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SUMMARY

Information access suffers tremendously in wireless networks because of the low cor-

relation between content transferred across low-bandwidth wireless links and actual data

used to serve user requests. As a result, conventional content-access mechanisms face such

problems as unnecessary bandwidth consumption and large response times, and users ex-

perience significant performance degradation. In this dissertation, we analyze the cause of

those problems and find that the major reason for inefficient information access in wireless

networks is the absence of any user-activity awareness in current mechanisms. To solve

these problems, we propose a new paradigm for mobile information access, which is driven

by awareness to user activity.

To tackle the inefficiency problem of read operations in conventional access systems, we

classify content into non-partitionable single-file content, which cannot be partially accessed

in the file-system level, and partitionable multiple-file content, which enables an application

to access its partial set. Similarly, we also categorize write operations into content synchro-

nization and content generation. In this dissertation, we present three user-activity-aware

strategies for the first three scenarios.

First, for reading non-partitionable content, we present an application-unaware strategy

called Cut-Load, which performs content partitioning in the graphical domain by using

user-activity awareness provided by thin-client computing. To improve access performance,

Cut-Load selects the best computing mode for requested content, hoards original content

in background, and transfers computing modes transparently.

Second, for read operations of partitionable content, we propose an application-aware

strategy called Prioritized Fetching, which performs location-based prioritization for objects

and downloads them based on their priority levels. To maximize performance benefits, the

xii



strategy also uses an intelligent mix of dynamic object reordering and connection manage-

ment.

Finally, for bandwidth-efficient content synchronization, we present an application-

unaware scheme called Mimic, which relies on transferring user activity to the server for file

synchronization. To minimize transfer size, Mimic performs optimization for user-activity

records at the client, regeneration of input system messages at the server, and verification

for the replayed activity.

To evaluate these strategies, we perform ns2 simulations and real-life experiments using

simple prototypes, which are implemented in current operating systems. Then, we show

that our strategies can outperform conventional information access schemes in terms of

bandwidth consumption and user-perceived response times.
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CHAPTER I

INTRODUCTION

The rapid emergence of sophisticated mobile computing technology has accelerated the re-

cent growth in the number of nomadic users, who access information using mobile devices.

However, the increasing ubiquity of mobile computing poses major challenges to current

information access models because of inefficient design. A typical mobile computing en-

vironment is one that consists of a mobile host communicating with backbone servers in

the wired network through one or more wireless links. In this environment, conventional

access models lead to problems of low bandwidth, large response delays, frequent disruption

in connectivity, and low capacity shared among multiple users. Some wired links such as

dial-up modem lines and ISDNs have the similar problems, however in this work we do not

consider such wired networks.

Mobile computing in the broad sense includes a variety of components such as mobile

information access, mobility management, database management, mobile communications,

wireless networking, and so on. The scope of this dissertation is restricted to mobile in-

formation access [81]. We consider all the work performed by the mobile host as remote

information access, including Web browsing, file transfers, and X Terminal accesses, under

the term, mobile information access.

In the past couple of decades, a tremendous amount of research has been done in the

area of mobile information access. Mobile file systems, like AFS [30], Ficus [27], and Coda

[82, 36], provide the ability of disconnected operation when the mobile host loses network

connectivity. Bandwidth-efficient file-transfer technologies, such as Low-bandwidth network

file system (LBFS) [58] and operation shipping [43], significantly minimize network traffic

between a mobile host and a server. Mobile prefetching schemes, such as power-aware

prefetching [102, 83], bandwidth-adaptive prefetching [33], and SPREE [39], reduce access

delay by utilizing limited resource intelligently.
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Most applications today are accessed by the user using a graphical user interface (GUI),

where the user interacts with an application through a pre-defined interface that recognizes

user activity and sends user inputs to the application. However, since the underlying access

schemes are unaware of the nature of user activity that triggers read and write accesses

by the application, those access operations cannot be performed efficiently. For example,

consider the scenario where a user wants to view a document from a backbone server. A

normal access scheme, which is not aware of the exact needs of the user, would fetch the

entire document, irrespective of the parts of the pages that the user finally gets to view.

This leads to the retrieval of information that is not ultimately used by the application.

This drawback is exaggerated by the fact that the mobile host is connected by a wireless

link, where the bandwidth of the link is a precious commodity.

In this dissertation, we propose a new paradigm for mobile information access, which

is driven by awareness to user activity. We call this user-activity-aware mobile information

access. Our paradigm focuses on the two primary operations in mobile information access:

retrieving of files from a backbone server, i.e., read access, and updating cached content

to a backbone server, i.e., write access. Since the read and write accesses are the most

frequent operations in mobile information access, performance benefits obtained through

the optimization of these operations can improve user performance significantly.

To tackle the inefficiency problem of read operations in conventional access systems, we

classify content into two types: non-partitionable content and partitionable content. The

non-partitionable content consists of only a single file, and the underlying access scheme

cannot perform any partial access in the file-system level. On the contrary, the partitionable

content is composed of multiple files, including a main document and other object files, and

the application may access only a partial set of the content if necessary. Similarly, we also

categorize write operations into two types: content generation and content synchronization.

The former is a write access triggered by a user who wants to generate new content, whereas

the latter is executed by an update operation upon the existing content at the server.

In this dissertation, we present three user-activity-aware strategies for three different

scenarios, reading non-partitionable content, reading partitionable content, and content
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synchronization, as follows:

For reading non-partitionable content, we present an application-unaware read-access

scheme called Cut-Load, which performs user-activity-aware read operations in a graphical

domain. For efficient mobile information access, Cut-Load consists of three design elements:

dynamic mode selection, opportunistic hoarding, and transparent mode transfer. Through

simulations and a prototype, we compare its performance with conventional access mecha-

nisms and show that the proposed middleware brings significant performance benefits both

in terms of bandwidth consumption and user-perceived response times;

For user-activity-aware read operations of the partitionable content, we propose an

application-aware Web-acceleration scheme called Prioritized Fetching, which performs ob-

ject prioritization and non-greedy object fetching. To maximize response performance, it

also uses an intelligent mix of object reordering and connection management. Through ns2

simulations and a prototype using Internet Explorer, we show that our scheme shows better

performance then current browsers in screen response time.

For bandwidth-efficient content synchronizations, we present an application-unaware

scheme, called Mimic, which relies on transferring raw user activity or differential update

selectively to the server for bandwidth-efficient file synchronization. Through a simple pro-

totype, we show that raw-activity shipping can outperform the differential update schemes

under many common conditions. We also identify the conditions under which the differen-

tial schemes do perform better than activity shipping, but show that the detection of such

conditions is straightforward, thus enabling both update schemes to be used in tandem with

a mobile file system for bandwidth-efficient file synchronization.

The rest of this dissertation is organized as follows: Chapter 2 elaborates on the problem

setting and the challenges faced by conventional information access schemes. Chapter 3

describes the design philosophy and present three user-activity-aware strategies by providing

a high-level overview. Chapters 4 presents the details of the user-activity-aware scheme for

reading non-partitionable content. Chapter 5 describes the details of the user-activity-aware

scheme for reading partitionable content. Chapter 6 illustrates the details of user-activity-

aware content synchronization scheme. Finally, in Chapter 7, we conclude the dissertation.
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CHAPTER II

MOTIVATION AND RELATED WORKS

In this chapter, we first describe the problem setting and the challenges faced by conven-

tional access schemes in improving the performance of mobile information access. Then, we

discuss the related works.

2.1 Problem Setting

The target host for this work is a mobile host such as a laptop computer or a handheld device

with a wireless network interface. The target mobile host is capable of running applications

in a stand-alone fashion. It has enough system resources and battery capacity to run

all the applications. The mobile host accesses information from backbone servers using

a wireless link. The wireless environment, unlike its wired counterpart, is characterized

by limited bandwidth and significant latency. Wireless bandwidth is very limited and

expensive. Frequent fluctuations of available bandwidth or disconnections interrupt wireless

transmissions, and the performance gets significantly degraded when a user moves in a high

speed.

We consider the following mobile information access scenarios in this dissertation:

• Retrieval of content from a backbone server: In this scenario, any non-local

information access performed by a mobile host results in sending the request to either

a backbone or proxy server close to the mobile host. The data retrieved by the mobile

host, which acts as a client in this scenario, can be cached locally for future requests.

• Update of cached content to a backbone server: As discussed earlier, in order

for the mobile host to access data even during network disconnectivity, file systems

such as Coda [82] provide a mechanism for accessing and updating the locally cached

data. On reconnection with the server, the file system performs synchronization of

the local copy with the server to maintain the consistency semantics.
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Given the above-mentioned scenarios, the problems we consider are optimization of

bandwidth consumption, latency incurred, and overall system utilization, both during in-

formation retrieval from the backbone servers and during synchronization of updated infor-

mation with the server upon reconnection.

2.2 Challenges

Now, we discuss two major challenges, which are faced by conventional information access

approaches in achieving optimal performance for user-activity-aware mobile information

access.

2.2.1 Greedy Content Fetching

In current approaches, content requested by an application is retrieved in entirety from

a server, irrespective of whether or not the entire content is eventually viewed by a user.

Since the underlying file systems are user-activity-unaware, they are not able to differentiate

between essential parts of the content and the unnecessary part that will not be used by the

application, and always use a greedy downloading technique to retrieve the entire content.

Greedy downloading essentially means that the time to serve a user request is tied to the

time to fetch the entire content. It also increases the peak load of the system, thereby

bringing down the overall system utilization.

In an ideal scenario, user requests should be served within a short duration, and this

should be decoupled from the amount of time taken to get the entire content to the mobile

host. This can be solved by partitioning the entire content into smaller chunks so that

only those chunks of data that are actually accessed by the user are downloaded with high

priority. This is especially efficient when the raw data size of the entire content is very large

compared to the amount of the file that the user actually views.

Thus, one of the goals of our work is to incorporate the notion of user-activity-aware

content partitioning to enable intelligent retrieval of content from the server. This obvi-

ously would lead to maximizing user-perceived performance and optimizing precious wireless

bandwidth.

5



2.2.2 Non-Linearity in Size between User-Activity and File Update

Here, we are concerned with the second scenario discussed in the problem scenario, namely,

synchronization of the updated cache contents with the server copy. Recent file systems use

a differential update (diff1) approach to synchronize the local copy with the server, where it

transfers only file content differentials that can be used by the server to recreate the copy at

the client end. These approaches, under several commonly occurring conditions, may incur

considerably more overhead than needed to perform file synchronization.

Briefly, the key reason for large synchronization overhead is that applications today

predominantly use application-specific file-storage semantics in lieu of simple text-based

storage. For example, Microsoft Office applications, such as Word and PowerPoint, use

proprietary file-storage semantics. Other platform-independent document-generating appli-

cations, such as Adobe Acrobat, and encryption tools, such as crypt, also store files in an

application-specific format.

When applications use such tailored formats, even minor changes in the file’s user-

specific content can result in substantial changes in the binary representation of the file

in storage. Hence, there is a high degree of disparity between the magnitude of user-level

changes and the change in the underlying file contents, and the actual transfer size during

resynchronization phase does not truly reflect the user activity. Given that the network

connections are weak, an important problem in a mobile information access framework is

the minimization of file synchronization overheads if and when copies of files at the client

are synchronized with those at the server.

2.3 Related Works

In this section, we summarize the related works in the area of mobile information access.

2.3.1 Mobile File Systems

The Andrew file system (AFS) [30] allows clients to cache files from the server and supports

close-to-open consistency semantics wherein writes by clients are visible only to new sessions

1In Unix, the diff command compares the contents of the two files and show the difference.
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that are opened after the writes. AFS also allows for callbacks wherein clients do not need

to explicitly perform cached copy validation, and the responsibility lies with the server

to inform the client when a copy is invalid. AFS uses a full file transfer method to send

updated copies to the server for synchronization.

The Coda file system [82] is based on AFS, but supports disconnected operations for

mobile hosts. When the client is connected to the network, it hoards files for later use

during disconnected operations. During disconnections, Coda emulates the server, serving

files from its local cache. Any updates are recorded in the form of dirty “block” logs to be

used later during re-integration. Logs are periodically optimized by appropriately deleting

blocks that have either been rewritten or deleted. During file synchronization, only the log

is sent to the server. Coda allows for trickle integration, which uses any available bandwidth

to trickle updates back to the server, and also provides for asynchronous updates wherein

local file requests before an update is complete are served from the local copy.

The Bayou storage system [91] is also designed for a mobile computing environment.

Updates are propagated using an epidemic algorithm that allows for lazy updates. However,

the propagation still entails the transfer of full files. The Sprite file system [17] was developed

for file-intensive applications. Since Sprite workstations are diskless, Sprite cannot cache

entire files and instead caches file blocks of 4KB on its main memory. Sprite writes back all

dirty blocks that have not been modified in the last 30 seconds, based on write-back policy.

However, when a file server crashes, all processes having opened files with that server must

be terminated and restarted.

In [43], Lee et al. propose a new technique, called operation shipping as an extension to

Coda. High-level commands or user operations are logged at the client and shipped to the

server for a playback. However, for interactive applications, operation shipping relies on

application awareness and hence requires changes to any interactive application that needs

to be served by the approach.

The low-bandwidth network file system (LBFS) [58] exploits cross-file similarities be-

tween files, just as the Unix command diff does for text files. It exploits the fact that

updated files often contain a number of segments in common with previous versions of the
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same files. The LBFS file server divides the files into chunks and indexes a large persistent

file cache. When transferring a file, LBFS identifies chunks of data that the server already

has. Then, the client sends only non-overlapped chunks to the server. The Prayer file sys-

tem (PFS) [19] also performs differential updates, but requires applications to store data

in a pre-specified file format, which thus is not an application-unaware solution. There are

several off-the-shelf applications that perform the task of computing the differential between

two file copies and patching one of the copies with differences provided as input. Examples

include xDelta [34], .RTPatch [73], exeDiff [2], and BSDiff [72]. It is important to note that

while the approaches differ in terms of the specific mechanisms, their underlying principle

is the same.

2.3.2 Thin-Client Computing

An existing model called thin-client computing provides the required abstraction of user-

activity-aware mechanisms that we can utilize in the framework. But, we observe that a

stand-alone thin-client computing model is not a feasible for mobile information access.

In [10], Chawathe et al. design a proxy that can transform data in new formats to

old formats to accommodate thin clients. Most software upgrades can then be performed

at the proxy as opposed to at the client. In [95], Wong et al. analyze a real thin-client

product, Microsoft Terminal Services. The authors show the performance analysis of CPU,

memory, and bandwidth usage for several types of local applications. The focus of the

paper is primarily on resource sharing in a multi-user environment. The paper has limited

analysis of the user behavior. In [101] and [99], Yang et al. analyze and compare the

performance of thin-client computing approaches in a wireline environment. The authors use

an internal Web server, and focus solely on Web browsing performance using several thin-

client platforms. However, the paper does not use a real network environment, but instead

relies on the Cloud network simulator for emulating network conditions. In [40], Lai et al.

evaluate the Web-browsing performance of thin-client computing in a wireless environment.

The authors focus on latency and size of pure transferred TCP data impacted by high

packet loss rate over a wireless network. However, their experiments are also executed
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in the simulated environment emulated by the wired network emulator, even though the

network characteristics in a wireless environment are completely different from those in a

wired environment.

2.3.3 Web Characteristics

In order to obtain optimization techniques related to Web fetching, a lot of research have

studied the characteristics of HTML documents and embedded objects included in Web

pages.

Bray [5] and Woodruff et al. [96] perform a quantitative analysis for the select several

million Web pages and provides the basic statistics of byte size, tags, attributes, object file

types, links in those pages, using their tools and search engines. Douglis et al. [16] quantified

the benefit of a proxy cache by using traces collected at two large corporations: AT&T

Labs and Digital Equipment Corporation. Through the trace collections and analysis, they

conclude that access rate, life time, and modification rate of Web objects depend mainly on

content type and domain name. In [6], Breslau et al. investigate the distribution of HTTP

requests through Web proxy caches and find that it follows Zipf’s law; the probability of a

request for the i-th most popular page is proportional to 1/i. Shi et al. [84] have proposed

a methodology to obtain the characteristics of dynamic Web objects. Through an analysis

of six popular Web sites’ content, they conclude that object sizes and freshness times of

such dynamic object follow an exponential or Weibull distribution.

2.3.4 Web Caching

Web accesses from large population of users typically follow the Pareto principle; 80% of

total Web content is accessed only by 20% of users, i.e., most users access only a small

part of the entire Web content in Internet [80]. As a result, Web servers containing popular

content frequently become overloaded and underpowered by repeating the process for the

same content continuously. To reduce this unnecessary bandwidth consumption, many

Web-cache techniques have been developed.

First, a Web cache can be deployed in the browser level. Most Web browsers, includ-

ing Microsoft Internet Explorer [47], Netscape Navigator [61], and Mozilla Firefox [56], use
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private or shared caches to keep the records of accessed Web content, such as HTML doc-

uments, images, and videos. A browser-level cache can be deployed easily and show the

best access-time performance for the cached content data. However, only limited content

can be cached and re-accessed by a local user(s), who uses the browser in the same ma-

chine. In addition, the cache should be customized and maintained periodically for the best

performance.

Xu et al. [98] propose a cooperative client-cache technique, where all the clients generate

a large virtual cache by sharing their browser caches in a P2P fashion. It has high scalability

since caching and data-lookup operations are distributed across all clients and superclients.

Their simulation results show that the proposed scheme show better performance than other

proxy-based cache solutions.

In order to support a large number of group users in a large organization (e.g., campus,

company, and ISP), forward proxy caches, such as Squid [90], Wingate [75], and Privoxy

[74], have been developed. These proxy caches store local copies of frequently accessed

content and provide them to clients in the group. Mogul et al. [54] investigate the potential

benefits of data compression and differential update in Web caches and show that the

combination of both can yield the best performance in transfer size and time [52]. However,

most forward proxy caches are not transparent to browsers, i.e., the users need to explicitly

configure their browsers to use the caches. In addition, they may not be able to perform

user authentication for specific content, and RFC 3143 [14] discusses problems with these

proxy caches.

Proxy caches, called reverse proxy caches, can be deployed in front of Web servers by

content providers. The reverse caches process HTTP requests on behalf of the main Web

servers or pass them to the main servers if necessary (e.g., security issue, dynamic object

problem, etc.). Except some products, such as SpiderCache [93] and CacheFlow [4], most

reverse proxies cannot cache dynamic objects, which is generated based on ASP [49], JSP

[88], or Zope [103], and this dynamic content generally requires a significant amount of

processing resource2.

2Generating a dynamic Web page may require up to 60 round trips between Web and database servers,
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To distribute compute-intensive or large-sized load to multiple servers, a number of

reverse caches may compose a cooperative Web delivery system, called a content delivery

network (CDN), where all the reverse caches serve content behind a single IP address of

the origin server. Current CDN providers, such as Digital Island [15] and Akamai [3],

generally deploy multiple server groups in multiple geographical locations. This edge-origin

deployment increases user-perceived browsing speed by minimizing Web-delivery distance,

which is calculated as a number of hops or round-trip time. However, the initial deployment

of the infrastructure entails considerable expense, and additional maintenance is required

continuously. Thus, if necessary, Web content providers outsource the service from CDN

providers.

2.3.5 Prefetching

Even though bulit-in caches in Web browsers and proxy caches maintains a significant

amount of cached objects, objects requested by users may not be available in the caches

because of many reasons; new access, limited cache size, and expiration of cached objects.

In order to reduce fetching time for these non-cached objects, many researchers have focused

on object-prefetching techniques.

In [70], the authors propose a server-based prefetching scheme, where the server makes

predictions of user’s future Web accesses through a graph-based Markov model and the

client decides to prefetch the objects. Using simulations, they show that user-perceived

latency can be reduced significantly at the cost of a network traffic increase.

Duchamp [18] proposes a client-initiated prefetching approach, where clients send the

records of the hyperlinks included in their accessed pages to let the servers distribute them to

all the clients by piggybacking on GET responses. Based on the access frequency, the clients

select Web pages that they would prefetch in the caches. Through a real implementation

with modifications of Mozilla and httpd, the author proves that the proposed approach can

reduce response time by more than 50%.

On the other hand, Chen et al. [11] propose a cooperative prefetching scheme between

and thus the Web server may become unresponsive frequently [93].
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a server and a proxy, which minimizes communication overhead by adaptively utilizing the

reference access information in two different levels. In their scheme, the access information

stored in the server is used only to access objects that are not qualified for proxy-based

prefetching. Using trace-driven simulations, they show that the hit ratios are increased by

5% to 88% compared to proxy- and server-based prefetching schemes.

In [32], the authors propose a context-oriented prefetching technique, which uses key-

words in HREFs to capture user-access patterns and neural networks to predict user’s

future access patterns. Unlike URL-based schemes, this technique does not require the his-

torical references of requested objects but uses its self-learning capability and adaptability.

Through experiments with MSNBC and CNN Web sites, the paper shows that it achieves

up to 60% hit ratios.

Web acceleration products, such as Google Web Accelerator [26], CacheFlow [4], and

Network Appliance’s NetCache [62], reduce user response time by using a mix of prefetching

and proxy-based caching in current Web applications. However, since those products are

optimized for broadband networks and perform prefetching too aggressively, low-bandwidth

users may not see any improvement and instead excessive bandwidth consumption can

degrade performance of other users or applications significantly [1].

2.3.6 Transcoding

Over the past few decades, available network bandwidth for has increased dramatically,

however many users in dial-up connections or mobile networks still suffer from narrow

bandwidth. However, most Web content has been designed without considering users’

various computing environments, and thus the low-bandwidth users often have to wait an

inordinately long time to download a Web page. In order to solve this bandwidth-diversity

problem, many research has been performed in area of content adaptation.

In [8], [23],and [86], the authors present proxy-based transcoding approaches, where

application-specific transcoders convert HTTP responses into different formats better suited

for the client. Han et al. [28] derive the theoretical conditions of transcoding and present

adaptive-transcoding policies for mobile Web browser. These proxy-based approaches can
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be easily deployed without major modifications in current networks, however in most cases

they require lossy compressions that degrade the quality of images or sound significantly.

In [37], the authors propose a scheme that transparently support resource-constrained

mobile devices through powerful proxies. The proxy adapts its mechanisms to the dynamic

nature of the wireless environment and addresses the limitations of the client devices. The

proxy provides filtering and compression of graphical images, converts postscript files to

ASCII text, and does static data partitioning.

Gilbert at el. [25] propose a new Web-delivery scheme that improves initial response time

performance of images using progressive JPEG coding. The scheme also allows to accelerate

downloading specific images, to which users explicitly point with interest. Using a Web

proxy and browser-side Java applets, the authors implement a prototype for performance

evaluation and show that the delivery of the first visible layer can be reduced by up to 80%.

Noble et al. [65] also propose an application-aware distillation technique that controls

compression ratio of objects in order to adapt to changing network environments. In the

paper, they construct a prototype, called Odyssey, which control the quality of objects

in three modified applications; a video player, a Web browser, and a speech recognition

program.

In [35], the authors propose a combination of end-to-end and proxy-based approaches

as an ideal solution for supporting mobile hosts. The proxy explicitly requests data from

servers that has a resolution matching the present QoS and client capabilities. In [41],

the authors propose Puppeteer, a system for adapting component-based applications in a

mobile environment. Puppeteer has the advantage of adaptive transcoding execution by a

proxy without modifying applications. However, it cannot overcome a quality degradation

problem caused by limitations of transcoding. In [22], the authors propose Spectra, a

remote execution system, to balance performance, energy conservation, and application

quality. Even though it manages resources effectively in a mobile environment, it has a

limitation of application dependency. Therefore, it needs newly structured applications for

Spectra or modification of current applications.
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Currently, a lot of prototypes and commercial transcoding products such as UC Berke-

ley’s Transend [24], Intel’s QuickWeb, IBM’s WebExpress [29], and Oracle’s Portal-To-

Go [69] have been developed to improve Web response performance by reducing image

quality or size via lossy compression or image transformation. However, these solutions are

difficult to deploy since it requires support from non-browser entities.
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CHAPTER III

CONTRIBUTIONS AND OVERVIEW

To tackle the problem of read operations in conventional information access systems, we

classify content into two types: non-paritionable content and partitionable content. The

non-paritionable content consists of a single file, and thus the underlying access scheme

cannot perform any partial access in the file-system level. Most application files, such as

office documents, come under this category. To the contrary, the partitionable content is

composed of multiple files, including a main text and other object files; composite documents

such as HTML, XML, TEX, and programming content belong to this category. Therefore,

the corresponding applications can access only a partial set of the content if necessary.

Similarly, we also categorize write operations into two types; content generation and

content synchronization. The former is a write access triggered by a user who wants to

generate new content, whereas the latter is executed by an update operation upon the

existing content at the server.

In this dissertation, we study the inefficiency of user-activity-unaware conventional in-

formation accesses under various conditions in wireless networks and present three infor-

mation access strategies for three different scenarios: reading non-partitionable content,

reading partitionable content, and content synchronization.

1. Application-unaware read access for non-partitionable content: Notwithstanding the

fact that there exist fetch-on-demand versions of some particular applications, it is in-

feasible to develop a generic data-partitioning technique for non-partitionable content,

which cannot be partially accessed in the file-system level. For instance, in Microsoft

Word and Adobe Acrobat files, content is stored without any correspondence to the

way the user accesses them.

Content partitioning for non-partitionable content can be achieved in the graphical

domain by using the user-activity awareness provided by thin-client computing. This
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would help fetch only the data that will be shown in the display device, and the

user could achieve quick response time that would not be possible if the user were

to download the entire content, as is done using conventional content access. Note

that this form of content partitioning in the graphical domain can be performed in

an application-independent manner because any content can be represented using a

common abstraction in the graphical domain. In this dissertation, we use the issues

with a default graphical-domain content partitioning technique as the motivation to

design and implement a new approach to mobile Web information access, called Cut-

Load. Cut-Load uses application-unaware content partitioning along with three unique

design elements: dynamic mode selection, opportunistic hoarding, and transparent

Mode transfer.

2. Application-aware read access for partitionable content: Hybrid content, such as HTML,

XML, TEX, which consists of multiple text and non-text object files, and program-

ming projects can be partially accessed by fetching object files selectively. We call this

content as partitionable content. A typical example of partitionable content is a Web

page, which consists of a main HTML document, cascading style sheets, javascripts,

images, and other multimedia object files.

When a user is viewing partitionable content on a display device, objects for display-

ing other screens are unnecessary in the sense that they are not visible to the user

at this time. However, in conventional applications that fetch objects in a greedy

fashion without considering the locations of objects in the display layout, the process

of fetching necessary objects (e.g., on-screen objects) may be slowed down because

of competition from the process of fetching unnecessary objects (e.g., off-screen ob-

jects). Under these scenarios where different connections may fetch objects on different

screens simultaneously, without an intelligent connection management mechanism the

multi-object fetching process of current applications does not utilize network band-

width efficiently.
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Thus, we propose an application-aware solution called Prioritized Fetching, which per-

forms object prioritization as well as a mix of object reordering and connection man-

agement. Basically, the solution differentiates objects from different screens based on

the current screen view and allows for downloading the on-screen objects, which are

required to render the current screen display with a higher priority. As a result, it

reduces response time experienced by users as well as bandwidth consumed unnec-

essarily by applications. One major advantage of our approach is that it is purely

client-side enhancement, and consequently it is easy to deploy since it only requires

client-side installation to current applications.

3. User-Activity Shipping for File Synchronization: In a distributed file system, the

bandwidth usage efficiency of the file-synchronization scheme is important when the

clients are connected to the file server through weakly-connected, low-bandwidth links,

such as in a wireless environment. An intuitive file synchronization strategy for such

environments is one where only the differences between the original and updated files

are sent across to the server. However, the performance of this differential update

scheme can be improved upon considerably by adopting a raw user-activity shipping.

We call it Mimic since the strategy is to mimic the client-side user activity on the

server.

Similar to the resynchronization phase in disconnected file systems like Coda[82], it

supports a synchronization mechanism to update the content server with any writes

performed by the user upon reconnection. But, unlike differential approaches, Mimic

uses a novel user-activity recording scheme to help in the efficient resynchroniza-

tion with the content server. We show that despite being completely application-

independent, Mimic’s record and playback scheme for update performs significantly

better than traditional file-system-based approaches such as Coda.

Key Applications: Word Wide Web and Distributed File Systems

• The Web is the most widely used application today, and carries about 46% of Internet

traffic[20]. Thus, in this work, we consider Web accesses as a representative of read
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accesses. Note that Web browsers access not only HTML documents but also other

Web-friendly documents such as Word, PowerPoint, and Acrobat document through

HTTP. Of the solutions presented, Prioritized Fetching and Cut-Load directly apply

to Web access optimization.

• Contrary to read accesses, most write accesses are performed directely in the file-

system level or indirectly by FTP applications that performs accesses to distributed

file systems. Thus, we consider file-update operations in distributed file systems as

a representative of write access optimization. The Mimic solution presented directly

applies to distributed file system update optimization.

In the next three chapters, we describe the details of the three strategies and evaluate

their performance.
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CHAPTER IV

APPLICATION-UNAWARE READ ACCESS FOR

NON-PARTITIONABLE CONTENT

4.1 Introduction

Today, the majority of Internet users perform Web-based information access using a Web

browser. Through the continuous integration with various plug-ins, the Web browser has

become a unified application to access not only HTML documents but also other Web-

friendly documents such as desktop publishing and presentation files [94].

As mobile computing technology has developed, users can browse these Web documents

on the Internet from their home, office, or elsewhere. However, in wireless environments,

most network applications suffer from low bandwidth, large delays, and frequent disruptions

in connectivity. These characteristics lead to major problems with current models of mobile

Web information access, such as excessive bandwidth consumption, large response delays,

no service for partial disconnections, and inefficient system utilization.

The primary reason for these problems is the absence of flexible content partitioning in

current file systems and the transfer of the entire content files from the backbone file server

through low-bandwidth and less-reliable wireless links. In this context, graphical content

partitioning is a concept that extracts and provides partial content a user wants to view and

can be thought of as a What-You-See-Is-What-You-Fetch paradigm. Content partitioning

in the graphical domain can be realized without any dependence on applications. This is

because any Web content can be represented using a common abstraction in the graphical

domain without any relation to the nature of application using the content.

In this chapter, we analyze how an application-unaware content partitioning scheme

in the graphical domain would solve the problems of read operations of non-partitionable

content with traditional mobile information access systems. We also study the issues that
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arise with using other simple content partitioning techniques instead of traditional binary-

file transfer models. Briefly, the issues include large bandwidth consumption for full-file

access and inefficient performance in the case of highly compressed data. We then use the

issues with a default graphical-domain content partitioning technique as the motivation to

design and implement a new approach to mobile information access.

We design and evaluate a new mobile strategy called Cut-Load1, which uses application-

unaware content partitioning along with the following three unique design elements: dy-

namic mode selection, Opportunistic hoarding, and Transparent Mode transfer. Dynamic

mode selection solves the problem of inefficiency of content partitioning for certain types

of non-partitionable content that is not conducive for graphical content representation such

as highly compressed multimedia data; Opportunistic hoarding helps decouple the response

time that the user perceives from the fetch time of the entire binary file. This reduces

the peak load of the system even while fetching binary content for satisfying future user

requests; Transparent mode transfer allows the mobile client to switch the current access

mode when the user accesses non-partitionable documents in which case traditional binary-

content transfer is more efficient than graphical content transfer.

4.2 Motivation

In this chapter, we describe several drawbacks in the traditional model for mobile infor-

mation access and use them as motivation for designing a new strategy for efficient mobile

information access.

To measure the performance of traditional mobile information access systems in low-

bandwidth wireless networks, we use a Sprint PCS CDMA2000-1X cellular network in 144-

Kbps mode. The client machine used in the experiments is an HP Pavilion N5430 laptop

computer with a 850MHz AMD Duron CPU, 128MB RAM, and a Merlin C201 cellular

modem made by Novatel Wireless. The client is also loaded with Microsoft Windows 2000

Professional, Office 2000, Internet Explorer 6.0, and Adobe Acrobat Reader 6.0.

1The name is inspired from the Unix cut command, which cuts files into smaller parts.
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We consider Web access as a representative of mobile information access. For perfor-

mance comparison, we use a single Web browser instance that can view documents asso-

ciated with all target application types using integrated plug-in programs [94]. Each user

access is measures in terms of screen units, which have the same pixel-size as the client

area. Hence, a large user access would mean that the user accesses most of the screens of

the Web document, and small user access would mean that the user sees only a few screens

of the document. The default screen resolution in the client is set as 1024-by-768, and the

pixel-size of the client area inside the Web browser window is 1006-by-511.

We also use various document files selected from the Top 50 Internet Sites and their

links [13]. In the experiment, we access multi-file Web documents as partitionable content

and Microsoft Word and Adobe Acrobat documents as non-partitionable content.

4.2.1 Not all content is always seen by users

Users generally decide whether to access specific content based on filename, annotation, or

other descriptions of the content, and then mobile clients request to access the binary file(s)

of the content they select. However, users generally do not view the entire content of the

accessed file. In [63], it has been shown that 90% of users do not scroll down Web pages

but simply pick from the options that are visible on the initial screen when a page comes

up. It also says that reading computer screens is about 25% slower than reading papers,

and even users feel uncomfortable reading online text. As a result, people don’t want to

read a lot of text from computer screens.

However, in conventional Web-access models, a mobile client generally fetches the entire

binary file containing more content than required regardless of the user’s intention. Only

few applications such as graphic viewers and add-on programs have limited capability for

partial access to enable a user to access a fetched part of content before fully downloading

it.

Figures 1, 2, and 3 show the total data transfer size for the entire raw data and the

amount of data that the user ends up using for 30 Web content files selected from the Top

50 Internet Sites and their links [13]. We have modeled the useful data size based on the
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Figure 1: Transfer size in HTML.
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Figure 3: Transfer size in Word.
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Figure 4: Response time in HTML.
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Figure 5: Response time in Acrobat.
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Figure 6: Response time in Word.

average number of screens that the user would view from the downloaded content [63].

To get useful access sizes, we measured transfer sizes for the useful accesses in thin-client
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computing and used the percentage of each screen data with the binary size of the content.

We observe from the results that there is a significant difference in transfer sizes between

full data transfer performed by current Web-access systems and the necessary content.

Thus one of the goals of our work is to incorporate the notion of application-unaware

content partitioning to enable intelligent retrieval of content from the server. This would,

obviously, lead to optimizing precious wireless bandwidth.

4.2.2 Users suffer when response times are large

It has been shown in [59] that users who use dial-up connections wait for about 30 seconds

to look at a new Web page, and the situation becomes even worse in extremely bandwidth-

limited wireless environments such as wireless wide area network (WWAN). Users don’t

want to spend a too long time for the Web-content to download completely. Hence, they

give up the content download after waiting for a while, which leads to waste of the bandwidth

that is consumed to download the data until the user stalls the access.

It is a well-known fact that there is a relationship between computer response time

and users’ perceptions. In [51], it has been shown that users lose their concentration on

their access when the response time is longer than 10 secs, and when it is more 1 min,

they lose interest and stop the current access [51]. As mentioned earlier, a mobile client in

the traditional Web-access system always waits until the entire content of a document is

fetched regardless of which part a user wants to see. Fetching the unnecessary part of content

increases the initial response time significantly and makes users impatient. Particularly, in

environments where available bandwidth is extremely limited such as in WWANs, it results

in extremely poor response time.

Figures 4, 5, and 6 show the response time results for the same select documents from

the Top 50 Internet Sites [13]. In the figures, we observe that the time taken to download

the Web content is most often greater than the average user-tolerance limit that researchers

suggest [51, 85, 59].

To decrease the download time in this environment, various proxy-based transcoding

schemes, which convert large-sized image data into bandwidth-efficient types by reducing

23



the image quality, were proposed [66, 7]. However, these are only makeshift solutions in

which the proxies downgrade content quality by type-specific conversions. We note that

downloading of only useful content can minimize transfer size and response time, without

degradation of content quality.

4.2.3 Larger file transmissions suffer from frequent disconnections

In mobile environments such as WWANs, users experience highly fluctuating bandwidth

conditions and frequent disconnections. This leads to stalls in the download of data from

the file server to the mobile client.

Wireless networks are prone to frequent disconnections for reasons, including attenua-

tion of the wireless signal, fading of the wireless channel, interference resulting from other

transmissions, and mobility of the client. Particularly, the problem of disconnections im-

pacts the performance of traditional Web-access systems in two ways:

• The partially downloaded non-partitionable (single-file) content until disconnection is

generally not usable for serving the user requests for content, and hence the bandwidth

expended to download the file is wasted.

• The response time perceived by the user is increased because of the additional time

spent in downloading the content again.

We study the impact of disconnection in terms of bandwidth waste for both traditional

full-file transfers and for ideal content transfers. We compare the results with ideal values

based on user access patterns for HTML, DOC, and PDF files. We calculate the amount of

bandwidth waste (W ) using the average transfer size (F ) of each document class, the average

interval between disconnections (D) in seconds, the average bandwidth of the wireless link

(B), and the formula W = F 2/2DB.

Figure 7 shows that the amount of bandwidth waste is significantly smaller in the ideal

case than in the traditional full-file transfer case. This is because of the smaller probabil-

ity of transmission failures caused by disconnections in the ideal transfer as a result of its

smaller transfer time. It can also be observed from the results that the impact of frequent
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network disconnections can be alleviated by reducing the amount of content download using

the wireless link. Some advanced file systems emulate the previous connected network en-

vironment, however they can provide only limited disconnected operations based on locally

cached data [82].

4.2.4 Greedy transmission makes network utilization inefficient

Traditional Web-access systems use TCP for downloading the binary content files from the

file server to the mobile client. TCP uses the best-effort transmission paradigm, which is

greedy in using the available bandwidth in the network. This greedy transmission increases

the peak load of the system and brings down the overall system utilization.

Response time perceived by the user is influenced by the currently available network

bandwidth and the byte size of content. Hence, in traditional Web-access systems, the

client resorts to greedy download to minimize response time.

We say that a connection has timed out if the response time for the connection is greater

than the specified latency tolerated by the user and the user has stalled the download. When

the connection is reset by the user, the bandwidth used in downloading the content till that

point is wasted, as mentioned earlier. Figure 8 presents the percentage of connections that

times out as a function of the number of users in the network. In the figure, we observe

that the time-out rates increase exponentially, whereas the number of users (network load)
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Figure 8: Time-out rate.

is linearly increased.

This exponential increase is due to the fact that the data downloads in traditional Web-

access systems use greedy transmissions. Therefore, the higher peak load on the system

degrades the system utilization and hence decreases the performance of the connections.

4.3 Application-unaware content partitioning

In this section, we present the concept of graphical content partitioning for efficient content

access and discuss the issues with the use of pure content-partitioning mechanisms for

wireless Web access.

4.3.1 Graphical-domain content partitioning

Since current file systems are user-activity unaware, they are not able to differentiate be-

tween the essential part of the file and the part that will not be used by the application.

As a result, a file requested by an application is retrieved in its entirety from the backbone

server, irrespective of whether its content is eventually viewed by the user.

Intuitively, this can be solved by partitioning the entire content into smaller chunks

so that only those chunks of data that are actually accessed by the user are downloaded

by the mobile client. However, notwithstanding the fact there are fetch-on-demand ver-

sions of some specific applications, it is infeasible to develop a generic application-unaware

data partitioning technique. For instance, Microsoft Word or HTML documents are stored
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without any correspondence to the way the user accesses them. Because it is not feasible

for an application-unaware mechanism to split the file to correspond to user access in a

data-domain, it it necessary to consider alternative content-partitioning mechanisms.

Web content exists in the form of single or multiple binary files while not being accessed.

When a user requests access to the content, it is loaded in the system memory that is

allocated for the corresponding application in the form of application dependent meta data.

Then, the user browses the visual or auditory output that the application converts the meta

data into. Using this concept, non-partitionable content can be partitioned in a meta-data

domain. However, the meta-data abstraction requires an application-dependent mechanism

which is not our objective.

Thus, the only solution to application-unaware content partitioning is at the graphical

level, i.e., content-partitioning at the output device level. Using this mechanism, content is

abstracted in terms of the different inputs to the graphical user interface of the application.

Hence, a Web document is represented as a set of user-viewable screens that feeds an output

device. Note that this form of content partitioning in the graphical domain can be performed

in an application-independent manner because any Web content can be represented using

a common abstraction in the graphical domain.

Now we describe how graphical-domain content partitioning solves the problems with

traditional Web access model. We also present certain issues that arise because of the use

of pure graphical-domain content partitioning for mobile Web access.

• Usage to fetch-size ratio: Content partitioning in the graphical level is highly efficient,

especially when the byte size of the entire content is large compared to the amount

of the file that the user actually views, which is most often the case. However, for

highly compressed multimedia content, it may not be efficient in terms of transfer

size because of the performance limitation of recompression in real time . Hence,

the graphical content-partitioning mechanism should be used selectively along with

traditional full binary-content transfer techniques.
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• Response time: Content partitioning allows for the quick fetch of user-accessed graph-

ical content because of the smaller byte size of the initial graphical content compared

to the entire binary content. This helps reduce user-perceived response time, as the

user requests for Web documents are served faster. However, when the user accesses

all the content of the Web document, full-binary-file transmission is better than graph-

ical content transfer because of the repeated overhead incurred by graphical content

transfer for serving user requests. Thus the graphical partitioning access mechanism

should be supplemented with the binary-content transfer so that the mobile client can

use the binary-content if the user accesses more than a threshold amount of content

from the Web document.

• Partial download disconnections: Because of the large transfer sizes in the traditional

model, there is a high probability of disconnection during content transfer. This in

turn leads to increased response time and bandwidth waste. Since content partitioning

brings benefits of transfer size reduction by dividing the accessed content into several

parts that can be transferred individually, the probability of network disconnections

stalling data transfer is small in the case of content partitioning techniques. However,

even small partitions may suffer from transmission failures caused by long-scale dis-

connections. Therefore, the re-usability of partially downloaded graphical content is

essential to serving user requests during disconnections.

• Greedy fetch problem: Content partitioning decouples the part that is needed for the

initial access from the other part that is not required immediately. Therefore, it can

minimize the impact on other network traffic by reducing the initial transfer size.

Reduction of the greedy fetching size decreases the peak load duration of the system

and minimizes the effect on the performance of other applications in a multi-tasking

environment. However, for future disconnected operations, a full binary file may need

to be fetched. To minimize the effect of this non-urgent transmission, it is useful

to differentiate the greedy transmission for the initial part from the non-greedy or

low-priority transmission for the remaining part.
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Figure 9: Thin-client computing model.

4.3.2 Thin-client computing

As mentioned earlier, thin-client computing provides content partitioning by portioning

information in a graphical domain, not in a data or meta-data domain. In thin-client

computing, the client accesses are directed to the proxy-server called as thin-client proxy,

which retrieves the content from the backbone server and serves the request of the mobile

client.

By using a multi-user operating system, the proxy-server allows multiple users to log

on at the same time. Users can run either the same or different applications in separate,

protected sessions on either a single server or multiple servers. Remote applications can be

load balanced across multiple proxy servers, which form a server farm. Therefore, distrib-

uting the client sessions across multiple servers can increase overall performance as well as

provide exceptional fault tolerance.

At a high level, the client software has a device data encoder that encodes keyboard

strokes and mouse activity information and sends it to the server. The server has a decoder

that decodes the data, and performs the requisite operations on the applications hosted on

behalf of the client. The graphic data encoder on the server side encodes any differential

in the screen content and sends the encoded information to the client. The graphic data

decoder on the client side decodes the data and uses it to refresh its display. Most thin-client

computing software uses TCP as the transport layer protocol. Any remote content access

such as Web site and remote file attempted by the client results in the content to be fetched

by the proxy.
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Now we provide results that motivate the use of the thin-client paradigm as a component

in our mobile information access framework. We also present results for scenarios where

conventional file-system-based mechanism will fare better than thin-client approach. This

further justifies our model of intelligently applying the thin-client paradigm for mobile

information access.

4.3.2.1 Experimental Setup

• Host Configuration: The client machine used in the experiments has both WLAN and

WWAN interfaces. For the thin-client solution, we use Microsoft Terminal Services

[48] on the Windows 2000 Professional operating system with a 1024×768 (XGA)

screen resolution. The proxy server runs the Windows 2000 Advanced Server operating

system, which basically supports Microsoft Terminal Services. Finally, both of the

client and the server are loaded with Microsoft Internet Explorer 6.0, Office suite

2000 and Adobe Acrobat Reader 5.0.

• Network Connectivity: The client is connected to the network through one of the two

wireless interfaces, 802.11b (up to 11 Mbps) WLAN and CDMA2000-1X (144-kbps

mode) WWAN. When connected through the WLAN and WWAN interfaces, the

round-trip time (rtt) between the client and the proxy, as well as between the client

and the internal Web server, is about 10 ms and 300 ms respectively. The effective

data rates on the WLAN and WWAN interfaces are about 3 Mbps and 40 Kbps

respectively2. The rtt value between the proxy and the external Web servers typically

ranged around 90 ms.

• Test Access Patterns: While Web browsing, each Web page is fully or partially dis-

played inside the internal window of a browser. And, the size of a Web page can be

estimated as the number of vertical screens having the same pixel size as this internal

2Note that although both interfaces come with significantly higher promised data rates, the presence of
interference, contending hosts, and fading effects results in the effective data rates to be much lower.
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Figure 10: Transfer size in WLAN.

window3. For the Web browsing and office applications, we employ two different ac-

cess patterns: (i) In the first pattern, called full access, the client reads the whole page

or document by scrolling down. We follow the slow-motion benchmarking technique4

for the full-access pattern [101]. (ii) In the second pattern, called partial access, the

client views only the first screen displayed automatically at first by the Web browser.

All experiments are conducted using 20-minute-long pre-recorded macros and are re-

peated more than 10 times under the exact same condition by a macro program that

captures and replays all user activity in real-time [12]. The macros access about 40

different Websites. We consider only scrolling down activity by pressing a PageDown

key. All the caches of Internet Explorer and Terminal Service are turned off to es-

timate pure bandwidth usage without help of the cache. In actual conditions, the

bandwidth usage in both thin- and thick-clients can be reduced by the effect of the

cache.

4.3.2.2 Performance Evaluation over WLANs and WWANs

• Transfer Size: Figure 10 presents the total data transfer size results for access of 42

Web pages and 10 office program files that are located in external Web servers5. In the

figure, it can be observed that the thin-client computing provides better transfer size

3Actually, these screens somewhat overlap each other in the experiments.
4Briefly, wait till a screen is loaded before scrolling down.
5Note that the transfer size will be almost independent of the specific wireless access technology used.
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Figure 12: Response time in WWAN.

performance when the user performs only a partial access of Web pages. Contrary to

the Web browsing results, even when a user accesses office files fully, the transfer size

in thin-client mode is much smaller than that of thick-client mode. We conjecture that

this is due to the fact that for office files in the thick-client mode, a large portion of

the data size is actually consumed by non-critical information such as high-resolution

font/image data for enabling rescaling, printing, and editing. Thus we conclude from

the above results that the amount of data transferred over the wireless link is optimum

for most cases, but not all, when using thin-client mode. We use these insights to use

the normal file-system (thick-client) and user-activity-aware (thin-client) approaches

depending on the nature of the user access.

• Response Time: Figures 11 and 12 present the screen-wise response-time results be-

tween the request for data and the completion of the transmission of the screen data in

WLANs and WWANs, respectively. In most cases of Web page access over WLANs,

the thin client generally experiences larger latency than the thick-client mode over

WLANs. The large drop in latency from the first screen to the second screen can

be explained by the absence of any fetch time involved from the second screen on-

ward. Essentially, the new content from the backbone server to the thin-client proxy

is fetched before the first screen access, and is available locally at the proxy for sub-

sequent screen accesses. On the other hand, in the case of office-file access, the first

screen latency is dramatically reduced when a user uses thin mode because of the

lower transfer sizes. This benefit is further increased when the network capacity is
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decreased as seen in Figures 12 for WWANs.

• Unfriendly Content: Figure 13 presents the transfer size when the content being

transferred is an image of 1024×768 in pixels. The image considered is a JPEG

image with the 50% compression ratio, and the size of the data transfer for the XGA

resolution performed by the thin-client computing solution. It can be seen that the

thin-client solution consumes more than three times of the size of the JPEG image.

The reason for this overhead is that the compression algorithm used by the thin-

client solution needs to be fast since it requires to provide real-time service to the

user. Hence, its compression efficiency cannot be as good as that of JPEG where the

compression is performed off-line. The same reason holds for any image-rich content,

such as video or flash files. Hence, thin-client computing is not a good solution for

graphically-optimized content that is compressed by an off-line algorithm.

• Localized computing: We also test the performance of the thin-client computing ap-

proach when the user downloads a document to read and views the document for a

relatively long time. We refer to this as localized computing. For thick-client com-

puting, such a scenario would involve only the initial downloading of the file. On the

other hand, for thin-client computing, because of the display refresh requirements,

some overheads will still be incurred when the client is predominantly idle and is ac-

cessing the same document. Figure 14 presents the impact of localized computing on
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the performance of thin-client computing approaches. We consider access of an Adobe

Acrobat file, and the mobile host accesses only the first five screens repeatedly. We

observe that using the thin-client model incurs bandwidth overhead even beyond the

maximum number of independent screens in the file. The results show that thin-client

computing does not show better performance compared to thick-client computing in

terms of bandwidth consumption during off-line access.

• Mobility: Thin-client computing solutions currently provide no support for discon-

nected operations. Hence, when the hand-offs due to mobility are slow, or there are

disconnections, the impact on client-experience ranges from drastic to catastrophic.

In our experiments, when hand-offs are manipulated to incur a large latency, the thin-

client software more often than not aborted. Disconnected operations, on the other

hand, are positively show-stopping for existing thin-client solutions. This is despite

the fact that the thin client does maintain a display cache, and a solution that serves

user accesses from the display cache could conceivably by developed. The reason

existing thin-client solutions do not support direct reads without going through the

proxy from the display cache is that, it is expectedly a complicated process to infer

which content to retrieve from the display cache based on user input in the form of

keystrokes and mouseclicks.

• Update of Cached Data : Typical mobile hosts cache data locally; therefore it is

possible to operate even during network disconnections. Any user update during dis-

connection is performed on the locally-cached copy at first, and is then resynchronized

with the server on reconnection. Here we study the efficiency (in terms of transfer size)

of normal file-system-based resynchronization approaches, and consider the possibility

of using thin-client components for update of cached data.

4.3.2.3 Results Summary

We observe that for non-partitionable files such as office files thin-client computing performs

remarkably better than thick-client computing in terms of bandwidth usage and response

time. This serves as a key motivation for the serious consideration of the thin-client model as
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a component in the mobile information access framework. However, thin-client information

access performs poorly in terms of bandwidth usage for specific non-partitionable content

types, such as highly-compressed images and videos, and partitionable content, such as

Web documents. To a less critical extent, the performance of thin-client operations during

predominantly localized operations performed by the client is of concern as some basic

overheads continue to be incurred by the thin-client display refresh mechanisms.

4.4 Cut-Load Architecture

We use the content-partitioning mechanism used by thin-client computing in the Cut-Load

middleware. Cut-Load resides at both the client and the proxy as a middleware and hence

it is easily deployable. The client-side middleware transfers a request of content access,

manages content cache, and follows an application control message received from the proxy.

The middleware at the proxy side decides the best computing mode for a requested content

access, transfers objects for caching, and controls applications at both the client and the

proxy. Figure 15 presents an overview of the architecture.

Cut-Load operates in one of the following two modes.

• Normal mode: In this mode, a Cut-Load client works in the same manner as a tra-

ditional Web access client. When a user wants to see content, the client fetches the

original content files from the Web server and accesses them by running local appli-

cations. Because all required content files are fully transferred to the client, it can

provide offline (disconnected) operation with cached files.
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• Dual mode: A Cut-Load client works in dual mode under specific conditions. In this

mode, the client initially operates in thin mode. While a user is seeing the content

in the initial thin mode, the client performs hoarding of original content files in the

background 6. When the content file is hoarded completely, the client notifies the

user about the change of mode to thick mode. Then, it opens the hoarded thick data

using an associated application and moves the current system focus to the application

window. After it closes the remote application that the user used before, the mode

transfer from thin to thick mode is complete.

To support these mode operations, Cut-Load consists of three basic elements: dynamic

mode selection, opportunistic hoarding, and transparent mode transfer to address the issues

with the pure graphical content-partitioning mechanism. These elements bring benefits of

faster access speed and efficient network bandwidth utilization.

4.4.1 Dynamic Mode Selection

Thin-client content access is not always the clear winner in terms of performance [100].

Thus, in Cut-Load, the decision of whether or not to use graphical content partitioning

is done dynamically based on several factors, including thin-friendliness, content size, and

current network condition, to maximize its performance.

4.4.1.1 Thin Friendliness

Thin-client computing naturally provides an ability of partial content access in a graphic

level, in contrast to conventional computing that performs in a binary-file level. When a user

requests to access content, the thin proxy opens an instance of the application associated

with the file type of the requested content, like a normal client. Since the application

instance has no notion of a thin client, it regards the proxy as the end host, which will show

the content in its screen, and immediately generates raw graphic data for the displaying

device, such as CRT and LCD monitors. However, the proxy server does not display the

6Because the hoarding is performed in an opportunistic non-greedy manner, we call it as opportunistic

hoarding.
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generated raw data, and instead it needs to deliver this raw data to the thin client. For

bandwidth-efficient transmissions, the proxy-side software disassembles the raw data into

individual graphic objects and compresses them using its own real-time algorithm.

When the requested content consist of one or more precompressed data files, the proxy

needs to decompress them by using the original off-line algorithm, which was used for

its compression, before generating raw graphic data. Then, the generated raw data is

recompressed by the real-time compression algorithm that the proxy-side software uses.

However, for some thin-unfriendly content types, the recompression process may not show

the best performance because of one of the following three reasons:

• Low recompression efficiency: In compression algorithms, there exists a trade-off be-

tween compression ratio and processing speed. Since for real-time compression algo-

rithms the speed is a more important factor, they generally sacrifice the compression

ratio or the quality of the content to minimize the processing time. In the worst

case, the size of the recompressed data that will be transmitted to the thin client may

become larger than the size of the original content.

• Wrong selection of a recompression algorithm: When a client accesses video content

that was precompressed by an MPEG algorithm, the proxy server may use not a

video-compression algorithm but an image-compression algorithm for recompression.

In such a case, the recompression process cannot be performed effectively, and finally

this overload affects the server’s overall performance for other clients.

• User interaction or repeatitive playing: Non-media content also may include thin-

unfriendly objects. For example, an HTML document may have a flash or a interactive

component that requires user input. A presentation file may include animated objects

or sounds. Therefore, documents that have thin-unfriendly objects are also categorized

as thin-unfriendly content.

Since the network utilization of thin-client computing is mainly decided by the thin-

friendliness of content, one of the decisions the proxy should make for a request to access
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Table 1: An example of content classification.

Content type Thin-friendly Thin-unfriendly

Image bmp, jpg animated-gif, flash
Audio raw mp3, wma, ra
Video mpg, avi, wmv, mov

Desktop publishing doc, pdf
Spread sheet xls
Presentation ppt

Graphic vsd

content is whether the target content is thin-friendly or not. In Cut-Load, highly-compressed

media content, such as image, audio, and multimedia, is characterized as thin-unfriendly

content. Uncompressed image content, such as bitmap, can be recompressed efficiently by

the proxy server, and this content is regarded as thin-friendly. Cut-Load uses the normal

(thick-client) computing mode to send thin-unfriendly content and the thin-client mode in

the other case. Table 1 shows an example of the content classification.

4.4.1.2 Content Pixel Size

A user in a client gets most information through the screen of a display device, and the size

of the screen is the unit of information that the user is able to get at one time. When a

user accesses content, he/she decides whether the information of the content is interesting

to him/her and whether he/she would continue to see the remaining content, based on the

information in the first screen. Therefore, if the content is not what the user wants, the

remaining part of content fetched in normal computing is wasted even without being seen

by the user.

As a What-You-See-Is-What-You-Fetch (WYSIWYF) paradigm, thin-client computing

can be a good solution. Its ability of content-partitioning in the display level enables a

client to fetch the display data of only the part that a user wants to see. The benefit that

thin-client computing brings depends on the portion of the content part that a user actually

sees. As the user sees a smaller part of the content, the benefit from thin-client computing

becomes larger. Therefore, pixel size of content is one of the important factors that decide

this benefit.

38



If a user wants to access large-pixel-size thin-unfriendly content, Cut-Load initially ac-

cesses it in thin mode and then transfers the current thin mode to thick mode. Since an

application generally does not provide the pixel size estimation, it can be performed by

preloading the content in an application-specific estimator with user-defined settings, i.e.,

every file type needs its own estimator. Each estimator can get pixel size information by

scrolling-down operations or through a setting of virtually infinite screen resolution. How-

ever, the estimation may not be simple because pixel size can be varied by the current

zooming rate in an application window. Thus, when the content is preloaded in an estima-

tor, the zooming rate in the main window is fixed as the current setting, and it is assumed

that the zooming rate is hardly changed. In addition, an application may have a different

method to access the whole content. For example, a Microsoft Visio file may have multiple

pages, and a user can move the current page by clicking the label of the page folder.

4.4.1.3 Decision Heuristics

The first factor that Cut-Load considers to decide the initial mode is the current network

connectivity. It is because interactive operations in thin-client computing are based on

a strong connection between a client and a server. In wireless networks, its connectivity

is represented as received signal strength indication (RSSI) or signal-to-noise ratio (SNR).

Cut-Load uses a long-term average SNR value, which directly affects the quality of service in

a long term ignoring minor effects of temporary fluctuations. When the current connection

is not strong enough for thin-client computing, Cut-Load accesses the content in thick-client

computing, regardless of other decision factors.

If the connection requirement is satisfied,it considers thin friendliness of content. If

content that a user requests to access is thin-unfriendly, Cut-Load decide the initial access

mode as thin-client mode, regardless of other remaining factors that are not considered yet.

The third factors are byte and pixel (optional) size of content. Cut-Load may access

thin-unfriendly content in thin-client mode when it has extremely large byte size. The

purpose of this operation is to avoid unnecessary bandwidth consumption, and it is because

the transfer size of a partial access of thin-unfriendly content in thin-client mode can be
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smaller than that of a full access in thick-client mode, with a large probability for large-sized

document. However, this operation does not support media content, which fundamentally

are not suitable for thin-client computing, such as a wrong selection of the compression

algorithm.

In order to maximize the rate of successful decisions, Cut-Load requires to choose appro-

priate threshold values of network connectivity and size for the decision. However, optimal

threshold values of byte and pixel sizes are dependent on what a user accesses, and therefore

data mining of user access patterns is necessary in the approach. If the current decision is

identified as a failure by comparing the total transfer size in thin-data and original-content

size, Cut-Load updates the threshold values not to repeat failure in the same condition.

Most threshold values can be acquired only by real sample experiments. However, even

if the thresholds are estimated by an extremely large number of experiments, the values

cannot be optimal easily because lots of new content is always being created continuously.

Therefore, Cut-Load uses semi-optimal threshold values, and it means in some cases the

conventional computing models may show better performance.

Cut-Load controls applications externally without any modification of them. A Exe-

cuteApplication function chooses a corresponding application based on the file extension

or the system command, and generates an application instance with a content file(s). As

returned values, the controller receives required various handle values of the application

instance. With these values, the controller can detect the content file used by the instance

through a DetectExecutedFile, close the application instance through a CloseApplication

function, and do other required operations.

4.4.2 Opportunistic Hoarding

By using a combination of both greedy thin-screen access and opportunistic thick-data

access, dual-mode operation decouples the response time experienced by the user from the

actual fetch time for the thick-content. This decoupling has two positive effects: (1) For

users operating over a low-bandwidth link such as in a WWAN this significantly reduces the

response time for large data sizes; (2) The decoupling facilitates a non-greedy approach to
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Figure 17: Transmission in dual mode.

hoarding. This in turn reduces the peak hoarding rate and hence improves the system-wide

utilization.

Opportunistic hoarding is performed when user requests for content are served using

the thin-client mode of operation. However, unlike a normal content download that utilizes

the entire available bandwidth in a greedy fashion, opportunistic hoarding is performed at

an optimal adaptive data rate with lower priority to minimize the impact on the thin-client

mode data transfers that use normal TCP with high priority.

Opportunistic hoarding is performed when user requests for content are served using the
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thin-client mode of operation. But unlike a normal download of content which is performed

in a greedy fashion, utilizing the entire available bandwidth, opportunistic hoarding is

performed at an optimal adaptive data rate to minimize the impact on the thin-client mode

data transfers which use normal TCP.

Thus, we use a novel rate control scheme for performing the opportunistic hoarding. A

very low rate for hoarding would keep the user access in thin-client mode even if the user

ends up viewing the entire file. On the other hand, an excessively aggressive hoarding rate

would affect the response times of users operating in thin-client mode. To achieves a specific

bandwidth share, the hoarding mechanism uses a Weighted Additive Increase Multiplicative

Decrease (W-AIMD) congestion control mechanism [60]. The mechanism uses weights to

achieve a fraction of the bandwidth obtained by the high-priority thin-client flows, which

use the normal TCP.

In [45], the throughput of the normal TCP in the congestion avoidance phase can be

expected as

E[ThroughputTCP ] =
1

rtt

√

3

2p
, (1)

where p is the packet loss probability.

In the W-AIMD algorithm [60], the average throughput can be expressed as

E[Throughputw] =
1

rtt

√

1

p
finc (2fdec − 0.5) , (2)

where finc and fdec are the weighted additive and multiplicative factors, respectively.

When the bandwidth utilization of wireless networks is low, Cut-Load may perform

opportunistic hoarding more aggressively by increasing the weight exponentially. When the

hoarding starts, the flow is assigned a specific initial weight of w, which is much less than

one7. As the user performs input activity and the proxy server sends screen updates, the

weight of the “hoarding” flow is increased by a pre-determined increment. After several

increments the weight of the hoarding flow reaches one and from then on it would receive

the same share of network bandwidth as a normal TCP flow.

7This means that the flow would get
√

w of the capacity that a thin-client flow would achieve under the
given network conditions.
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4.4.3 Mode Transfer

After opportunistic hoarding is completed, Cut-Load performs mode transfer to stop unnec-

essary bandwidth consumption. Our framework uses both thick-mode of operation as well

as thin-mode for information access. When a client accesses content in dual-mode, it oper-

ates in thin-client mode initially. It also performs opportunistic hoarding of the raw data

file in the background. If the client is still accessing the same content when downloading

is complete, the framework changes the operating mode from thin-client to the thick-client

mode.

The transfer point of time is decided by the hoarding rate and the byte-size of hoarded

data. When the mode transfer point of time is decided, the framework stops the current

thin-client operation and notifies the mode transfer to the user. When the transfer is

completed, it shows a message in a pop-up window and begins to provide access to the

hoarded content file in normal thick mode. In order to provide a seamless user access after

mode transfer, the environmental settings and system focus of both sessions in the client

and the proxy should be synchronized.

Environmental settings are categorized into system settings and application settings.

The system settings include screen resolution, keyboard layout, clipboard content, etc. The

value of these settings is obtained by means of query messages to the operating system.

The application settings include parameters set up within an application, such as menu

bar, zoom rate, view option, etc. Because this information is application-specific and user-

specific, the location of the application environment file should be input before it performs

synchronization of the application environment.

After the environmental synchronization is performed, the client synchronizes the various

types of focuses. Mouse focus is the current location of the mouse cursor, and it can be

located anywhere in the entire screen. Keyboard focus means the current position of the

keyboard input, and it exists only when one or more text input controls are included in

the current window. Screen focus is the screen position of the client area in the document

layout. When the system is in thin-client mode and opportunistic hoarding is performed in

the background, the client traces all the focuses. Once the new local application is opened,
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the captured focuses are restored by OS-specific interface functions.

4.4.4 Integrated Operation

The three elements presented thus far operate in a concerted manner to realize the solution

for performing efficient mobile information access. Figure 18 shows the pseudo code for the

integrated operation. The basic disconnected operation in the approach is similar to that of

Coda [82]. While a user is accessing thin/thick objects, the client caches all fetched objects

as well as prefetches unaccessed objects that have a large probability to be accessed in the

future. When disconnection occurs, it emulates network file servers by providing fetched

content objects transparently.

4.5 Performance Evaluation

In this section, we evaluate the performance of Cut-Load and compare it with conventional

Web access systems and discuss the impact of each design element in improving performance.

Then, we present the Cut-Load prototype implemented in Linux and its behavior under

different user-access patterns.

4.5.1 Simulation Setup

In order to evaluate the performance and profile the benefits, we use the ns2 network

simulator with the FullTCP package [42]. We run the simulations with 20 different seeds

and use response time as the primary metric for the performance comparison.

To simulate 144-kbps-mode operations and bandwidth fluctuations in cellular networks,

we use the 802.11 simulation mode with a 0.5-Mbps bandwidth and three pairs of FTP

servers and clients for generations of background traffic We assume that the access point

(AP) and all the servers are connected to the network with a 10-Mbps bandwidth and a

10-ms delay. It is also assumed that a Cut-Load client downloads both thin and thick data

through a proxy server, which supports W-AIMD with a fixed weight. Except the proxy

server, all other servers and clients do not perform W-AIMD in TCP, i.e., the increase

factors in their connections are set as one.

The default screen resolution is 1024×768 pixels (XGA), and the pixel size of the client
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1 While (Each user access) {
2 if (Unfetched content access)

3 {
4 if (Disconnected)

5 Wait for reconnection;

6 // connected
7 if (Connection is strong)

8 {
9 if (Content is unfriendly)

10 {
11 if (Byte size or pixel size is large)

12 {
13 // dual-mode operation
14 Request and display in thin mode;

15 Begin hoarding;

16 if (hoarding is not completed)

17 Wait for completion working in thin mode;

18 // hoarding completed
19 Perform mode transfer from thin to thick

20 Request and display in thick mode;

21 }
22 else // small size content
23 Request and display in thick mode;

24 }
25 else // friendly content
26 Request and display in thin mode;

27 }
28 else // weak connection
29 Request and display in thick mode;

30 }
31 else // fetched content access
32 {
33 if (Hoarding is complete)

34 Request and display in thick mode;

35 else // not hoarded yet
36 Request and display in thin mode;

37 }
38 } // End of while

Figure 18: Pseudo code for the integrated operation.
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area in the Web browser is set as 1006×511 pixels8. Each user access is measured in the unit

of screens, which have the same pixel size as the client area. All user accesses are performed

by PgDn keystrokes in the unit of screens. The average inter-access interval is assumed as

10 seconds. The internal data processing time is ignored. Thus, when a mobile client asks

to access content that is fully fetched or hoarded, its graphic data can be displayed with no

delay.

For modeling web and thin traffic, we use the clustering-based model [55], in which

byte-size of web content and inter-access interval follow the log-normal distributions, as

shown in Equation 3.

PDF [x] =
1

xσ
√

2π
exp

{

−
(

ln(x) − µ
)2

2σ2

}

,

where µ = ln
(

E[x]
)

− 1

2
ln

(

1 +
STD[x]2

E[x]2

)

and σ =

√

ln
(

1 +
STD[x]2

E[x]2
)

(3)

We use the average and standard deviation values of Web document byte sizes from

the experiments performed in Section 4.2. We consider the case where the byte sizes of

document files follow a lognormal distribution with a mean of 400 KB and a standard

deviation 200 KB, and vary the ratio of thin-data size to thick-data size. Figure 19 shows

an example when the thin-to-thick data ratio is chosen as 0.1.

4.5.2 Impact of thin-screen data size

Figure 20 shows the per-screen-response performance in thick, thin, and Cut-Load clients.

In the simulations, wee vary the thin-to-thick data ratio from 5 to 20%. The increase factor

of the TCP connection used for opportunistic hoarding is set as 0.1, and frame errors or

losses in wireless channels are not assumed. The main bars in the figure indicate the average

time spent for the clients to show each screen, and the error bars are used to show the range

of one standard deviation.

In the figure, for the initial screens, both the thin and Cut-Load clients show a signifi-

cantly reduced response time compared with the thick client. And, as the thin-to-thick data

8We use the maximum size of the client area in Microsoft Internet Explorer in the XGA resolution.
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Figure 19: PDF of document and thin-screen data size.
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Figure 20: Per-screen response time in Cut-Load.

ratio increases, the performance benefit in both the client becomes less. Thus, the Cut-Load

proxy measures this ratio in real-time and decides the best operation mode for the client.
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If the ratio is over a threshold value and the dual-mode operation does not improve the

performance, Cut-Load chooses the normal mode to access the content.

After accessing the first screen, Cut-Load continues to show similar performance to the

thin client until it completes opportunistic hoarding. It is because the W-AIMD scheme

for thick data in Cut-Load minimizes the effect on the performance of the greedy thin-data

transmissions. In most cases, the response time is around 10 seconds, which is generally

accepted as the user-tolerance limit [51].

In the figure, it also can be seen that after the access of the third screen, the response

time in Cut-Load begins to decrease and becomes zero after the sixth screen. In other

words, most hoardings are completed while accessing the third to sixth screens, and after

that the Cut-Load client responds to user’s access requests immediately.

Another interesting fact is that even if the user accesses the entire screens of the content,

Cut-Load may still show smaller cumulative response time than the thick client. In Figure

21, when the ratio of thin data is smaller than 20%, Cut-Load performs better for long or

full accesses.

The reason that the Cut-Load client shows better overall performance than other clients

is utilization of a judicious combination of thin client and conventional computing models.

When a user requests a large-sized thin-friendly document, the Cut-Load client selects

the initial thin mode to minimize the initial response time. As the user accesses more

screens staying in the same content, the probability that the user will see the whole content

increases, and thus the Cut-Load client increases the hoarding rate to reduce the future

response time. Because the hoarding is performed in a less-greedy manner, it does not have

a significantly negative influence on other users’ response time performance.

4.5.3 Impact of network characteristics

To investigate the impact of network bandwidth, we first vary the wireless bandwidth from

0.2 to 1.6 Mbps with a fixed data ratio value of 0.1 in the simulations. Since the thin mode

shows similar performance to Cut-Load before hoarding is completed, we do not compare

with its performance.
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Figure 21: Cumulative response time in Cut-Load.

Figure 22(a) shows the per-screen response performance in both the thick client and Cut-

Load. Note that the figure shows the thick performance separately on the x-axis because

the thick client downloads the entire content at once. Thus, each screen number on the

x-axis indicates the current screen focus in Cut-Load. From the figure, it can be seen that

the response-time performance is affected directly by the provided bandwidth. And, the

performance improvement achieved by Cut-Load is in the same proportion to the increase

in bandwidth.

Figure 22(b) shows the hoarding delay in the number of screens, which are accessed in

thin mode before the hoarding is completed and the computing mode is transferred to the

thick mode. In the figure, it can be seen that the hoarding time is inversely proportional to

the provided bandwidth. When the bandwidth is increased to the double, the delay in time

is reduced to the half. However, the hoarding delay in number of screens is less affected by

the bandwidth, and it is because the fetching speed of thin screens is also increased, i.e.,
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Figure 22: Impact of bandwidth in Cut-Load

during the same amount of time, more number of thin screen can be accessed as bandwidth

is increased.

On the other hand, we vary the frame error rate (FER) in the simulations. Since the

802.11 MAC layer performs retransmissions up to seven times for wireless frame loss, a high

FER does not significantly affect the overall performance, unlike a high packet error rate

(PER) in the higher layers.

Figure 23(a) shows the response time performance under the various FERs. In the

figure, the response time performance is not significantly affected by low FERs, which are

considered as normal operating points in 802.11. However, when FER is higher than 0.3,

the performance begins to be degraded exponentially.
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Figure 23: Impact of frame loss rate in Cut-Load

Figure 23(b) show the opportunistic hoarding delay in the number of thin screens, which

are viewed until the hoarding is completed. In the figure, as the FER increases, more thin
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screens are accessed until mode transfer is performed. Thus, Cut-Load needs to control the

hoarding rate according to the current FER.

4.5.4 Impact of weight

Cut-Load controls the hoarding delay by selecting an appropriate weight used in W-AIMD,

and we performed the simulations varying the weight from 0.05 to 0.25. We also assume that

the bandwidth is fixed as 0.5 Mbps and wireless frame loss does not occur. The thin-to-thick

data ratio is 0.1.

Figure 24(a) shows the response performance in time with various weight values in Cut-

Load. Since hoarding begins after the initial screen is displayed, the weight does not affect

the initial screen time in Cut-Load. However, after the first screen, the per-screen response

time is directly affected by the weight value.
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Figure 24: Impact of weight in Cut-Load

Figure 24(b) shows the hoarding delay in time and number of screens. In the figure,

it can be seen that the hoarding time decreases as the weight increases, however after 0.1

the hoarding speed is not improved significantly. As shown in Equation 2, the throughput

performance in W-AIMD is proportional to the square of the weight. In other words, in

order to increase the fetching speed to the double, it is necessary to increase the weight to

the four time.

51



��� � ������ ��	
�

���
������
�� � �� �� ����

��� ������

����������
�� � �� � ������

���� ���������

� �� ���� ��� !
"�#
��$

� �� %��& ���
"' ����	�$

('� ������
"' ���	�$

('� ���)��
"' ����	�$

('� ������
"' ���	�$

*+ ,-. /01,23 4
5672

*+ ,3 /01,23 4
5672

829 :77;2 <<

8 29 :77;2<<

8 29
:77;2<<
=;2> 642
-634;61?

8 29
: 77;2<<

@-;223
AB4B

@-;223
AB4B

8 29 AB4B
C2DE2<4

8 29 AB4B
C2DE2<4

829 AB4B

8 29 AB4B

8 29
AB4B
@,F2

8 29 AB4B
C2DE2<4

8 29 AB4B

*+ ,-. /01,23 4 5672 *+ ,3 /01,234 5672

GH��IJ KLI�MN

O�PQH ������

Figure 25: Cut-Load prototype.

4.5.5 Prototype Strawman

Now we present a strawman prototype of the Cut-Load mobile middleware for Web based

accesses. Due to the requirement of an open source Web proxy for the implementation, we

implement the prototype on a Linux platform using the Squid Web proxy cache [90]. We

use VNC as the thin-client computing solution [78]. The prototype is used as a proof-of-

concept and we study the behavior of the prototype in response to different user-accesses.

It should be noted that the prototype itself is not tied to any of these operating platforms

or thin-client solutions.

Figure 25 illustrates the architecture of our prototype. The client or the mobile host has

two virtual panels representing the thick-client mode and thin-client modes. The thin-client

mode panel is a VNC client. The proxy is a DELL OptiPlex Gx400 desktop with a 1.8GHz

Pentium 4 processor and the Linux operating system. The proxy runs the VNC server

and the squid proxy. The Web browser on the client machine in the thick-client panel is

configured to redirect all Web accesses to the squid proxy. The mode selector chooses the
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Figure 26: Experimental results of Cut-Load prototype.

mode of response depending upon a simple heuristic function and the raw data size of the

document to be transferred. The mode selector comes into play only after the requested

content is fetched from the appropriate Web server. When the mode selector chooses the

thick-client mode, the squid proxy acts in its default mode delivering to the mobile host

the Web content. However, if the mode selector chooses the thin-client mode of operation,

the squid proxy aborts its regular content delivery process, but instead directs the Web

browser running in the context of the VNC server to load the appropriate content. As

shown in the figure, the interface with the browser is achieved through Netscape’s remote

control command-line function. Since the content has already been downloaded by the squid

proxy, the load by the browser in the VNC server’s context happens without any additional

latency. The VNC client panel on the mobile host is automatically updated by the VNC

mechanism to reflect the changed browser state.

Figure 26 shows the cumulative response time performance for seven different Web

content in thick, thin, and Cut-load clients. In the figure, the transparent bars show the

average response time values per screen in each mode. Since the current prototype does

not perform W-AIMD-based opportunistic hoarding, we assume that the hoarding process

is completed after the third thin access as shown in Figure 22. When the prototype detects

partitionable content such as HTML, it chooses the normal thick access mode. In the
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figure, the 4-th and 7-th accesses are such examples. For other accesses, the heuristic

function predicts the dual-mode operation in Cut-Load for the right decision to be made

by the dynamic mode selector. Thus, after the third screen, the cumulative response time

in Cut-Load does not increase as the same as in the thick client. In the figure, it can be

seen that the initial response time in Cut-Load may become longer than that in thin mode,

however the long-term average response time becomes shorter after the second screen.

4.6 Summary

Traditional information access systems are not tailored to perform well in low-bandwidth

wireless networks. In this section, we study the reasons why conventional client-server mod-

els are not optimal for wireless networks and find the reason for the inefficient performance

is the operation in the file level and being unaware to user activity. We evaluate the use of

application-independent content-partitioning in the graphical domain as an alternative to

binary-level file transfers for efficient Web performance for low-bandwidth wireless links.

We found several issues in using pure graphical content-partitioning techniques to serve

mobile information access requests. In addressing these issues, we propose and implement

a new strategy for mobile information access over wireless links. The proposed strategy

uses a intelligent mix of binary file-transfers and graphical content-partitioning along with

features such as opportunistic hoarding to reduce the bandwidth consumption as well as

response times for Web access. We evaluated the performance of the Cut-Load strategy

and proved its benefits for non-partitionable content over traditional Web-access systems.

We also analyzed the behavior of the real-life implementation of the Cut-Load prototype.
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CHAPTER V

APPLICATION-AWARE READ ACCESS FOR

PARTITIONABLE CONTENT

5.1 Introduction

In the past couple of decades, a tremendous amount of research has been done on improving

read-access performance for multi-file content such as Web documents. Web-optimization

techniques such as Web cache proxies [90, 31, 89], persistent HTTP connections [21, 53], and

content distribution networks [3, 64] have found widespread adoption. On the other hand,

new paradigms such as WAP [67] and BREW [76] have also been developed to address the

limitation of Web performance on mobile hosts.

In this work, we consider Web content as a representative of multi-file partitionable

content and study the performance of a Web browser under low-bandwidth mobile network

conditions. Specifically, we analyze the characteristics of a Web browser with the objective

of identifying reasons why they might suffer in bandwidth-limited wireless environment.

We find that the current fetching model employed by most commercial Web browsers is not

optimal in bandwidth-challenged environments.

We show that the absence of content prioritization and intelligent object fetching mech-

anisms in current Web browsers leads to increased response times. Web browsers, today,

do not prioritize useful data that is viewed by the user over other redundant data in a Web

page. As a result, greedy fetching of the entire content of a Web page wastes precious band-

width and in turn increases user-perceived response time. Further, without an intelligent

object-fetching mechanism, the download process of current Web browsers does not utilize

network bandwidth efficiently.

To make this problem even worse, many Web pages have become larger, both in pixels

and bytes with a large number of embedded objects. For example, cnn.com has a main
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Web page, which is more than three times the height of a client area1 and larger than 300

KB in bytes, including hundreds of embedded objects. As a result, even with a 100-Kbps

bandwidth in a mobile network, the time taken to fetch the entire page can be longer than

20 secs.

In this chapter, we propose a new Web-optimization solution called Prioritized Fetch-

ing to address the problem of large response time with current browsers. The solution is

based on careful consideration of several factors, including the content displayed on the

screen viewed by the user, server-side content distribution networks, and the relationship

between the HTTP and TCP protocols. Our solution consists of three mechanisms: object

prioritization, object reordering, and connection management. One major advantage of our

approach is that it is purely client-side enhancement, and consequently it is easy to deploy

since it only requires client-side installation to current Web browsers.

To summarize, our contributions in this chapter are:

• Identification of the inefficiencies of current Web browsers by carefully analyzing the

interactions of several factors related to Web fetching;

• Proposal of three mechanisms to reduce user response time in an easy-to-deploy fash-

ion.

5.2 Motivation

In this section, we describe drawbacks in a conventional Web access model in low-bandwidth

environments and use them as a motivation for designing a new Web access scheme.

5.2.1 Web Access Model and Simulation Setup

A typical network model for Web accesses is as shown in Figure 27. In this model, to access

a Web page, a user inputs a uniform resource locator (URL) address into a Web browser

window. Then, the browser requests a domain name system (DNS) server to translate

the URL address into the corresponding IP address. After obtaining this IP address, the

browser directly accesses the main HTML document located in the Web server. When load

1It is defined as the content area within the main window of a Web browser
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Figure 27: Typical network topology for Web access.

balancing is performed among multiple Web servers2, a layer-7 switch rewrites the domain

names of embedded objects defined in the HTML document to distribute requests of objects

to multiple servers. Finally, the Web browser performs additional DNS resolutions for other

unknown Web servers having those objects and downloads objects from them.

Typical Web browsers can open multiple connections to a single Web server to increase

fetching speed. For example, Microsoft Internet Explorer and Netscape Navigator can open

up to two and six TCP connections to a single server, respectively [92]. Each opened

connection has its own message queue to send object requests, i.e., HTTP GET messages.

A parsing engine in a browser inserts object requests to all message queues in a round-robin

fashion since the browser is unaware of object and network characteristics.

In this chapter, we consider the Top 50 Web Sites [13] as representatives of typical Web

pages and measure their Web characteristics. Table 2 shows the statistical results of those

Web sites. In the table, a screen refers to an effective area for displaying a Web page in the

browser window. In the measurements, we used Microsoft Internet Explorer, of which the

client area size is 1006×511 in pixels, under a 1024×768 screen resolution. The initial screen

is defined as the first part that is shown in the client area when a Web page is accessed. In

the measurements, the average number of screens in these pages is 1937/511 = 3.7.

To evaluate the performance of conventional Web access models in a low-bandwidth

2They create a server cluster, called a server farm
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Table 2: Web statistics of Top 50 Web Sites.
HTML IMG Others Total

Byte size Mean 31.72 2.46 12.91 225.96
per object [KB] STD 35.51 5.90 9.67 186.04

Number in Mean 1 17.31 4.41 22.72
first screen STD 15.36 6.22 16.37

Number in Mean 1 46.80 3.99 51.79
all screens STD 28.16 6.22 30.34

Number of Mean 1 5.16 1.74 5.50
Web servers STD 2.90 1.20 3.38

Width Mean 998
[pixels] STD 46.49

Height Mean 1937
[pixels] STD 1119

environment, we use ns2 simulator [42] with the Reno-FullTCP package, which supports

bidirectional transmissions. In the simulations, the same network topology as shown in

Figure 27 is used with the assumption that a local DNS server has all the required domain

information. The bottleneck link is located between the Web client and the backbone

network and is configured to have a 100-Kbps bandwidth and a 100-ms link delay. The

bandwidth and delay from both the DNS and Web servers to the backbone network is

1 Mbps and 5 ms, respectively.

For modeling Web traffic, we use the same Web characteristics as shown in Table 2. The

average processing time of an object in the browser is assumed to be 200 ms, and parsing

delay is ignored. We assume that all Web servers support HTTP/1.1 with the persistent

connection feature, but pipelining is not considered since it is not faithfully supported by

most commercial Web servers [9]. The byte size of a HTTP request message is set as 500

bytes, and the header size of a HTTP response message is ignored. It is also assumed that

the cache function of the browser is disabled.

We consider initial screen-response time, which is defined as the difference between the

time when a Web browser sends a request for a Web page and the time when an HTML

document and all embedded objects required for displaying the initial screen are downloaded

completely, as a primary metric.
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5.2.2 Screen Contention Problem

When a user views a screen on a display device, objects for displaying other screens are

unnecessary in the sense that they are not visible to the user at this time. However, in

conventional Web browsers, the process of fetching necessary on-screen objects (i.e., objects

on the current screen) may be slowed down as a result of the competition from the process

of fetching unnecessary off-screen objects. We refer to the fact that objects from different

screens are competing for bandwidth as screen contention.

The main reason for screen contention is the disparity of cumulative transfer sizes among

multiple connections. As mentioned earlier, a parsing engine inserts object requests to

message queues in a round-robin fashion, which considers only fairness in the number of

objects per connections. As a result, some connections having only small-sized objects may

finish transmissions of on-screen objects earlier than others and begin to fetch off-screen

objects. Under this scenario, different connections may fetch objects on different screens

simultaneously.

Another possible reason is directionality in a table structure in HTML. When a multi-

cell table is used in a Web page, the internal cells in the table may have a significantly

larger height than the client area. In such a case, only after the Web browser fetches off-

screen objects located at the end of the first cell first, it begins to fetch on-screen objects

located at the beginning of the next cells. Figure 28 shows an example of an object-

fetching sequence when Internet Explorer accesses the amazon.com page, which consists of

one HTML document, five javascript, two flash, and 65 image objects. In the figure, many

off-screen objects are fetched or begin to be fetched before downloading all 35 on-screen

objects is completed because of the same reason.

We show the effect of the screen contention problem by presenting the simulated object

fetching progress in Figure 29. We assume that all the objects are from a single server and

the effect of directionality in a table structure is ignored. In the simulations, the initial screen

has 18 on-screen objects, i.e., objects numbered after 18 are unnecessary data. As observed

from the figure, objects on both the current and other screens are fetched simultaneously

because of the screen contention problem. Since fetching the unnecessary objects consumes
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Figure 29: Fetching with screen contention in a conventional Web browser.

some portion of bandwidth, the resulting response time for the initial screen is increased

unnecessarily. In the figure, two off-screen image objects (IMG) numbered 20 and 22 are

fetched in parallel with other on-screen objects located on the initial screen. As a result,

the response time for the initial screen, which was measured after IMG 17 was downloaded,

is 18.7 secs.

An intuitive solution to screen contention is to prevent unnecessary object fetching.

Figure 30 shows an ideal case where contention is eliminated in an ideal browser. As seen
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Figure 30: Fetching without screen contention in an ideal Web browser.
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Figure 31: Impact of screen contention.

from the figure, when the faster connection (i.e., Connection 1) completes downloading

all the on-screen objects on the initial screen, it stops fetching and waits for the other

connection (i.e., Connection 2) to finish fetching the other on-screen objects. Thus, the

remaining connection can obtain more bandwidth and in turn reduce the response time for

the initial screen by 1.1 secs.

Figure 31 shows how screen contention affects the initial screen response time under both

single and multiple servers scenarios as the numbers of connections and servers increase. In

the multiple servers case, we assume that up to two parallel connections are allowed to each

server. In Figure 31(a), as the number of connections increases from one to three, both the
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conventional and ideal browsers show significant performance improvement. However, when

the number of connections is larger than four, the performance becomes less affected by it.

When Web objects on a single page are distributed to multiple servers by a load balancing

technique, the performance is directly affected by the number of servers. In Figure 31(b),

both schemes show their best performance as the number of servers becomes closer to three.

However, the performance in the ideal scheme is less influenced by the number of servers as

a result of its effective prevention of screen contention.

5.2.3 Bandwidth Underutilization Problem

In HTTP/1.1, a persistent connection consists of a series of request-response transactions.

Given this model, [9] shows that the idle time of a network decreases with an increase in

the number of simultaneous TCP connections. In the paper, the authors also show that

there exists an optimal number of simultaneous connections (around six in the paper), at

which the performance is optimal because of reduced idle time. However, since current Web

browsers do not schedule object transfers in a bandwidth-efficient way across multiple TCP

connections, they do not always maintain the optimal number of simultaneous connections.

In many cases, only a small number (e.g., one or two) of connections are active at any

instant. This results in underutilization of the access link, which we refer to as the bandwidth

underutilization problem.

The above-described bandwidth underutilization problem results in varying levels of

performance degradation, depending on the number of Web servers. In the case of a single

server, bandwidth efficiency is determined by how much the ending times of transmissions

among parallel connections are synchronized. In Figure 30, the last object (i.e., IMG 17)

is fetched with no other objects, and thus only a single connection uses network bandwidth

toward the end. In the case of multiple servers, the user performance is also affected by

synchronized ending among connections to other servers.

The solution to the bandwidth underutilization problem is to schedule GET requests

across multiple TCP connections such that all the connections are always active during the

fetching process. Figure 32 shows the impact of performing ideal scheduling such that there
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Figure 32: Fetching with synchronized ending time in ideal Web browsers.

always exist one or more pending requests in every connection. In the figure, when the

faster connection finishes fetching all on-screen objects that were in its request queue and

has no more objects to fetch, it takes over the unfulfilled object requests from the queue

of the other connection and performs fetching. As a result, both the connections can use

bandwidth more efficiently, and the initial screen response time is reduced by 1.6 s when

compared to that in a conventional Web browser.

In the scenario of multiple Web servers, different objects belonging to the same Web

page are delivered by opening TCP connections to the different servers. Commercial Web

browsers do not take into account the sizes of objects in scheduling object requests. This

invariably leads to the scenarios, in which several TCP connections to Web servers are idle

while the other connections are active.

The intuitive solution is to schedule the different object requests across multiple servers

such that all the connections are active. Figure 33 shows how bandwidth underutiliza-

tion affects the response time performance under various server scenarios. Note that the

response time in the figure means the transfer time for all the objects of a Web page, in-

cluding off-screen objects, and thus screen contention does not exist in this scenario. In

Figure 33(a), the single server case shows a similar pattern as in Figure 31(a) and improves
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Figure 33: Impact of bandwidth underutilization.

the performance consistently in the entire range. In Figure 33(b), unlike Figure 31(b), as

the number of servers increases beyond 3, both the schemes show stable performance, and

the ideal scheme shows up to a 20% performance improvement.

5.2.4 Summary

In this section, we have identified two issues with conventional Web browsers in bandwidth-

limited networks. First, we observe that contention among objects belonging to different

screens within the same Web page can increase user-perceived response time of the initial

screen. Second, we identify that network bandwidth can be underutilized because of non-

synchronized ending times of transmission. We also observe that in most cases the screen

contention and bandwidth underutilization problems affect user performance negatively in

a conventional Web model, and show how the ideal browser can overcome these problems

and achieve significant performance improvement. Based on these observations, in the next

section, we propose a new Web access scheme.

5.3 Overview of Solution

Our proposed solution includes three mechanisms: object prioritization, objects reordering,

and connection management. The brief summary of the mechanisms is as follows.

• Object Prioritization (OP) addresses the screen contention problem in a multiple-

screen page and provides an optimization solution for fetching objects with varying
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Figure 34: Flow charts of three mechanisms.

priority levels. Basically, OP is a What-You-See-Is-What-You-Fetch (WYSIWYF)

mechanism. While giving higher priority to on-screen objects, it gives lower priority

to off-screen ones to reduce the user-perceived response time.

• Object reordering (OR) addresses the bandwidth underutilization problem when a

browser downloads multiple objects from a single Web server. When load on those

connections to the server is unbalanced, OR reschedules object requests across con-

nections.

• Connection management (CM) addresses the bandwidth underutilization problem

when multiple servers are involved in a single Web page. In order to balance load

among connections to different servers (i.e., domains), it performs dynamic reassign-

ments for the entire connections.

The three proposed mechanisms complement each other as well as perform optimization

with different levels of granularity for Web object fetching on the browser side. One major

advantages of our solution is easy deployment, since it requires only client-side modification.

In fact, the solution can be implemented as nothing more than an add-on to the current
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Figure 35: Overview of three mechanisms.

Web browsers. Figure 34 shows the flow charts of these mechanisms, and Figure 35 shows

where they are located in the entire data flow.

5.4 Object Prioritization (OP)

While a Web browser is downloading a main HTML document, it also scans HTML tags

in the part of the document and updates the DOM tree continuously. When it finds an

embedded object by scanning, it immediately begins to fetch the object. This on-the-

fly fetching mechanism may bring performance improvement in high-bandwidth networks,

where the overhead of screen contention is relatively small. However, in a bandwidth-limited

client, this overhead affects user performance significantly, as mentioned earlier. Thus, the

object prioritization (OP) mechanism differentiates objects based on their locations in the

entire document layout and allows for downloading only the on-screen objects, which are

required to render the current screen display. As a result, it reduces the response time

experienced by Web users.
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The basic operation step of OP is as following: (1) When a Web access is requested,

it first obtains the initial screen view information in the document layout and prioritizes

embedded objects according to their locations in the layout. (2) Then, it performs fetching

objects according to their priority levels. (3)When a user scrolls to move to a different view,

it performs the above-mentioned process again for the new screen.

OP consists of three components, initial object prioritization, selective object fetching,

and reprioritization for screen update. The detailed operations are illustrated in Fig-

ure 34(a).

5.4.1 Initial Object Prioritization

Generally, a Web-page consists of various types of embedded objects. OP considers text-

based files including HTML, javascript, cascading style sheets, and other layout-related files,

as the highest-priority objects since these objects play an important role to construct the

overall HTML display layout. On the other hand, for other types objects such as image and

multimedia objects, OP assigns different priority levels according to their locations. For

simplicity, we consider only IMG objects as representatives of objects that do not affect the

document layout.

As mentioned earlier, OP performs location-based prioritization for IMG objects. The

detection of pixel-location of an IMG object is possible because most HTML document files

defines the pixel-size of image objects and a Web-browser can construct the full page layout

without downloading these objects. In cases that the HTML document does not specify

the pixel-size of an image object that is not fetched yet, OP uses an pre-obtained averaged

value based on browsing history.

In order to get the location information of objects, OP scans the document object model

(DOM) tree[97]. When it finds an IMG object definition, it searches all the successors in

the tree and calculates location offsets from successors to predecessors in a recursive fashion

until it reaches the top of the tree. The absolute location in the layout is defined as the

sum of all the relative offset. Based on this location information, OP gives highest priority

level to objects that are located within the current view in the client area and low priority
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levels to others.

5.4.2 Selective Object Fetching

For the schemes used to fetch objects of different priority levels, many existing schemes such

as [38] allocates a small portion of bandwidth for low-priority transmissions. However, these

schemes cannot be efficiently exploited in OP due to the following reasons: (1) HTTP 1.1

defines persistent connections, which allows transfer of multiple objects using a single TCP

connection. In OP, a priority-based connection doesn’t have flexibility to send both high-

and low-priority objects. (2) Each TCP connection performs multiple short transmissions.

As mentioned earlier, generally IMG objects that account for the half of total byte-size of a

Web-page have a small average byte-size (a few packets). In these short bursty on-off trans-

missions, priority-based connection schemes can’t assign a desired portions of bandwidth

accurately.

Thus, OP uses a delayed-transmission scheme. When information of new objects are

extracted from a HTML document and they are prioritized as high level, OP inserts the

corresponding request messages into the already-in-use queues. In this scheme, low-priority

objects are fetched only after all the higher-priority objects have been downloaded, i.e. after

the higher-priority queues become empty.

5.4.3 Re-prioritization

When browsing Web-pages, a user may scroll to another view other than the current one

before all the on-screen objects in the current screen are fully downloaded. For example, a

user may perform fast scroll by searching and clicking an internal link to another part in

the same page. In these scenarios, the current focus is changed before the downloading of

previous screen, and the initial prioritization may not perform efficiently. Thus, a proper

mechanism is required to deal with these scenarios.

When the screen focus is moved to a new area, OP removes all the IMG objects that

reside in request queues and re-prioritizes them for the newly focused area. For the objects

that are currently being downloaded, OP waits for their completeness. The reason for

allowing this off-screen fetching is that most Web-browsers, as applications above transport
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layer following HTTP standards, do not have mechanisms to manage disconnections and

re-connections. OP thus keeps the currently incoming transfer and only updates the priority

levels of the queues involved.

The provided fetching schemes can be different transport protocols, different parameters

in the same protocol, or different starting time. As mentioned earlier, in this work, we

consider only adjusting starting time to fetch different screens using the currently existing

transport protocols.

5.4.4 Analytical Model

OP mechanism can be formulated using the following model. Assume that a Web-page

consists of a set of screens, S = {si|1≤i≤N}, where s1 and sN are the first and last screens

respectively, OP provides a set of priority-based fetching schemes, P = {pi|1≤i≤M}, where

p1 and pM are the highest and the lowest priority levels respectively. Then, OP fetches each

screen si with scheme pj in the way that gives the user least response time.

The provided fetching schemes can be different transport protocols, different parameters

in the same protocol, or different starting time. As mentioned earlier, in this work, we

consider only adjusting starting time to fetch different screens using the currently existing

transport protocols.

5.5 Objects Reordering (OR)

For parallel connections to a single server, OR uses balanced ordering of objects to gain

benefits in terms of reduced response time. The operations of OR consist of three steps.

(1) At the first step, an initial assignment of objects is executed. (2) Then, an optimized

ordering of objects is performed by TCP-aware object reordering. (3) After that, it per-

forms dynamic objects rescheduling until all objects are completely fetched. The detailed

operations are illustrated in Figure 34(b).

5.5.1 Initial Objects Assignment

As we identify in the previous section, conventional browsers perform a round-robin assign-

ment to distribute object requests to multiple connections. This size-unaware assignment
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may cause unsynchronized ending time among different connections, and as a result in-

creases response time. Therefore, OR performs load balancing among connections using

byte-based metric rather than simple round robin in order to synchronize their ending time.

Since larger byte size translates to longer downloading time in Web fetching, OR syn-

chronizes ending time of different connections by distributing same amount of objects to

every connection. A more accurate way to synchronize the ending time could be one that

also considers the number of objects, the precessing time for each object, and others. That

is, the expected ending time is given by SizeData

BWAvailable
+ n ∗ rtt

2
+ TProc, where n is the number of

objects and TProc is the processing time.3 However, OR simplifies the metric by considering

only data size, based on the observation that the first term, SizeData

BWAvailable
dominates over other

terms in low bandwidth networks.

Performing OR requires the byte-size information of objects. Since this information

is normally not included in HTML documents, OR estimates it by considering both the

object’s pixel-size included in HTML documents and the object formats such as gif and

jpeg. Based on this data size information, OR sends object requests through multiple

connections in a balanced way. A time with a ϕ expiration value is used to strike the

balance between amount of objects and increased response time.

5.5.2 Dynamic Objects Rescheduling

Irrespective of initially balanced assignment of objects among connections, due to dynamic

behavior of connections, the total fetching time of different connections may still vary

significantly. If due to some reasons one connection is delayed, and the other connection

is idle, it is possible to reschedule the objects from the busy connection to the idle one,

and thus reduce response time even more. Dynamic objects rescheduling runs in an on-

demand fashion during the fetching process in order to deal with the dynamic nature of the

connections.

3Since fetching each object has to follow the HTTP request-reply handshaking pattern, which wastes 0.5
rtt.
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5.5.3 TCP-aware Objects Reordering

When initial Web objects are assigned to a connection, TCP-aware reordering of the fetching

sequence can increase download speed by minimizing the adverse effect of slow start in

TCP. Let us assume that there are three different objects with the sizes of seven (obj 1),

three (obj 2), and two packets (obj 3) respectively are waiting to be fetched along a single

connection. If the TCP connection is newly created and its congestion window size starts at

two4, the total downloading time for an order of obj 1→obj 2→obj 3 is five rtts, as shown

in Figure 365. However, if an opposite order of fetching is allocated, it may reduce the total

fetching time to three rtts. Thus, appropriate ordering the fetching may save response time

in the order of rtt of the path.
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Figure 36: Example of TCP-aware reordering.

TCP slow start can kick in at any time during the downloading process. However, since

HTTP and upper layer is unaware of each other’s status information, there is no way to

take advantage of them without some other cross-layer mechanisms. Thus, the TCP-aware

objects reordering scheme only makes use of the slow start phase in the beginning of a TCP

4More than 95% of the servers do not perform TCP-JumpStart [71].
5We do not consider the Delayed ACK Scheme described in RFC 2581 here for better observation of the

change of cwnd.

71



� �� �

� � �� � � � 	 � � 
 � �

� � � �

� � � 

� � � �

� � � �

� � � �

� � � � � 
 � � 
 � �

� � � �

� � � 

� � � �

� �� �

� � � �

� � � � 
 � �

� � � �

� � � 

� � � �

� � � �

Figure 37: Reordering using OR.

connection.

For this rescheduling to take place, appropriate ordering of objects is required. Intu-

itively, with small objects being put at the end of connection, it is more likely to reschedule

objects among connections, and thus reduce response time. Also, ordering objects from big

to small also makes rescheduling easily to perform, since small objects can be rescheduled

in a finer granularity as the fetching process going on.

Thus, both considering the two requirements, OR orders the fetching sequence in a

rats-elephants-rats fashion. The detailed operation of TCP-aware Objects Reordering is

illustrated in Figure 37. First, all the objects assigned to one connection are sorted according

to their data size. After that, from smallest one, all objects are inserted from two ends of

the queue in round-robin way, and the resulting ordering is a small-to-big-to-small order.

5.5.4 Analytical Model

This problem that OR is addressing can be formulated into the following analytical model.

Given a screen, assume a set of objects, O = {oi|1≤i≤N}, where the i-th server has oi IMG

objects and N is the total number of servers. Assume totally J connections will be opened

for fetching objects from this server, and let C denote this connection set.

The output of OR includes two parts. First, an assignment of O to C, such that the

objects are equally distributed among connections. In other words, the maximum amount

of data assigned to the connections is minimized. Let’s assume the amount of data assigned

to connection to cj is denoted by dj , and the objective is to minimize the maximum value

of dj . Second, an appropriate ordering of these objects on these connections. The fetching

order of these objects should avoid the adverse effect of HTTP-TCP interaction, and is easy
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to reschedule objects among connections.

5.6 Connection Management (CM)

CM addresses the bandwidth under-utilization problem when fetching objects from multiple

servers by controlling the numbers of connections a browser can open to different servers. By

adjusting the number of connections for each server, CM effectively synchronizes the ending

time of downloads in the connections. As a result of the improved bandwidth utilization, the

response time is reduced. CM consists of two components, estimation of per-connection load

and dynamic connection assignment. The detailed operations are illustrated in Figure 34(c).

5.6.1 Per-Connection Load Estimation

In order to estimate the ending time of downloading, CM uses the byte-size information that

OR converted earlier. The intuition of CM is to assign more connections to servers with

larger data size, while assign less connections to servers with smaller data size. To maintain

friendliness to current browsers and compatibility to published standards, the total number

of connections in our mechanism is maintained the same as in today’s popular browsers. By

doing so, CM behaves friendly to them. To achieve this purpose, whenever it assigns one

more connection to some server, one less connection should be deducted from some other

server. Furthermore, CM limits the maximum number of connections assigned to a server

to four due to several reasons including the observation made by [9] stating that allocating

too many (say, more than six) connections to the same server does not necessarily lead to

better performance.

5.6.2 Dynamic Connection Assignment

When fetching a HTML document from a server, a browser fetches and parses the contents.

Whenever it detects new object information, it estimates the byte size of this object, and

starts a timer with δ expiration value. The setting of this timer requires careful considera-

tion. On one hand, CM needs to collect some amount of object samples in order to achieve

improvements. Thereby the δ should not be too small. On the other hand, CM should not

delay object fetching significantly to avoid increasing response time adversely, and thus the

73



expiration value should not be very large such as dozens of ms.

After the expiration of this timer, CM performs the initial assignment based on object

information collected so far. During the process of fetching objects, it keeps recording the

object information on how much data already received. This information will be used again

to adjust the number of connections

5.6.3 Analytical Model

This CM mechanism can be formulated into the following analytical model. Given a set of

servers, S = {si|1≤i≤N}, where N is the total number of servers, let di denote the total

data size of objects from server si. Given a connection set, C = {ci|1≤i≤N}, where ci is

the number of connections opened for server si, CM finds a minimized maximum value of

di/ci.

C is also subject to three other constraints. First, the total number of connections

should not exceed 2N to maintain friendliness to current browsers. Second, the ci should

not exceed the number of objects in si. Third, ci should have a range from one to four.

Let us use ni to denote the number of objects in server si. The output C should achieve

the purpose described in Eq. 4, and satisfy the constraints denoted in Eq. 5.

Lmax is minimized, where 1≤i≤N (4)

∑

1≤i≤I

Ci ≤ 2I and 1 ≤ Ci ≤ min{4, N} (5)

The detailed algorithm is as follows. In the beginning, every server is assigned two

connections, and CM computes the largest and smallest values of Li = di/ci. We use Lmax

and Lmin to denote the largest and smallest values of Li. Assume server sj has the largest

value (i.e. Lmax = dj/cj), and server k has the smallest value, Lmin. Now, we increase

cj by one (i.e. cj = 3), and decrease ck by one, then compute the new maximum value,

Lmax′. If Lmax′ < Lmax, that means the new assignment has a smaller maximum value,

then the algorithm will continue to run. Otherwise, if Lmax′ > Lmax, the algorithm stops
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and resume to previous assignment, since the new assignment results in a larger maximum

value.

The algorithm runs whenever an object is downloaded. For the new runs, the metrics

considered in Equation 4, i.e. si, are set to be the remaining data size for server si. Thus, the

algorithm will be performed whenever an object-related event happens. For this reason, an

adverse effect - fluctuation on the number of connections assigned to servers, may possibly

happen. To reduce this fluctuation, we introduce a threshold value, τ . In CM, only when

the Lmax′ values between two consecutive iterations is larger than τ , the algorithm will

adjust connections set. We suggest a 10% of previous Lmax′ as the τ value.

5.7 Simulation Results

In this section, we evaluate the performance of the proposed mechanisms, and compare it

with that of conventional Web browsers.

5.7.1 Simulation Setup

To evaluate the performances, we use ns2 simulator [42]. Unless otherwise noted, the

network configurations as well as the Web characteristics used in the simulations are the

same as described previously. We also use the same network topology as shown in Figure 27

assuming that the local DNS server has all the required domain information.

Response time for the initial screen is used as the primary metric for comparing perfor-

mances. In this section, we compare five schemes; conventional (CONV), OP only (OP),

OP with OR (OP+OR), OP with CM (OP+CM), and all integrated (ALL) schemes. To

better explore the impacts of some factors on the performances, we vary some factors in the

evaluation. These factors include object characteristics such as sizes and number of objects,

numbers of servers involved, numbers of connections opened to a single server, network

characteristics such as link bandwidth and rtt values, and user’s fast scrolling to different

screens.
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Figure 38: Impact of object characteristics.

5.7.2 Impact of Object Characteristics

Figure 38 shows the initial response times of conventional browsers and our proposed so-

lution, when the standard deviation of individual object size and the number of objects in

the first screen vary. As shown in the figure, when used in combination, the three proposed

mechanisms can reduce up to 30% of response time compared to current browsers.

Figure 38(a) shows that as the variance of object size increases, the performance of both

the conventional model and our scheme becomes worse. For conventional browsers, the

reason is obvious, since larger variance can be translated to reduced bandwidth utilization

as described in the Motivation section. Our mechanisms can alleviate this problem, and

thus reduce the initial response time. However, since the problem still exists, and becomes

more severe when variance of object size increases, the performance degradation is still

expected.

Figure 38(b) shows the performance differences between conventional browsers and pro-

posed ones when the total number of objects increases. In the figure, two trends are shown;

First, As more objects are included in a Web page, larger response time is expected; Sec-

ond, the response time reduced by the proposed solution is larger since all of the three

mechanisms can gain more benefits.
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Figure 39: Impact of numbers of connections and servers.

5.7.3 Impact of Number of Connections and Servers

Figure 39(a) shows the impact of number of connections to a single server, and it can be

seen that up to 20% of response time can be reduced by using our solution. In the figure,

as the number of connections to a single server increases, both the conventional and our

solution has smaller response time. However, as this number exceeds four, there are no

obvious performance improvements with more connections. This result is consistent with

the results presented in other works [9].

Figure 39(b) shows how the initial response time varies as the number of servers for a

Web page increases. Two observations can be made from the figure. Increasing number

of servers does not necessarily always result in better performance for both conventional

browsers and proposed ones. Second, with more servers, our solution can achieve more

improvements compared to conventional Web browsers.

5.7.4 Impact of Network Characteristics

Figure 40(a) shows how the initial response time changes under varying bottleneck band-

width. As shown in the figure, our solution brings more performance improvement for

smaller bandwidth. It is because of the fact that smaller bandwidth makes the screen

contention problem more severe, and thus our solution can reduce response time more by

alleviating this problem.

Figure 40(b) shows how the initial response time is affected by the rtt values. Since
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Figure 40: Impact of network characteristics.
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Figure 41: Impact of fast scroll.

the major effects of rtt come from the request-response behavior of HTTP protocols (i.e.,

each object is fetched upon the request from the Web client, and thus takes at least one

rtt to fetch one object) and our solution can alleviate this effect by removing some of these

rtts required, our solution sees better performance. As shown in the figure, around 20%

performance improvement is achieved by our solution under the rtt values considered in the

evaluation.

5.7.5 Impact of Fast Scroll

Figure 41 shows the response time performance when a user performs fast scrolling. The

x-axis of the graph shows the screen to which a user scrolls, and the y-axis is the response

time. We assume that scrolling is performed when a Web browser completes downloading
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of the main HTML document and the entire document layout becomes available.

As seen from the figure, the response time increases when a user scrolls farther away

from the initial screen for conventional Web browsers. It is because conventional Web

browsers perform greedy fetching without considering the locations of objects on a screen,

and thus display of any screen requires downloading of all previous screens. In contrast,

our solution has smaller response time as a user scrolls farther away from the initial screen.

That is, if a user simply scrolls to the fourth screen, it can experience even smaller response

time than any preceding screen! Since OP performs non-sequential fetching and fetches the

current screen first, the response time does not depend on the screen number, instead, is

determined by the data size in the current screen. Consequently, as less data are located in

farther screen (as seen in most popular Web pages), the response time for these screens is

less than that for preceding screens. Thus, we see a 70% reduced response time when the

users jump to the fourth screen.

5.8 Prototype Implementation

In this section, we demonstrate the feasibility of the OP mechanism using a simple imple-

mentation6. In order to prototype the OP mechanism, we designed a plug-in program for

Windows operating systems, which allows full control of image delivery and display.

5.8.1 Background: Architectural Overview of Web Browser

A Web browser consists of five main components; graphic user interface (GUI), browser

control, parsing engine, rendering engine, and memory space called context. Figure 42

provides a high-level overview of a typical browser.

The GUI part of the browser is located at the top level and allows a user to interact with

the browser by providing graphical components, including windows, frames, toolbars, and

so on. It also initiates or closes a browser instance, and manages system messages delivered

by a message queue of the OS.

The browser control performs main functions of the browser; navigation, linking, history

6Because of inaccessibility to the source code [47] and high complexity of message queue structures [56],
we do not focus on other mechanisms here.
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Figure 42: Structure of a Typical Web Browser.

and favorite sites management, and support for various other document types such as Word

and Acrobat files. The browser control can be overridden by implementing an additional

control program without modifications of the source code, and many plug-in softwares are

developed in this manner.

The parsing engine interprets HTML documents, fetches embedded objects described in

documents, and transforms the original document hierarchy of HTML tags into the display

layout structure. It consists of a scanner that reads input streams in real-time, a parser

that interprets tags and construct a DOM tree, and a grammar checker that examines the

target (mostly HTML) grammar of Web objects.

The rendering (layout) engine displays all graphical Web objects in the client area of a

browser window by following formatting information defined by CSS and XSL. Microsoft
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Internet Explorer (IE) has a Trident engine (also known as MSHTML) [46] for both parsing

and rendering, which also provides a WYSIWYG HTML editing functionality in a manner

similar to text editing in Microsoft Word. Mozilla-based browsers such as Firefox and

Netscape Navigator use a Gecko rendering engine [57], which is open-source and cross-

platform. Opera [68] and Adobe Dreamweaver use a Presto rendering engine. It has a

strength in small screen rendering, and many mobile and low-end devices such as Nokia’s

Symbian-loaded smartphones and Nintendo DS use this browser. Besides, various rendering

engines including Ritlabs’ Robin, KDE’s KHTML, and Apple’s WebCore are used in popular

Web browsers.

Context is a memory resource that GUI-based operating systems provide to display

graphical objects or screen for a specified device or display. Nowadays, many Web browsers

follows a dual-context structure, which uses an additional context, called rendering context,

which stores partial display information in a browser, to increase rendering speed and reduce

resource usage.

5.8.2 Prototype Design

Our prototype for object prioritization has been developed as a plug-in program in the

WinAPI environment. It can be installed upon Internet Explorer and interacts with the

browser control of IE without modification of Windows registry. The prototype performs

the following basic operations; on-screen object detection, calculation of object location in

layout, and download control. Using this prototype, we will identify the benefit in real-life

experiments.

The prototype initially disables the fetching option for all external objects, i.e., Show

pictures in IE. When a user requests to access a new Web page, it gets the document dispatch

from the browser control through GetDocument. Then, it gets the IHTMLDocument2 inter-

face pointer, the element pointer IHTMLElement that directs the document body, and the

container interface pointer IHTMLTextContainer of the body element, sequentially. From

the container pointer, it calculates the scrollable area size of the browser window and the

current scroll position through GetHeight/Width() and get scrollTop/Left(),
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On the other hand, it requests the image collection IHTMLElementCollection to the doc-

ument interface. Then, it gets the IDispatch interface pointer of each image element and the

IHTMLImgElement interface from IDispatch. Then, it measures the pixel-size and the loca-

tion of the image element through get width/height(), get height() and get offsetTop/Left(),

If the image element has a parent element, it calculates the margin from the parent element

and moves the element focus to the parent. After repeating this process until there is no

parent any more, it sums all the relative location to calculate the absolute position. Then,

it decides whether the element is on-screen or off-screen.

The current version of the prototype performs periodic detection and fetching through

SetTimer() and KillTimer(). If the timing interval is too large, the browser control may

not be able to follow user’s scrolling speed and update correctly. If it is set as too small,

refreshment rate of the client area is too high, and the browser may consume too much

system resource by performing unnecessary detection. Currently, we set this value as 1000

ms.

After prioritization, it performs selective delayed transmission for the objects; it fetches

high-priority objects immediately and delays low-priority ones until all high-priority objects

are completely downloaded. In the current version, we use a simple prioritization scheme

that gives on-screen objects high-priority and off-screen ones low-priority. Figure 43 shows

the screenshot of browsing amazon.com in the prototype.

5.8.3 Performance Results

For the performance evaluation of the prototype, we accessed two popular Web sites;

amazon.com and cnn.com. In the experiments, the length of the sites was measured as

about 4 and 5 screens, respectively.

Figure 44 shows the transfer sizes for loading the entire pages and the numbers of

embedded objects included. In browsing amazon.com, about 15% of the objects in number

are non-image, however it counts for a half of the total transfer size in bytes. On the

contrary, the off-screen objects in the initial screen account for 30% in transfer size but

50% in number. In accessing cnn.com, this unbalance between the transfer size and the
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(a) Before fetching embedded objects

 

(b) After fetching all on-screen objects

Figure 43: Screenshot of Browsing amazon.com in Prototype.

number of objects becomes more severe. In Figure 44(b), the number of the off-screen

objects amounts to more than 60%, whereas their aggregated transfer size takes only 17%.

Figure 45 describes the initial and full response time performance for the Web pages.

In the figure, the darker area shows the additional delay to fetch the entire objects after

displaying the initial screen completely. When browsing amazon.com, the prototype reduces

the initial response time by 5 secs; the greedy fetching browser wastes 5 secs to download

off-screen objects before the initial screen is fully displayed. In the case of cnn.com, the

performance benefit increases to 40%. In the figure, it can be seen that the performance
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Figure 44: Transfer Size and Number of Objects in Prototype.
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Figure 45: Response Time in Prototype.

degradation caused by screen contention is affected not only by the transfer size of the

off-screen objects but also by their numbers.

5.9 Summary

In this chapter, we first explore the reasons why conventional access models for partitionable

content are not appropriate for mobile hosts. We identify two reasons, screen contentions

and bandwidth underutilization, which result in large user-perceived response time. To

address this problem, we propose a new access scheme, which uses an intelligent mix of

object prioritization, object reordering, and connection management. Using simulations

with the Web parameters obtained from the Top 50 Web Sites, we evaluated the performance

of our scheme and proved its benefits over conventional access models. We also implemented
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a simple prototype of the object prioritization algorithm and measured the performance

benefit in real-life experiments.
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CHAPTER VI

USER-ACTIVITY SHIPPING FOR FILE SYNCHRONIZATION

6.1 Introduction

Distributed file systems allow for transparent file sharing across networks, either between

multiple users or between multiple computing devices belonging to the same user. In either

type of file sharing, file synchronization refers to the process of synchronizing a file at the

file server with the changed copy of the file at a client, after an update session. Especially

when the clients are connected to the file server through low-bandwidth links such as in a

wireless environment, the bandwidth usage efficiency of the file synchronization scheme in

a distributed file system is more important.

An intuitive bandwidth-efficient strategy of file synchronization for such environments

is one where only the binary differences between the original and updated files are sent

across to the server and the original file at the server is thus patched with the differences.

The performance of such an approach is obviously better than that of a full-file transfer in

conventional file synchronization schemes. Low-bandwidth network file system (LBFS)[58]

and Prayer file system (PFS)[19] are examples of a file system that uses such a strategy.

However, under commonly occurring conditions, these approaches still incur considerably

larger overhead than essential to perform file synchronization.

Therefore, in [43], the authors propose an operation shipping strategy. In this mecha-

nism, the mobile client logs high-level user operations and ships them across to the server.

The surrogate then re-executes the operations upon the old copy of the file to re-generate

the corresponding updated files. The authors demonstrate that the transfer size for the

commands is typically much smaller than that in conventional file systems, and hence mo-

tivate a new paradigm for file synchronization. However, they focus only on interpreted

user operations such as shell commands in Unix or application-specific operations, not un-

interpreted raw inputs such as keystrokes and mouse-clicks. Thus, operation shipping has
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a limitation that it can be applied only to shell-based applications or applications that are

modified to perform the interpretation of user operations in an application-aware way.

In this paper, we present a new file synchronization approach that performs raw user-

input shipping for unmodified common desktop applications, which interact with operating

systems by exchanging messages in graphical user interface environments. The approach we

present records raw user-activity such as keystrokes and mouse-clicks at the client, replays

the shipped record of the raw activities at the server, and verifies whether the regenerated

file is identical to the updated file. We refer to this approach as Mimic since the strategy

is to mimic the client-side user activity on the server. Mimic is not a complete file system,

but is meant to be an add-on to an underlying file system such as LBFS[58] or Coda[82],

to reduce transfer sizes during file synchronization.

We use a simple prototype to show the considerable bandwidth usage benefits it can

provide when used appropriately. Using the prototype with a group of applications, we

also identify specific conditions under which raw activity shipping does not provide better

performance than the differential update scheme, and hence present an integration strategy

that involves both update mechanisms working in a loosely coupled fashion.

6.2 Motivation

The objective of this work is to exploit conditions under which the encoded user activity

for a file update is much smaller in size than the changes to the file itself. Mimic is fully

application-unaware, does not require any changes other than to the file system itself, and

applies to interactive applications. Mimic achieves its applications-unaware property by

shipping raw activity such as key-strokes and mouse-clicks as opposed to application-aware

cases.

Now, we present the key factors that contribute to the motivation in the specific con-

text of interactive applications. The identification of the factors serves to highlight the

commonality of the types of file updates, for which raw activity shipping will deliver bet-

ter performance than differential update (diff). We classify file updates for which activity

shipping will deliver better performance into two types: (i) updates where small amounts
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of user-activity results in large amounts of content being added to the file; and (ii) up-

dates where small amounts of user-activity results in large changes to the content of the

file without necessarily increasing the size of the file itself. In the rest of the section, we

use experimental results with a graphical document processing applications, namely Sun

Microsystems’ OpenOffice.org writer, to highlight the inefficiency of the differential update

scheme for the above classes of updates, and therein motivate the need for a better file

synchronization mechanism.

• The first class of updates is relatively straightforward to understand. An example of

an update that results in a large amount of content being added to files with minimal

user-activity is a copy-and-paste operation. In the experiment, we copy a paragraph

and paste it onto another location in a 54-KB Word-format document using key-

strokes and mouse-operations. In Table 3, the binary difference between the updated

and original files amounts to approximately 1 KB. However, the activity itself, in

terms of mouse-clicks and locations, when encoded amounts to only 0.084 KB.

• The second class of updates is relatively more non-intuitive, particularly in the context

of interactive applications. In Table 3, for the activity insert-a-line by keystrokes, a

single line of text is inserted into a 54-KB document. The additional textual content

added is approximately 87 characters. However, the diff amounts to about 1.4 KB

of data. This phenomenon is also observed for the activity insert-a-paragraph by

keystrokes, where a 5-line paragraph is typed into the document. While the textual

content added is approximately 400 characters, the diff amounts to approximately

2 KB. The interesting observation to be made in the above results is that while the

file size or textual content itself does not change dramatically, there is considerable

change in the binary representation of the file despite the minimal user-activity.

• The reasons behind the observation is the complex file structures used by most inter-

active graphical applications to provide the best interface and services to the user. In

the specific case of the Microsoft Word document format, the application maintains

each document in the form of six different streams [50]. The main stream contains
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Table 3: Comparison between diff and activity size.

File diff Message
seq. Activity description User activity

size size size

0 ( initial state ) 54272 B

1 Insert a line 87 keystrokes 54784 B 1365 B 204 B

2 Insert a paragraph 432 keystrokes 55296 B 1719 B 768 B

Copy and paste a 6 keystrokes +
3

paragraph internally 11 mouseclicks
55808 B 1021 B 84 B

Change the font type
4

of a paragraph
7 mouseclicks 57344 B 920 B 48 B

the document header and all textual information in the document, while the data

stream contains information about all non-OLE objects (such as figures and tables)

in the document, including their physical addresses in the binary representation of the

file. The object stream similarly maintains information about all OLE objects (such

as imported figures and spreadsheets). A table stream maintains the structure of the

document itself, including the locations of the different objects in the visual repre-

sentation of the document, and the relative dependencies between the objects (e.g. a

figure and wrap-around text). Finally, two summary information streams maintain

miscellaneous information about the document including timestamps.

In this complex representation of a Word document, a single line of text insertion

thus has the following impact: The main stream is updated to contain the modified

textual information. In addition, the data and object streams are updated to reflect

the new addresses of the different objects in the binary document file, with their

positions altered due to the insertion of the line of text in the main stream. Moreover,

the table stream also is updated to reflect all changes to the visual representation of

the document in terms of the relative and absolute locations of the different objects in

the document. Finally, any resulting changes in other attributes of the file including

timestamps results in updates to the summary streams. Such a multi-fold update of

the binary representation of the document file, when a single line of text is inserted,
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accounts for the substantial size in the diff despite the minimal user-activity. Note

that such complex, and application tailored, binary representations of content is not

specific to only Word, and is true for most interactive applications today. In Section

6.6, we consider other applications.

Finally, in Table 3, for the activity change-font-type, a paragraph is highlighted, and

a font change is effected exclusively through mouse operations. It can be observed

that for such “meta” operations, the size of the activity itself is much smaller than

that of the diff. The reasons are again similar to those described earlier in terms of

updates to multiple streams within the file structure.

• In summary, updates for which small magnitudes of user-activity result in large addi-

tions or changes to the file’s content render activity shipping an attractive option for

file synchronization.

In the next three sections, we present a raw activity shipping strategy for file synchro-

nization called Mimic. Mimic is specifically targeted toward reducing transfer sizes for files

updated using interactive applications. The goal of the Mimic design is to achieve such

reduction in transfer sizes while being fully application-unaware, and requiring no changes

to applications.

6.3 Architecture of Mimic

In this section, we present a high level overview of Mimic architecture as well as key opti-

mization mechanisms, and describe how it loosely integrates with the underlying file system.

6.3.1 Overview of Mimic

Mimic is a fully application-unaware file-synchronization strategy that consists of compo-

nents at the client and the server respectively. At a high level, the Mimic client captures

input activity messages and converts them into a bandwidth-efficient representation on a

per-file basis. During file synchronization, the client generates the fingerprint and error cor-

rection code for file verification and ships the activity record to the server The Mimic server
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Figure 46: Overview of Mimic architecture.

then replays the recorded activities to regenerate the updated files at the client, verifies the

regenerated file by using the fingerprint, and corrects errors if they exist. The realization

of the above functionalities in Mimic are done with the goals of reducing the transfer file

size, minimizing latencies involved, and incurring minimal overheads in terms of usage of

system resources. Figure 46 shows the overview of the Mimic architecture.

Briefly, the primary components of the Mimic approach are:

• Record: This component is responsible for the effective capturing of raw activity at

the client end, classifying the activity, and maintaining per-shared-file records.

• Playback: This component is responsible for replaying the activity records in the

fastest manner possible while ensuring correctness.

• Verify: Finally, this component is responsible for verifying whether the replay based

re-creation of an updated file is correct. This component includes both forward error

correction (FEC) to correct non-repeatable actions such as timestamps, and detecting

any errors that arise due to improper playback. Mimic uses a verification scheme [77]
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that is identical to the one presented in [43].

We elaborate on the realization of the above three mechanisms in detail in the next two

sections.

6.3.2 Message Optimization

Recently, various types of user input devices such as digitizer, touch screens, and micro-

phones for voice recognition are used that are not limited to a keyboard or mouse. However,

the majority of them are used only in limited device-specific applications, and most common

GUI-based applications use only keyboard and mouse input. Thus, we focus on the input

event messages associates with only the keyboard and mouse.

GUI-based interactive applications are event-driven in that they do not generate explicit

function calls to obtain input such as keystroke and mouse-click. Instead, they wait for the

system to pass input to them. All input is delivered in the form of OS-specific messages to

the corresponding application windows in the application. In order to route these messages

to an appropriate window procedure, the system posts them to a common system message

queue. Then, in a first-in-first-out (FIFO) fashion, the system de-multiplexes the messages

based on the handles of the destination windows, and posts them to the message queues of

the threads that created the destination windows.

In such a GUI-based environment, not all user input has correlation with the file update.

For example, mouse movement without button pressing is redundant in the view of the file

state. In order to remove these redundant user-activity messages, the message record hook

in Mimic classifies messages according to input activity types, and captures only useful

messages for updating the application state.

However, even though a useful message is hooked, its message structure can still contain

redundant information and might not be optimized for bandwidth efficiency. Figure 47

shows the structure of the hardware event message in Microsoft Windows operating systems,

called EVENTMSG[50]. In this structure, each member is 4-byte long, and hence the total

size of each message is 20 bytes.

When a keystroke event is triggered, the virtual key-code of the key that was pressed
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typedef struct {
UINT message; // message type
UINT paramL; // message content
UINT paramH; // message content
DWORD time; // posting time [ms]
HWND hwnd; // destination window handle

} EVENTMSG, *PEVENTMSG;

Figure 47: EVENTMSG structure in Microsoft Windows operating systems.
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Figure 48: Activity descriptor (AD) structures in Mimic.

or released is stored in the high byte of the low word of the paramL member, and its other

bits are not used. In addition, all other redundant information such as the scancode and

repeat count is stored in the paramH member. The hwnd member is also unnecessary since

the keyboard focus1 designates the target window instead. In most cases, the delivery is

performed in a short time, and the time member is not much informative. Thus, only the

message member and the low word of the paramL member are essential to deliver a single

keystroke event, and all other parts are not necessary.

If a mouse event happens, the x- and y-coordinate values of the mouse cursor location

are stored in the paramL and paramH respectively. However, the vertical and horizontal

resolution of the display output usually does not exceed 212=4096 pixels, and as a result

the space of 2.5 bytes in each member are wasted. The timestamp and window handle

information is also not necessary due to the same reasons.

In Mimic, the client converts a useful input event messages into a bandwidth-inefficient

1In order to deliver user input to a correct application window, GUI-based operating systems maintain
keyboard and mouse focuses. Usually, the keyboard focus is on the top window that is currently active, and
the mouse focus is on the window under the current location of the cursor.
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Figure 49: Meta descriptor (MD) structures in Mimic.

format called an activity descriptor (AD), The AD consists of three members; activity type,

activity value, and time interval with the previous message arrival. Since only useful input

events2 are focused in Mimic, the total number of the target activity events can be less than

24=16. Figure 48 shows the structures of the ADs for keyboard and mouse input event.

The length of the AD varies depending on the activity type. The activity value member in

an keyboard AD that describes a keystroke event includes a 8-bit virtual keycode, whereas

that in a mouse AD includes two 12-bit coordinate values.

In a GUI-based application, the same input message can be interpreted differently ac-

cording to the current environmental setting. For example, when a user pushes the key

‘A’ on the keyboard, the actual interpretation can be totally different in another language

after the user changes the keyboard language layout outside the application. Therefore, the

Mimic client captures all the changes of environmental setting while recording user activity.

In Mimic, the client also captures the messages delivering the information of the system

configuration change such as clipboard content, keyboard layout, screen resolution, and color

2In Microsoft Windows, WM KEY*, WM SYSKEY*, WM LBUTTON*, WM RBUTTON*, and
WM MOUSEWHEEL messages are included.
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Figure 50: Activity record (AR) structure in Mimic.

depth. Then, it generates a structure called as a meta descriptor. Figure 49 illustrates the

structure of the various meta descriptors.

Once the Mimic client begins to operate with a file, it sequentially records activity and

meta descriptors in the body of the per-file record structure called an activity record (AR).

Figure 50 shows the structures of the AR. We defer the detailed description about the

header and trailer of the structure to the next section.

6.3.3 Integration with File System

Mimic requires interfacing with both the underlying file system and window manager at the

client, and with the window manager at the server end. The interfacing with the window

manager, however, does not require any changes to the operating system, and instead is

achievable through standard interfaces that most window managers export. Figure 51 shows

the interfaces between the file system and the window manager.

Mimic does not require any interfacing with the file system at the server. We refer to the

coupling as loose because Mimic currently relies only on informative callbacks from the file

system that is essential for its operations, and requires minimal changes to the file system

design and logic.

The interface between Mimic and the underlying file system consists of six function

calls (open( ), close( ), rename( ), delete( ), finish( ), and synch( )), all exported by Mimic,

and invoked by the file system. The first five functions are informative in nature, and

require no logic change inside the file system other than their mere invocation. The sixth

function is used by the file system to preferentially use Mimic for the synchronization

process, but falls back to its native synchronization mechanism if Mimic indicates a failure

in its synchronization attempt. We now present the interface in two stages, based upon

which aspect of Mimic are the functions relevant.
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Figure 51: Mimic-file system-window manager interfaces.

• The first set of functions which are part of the interface help in the recording com-

ponent, and consist of open( ), close( ), rename( ), and delete( ). All four functions

are purely informative in nature, and are used by the file system to inform Mimic

about the corresponding actions. The open( ) function is used by the file system to

inform about the opening of a shared file, and its parameters consist of the filename,

opening-mode (read, write, or append), and the process-handle for the process that is

performing the open. Mimic uses this information to initialize its recording activity

pertaining to that file. In Section 6.4, we explain the filtering process that enables the

Mimic client to not maintain records for files not being updated interactively, opened

in read-only mode, etc. The close( ), rename( ), and delete( ) functions all consist

of the filename as the parameter (rename( ) has both the old and new file names),

and are used by Mimic to update the activity records corresponding to the file being

closed, renamed, or deleted.

• The second set of functions that Mimic requires the file system to use consists of the

finish( ) and synch( ) functions, which are used during the actual file system initiated

synchronization process. For every file that needs to be synchronized, the file system

preferentially calls the synch( ) function with the filename, and the diff size as parame-

ters. The return value for the synch( ) call indicates to the file system whether or not
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the raw activity shipping process was successful. Only in the event of a failure does

the file system initiate its native synchronization process. We elaborate on the specific

conditions under which Mimic will return an error in Section 6.5. Finally, the finish( )

function is used by the file system to indicate the termination of the synchronization

process, after which simple clean-up operations are performed.

Due to the purely informative nature of five of the functions (except synch( )), no changes

are required in the file system logic when the functions are called. The functions are

merely invoked by the file system when it is performing an open, close, rename, delete,

and completion of synchronization respectively. The only change in the logic required when

the synch( ) function is invoked is a check for the return value of the function call, and

conditionally invoking the native synchronization process.

6.4 Client Operations in Mimic

The Mimic client performs activity logging and shipping through three phases. In this

section, we describe the details of operations performed in each phase.

6.4.1 Decision of Mimic Operation

When a shared file is opened through a file system call, the file system invokes the open( )

function. When the Mimic client receives the call, it investigates the attribute of the target

file. If it is read-only or the client does not have a permission of write-access on it, the

access is performed without Mimic operation.

Even if a file is accessed in write mode, the application associated with the file extension

may not have an ability to update the file. Graphic viewers and multimedia players are

such examples. Mimic is also not adoptable when the corresponding application opening

the file is not able to regenerate the file at a server side by raw activity shipping. For

example, the applications associated with the file extension at the client and the server

may not be identical. In order to provide information of the default access modes and file

regeneratability of applications, both the client and server maintain a table of the applicable

file extension. Based on this application information table, the client can determine in
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which mode it perform the access for a file with write permission.

6.4.2 AR Header Generation

Once Mimic begins to operate with a file, it generates an AR. If the corresponding AR is

already opened, Mimic infers an error and aborts maintenance of the AR for the file. For

the file identification in the future playback process, the client writes logical name structure

information of the original file including filename, extension, location, attribute, and size

in the header of the AR. In the case that there is no notion of global name hierarchy in

specific file systems such as Sun Network File System, it records the structure in the view

of the server.

System environmental synchronization between the client and the server is indispensable

to accurate raw activity shipping. For later environmental synchronization at the server,

the Mimic client captures the state parameters of the initial system environment in the

header of the AR. Through a getEnvironment( ) call, the client catches keyboard information

including language layout and key state such as Caps Lock, and screen information including

resolution and color depth. The initial content of clipboard buffer is captured through a

getClipboard( ) system call, and hence the length of the AR header is varied according to

the clipboard content size.

In most GUI-based applications, multiple instances of a single application may share

a single main process or thread to utilize system resource efficiently. A thread associated

with a file usually maintains a main application window including the client area and mul-

tiple side windows including the non-client area such as menu bars and pop-up windows.

Through a processToWindowHandles( ) call to the window manager, the Mimic client col-

lects the mapping information between the process/thread handle and the corresponding

set of window handles, and then registers it on a table called window-handle table with

the corresponding filename. Multiple window-handles could potentially map onto a single

filename due to the complex windowing structures used by interactive applications today.

After the mappings are put on the table, the Mimic client becomes able to sort the user

input that affects the state of the application instance opening the file.
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Simultaneously, the Mimic client detects the execution environment of the application

being executed, such as main window size/location and current language setting, and writes

them in the header of the AR. After this initial detection, the Mimic clients do not detect

the change of the application configuration any more. Instead, all the changes are reflected

automatically by recording and replaying the user activity, because all the corresponding

input messages that finally change the environment also have the destination of the window

handles belonging to the application instance.

If the Mimic client is unable to retrieve the window handles because the file is not being

processed with an interactive application, the Mimic client simply ignores the open( ) call.

This implicitly ensures that Mimic does not handle such files. Note that any updates to

such files will be handled by the native file synchronization strategy of the underlying file

system.

6.4.3 Message Capture

After the execution of the application, the Mimic client installs an input message hook

procedure that captures input system messages delivered to the corresponding windows of

the application having help from the window handle table. After that, it also creates both

a input message monitor that selects only useful messages for the file update and record

them in the body of the AR.

Basically, the input messages that perform environmental change has a window handle

value of the main system window. However, only the minority of the messages focusing

on the main window is correlated with the environmental change, and even installing a

input message record hook on the main system window makes the operating system have

groan under a heavy burden. Therefore, the Mimic client installs a different type of message

record hook called an internal message record hook, which captures internal system messages

delivered to all application windows other than raw input messages. Then, it creates a

internal message monitor that records the changes of system environment parameters in

the AR body.

In Mimic, the client receives all dequeued input event and internal system messages
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from the queue from the message record hooks through the trapSystemMessage( ) interface,

and pass them to the corresponding message monitors. When the input message monitor

receives a input message, it looks up the corresponding filename in the window-handle table.

If successful in the lookup, the monitor appends the message in the AD structure into the

body of the corresponding record sequentially. If the window-handle of the input message

is not found in the table, the Mimic client skips the record phase, and directly queues the

message onto the corresponding thread-queue. On the other hand, the internal message

monitor captures only the messages delivering the information of the system configuration

change.

Among internal messages, there exists a special type of message that needs to be handled

uniquely in Mimic is a paste message, as the message requires to be capture along with the

corresponding clipboard information. Thus, the internal message monitor, upon detecting

a system paste message, obtains the clipboard information through the getClipBoard( )

window manager function call, and forwards the content to the message monitor, which

then appends it to the file activity record. Although Mimic handles clipboard-based paste

operations in the above manner, in Section 6.6, we show that raw activity shipping is efficient

only for those paste operations for which the content is copied or cut from the same file,

and thus the clipboard content is not essential.

6.4.4 Termination

Mimic supports a disconnected data access, which means that after a connection to the

server is established for file access the connection may not remains open until the application

is closed. For the best performance in disconnected operations, Mimic performs the write-

on-close cache update, which writes data back to the server only when the file is closed.

This update policy also has an advantage that a server manages system resource efficiently

by reducing the frequency of playback.

During the termination phase, the client removes the dedicated message record hook.

Then, it collects information necessary for file verification at the server, and writes the

verification information on the trailer of the AR. For the first part of the trailer, the client
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calculates the size of the updated file. Then, it generates the fingerprint of the file using

the Message-Digest 5 (MD-5) algorithm with a 128-bit keyword [79] and the forward error

correction (FEC) code using the Reed-Solomon (RS) coding [77].

When the Mimic client receives a synch( ) call from the file system, it goes through a

two stage check to see if it can proceed with the synchronization. It first checks to see if

a AR has been maintained for the file. It then checks to see if the size of the AR is less

than that of the diff the file system will have to send as part of the native synchronization

process. If the answer to either of the two checks is negative, the Mimic client returns a

SYNCH FAIL message back to the file system. The file system will then proceed with its

native synchronization strategy. If both checks are successful, the Mimic client ships the

corresponding AR to the server.. When the Mimic client attempts the synchronization, it

forwards the result of the server side verification process as the return value for the synch( )

call.

6.4.5 Bookkeeping

The rename( ), close( ), delete( ), finish( ) interface function calls invoked by the file system

triggers appropriate bookkeeping operations in Mimic. For the close( ) and delete( ) calls,

the actions involve closing and deleting the corresponding ARs respectively. The rename( )

function call, however, is handled differently. If the rename is for a file created since the

last synchronization, Mimic renames the filename in the corresponding AR. However, if

the rename is for an already existing file, Mimic disables the AR maintenance for the file,

and allows the native file synchronization process to handle the file. Note that the AR is

a record of the incremental activity performed since the file was opened. Hence, if a AR

is maintained for a file fa, and fa is later renamed to fb, the server cannot recreate the

updated fb by replaying the AR for fa on the original copy of fb.

Finally, when the finish( ) call is received from the file system signifying the end of a

synchronization session, the Mimic client cleans up its data structures by deleting all the

ARs, and clearing up its window-handle table.
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6.5 Server Operations in Mimic

Each playback at the Mimic server requires the AR corresponding to the file being synchro-

nized since the last synchronization.

6.5.1 Decision of Playback Operation

The first operation that the Mimic server performs is to read the file information of the AR

header and checks whether it can perform the playback without any problem. First of all,

the target file for updating should be available. If the file does not exist, it stops the whole

process and notifies the client the failure of the activity shipping. If it is being accessed

by another client, it follows the concurrent update policy of the server. When the server

concludes that the target file is ready, it calculates the required resource for the playback

and checks its system resource status. If enough resource is not available, it enqueues the

invoked playback process in a job queue and waits for the turn. After all the requirements

are satisfied, it generates an independent virtual session, in which it will update the file.

6.5.2 Initialization

When the virtual session becomes ready, the Mimic server synchronizes the initial sys-

tem environment. In order to regenerate the identical system configuration, it reads the

record header and decodes the system environment information. Each recorded system en-

vironment parameter is converted into a corresponding system message3 that sets up the

individual system setting. Then, it sets up the current system setting through a setEnvi-

ronment function and verifies whether the settings are identical to the information through

a getEnvironment function.

Once the environment is set, the Mimic server reads the application environmental

setting information from the header and invokes the interactive application corresponding

to the file extension through the executeDefaultApplication( ) interface to the operating

system with the identical setting specified in the header. After the application instance is

generated, the server moves its main window on top of the desktop and shifts all the input

3In Microsoft Windows, WM *CHANGE and WM *CLIPBOARD are such system messages
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focuses to the main window.

Because each file associated with the record is opened in an independent virtual session,

the Mimic server does not use the window-hand table that is used in the client. In other

words, there exist no other application instances or their windows, and thus all input system

messages are delivered to the application instance automatically.

At the final stage of the initialization process, the Mimic server executes two descriptor-

to-message converters; an activity descriptor converter and a meta descriptor converter.

Then, it installs an input message playback hook procedure that inserts converted input

system messages to the system message queue, and an internal message playback hook that

performs system environment update by delivering regenerated internal system message.

6.5.3 Activity Playback

In the replaying phase, the mimic server reads descriptors sequentially one at time from

the record body. When each descriptor is read, the server passes it to the corresponding

converter and inserts the converted system message into the system message queue by the

corresponding message playback hook through the playActivity( ) interface of the window

manager.

A critical issue with the performance of the raw activity shipping process is the replay

time at the server. At worst, the replay time for a file can be even much longer than the real

time taken by the user to update the file at the client, and obviously this is undesirable.

On the other hand, overspeed playback can result in mis-interpretation of user activity

in the replay process. Inputs to an application can be thought of to change the state of

the application. Therefore, certain inputs might be relevant to the application only for

particular states, or might be interpreted differently for different states4.

Consider an example with the following sequence of user-activities: A user pushes the

left mouse button on the font size menu in a Word application window, and then pushes the

button on the number of the desired font size. The correct application state between those

two inputs is “waiting for a new input with the font-size pop-up window open”. However, if

4In Excel, before each SEND.KEYS macro function is performed, building a small delay using the WAIT
function is recommended due to the same reason[50].
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the playback of the second input is performed before the application thread responds fully

to the first message by completing the update of the application state, the replayed activity

of the second input is regarded as a meaningless mouse-click on a vacant space in the menu

bar and ignored. Then, the remaining all other activities will not be executed correctly.

Thus, the challenge is to replay the records as fast as possible without introducing

errors due to activity mis-interpretation. Our strategy addresses this challenge by explicitly

monitoring the process state of a process control block after every message playback through

the waitForProcessIdle( ) interface to the operating system. Only when the relevant process

is idle does the Mimic server playback the next AD to minimize the overall replay time.

In Section 6.6 we show how the latency performance is thus quite reasonable given the

bandwidth usage benefits.

On the other hand, Mimic supports sequential multiple updates on a single file, especially

for the disconnected operation. Let’s assume that a user performs several updates on the

same file while disconnected. When the client is reconnected, the server receives multiple

update profiles for the same file at once. In such a case, based on the timestamps of the

file information, the server decides the order of those updates and performs the updates

sequentially. And, only after file verification for the previous update is finished, the server

can begin to perform the next update upon the newly updated file.

6.5.4 File Verification

After all descriptors in the record are played back, the corresponding application process

is terminated, and the verification process is begun. The verification process consists of

three phases; file size check, fingerprinting, and forward error correction (FEC). Since this

verification process is identical to that in [43], and hence we summarize the process in brief.

The first step is to check the size of the updated file. Since file sizes can be expected to

be random with respect to user input, it is quite improbable for two different files to have

the same size, and most errors can be expected to be detected at this stage.

In the second step, the Mimic server compares the fingerprint of the newly updated file

at the server with the fingerprint sent by the client through the AR. The collision probability
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for the MD-5 algorithm with a 128-bit keyword is O(2−64)[79], which is smaller than the

collision probability of the CRC used in TCP headers[87].

If the fingerprints are not identical, the Mimic server performs a FEC process using

the Reed-Solomon (RS) coding[77], which has advantages of minimal overhead and effective

burst error correction. In order to maximize the error correction speed, the original and

generated files are divided into multiple blocks with the same size and their last blocks

are zero-padded. Then, each error correction is performed in the unit of a block. After

performing FEC, the server decides whether the FEC process is successful or not by com-

paring both fingerprints again. If the file-size check or FEC fails, the Mimic server returns

a SYNCH FAIL message to the Mimic client, which then propagates it to the local file

system.

6.6 Performance Evaluation

In this section, we use a simple prototype of Mimic to evaluate its performance against that

of the differential update scheme.

6.6.1 Prototype Description

The current prototype is implemented on the Microsoft Windows platform in order to

evaluate its performance with Microsoft Office, which currently dominates the office suite

market[44]. However, all the implemented basic operations are performed in an OS-transparent

way.

6.6.1.1 Client

At the start of the activity recording, the client software obtains file information such as

filename, attributes, extension, size, and timestamps. It then copies the original file at the

server into the local directory at the client. After that, it detects the corresponding applica-

tion associated with the file extension, and opens the copied local file through a process of

the application. If the process is already running another file of the same file extension and

multiple instances of the application are sharing a main process, it automatically opens a

thread instead of a process. After the process (or thread) is created by the client software,
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Table 4: Application index for experiments.

Application

Index
Content Feature Application

A1 text-based keyboard-intensive Word

A2 text + other keyboard and mouse PowerPoint

A3 structured text keyboard and mouse Excel

A4 graphics mouse-intensive Visio

the operating system returns the handle values of the process (or thread). Based on this

value, the client module collects handles of the corresponding application window(s).

The activity record (AR) header has the following structure. The original file informa-

tion consists of two fields; filename/extension of variable length and file size of two bytes.

The system environment information includes two 2-byte fields for horizontal and vertical

resolution values, 2-byte color depth field, and 2-byte language identifier field for the input

language. The application environment information has two 2-byte fields for horizontal and

vertical size for the main window and two 2-byte fields for horizontal and vertical location

for the main window.

In order to capture input system messages, we use the JournalRecordProc hook proce-

dure, which WinAPI provides. The target messages include WM KEY*, WM SYSKEY*,

WM LBUTTON*, WM RBUTTON*,and WM MOUSEWHEEL messages. The captured

messages are converted into corresponding descriptors and recorded in the body.

The prototype performs the write-on-close update scheme. When the process is termi-

nated, the recorder generates the AR trailer and saves the AR in the local directory. The

AR trailer includes three parts as mentioned earlier. The updated file information includes

2-byte file-size field. The fingerprint has 16-byte keyword, and the FEC has variable length

according to the size of the target file.

After the AR is saved, the client software generates the diff using xDelta software[34]

and compares the size of both the AR and diff. If the AR size is smaller, it transfers the AR

file in the network directory at the server. The filename of the AR file includes the filename

of the original file and the recording sequence number (for the case that the client performs
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Table 5: User activity index for experiments.

Activity Activity
Size of Change

Type Index
A1 A2 A3 A4

5 full pages 1 page with
Initial file state

with 176 lines
8 full slides 83 rows

10 small graphs

I-1 1 line (0.6%) 1 new blank slide 1 row (1.2%) 1 new blank page

Insert I-2 1 paragraph (3%) 1 paragraph (6%) 10 rows (12%) 1 small graph (10%)

I-3 1 full page (20%) 1 text slide (17%) 50 rows (60%) 1 large graph (17%)

M-1 1 paragraph (3%) 1 paragraph (6%) 1 row (1.2%) 1 small graph (10%)

Modify

M-2 1 full page (20%) 1 slide (17%) 10 rows (12%) 1 large graph (17%)

D-1 1 paragraph (3%) 1 paragraph (6%) 10 rows (12%) 1 small graph (10%)

Delete
1 slide with a large

D-2 1 full page (20%)
picture (17%)

50 rows (60%) 1 small graph (17%)

1 paragraph from 1 paragraph from 1 row from the 1 small graph from
C-1

the same file (3%) the same file (6%) same file (1.2%) the same file (10%)

1 full page from 1 page from 10 rows from the 1 large graph from
Copy C-2

the same file (20%) the same file (17%) same file (12%) the same file (17%)
and

1 page of an 1 page with a picture from 1 row from an 1 small graph from
paste C-3

external file (20%) an external file (17%) external file (1.2%) an external file (10%)

1 picture from 1 picture from 10 rows from an 1 small picture
C-4

an external file an external file external file (12%) from an external file

Meta Change the font type Change the font type Change the font type Change the font type
data

F
of a paragraph of a slide of a row of a graph

multiple recording for the single file). For the case that raw activity shipping fails, it leaves

the diff file in the local directory temporarily.

6.6.1.2 Server

The playback procedure begins when the server software detects the arrival of a new AR

file. Initially, it checks whether the original file is available and has the same file-size as

described in the AR header. If both checks succeeds, it synchronizes the system environment

based on the AR header. Then, it copies the original file and opens the copied file with the

associated application. And, it also synchronizes the application environment by adjusting

the size and location of the main window. If it detects an arrival of a diff file, it performs

differential update and remove all unnecessary files and terminates the update process.

The prototype has two options of playback speed control; constant interval based and

CPU-utilization based. However, in the current prototype the delay for calculation of the
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CPU utilization in a process is relatively large because of its loose integration with the

operating system. Thus, for the performance evaluation we choose the constant interval

based scheme that sets different time interval per message type.

After all playback is completed, the server closes the application and begins to perform

file verification assuming that the user updates the file explicitly while recording (by pushing

the save button or so on). When the playback fails, it copies the diff file from the local

directory at the client and performs differential update. After the update is completed, the

server removes the AR and fingerprint files at both sides, the diff file(s), the copied file at

the client, and the original file at the server. Then, it terminates the process.

6.6.2 Experimental Setup

We consider wireless wide area networks (WWANs) as a representative of weakly connected

networks in our experiments. The client is connected to the network through a CDMA2000-

1X cellular network. The measured effective data rate on the WWAN interfaces is about

17 Kbps, and the round-trip time between the client and the server is about 300 ms.

The mobile client used in the experiments is a HP Pavilion N5430 laptop computer with

an 850 MHz AMD Duron CPU, 128 MB RAM, and a Sprint PCS Merlin C210 WWAN

interface card. The server is a Dell Dimension 4400 desktop computer with an 1.6 GHz

Intel Pentium IV CPU, 256 MB RAM, and a 3COM 10/100 Mbps 3C905CX-TXM NIC,

and it runs the Windows 2000 Advanced Server operating system. For all the experiments,

we use a 1024×768 (XGA) screen display resolution.

We use the Microsoft Office suite of applications for the experiments. Specifically, we

use Word, PowerPoint, Excel, and Visio for word-processing, presentation, spreadsheet,

and graphic editing, respectively. Table 4 shows the task labels that are used later in this

Section for convenience. Table 5 describes the different operations and the corresponding

index which will be used in the subsequent results.

We primarily focus on the transfer size overheads and latency as the metrics for the

comparison. Note that the total synchronization time of Mimic is composed of three com-

ponents: the transfer latency for the records, the playback time, and the verification time.
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In the experiments, it can be estimated as

sync time =

(

record size + other overhead

bandwidth

)

+ playback time + verify time. (6)

The synchronization time of diff is composed of the time taken by diff to generate the

differential patch, the transfer latency for the patch, and the time take at the server to use

the patch to recreate the updated file. Thus, its total synchronization time is calculated as

sync time = patch gen time +

(

patch size

bandwidth

)

+ merge time. (7)

Windows operating systems uses Object Linking and Embedding (OLE)[50], which pro-

vides means for integrating objects from diverse applications. An object is a block of

information that could come from a word processor, a spreadsheet, a graphic content, an

audio clip, or an executable program itself. To provide compatibility with other applica-

tions, the content copied to the clipboard is stored in the form, which supports OLE taking

much larger space than the original content in the memory. However, when the object is

integrated with an application file, it undergoes compacting whereby the size of the file

becomes significantly less than that in the memory. We assume that all data except diff,

which is already compressed by its own algorithm, are compressed before being transmitted.

In the experiments, we assume that there is no environmental change while recording and

replaying.

6.6.3 Transfer Size Performance

6.6.3.1 Impact of User Activity Type

Figure 52 presents the experiment results of the transfer size for various user activity types.

• Insert: In Figure 52, it can be seen that the transfer size in raw activity shipping

is usually equal or smaller than that for diff when any insertion is performed. It is

because each user input activity is translated into more complicated operations within

the applications, and as a result the size of binary change becomes significantly larger

than the input activity size.
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(a) Transfer Size for A1.
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(b) Transfer Size for A2.

0

2

4

6

8

10

I-1 I-2 I-3 M-1 M-2 D-1 D-2 C-1 C-2 C-3 C-4 F

User Activity Index

T
ra

ns
fe

r 
S

iz
e 

[k
by

te
s]

Mimic

diff

(c) Transfer Size for A3.
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(d) Transfer Size for A4.

Figure 52: Performance comparison in transfer size.

The figures also show that the update size in raw activity shipping is always pro-

portional to the magnitude of insertion in any application, while the diff size is un-

predictable in text-centric applications (A1,A2). As explained in Section 6.2, word-

processing and presentation applications have much more complicated file structures

in order to embed various types of external objects. Hence, regardless of user activity

size, each insertion affects the entire file structure. For example, the location of an

insertion is one of the main factors that decides the magnitude of file structure change.

When a character is inserted in the first page of a document, its diff overhead can be

several times larger than that of a similar insertion in the last page of the document.

On the contrary, the diff update size in graphic and spreadsheet applications (A3,A4)

shows more modest performance improvements for raw activity shipping. It is because

those applications employ relatively simpler file structures and each insertion is trans-

lated simply as an addition of objects, paving the way for reasonable overheads when
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using diff.

• Modify: Files can be modified by changing either the attribute of the content such

as font type, or the content itself. In the following experiments, we consider only

the latter. This modifications consist of a combinations of multiple deletions and

insertions. The former type of file modification is classified as meta data change, and

explained later.

In Figure 52, it is shown that the overhead of Mimic is smaller than that of diff

for most modification operations. However, the diff size in (A1,A2) does not increase

linearly with the amount of activity as is the case with the record size for the same

reason provided for the effect of insertions.

On the other hand, the modifications in (A3,A4) show quite different results from

those of insertions. Especially in (A4), the diff update size of modifications is even

larger than that of insertions, while Mimic’s record overhead has the same size. This is

because in graphic applications the size of an object is proportional to the complexity

of the object.

• Delete: When a user performs a delete or copy operation, the file structure can be

dramatically changed even for a few number of deletes. Content deletions can be

categorized into two types, full paragraph deletion and partial paragraph deletion.

Generally, within the file structure, file contents are stored in paragraphs with each

paragraph having its own content attributes. Therefore, if only some parts of a para-

graph are removed, the file size reduction is not as large as that in full paragraph

deletions. However, both cases are considered in the experiments.

Figure 52 shows that the record overhead of Mimic is significantly smaller com-

pared to the diff size in all the applications. This is because the deletion operations

incur relatively large changes in the file structure while Mimic’s record overhead is

proportional only to the activity size.

• Copy and Paste: Copying content means converting the content, which exists inside
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the file itself or externally, into another form that have compatibility with any other

applications and loading it into the memory as a form of meta data. Once the content

is copied into the clipboard, it can be

In the figure, Mimic’s overhead for internal copying and pasting (C-1,C-2) is consid-

erably smaller than that of diff in all the applications. The reason is as follows. When

an object that exists inside the same file is copied, raw activity shipping does not

have to send the content of the clipboard to the server, and instead it lets the object

to be copied automatically at the server through the user activity itself. Therefore, it

eliminates the clipboard overhead as seen in Figure 52.

However, if the object is copied from the external source (C-3,C-4), Mimic’s record

overhead is significantly increased in all the applications. This is because Mimic cap-

tures and compresses the content of the clipboard as binary data, and then transmits

it to the server along with the AR. However, the copied objects that follow the OLE

format have much larger size in the memory than the originally generated objects. In

this scenario, diff usually shows better performance than raw activity shipping due to

large overheads for transferring the clipboard content.

• Meta Data: A user may change the configuration of textual information such as the

font size or font type instead of the text content itself. In the experiments, all the

modifications to meta data change the file structures drastically even though the file

size change itself is small. It can be seen that raw activity shipping shows much better

performance than diff in all the applications. This is because changes to meta data

are similar in nature to simple text insertion (both affect the entire file structure),

with potentially a larger impact.

6.6.3.2 Impact of Application Type

• Word-processing: Word-processing applications are basically text-centric programs

that are able to embed various types of external objects such as pictures, graphs,

tables, and equations. Hence, the file structure consists of a large number of data

objects and their corresponding links. In Figure 52(a), diff in (A1) shows somewhat
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unpredictable performance results in (I,M) than raw activity shipping due to its com-

plicated file structure. Again, for activities (D,C-1,C-2,F), the improvement brought

about by Mimic is considerable. However, when a user copies a picture from another

program, due to the clipboard problem discussed earlier, the overhead of Mimic is

dramatically increased.

• Presentation: Presentation programs are popular applications for visual presentation

where a user intends to present various types of data. Copying objects from other

applications is one of the most important functions in addition to text editing. In

Figure 52(b), in most cases of text editing and meta data change, Mimic shows equal

or better performance than diff.

• Spreadsheet: A spreadsheet file consists of hybrid objects that are numerical values

and graphs. In the experiment, we consider only the former type of data. Figure 52(c)

shows the transfer size per user activity in Excel. Again, several activities including

(D,C-1,C-2,F) result in Mimic exhibiting large benefits in the transfer file size.

However, Mimic in (A3) does not show the best performance for insertions and

modifications (I,M) due to lots of redundant messages. Basically, a spreadsheet file

visually consists of lots of cells, and a user usually moves the cursor to another cell

using mouse-clicks. This is the reason why Mimic’s record size in (A3) is relatively

much larger that that in (A1,A2) even though (A3) is a text-based application.

While the external copy activities are detrimental to the performance of raw activity

shipping as usual, the results for the activity (C3) is also interesting. Based on the

results in the figure, it can be observed that when the degree of user activity is

a substantial portion of the actual content of the file (20% in these experiments),

Mimic’s performance will start equaling that of diff, and sometimes even become

worse.

• Graphic: In Figure 52(d), the performance of Mimic is always significantly better that

that of diff. This is because graphic editors manage various complicated objects that

include large number of environmental data. For example, when a user draws a circle,
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Figure 53: Transfer size for large-scale user activity.

the circle has many parameters related to its setting such as display priority with a

respect to the other objects or grouping with the other objects. Further its binary

level complexity is much higher than text based data.

6.6.3.3 Impact of Update Interval

Figure 53 shows the overhead results with different update intervals when a user accesses

multiple files (A1,A4) spending the same time per file, and performs various input activities.

The input rate is about 200 operations per minute for (A1) and 85 operations per minute

for (A4). The dominant operations used are insertions.

It can be observed that both Mimic and diff overhead increases in proportion to the

update interval for mixed activities. This is because the overall overhead is dominated by

the transfer size of (A4), whose overhead is increases almost linearly with a larger interval.

Thus, as the interval becomes larger, the overhead difference is also increased linearly. In

the experiments, Mimic reduces the size of overhead by about 40%.

6.6.3.4 Summary

In Figure 52, it can be seen that the transfer size in Mimic is generally equal or smaller

than that in diff except when copying from outside the file. Overall performance in diff and

Mimic can be characterized as follows.
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Figure 54: Performance comparison in latency.

Generally, the record overhead of Mimic is proportional only to the activity size. How-

ever, there are some exceptions, in which even Mimic’s overheads do not seem to be pro-

portional to the magnitude of user activity, such as copying and pasting from an external

source. Similarly, delete or modify operations can incur smaller overheads than their insert

counterparts for the same magnitude of user activity.

Equally interestingly, the single line insertion (I-1) in diff consumes more bandwidth

than a single paragraph insertion (I-2) in Figure 52. This phenomenon is again due to the

impact of application-specific storage semantics as discussed in Section 6.2.

6.6.4 Latency Performance

The synchronization latency of Mimic generally depends on the playback performance,

which is decided by overall system capability such as CPU processing power. In the ex-

periments, we assume that a user types about 200 characters per minute. The CPU idle
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check based playback mechanism in Mimic results in a maximum replaying speed of ap-

proximately 90 times the original speed in the experiments. If the server is equipped with

more processing power, the maximum playback speed can further be increased, and the

latency thus reduced. Figure 54 is the latency results for all the applications when the

synchronization is performed over a WWAN.

6.6.4.1 Impact of User Activity Type

In the experiments, for small insertions, deletions, internal copies, and meta data changes

(I-1,D,C-1,C-2,F), Mimic performs better in terms of latency. Even though the latency in

Mimic includes its playback time besides transmission time, its total update time does not

exceed that of diff because the benefit of small transfer size for those operations is larger

than playback overhead.

However, for the remaining types of activities such as large insertions, modifications, and

external copies (I-3,M,C-3,C-4), Mimic performs worse than diff in latency in (A1,A2,A3).

Especially, moderate insertions (I-2) in Mimic shows larger latencies even though its over-

head is smaller because the playback latency becomes relatively large. Hence, if the transfer

size itself in Mimic is already larger than that of diff, Mimic cannot show better latency

performance.

This brings out an interesting trade-off: Can increase in latencies be tolerated if it

reduces the total transfer size? For WWANs especially, where users may have to pay on a

per-MB basis, this is arguably so.

6.6.4.2 Impact of Application Type

In the experiments, the latency performance in Mimic follows the trend of the transfer size

performance approximately because the latency is closely relevant to the transfer size.

Finally, in Figure 54(d), Mimic shows overall better performance than diff, and it is

because of both the lower transfer sizes, and the faster replaying speed used by Mimic.

Hence, Mimic brings significantly larger benefits for such a mouse-centric graphic application

that has a large ratio of file change to activity size.
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6.6.5 System Overheads

Recording and CPU utilization monitoring are important components in Mimic. However,

Mimic subsystems consume only a negligible portion of the system resources. In our exper-

iments, the average CPU utilization for the recording process is less than 1%, and memory

usage is about 4 MB. This is small compared to the amount of the resource used by an

application, such as Microsoft Word that can occupy up to 20 MB of memory and up to

50% of CPU utilization.

6.6.6 User statistics and expected results

In order to quantify the performance improvement that can be experienced by real users, we

collected short-term user-activity the records from 447 document updates performed by ten

different people. We modified the Windows registry, which stores setting and options for the

operating systems, such that all documents of the target formats (e.g. Word, PowerPoint,

Excel, and Visio) are opened by our recorder. Then, the recorder installs a journal record

hook to capture input system messages, opens the associated applications, and gets the

process and thread information of the application instances.

Table 6 shows the statistics of insertion, modification, and deletion activity measured

from the experiments. We use the same activity indicies used in Tables 4 and 5. In the

table, N/A means that the test was not performed by the users for this condition. Other

indicates a different amount of activity size, and Combined means a mix of different activi-

ties. The statistics show that major update activity performed by the users are insertions

and modifications. Deletions and other update activity account for less than 20% of the

total activity.

To estimate the performance improvement in real-life, we obtain the overall transfer-size

reductions by calculating the sum of the products of the per-activity transfer-size reduc-

tions shown in Figure 52 and the portions of each activity. Table 7 shows the expected

performance improvement in percentage. In the table, it can be seen that Mimic reduces

the total transfer size from 20% (in A3, Excel) to 89% (in A4, Visio).

We also measured the frequencies of other activity types, which do not take a major
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Table 6: Statistics of insertion, modification, and deletion in the test.

Activity Activity Application Index

Type Index A1 A2 A3 A4

I-1 4.0% 1.7% 2.3% 6.8%

I-2 23.8% 11.3% 15.5% 16.7%

Insert I-3 4.4% 16.4% 10.6% 14.9%

other 2.6% 9.5% 4.0% 12.7%

subtotal 34.8% 38.9% 32.4% 51.1%

M-1 18.9% 17.1% 1.5% 6.2%

M-2 26.2% 22.0% 34.2% 15.4%
Modify

other 5.6% 10.1% 18.1% 7.0%

subtotal 50.7% 49.2% 53.8% 30.6%

D-1 0.5% 0.6% 0.0% 0.2%

D-2 1.0% 1.8% 0.2% 0.4%
Delete

other 0.3% 1.0% 0.3% N/A

subtotal 1.8% 3.4% 0.5% 0.7%

Combined 12.7% 8.5% 13.3% 17.6%

Total 100% 100% 100% 100%

Table 7: Expected transfer-size reductions from insertion, modification, and deletion.

Activity Activity Application Index

Type Index A1 A2 A3 A4

I-1 88.8% 99.4% 47.8% 99.3%

Insert I-2 45.1% 50.8% 29.8% 84.7%

I-3 4.0% 0.3% 0.0% 77.9%

M-1 88.2% 70.0% 71.4% 99.2%
Modify

M-2 3.5% 10.1% 16.8% 95.3%

D-1 98.9% 94.5% 95.9% 99.9%
Delete

D-2 99.1% 96.6% 97.7% 99.8%

Average 42.0% 47.6% 19.8% 89.0%

portion but affect the entire content significantly. In the test, the average frequency of

internal, external copy-and-paste and meta-data change varies according to the application

types. For example, as shown in Table 8, for A2 (PowerPoint), the users perform internal

copy-and-paste seven times on average, whereas they perform less than one time in A4
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Table 8: Frequency of copying and meta-data change in the test.

Activity Activity Application Index

Type Index A1 A2 A3 A4

C-1 2.05 4.79 0.89 0.06
Internal

C-2 0.17 2.35 2.13 0.38
Copy and

other 0.01 N/A 1.08 N/A
Paste

subtotal 2.23 7.14 4.10 0.44

C-3 0.09 1.76 0.04 0.01
External

C-4 0.01 2.51 0.00 0.00
Copy and

other 0.00 N/A 0.00 N/A
Paste

subtotal 0.10 4.27 0.04 0.01

Meta data F 0.84 5.25 2.26 1.67

Table 9: Expected transfer-size reductions from copy-and-paste and meta-data change.

Activity Activity Application Index

Type Index A1 A2 A3 A4

Internal C-1 1047 B 1663 B 716 B 9729 B

Copy and Paste C-2 1648 B 1883 B 3709 B 36901 B

External C-3 0 B 0 B 0 B 0 B

Copy and Paste C-4 0 B 0 B 0 B 0 B

Meta data F 1630 B 1514 B 886 B 22701 B

Average 3795 B 20339 B 10540 B 52517 B

(Visio). Thus, to maximize the activity-shipping performance, it is very important to

customize the execution parameters according to the running application.

To estimate the performance improvement from these activity types, we again calculate

the expected transfer-size reductions based on the results shown in Figure 52. Table 9

shows the expected transfer size reductions in bytes, which are calculated as the sum of the

products of frequencies and transfer-size reductions of those activity types. In the table, it

can be seen that the copy-and-paste and meta-data change in graphical applications (A4)

affects their transfer performance significantly, and Mimic performs the update optimization

for such applications.

119



6.7 Summary

In this chapter, we consider the problem of file synchronization when a mobile host shares

files with a backbone file server in a network file system. We show that differential file-

synchronization schemes incur substantially more overheads than necessary. We then pro-

pose an application-independent approach called Mimic that relies on transferring user

activity records to the server, where the new file is recreated through a playback of the user

activity on the old copy of the file. We show that Mimic performs much better than the

differential update in most scenarios in terms of the transfer file sizes. The trade-off is that

the latency incurred by Mimic due to its replay mechanism can be larger than the overall

latency incurred by the differential schemes. We also identify some conditions under which

Mimic incurs more transfer size overheads than the differential scheme. Despite the trade-

offs, we conclude that raw activity shipping can be used in tandem with the differential

update scheme to substantially improve file synchronization performance, especially when

the bandwidth available on the network connection is low and expensive.
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CHAPTER VII

CONCLUSIONS

In this dissertation, we investigated the inefficiency problems of operations in conventional

information access under mobile environments. Since most conventional access schemes are

designed only for static high-bandwidth wired networks without considering other various

computing environments, they do not utilize network resources efficiently in low-bandwidth

networks, and as a result their user-perceived performance is unnecessarily degraded in such

a environment.

We found that the reason for the inefficient performance is being unaware to user activity

and propose a new paradigm for mobile information access that is driven by awareness

to user activity. Our paradigm consists of three user-activity-aware strategies for three

different scenarios: reading non-partitionable content, reading partitionable content, and

content synchronization.

First, for reading non-paritionable content, we present an application-unaware read-

access scheme called Cut-Load, which perform read operations in a graphical domain. Cut-

Load uses a intelligent mix of binary file transfers and graphical content-partitioning along

with features such as opportunistic hoarding to reduce the bandwidth consumption as well

as response times for information access. Through ns2 simulations, we evaluated its user-

perceived performance and proved its benefits for non-partitionable content over traditional

access systems. We also analyzed the behavior of the real-life implementation of the Cut-

Load prototype.

Second, for reading partitionable content, we propose an application-aware acceleration

scheme called Prioritized Fetching, which performs a mix of object prioritization, object

reordering, and connection management. Using simulations with the Web parameters ob-

tained from the Top Fifty Web Sites, we evaluated the performance of our scheme and

proved its benefits over conventional Web-access models. We also implemented a simple
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prototype of the prioritized fetching algorithm and measured the performance benefit in

real-life experiments. One major advantage of this scheme is that it is easy to deploy since

it only requires client-side installation to current applications.

Finally, for content synchronization, we present an application-unaware scheme, called

Mimic, which intelligently selects the transfer mode between raw-activity shipping and

differential update for bandwidth-efficient file synchronization. Through a simple prototype

in Windows operating systems, we show that raw-activity shipping can outperform the

differential update schemes under many common conditions. We also identify the conditions

under which the differential schemes do perform better than activity shipping, but show

that the detection of such conditions is straightforward, thus enabling both update schemes

to be used in tandem with a mobile file system for bandwidth-efficient file synchronization.

In conclusion, we believe that the contributions of this work lie not only in proposing a

new user-activity-aware paradigm and strategies but also in indicating new directions that

future researches can build upon. We also believe that future researches can bring more

benefits based on this work addressing other problems in mobile information For future

works, we are interested in designing network protocols that are optimized for multi-object

transmissions as well as remote applications based on thin-client computing.

122



REFERENCES

[1] Alshanetsky, I., “Google Web Accelerator and the dangers of prefetching,” May
2005. (Date Accessed: Mar. 2006).
http://ilia.ws/archives/46-Google-Web-Accelerator-and-the-dangers-of-p

refetching.html

[2] Baker, B., Manber, U., and Muth, R., “Compressing Differences of Executable
Code,” in Proceedings of the ACM SIGPLAN Workshop on Compiler Support for
System Software, Apr. 1999.

[3] Beck, M., Arnold, D., Bassi, A., Berman, F., Casanova, H., Dongarra, J.,
Moore, T., Obertelli, G., Plank, J., Swany, M., Vadhiyar, S., and Wolski,
R., “Logistical Computing and Internetworking: Middleware for the Use of Storage in
Communication,” in Proceedings of the 3rd Annual International Workshop on Active
Middleware Services (AMS), pp. 12–21, Aug. 2001.

[4] Blue Coat Systems, “CacheFlow.” (Date Accessed: Mar. 2006).
http://www.cacheflow.com

[5] Bray, T., “Measuring the Web,” in Proceedings of the Fifth International World
Wide Web Conference on Computer Networks and ISDN Systems, pp. 993–1005, May
1996.

[6] Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S., “Web Caching
and Zipf-like Distributions: Evidence and Implications,” in Proceedings of IEEE IN-
FOCOM 1999, pp. 126–134, Mar. 1999.

[7] Brewer, E. A., Katz, R. H., Chawathe, Y., Gribble, S. D., Hodes, T.,
Nguyen, G., Stemm, M., Henderson, T., Amir, E., Balakrishnan, H., Fox,
A., Padmanabhan, V. N., and Seshan, S., “A Network Architecture for Heteroge-
neous Mobile Computing,” IEEE Personal Communication Magazine, vol. 5, pp. 8–24,
Oct. 1998.

[8] Brooks, C., Mazer, M. S., Meeks, S., and Miller, J., “Application-Specific
Proxy Servers as HTTP Stream Transducers,” in Proceedings of the 4th International
World Wide Web Conference on Computer Networks and ISDN Systems, pp. 539–548,
Dec. 1995.

[9] Chakravorty, R., Banerjee, S., Rodriguez, P., Chesterfield, J., and
Pratt, I., “Performance Optimizations for Wireless Wide-Area Networks: Compar-
ative Study and Experimental Evaluation,” in Proceedings of ACM Mobicom 2004,
pp. 159–173, Sept. 2004.

[10] Chawathe, Y., Gribble, S. D., Hodes, T., Nguyen, G., Stemm, M., Hender-
son, T., Amir, E., Balakrishnan, H., Fox, A., Padmanabhan, V. N., Brewer,
E. A., Katz, R. H., and Seshan, S., “A Network Architecture for Heterogeneous

123



Mobile Computing,” IEEE Personal Communications Magazine, vol. 5, pp. 8–24, Oct.
1998.

[11] Chen, X. and Zhang, X., “Coordinated Data Prefetching by Utilizing Reference
Information at Both Proxy and Web Servers,” Proceedings of the ACM SIGMETRICS
Performance Evaluation Review, vol. 29, no. 2, pp. 32–38, 2001.

[12] Chosen Software Inc., “Journal Macro.” (Date Accessed: Feb. 2003).
http://www.keyboard-macro-recorder.com

[13] comScore Networks Inc., “comScore Media Metrix Top 50 Online Property Rank-
ing,” Jan. 2005. (Date Accessed: Mar. 2006).
http://www.comscore.com/press/release.asp?press=547

[14] Cooper, I. and Dilley, J., “RFC 3143 - Known HTTP Proxy/Caching Problems,”
June 2001. (Date Accessed Mar. 2007).
www.ietf.org/rfc/rfc3143.txt

[15] digital ISLAND Communications. (Date Accessed Mar. 2007).
http://www.digitalisland.co.nz

[16] Douglis, F., Feldmann, A., and Krishnamurthy, B., “Rate of Change and other
Metrics:a Live Study of the World Wide Web,” in Proceedings of USENIX Symposium
on Internet Technologies and Systems, pp. 147–158, Dec. 1997.

[17] Douglis, F. and Ousterhout, J. K., “Transparent Process Migration: Design Al-
ternatives and the Sprite Implementation,” Software- Practice and Experience, vol. 21,
no. 8, pp. 757–785, 1991.

[18] Duchamp, D., “Prefetching Hyperlinks,” in Proceedings of the 2nd USENIX Sympo-
sium on Internet Technologies and Systems, pp. 12–23, Oct. 1999.

[19] Dwyer, D. and Bharghavan, V., “A Mobility-Aware File System for Partially
Connected Operation,” ACM Operating Systems Review, vol. 31, pp. 24–30, Jan.
1997.

[20] Ellacoya Networks, “Ellacoya Data Shows Web Traffic Overtakes Peer-to-Peer
(P2P) as Largest Percentage of Bandwidth on the Network.” (Date Accessed: Oct.
2007).
http://www.ellacoya.com/news/pdf/2007/NXTcommEllacoyaMediaAlert.pdf

[21] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.,
and Berners-Lee, T., “RFC 2616 - Hypertext Transfer Protocol - HTTP/1.1,”
1999. (Date Accessed Dec. 2002).
www.ietf.org/rfc/rfc2616.txt

[22] Flinn, J., Park, S., and Satyanarayanan, M., “Balancing Performance, Energy,
and Quality in Pervasive Computing,” in Proceedings of the 22nd International Con-
ference on Distributed Computing Systems, July 2002.

[23] Fox, A. and Brewer, E. A., “Reducing WWW Latency and Bandwidth Re-
quirements by Real-Time Distillation,” in Computer Networks and ISDN Systems,
pp. 1445–1456, 1996.

124



[24] Fox, A., Gribble, S., Chawathe, Y., Brewer, E., and Gauthier, P., “Cluster-
Based Scalable Network Services,” in Proceedings of ACM Symposium on Operating
Systems Principles, Oct. 1997.

[25] Gilbert, J. and Brodersen, R., “Globally Progressive Interactive Web Delivery,”
in Proceedings of IEEE Infocom 1999, pp. 1291–1299, Mar. 1999.

[26] Google Inc., “Google Web Accelerator.” (Date Accessed: Sep. 2006).
http://webaccelerator.google.com

[27] Guy, R. G., Heidemann, J. S., Mak, W., Page, T. W., Popek, G. J., and
Rothmeier, D., “Implementation of the Ficus Replicated File System,” in Proceed-
ings of 1990 Usenix Summer Conference, pp. 63–71, June 1990.

[28] Han, R., Bhagwat, P., LaMaire, R., Mummert, T., Perret, V., and Rubas,
J., “Dynamic Adaptation in an Image Transcoding Proxy for Mobile Web Browsing,”
IEEE Personal Communications, vol. 5, pp. 8–17, Dec. 1998.

[29] Housel, B. C., Samaras, G., and Lindquist, D. B., “WebExpress: A
Client/Intercept Based System for Optimizing Web Browsing in a Wireless Envi-
ronment,” ACM/Baltzer Mobile Networks and Applications (MONET), vol. 3, no. 4,
pp. 419–432, 1999.

[30] Howard, J. H., Kazar, M. L., Menees, S. G., Nichols, D. A., Satya-
narayanan, M., Sidebotham, R., and West, M. J., “Scale and Performance in a
Distributed File System,” ACM Transactions on Computer Systems, vol. 6, pp. 51–81,
Feb. 1988.

[31] IBM Inc., “IBM Websphere Edge Server.” (Date Accessed: Aug. 2006).
http://www-306.ibm.com/software/webservers/edgeserver

[32] Ibrahim, T. I. and Xu, C.-Z., “Neural Nets based Predictive Prefetching to Tolerate
WWW Latency,” in Proceedings of the 20th International Conference on Distributed
Computing Systems (ICDCS), pp. 636–643, 2000.

[33] Jiang, Z. and Kleinrock, L., “An Adaptive Network Prefetch Scheme,” IEEE
Journal on Selected Areas in Communications, pp. 358–368, Apr. 1998.

[34] Jones, E., “XDelta for Windows.” (Date Accessed: Mar. 2007).
http://xdelta.org

[35] Joshi, A., “On Proxy Agents, Mobility, and Web Access,” Mobile Networks and
Applications, vol. 5, pp. 233–241, Dec. 2000.

[36] Kistler, J. J. and Satyanarayanan, M., “Disconnected Operation in the Coda
File System,” ACM Transactions on Computer Systems, vol. 10, no. 1, pp. 3–25, 1992.

[37] Kunz, T. and Black, J. P., “An Architecture for Adaptive Mobile Applications,”
in Proceedings of the 11th Annual International Conference On Wireless Communi-
cation, July 1999.

[38] Kuzmanovic, A. and Knightly, E. W., “TCP-LP: A Distributed Algorithm for
Low Priority Data Transfer,” in Proceedings of IEEE INFOCOM 2003, pp. 1691–1701,
Apr. 2003.

125



[39] Kvilekval, K. and Singh, A., “SPREE: Object Prefetching for Mobile Computers,”
in Distributed Objects and Applications (DOA), Oct. 2004.

[40] Lai, A. and Nieh, J., “Limits of Wide-Area Thin-Client Computing,” in Proceedings
of the ACM SIGMETRICS 2002, June 2002.

[41] Lara, E., Wallach, D. S., and Zwaenepoel, W., “Puppeteer: Component-based
Adaptation for Mobile Computing,” in Proceedings of the 3rd USENIX Symposium
on Internet Technologies and Systems (USITS), Mar. 2001.

[42] LBL, Xerox PARC, UCB, and USC/ISI, “The Network Simulator - ns-2.” (Date
Accessed: Mar. 2002).
http://www.isi.edu/nsnam/ns

[43] Lee, Y., Leung, K., and Satyanarayanan, M., “Operation Shipping for Mobile
File Systems,” IEEE Transactions on Computers, vol. 51, pp. 1410–1422, Dec. 2002.

[44] Loftus, J., “Enterprise Linux News: Desktop apps ripe turf for open source,” Oct.
2004. (Date Accessed: Jan. 2007).
http://searchenterpriselinux.techtarget.com/originalContent/0,289142,s

id39 gci1011227,00.html

[45] Mathis, M., Semke, J., Mahdavi, J., and Ott, T., “The Macroscopic Behavior of
the TCP Congestion Avoidance Algorithm,” ACM Computer Communication Review
(CCR), vol. 27, no. 3, pp. 67–82, 1997.

[46] Microsoft Corporation, “About MSHTML.” (Date Accessed: Jan. 2007).
http://msdn2.microsoft.com/en-us/library/bb508515.aspx

[47] Microsoft Corporation, “Microsoft Internet Explorer.” (Date Accessed: Dec.
2002).
http://www.microsoft.com/windows/products/winfamily/ie/

[48] Microsoft Corporation., “Microsoft Terminal Services.” (Date Accessed: Feb.
2003).
http://www.microsoft.com/windows2000/technologies/terminal

[49] Microsoft Corporation, “The Official Microsoft ASP.NET 2.0 Site.” (Date Ac-
cessed: Feb. 2006).
http://www.asp.net

[50] Microsoft Corporation, “Microsoft Word 97 Binary File Format,” 1998. (Date
Accessed: Mar. 2002).
http://www.progsoc.uts.edu.au/ subtle/wword8.html

[51] Miller, R. B., “Response Time in Man-Computer Conversational Transactions,”
in Proceedings of the AFIPS Fall Joint Computer Conference, vol. 33, pp. 267–277,
1968.

[52] Mogul, J., Krishnamurthy, B., Douglis, F., Feldmann, A., Goland, Y., van
Hoff, A., and Hellerstein, D., “RFC 3229 - Delta Encoding in HTTP,” Jan. 2002.
(Date Accessed: Nov. 2004).
http://www.ietf.org/rfc/rfc3229.txt

126



[53] Mogul, J. C., “The Case for Persistent-Connection HTTP,” Computer Communi-
cation Review, vol. 25, pp. 299–313, Oct. 1995.

[54] Mogul, J. C., Douglis, F., Feldmann, A., and Krishnamurthy, B., “Potential
Benefits of Delta Encoding and Data Compression for HTTP,” in Proceedings of
the ACM conference on Applications, technologies, architectures, and protocols for
computer communication (SIGCOMM), pp. 181–194, 1997.

[55] Molina, M., Castelli, P., and Foddis, G., “Web Traffice Modeling Exploiting
TCP Connections’ Temporal Clustering through HTML-REDUCE,” IEEE Network,
pp. 46–55, May 2000.

[56] Mozilla Foundation, “Firefox - Rediscover the Web.” (Date Accessed: Feb. 2006).
http://www.mozilla.com/firefox

[57] Mozilla Foundation, “Mozilla Layout Engine: Gecko Engine.” (Date Accessed:
Aug. 2006).
http://www.mozilla.org/newlayout

[58] Muthitacharoen, A., Chen, B., and Mazieres, D., “A Low-bandwidth Network
File System,” in Proceedings of the 18th Symposium on Operating Systems Principles,
Oct. 2001.

[59] Nah, F. F., “A Study on Tolerable Waiting Time: How Long are Web Users Will-
ing to Wait?,” in Proceedings of the American Conference on Information Systems
(AMCIS), pp. 2212–2222, 2003.

[60] Nandagopal, T., Lee, K.-W., Li, J.-R., and Bharghavan, V., “Scalable Service
Differentiation Using Purely End-to-End Mechanisms: Features and Limitations,”
Elsevier Computer Networks, vol. 44, pp. 813–833, Apr. 2004.

[61] Netscape Communications, “Netscape Navigator Web Browser.” (Date Accessed:
Feb. 2006).
http://browser.netscape.com

[62] Network Appliance, Inc., “NetCache.” (Date Accessed Mar. 2006).
http://www.netapp.com/products/netcache

[63] Nielsen, J., “Top Ten New Mistakes of Web Design.” (Date Accessed Jul. 2004).
http://www.useit.com/alertbox/990530.html

[64] Ninan, A., Kulkarni, P., Shenoy, P., Ramamritham, K., and Tewari, R.,
“Cooperative Leases: Scalable Consistency Maintenance in Content Distribution Net-
works,” in Proceedings of the 11th international conference on World Wide Web, (New
York, NY, USA), pp. 1–12, ACM Press, 2002.

[65] Noble, B. D. and Satyanarayanan, M., “Experience with Adaptive Mobile Ap-
plications in Odyssey,” Mobile Networks and Applications, vol. 4, no. 4, pp. 245–254,
1999.

[66] Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn,
J., and Walker, K. R., “Agile Application-Aware Adaptation for Mobility,” in
Proceedings of the 16th ACM Symposium on Operating Systems Principles, 1997.

127



[67] Open Mobile Alliance Inc., “WAP FORUM.” (Date Accessed: Oct. 2006).
http://www.wapforum.org

[68] Opera Software, “Opera Browser.” (Date Accessed: Aug. 2006).
http://www.opera.com

[69] Oracle Inc., “Oracal Portal-To-Go: Any Service to Any Device,” Oct. 1999.

[70] Padmanabhan, V. N. and Mogul, J. C., “Using Predictive Prefetching to Im-
prove World-Wide Web Latency,” ACM SIGCOMM Computer Communication Re-
view, pp. 22–36, July 1996.

[71] Pahdye, J. and Floyd, S., “On Inferring TCP Behavior,” in Proceedings of ACM
SIGCOMM 2001, pp. 287–298, 2001.

[72] Percival, C., “Binary diff/patch utility.” (Date Accessed: Jun. 2002).
http://www.daemonology.net/bsdiff

[73] Pocket Soft Inc., “RTPatch.” (Date Accessed: Mar. 2003).
http://www.pocketsoft.com/rtpproducts.html

[74] Privoxy Developers, “Privoxy Web Proxy.” (Date Accessed: Jan. 2006).
http://www.privoxy.org

[75] Qbik New Zealand Limited, “WinGate.” (Date Accessed: Jan. 2007).
http://www.wingate.com/product-wingate.php

[76] Qualcomm Inc., “Binary Runtime Environment for Wireless (BREW).” (Date Ac-
cessed: Oct. 2006).
http://brew.qualcomm.com

[77] Reed, I. S. and Solomon, G., “Polynomial Codes over Certain Finite Fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8, pp. 300–304,
June 1960.

[78] Richardson, T., Stafford-Fraser, Q., Wood, K. R., and Hopper, A., “Vir-
tual Network Computing,” IEEE Internet Computing, vol. 2, no. 1, pp. 33–38, 1998.

[79] Rivest, R., “MD5 Message-Digest Algorithm,” 1992. (Date Accessed: Feb.2002).
http://www.faqs.org/rfcs/rfc1321

[80] Rusay, C., “User-Centered Design for Large Government Portals,” Jan. 2003. (Date
Accessed: Jun. 2006).
http://www.digital-web.com/articles/user centered design for large gover

nment portals

[81] Satyanarayanan, M., “Accessing Information on Demand at Any Location: Mobile
Information Access,” IEEE Personal Communications, vol. 3, pp. 26–33, Feb. 1996.

[82] Satyanarayanan, M., Kistler, J. J., Kumar, P., Okasaki, M. E., Siegel,
E. H., and Steere, D. C., “Coda: A Highly Available File System for a Distributed
Workstation Environment,” IEEE Transactions on Computers, vol. 39, no. 4, pp. 447–
359, 1990.

128



[83] Shen, H., Kumar, M., Das, S. K., and Wang, Z., “Energy-Efficient Data Caching
and Prefetching for Mobile Devices Based on Utility,” Mobile Networks and Applica-
tions, vol. 10, no. 4, pp. 475–486, 2005.

[84] Shi, W., Collins, E., and Karamcheti, V., “Modeling Object Characteristics
of Dynamic Web Content,” Elsevier Journal of Parallel and Distributed Computing,
vol. 63, no. 10, pp. 963–980, 2003.

[85] Shneiderman, B., “Response Time and Display Rate in Human Performance with
Computers,” Computing Surveys, vol. 16, pp. 265–285, 1984.

[86] Smith, J., Mohan, R., and Li, C., “Transcoding Internet Content for Heteroge-
neous Client Devices,” in Proceedings of the International Symposium on Circuits
and Systems, pp. 599–602, 1998.

[87] Stone, J. and Partridge, C., “When the CRC and TCP Checksum Disagree,” in
ACM SIGCOMM 2000, Sept. 2000.

[88] Sun Microsystems, Inc., “JavaServer Pages (JSP) Technology.” (Date Accessed:
Jan. 2007).
http://java.sun.com/products/jsp

[89] Sun Microsystems, Inc., “Sun Java System Web Server.” (Date Accessed: Mar.
2007).
http://www.sun.com/webserver

[90] Team Squid, “Squid Web Proxy Cache.” (Date Accessed: Feb. 2002).
http://www.squid-cache.org

[91] Terry, D. B., Theimer, M. M., Petersen, K., and Demers, A. J., “Manag-
ing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System,” in
Proceedings of the 15th ACM Symposium on Operating System Principles, Dec. 1995.

[92] Wang, Z. and Cao, P., “Persistent Connection Behavior of Popular Browsers,” Dec.
1998. (Date Accessed: Oct. 2007).
http://pages.cs.wisc.edu/ cao/papers/persistent-connection.html

[93] Warp Solutions Inc., “SpiderCache.” (Date Accessed: Mar. 2005).
http://www.warpsolutions.com/Products/ProductsSpiderCache.php

[94] Web Developers Notes Inc., “List of Browser Plugins.” (Date Accessed: Jun.
2005).
http://www.webdevelopersnotes.com/design/list of browser plugins.php3

[95] Wong, A. Y. and Seltzer, M., “Evaluating Windows NT Terminal Server Perfor-
mance,” in Proceedings of the 3rd USENIX Windows NT Symposium, July 1999.

[96] Woodruff, A., Aoki, P. M., Brewer, E., Gauthier, P., and Rowe, L. A.,
“An Investigation of Documents from the World Wide Web,” in Proceedings of the
Fifth International World Wide Web Conference on Computer Networks and ISDN
Systems, pp. 963–980, May 1996.

129



[97] World Wide Web Consortium, “W3C Document Object Model,” Jan. 2005.
(Date Accessed Jan. 2006).
http://www.w3.org/DOM

[98] Xu, Z., Hu, Y., and Bhuyan, L., “Exploiting Client Cache: A Scalable and Efficient
Approach to Build Large Web Cche,” in Proceedings of the 18th International Parallel
and Distributed Processing Symposium (IPDPS), pp. 55–64, Apr. 2004.

[99] Yang, S. J., J. Nieh, M. S., and Tiwari, N., “The Performance of Remote Display
Mechnisms for Thin-Client Computing,” in Proceedings of the 2002 USENIX Annual
Technical Conference, June 2002.

[100] Yang, S. J., Nieh, J., Krishnappa, S., Mohla, A., and Sajjadpour, M., “Web
Browsing Performance of Wireless Thin-Client Computing,” in Proceedings of the 12th
International World Wide Web Conference, May 2003.

[101] Yang, S. J., Nieh, J., and Novik, N., “Measuring Thin-Client Performance Using
Slow-Motion Benchmarking,” in Proceedings of the 2001 USENIX Annual Technical
Conference, June 2001.

[102] Yin, L., Cao, G., Das, C., and Ashraf, A., “Power-Aware Prefetch in Mobile
Environments,” in IEEE International Conference on Distributed Computing Systems
(ICDCS), July 2002.

[103] Zope Corporation, “Zope.” (Date Accessed: Jan. 2007).
http://www.zope.org

130



VITA

Tae-Young Chang was born in Seoul, Korea. He received his BE degree in Elecrtonic En-

gineering from Korea University in 1999, and his ME degree in Telecommunication System

Technology from the same university in 2001. After that, he joined the PhD program of

School of Electrical and Computer Engineering at Georgia Institute of Technology in 2001,

and has worked with Prof. Raghupathy Sivakumar as a graduate research assistant in

GNAN Research Group.

131


