the packet size

by about 62%, and the throughput improvement is about 57% (i.e., 9.79 Mbps vs. 6.24

Mbps).

5.6.3 Adoption curve

WM allows incremental deployment by mobile users. We now evaluate the impact of de-

ployment status using aggregate throughput as the performance metric. We use the above

network but with varying degree of redundancy levels, and show the aggregated throughput

in Figure 73. We see that as more users adopt WM, the aggregate throughput almost lin-

early increases. Specifically, when the redundancy is as high as 60%, the complete adoption

of WM can achieve about 54% of throughput improvement.

5.7 Related Works

Primarily motivated by the temporal dimension of traffic redundancy on Internet, sev-

eral approaches are proposed to exploit such redundancy and reduce users’ response time.

Squirrel [74] provides a decentralized, peer-to-peer web cache by enabling web browsers on

desktop machines to share their local caches and form an efficient and scalable web cache. A

churn-resistant peer-to-peer web caching system [83] is designed to resist churn attacks. [104]

develops a novel caching algorithm for P2P traffic. These caching are performed on file-level,

which significantly limit their effectiveness.

Various approaches are also proposed to eliminate traffic redundancy at finer granularity

than packet-level. [51] proposes an efficient selection algorithm for selecting similar objects

as references. A value-based web caching [102] is motivated by the facts that web files

may be changed gradually and aliased, and proposes to split files into blocks. Also, a

protocol-independent technique [111] proposes a mechanism to detect repetitive traffic on

a communication link and provides a protocol-independent idea to eliminate the repetitive

segments. [105] uses digests for packets to directly suppress redundant transfers in networks

by using a proxy on either end of a low bandwidth connection. Work [37] proposes to

152

deploy packet-level memories on Internet routers and change routing protocols to explicitly

remove redundancy, and Work [38] further presents redundancy-elimination design as a

network-wide service.

5.8 Conclusion

In this work, we study traffic redundancy in wireless networks. Motivated by several unique

observations obtained from trace analysis, we propose a solution suite called Wireless Mem-

ory which can help deliver better performance by eliminating redundancy.

153

(a) Client memory

(b) AP memory

Figure 67: Memory structure for clients and AP

154

(a) Memory Filter (MF)
Received a packet P
If P is encrypted

Let it through (filtered out)
End
If Memory is full

If P contains binary data
Let it through

End
If P belongs to non-correlated clients

Let it through
End

End
(b) Memory Fidelity Enhancer (MFE)
AP

Received a packet P from client Ci:
Obtain the rates of clients Ri

For every associated clients Cj

If Rj ≥ Ri

Put P into j’s shadow memory
End
Put P into i’s shadow memory

Clients
Received a packet P from client AP:
Put P into shadow memory

(c) Memory Sizer (MS)
I : Number of main memory entries
Dthrd: Number of packets triggering resizing
Dcurr: Number of packets so far

Received a packet P :
Dcurr ++
If Dcurr ≥ Dthd

Sort main memory based on pi(si − logI)

Find Î to maximize
∑I

i=1
pi(si − logI)

Dcurr = 0
End

(d) Memory Localizer (ML)
Segcurr,prev: Current, previous segment
IDclus: Current cluster ID
ArrayIDi

: Array of cluster IDs of a memory entry i

Delimited segs put into time-based clusters
Do memory lookup for Segcurr

If Segcurr results in a cache-miss
Tag Segcurr with IDclus

Else (// cache-hit)
Add IDclus into ArrayID of Segcurr
If ArrayIDs of Segprev and Segcurr

share elements
Reference Segcurr using decoding offset

End
(e) Memory Replacer (MR)

Do memory lookup for Segcurr
If cache-miss

If Main Memory not full
Enqueue it to Main Memory

Else
Enqueue it to Shadow Memory
Replace least useful entry with Segcurr

End
Else (//cache-hit)

Update the status of hit memory entry
End

(f) Memory Advertiser (MA)
Numhit: Current number of continuous

cache-hits
Thdhit: Threshold value of triggering
ArrayIDi

: Array of cluster IDs of a entry i

Clustermax, F reqmax: Most common
cluster and its frequency

Setadv: The segment set for advertising

Do memory lookup for Segcurr
If cache-hit

Numhit ++
If Numhit ≥ Thdhit AND

Freqmax ≥
Numhit

2
for ArrayIDs

Get the optimal Setsegm of Clustermax

Compose an advertizement packet based
on hashes of Setadv

Send the adv. packet to receiver
Numhit = 0

End
Else (//cache miss)

Stop advertising memory; Numhit = 0
End

Figure 68: Pseudo code for Advanced Design Elements: MF (a), MFE (b), MS (c), ML
(d), MR (e) and MA (f)

155

1 2 3 4 5 6 7
0

2

4

6

8

10

12

Days

T
hr

ou
gh

pu
t (

M
bp

s)

Default
WM

(a) Building A

1 2 3 4 5 6 7
0

2

4

6

8

10

12

Days

T
hr

ou
gh

pu
t (

M
bp

s)

Default
WM

(b) Building B

1 2 3 4 5 6 7
0

2

4

6

8

10

12

Days

T
hr

ou
gh

pu
t (

M
bp

s)

Default
WM

(c) Building C

Figure 69: Aggregate network throughput based on three data sets

Def. MRD MF MFE ML MA MR MS WM
0

10

20

30

40

50

60

70

80

90

100

110

Scenarios

N
or

m
al

iz
ed

 d
at

a
si

ze
 (

%
)

(a) Coded size

Def. MRD MF MFE ML MA MR MS WM
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Scenarios

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
M

bp
s)

(b) Throughput

Figure 70: Low redundancy

156

Def. MRD MF MFE ML MA MR MS WM
0

10

20

30

40

50

60

70

80

90

100

110

Scenarios

N
or

m
al

iz
ed

 d
at

a
si

ze
 (

%
)

(a) Coded size

Def. MRD MF MFE ML MA MR MS WM
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Scenarios

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
M

bp
s)

(b) Throughput

Figure 71: Medium redundancy

Def. MRD MF MFE ML MA MR MS WM
0

10

20

30

40

50

60

70

80

90

100

110

Scenarios

D
at

a
si

ze
 (

%
)

(a) Coded size

Def. MRD MF MFE ML MA MR MS WM
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Scenarios

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
M

bp
s)

(b) Throughput

Figure 72: High redundancy

0 1 2 3 4 5 6 7 8
6

6.5

7

7.5

8

8.5

9

9.5

10

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
M

bp
s)

Number of WM clients

Redundancy = 20%
Redundancy = 40%
Redundancy = 60%

Figure 73: Adoption curve

157

Rabin-based Delimitation Based on Rabin random polynomials, such an approach in essence ran-

domizes the occurrence pattern of delimiters by using a sequence of byte contents rather than a single

byte value. Specifically, given a data packet of N bytes, byte Bi’s Rabin value Ri is computed using

Ri = BiK
r + Bi+1K

r−1 + . . . + Bi+k (Mod M), where r is a small integer, M a modulus, and K a prime

(e.g. 11). The number of data segments is controlled by the delimiter probability p. By comparing Ri to

pM , if Ri < pM , byte Bi is a delimiter, otherwise it is not. Segments then are extracted after the delimiters

are identified. Specifically, if Bi is a delimiter, then it serves as the starting byte of a new segment. The

segment contains all the bytes from Bi to the byte right before the next delimiter. The first and last blocks

of a data packet contain the bytes left by other segments.

158

CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we study the problem of application acceleration for wireless and mobile environments. We

explore the problem along five dimensions: advanced network protocol design, overcoming application behav-

ior, eliminating traffic redundancy, network provisioning and quality of service (QoS). Though tremendous

amount of researches have been conducted along the three dimensions of advanced network protocol design,

network provisioning and quality of service (QoS), the application performance improvement delivered by

these researches are fundamentally constrained by certain properties and challenges relevant to the wireless

and mobile environments.

In this work we focus on the two dimensions of overcoming application behavior and eliminating traffic

redundancy. First, we consider specific types of applications including client-server applications, peer-to-

peer applications and location based applications on smartphones. We identify various application behaviors

that negatively impact application performance and propose design principles to deal with them. We also

conduct system research by building protocols for these applications.

Second, we improve application performances by accelerating content delivery by eliminating traffic

redundancy in wireless networks. The proposed solution is referred to as wireless memory, which can

maintain memory on both ends of communication paths. By eliminating redundancy, traffic sizes can be

reduced and the application throughput can be improved.

In summary, my thesis involves the experimental analysis of the new dimensions of application behavior

and traffic redundancy for performance optimization in wireless data networks, and design of application-

acceleration and wireless memory solutions guided by a strong systems-focus to exploit those dimensions

using generalized principles derived from the analysis.

6.2 Future Work

Based on our conducted research, we feel that the topic of application acceleration deserves further study

due to its importance and complexity. In the following, we identify four potential directions of future work.

The first direction is along the dimension of overcoming application behavior. Though we have identified a

set of application behaviors that affect performance, given the vast number of existing and future application

types, we do not claim the completeness of our research along this dimension. We believe other application

behaviors can be potentially identified and extracted from various types of applications.

159

The second direction is along the the dimension of eliminating traffic redundancy. We admit that

our work is limited from certain perspectives and believe more researches can be done with regard to this

dimension. For instance, though our approach can eliminate traffic redundancy for un-encrypted traffic, it

fails to eliminate the redundancy in encrypted traffic. More advanced designs can be potentially proposed

to overcome this inefficiency, possibly by being aware of the encryption mechanisms on trusted network

entities.

The third direction is cross-dimension research. In this thesis, we characterize a set of dimensions for

application acceleration in Chapter 1 and present the thesis work along two of the dimensions. Though

each of the researches is conducted along a single dimension, we believe future researches can benefit from

being cross-dimension. In other words, researches could span more than one dimensions for higher effective-

ness. For instance, the dimensions of advanced network protocol design and eliminating traffic redundancy

can be potentially integrated by designing network protocols that are redundancy-free. As an example, a

redundancy-free transport protocol may expose interfaces to applications allowing applications to explicitly

remove traffic redundancy before the actual transmission.

Finally, the fourth direction is to conduct more comprehensive system-related research in the context of

application acceleration. For instance, each of the dimensions we identified in Chapter 1 could give rise to

various system-related challenges when accelerating large-scale applications in real environments, and these

challenges can only be addressed by considering the specific environmental characteristics.

160

REFERENCES

[1] “Android market,” http://www.android.com/market, (03/2010).

[2] “Arch linux,” http://www.archlinux.org/download, (04/2010).

[3] “Bittorrent,” http://www.bittorrent.org/, (03/2010).

[4] “CIFS: A common internet file system.” http://www.microsoft.com/ mind/1196/cifs.asp, (03/2010).

[5] “Comscore media metrix top 50 online property ranking.” http://www.comscore.com/press/release.asp?press=547,
(03/2010).

[6] “Converged access wan optimization.” http://www.convergedaccess.com/, (03/2010).

[7] “edonkey2000,” http://en.wikipedia.org/wiki/EDonkey2000, (04/2010).

[8] “Enhanced ctorrent, a lightweight c++ implementation,” http://www.rahul.net/dholmes/ctorrent/,
(04/2010).

[9] “Facebook,” http://www.facebook.com/, (04/2010).

[10] “Fasttrack,” http://en.wikipedia.org/wiki/FastTrack, (04/2010).

[11] “Fedora distribution,” http://fedoraproject.org/en/get-fedora/, (05/2010).

[12] “Foursquare,” http://www.foursquare.com/, (05/2010).

[13] “Gnutella protocol specification, version 0.4.” http://www.clip2.com/GnutellaProtocol04.pdf,
(05/2010).

[14] “Juniper networks.” http://www.juniper.net/, (03/2010).

[15] “Linux magzine.” http://www.linux-magazine.com/issue/15/, (03/2010).

[16] “Madwifi project,” http://madwifi-project.org/, (03/2010).

[17] “Mandriva distribution,” http://www.mandriva.com/en/download, (05/2010).

[18] “Melodeo’s mobile phone p2p to launch,” http://www.ringtonia.com/, (05/2010).

[19] “Minimo, a small, simple, powerful, innovative web browser for mobile devices.”
http://www.mozilla.org/projects/minimo/, (05/2010).

[20] “Myspace,” http://www.myspace.com/, (05/2010).

[21] “Netfilter project,” http://www.netfilter.org/, (03/2010).

[22] “A new type of radio,” http://www.roadcasting.org/, (05/2010).

[23] “Open handset alliance,” http://www.openhandsetalliance.com/, (05/2010).

[24] “Opentable,” http://www.opentable.com/, (04/2010).

[25] “Peer-to-peer in 2005,” http://www.cachelogic.com/home/pages/research/p2p2005.php, (03/2010).

[26] “Pocket internet explorer.” http://www.microsoft.com/windowsmobile/, (01/2010).

[27] “Real time traffic,” http://monthorin.net/tiki-index.php, (01/2010).

[28] “Rfc 3135: Performance enhancing proxies intended to mitigate link-related degradations.”
http://www.ietf.org/rfc/rfc3135.txt, (01/2010).

[29] “Riverbed technology.” http://www.riverbed.com/, (03/2010).

[30] “Rzip,” http://rzip.samba.org/, (03/2010).

[31] “Skyhook,” http://www.skyhook.com/, (01/2010).

[32] “Torrent server for the fedora project,” http://torrent.fedoraproject.org/, (05/2010).

[33] “Twidroid,” http://www.twidroid.com/, (04/2010).

[34] “Twitter,” http://www.twitter.com/, (04/2010).

[35] “Winpkfilter,” http://www.ntkernel.com/, (01/2010).

161

[36] “IEEE 802.11 working group: the standards for wireless LANs,” (www.ieee802.org), August 2004.

[37] Anand, A., Gupta, A., Akella, A., Seshan, S., and Shenker, S., “Packet caches on routers: the
implications of universal redundant traffic elimination,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 4, pp. 219–230, 2008.

[38] Anand, A., Sekar, V., and Akella, A., “Smartre: an architecture for coordinated network-wide
redundancy elimination,” in Proceedings of ACM SIGCOMM ’09, (Barcelona, Spain), 2009.

[39] Anand, M., Nightingale, E. B., and Flinn, J., “Self-tuning wireless network power management,”
in MobiCom ’03: Proceedings of the 9th annual international conference on Mobile computing and
networking, (New York, NY, USA), 2003.

[40] Anand, M., Nightingale, E. B., and Flinn, J., “Self-tuning wireless network power management,”
in Proceedings of ACM MobiCom ’03, (San Diego, CA, USA), 2003.

[41] Ananthanarayanan, G., Haridasan, M., Mohomed, I., Terry, D., and Thekkath, C. A.,
“Startrack: a framework for enabling track-based applications,” in Proceedings of ACM MobiSys ’09,
(Kraków, Poland).

[42] Armstrong, T., Trescases, O., Amza, C., and de Lara, E., “Efficient and transparent dynamic
content updates for mobile clients,” in MobiSys ’06: Proceedings of the 4th international conference
on Mobile systems, applications and services, (New York, NY, USA), pp. 56–68, 2006.

[43] Azizyan, M. and Choudhury, R. R., “Surroundsense: mobile phone localization using ambient
sound and light,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 13, no. 1, pp. 69–72, 2009.

[44] Balakrishnan, H. and Katz, R., “Explicit Loss Notification and Wireless Web Performance,” in
IEEE GLOBECOM Global Interne, (Sydney, Australia), November 1998.

[45] Ben Abdesslem, F., Phillips, A., and Henderson, T., “Less is more: energy-efficient mobile
sensing with senseless,” in Proceedings of ACM MobiHeld ’09, (Barcelona, Spain), 2009.

[46] Bharambe, A. R., Herley, C., and Padmanabhan, V. N., “Some observations on bittorrent per-
formance,” SIGMETRICS Perform. Eval. Rev., 2005.

[47] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and Weiss, W., “An architecture for
differentiated service,” 1998.

[48] Braden, R., Clark, D., and Shenker, S., “Integrated services in the internet architecture: an
overview,” 1994.

[49] Brezmes, T., Gorricho, J.-L., and Cotrina, J., “Activity recognition from accelerometer data on
a mobile phone,” in Proceedings of IWANN ’09, (Salamanca, Spain), 2009.

[50] Campbell, A. T., Eisenman, S. B., Fodor, K., Lane, N. D., Lu, H., Miluzzo, E., Musolesi,

M., Peterson, R. A., and Zheng, X., “Transforming the social networking experience with sensing
presence from mobile phones,” in Proceedings of ACM SenSys ’08, (Raleigh, NC, USA), 2008.

[51] Chan, M. C. and Woo, T. Y. C., “Cache-based compaction: A new technique for optimizing web
transfer,” in Proceedings of IEEE INFOCOM ’99, (New York, NY), 1999.

[52] Chandra, S. and Vahdat, A., “Application-specific network management for energy-aware streaming
of popular multimedia formats,” in Proceedings of the General Track: 2002 USENIX Annual Technical
Conference, (Berkeley, CA, USA), 2002.

[53] Chunlong Guo, L. C. Z. and Rabaey, J., “Low power distributed mac for ad hoc sensor radio
networks,” in Global Telecommunications Conference, 2001. GLOBECOM ’01. IEEE, pp. 2944–2948,
2001.

[54] Constandache, I., Gaonkar, S., Sayler, M., Choudhury, R. R., and Cox, L., “Enloc: Energy-
efficient localization for mobile phones,” in Proceedings of IEEE INFOCOM Mini Conference ’09, (Rio
de Janeiro, Brazil), 2009.

[55] Conti, M., Gregori, E., and Turi, G., “A cross-layer optimization of gnutella for mobile ad hoc
networks,” in MobiHoc ’05: Proceedings of the 6th ACM international symposium on Mobile ad hoc
networking and computing, (New York, NY, USA), 2005.

[56] Czerwinski, S. and Joseph, A., “Using simple remote evaluation to enable efficient application pro-
tocols in mobile environments,” in Proceedings of the 1st IEEE International Symposium on Network
Computing and Applications, (Cambridge, MA), 2001.

162

[57] de Lara, E., Wallach, D., and Zwaenepoel, W., “Puppeteer: component-based adaptation for
mobile computing (poster session),” SIGOPS Oper. Syst. Rev., vol. 34, no. 2, p. 40, 2000.

[58] de Lara, E., Wallach, D. S., and Zwaenepoel, W., “Hats: Hierarchical adaptive transmission
scheduling,” in Multimedia Computing and Networking Conference (MMCN), (San Jose, California,
USA), 2002.

[59] Dellarocas, C., “Immunizing online reputation reporting systems against unfair ratings and dis-
criminatory behavior,” in EC ’00: Proceedings of the 2nd ACM conference on Electronic commerce,
(New York, NY, USA), 2000.

[60] Dwyer, D. and Bharghavan, V., “A mobility-aware file system for partially connected operation,”

[61] Eisenman, S. B., Miluzzo, E., Lane, N. D., Peterson, R. A., Ahn, G.-S., and Campbell, A. T.,
“The bikenet mobile sensing system for cyclist experience mapping,” in Proceedings of ACM SenSys
’07, (Sydney, Australia), 2007.

[62] Fall, K., “Network emulation in the vint/ns simulator,” in ISCC ’99: Proceedings of the The Fourth
IEEE Symposium on Computers and Communications, (Washington, DC, USA), 1999.

[63] Gaonkar, S., Li, J., Choudhury, R. R., Cox, L., and Schmidt, A., “Micro-blog: sharing and
querying content through mobile phones and social participation,” in Proceedings of ACM MobiSys
’08, (Breckenridge, CO, USA), 2008.

[64] Gellersen, H. W., Schmidt, A., and Beigl, M., “Multi-sensor context-awareness in mobile devices
and smart artifacts,” Mob. Netw. Appl., vol. 7, no. 5, pp. 341–351, 2002.

[65] Györb́ıró, N., Fábián, A., and Hományi, G., “An activity recognition system for mobile phones,”
Mob. Netw. Appl., vol. 14, no. 1, pp. 82–91, 2009.

[66] Henderson, T. andKatz, R., “Transport protocols for Internet-compatible satellite networks,” IEEE
Journal on Selected Areas in Communications(JSAC), vol. 17, pp. 345–359, Feb. 1999.

[67] Henderson, T., Kotz, D., and Abyzov, I., “The changing usage of a mature campus-wide wire-
less network,” in MobiCom ’04: Proceedings of the 10th annual international conference on Mobile
computing and networking, (New York, NY, USA), 2004.

[68] Hoh, B., Gruteser, M., Herring, R., Ban, J., Work, D., Herrera, J.-C., Bayen, A. M.,
Annavaram, M., and Jacobson, Q., “Virtual trip lines for distributed privacy-preserving traffic
monitoring,” in Proceedings of ACM MobiSys ’08, (Breckenridge, CO, USA), 2008.

[69] Hsieh, H.-Y., Kim, K.-H., and Sivakumar, R., “On achieving weighted service differentiation: An
end-to-end perspective,” in IEEE IWQoS ’03: Proceedings of the International Workshop on Quality
of Service, (Monterey, CA, USA), 2003.

[70] Hsieh, H.-Y., Kim, K.-H., Zhu, Y., and Sivakumar, R., “A receiver-centric transport protocol for
mobile hosts with heterogeneous wireless interfaces,” in MobiCom ’03: Proceedings of the 9th annual
international conference on Mobile computing and networking, (New York, NY, USA), pp. 1–15, ACM,
2003.

[71] Huang, C.-M., Hsu, T.-H., and Hsu, M.-F., “A file discovery control scheme for p2p file shar-
ing applications in wireless mobile environments,” in ACSC ’05: Proceedings of the Twenty-eighth
Australasian conference on Computer Science, pp. 39–47, 2005.

[72] Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E., Balakr-

ishnan, H., and Madden, S., “Cartel: a distributed mobile sensor computing system,” in Proceedings
of ACM SenSys ’06, (Boulder, Colorado, USA), 2006.

[73] IXIA. http://www.ixiacom.com/, (03/2010).

[74] Iyer, S., Rowstron, A., and Druschel, P., “Squirrel: a decentralized peer-to-peer web cache,” in
Proceedings of PODC ’02, (Monterey, CA), 2002.

[75] Kang, S., Lee, J., Jang, H., Lee, H., Lee, Y., Park, S., Park, T., and Song, J., “Seemon:
scalable and energy-efficient context monitoring framework for sensor-rich mobile environments,” in
Proceedings of ACM MobiSys ’08, (Breckenridge, CO, USA), 2008.

[76] Korhonen, J. and Wang, Y., “Power-efficient streaming for mobile terminals,” in NOSSDAV ’05:
Proceedings of the international workshop on Network and operating systems support for digital audio
and video, (New York, NY, USA), 2005.

[77] Krashinsky, R. and Balakrishnan, H., “Minimizing energy for wireless web access with bounded
slowdown,” in MobiCom ’02, (New York, NY, USA), 2002.

163

[78] Kuzmanovic, A. and Knightly, E. W., “Tcp-lp: low-priority service via end-point congestion con-
trol,” IEEE/ACM Trans. Netw., vol. 14, no. 4, pp. 739–752, 2006.

[79] Legout, A., Liogkas, N., Kohler, E., and Zhang, L., “Clustering and sharing incentives in
bittorrent systems,” in SIGMETRICS ’07: Proceedings of the 2007 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, (New York, NY, USA), 2007.

[80] Lester, J., Choudhury, T., Borriello, G., Consolvo, S., Landay, J., Everitt, K., and Smith,

I., “Sensing and modeling activities to support physical fitness,” in Proceedings of UbiComp ’05,
(Tokyo, Japan).

[81] Lian, Q., Zhang, Z., Yang, M., Zhao, B. Y., Dai, Y., and Li, X., “An empirical study of collu-
sion behavior in the maze p2p file-sharing system,” in IEEE ICDCS ’07: Proceedings of 27th IEEE
International Conference on Distributed Computing Systems, 2007.

[82] Lin, K., Kansal, A., Lymberopoulos, D., and Zhao, F., “Energy-accuracy aware localization for
mobile devices,” in Proceedings of ACM MobiSys ’10, (San Francisco, California, USA).

[83] Linga, P., Gupta, I., and Birman, K., “A churn-resistant peer-to-peer web caching system,” in
Proceedings of the 2003 ACM workshop on Survivable and self-regenerative systems, (Fairfax, VA,
USA), 2003.

[84] Lu, H., Pan, W., Lane, N. D., Choudhury, T., and Campbell, A. T., “Soundsense: scalable
sound sensing for people-centric applications on mobile phones,” in Proceedings of ACM MobiSys ’09,
(Kraków, Poland), 2009.

[85] Lu, L., Han, J., Hu, L., Huai, J., Liu, Y., and Ni, L. M., “Pseudo trust: Zero-knowledge based
authentication in anonymous peer-to-peer protocols,” in IPDPS ’07: Proceedings of the 21th IEEE
International Parallel and Distributed Processing Symposium, 2007.

[86] Miluzzo, E., Lane, N. D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S. B.,
Zheng, X., and Campbell, A. T., “Sensing meets mobile social networks: the design, implementation
and evaluation of the cenceme application,” in Proceedings of ACM SenSys ’08, (Raleigh, NC, USA),
2008.

[87] Mogul, J. C., Chan, Y. M., and Kelly, T., “Design, implementation, and evaluation of duplicate
transfer detection in http,” in Proceedings of NSDI’04, (San Francisco, CA), 2004.

[88] Mohan, P., Padmanabhan, V. N., and Ramjee, R., “Nericell: rich monitoring of road and traffic
conditions using mobile smartphones,” in Proceedings of ACM SenSys ’08, (Raleigh, NC, USA), 2008.

[89] Mohomed, I., Cai, J. C., Chavoshi, S., and de Lara, E., “Context-aware interactive content
adaptation,” in MobiSys ’06: Proceedings of the 4th international conference on Mobile systems, ap-
plications and services, (New York, NY, USA), pp. 42–55, ACM, 2006.

[90] Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn, J., and Walker,

K. R., “Agile application-aware adaptation for mobility,” in Proceedings of the 16th ACM Symposium
on Operating System Principles, (Saint Malo, France), 1997.

[91] Paek, J., Kim, J., and Govindan, R., “Energy-efficient rate-adaptive gps-based positioning for
smartphones,” in Proceedings of ACM MobiSys ’10, (San Francisco, California, USA).

[92] Pahdye, J. and Floyd, S., “On inferring tcp behavior,” in SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer communications,
(New York, NY, USA), 2001.

[93] Pallis, G. and Vakali, A., “Insight and perspectives for content delivery networks,” Commun. ACM,
vol. 49, no. 1, pp. 101–106, 2006.

[94] Park, K. and Pai, V. S., “Scale and performance in the coblitz large-file distribution service,” in
Proceedings of NSDI’06, (San Jose, CA), 2006.

[95] Parvez, N., Williamson, C., Mahanti, A., and Carlsson, N., “Analysis of bittorrent-like protocols
for on-demand stored media streaming,” SIGMETRICS Perform. Eval. Rev., 2008.

[96] Paul, S., Ayanoglu, E., Porta, T. F. L., Chen, K.-W. H., Sabnani, K. E., and Gitlin, R. D.,
“An asymmetric protocol for digital cellular communications,” in INFOCOM ’95: Proceedings of the
Fourteenth Annual Joint Conference of the IEEE Computer and Communication Societies (Vol. 3)-
Volume, (Washington, DC, USA), p. 1053, IEEE Computer Society, 1995.

[97] Perkins, C., “Mobile IP,” IEEE Communications Magazine, vol. 40, pp. 66–82, May 2002.

164

[98] Qiu, D. and Srikant, R., “Modeling and performance analysis of bittorrent-like peer-to-peer net-
works,” in SIGCOMM ’04: Proceedings of the 2004 conference on Applications, technologies, architec-
tures, and protocols for computer communications, (New York, NY, USA), 2004.

[99] Rabin, M. O., “Fingerprinting by random polynomials,” Technical Report TR-15-81,Center for Re-
search in Computer Technology, 1981.

[100] Rahmati, A. and Zhong, L., “Context-for-wireless: context-sensitive energy-efficient wireless data
transfer,” in MobiSys ’07: Proceedings of the 5th international conference on Mobile systems, applica-
tions and services, (New York, NY, USA), pp. 165–178, ACM, 2007.

[101] Rapier, C. and Bennett, B., “High speed bulk data transfer using the ssh protocol,” in MG ’08:
Proceedings of the 15th ACM Mardi Gras conference, (New York, NY, USA), pp. 1–7, ACM, 2008.

[102] Rhea, S. C., Liang, K., and Brewer, E., “Value-based web caching,” in Proceedings of WWW ’03,
(Budapest, Hungary), 2003.

[103] Rodriguez, P., Mukherjee, S., and Rangarajan, S., “Session level techniques for improving
web browsing performance on wireless links,” in WWW ’04: Proceedings of the 13th international
conference on World Wide Web, (New York, NY, USA), pp. 121–130, ACM, 2004.

[104] Saleh, O. and Hefeeda, M., “Modeling and caching of peer-to-peer traffic,” in Proceedings of ICNP
’06, (Washington, DC), 2006.

[105] Santos, J. andWetherall, D., “Increasing effective link bandwidth by suppressing replicated data,”
in Proceedings of ATEC ’98, (New Orleans, LA, USA), 1998.

[106] Satyanarayanan, M., Kistler, J. J., Kumar, P., Okasaki, M. E., Siegel, E. H., and Steere,

D. C., “Coda: A highly available file system for a distributed workstation environment,” IEEE Trans-
actions on Computers, vol. 39, no. 4, pp. 447–459, 1990.

[107] Shih, E., Bahl, P., and Sinclair, M. J., “Wake on wireless: an event driven energy saving strategy
for battery operated devices,” in Proceedings of ACM MobiCom ’02, (Atlanta, Georgia, USA), 2002.

[108] Sinha, P., Venkitaraman, N., Sivakumar, R., and Bharghavan, V., “Wtcp: a reliable transport
protocol for wireless wide-area networks,” in MobiCom ’99: Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, (New York, NY, USA), pp. 231–241,
ACM, 1999.

[109] Snoeren, A. and Balakrishnan, H., “An end-to-end approach to host mobility,” in MOBICOM,
(Boston, MA, USA), Aug. 2000.

[110] Sorber, J., Banerjee, N., Corner, M. D., and Rollins, S., “Turducken: hierarchical power
management for mobile devices,” in Proceedings of ACM MobiSys ’05, (Seattle, Washington), 2005.

[111] Spring, N. T. and Wetherall, D., “A protocol-independent technique for eliminating redundant
network traffic,” SIGCOMM Comput. Commun. Rev., vol. 30, no. 4, pp. 87–95, 2000.

[112] Srivatsa, M., Xiong, L., and Liu, L., “Trustguard: countering vulnerabilities in reputation man-
agement for decentralized overlay networks,” in WWW ’05: Proceedings of the 14th international
conference on World Wide Web, (New York, NY, USA), 2005.

[113] Su, A.-J., Choffnes, D. R., Kuzmanovic, A., and Bustamante, F. E., “Drafting behind akamai
(travelocity-based detouring),” SIGCOMM Comput. Commun. Rev., vol. 36, no. 4, pp. 435–446, 2006.

[114] The Network Simulator, “ns-2.” http://www.isi.edu/nsnam/ns, (03/2010).

[115] Viredaz, M. A., Brakmo, L. S., and Hamburgen, W. R., “Energy management on handheld
devices,” ACM Queue, vol. 1, no. 7, pp. 44–52, 2003.

[116] Walfish, M., Balakrishnan, H., Karger, D., and Shenker, S., “Dos: Fighting fire with fire,” in
Proceedings of the 4th ACM Workshop on Hot Topics in Networks (HotNets), (College Park, MD),
2005.

[117] Wang, Y., Lin, J., Annavaram, M., Jacobson, Q. A., Hong, J., Krishnamachari, B., and
Sadeh, N., “A framework of energy efficient mobile sensing for automatic user state recognition,” in
Proceedings of ACM MobiSys ’09, (Kraków, Poland), 2009.

[118] Wei, K., Chen, Y.-F., Smith, A. J., and Vo, B., “Whopay: a scalable and anonymous payment
system for peer-to-peer environments,” in IEEE ICDCS ’06: Proceedings of 27th IEEE International
Conference on Distributed Computing Systems, 2006.

165

[119] Wei Ye, John Heidemann, D. E., “An energy-efficient mac protocol for wireless sensor networks,”
in INFOCOM, 2002.

[120] Yan, H., Krishnan, R., Watterson, S. A., and Lowenthal, D. K., “Client-centered energy savings
for concurrent http connections,” in NOSSDAV ’04: Proceedings of the 14th international workshop
on Network and operating systems support for digital audio and video, (New York, NY, USA), 2004.

[121] Yoon, J., Noble, B., and Liu, M., “Surface street traffic estimation,” in Proceedings of ACM MobiSys
’07, (San Juan, Puerto Rico), 2007.

[122] Zandy, V. C. and Miller, B. P., “Reliable network connections,” in MobiCom ’02: Proceedings of
the 8th annual international conference on Mobile computing and networking, (New York, NY, USA),
2002.

[123] Zhang, Z., Chen, S., and Yoon, M., “March: A distributed incentive scheme for peer-to-peer net-
works,” in IEEE INFOCOM ’07: Proceedings of the 26th IEEE International Conference on Computer
Communications, (Anchorage, Alaska, USA), 2007.

[124] Zhu, H. and Cao, G., “On supporting power-efficient streaming applications in wireless environ-
ments,” IEEE Transactions on Mobile Computing, 2005.

[125] Ziv, J. and Lempel, A., “A universal algorithm for sequential data compression,” Information Theory,
IEEE Transactions on, vol. 23, pp. 337–343, May 1977.

[126] Ziv, J. and Lempel, A., “Compression of individual sequences via variable-rate coding,” Information
Theory, IEEE Transactions on, vol. 24, pp. 530–536, Sep 1978.

166

VITA

Zhenyun Zhuang was born in Shandong Province, China. He received his B.E. degree in Information En-

gineering from Beijing University of Posts and Telecommunications in 1997, and his M.S. degree from the

Tsinghua University in 2002. He worked as an engineer in China from 1997 to 1999. He joined the Ph.D.

program of College of Computing at Georgia Tech in Fall 2004, and has been a Research Assistant in Prof.

Sivakumar’s GNAN research group.

167

