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ABSTRACT 

PROVIDER-CONTROLLED BANDWIDTH MANAGEMENT 

FOR HTTP-BASED VIDEO DELIVERY 

by 

Kevin J. Ma 
University of New Hampshire, May, 2012 

Over the past few years, a revolution in video delivery technology has taken place as 

mobile viewers and over-the-top (OTT) distribution paradigms have significantly changed 

the landscape of video delivery services. For decades, high quality video was only available 

in the home via linear television or physical media. Though Web-based services brought 

video to desktop and laptop computers, the dominance of proprietary delivery protocols 

and codecs inhibited research efforts. The recent emergence of HTTP adaptive streaming 

protocols has prompted a re-evaluation of legacy video delivery paradigms and introduced 

new questions as to the scalability and manageability of OTT video delivery. 

This dissertation addresses the question of how to enable for content and network service 

providers the ability to monitor and manage large numbers of HTTP adaptive streaming 

clients in an OTT environment. Our early work focused on demonstrating the viability of 

server-side pacing schemes to produce an HTTP-based streaming server. We also investi­

gated the ability of client-side pacing schemes to work with both commodity HTTP servers 

and our HTTP streaming server. Continuing our client-side pacing research, we developed 

our own client-side data proxy architecture which was implemented on a variety of mobile 

devices and operating systems. We used the portable client architecture as a platform for 

investigating different rate adaptation schemes and algorithms. We then concentrated on 

evaluating the network impact of multiple adaptive bitrate clients competing for limited 

network resources, and developing schemes for enforcing fair access to network resources. 

xiii 



The main contribution of this dissertation is the definition of segment-level client and 

network techniques for enforcing class of service (CoS) differentiation between OTT HTTP 

adaptive streaming clients. We developed a segment-level network proxy architecture which 

works transparently with adaptive bitrate clients through the use of segment replacement. 

We also defined a segment-level rate adaptation algorithm which uses download aborts 

to enforce CoS differentiation across distributed independent clients. The segment-level 

abstraction more accurately models application-network interactions and highlights the dif­

ference between segment-level and packet-level time scales. Our segment-level CoS enforce­

ment techniques provide a foundation for creating scalable managed OTT video delivery 

services. 
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Chapter 1 

Introduction 

Over the past decade, the role of on-demand video delivery has grown significantly. Increases 

in broadband Internet access and high-speed cellular data connections have countered what 

could previously be considered prohibitively large amounts of data required by video ap­

plications. Initial forays into Internet-based video delivery were limited to low resolution 

clips, much of which was user generated content (UGC), through services like YouTube. 

This eventually evolved into standard definition professional content, distributed through 

content aggregators like Hulu. Today, premium content providers are going direct to con­

sumers with full-length high-definition content, delivered in an over-the-top (OTT) manner. 

OTT delivery bypasses traditional broadcast television providers, multiple system opera­

tors (MSOs) and mobile network operators (MNOs), and delivers video over generic data 

connections. This revolution in video delivery paradigms has empowered users, allowing 

them to tailor their viewing schedules around other aspects of their busy fives. 

The dramatic shift in consumer viewing habits, from a rigid in-home linear television 

model to a more flexible mobile on-demand model, has caught the attention of traditional 

television and Web-based video distribution services. Two of the most significant contribut­

ing factors have been the popularity of the Apple iPhone and iPad and the popularity of the 

Netflix streaming service. Though Apple was not the first to manufacture a smart phone 

or tablet, nor were they the first to define a segment-based HTTP delivery protocol, i.e., 

the HTTP Live Streaming (HLS) protocol, they were the first to integrate a segment-based 

HTTP delivery protocol into a mobile device that became instantly popular with tens of 

millions of consumers. In the same way, Netflix was not the first to deliver content to 
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televisions using an OTT distribution model, but they were the first to do so with great 

commercial success. The ubiquitous availability of video to mobile users provided by smart 

phones and tablets, combined with the on-demand convenience of OTT streaming services 

has created a higher level of expectation among viewers seeking both quality and flexibility 

in their content delivery. 

To fully comprehend this shift in video delivery paradigms, we must first investigate the 

video streaming protocols which came before, but with the appreciation that the assump­

tions which motivated both their design and optimization may require re-evaluation. In the 

following sections we follow the migration of streaming technologies as they have kept pace 

with advances in the server, networking, and storage technologies on which they rely. We 

can then see the incremental addition of features that eventually led to a reassessment and 

simplification of the delivery paradigm. From there, we can begin to address new enhance­

ments to OTT delivery methods, as well as consider the modification and reapplication of 

previous streaming protocol optimizations. 

1.1 Video Delivery Paradigms 

Beyond the many orders of magnitude increases in bandwidth available to consumer de­

vices, what may be considered the primary factor in the migration to OTT delivery is the 

acceptance that, in many cases, near-real-time delivery (or time-shifted delivery) of content 

is as good as, if not better than, real-time delivery of the same content. Though interactive 

video applications like tele-conferencing are very sensitive to real-time latencies, video on 

demand (VoD), linear broadcast television, and even live event broadcasts, e.g., news and 

sports, are more delay tolerant. The uni-directional, non-interactive nature of these video 

streams allow delays, on the order of tens of seconds, to be less discernible and therefore 

more tolerable. Such delays are standard in television broadcasts to allow network censors 

to review content, to provide notification for regionalized advertisement replacement, and 

to reformat video content to the specification of individual MSOs/MNOs. Understanding 

that certain content, though it appears to be delivered in real-time, is actually tape-delayed, 
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and accepting that delivery delays on the same order would be acceptable, has resulted in 

a change in the way video delivery protocols are defined. 

The primary delivery protocol for OTT video services is the Hyper-Text Transfer Proto­

col (HTTP) [1]. The evolution of HTTP-based video delivery had been slow, until recently, 

as TCP, the underlying transport protocol for HTTP, had long been considered to be un­

suitable for video applications, due to the latency and overhead of TCP's sliding window 

and retransmissions. Video delivery had long relied on protocols like the Real-time Trans­

port Protocol (RTP) [2], RTP uses UDP as an underlying transport protocol, which does 

not have the overhead or latency of blocking on retransmissions. RTP uses a just-in-time 

(JIT) frame-based delivery model; individual video frames are sent out in a paced manner, 

and late or lost frames are ignored by the receiver. The paced delivery evenly distributes 

bandwidth over time and is inherently conducive to supporting real-time, multicast and 

interactive applications like live event broadcasts and tele-conferencing. One of the primary 

disadvantage of RTP, however, is that network interruptions which cause frames to be late 

or lost are likely to cause video artifacts and distortion, lowering the quality of experience 

(QoE) for the user. RTP-based delivery is also more complex. It typically relies on the 

Real-Time Streaming Protocol (RTSP) [3] as a control plane protocol, and requires not 

only separate UDP connections for each audio and/or video channel, but also additional 

UDP connections for Real-time Transport Control Protocol (RTCP) channels, one per RTP 

connection. 

Figure 1-1 shows a packet flow diagram for a typical RTSP/RTP streaming session. The 

RTSP session sets up separate video and audio RTP (and corresponding RTCP) connections 

over which the content is streamed. Through the RTCP control channel, the server provides 

audio/video synchronization information to the client, and the client provides feedback on 

network jitter and packet loss. Where an HTTP-based approach would only require a single 

connection, the extra UDP connections for RTP/RTCP consume additional server resources, 

impacting streaming server scalability. The UDP connections also require dynamic firewall 

"fixup" support, since the UDP connections are server-initiated, as opposed to the client 
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DESCRIBE 

SETUP 
Video 
SETUP 
Audio 
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RTSP RTP RTCP 
Video 

RTP RTCP 
Audio 

Figure 1-1: RTSP/RTP/RTCP connection setup packet flow diagram. 

initiated RTSP (or HTTP) connection. In addition, frame-based delivery requires the RTP 

streaming server to parse the video file in order to extract the frames, which adds additional 

overhead and impacts scalability. Though the session initiation protocol (SIP) [4] may also 

be used as a control protocol in lieu of RTSP [5], we are primarily concerned with the data 

delivery portion, i.e., RTP and RTCP), and specifically understanding how it compares with 

HTTP. Figures 1-2 (a)-(d) compare the basic traffic pattern for streaming RTP delivery, 

with three methods for HTTP-based delivery. 

Figure 1-2 (a) depicts a simplified view of the RTSP/RTP streaming session (a condensed 

version of Figure 1-1), concentrating on the data delivery aspect of individual frames being 

paced out by the server. In direct contrast, Figure 1-2 (b) depicts a straight HTTP as-fast-

as-possible download with no delivery pacing. Comparing Figures 1-2 (a) and (b), there is 

an obvious bandwidth distribution advantage to using streaming, especially for large files or 

long-lived streams. However, straight download is not the only method of using HTTP for 

delivery. Figures 1-2 (c) and (d) show server-side and client-side approaches, respectively, 

for paced HTTP progressive download. In Figure 1-2 (c), the server paces out bursts of 
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Client Server Client Server Client Server Client Server 

(b) (c) (d) 

Figure 1-2: Video delivery methods: (a) streaming, (b) straight download, (c) server-paced 

download, (d) client-paced download. 

packets, while in Figure 1-2 (d), the client paces out requests for partial content downloads. 

In both cases, the individual bursts or partial content requests are larger than an individual 

frame, and the inter-burst and inter-request gaps are larger than the inter-frame gap of 

the streaming case shown in Figure 1-2 (a). The larger burst and/or request sizes are 

used intentionally to create larger inter-burst and inter-request gaps, which provide larger 

time windows for performing any necessary TCP retransmissions. The burst of packets 

also means that all the frames should arrive well before their playout time, i.e., no frames 

should be late. Assuming sufficient time and bandwidth exist to perform retransmissions, 

the use of a TCP-based protocol, with retransmissions, prevents the playback artifacts 

commonly seen with RTP-based delivery. Using HTTP-based delivery with paced bursts, 

frames should never be late, and lost frames should be retransmitted, therefore playback 

should never exhibit distortion and viewers should always have a high QoE. 

Comparing the server-side pacing scheme shown in Figure 1-2 (c) to the client-side pacing 

scheme shown in Figure 1-2 (d), the only visible difference in the traffic patterns is the 

additional overhead for each individual partial request in the client-side pacing approach. 
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Clients typically issue partial content requests using either HTTP Range GETs, or by 

retrieving pre-processed file segments. In the server-side approach, however, the server 

itself requires content awareness (i.e., what the encoded rate of the video is, and what 

the pacing rate should be), though not as much as an RTSP/RTP server. The primary 

advantage of the client-side pacing approach, is that ceding control to the client, allows 

the client to make decisions on what content it retrieves, without the need for alternate 

control channels, e.g., RTSP and RTCP. Client-side decision-making, specifically client-side 

rate adaptation algorithms (see Section 1.2), are a key factor in the popularity of client-side 

pacing schemes, as they allow the client to adjust to changes in available bandwidth, to 

prevent playback stoppages. 

The primary criticism of HTTP, historically, was its inability to stream data, as HTTP 

is an as-fast-as-possible file download protocol. However, progressive download paradigms, 

e.g., server paced delivery [6] and the client paced delivery [7, 8] have clearly emerged and 

exhibited commercial success. Though critics continued to cite TCP retransmission latency 

as an issue, studies have shown that TCP is quite suitable for video delivery [9, 10] and 

that multiple TCP connections can significantly improve delivery efficiency [11, 12]. HTTP-

based segmented delivery provides inherent methods for combatting late and lost frames, 

and the inclusion of rate adaptation provides a method for avoiding playback stoppage. 

Over the past few decades, though, many techniques have been developed and applied to 

RTP-based delivery, in order achieve similax QoE goals. Being predicated on the idea that 

bandwidth is scarce and that JIT delivery is a primary solution to addressing bandwidth 

scarcity issues (as opposed to JIT delivery being the solution to latency issues in real-time 

interactive communications), most RTP optimizations revolve around the philosophy of 

limiting, rather than preventing video distortions, though many also address initial playback 

latency reduction. 
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1.1.1 Video Delivery Prioritization 

Many schemes have been proposed, to improve the quality and predictability of RTP-

delivered video. Standard techniques like caching and packet prioritization have been 

adapted to support higher quality delivered video in challenged (lossy) networks. The 

goal of all of these optimizations is to temporally position delivered video frames, within 

the context of JIT delivery, with the highest possible rendering quality. In this section we 

look at three such techniques: segment caching, frame reordering, and packet prioritization. 

1.1.1.1 Segment Caching 

Caching schemes axe typically used to: reduce latency by storing content at individual points 

of presence (POPs), which are typically closer to clients than the content origin server, 

and reduce load on wide area network (WANs) and the Internet core. While common for 

HTTP-based delivery, which typically rely on highly scalable and commoditized content 

delivery networks (CDNs) built on top of hierarchical caching infrastructures, caching is 

less prevalent in real-time frame-based delivery. 

The proxy prefix caching scheme proposed by Sen et al. was an approach for live stream 

caching, where the proxy stores recently transmitted frames and uses them as a cached "pre­

fix" for newly initiated streaming session [13]. The proxy essentially extends the buffering 

capabilities of the client, and pre-buffers content prior to the client requesting it. It must be 

noted that the buffer, in essence, is a time-shifting buffer which shifts the real-time nature 

of the source stream to a near-real-time delivery stream. Time-shifted delivery in RTP 

streaming has been accepted for well over a decade. Kalapriya and Nandy apply a simi­

lar scheme to peer-to-peer (P2P) streaming [14], while Kusmierek et al. take time shifting 

literally to the Nth degree with their "Loopback" caching scheme [15]. 

Kusmierek at al. combine caching and P2P by chaining individual P2P clients together, 

where each P2P client acts as a cache for all other clients downstream of it in the chain [15]. 

Each client buffers up to 6 seconds of data, and any new session initiated within § seconds of 

the previous session start, are added to the end of the chain. Given a chain of N clients, with 
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So Si S2 Sn-2 Sn-i Sn-i + S 

Figure 1-3: Time-shift latency for Loopback cache chain. 

start times S = {so , . . . ,  sn-I}, their scheme ensures that: Vi G 1... iV — 1 : st+i — Si <= 5. 

The last client in the chain always buffers 6 seconds worth of data; the other clients in 

the chain buffer s,+i - seconds worth of data (i.e., they buffer only enough to service 

the next client in the chain). Figure 1-3 shows the compounded near-real-time latency of 

SJV-I — SO, for the Loopback chain. In the worst case, the Nth client could experience a 

time-shift latency of up to (AT -1)-6 seconds. Deshpande and Noh use a similar P2P caching 

scheme with temporally proximate peers caching different portions of data [16], though their 

approach lacks the chaining structure and initial start time enforcement. Deshpande and 

Noh allow the client to select any start time and then find the node with the desired start 

time cached. 

Others have extended the prefix caching concept, though most are more focused on 

optimizing cache efficiency (in challenged caches with limited capacity) for VoD, as opposed 

to live streams. Shen et al. extended the definition of a prefix for VoD to account for 

popularity-based random starting points within a VoD asset [17]. They allow for multiple 

"prefixes", one per common starting point. Li et al. further extended popularity-based 

caching using variable segment sizes, by applying segment coalescence for adjacent segments 

[18]. Because coalescence reduces starting point flexibility, they apply a popularity-aware 

coalescence and eviction scheme. Tu et al. take a similar popularity-based approach, but 

at a much finer key-frame granularity [19]. 

Segment-based caching has also been extended beyond just prefix caching, for VoD 

assets. Ma and Du proposed a scheme where every other segment was cached, to reduce 

the impact of WAN latency by half [20]. Chen et al. produced a series of work which 

combine popularity-based segment prefetching and eviction to lower cache miss latency, 
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which they refer to as "proxy jitter" [21, 22, 23]. Though these generic segment caching 

schemes do not directly impact frame-based delivery, they do act as a coarse level (segment 

level) prioritization of content to be delivered. More importantly, they highlight the general 

acceptance of segment-based video formatting and storage in RTP streaming environments. 

We can see from these prefix and segment caching approaches that time-shifted delivery 

and segment-based representations, both of which are critical requirements for HTTP-based 

video delivery, and both of which have been traditionally cited as disadvantages of HTTP-

based video delivery approaches, have firm foundations in RTP-based delivery. Though the 

context in which these schemes were initially applied to RTP-based delivery may differ from 

the context in which they add value to HTTP-based delivery, the fundamental acceptance 

of these concepts should be universal. 

1.1.1.2 Static Frame Reordering 

Frame reordering comes in many forms. In this section we look at static methods for 

performing frame reordering in the encoded source. Static frame reordering seeks to select 

a frame order which is statistically less susceptible to distortion when frame losses or delays 

occur. Wee et al. proposed a model of measuring the distortion caused by late frames, 

where, unlike lost frames, late frames may still be used in the decoding of future frames. 

They proposed moving frames up so that they would arrive earlier, reducing the probability 

that they arrive too late [24]. Figure 1-4 shows an example of advancing frame / to position 

/ — k, and delaying the k frames which had to be shifted out. 

Figure 1-4: Frame reordering can minimize the probability of late arrivals. 



10 

Figure 1-5: Frame interleaving can reduce the impact of burst losses. 

Liang et al. also looked at the interdependencies of frames but propose a different solu­

tion which relies on live encoding [25]. Their approach relies on detecting frame loss through 

a client feedback mechanism. When a key frame is lost, future frames are encoded to a dif­

ferent key frame which was not lost and is likely to still be in the client's playout buffer. 

The scheme relies on a low latency feedback channel, as well as storage and maintenance of 

the distortion prediction tables. They expanded their investigation to include the impact 

of burst losses [26]. They then proposed using a frame interleaving scheme to prevent key 

frame loss in the presence of burst losses [27]. Figure 1-4 shows an example of n blocks of m 

frames each being interleaved, which reduces the temporal correlation of adjacent frames, 

but introduces an addition delivery latency of n • (m — 1) + 1, for each block. 

1.1.1.3 Packet Prioritization and Frame Dropping 

When network congestion occurs, routers will naturally drop packets as their limited queue 

capacity is exceeded. Generally, individual applications do not have the ability to directly 

influence which packets get dropped in those situations. Assuming the application can 

detect when congestion occurs, however, it may be able to reprioritize its packets prior to 

sending them and pre-emptively drop lower priority packets, never actually sending them 

into the network. Though these types of schemes are most prevalent in peer-to-peer (P2P) 

applications, where application routing overlays are common, they may be generalized and 

applied to more traditional network routers with video routing intelligence. 

Baccichet et al. proposed a P2P packet prioritization scheme based on a distortion factor 
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D, where frames which would result in greater distortion, if lost, are deemed to be of higher 

priority [28]. Setton et al. used a similar calculation in their P2P packet prioritization, 

however they consider the cumulative impact of packet loss on downstream clients. The 

distortion factor D is weighted by the number of client N that would be affected by the 

packet loss [29]. J. Li et al. further augment the calculation by considering the processing 

time as a penalty for each packet. In their P2P model, the distortion factor D is weighted 

by y where T is the time to process the given packet [30]. In the degenerate case where 

all packets have equal processing cost, J. Li's scheme is strictly proportional to Setton's, 

though, it is conceivable that larger packets (e.g., those containing key frames) will result 

in greater distortion if lost, however, the larger size may make it more susceptible to loss 

and may prevent many other smaller packets from being processed. 

One issue with P2P based application routing overlays is that they have no control over 

intermediate network routers and do not necessarily have insight into actual network health. 

Though protocols like ALTO [31] are under development to provide network information to 

P2P system, the level of aggregation may not be sufficient for packet level decision making. 

Chakareski and Frossard proposed a scheme for implementing distortion estimation and 

packet prioritization in the network nodes [32]. Y. Li et al. proposed a packet marking 

scheme which uses distortion factor prioritized marks, so that intermediate routers can 

use that information for packet dropping [33]. Tan et al. proposed an alternate packet 

marking scheme where marks generated by the streaming server contain estimates of client 

buffer fullness, so that intermediate routers can use that information for packet dropping 

[34]. Coordinated packet dropping has also been proposed in conjunction with content-

aware playout. Li et al. proposed the use of motion intensity estimation for reordering and 

prioritization of packets, where frame dropping is performed in conjunction with playout 

rate reduction [35]. Playout rate reduction is discussed further in the rate adaptation section 

below. 

What becomes evident from the survey of frame reordering and packet prioritization 

schemes is that the JIT nature of the streaming paradigm complicates video delivery with 
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concerns about frame lateness and frame loss. The arrival time of any individual frame is not 

typically a concern with HTTP-based delivery paradigms, as segment completion (not frame 

arrival) is the measure of success, and frame loss is handled through TCP retransmission. 

Intentionally dropping frames does not make sense with TCP-based protocols, and the 

difference in time scale between segments and frames render packet-based prioritization 

inconsequential. Because RTP-based schemes operate at the frame level, ETP optimizations 

act at the frame level. Prom this, we can draw that for HTTP-based schemes, which operate 

at the segment level, it makes sense for HTTP optimizations to act at the segment level. 

1.2 Rate Adaptation 

The segment-based client pacing scheme, as depicted in Figure 1-2 (d), has become the 

preferred method for HTTP-based video delivery. The HTTP Live Streaming (HLS) [36] 

and Dynamic Adaptive Streaming over HTTP (DASH) [37] protocols are examples of open-

standard segment-based HTTP adaptive streaming protocols which use client-side pacing. 

Microsoft® SilverLight™ Smooth Streaming and Adobe® HTTP Dynamic Streaming are 

also examples of segment-based HTTP adaptive streaming protocols, though they are pro­

prietary in nature. 

HTTP adaptive streaming protocols use segment boundaries, not only for paced pro­

gressive download, but also for initiating bitrate adaptation. Manifest files are used to 

convey bitrate and segment information to the clients. Figure 1-6 shows the components 

of a typical HLS delivery configuration. A master manifest file contains a list of individ­

ual bitrate manifest files locations, providing encoding information for each representation. 

The individual bitrate manifest files contain lists of segment file locations. The segments 

for each bitrate are synchronized so that segment boundaries are aligned, making switching 

between bitrates seamless when performed on segment boundaries. While frame-based RTP 

streams have a minimum real-time latency of a single frame time (i.e., ^th of a second, for 

a typical video), segment-based streams have a minimum real-time latency of a single seg­

ment duration (e.g., 10 seconds, for a typical HLS deployment). Segments can be produced 
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Figure 1-6: HLS segment-based HTTP adaptive streaming architecture. 

from either a live input stream or a VoD source file. For live inputs, the near-real-time 

latency is a multiple of the segment duration, rather than a multiple of the frame time. As 

we have seen though (see Section 1.1.1.1), increasing near-real-time latency is a side-effect 

of many streaming delivery optimization schemes. For non-interactive video applications, 

the impact of segment boundary time-shift latency is typically negligible. 

HTTP adaptive streaming clients automatically adjust to changes in available band­

width, though, different clients exhibit various levels of aggressiveness [38]. More aggressive 

clients often exhibit bitrate oscillation, while less aggressive clients may not achieve bitrate 

parity. HTTP adaptive streaming clients estimate available bandwidth (e.g., by measur­

ing segment download speed or tracking segment download buffer occupancy) and use that 

information to select new bitrates based, as network conditions change [39]. HTTP adap­

tive streaming media players typically buffer a small number of segments as a jitter buffer. 

Given that this can amount to tens of seconds worth of buffered data, bandwidth esti-
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illations can be smoothed over many seconds without significant impact playback or QoE. 

Understanding the difference in time scales between RTP frame-based delivery and HTTP 

segment-based delivery is important when comparing rate adaptation approaches. Packet-

level traffic management schemes (like the ones surveyed in Section 1.1.1.3) can adversely 

affect QoE for segment-based delivery. Similarly, packet-level rate estimation schemes which 

act on instantaneous bandwidth measurements can also impact QoE. TCP-based rate esti­

mation [40] and TCP-friends segment-size optimizations [41] have been proposed for HTTP 

adaptive streaming schemes. However, because the typical TCP window size is so much 

smaller than both the segment and jitter buffer sizes, it does not accurately reflect the 

time scale on which rate adaptation measurements should be made. When analyzed over 

a longer time scale, segment download burst interleaving for paced segment requests can 

naturally smooth overall bandwidth usage, even though individual clients may monopolize 

bandwidth allocations in the short-term [42], Amortizing bandwidth measurements over a 

time scale relative to the segment durations [43] is generally a better abstraction. 

1.2.1 Video Encoding 

In order to perform bitrate adaptation, a video must be encoded at multiple bitrates. 

Though methods have been proposed which rely on dynamic transcoding [44, 45, 46, 47], 

the processing resources required for these types of approaches make them unsuitable for 

VoD applications due to the inherent scalability issues. Most VoD adaptive bitrate stream­

ing approaches use a discrete set of pre-selected bitrates at which videos are pre-encoded. 

Figure 1-7 shows a variety of different encoding video methods. Figure 1-7 (a) shows indi­

vidual monolithic files, one per bitrate. Figure 1-7 (b) shows a cumulative layered encoding 

scheme, where a base encoding may be progressively enhanced by one or more higher layer 

encodings, though each layer is dependent upon all the layers below it [48]. H.264 scalable 

video coding (SVC) is one of the most commonly used layered encodings [49]. Figure 1-7 (c) 

shows a multiple description coding (MDC) scheme [50], where each description is indepen­

dently playable (unlike layered encodings), but when combined, multiple descriptions can be 
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Figure 1-7: Video encodings: (a) individual bitrate monolithic files, (b) multi-layer encod­

ing, (c) multiple description codings, and (d) per-bitrate segmented files. 

used to enhance video quality. MDC schemes have the added advantage of error resiliency, 

but often pay a penalty for data redundancy [51]. Figure 1-7 (d) shows a segment-based 

format, suitable for use with HTTP adaptive streaming protocols like HLS or DASH. 

Segments can be created from any of the encodings shown in Figures 1-7 (a)-(c), though, 

for HLS and DASH, segments are typically created from individual monolithic bitrate files, 

as shown in Figure 1-7 (a). Individual monolithic files are also used by RTSP streaming 

servers in file switching rate adaptation schemes [52, 53]. In the ETSP case, the streaming 

server is parsing monolithic files to enable frame-based delivery. Switching files incurs a 

processing penalty for seeking to the current location in an alternate file, but the general 

penalty for parsing out frames is already high. RTP-based schemes are also inherently 

reactive, rather an proactive. Rate adaptation is typically performed in response to high 



frame loss being reported by clients, via RTCP receiver reports. The QoE has already been 

unpredictably degraded at that point. Though rate adaptation does reduce quality, it does 

so in a controlled manner, with the individual encodings typically having gone through 

rigorous quality control evaluations. 

Though HTTP adaptive streaming, to this point, has concentrated on single layer, single 

description encodings, a fair amount of work on MDC and SVC for legacy streaming video 

has been done. The use of multiple layers or descriptions often incurs an overhead penalty 

for the use of parallel connection. In most cases, this is justified by ensuring path diversity 

between connections, using different servers to source each stream [54]. Reliance on multiple 

senders, however, introduces a new problem where client feedback needs to be distributed to 

all servers, and rate selection needs to be coordinated between all servers. In the following 

sections we look at a couple of these schemes. 

1.2.1.1 Multiple Sender Encodings 

Chakareski and Girod proposed a scheme where clients measure the download rates of "me­

dia packets" at fixed intervals. After each interval, a "transmission opportunity" occurs 

where the client must issue requests to each server from which it wishes to receive data 

[55]. In their scheme each server distributes a different layered encoding, however, the 

striking similarity of this scheme to the segment-based client rate selection of HTTP adap­

tive streaming should be noted. Chakareski and Frossard proposed an alternate scheme in 

which clients report bandwidth estimates back to the servers, allowing the servers to make 

streaming transmission decisions, rather than allowing the client to make rate selection 

decisions [56]. The media is again "packetized" into segment-like structures, and simple 

packet partitioning is performed between servers, rather than layer partitioning. The dis­

tributed scheme relies on clients sending bandwidth estimates for all paths to all servers 

(the overhead of which is not discussed). The servers all run the same algorithm to deter­

mine the packet partitioning and sender scheduling. In their follow up work, Chakareski 

and Frossard included support for sending different MDC encodings from each server [57]. 
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Nguyen and Zakhor had previously proposed a slightly different approach whereby clients 

estimate available bandwidth based on round trip time (as reported by the server) and 

compute the packet partitioning and sending schedules for the servers [58]. In their follow 

up work, Nguyen and Zakhor include packet loss probability in their scheduling calculations 

[59]. 

In a different approach, Guo et al. attempt to estimate path diversity among many 

servers using standard networking characteristics, e.g., round trip time (RTT) and hop 

count. Then, given a fixed number of MDC encodings, retrieves each encoding from a 

different server [60]. While Guo et al. focused on a CDN scenario, De Mauro et al. applied 

similar techniques to selecting peers in a P2P scenario [61]. Apostolopoulos et al. also looked 

at the performance of MDC encodings in conjunction with CDN-based delivery [62]. They 

also investigated the effects of burst losses in with path diversity [63]. They then compared 

different hop count-based and distortion estimation-based algorithms for selecting a subset 

of servers from which to retrieve MDC encodings [64]. 

The independent nature of MDC encodings make it better suited to multiple sender 

schemes, where loss cannot be predicted. If congestion causes packet loss, it does not matter 

which MDC encoding is lost since the other(s) will still be usable. The inter-dependence 

of layered encodings like SVC, however, require more care in selecting which layers are 

transmitted. If a base layer is lost, the rest of the transmitted data is useless, and sending 

an additional higher layer can cause congestion which may result in a base layer being lost. 

This makes MDC more versatile for unreliable delivery protocols like RTP [65]. Layered 

encodings have been of primary interest in multicast environments [66, 67], however, there 

axe cases where individual bitrate simulcast out performs SVC multicast [68]. Layered 

encodings must typically also be combined with forward error correction (FEC), to reduce 

the probability of loss in multicast RTP-streaming environments [69, 70, 71, 72]. Though 

FEC is often used in environments with no explicit feedback, Zhu et al. proposed a scheme 

in which feedback is used to not only influence rate adaptation, but also to influence the 

level of FEC used [73]. Though FEC has been a topic of RTP-streaming research for a long 
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time, it does increase data transmission overhead and is as necessary for MDC encodings 

which have their own redundancy and overhead built in. There has also been work done 

on optimizing caching efficiency for layered encodings [74, 75, 76], though these are less 

delivery oriented. 

Though HTTP-based retrieval of layered encodings does not suffer from the base layer 

loss concerns that occur with RTP-based delivery, the additional overhead of retrieving 

separate layers from the same server does not make sense in a client-side rate selection 

approach. And while layered encodings could still be used in path diverse multiple server 

environments, a partial segment striping approach like the one proposed by Gouache et al. 

works equally well for multiple servers but does not require the additional encoding and 

decoding complexity of a layered scheme [77]. The redundancy support offered by MDC 

encodings makes it a more interesting option for both RTP-based and HTTP-based delivery, 

but as with layered encodings, the overhead of MDC encoding and decoding is not makes the 

tradeoff less valuable for HTTP-based approaches. Though path diversity is an important 

aspect of OTT delivery, basic segment striping or partial segment striping [77] approach is 

usually sufficient. 

1.2.1.2 Content Encryption 

Content encryption and digital rights management (DRM) is an important consideration 

for premium content. Secure streaming protocols, e.g., the Secure Real-time Transport 

Protocol (SRTP) [78], use transport layer encryption where individual RTP frame payloads 

are encrypted. SRTP uses AES128 in either counter mode (CTR) or output feedback 

mode (OFB) as a stream cipher. Stream ciphers generate pseudo-random bit streams and 

XOR the random data with the frame data to produce an encrypted frame. For RTP 

streaming servers, which have to parse the source file in order obtain the frames, it is 

typically assumed that the streaming server can be trusted with unencrypted content and 

that client devices are implicitly authenticated by having a proper decryption key and will 

not store the decrypted content after playout. In most real-world deployments, it is assumed 
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that SRTP receivers axe manufactured with pre-burnt-in encryption keys which should only 

be known to the operator who purchased and will be managing that device. Simplifying 

assumptions such as that allow most RTP optimization schemes to avoid key exchange 

concerns. As long as the RTP headers are unencrypted (as they are with SRTP), frame-

based optimization (excluding those which involve transcoding) can continue to function. 

Quite a few partial encryption (or scrambling) schemes have been proposed to reduce 

the processing cost of encryption [79]. Some schemes encrypt only certain frames [80]. 

Other schemes encrypt only portions of frames [81]. There are also proposals for the use 

of lower complexity ciphers [82] with partial frame encryption. Layered encodings often 

receive special treatment, as encryption of the base layer typically requires more rigorous 

treatment than encryption of enhancement layers [83], and key management for per-layer 

keys also requires consideration [84], While it may be argued that full encryption is gra­

tuitous for certain applications, it should be noted that the overhead required to isolate 

partial encryption boundaries is non-null, and the practical effort required to certify partial 

encryption schemes for commercial deployment is not insignificant. 

For HTTP adaptive streaming delivery, where content is typically distributed and acces­

sible through public CDNs, the files in the CDN must be encrypted. HLS uses AES128 in 

cipher block chaining (CBC) mode to encrypt each segment file [36]. CBC mode relies on a 

feedback mechanism which first does an XOR of the video data and the previously encrypted 

data before performing the encryption operation. This creates inter-dependencies within 

the encrypted data to prevent decryption of file fragments. Though stream cipher-based 

approaches are typically less processing intensive than CBC mode [8], most modern devices 

have hardware support for CBC mode decryption. Though transport layer encryption could 

be used with HTTP (i.e., SSL or TLS) it requires that secure client authentication. While 

assumptions, similar to the ones made for SRTP clients, could be made whereby every 

client device needs to be pre-burned with an SSL/TLS client authentication certificate, in 

reality this is not the case in OTT video delivery. Though the transport layer encryption 

could prevent third party eavesdroppers from intercepting the data; it would not guarantee 
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Figure 1-8: Client playback/jitter buffer diagram. 

that the requestor actually had the right to access the data. Encryption key management 

is typically handled outside of the delivery path as part of a separate DRM key exchange 

protocol [85]. It is important to note the difference in assumptions between RTP-based 

delivery and HTTP-based delivery, as some delivery optimizations can be complicated by 

the presence of encryption. 

1.2.2 Playout Rate Adaptation 

While bitrate adaptation can react to network congestion and proactively reduce load on 

the network by switching bitrates, playout rate adaptation reacts to variations in network 

conditions by changing the rate at which the content is being rendered [86]. Figure 1-8 

shows a client playback buffer and depicts the relationship between the network delivery 

rate, i.e., the buffer fill rate, and the playout (or rendering) rate, i.e., the buffer drain rate. 

Where bitrate adaptation affects both the future network delivery rate and future playout 

rate, playout rate adaptation only affects the current playout rate. Assuming a constant 

bitrate b for all video in the playback buffer, the buffer occupancy o, in bits, can be expressed 

in terms of playout duration d, based on the current playout rate r, such that d = p. Under 

normal circumstances, r = b. Adjusting playout rate r effectively adjusts the client playback 

buffer duration d. The playback buffer duration d is inversely proportional to the playout 

rate r, therefore lowering the playout rate increases the effective buffer occupancy, while 

increasing the playout rate decreases the effective buffer occupancy. 

Videos are typically encoded at a constant frame rate, e.g., 24 or 30 frames per second 

(fps). Similarly, audio is typically encoded at a constant sample rate, e.g., 22.05, 44.1, or 
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48 kHz. Playout rate adjustments adjust the rendering rate with respect to the nominal 

frame rates and sample rates. Rate reduction can be used to reduce the buffer drain rate 

in response to temporary drops in the buffer fill rate, while increasing the playout rate 

can be used to increase the buffer drain rate, in order to "catch-up" after a playout rate 

reduction [87]. Li et al. proposed a scheme in which playout rates are reduced to compensate 

for variations in delivery latency in wireless network. When collisions occur in wireless 

networks, packets transmissions fail, but are automatically retried. Though the packet is 

not lost, it can introduce latency variations. Li et al. propose only reducing playout rate 

in low motion scenes [88]. Li et al. extended their model to include playout rate reduction 

for power conservation [89]. Collisions and retransmissions in wireless networks can waste 

power; adjusting playout to delay transmissions which are likely to collide can save power. 

As alluded to in Section 1.1.1.3, Li et al. go on to include a frame dropping component 

for frames that, even with playout rate reduction, will not be delivered on time [35]. It is 

assumed that the wireless router is both stream aware and client session aware, in order to 

coordinate playout rate reduction, delayed transmission, and frame dropping. 

Kalman et al. use playout rate reduction, not only to adjust to variations in delivery 

latency, but also to improve initial playback latency [87]. Client media players typically 

require a minimum amount of data to be buffered before playback starts. Using playout 

rate reduction to effectively increase the current buffer occupancy (as measured in playout 

duration), allows the media player to reduce the amount of data (in bits) required to begin 

playback, assuming a constant network delivery rate. 

Hui and Lee proposed a scheme for multiple sender environments which uses playout 

rate reduction instead of bitrate adaptation [90], though the two do not need to be mutu­

ally exclusive. Argyriou proposed a playout rate adaptation scheme as part of a TCP-based 

client-side pacing scheme [91], though a slightly more aggressive buffering scheme might 

negate the need for playout rate adjustments. In general, however, playout rate adaptation 

can be used in conjunction with any of the other bitrate adaptation schemes that we have 

surveyed. Playout rate can be considered largely orthogonal to the delivery rate. As our 
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work focuses on bitrate adaptation and not playout rate adaptation, references to rate adap­

tation should be understood to refer to bitrate adaptation, unless playout rate adaptation 

is explicitly mentioned. 

1.3 OTT Video Delivery 

HTTP adaptive streaming protocols (e.g., HLS and DASH) were initially developed to 

enable mobile clients to adjust to the dynamic nature of cellular networks [92], however, 

OTT video delivery has begun to emerge in more traditional video distribution outlets 

(e.g., MSOs and MNOs). HTTP adaptive streaming schemes have focused on maximizing 

QoE for individual clients, rather than considering overall network throughput, but as the 

ability to deliver content to multiple screens becomes increasingly important [93], content 

providers and network providers are becoming more concerned with the ability to provide 

fair access to content and enforcing minimum QoE levels for all clients. As smart TVs and 

smart phones and tablets converge on a single HTTP adaptive streaming format, converged 

media preparation and distribution infrastructures simplify workflow management and re­

duce operational expenditures. However, without the ability to manage QoE on a per-client 

basis, monetizing differentiated service levels is not possible. 

Linear television typically consists of a combination of live events (e.g., sports or news) 

and non-live content (e.g., pre-recorded show broadcast at a scheduled time), all delivered 

in real-time over meticulously provisioned multicast delivery networks. The set-top-boxes 

(STBs) to which the television content is delivered are typically managed devices, fully 

under the control of the MSO/MNO. The STBs are registered and activated in a given 

location (i.e., the home) and are not mobile. The relatively static nature of these clients 

is what makes finely tuned network provisioning and monitoring possible. In OTT video 

delivery, however, content is retrieved on-demand by clients which are both unmanaged 

and mobile. The content is typically stored in and distributed through a CDN caching 

infrastructure. The on-demand nature OTT delivery removes the ability to take advantage 

of multicast which increases load on MSO/MNO networks and edge caching nodes. It 
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Figure 1-9: Federated CDN-based OTT video delivery architecture. 

also makes network load unpredictable. The ability to support flash crowds of OTT clients 

requires a much greater network elasticity than traditionally provisioned broadcast networks 

typically have. Migrating to an OTT delivery model therefore requires significant changes 

to both physical infrastructure and network management paradigms. 

OTT video delivery deployments often rely on CDN federation to increase the geographic 

footprint of delivery. An MSO may choose to operate their own internal CDN for in-network 

content delivery, but may also contract other third party global CDN for out-of-network 

content delivery. The internal CDN reduces delivery costs for the majority of content 

delivered to the home, while third party CDNs abstract the complexity of supporting a 

global footprint. It is assumed that out-of-network delivery represents a much lower volume 

of traffic than in-network delivery. Third party global CDNs can be expensive to maintain 

relationships with and may not always have the reach necessary to optimize delivery to 

roaming mobile clients. An MSO may also partner with other MSOs or MNOs, negotiating 

bilateral agreements to combine their internal CDNs and extend their footprints. Sharing 
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internal CDNs can further reduce costs by reducing reliance on third party global CDNs. 

Fig. 1-9 diagrams an example of a federated OTT distribution scenario where the MSO 

originates content to its own internal CDN, its partner MNO's internal CDN, as well as a 

third party global CDN. When the mobile OTT client is in the home, content is sourced 

from the MSO's internal CDN. When the mobile OTT client is roaming on the partner 

MNO's network, content is sourced from the partner MNO's internal CDN. When the 

mobile OTT client is attached to the Internet through some unaffiliated Internet service 

provider (ISP), content is sourced from the global third party CDN. In this case, CDN 

federation reduces load on the MSO and MNO backhaul links and Internet gateways by 

taking advantage of the internal CDNs and not having to traverse the public Internet to get 

to the third party global CDN. The unaffiliated ISP, however, will still experience backhaul 

and Internet gateway load. 

Federated delivery introduces new complexities for video delivery management. Either 

the mobile OTT client needs to understand which network it is currently connected to and 

what the CDN access rules are for different networks, or each affiliated partner network 

needs to be able to recognize the mobile OTT client and route its content requests to the 

appropriate CDNs. Though the practical aspects of routing and name resolution in federated 

CDN deployments extend beyond the simple models represented in Section 1.2.1.1, many 

of the basic principles for multiple server selection do apply. 

1.4 Outline of Dissertation 

This dissertation addresses the need for improved scalability in on-demand video delivery 

applications, specifically through the use of provider-controlled bandwidth management 

for HTTP adaptive streaming. As MSOs and MNOs evaluate HTTP adaptive streaming 

technologies as a means to address the on-demand expectations of their increasingly mobile 

customers, it is strikingly evident that the current state of technology lacks the level of 

control to which they have become accustomed. Our research seeks to answer the question 

of how can we provide monitoring and management capabilities for a large number of 
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independent OTT clients. We focus specifically on the question of how to enforce CoS-

based bandwidth allocations in HTTP adaptive streaming clients. 

The following chapters detail a series of techniques for intelligently applying video de­

livery pacing and bitrate adaptation in order to provide fair access to content in congested 

multi-client scenarios. The course of our research has followed the evolution of HTTP-

based video delivery from single bitrate monolithic file download through multiple bitrate 

segment-based content retrieval to our current work in managed OTT video delivery. Each 

of these technologies builds upon the last as they seek to achieve functional parity with and 

ultimately exceed the capabilities of legacy video streaming protocols. It is our belief that 

HTTP adaptive streaming technologies, though based on fundamentally different assump­

tions than traditional RTP streaming techniques, provide a viable, efficient, and higher QoE 

approach for OTT video delivery. 

Our initial work, discussed in Chapter 2, focused on server-side pacing in single bitrate 

progressive download applications, to improve server and datarcenter uplink scalability. 

Our follow-on work, discussed in Chapter 3, concentrated on client-side architectures for 

implementing data proxies, to enable rate adaptation in clients. As HTTP adaptive bitrate 

client support became more ubiquitous, our research refocused onto methods for providing 

network operators the ability to perform traffic management at the HTTP segment request 

level. Traditional low level traffic management techniques which are neither segment nor 

stream-aware can adversely impact QoE; migrating traffic management to the segment level 

can improve delivery continuity. Chapter 4 details a network proxy-based architecture for 

enforcing traffic policies on HTTP adaptive streaming sessions by overriding client rate 

selection decisions. The discussion then culminates in Chapter 5 with an evaluation of 

our segment-based rate adaptation algorithm that was applied in the client-side architec­

ture described in Chapter 3, and which has been augmented to support class of service 

(CoS) differentiation and enforcement in distributed multi-client HTTP adaptive streaming 

environments. 



Chapter 2 

HTTP Progressive Download 

Server 

One of the key components to any video delivery scheme is the pacing. Video is rendered 

at a constant rate (the video bitrate). Delivery of the video must be at least as fast as 

the video rendering rate. A delivery rate significantly greater than the video rendering 

rate does not necessarily benefit the client. An overly aggressive delivery rate can cause 

undue congestion in the network and may unnecessarily tax the resources of memory-limited 

clients. Typically, only the client and the server are aware of the video bitrate. As such, the 

network lacks the video bitrate information necessary to intelligently manage video delivery 

rates. Though we later discuss a network proxy-based approach to video delivery bandwidth 

management (see Chapter 4), in this Chapter, we first look at server-side pacing schemes 

for progressive download clients. 

We developed an HTTP streaming server architecture, named Zippy, which uses paced 

delivery to distribute bandwidth usage over time, and to increase the scalability of the server, 

compared to a standard HTTP Web server. The Zippy architecture relies on a single pacer 

thread for managing individual session data transmissions, rather than using an individual 

process per connection, as with a default Apache prefork mode HTTP server. Figure 2-1 

shows the difference between the Apache multi-process architecture and the Zippy single 

thread architecture. With Zippy, connection fairness between sessions is explicitly enforced 

by the session pacer, rather than the OS scheduler. Sessions are never preempted by the 

session pacer; sessions perform a limited amount of processing and then yield to the session 
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Figure 2-1: Comparison of Apache and Zippy process architectures. 

pacer. The non-greedy nature of this scheme allows Zippy to support large numbers of 

concurrent long-lived connections. 

2.1 Pacing Algorithm 

Given c  client sessions, the session pacer maintains a heap ordered by each session's next 

absolute send times {ii,..,*(?}• Absolute send times U are recalculated after each send 

using the current wall clock time plus the session pacing delay, i.e., ^ = tnow + cr*. Zippy 

calculates pacing delay using a fixed chunk size x and an assumed constant bit rate 6j, 

where h = jj: is derived from the video file size F* and video duration dx. The pacing 

delay also makes adjustments for overhead delays e: 

(2.1) 

The overhead e includes processing latency and catch-up delays (described below). If the 

overhead e exceeds the pacing rate, a minimum delay amin is used to ensure session fair­

ness. The fixed chunk size x is chosen as a fraction of the TCP window size to prevent 

overrun. The fixed chunk size is also used to manage session fairness; each session processes 

mini 



28 

a maximum of x  bits of data and then yields to the session pacer. 

c  
x  
h  

total number of client sessions 
pacing chunk size (in bits) 
initial playback buffer threshold (in seconds) 

cti 

k  
A 
f t  
e 

session pacing delay for video i (in seconds) 
bitrate of current video i (in kbps) 
duration of video i (in seconds) 
file size of video i (in bits) 
processing latency plus catch-up delay (in seconds) 

Table 2.1: HTTP streaming server pacing variables. 

2.2 Intelligent Bursting 

The Zippy HTTP streaming server implementation employs two intelligent bursting mech­

anisms: initial playback bursting and catch-up bursting. The former is used to decrease 

playback latency for media files; the latter is used to catch up sessions when network con­

gestion has inhibited chunk sends. Bursting uses only excess system bandwidth, divided 

equally between all bursting sessions. 

To combat jitter and prevent underrun, video file playback typically will not commence 

until a sufficient amount of video h (measured in seconds) has been buffered by the client. 

With paced output, the playback buffering latency is equal to the buffer size h. Playback 

latency negatively affects user experience, but can be avoided by bursting the initial portion 

of the media file. Assuming a network throughput of r, the playback latency can be reduced 

to  h '  = 

During periods of network congestion, full or near-full TCP windows may cause partial 

sends or send failures. In these situations, the actual number of bits sent x' < x, requires 

a delay crj < <r,. To prevent player underrun, future pacing delays are shortened to help 

sessions catch up. Though larger chunk sizes could be used for catch-up instead of shorter 

delays, if network congestion caused the failure, then the TCP window is likely limiting 
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how much data can be sent, making larger chunk sizes less effective. The catch-up delay e 

cumulatively keeps track of missed send deadlines. Deadlines are considered missed when 

tnanu ~ 

2.3 Experimental Configuration 

Zippy and Apache 2.2.6 were installed on a machine with a 2.2 GHz Intel® Core™2 Duo 

CPU and 2 GB RAM, running Fedora Core 8 linux (FC8). (The Apache version corresponds 

to the default FC8 httpd installation used.) To ensure that the test client was not a limiting 

factor, test client software was installed on a machine with dual 2.5 GHz quad core Intel® 

Xeon® CPUs and 4 GB RAM, running Red Hat Enterprise linux 5.1. The machines were 

connected through a Gigabit Ethernet LAN. 

The tests were performed using 1 MB and 6 MB data files. A constant bit rate of 400 

kbps was assumed, which results in file durations of 20 and 120 seconds, respectively. The 

client buffering requirement was assumed to be 4 seconds (or 200 KB). Client underrun 

checks were performed against the known constant bit rate, for each packet, after the initial 

buffer load. A 10 KB file was also used to simulate a typical Web-page object (e.g., an icon 

or HTML data file). 

The test client is a multithreaded application which spawns a thread per connection. The 

connections were initiated as a flash crowd, with 500 microseconds between each request. 

Timestamps were recorded relative to the start of the test, as well as relative to the first TCP 

connection attempt. We examined the performance of 100 and 1000 concurrent connections. 

2.4 Experimental Results 

In our experiments, we compare the characteristics of our Zippy HTTP streaming server 

implementation with that of the de facto standard Apache HTTP server. From a client 

quality of experience (QoE) point of view, we use the initial playback latency metric to 

quantify the performance of each approach. We also look at the total download time 
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Figure 2-2: Playback latency for 100 concurrent sessions (1 MB File). 

and server bandwidth usage, over time, to quantify the scalability of each approach. The 

following sections detail the results of our experiments. 

2.4.1 Initial Playback Latency Comparison 

We evaluate initial playback latency as the amount of time required to send enough data to 

fill the client buffer. Given our assumption of a 4 second buffer, streamed output without 

bursting should take less than 4 seconds to send the 200 KB. For a single straight download, 

over Gigabit Ethernet, 200 KB should take about 2 milliseconds plus overhead. Figures 2-

2 and 2-3 show the initial playback latencies for each session retrieving the 1 MB file, in 

the 100 and 1000 session cases, respectively. The latencies are calculated as the offset from 

the first TCP connection request for each session and are sorted from low to high. 

In Figure 2-2 the Zippy no-burst line, as expected, is consistently just below 4 seconds. 

The Zippy burst line shows a much lower latency, but with similar consistency across all 

sessions. The first 20 Apache connections are much faster than Zippy (burst or no-burst) 
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Figure 2-3: Playback latency for 1000 concurrent sessions (1 MB file). 

and take about 60 milliseconds or ~ 3 milliseconds per connection (close to the theoretical 2 

milliseconds minimum download time, when taking overhead into account). A step function 

arises every 20 connections in the Apache plot. This correspond to the default maximum 

number of spare processes and represent the blocking latency of run-to-completion down­

load. 

In Figure 2-3 we can see that Apache performance gets progressively worse with 1000 

sessions, compared to 100 sessions. The large vertical gaps in the Apache plot correspond 

to the points where Apache's blocking delays cause TCP timeouts and the TCP exponential 

backoff causes more significant latency penalties. 

With 1000 sessions, the total bandwidth required goes up significantly, inhibiting Zippy's 

ability to burst. We can see this in Figure 2-3 as the playback latency for Zippy burst and 

Zippy no-burst converge for a small number of sessions. However, the worst case for both 

bursting and not bursting is still significantly better than Apache, for more than 60% of 

sessions. 
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Figure 2-4: Playback latency for 100 concurrent sessions (1 MB vs. 6 MB file). 

The 1 MB file is relatively small by modern video file standards. We also tested with 

a 6 MB file. Though the 6 MB file is also relatively small, our goal was only to compare 

the relative scalability of the Zippy and Apache approaches as file sizes grow. Even with 

this relatively modest increase in file size, a dramatic difference can be seen in the Apache 

performance. Figure Figures 2-4 and 2-5 show the initial playback latencies for each session 

retrieving the 6 MB file, in the 100 and 1000 session cases, respectively. As with Figures 2-

2 and 2-3, the latencies are calculated as the offset from the first TCP connection request 

for each session and are sorted from low to high. For the Zippy plots, we only consider the 

case where intelligent bursting is enabled. 

In both Figures 2-4 and 2-5, we can see that the Zippy plots for the 1 MB and the 6 MB 

files are almost identical. The paced Zippy architecture is not impacted by file size. Apache, 

however, is clearly affected by the larger file size. In Figure 2-4, we can see how the increased 

download time of the larger 6 MB file inhibits the playback latency of later sessions. In 

Figure 2-5, we can see how the increased download time also causes TCP timeouts to occur 
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Figure 2-5: Playback latency for 1000 concurrent sessions (1 MB vs. 6 MB file). 

sooner in the Apache 6 MB file case, which further impacts overall performance with the 

larger number of sessions. 

2.4.2 Total Download Time Comparison 

We evaluate the total download time for the file as the relative time between session ini­

tiation and file download completion. Given our assumptions of a 20 second file duration, 

streamed output without bursting should take less than 20 seconds from the time the HTTP 

connection is accepted. For a single straight download over Gigabit Ethernet, 1 MB should 

take about 10 milliseconds, plus overhead. Figures 2-6 and 2-7 show the download start 

and end times for each session retrieving the 1 MB file, in the 100 and 1000 session cases, 

respectively. The start times are offset from the start of the test, and are sorted from low 

to high. 

In Figure 2-6 the Zippy no-burst line, as expected, is consistently just below 20 seconds. 

The Zippy burst line is consistently at about 16 seconds, which corresponds to the 20 second 
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Figure 2-6: Download time for 100 concurrent sessions (1 MB file). 

duration reduced by the 4 second burst. The Apache straight download times are dwarfed 

by the paced download times, and as expected, in the worst case, Apache takes a little more 

than one second to complete. 

In Figure 2-7 we can see again that for 1000 sessions, Zippy performance is about the 

same, with paced delivery taking just less than 20 seconds with no bursting and around 

16 seconds with bursting. The last 100 or so bursted sessions experienced TCP timeouts, 

causing their sessions to begin late, however, they still completed in around 16 seconds, 

relative to the start of the actual delivery. Though initially there was not enough excess 

bandwidth to accept the session, we can see that those sessions still met their playback 

deadlines and completed in less than 20 seconds from the start of the test. Apache, however, 

fares noticeably worse as the number of sessions increases. Due to the exponential backoff 

in TCP, Apache takes significantly longer to download the last 200 or so connections. Even 

though the total time to actually download is less, the user-perceived playback latency is 

quite high. 
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Figure 2-7: Download time for 1000 concurrent sessions (1 MB file). 

For larger files, straight download latency gets worse, and more TCP timeouts occur. In 

Figure 2-8, we can see a comparison of the 1 MB and 6 MB file download times for Zippy 

and Apache. For the Zippy plots, we only consider the case where intelligent bursting is 

enabled. As expected, in the 6 MB file Zippy case, the total download time is just under 

116 seconds. Looking at the Apache cases, we can see that the 6 MB file clearly takes 

much longer to download than the 1 MB file. Though the download time is much less 

than 120 seconds, The playback latency penalties are extremely high. In the worst case, 

TCP timeouts forced a latency of over 90 seconds before download started. Even though 

the downloads completed in 1 second, it does not negate the heavy impact to QoE for the 

viewer. With full length high definition video files on the order of gigabytes, the scalability 

issue is even more striking. Compounding this is the fact that many memory-limited clients 

are unable to buffer entire video files which causes TCP back pressure and exacerbates the 

blocking issues. 
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Figure 2-8: Download time for 1000 concurrent sessions (1 MB vs 6 MB file). 

2.4.3 Server Bandwidth Usage Comparison 

We evaluate aggregate server bandwidth usage using tcpdump traces and aggregating byte 

counts on a per-second basis. Given our assumptions of a 400 kbps video bitrate, streamed 

output without bursting should require 400 kbps per active connection. Figures 2-9 and 2-10 

show the bandwidth consumed in the 100 and 1000 sessions cases, respectively. 

In Figure 2-9 the Apache plot is near the practical usable capacity of the Gigabit Eth­

ernet network and the OS protocol stack. The bandwidth usage is clustered within the first 

second of the test. This corresponds with the low total download times for Apache that 

were seen in Figure 2-6. The Zippy burst plot also has a marker close to the network limit, 

at the very beginning, which corresponds to the initial burst to all clients. The Zippy plots, 

in general have the same sinusoidal shape, however the Zippy burst plot is shifted to the 

left, in time, due to the burst. The end times for the Zippy burst and no-burst plots are 

at the expected 16 and 20 seconds, respectively, and the average bandwidth used, over the 

full 16/20 seconds test duration, is close to the expected 40 Mbps (i.e., 400 kbps x 100 
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Figure 2-9: Bandwidth usage for 100 concurrent sessions (10 KB file). 

sessions). 

The cyclic nature of the Zippy plots is an artifact cause by the combination of data send 

clustering and the offsets between the sampling interval and the pacing interval. Data send 

clustering occurs when all sessions are initiated at the same time, as with our flash crowd 

scenario. This session synchronization manifests itself as bursty bandwidth usage. We can 

see that most of the time, the Zippy plots are registering zero bandwidth usage. The true 

average bandwidth is much lower than the peaks shown in the graph. The individual bursts 

are actually hitting the practical limits of the Gigabit Ethernet interface, however, due to the 

bursts crossing the 1 second sampling interval, the bursts are averaged over two sampling 

intervals. We can see that a first interval gets m Mbps and the following interval gets 

f^max ~ m Mbps, where mmax is the practical maximum capacity of the Gigabit Ethernet 

interface. The fixed differential between the sampling interval and the pacing interval results 

in the "eye" pattern seen in Figure 2-9, which is similar to plotting sin(x) and cos(x) on 

top of each other. 
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Figure 2-10: Bandwidth usage for 1000 concurrent sessions (10 KB file). 

In Figure 2-10 the Apache plot is again always at maximum bandwidth, with gaps that 

correspond to the TCP backoffs shown in Figure 2-7. The Zippy plots no longer exhibit a 

sinusoidal shape due to the fact that the larger number of clients prevent any significant 

down time in transmission; there are very few zero bandwidth usage points. The Zippy 

burst plot shows a burst at the beginning and tails off at about 16 seconds. In between, the 

clustering of points is in the 400-500 Mbps range which corresponds to the expected 400 

Mbps (i.e., 400 kbps x 1000 sessions). Though the Zippy no-burst plot is less consistent 

that the Zippy burst plot, both can be seen to be relatively evenly distributed. 

2.4.4 Small File Download Comparison 

While our Zippy HTTP streaming server was designed with large file delivery and long 

lived connections in mind, the Apache HTTP server was primarily intended for small file 

downloads. To evaluate the versatility of our Zippy approach, we compared the Zippy and 

Apache small file retrieval performance using a 10 KB file. Figures 2-11 and 2-12 show 
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Figure 2-11: Small file download latency for 100 consecutive sessions. 

the download times for the 100 and 1000 session cases, respectively. For a single straight 

download, over Gigabit Ethernet, 10 KB should only take 10 microseconds, plus overhead. 

This is significantly less than the 500 microsecond inter-request time, and therefore both 

servers should have ample opportunity to service the requests. 

In Figure 2-11, we can see that the total time to download for Zippy is generally higher 

than that of Apache and exhibits higher variation in download time. This is due to the 

a-min delay value that is used by Zippy to ensure inter-session fairness. Though none of the 

sessions should be overlapping in this scenario, given that the inter-request time is an order 

of magnitude larger than the theoretical download time, the Zippy server must still check 

to see if any concurrent sessions require servicing. As long as the file is smaller than the 

fixed chunk size x, the latency penalty should be minimal. 

Even with the small additional latency introduced by the concurrency checks, Zippy, in 

general, is able to keep pace with Apache, for small file downloads. In Figure 2-12, we can 

see that as we scale the number of session out to 1000, there is no real discernible difference 
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Figure 2-12: Small file download latency for 1000 consecutive sessions, 

in performance between Zippy and Apache. 

2.5 Summary of Server-side Pacing Contributions 

Prior to the advent of HTTP adaptive streaming, we investigated HTTP streaming. In 

the early days of HTTP-based video delivery, schemes were primarily categorized as either 

"download and play" or "progressive download", though neither of those phrases adequately 

described the schemes which they were classifying. "Download and play" typically referred 

to a two-step process of: (a) download the entire video as fast as possible, then (b) play the 

video. "Progressive download" most often referred to a parallel process of: (a) download 

entire video as fast as possible, but (b) start playing as soon as enough of the video has been 

downloaded to fill the player buffer. Though the term "progressive" could be interpreted 

to mean "paced", in general it did not. HTTP streaming generally referred to a server-side 

paced delivery mechanism. The Microsoft Windows Media HTTP Streaming Protocol [94] 
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was a full featured HTTP-based video streaming protocol which rivaled RTSP, but it was 

proprietary, requiring the Microsoft Windows Media Player® client. Though HTTP was 

being successfully used for video delivery, there was still a stigma associated with using 

HTTP for video delivery. Even though HTTP was designed with smaller files in mind, it 

has been adapted as the de facto standard transport for many types of content, including 

video. 

The main contribution of our Zippy HTTP streaming server was the creation of an 

HTTP streaming (i.e., paced delivery) server which could work with any HTTP-based me­

dia player. We used the basic Zippy server as a platform to investigate server scalability 

issues, as well as the behaviors of multiple different HTTP media players. We were also 

able to use our platform to evaluate media player reactions to different pacing schemes, 

and from that, we were able to confirm the functionality of our intelligent bursting scheme 

using the Microsoft Windows Media Player® and Apple QuickTime® player. The second 

contribution of our Zippy HTTP streaming server was our comparison of the architectural 

differences between a streaming server, designed for long lived connections, with the stan­

dard Apache server architecture, designed for small file delivery. With an understanding of 

the trade-offs and considerations involved in the design of each architecture, we were able 

to design an HTTP server that generically addresses other high latency transactions, e.g., 

transparent proxy connections. The third contribution of our Zippy HTTP streaming server 

is a more long term understanding of application-level pacing. The Zippy HTTP stream­

ing server has been instrumental in the evolution of the bitrate selection override proxy, 

described in Chapter 4, and the open questions relating to individual segment pacing in 

HTTP adaptive streaming delivery, as described in Section 5.8. Beyond the basic paced 

delivery investigation, our work with the Zippy concepts continues to provide insights and 

inspiration for future research. 



Chapter 3 

HTTP Adaptive Bitrate Client 

In the previous chapter, we discussed a server-side pacing scheme for progressive download 

clients. Prior to the release of Apple iOS 3.0, most commercial media players relied on 

pre-download or progressive download of content and did not support bitrate adaptation. 

The HLS implementation released with the Apple iPhone® began a movement to develop 

new client-side rate adaptation technologies. In this Chapter, we investigate methods for 

implementing rate adaptation in clients which may not natively support an adaptive stream­

ing protocol. Specifically, we discuss the use of stitched media files for pre-download and 

progressive download media players, as well as, RTP segment files for RTSP and other 

frame-based media players. 

Though many modern devices natively support HTTP adaptive streaming protocols 

(e.g., HLS or Smooth Streaming), this is a relatively recent development. There are a 

large number of legacy devices and platforms which do not fully support HTTP adaptive 

streaming natively (e.g., Android™ 1.x and 2.x, and Blackberry® 4.x and 5.x). Many of 

those devices do support other network-based video streaming options. For those devices, we 

developed a client-side proxy architecture for implementing an HTTP adaptive streaming­

like approach. Protocol support for the non-HTTP adaptive streaming platforms fall into 

four general categories: 

• HTTP progressive download, 

• local file data source, 

• frame-based data source, or 

42 
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Figure 3-1: Client-side rate adaptation proxy architectures. 

• RTSP streaming. 

Figures 3-1 (a) and (b) diagram the general architectures for the client-side proxy ap­

proaches. Figure 3-1 (a) corresponds to the HTTP progressive download, local file, and 

frame-based data source cases, while Figure 3-1 (b) corresponds to the RTSP streaming 

case. Both architectures rely on an HTTP downloader module which retrieves segments 

and stores them in a local cache. They also both have a controller which coordinates the 

initiation of HTTP downloads and the starting of the native media player. The controller is 

also responsible for dynamically selecting the bitrate and instructing the HTTP downloader 

to retrieve data for the selected bitrate. The controller uses multiple inputs to select the 

appropriate bitrate, including: available bandwidth estimates, based on the amount of time 

it takes the HTTP downloader to retrieve data, the current cache occupancy level, repre­

senting the data already downloaded but not yet delivered to the native media player, as 

well as playback control information, e.g., is the player paused or stopped, fast forwarding 

or rewinding, just beginning or nearing the end, etc. Rate selection is discussed in greater 

detail in Chapter 5. The primary difference between Figures 3-1 (a) and (b) are contained 

in the client-side proxy implementations. 

In the local file data source case, the native media player accesses the proxy via standard 

file IO APIs, issuing byte range requests. The HTTP progressive download case works sim-
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Figure 3-2: Stitched media file (three bitrates): rate adaptation seek. 

ilarly, only the proxy is implemented as an HTTP server listening on the localhost address. 

The HTTP proxy works with Range GETs, however, for straight download requests, the 

HTTP proxy implements paced delivery, as described in Chapter 2. Data source-based rate 

adaptation relies on stitched media files, which are described further in Section 3.1. 

In the RTSP streaming case, an RTSP proxy server listening on the localhost address 

accepts connections from the native media player and implements paced frame-based de­

livery. RTP data is collected and packed into segments which are retrieved by the HTTP 

downloader. The frame-based representation of RTP segment data can also be used in 

frame-based data source implementations (e.g., with Microsoft® Silverlight™). RTP seg­

ment creation is also described further in Section 3.4. 

Because of their reliance on stitched media files, the local file data source and HTTP 

proxy approaches are only applicable to VoD. The RTSP proxy and frame-based data source 

approaches can be used for either VoD or live streams. Though some platforms can support 

either a local file data source/HTTP proxy or RTSP proxy, only one is needed. The RTSP 

proxy approach, though more versatile, is also more complex and consumes more resources. 

Older devices which do not require live streaming support often benefit from the simpler 

local data source or HTTP proxy approach. 

3.1 Stitched Media Files 

Figure 3-2 shows an example stitched media files. It takes multiple pre-transcoded files of 

different bitrates and concatenates them together into a single file, with padding inserted 

between each encoding. The stitched media file is a standard 3gp file. The header con­
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tains standard 3gp header elements describing the audio/video frame data contained in the 

stitched media file and includes information for all encodings. A source video is transcoded 

into B different bitrate encodings {60,•.• each with a padded duration D. The 

starting position within the stitched media file for any given encoding is A(bi) = D • i. 

Encodings are stored in a known order, e.g., low-to-high by bitrate, as in Figure 3-2. The 

total duration of the stitched media file is B • D. 

B number of discrete bitrates 
D padded duration of the video (in seconds) 
p current playout position (in seconds) 
e key frame offset variation (in seconds) 

Table 3.1: Stitched media file rate switch variables. 

Rate switching is achieved by issuing a seek request to the media player with an offset 

of ±D. For a high-to-low stitched media file, adding D selects the next higher bitrate, while 

subtracting D selects the next lower bitrate. For a given playout position p, Figure 3-2 shows 

the p ± D offset from the current bitrate (medium) into the next higher or lower bitrates 

(high and low, respectively). Switching by a single bitrate minimizes viewing discontinuity, 

but skipping multiple bitrates is also possible with an offset of ±(n • D). Seeking to a key­

frame boundary is also important to minimize distortion. For encodings where key-frame 

boundaries do not align, the offset should account for error in locating the key-frame nearest 

the switch point: ±(n • D) — e. If the stitched media file data for the target of the seek has 

not yet been downloaded, a future playout position f/ should be calculated for when the seek 

should be issued, taking into account the retrieval time for the data: p' = p + RTT -I- R/T, 

where RTT is the network round trip latency, R is the size of the data to be retrieved, and 

T is the throughput of the network. 

The stitched media file approach minimizes rate adaptation latency, but incurs a startup 

penalty for downloading the extra headers, initial playback latency can often be hidden 

by the application (e.g., through the use of an advertisement or splash screen), whereas 
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rate adaptation latency is always noticeable to viewers. For content providers, rate switch 

continuity is an important aspect of viewing experience. The scheme is not suitable for 

live video, given the need to prestitch the files, but works well for video on demand (VoD) 

applications. Some devices with very limited memory may not support processing large 

header, however, the majority of modern devices support feature length 3gp files. 

3.2 Stitched Media Player 

We implemented stitched media player libraries for the BlackBerry® and Google Android™ 

platforms, using the architecture shown in Figure 3-1 (a). It takes advantage of the native 

media player which retrieves data from our local data proxy. The data proxy pre-fetches and 

caches portions of the stitched media file (pseudo-segments). Cached data is retrieved by the 

HTTP downloader using platform specific APIs to issue HTTP Range GETs. Range GETs 

allow the client to use pseudo-segmentation to pace content retrieval. Though the content is 

not physically divided into file segments (as with HLS), fixed data ranges effectively define 

pseudo-segment boundaries, where the pseudo-segment boundaries are measured in bytes, 

rather than seconds. The HTTP downloader measures download bandwidth and reports to 

the controller which initiates rate switches. 

An index file is used to optimize the nearest key-frame selection process (i.e., resolving 

e) and for converting from the time domain into the byte domain for fast file retrieval. The 

index file is created as part of the pre-processing step when concatenating the individual 

bitrate files together into the stitched media file. The overhead for stitched media file 

pre-processing is comparable to that of RTSP hinting and HLS segmentation and manifest 

generation. The storage space required is also comparable, however, segment-based schemes 

use many more files. Large numbers of files can often lead to performance penalties in 

storage systems with directory size limits. The HTTP downloader may either download the 

index file when playback begins, or access it dynamically when a rate switch is ordered by 

the controller. The HTTP downloader uses the index information to generate its HTTP 

Range requests. 



47 

When the controller wishes to change rates, it instructs the HTTP downloader to begin 

pre-fetching the new bitrate data and checks how much data is available in the data proxy. 

Given P seconds worth of data in the data proxy, a timer is set for P — u seconds, where u 

is an underrun prevention factor (on the order of seconds). The playout of the cached data 

provides time for pre-fetching the new bitrate data. When switching to a lower rate, playing 

out the cached data maximizes higher quality rendering. When switching to a higher rate, 

u should be optimized such that the rate switch occurs as soon as possible while minimizing 

low quality rendering. Upon timer expiration, the controller checks the current position p 

and calculates the time offset p ± (n • D) — e for the nearest key-frame in the new encoding, 

and issues a seek command to the native media player. Our implementation employs an 

index file mapping p to byte and time offsets which take e into account. 

3.2.1 Rate Adaptation Latency 

The advantage of the stitched media file approach in rate adaptation latency comes from 

the fact that seek operations are faster than reinitializing the media player. For media 

players that do not natively support segment-based parsing and rendering continuity, the 

player reinitialization required for each segment, regardless of segment size, is significantly 

higher than a seek operation, as shown in Figure 3-3. As mentioned previously, however, 

our stitched media file scheme does incur an initial playback latency penalty, as shown in 

Figure 3-4, given the larger header size. 

For both sets of test, we used a BlackBerry® Bold 9000 on AT&T and a Motorola 

Droid™on Verizon. Both platforms provide sample applications for playing videos which 

we modified to measure player restart latency and player seek latency. We transcoded an 80 

minute source video into two bitrates: 126 kbps and 286 kbps (H.264, 24 fps), both with 64 

kbps (AAC-LC, mono, 22050 Hz) audio. We extracted 10, 60, 300, 1800, and 3600 second 

clips for each bitrate to simulate a variety of different segment sizes for the rate adaptation 

latency tests in Figure 3-3. We also stitched 126 kbps and 286 kbps clips together for each 

duration, to simulate a variety of different stitched media file header sizes for the initial 
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Figure 3-3: Stitched media file rate adaptation latency. 

playback latency tests in Figure 3-4. 

We can see from Figure 3-3 the impact of flushing hardware buffers and reloading header 

information, when switching between files, even for small 10 second files as are used in 

segment-based rate adaptation schemes. Seeking within a stitched media file with two 

bitrates is significantly faster than restarting the player, even for large files. We only provide 

seek values for longer clips, as the need for rate adaptation in short clips is negligible. Seek 

times are shown for the total duration of the 2 bitrate stitched media file (e.g., 7200 seconds 

for a two bitrate 3600 second clip). Player restart times were measured by playing the 60 

second, 126 kbps file, then destroying and creating a new player to play the 256 kbps clip 

at the specified duration. Player seek times were measured by playing the 1 hour stitched 

media file at 126 kbps for 60 seconds, then seeking to the 286 kbps offset. For this test, all 

clips were played from a local micro SD card to remove network variability. Each plot is an 

average of 8 runs with standard deviations shown. Figure 3-3 clearly illustrates two main 

points: clip duration is not a significant factor in player restart latency and seek latency is 
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Figure 3-4: Stitched media file initial playback latency. 

significantly lower than restart latency. 

In Figure 3-4, we show the initial playback latency for each of the 286 kbps non-stitched 

clips, as well as the 1 hour stitched media file (shown as a 7200 second total duration 

file). For this test, all clips were played from the Akamai™ CDN. Each plot is an average 

of 8 runs with standard deviations shown. As expected, longer duration files with more 

header data have higher IPL, except in the case of the BlackBerry® Bold 10 second clip, 

where download completion triggers garbage collection which inhibits playback. Cellular 

bandwidth varies greatly, even in off-peak hours when our tests were run (between 2 and 5 

AM), but for chapterized playback with ads inserted between chapters, the initial playback 

latency is typically maskable. 
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Figure 3-5: Stitched media file (three bitrates): cipher block overlay. 

3.3 Stitched Media File Encryption 

Our stitched media file DRM encryption scheme uses a stream cipher-based approach, i.e., 

a pseudo-random stream of bits is generated and used to encrypt the video data using an 

XOR operation. We refer to the pseudo-random stream of bits as a key. A key K(si) is 

generated using a cipher initialized with a seed Sj. Though a single key could be used to 

encrypt an entire stitched media file, the need to support seek operations necessitates a 

more flexible approach. A single key must be generated sequentially. Random accesses like 

seek operations require generating the entire key sequence, up to the seek target. This can 

result in the needless generation of a large amount of key data. To limit this unnecessary 

key generation, we use a block-based approach, enforcing a key length limit Y for each 

stitched media file. 

Z 
Y 
F 

number of encryption blocks 
encryption block size (in bits) 
total stitched media file size (in bits) 
seed value for the i th  block 
encryption key for the ith block 

Si 
K(Si) 

Table 3.2: Stitched media file encryption variables. 

Figure 3-5 shows a stitched media file overlaid with Z key blocks {X(si),... ,K(sz)}, 

each of size Y bytes. The number of blocks Z = \F/Y], where F is the total size of the 

stitched media file. Assuming seek locations are randomly distributed, on average Y/2 bytes 

of key must be discarded in order to begin decrypting at the seek location. When varying 
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stream cipher key length, there is a trade-off between initialization overhead for the cipher 

and unnecessary key generation. 

When using this block-based approach, managing multiple seeds must be considered. 

The root seed so is typically combined with an initialization vector (IV) to generate the per 

block seeds. The IV usually takes into account the block number i, similar to the way the 

SRTP sequence number is used. In the case of Figure 3-5, s, = S'(SQ, i) : 0 < i < Z, where 

the function s' (seed, index) may be a simple hash or another stream cipher; the acquisition 

of the root seed so is the primary security concern. We use a standard scheme involving: a 

client registration process through which device specific shared keys are securely registered 

with the DRM server using shared key encryption, and root seeds being encrypted with the 

device specific shared key prior to being transmitted to the device. For the purposes of this 

discussion, we assume that the time to generate the seeds is negligible and that standard 

key exchange practices are secure. 

3.3.1 Pseudo-segment Download and Decryption 

The primary concern when performing rate adaptation must be for rendering continuity. 

To make sure there are no playback interruptions, the data for the new bitrate must be 

downloaded while the current bitrate continues to download and render. In a multi-threaded 

environment, the timing interactions between downloading the video, decrypting the video, 

rendering the video, and other ancillary background tasks can be complex to model. This 

is compounded during a rate switch, when both the current and the new bitrates must be 

downloaded and decrypted to allow for a seamless rate transition. 

To simplify our discussion, we discretize the download, decrypt, and render operations 

so that we can highlight the timing interactions and the effects of network throughput and 

cipher overhead. Figure 3-6 shows a hypothetical, discretized timing diagram for a video 

playing a medium bitrate encoding at time t and switching to a high bitrate encoding at 

time t + 5. Within each discrete time quanta, we group the download and decryption 

activities for each bitrate to show the network and CPU margins. The arrows track the 
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Figure 3-6: Discretized timing diagram for downloading, decrypting, and rendering. 

total processing for a single time quanta's worth of video. 

In Figure 3-6, each time quantum is a discretized playout duration. In this example, we 

assume that the network throughput is fairly high, allowing for a rate switch to a higher 

bitrate. (We can see that the download time is less than half the time quantum.) Once the 

data has been downloaded, it must be decrypted before it may be rendered. The decryption 

time must also be less than the time quantum. Though decryption may be pipelined with 

download (i.e., the current decryption may overlap with the next download), decryption is 

CPU intensive whereas download is not. CPU is also consumed for software-based video 

decoding and rendering. Decryption time must be kept low, to prevent interfering with 

playback continuity, especially as video quality continues to increase. 

Given the excess bandwidth in this example, a rate switch to a higher bitrate is initiated 

between time t + 2 and t + 3. When high bitrate download begins it must be interleaved 

with continuing medium bitrate download. The download margin, i.e., the amount of excess 

network capacity, is the primary component in rate adaptation latency. Download of the 

new bitrate must only use excess bandwidth, to prevent playback interruption. Similarly, 

decryption must only use excess CPU time. Calculation of CPU margin is complicated, 

however, by the different device capabilities, different media player software, and variety 

of background tasks both pre-installed by the device manufacturer and downloaded by the 

user. It must also be considered that higher bitrate data will take more time to download 

and more time to decrypt, than the lower bitrate data. And because the data may span 
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multiple key blocks, the decryption time for a single time quantum's worth of data may be 

disproportionately larger for higher bitrates, due to additional stream cipher initializations. 

We can see in Figure 3-6 that even though the rate switch is initiated during p = t + 2, 

two additional full time quanta are consumed to download the higher bitrate content, while 

continuing to download the medium bitrate content. The rate switch does not actually occur 

until p' = t + 5. In an actual implementation, the last three blocks of medium bitrate data 

might be downloaded in a single burst and then the high bitrate data would be downloaded, 

rather than interleaving the two downloads, but the total time to download would still be 

the same. The example shown does not contain any decryption contention, only download 

contention. In reality, both may impact the p' — p rate adaptation latency. 

3.3.2 Cipher Performance 

We considered three popular stream ciphers: AES128 CTR, HC128, and RC4. Our primary 

concern was not the relative security of these protocols, but rather the relative performance. 

With limited CPU resources on mobile devices, the trade-off between security and perfor­

mance becomes more important. Each of the stream ciphers has a unique performance 

profile. AES128 CTR is computationally expensive for generating keys. It uses the AES128 

block cipher algorithm to generate 128 bits of key data at a time, based on the seed, IV, and 

counter. The counter is incremented and the process repeats until the entire key length is 

achieved. HC128, on the other hand, has a lower computational cost, but high initialization 

overhead for setting up the lookup tables used by the key generation algorithm. The key is 

generated 32 bits at a time by looking up a value in one of the tables and then modifying 

that table entry for future use. This is repeated until the entire key length is satisfied. Both 

AES128 CTR and HC128 take a 128 bit seed value and a 128 bit IV as inputs. Though 

RC4 does not have the inherent concept of an IV, we implemented a hardened version which 

combines a 128 bit seed with a 128 bit IV to initialize the key generator. RC4 keys are 

generated one byte at a time by selecting a byte from a bag and then mixing the bag before 

selecting the next byte. Our hardened version of RC4 also discards the first 3072 bytes of 
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Figure 3-7: Stream cipher performance comparison. 

key generated to mitigate well-known bit correlation issues in the algorithm. This adds to 

the key generation overhead. 

Figure 3-7 shows a comparison of the three stream ciphers, implemented in Java for 

the Android™ platform, and run on two different devices: the Motorola Droid™ and the 

Motorola Droid™ 2. The results show the time required to decrypt a 1 MB file, using a 

given cipher and key length. The 1 MB file size roughly corresponds to 10 seconds of 800 

kbps video. Though 800 kbps is at the high end for smart phones, newer tablet devices often 

use twice that bitrate. When we consider the decryption CPU margin, a 10 second time 

quantum is fairly typical. (10 seconds is the recommended value for HLS segment duration.) 

Rendering and other background operating system tasks often consume significant CPU 

resources which must take priority over download and decryptions functions. We can see 

from Figure 3-7 that some of the cipher configurations can take on the order of seconds 

to decrypt 10 seconds worth of data. This leaves little margin for error in preventing the 

mobile CPU from being overwhelmed. 
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We tested exponentially increasing key lengths and plotted them on a log scale. Each 

result is the average of eight runs. The initialization overhead of HC128 is clearly a penalty 

at very small key lengths. AES128 CTR and RC4 however, with their fixed algorithms 

are more consistent across key lengths. Also very apparent is the performance advantage 

of RC4, which does not use cryptographic transforms, over the computationally intensive 

AES128 CTR algorithm. Though key length does not have significant impact on processing 

time for longer keys, longer keys are not necessarily better. Longer keys increase unnecessary 

key generation in seek operations. 

In addition to the three stream ciphers, we also tested a static, pre-generated key. With 

a static key, the same fixed sequence of bytes is simply repeated, rather than generating 

random bytes. Figure 3-8 shows a comparison between static keys and RC4 (the best 

performing cipher from Figure 3-7). We again tested a Java implementation on the Motorola 

Droid™ and the Motorola Droid™ 2 Android™ platforms, decrypting a 1 MB file. As 

expected, the static key performs better. There is low overhead at small key lengths, though 
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the overhead increases as the key length increases. This is due to the initialization time 

required to read the key into memory. Larger static keys also require more memory to store 

them, and can consume significant bandwidth for remote key retrieval. The disadvantage 

of static keys, however, is their insecurity. The repeating value is much more susceptible 

to brute force attacks than a pseudo-random byte stream. In general, the static key has 

minimal security value, however it does provides a lower bound for encryption performance. 

The other key observation from Figures 3-7 and 3-8 is the performance disparity be­

tween the first generation Droid and the Droid 2. Mobile device hardware capabilities are 

constantly and rapidly improving, but so too is the demand for higher quality video and 

more secure DRM. In choosing a stream cipher, we have limited the scope of the problem 

by removing download time from the equation. For CBC algorithms which require data 

feedback, the download time can add significant latency to the decryption process, espe­

cially after a seek. With no download requirement, keys may be pre-generated as long as 

sufficient memory exists. Selection of a sufficiently large key size, however, is important 

for encryption/decryption efficiency. For frame-based schemes, e.g., SRTP, frame sizes are 

typically small. If a new key is generated for each frame, the overhead may be significant; 

a low overhead algorithm is important. 

3.3.3 Rate Adaptation Timing 

Figure 3-6 shows a theoretical timing diagram for download and decryption. Figures 3-

9 and 3-10 show traces from our production stitched media file player implementation, 

running on the Motorola Droid™ 2. We show runs for the HC128 and RC4 ciphers using 

32768 byte key lengths. We produced stitched media files with two encodings. The first 

encoding contains 126 kbps video (H.264) with 64 kbps audio (AAC-LC). The second en­

coding contains 286 kbps video (H.264) with 64 kbps audio (AAC-LC). The two encodings 

were stitched together and the stitched media files were then encrypted using the two ci­

phers at the specified key length. The tests were performed on the Verizon Wireless™ 3G 

network. 
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Figure 3-9: HC128 stitched media file playback rate switch trace. 

With respect to the architecture shown in Figure 3-1 (a), the data source performs the 

on-device data decryption, prior to forwarding the content to the native media player. For 

the Android™ platform, the data source is implemented as an HTTP proxy. The encrypted 

data is retrieved by a separate HTTP download thread and cached on disk until the data 

source needs it. The encrypted data is downloaded in fixed sized (384 KB) chunks, to 

simplify the download calculations. 

In Figures 3-9 and 3-10, each vertical level corresponds to a 384 KB chunk of data. Our 

implementation always downloads four chunks of data before starting playback. We can 

see that after eight low bitrate chunks have been downloaded, a rate switch is determined 

viable and download of high bitrate chunks is initiated. We choose to download high 

bitrate data that overlaps with the low bitrate data being playing out, to provide maximum 

flexibility in when precisely to execute the rate switch. The rate switch time is set well in 

the future to take full advantage of the low bitrate data already downloaded and sent to the 

player. Though the download and switch times could be optimized to increase quality by 
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Figure 3-10: RC4 stitched media file playback rate switch trace. 

switching to the high bitrate sooner, this particular implementation is designed to minimize 

the probability of playback interruption. 

Though we can see in Figures 3-9 and 3-10 that the downloads occur well in advance of 

the rendering time, it is more important that the data be available when the player requests 

it, to prevent underrun. Paced delivery from the HTTP proxy (data source) is ideal for 

bandwidth management, but some less robust media players are more prone to prematurely 

declaring underruns. Media players which take a download-and-play approach often prefer 

that all the data be immediately available, and the data source must adapt accordingly. 

3.4 RTP Segment Files 

We implemented RTSP proxy libraries for the Google Android™ platform, using the ar­

chitecture shown in Figure 3-1 (b). It takes advantage of the native media player which 

connects to the RTSP proxy. The RTSP proxy responds with the presentation descrip-
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Figure 3-11: RTP time-based serialization for segment creation. 

tion in Session Description Protocol (SDP) [95] format, and configures the audio and 

video RTP and RTCP channels. We also implemented a frame-based data source for the 

Microsoft® Silverlight™ platform (as an alternative to Smooth Streaming), using the ar­

chitecture shown in Figure 3-1 (a). It takes advantage of the asynchronous frame-based 

MediaStreamSource APIs through which the native media player requests data. The data 

source parses the RTP headers and RTCP packets to properly order the frames for delivery 

to the media player. 

Figure 3-11 diagrams the process of creating RTP segment files from separate video 

RTP/RTCP and audio RTP/RTCP streams. Individual RTP and RTCP packets are mul­

tiplexed into a single stream using the RTP timestamp in each packet. A strict time-based 

ordering simplifies parsing for the RTSP proxy. The RTP packets are prepended with a 

small header containing track information and packet size. The RTSP proxy parses the 

segment file sequentially, and paces RTP/RTCP packet delivery based on the relative RTP 

timestamps. The frame-based data source parses the segment file, queueing audio/video 

frames and providing them to the native media player on request. 

Rate adaptation is performed transparently in the RTSP proxy or frame-based data 

source. As long as video frame rate and resolution are maintained, stream switching is 

a viable method for rate adaptation. In this case, the stream switching is done in the 

client-side proxy, rather than at the server-side. From the controller and HTTP downloader 

perspective, rate adaptation procedures are identical to any other HTTP adaptive streaming 

protocol; only the last-inch delivery to the native media player differs. Rate adaptation 
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algorithms are discussed in further detail in Chapter 5. 

3.5 Server-side Pacing Transparency 

Though most of our experiments are performed using local Apache HTTP servers or com­

mercial CDNs, we also investigated the interoperability of our client rate adaptation ar­

chitecture with the Zippy HTTP streaming server described in Chapter 2. The use of 

server-side in addition to client-side pacing can be counterproductive, if the client rate 

adaptation algorithm uses download rate in its rate selection logic (as most do). Though 

this could be exploited by the server to influence client rate selection (see Section 5.8), in 

general it is undesirable. The impact of a pacing server is really dependent upon the burst 

sizes employed by the server. If the burst size is larger than the size of the segment being 

requested by the client, there is likely to be no impact on the client. If the server uses a large 

initial burst to, like the one described in Section 2.2, this further reduces the probability 

of data pacing occurring, though it is not a guarantee. HTTP streaming servers need to 

be aware of the content being requested and the context in which it is being requested. 

HTTP Range requests with range sizes that correspond to video durations of less than 10 

seconds are typically indicative of client-side pacing schemes, as with our stitched media file 

approach. The retrieval of content whose duration is less than 10 seconds is another pos­

sible indication of client-side pacing, as with our RTP segment approach. A more explicit 

proprietary HTTP header is another option, though the header would require standard­

ization. Applying some additional intelligence to the HTTP streaming server allows it to 

optimize delivery for legacy download and play clients, without hindering newer adaptive 

bitrate clients. 

3.6 Summary of Client Rate Adaptation Contributions 

With the release of HLS protocol in the Apple iPhone®, HTTP adaptive streaming gained 

a great deal of momentum. Though much of the popularity can be attributed to the 
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marketing of the iPhone itself, a combination of the simplicity of the scheme, the fact 

that it just worked, and its mandated use in all applications that streamed video over the 

AT&T network made it wildly successful. Though the Microsoft® SilverLight™ Smooth 

Streaming protocol [96] was released prior to HLS, its proprietary nature inhibited its initial 

growth. Though the HLS specification was released as an open standard, it mandated the 

use of the MPEG2-TS transport stream format, which, up until that time had primarily only 

been used in broadcast television delivery. The majority of consumer devices lacked native 

support for MPEG2-TS content, leaving most devices still with no means of supporting 

HTTP adaptive streaming. 

The primary contribution of our client-side data proxy research was the definition of an 

architecture that was flexible enough to be ported to a wide variety of client devices and 

able to interface with a wide variety of native media player interfaces. Using the client rate 

adaptation architecture we were able to significantly extend the reach of HTTP adaptive 

streaming technology. We were able to use our architecture to implement HTTP adaptive 

streaming on a number of different platforms including: Android™, Blackberry®, and 

Windows®, using different data proxy interfaces to communicate with the native media 

players, but while still maintaining a common rate selection and content download archi­

tecture. The common architecture provides the ability to easily test and evaluate the per­

formance of different rate adaptation algorithms on multiple devices and operating system 

(OS) platforms. Our rate adaptation client was instrumental in the testing and refinement 

of our bitrate selection override proxy described in Chapter 4. Though the implementation 

details for each OS platform provide interesting data points that enhance our understanding 

of the versatility of HTTP adaptive streaming, the common rate adaptation client architec­

ture also provides a testbed for our continued investigation of rate adaptation algorithms, 

like the one discussed in Chapter 5. 



Chapter 4 

HTTP Adaptive Streaming Bitrate 

Selection Override Proxy 

In working with the HTTP adaptive streaming clients described in Chapter 3, it became 

evident that the greedy nature of the individual clients was not entirely conducive to fair 

bandwidth allocation between multiple clients. Though greedy clients may eventually reach 

a steady state bandwidth distribution, competition for bandwidth can cause bitrate thrash­

ing and throughput squelching which affect QoE in individual clients. We began to look 

at methods for implementing session tracking and fair bandwidth distribution between ses­

sions. In a degenerate case, this could be implemented as part of a server, similar to the 

methods described in Chapter 2, but most large scale deployments have many servers in 

a server farm, which require coordination, and individual clients may experience different 

network conditions downstream from the servers. For this reason, we adopted a network 

proxy-based approach to managing HTTP adaptive streaming session. In this chapter, we 

discuss two paradigms for performing bandwidth management using rate selection overrides 

on a per-segment basis. 

Using HLS as the model for HTTP adaptive streaming, we examined the use of a 

network-based proxy for bandwidth distribution and CoS differentiation. We apply the 

network-based proxy approach to both standard HLS clients as well as our frame-based 

proxy client described in Chapter 3. The network proxy can be deployed at various network 

depths. Depending on the network depth, one of two modes may be used: 

• full override mode: where the network proxy performs bitrate selection for the client, 
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Figure 4-1: Rate selection override network proxy deployment diagram. 

completely removing rate adaptation functionality from the client, or 

• bandwidth cap mode: where the network proxy allows the client to perform rate adap­

tation but may cap the client's bitrate, overriding the client's selection if it exceeds 

the bandwidth cap. 

For deployments where the network proxy is located deep in the network, close to the 

client, the network proxy can take complete responsibility for rate selection, using full over­

ride mode. In Figure 4-1, this is represented by the bandwidth override proxy in the MSO 

network. The content coming from the external CDN crosses the MSO backhaul, down to 

the CMTS, where the network proxy is situated, close to the clients. If the client does not 

support rate adaptation natively, then the network proxy can provide that functionality. 

More likely, though, if a client rate adaptation algorithm is overly aggressive and causing 

congestion, or not aggressive enough and providing a poor QoE to the viewer, the net­

work proxy can circumvent those deficiencies and apply a provider or operator defined rate 

selection criteria. 

For deployments where the network proxy is located further away from the client, it 
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Figure 4-2: Standard HTTP Live Streaming delivery. 

often makes sense to use the bandwidth cap mode, rather than the full override mode, which 

allows the client to continue selecting bitrates based on its localized network conditions. In 

Figure 4-1, this is represented by the bandwidth cap proxy in the MNO network. The 

content coming from the external CDN hits the network proxy, prior to crossing the MNO 

backhaul down to the radio access network (RAN). The bandwidth cap proxy aggregates 

client requests from throughout the MNO network and caps them based on the limits of 

the MNOs Internet connection. If the client's local bandwidth is high, but congestion 

occurs further upstream, where the network proxy resides, the network proxy can cap the 

bitrate delivered to the client. If the client's local bandwidth falls, however, that condition 

is undetectable by the network proxy, because the client is downstream from the network 

proxy. In that case, the client can still react on its own, by selecting a lower bitrate. 

Figure 4-2 shows a standard HLS configuration, with a master m3u8 manifest containing 

URLs pointing to individual bitrate manifests. Each individual bitrate manifest contains 

URLs pointing to video segment files which are distributed through a CDN. The m3u8 

manifests may be stored in the CDN with the segment files, or that may alternately be 

distributed through a separate application server. 

Figure 4-3 shows the standard m3u8 and segment requests flow. The client begins by 

retrieving the master m3u8 manifest. The client begins playback with the first bitrate listed 
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Figure 4-3: Standard HTTP Live Streaming delivery request flow. 

in the master m3u8 manifest; it is expected that the first bitrate is the suggested bitrate of 

the content publisher. The client then retrieves the individual bitrate m3u8 manifest and 

begins downloading segments. 

4.1 Network Proxy Controlled Rate Adaptation 

In the full override mode, the network proxy takes full control over rate adaptation. Avail­

able bitrate information is hidden from the client by the network proxy. The client has no 

expectation of rate adaptation, and the network proxy performs rate selection and replace­

ment in a transparent fashion. 

Figure 4-4 shows an augmented HLS configuration with a bandwidth manager inserted 

between the client and the m3u8 manifests. The standard m3u8 manifests and segments 

are used; no modification to the master m3u8 manifest, the individual bitrate m3u8 man­

ifests, or the video segment files themselves is required. The bandwidth manager uses the 

existing m3u8 manifests to determine which bitrates are available and where the segments 

are located. 

Figure 4-5 shows the augmented m3u8 and segment requests flow for the full override 

mode. When a client requests the master m3u8 manifest, the bandwidth manager responds 

to the client's master m3u8 manifest request with a generic single bitrate m3u8 manifest. 

The generic m3u8 manifest contains segment URLs pointing to the bandwidth manager. 

Having no knowledge of what actual bitrates are available, the client will request only those 
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Figure 4-4: Network proxy controlled HTTP Live Streaming delivery. 

segments specified in the generic m3u8 manifest. The bandwidth manager accepts the 

segment requests from the client, selects a suitable bitrate, based on the current bandwidth 

estimate, and redirects the client to the actual segment (or, in the case that insufficient 

bandwidth exists to deliver any segment, aborts the connection). 

4.1.1 Optimized Bandwidth Usage Testbed 

To better illustrate the basic functionality of our network controlled segment selection 

scheme, we use a scaled down configuration with two clients and limit the available band­

width such that insufficient bandwidth exists for both clients to stream at the highest bitrate 

simultaneously. Though the scheme scales well beyond two devices, limiting the number 

of clients allows us to more easily isolate the actions of each individual client, and allows 

us to use actual iOS devices, where large scale tests with actual iOS devices would be cost 

prohibitive. 

Figure 4-6 shows the network setup for our bitrate override test. The server contains 
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an Apache 2.2 server for serving m3u8 playlist files and MPEG-TS segment files. For 

deployment simplicity, we have also integrated the bandwidth management components 

(i.e., playlist and segment proxying) into the same server. In this configuration, the server 

responds directly to the client requests using segments stored on the local disk. For the 

bandwidth cap tests, we use an alternate configuration with an external CDN and the 

bandwidth manager issues HTTP 302 redirects to the client (or responds with a HTTP 403 

Forbidden status code, in the case that the null bitrate is applied). The server is equipped 

with dual quad-core 2.27 GHz Xeon processors and 8 GB of RAM running a 2.6 rPath® 

Linux kernel. 

The server is connected to a Linux server that acts as a router, routing between the 

WiFi access point and the server. The Linux router uses a tc hierarchical token bucket 

to implement bandwidth limits on the interface between itself and the WiFi access point. 

Results were captured using tcpdump on the interface between the Linux router and the 

WiFi access point. The Linux router is also equipped with dual quad-core 2.27 GHz Xeon 

processors and 8 GB of RAM, but running a 2.6 Red Hat® Linux kernel. 

The two mobile devices A and B that were used were an iPhone® 3GS and an iPod 

touch® 2G, both running iOS 3.1.3. Videos were played using the native media player. The 

player was launched via the Safari® browser by providing a URL to the m3u8 playlist files 

on the server. 

A 10 minute video ("Big Buck Bunny") was ingested and transcoded into five bitrates. 
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Figure 4-6: Bitrate override test network configuration. 

The audio bitrate was 48 kbps for all outputs; the video was encoded at 800 kbps, 600 kbps, 

400 kbps, 200 kbps, and 0 kbps (audio only) resulting in total bitrates of 848, 648, 448, 

248, and 48 kbps, respectively. Each encoding was identically segmented into 10 second 

segments, and each segment was encrypted with AES-128. 

It is important for dynamic segment replacement that the segments are synchronized, to 

prevent any rendering discontinuity. To prevent rendering distortions when switching rates, 

it is also important that every segment begin with a I-frame, that B-frames do not cross 

segment boundaries, and depending on the quality of the decoder, that frame rates and 

resolutions are maintained across bitrates. I-frames may be ensured by setting a fixed GOP 

duration which evenly divides into the segment duration. In our tests we used 30 fps video 

with a fixed GOP size of 75 frames producing an I-frame every 2.5 seconds, which divides 

evenly into a 10 second segment duration. We also disabled the insertion of B-frames for 

our tests and used consistent frame rates and resolutions for all encodings. 
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Figure 4-7: Native rate adaptation segment requests. 

4.1.2 Optimized Bandwidth Usage Results 

Figures 4-7 and 4-8 show the results of two experiments. Both were performed using an eight 

minute test run playing six minutes of video on each phone, with a two minute staggered 

start, i.e., device A started at time to, device B was started at time to + 120, device A was 

stopped at time to + 360, and device B was stopped at time to + 480. Starting device A 

first allowed device A to establish a baseline before starting device B to observe the effect 

of contention. Device A was then stopped before device B to evaluate the recovery. The 

token bucket rate ceiling was set at 1600 kbps for both tests. 

The first set of tests were performed using a standard m3u8 configuration, i.e., a master 

playlist pointing at 5 individual bitrate playlists, allowing the native media player to perform 

rate selection. The master playlist contains the individual bitrate playlists in descending 

order of bitrate, therefore the highest bitrate will always be selected as the initial bitrate. 

Figure 4-7 shows the segment requests for the standard m3u8 configuration. The y-axis 

shows which of the five bitrates was requested for each segment. The plots for device A and 
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Figure 4-8: Network controlled rate adaptation segment selections. 

device B have been staggered vertically to make them easier to read. 

We can see the staggered start of device B at 120 seconds and the immediate back-off 

of both device A and device B. This is expected given that both devices are requesting 848 

kbps, but a bandwidth cap is set at 1600 kbps. Device A backs off to 248 kbps, while device 

B goes to audio-only (48 kbps). Device B quickly recovers to 248 kbps, but the disruptive 

experience caused by switching to audio-only has already been felt by the user. Both devices 

eventually recover to 448 kbps, and when device A stops playing, device B recovers further 

to 648 kbps, but does not achieve 848 kbps before the end of the test run. The native media 

player attempts to provide high quality video initially, but then overshoots while backing 

off, when congestion occurs. The slow recovery prevents additional bitrate thrashing, but 

the user pays the penalty in slow recovery time. The time to get back to 448 kbps was 

around 200 seconds for both devices. Three minutes of unnecessarily low bitrate video 

could have been avoided with better knowledge of network conditions. 

The second set of tests employed the bandwidth manager which supplied the two devices 
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Device B Segment Requests 
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Figure 4-9: Native vs. network controlled rate adaptation bandwidth consumption. 

with a single generic bitrate playlist and made bitrate selection decisions for the clients. 

Figure 4-8 shows the segment bitrates selected for the network proxy controlled approach. 

As with Figure 4-7, the plots, the y-axis shows which of the five bitrates was requested 

for each segment and the plots for the two devices have been staggered vertically to make 

them easier to read. We can again see the staggered start of device B at 120 seconds and 

the immediate back-off of both device A and device B. In the network proxy controlled 

case, however, we assume that the bandwidth manager is aware of the maximum network 

capacity of 1600 kbps. Using this information, the bandwidth manager is able to select 

suitable bitrates (i.e., 648 kbps) for both devices. The bandwidth is evenly distributed and 

does not exhibit the overshoot in bitrate back-off that was seen in the native case. This 

provides better continuity and a higher quality viewing experience. At 360 seconds, when 

device A stops playing, the full 848 kbps video is immediately made available to device B. 

Figure 4-9 shows the total bandwidth used by devices A and B in both the native and 

network proxy controlled test cases. The bandwidth values are aggregated on a 10 second 
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basis. Bitrate information from Figures 4-7 and 4-8 are overlaid onto the plot to correlate 

bandwidth spikes with rate adaptation events. We can see in the native rate adaptation 

case, the overshoot in bitrate reduction results in a lower total bandwidth consumption 

through the middle portion of the graph. We can also see that there are bandwidth spikes 

at every rate switch. This is because the native player always requests three segments: the 

current segment, the previous segment, and the next segment, in a burst, when switching 

bitrates. In the proxied rate adaptation case, the total bandwidth usage is more linear and 

makes more optimal use of the available bandwidth. The slight downward trend is due to 

the fact that the player will initially request data at a higher rate, to fill its playback buffer. 

This eventually evens out to a steady state near the segment bitrate, as we see it doing near 

the end of the graph. 

4.2 Network Proxy Capped Rate Adaptation 

In the bandwidth cap mode, the network proxy measures total bandwidth usage and only 

overrides client bitrate requests when they would cause the overall bandwidth usage to 

exceed the cap. Available bitrate information is processed by the proxy so that it is aware 

of the available bitrates, but the information is passed through to the client unmodified. 

The client is unaware of the network proxy's existence and performs rate adaptation as it 

normally would. The network proxy performs bitrate capping and segment replacement in 

a transparent fashion. 

Figure 4-10 shows an augmented HLS configuration with a bandwidth manager inserted 

between the client and the m3u8 manifests. Just as in the full override mode, the standard 

m3u8 manifests and segments are used; no modification to the master m3u8 manifest, 

the individual bitrate m3u8 manifests, or the video segment files themselves is required. 

The bandwidth manager also continues to use the existing m3u8 manifests to determine 

what bitrates are available, and where segments are located, however, it does not hide that 

information from the client. 

Figure 4-11 shows the augmented m3u8 and segment requests flow for the bandwidth 
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Figure 4-10: Network proxy bandwidth capped HTTP Live Streaming delivery. 

cap mode. When a client requests the master m3u8 manifest, the bandwidth manager 

gleans bitrate information from it and passes it through to the client. In some cases, the 

network proxy may alter the URLs contained in the manifest to simplify interception of 

future requests, but the available bitrate information remains unchanged. The client begins 

playback, as it normally would, with the first bitrate listed in the master m3u8 manifest. 

It retrieves the individual bitrate m3u8 manifest and begins downloading segments. The 

bandwidth manager inspects each segment request to verify that it will not cause the band­

width cap to be exceeded. If servicing the request would violate the cap, the bandwidth 

manager selects a more suitable bitrate and redirects the client to the alternate segment (or, 

in the case that insufficient bandwidth exists to deliver any segment, aborts the connection). 

4.2.1 Dynamic Rate Capping Testbed 

In the bandwidth capping scenario, as with the full override case, we use a scaled down 

configuration to simplify the discussion. In this case we use four clients and assume that 

the downstream bandwidth is more than sufficient to support all clients streaming the 
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Figure 4-12: Bandwidth cap test network configuration. 

highest bitrate. A bandwidth cap is assumed to apply to the upstream link. We employed 

Microsoft® Silverlight™ clients using a frame-based data source and RTP segments (as 

described in Section 3.4) running on a Windows® 7 laptop. Though the scheme scales 

well beyond four clients, limiting the number of clients allows us to more easily isolate the 

actions of each individual client. 

Figure 4-12 shows the network setup for our bandwidth cap test. The server contains the 

bandwidth management components (i.e., playlist and segment proxying), but the segment 

files are in an external CDN, in this case Akamai. In this configuration, the bandwidth 

manager issues HTTP 302 redirects in response to client requests, redirecting them to the 
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CDN (or responds with HTTP 403 Forbidden status code, in the case that the null bitrate 

is applied). The server is equipped with dual quad-core 2.27 GHz Xeon processors and 8 

GB of RAM running a 2.6 rPath® Linux kernel. The server is connected through WiFi to 

the clients running on the a laptop. Results were captured by the bandwidth manager. 

A 10 minute video ("Big Buck Bunny") was ingested and transcoded into five bitrates. 

The audio bitrate was 64 kbps for all outputs; the video was encoded at 700 kbps, 600 

kbps, 400 kbps, 300 kbps, and 200 kbps resulting in total bitrates of 764, 664, 464, 364, and 

264 kbps, respectively. Each encoding was identically segmented into 10 second segments, 

and each segment was encrypted with HC-128. As with the full override case, segments 

were synchronized, to prevent any rendering discontinuity, segment began with a I-frame, 

B-frames were disabled, and frame rates and resolutions were maintained across bitrates. 

I-frames were ensured using a fixed GOP size of 24 frames with a frame rate of 24 fps 

producing an I-frame every second. 

4.2.2 Dynamic Rate Capping Results 

Figure 4-13 shows the results for the bandwidth capping test. The test was performed using 

a ten minute test run, with client 1 playing video throughout the entire test, starting at 

time to, client 2 starting at time to + 90 and stopping at time to + 270, client 3 starting 

at time to + 150 and stopping at time to + 360, and client 4 starting at time to -I-190 and 

stopping at time to + 430. Staggering the start of each client makes it easier to see the effect 

of adding each additional client. Likewise, staggering the stop of each client makes it easier 

to see the effect of removing each client in turn. The upstream bandwidth cap was set at 

1500 kbps. 

The tests were performed using a standard m3u8 configuration, i.e., a master playlist 

pointing at 5 individual bitrate playlists, allowing the native media player to perform rate 

selection. The master playlist contains the individual bitrate playlists in descending order of 

bitrate, therefore the highest bitrate will always be selected as the initial bitrate. Because 

the actual bandwidth available to the chents is plentiful, the clients always request the 
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Figure 4-13: Network proxy capped segment requests. 

highest bitrate. The bandwidth manager, however, must enforce the 1500 kbps bandwidth 

cap. Figure 4-13 shows the bitrate supplied to each client, in response to their segment 

requests. Figure 4-13 also plots the sum total of all the segment bitrates being accessed. 

We can see that at the start, client 1 requests 764 kbps and receives 764 kbps. The total 

bandwidth used at that point is 764 kbps, well below the 1500 kbps cap. When client 2 

starts after 90 seconds, it also requests 764 kbps, however, the combined total of clients 1 

and 2 each retrieving 764 kbps would exceed the cap. The bandwidth manager detects this 

and caps both clients at 664 kbps. When client 3 starts after another 60 seconds, it also 

requests 764 kbps, however, the combined total of clients 1 and 2 retrieving 664 kbps and 

client 3 retrieving 764 kbps would again exceed the cap. The bandwidth manager again 

detects the cap violation and this time caps all three clients at 464 kbps. Similarly, when 

client 4 starts playing, again the total bitrate would exceed the cap, and the bandwidth 

manager caps all four clients at 364 kbps. We can see that there are momentary spikes in 

the total bandwidth, due to the initial bursts of requests from the clients, as they initially 
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fill their playback buffers. The bandwidth manager detects these but allows them, given 

the understanding that initial playback buffer fills are one time transient bursts. 

When the clients complete their playback, the bandwidth manager detects the end of the 

session and recalculates the distribution of bandwidth between the active clients. Session 

detection is discussed in further detail in the follow section. We can see in Figure 4-13 that 

20 seconds after client 2 stops playing, the bandwidth cap on clients 1, 3, and 4 is raised 

back to 464 kbps. Similarly, 20 seconds after client 3 stops playing, the bandwidth cap 

on clients 1 and 4 is raised to 664 kbps, and 20 seconds after client 4 stops playing, the 

bandwidth cap is lifted and client 1 returns to playing 764 kbps. 

4.3 Session Detection 

We have assumed that the network proxy is aware of the networks bandwidth limitations. 

The bandwidth manager in Figures 4-4 and 4-10 compares the bandwidth limits with the 

estimated bandwidth usage. To account for the bursty nature of segment download, the 

bandwidth manager estimates bandwidth usage based on the bitrates of segment requests. It 

then amortizes those bitrates over the segment duration to account for request interleaving. 

The bandwidth manager also estimates the number of active sessions based on request 

frequency. Given a segment duration L, it is expected that each client must request a 

segment every L±L seconds. Sessions are therefore considered active if a segment request 

has been received in the past 2 • L seconds. For the Apple recommended segment duration 

of L = 10, a session detection latency of 20 seconds may be used. For the purposes of CoS 

differentiation, it is assumed that the CoS for a given client is identifiable in the request 

(e.g., as a query string parameter or via a well-known HTTP header field). 

Though the bandwidth manager only requires limited statistics for tracking client ses­

sions, the network proxy has access to a significant amount of information about individual 

client content viewing habits. Content access patterns can be used to enhance caching 

algorithms, as well as to predict future bandwidth requirements. Further investigation of 

segment request data mining in the network proxy is an interesting topic for future research. 
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4.4 Proxy-based CoS Enforcement 

Using the proxy architectures described above, we are able to not only override individual 

client requests, but also implement a CoS enforcement scheme, which uses client request 

overrides to prevent clients in a given CoS from exceeding their rightful bandwidth allo­

cations. We assume a set of C clients {0,... , C — 1} and a maximum network capacity 

N. Each client belongs to one and only one of W classes of service {1,..., W}, where 

wc represents the CoS for a given client c, and a larger wc value corresponds to a higher 

CoS. We also assume a discrete set of B bitrates {6q, ... ,£>b_i}, which may be delivered 

to a client, where denotes the bitrate i currently being streamed to a given client c. For 

simplicity we assume that Vi G 1... B - 1 : 6; > &»_i and that bg = oo and that 6_i = 0. 

We propose that every client within a CoS should receive the same bitrate and that clients 

with a higher CoS should receive an equal or higher bitrate than clients with a lower CoS, 

i.e., Vi,j G 0... C — 1 : (wi = Wj => bl
x = lPx) A (itfj > Wj =» bl

x > bl). 

N total network capacity (in kbps) 
E excess network capacity (in kbps) 
C total number of clients 
c w  number of clients in CoS w 
w number of classes of service 
B number of discrete bitrates 
L segment duration (in seconds) 
b f  current bitrate being downloaded by client c (in kbps) 

b̂  current bitrate assigned to CoS w (in kbps) 
Wc CoS of client c (G {1,...,W}) 

Table 4.1: Rate selection algorithm variables. 

This strict assignment of a single bitrate to all clients within a class of service may 

result in unused network resources, if the excess network capacity E is not large enough 

to accommodate all clients, i.e., E < (bx+i — bx) • Cw, where Cw is the number of clients 

in class w. For simplicity, we maintain this restriction in the current discussion. We relax 

this constraint in the discussion of rate adaptation algorithms in Chapter 5. In the full 



79 

override mode, the bitrate selected is the bitrate presented to the client. In the bandwidth 

cap mode, the bitrate selected is the maximum bitrate the client is allowed to have. The 

client may request a bitrate lower than the maximum determined by the algorithm. In such 

a case, the excess capacity E may be higher than estimated. 

Algorithm 4.1 Strict depth first bandwidth distribution algorithm. 
E 4-  N 
for all w € 1... W do 
if' «- i»-i 

end for 
for all x € 1... B do 

for all w € W... 1 do 
if E < (bx — bx—i) • Cw then 

return 
else 

E 4— E — (bx — bx-i) • Cw 

end if 
end for 

end for 

Algorithm 4.1 shows an example of a basic breadth-first bandwidth allocation scheme. 

Each CoS is initially assigned the null bitrate 6_i. We then iterate through each CoS 

from high to low and increase the bitrate of each CoS by one level. This process continues 

until increasing the bandwidth for the next CoS would exceed he available bandwidth. We 

denote the bitrate bi currently assigned to a given CoS w by b%"\ Stopping as soon as 

any CoS is unable to upgrade ensures that priority inversion does not occur in favor of 

any lower CoS. It also, however, prevents any higher CoS from receiving extra bandwidth. 

Assuming every CoS has the same number of clients, i.e., Vt,j 6 1...W : C* = Cj, the 

latter is usually not an issue, as bitrate distributions are typically exhibit super-linear 

increases, i.e., Vi £ 1...B - 2 : bt+i - bi > bi — 6j_i. The de facto standard Apple 

suggested bitrates: {150,240,440,640,1240,2540,4540} [97], e.g., contain inter-bitrate gaps 

of: {90,200,200,600,1300,2000}. 

Given that the number of bitrates B and the number of classes of service W are typ­
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ically small, the cost of rerunning Algorithm 4.1 is relatively small. It is assumed that 

the maximum network capacity N does not change very often, however, when it does, 

the algorithm must be rerun. The incremental addition or removal of individual sessions 

which do not impact the bitrate allocations, however, do not require the algorithm to be 

rerun. Given the previously calculated excess capacity E, we can quickly verify if the ses­

sion that was added or removed will impact the current bitrate allocations. When a new 

session is added to a given CoS group w, as long as E — > 0, then no reallocation 

is required. Similarly, whenever a session is removed from a given CoS group w, as long 

(tu) (i) 
as Vi G  1. . .  W :E + bx < bx • Q, then no reallocation is required. If either of those 

conditions is violated, a reallocation should be initiated. 

In highly dynamic networks, where sessions come and go frequently, the elasticity of a 

larger excess capacity E may be beneficial. Less dynamic networks, however, may prefer to 

allocate excess capacity to higher CoS clients. In cases where higher classes of service may 

have fewer clients, we can modify Algorithm 4.1 to allow it to attempt to allocate more of 

the excess capacity, while still maintaining the CoS enforcement. 

Algorithm 4.2 Loose depth first bandwidth distribution algorithm. 
minW 4- 1 
E<r-N 
for all w G  1 . . .  W do 

ff >«- 6-. 
end for 
for all x G  1 . . .  B do 

for all w G W... minW do 
if E < (bx - bx_i) • Cw then 

minW 4— w + 1 
else 

b\w) bx 

E <— E — (bx — bx-1) • Cw 

end if 
end for 

end for 

In Algorithm 4.2, we can see that instead of stopping as soon as any CoS is unable to 
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upgrade, as in Algorithm 4.1, it instead sets a CoS floor preventing that CoS or any lower 

CoS from being considered for further bitrate upgrades. The augmented algorithm now 

allows higher classes of service to claim higher bitrates if sufficient excess capacity exists. 

Depending on the distribution of clients across classes of service, and specific policies that 

network operators may wish to enforce, alternate algorithms may provide more optimal 

bandwidth allocations. The application of rate selection override to less general scenarios 

is an interesting area for future research. 

4.4.1 CoS Rate Capping Results 

Using the same configuration as the one described in Section 4.2.1, we tested the CoS 

differentiating bandwidth capping algorithm described in Algorithm 4.2. We used the same 

four Windows® clients, but this time placed each client into its own CoS and lowered the 

bandwidth cap to 1450 kbps. The clients are order by their CoS, i.e., client 1 is in the 

highest CoS, while client 4 is in the lowest CoS. Figure 4-14 shows the results of the ten 

minute test run, with client 1 playing video throughout the entire test, starting at time to, 

client 2 starting at time to + 80 and stopping at time to + 330, client 3 starting at time 

to + 150 and stopping at time to + 400, and client 4 starting at time to + 230 and stopping 

at time to + 480. We again staggered the start and stop of each client to make it easier to 

see the effects of adding and removing each client. 

We can see that at the start, client 1 requests 764 kbps and receives 764 kbps. The 

total bandwidth used at that point is 764 kbps, well below the 1500 kbps cap. When client 

2 starts playing, it also requests 764 kbps, however, the combined total of clients 1 and 

2 each retrieving 764 kbps would exceed the cap. The bandwidth manager detects this 

and caps the lower CoS client, i.e., client 2, at 664 kbps. When client 3 starts playing, 

it also requests 764 kbps, though that is immediately reduced to 664 kbps so as not to 

exceed the bitrate currently assigned to client 2. Even at 664 kbps, the combined total of 

client 1 retrieving 764 kbps and clients 2 and 3 retrieving 664 kbps would again exceed the 

cap. The bandwidth manager again detects the cap violation and this time caps all three 
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Figure 4-14: Network proxy capped segment requests (multiple CoS). 

clients at 464 kbps. When client 4 eventually starts playing, it also requests 764 kbps, but 

is immediately lowered to 464 kbps so as not to exceed the bitrate currently assigned to 

client 3. Assigning all four clients 464 kbps, however, would exceed the cap. The bandwidth 

manager detects the cap violation and lowers client 4 to 364 kbps. As with Figure 4-13, that 

there are momentary spikes in the total bandwidth, due to the initial bursts of requests from 

the clients, as they initially fill their playback buffers. These are allowed by the bandwidth 

manager with the understanding that initial playback buffer fills are one time transient 

bursts. 

When the clients stop their playback, the bandwidth manager detects the end of each 

session and recalculates the distribution of bandwidth between the active clients. We can 

see in Figure 4-14 that 20 seconds after client 2 stops playing, the bandwidth cap on clients 

1, 3, and 4 is raised back to 464 kbps. Similarly, 20 seconds after client 3 stops playing, 

the bandwidth cap on clients 1 and 4 is raised back to 764 kbps and 664 kbps, respectively, 

and client 1 continues with 764 kbps until it completes its playback. 
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4.4.2 Rate Selection Transparency 

In both the full override mode and the bandwidth cap mode, the network proxy works 

transparently with respect to both clients and servers, simultaneously. We have verified 

this functionality in conjunction with the server pacing scheme described in Chapter 2 and 

multiple HTTP adaptive streaming approaches, including the RTP segmentation scheme 

described in Chapter 3. By making rate selection decisions at the segment request level, 

using only the encoded bitrate and maximum network capacity (rather than instantaneous 

throughput measurements), the network proxy-based approach is able to be agnostic to 

both client and server-side pacing schemes. This abstraction allows the proxy to use HTTP 

302 Redirects (or HTTP 403 Forbidden responses, in the case that the null bitrate is ap­

plied), instead of terminating and transparently proxying TCP sessions, which improves the 

scalability of the network proxy and simplifies the calculations in Algorithms 4.1 and 4.2. 

4.5 Summary of Bitrate Selection Override Proxy Contribu­

tions 

As we developed the client rate adaptation architecture described in Chapter 3, the inher­

ently greedy nature of rate selection algorithms was very apparent. An overly aggressive 

implementation affects not only the network, but also the local device CPU. The server 

pacing scheme discussed in Chapter 2 represented the first generation solution for slowing 

down the naturally greedy nature of clients without impacting playback. Considering the 

net effect of pacing, i.e., reduction in network throughput while honoring playback bound­

aries, rate selection override produces the same result for HTTP adaptive streaming clients. 

Taking advantage of the general interchangeability of different bitrate segments on which 

HTTP adaptive streaming is predicated, we developed our network proxy architecture for 

performing rate selection override. 

The primary contribution of our network proxy research was to demonstrate the ability 

to create a scalable platform from which to monitor and manage HTTP adaptive streaming 



84 

sessions. We used our network proxy to demonstrate two different rate selection override 

modes: full override mode and bandwidth capping mode. Though these two modes may 

not cover all possible policy enforcement scenarios, they do represent a significant step 

forward in the evolution of managed OTT video delivery. Networks have long employed 

traffic monitoring and management schemes (e.g., DiffServ) to regulate network access by an 

over-subscription of greedy clients. Traditional network management schemes also support 

CoS differentiation for service level agreement (SLA) enforcement. Though packet-level 

traffic management schemes may be applied to video delivery streams, we believe that more 

intelligent content-aware traffic management schemes produce better QoE for the viewer. 

The second contribution of the network proxy rate selection override research was our ability 

to clearly demonstrate improved QoE through segment-level network resource utilization 

management. The ability to manage network resources while maintaining high QoE is 

imperative for content providers and network operators who wish to enforce and monetize 

video delivery SLAs. 

The network proxy is a natural extension of the CDN request router which is responsible 

for directing content requests to a suitable content asset location and logging the content 

access. Though this typically just involves redirecting a client to a surrogate cache contain­

ing the requested content, our research essentially investigates the ability to use the CDN 

request router to make more intelligent content selection decisions (i.e., by performing rate 

selection override). We also investigated the ability to perform session tracking, based on 

the temporal locality of client request patterns. The amount of client and session infor­

mation which can be gleaned from content requests is overwhelming, but the CDN request 

router has access to all of it. With the addition of a small amount of content metadata, 

the CDN request router is perfectly positioned to enforce policies and make rate selection 

override decisions. 

Traditionally, there has been no reason for a third party CDN to accept responsibility 

for enforcing content provider policies. As MSOs and MNOs continue to migrate toward 

OTT delivery paradigms and are increasingly building out their own internal CDNs, these 
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service providers must take responsibility for their own internal CDN request routing. The 

rate selection override proxy, as part of the CDN request router, provides operators with 

an approach for implementing centralized OTT video delivery management platform. The 

third major contribution of our network proxy architecture is that it provides a foundation 

for continued research into transparent management techniques for unmanaged OTT clients. 

Our CoS policy enforcement approaches have proven successful and continued research into 

policy enforcement shows great promise. 



Chapter 5 

HTTP Adaptive Streaming Rate 

Adaptation Algorithm 

In Chapter 3 we presented an architecture for implementing data proxies in client devices 

to perform rate adaptation. In Chapter 4 we presented an architecture for implementing 

network proxies to perform rate adaptation and rate selection override. In this chapter, 

we discuss a rate adaptation algorithm, which, in its base form, provides a typical greedy 

approach to rate selection in HTTP adaptive streaming clients. We also detail configurable 

parameters which enable the rate adaptation algorithm to support CoS differentiation. The 

algorithm is suitable for use with any client-side architecture, including the one described 

in Chapter 3. It also works with the transparent bandwidth capping capabilities described 

in Chapter 4. Though we focus our discussion on the CoS differentiation properties of the 

rate adaptation algorithm, our baseline comparison is with the degenerate single CoS case 

of our rate adaptation implementation. 

5.1 Segment-based Queueing Model 

Using the same notation as we did for the discussion of network proxy-based CoS enforce­

ment in Section 4.4, we start with a set of C clients {0,..., C — 1} and a maximum network 

capacity N. Each client belongs to one of W classes of service {1,..., W}. We use wc to de­

note the CoS to which a given client c belongs. Larger wc values correspond to a higher CoS. 

We also assume a set of B bitrates {bo,... where 6? denotes the bitrate i currently 

86 
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being downloaded by client c. For simplicity we assume that Vi € 1... J5 - 1 : 6* > b,-i 

and that 6B = oo and 6_i = 0. We then add a simple queueing scheme, where each client 

has a queue of length Q, measured in number of segments. We use qc to denote the current 

queue occupancy for client c. 

N total network capacity (in kbps) 
E excess network capacity (in kbps) 
C total number of clients 
C' total number of active clients 
cw number of clients in CoS w 
w number of classes of service 
B number of discrete bitrates 
Q client queue capacity (in segments) 
L segment duration (in seconds) 

current bitrate being downloaded by client c (in kbps) 

9c current queue occupancy of client c (in segments) 
wc CoS of client c (6 {1,..., W } )  
Otc abort timeout for client c (in seconds) 

Pc abort backoff timeout for client c (in seconds) 

ft success backoff timeout for client c (in seconds) 

7c random up-switch initiation credit for client c (in seconds) 
8c current segment download time for client c (in seconds) 
fc network fill counter for client c (in bytes) 
dc playback buffer drain counter for client c (in seconds) 

Table 5.1: Rate adaptation algorithm variables. 

It is assumed that all segments have the same fixed playout duration of L seconds, and 

that new segments are always available for download. Segment download is only inhibited 

by bandwidth limitations and queue fullness. A fixed playout duration results in a constant 

queue drain rate of one segment every L seconds, i.e., Rdrain — while the queue fill 

rate is dependent on the available network bandwidth. Given a fixed network capacity N, 

the equal-share distributed (ESD) bandwidth per client is £r, however, not all clients are 

necessarily actively downloading, e.g., if their queues are already full. Therefore, the ESD 

available bandwidth per active client, and thus the queue fill rate, is actually R/m = $r, 

where C' <C represents the number of clients actively downloading segments. Because C' 
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changes over time, the R/m is a discontinuous function which depends on the current state 

of all the clients. This is discussed further in the network simulation section. 

5.2 Rate Adaptation Algorithm 

In our basic rate adaptation model, rate switches occur whenever the queue becomes full 

or the queue empties. We use these conditions as indication that there is either excess 

bandwidth, or insufficient bandwidth, respectively, to support the current bitrate. When 

the queue fills, i.e., qc = Q, an up-switch to the next higher bitrate occurs (assuming 

the client is not already at the highest bitrate). When the queue empties, i.e., qc — 0, 

a down-switch to the next lower bitrate occurs (assuming the client is not already at the 

lowest bitrate). Though, adjusting the queue thresholds for up-switch and down-switch and 

skipping bitrates on up-switch or down-switch can alter the short-term responsiveness of the 

rate adaptation algorithm, they do not materially afFect the steady state bitrate to which 

clients eventually converge. We are primarily concerned with the steady state results, so 

for simplicity, we only consider rate switches to adjacent bitrates when the queue is either 

full or empty, or when a download is aborted, as discussed below. 

For up-switches, we consider the suitability of the next higher bitrate, given the most 

recent segment download time <5C; for down-switches, we rely on download aborts as a pre­

emptive indication of an imminent empty queue condition. For segments which are taking 

too long, a download abort triggers a proactive down-switch. We denote the rate adaptation 

abort timeout for a given client c as ac. Equations 5.1 and 5.2 show the down-switch and 

up-switch criteria, respectively, as defined above, where 6C is the amount of time client cc 

has spent downloading the current segment. 

A typical value for ac would be: ac = L. In this case, up-switches occur when the queue 

T down • Qc —  0 V 5 C >  O C c  

b i + I  
Tup '• Qc = Q A ^ • Sc < Otc 

(5.1) 

(5.2) 
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is full and there is sufficient bandwidth to retrieve the next higher bitrate, while down-

switches occur if the queue empties or if a segment takes longer than its playout duration 

to download. By increasing or decreasing the value of ac, we can alter the rate adaptation 

scheme to be more or less aggressive, i.e., larger ac values imply that it is acceptable for 

segment downloads to take longer, while shorter ac values require that segment downloads 

take less time. 

5.3 Segment Download Timeouts 

Proper selection of the abort timeout value ac and a corresponding backoff timer value f3c 

are critical to the rate adaptation functionality. Selecting an ac value proportional to the 

CoS provides CoS differentiation in independent adaptive bitrate clients. When selecting 

an ac value, we maintain that Vi, j € 0... C — 1 : Wi > Wj =>• at > atj. For the purposes of 

this discussion, we have selected a linear mapping of CoS to ac, however, alternate mapping 

functions may be used to adjust the distribution of bandwidth between classes: 

F[wc -> ac] : L ~ (5.3) 

Using the mapping shown in Equation 5.3, the highest CoS receives the typical value 

ac = L, while all lower classes of service receive a value of ac < L. In the degenerate case 

of a single CoS, all clients receive the typical mapping of ac = L. In general, the ac value 

effectively acts as a coarse bandwidth distribution mechanism. For this to hold, however, in 

the case of a download abort, the client must wait until its next download interval begins. 

With respect to Equation 5.3, this amounts to a backoff delay of L — ac. 

F[wc -» 0C): L-ac (5.4) 

For strict bandwidth distribution enforcement, a delay should also be inserted after a 

successful download, such that the client waits the full segment duration period L before 

attempting its next download, i.e., a delay of L — Sc. Ignoring the delay results in more 
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aggressive downloads, but should eventually result in a queue full condition, at which point 

the downloads will be naturally delayed by L — Sc. Waiting for queue to fill before rate 

limiting, however, has multiple side effects. First, by delaying the rate limiting, it allows 

lower CoS clients to gain access to a larger proportion of excess bandwidth, relative to 

their current bitrate. The use of abort timeouts essentially partitions bandwidth; the same 

partitioning is required for excess bandwidth. But, because lower CoS clients typically are 

retrieving a lower bitrate than higher CoS clients, lower CoS client request rates (if not 

limited) will be larger than higher CoS clients. Equal access to excess capacity gives lower 

CoS clients a larger percentage increase to their current abort timeout-based bandwidth 

allocation. A second side effect of the congestion caused by excessive lower CoS client 

requests is that it may prevent higher CoS clients from detecting and rightfully claiming 

excess bandwidth. The third side effect is that, allowing clients to achieve queue fullness in­

duces an immediate up-switch in bitrate, and increases the probability of additional future 

up-switches. The two up-switch criteria from Equation 5.2 are queue fullness and suffi­

cient estimated bandwidth. Allowing lower CoS clients to maintain queue fullness through 

aggressive downloading circumvents the initial up-switch constraint. Given the random na­

ture of networks, there is always a non-zero probability that a burst of packets may cause 

a bandwidth over-estimation, resulting in an unwarranted up-switch. 

To address the over aggressive successive segment download concern, we include a partial 

backoff after successful download which we refer to as the success backoff 6+. For the success 

backoff, we did not want to use the strict L — Sc, as that would remove flexibility and force 

under-utilization of the network. A logical alternative would be to use a delay of ac - 8C, 

forcing the client to wait at least until the end of its abort time window. This, however, 

can still result in rather aggressive request rates. It seems prudent to at least prevent a 

given client from impinging on the next higher CoS, so we added an additional ^ factor, 

to maintain the inter-CoS timeout interval defined in Equation 5.3. One final constraint, 

however was that it does not make sense to allow the success backoff to cause requests to 

move out beyond the segment duration L, i.e., the highest CoS should not be delaying, so 
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for practical reasons, we added the following constraints to the success backoff mapping 

function: 

To prevent client synchronization, we include two randomization features into our rate 

adaptation scheme: random up-switch initiation with latching to smooth out access to 

excess capacity and a progressively increasing random backoff to prevent congestion when 

a client experiences successive empty queue conditions. 

5.3.1 Random Up-switch Initiation 

Because of the discrete intervals between bitrates, fixed ac values can cause under-utilization 

of the network, if the intervals between the bitrates are large. For an up-switch to take place, 

we can see that there must be excess bandwidth of (&i+i — h) • Cw, where Cw is the number 

of clients in class w, before the entire class can initiate an up-switch. To allow clients within 

a CoS to incrementally take advantage of excess capacity, we add random jitter to the ac 

value to more evenly distribute up-switch requests. Equation 5.7 augments the calculation 

of ac (from Equation 5.3) to include the random jitter. We select a uniformly distributed 

random value 7C in the range [0, pp], where ^ corresponds to the inter-CoS interval used 

by ac in Equation 5.3. Maintaining the inter-CoS boundary when selecting 7 prevents class 

priority inversion. 

( 

0, L <ac L <ac 

F[wc^Pt\ : jac-5c, L<ac+fo 

<$c + ^71 L --> ac + 

(5.5) 

7C = RAND (5.6) 

UJ 
F[wc ->• ac] : L • ^ + 7C (5.7) 

The purpose of the random up-switch initiation credit 7C is to address the condition 

where the excess network capacity E is greater than the bandwidth needed for one client to 
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up-switch, but less than the bandwidth needed for all clients to up-switch, i.e., (6j+i —bi) < 

E < (bi+i-bi)-Cw. The random value gives each client within the CoS an equal probability 

of acquiring some of the excess bandwidth. An issue arises, however, when the 7C value is 

not consistent and causes the client to oscillate between bitrates. Bitrate thrashing results 

in an increase in badput which leads to a decrease in goodput. To address this issue, we 

introduced a latching function, whereby the client uses the same jc value until an abort 

occurs. 

5.3.2 Random Backoff 

When an empty queue condition occurs and the client is at the lowest bitrate, continued 

download failures imply a serious network issue. In such cases, continued segment download 

attempts will only compound the network issue and reduce goodput. To address this, we 

apply a CoS-weighted progressively increasing backoff scheme. Equation 5.8 augments the 

calculation of /3C (from Equation 5.4) to include the progressively increasing backoff. We 

select a uniformly distributed random value in the range [0,/xc • {W — wc + 1)], where \ic is 

the consecutive empty queue condition counter and (W — wc + 1) is the CoS weight. 

F[wc -> /?c] : (L - ac) + L • RAND(nc • {W - wc + 1)) (5.8) 

At this point, we also need to take into consideration the random up-switch initiation 

value 7c, described in the previous section. Because the base /9C mapping component for 

aborts: (L — ac), contains ac, and ac contains the random up-switch initiation value jc, 

0c needs to now compensate for any badput caused by the 7C overage. We rectify this by 

adding in an additional 2 • % into Equation 5.9: 

F[wc (3C] '• (L - ac) + 2 • 7C + L • RAND(nc -(W -wc + 1)) (5.9) 

One of the 7C values added in is to offset the 7C component of ac. The other 7C value that 

is added in is a penalty for consuming excess bandwidth prior to the abort. The abort will 
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have occurred after waiting and downloading for an additional 7C seconds beyond the CoS 

limit. We allow the other clients to reclaim that bandwidth by enforcing the penalty. 

5.4 Rate Adaptation Callback Procedures 

Using the down-switch and up-switch rules defined above, we can specify the basic rate 

adaptation algorithm procedures, as shown in Procedures 5.1-5.5. Procedure 5.1 is a simple 

callback function which sets a download abort timer at the start of a new segment download 

and selects a new random up-switch initiation credit. 

Procedure 5.1 SegmentDownloadStartQ 

inputs 
c €  { 0 . . . C - 1 }  

do 
abortTimer •<— ac 

if 7C = 0 then 
7c <- RAND (£) 

end if 

Procedure 5.2 SegmentDownloadComplete() 

inputs 
c G {0... C — 1} 

do 
Qc <lc + 1 

abortTimer <- 0 
if 1c = Q then 

if • Sc < ac then 
&»+i 

end if 
else 

backoff Timer <— /?+ 
end if 

Procedure 5.2 shows the segment download completion callback. When a segment down­

load completes successfully, the queue occupancy is incremented and the rate adaptation 



94 

algorithm checks to see if an up-switch is warranted, i.e., it checks to see if the new segment 

causes the queue to fill and if the current bandwidth could support the next higher bitrate. 

If an up-switch is warranted, the client bitrate is updated for the next download. Otherwise, 

if the queue is not yet full, the algorithm sets the success backoff timer before beginning 

download of the next segment. 

Procedure 5.3 AbartTimeoutExpiredQ 

inputs 
c 6 {0... C — 1} 

do 
AbortCurrentDownload(c) 
7c <- 0 
i f  &£_!  >0  then 

<" K-x 
end if 
backoffTimer <— (3C 

Procedure 5.3 shows the abort timeout expiration callback. If the segment download 

abort timer set in Procedure 5.1 expires, implying that Sc > ac, then the current segment 

download is aborted, the random up-switch initiation credit is reset, a bitrate down-switch 

is immediately initiated, and a backoff timer is set, to pace the start of the next segment 

download. In the case where the client is not already at the lowest bitrate, the backoff 

timer simply waits for a per-segment backoff period, in the hope that lowering the bitrate 

will have a sufficient impact. However, in the case where a lower bitrate is not available, 

the backoff timer uses a progressively increasing backoff scheme. 

Procedure 5.4 shows the segment playout completion callback. When a segment com­

pletes playout, the queue is decremented making room for a new segment. Unlike other rate 

adaptation evaluations which assume infinite player buffer sizes, we track the segment-based 

queue length so that we can properly model inter-client distribution of burst throughput 

capacity, which is highlighted in our results. After draining the oldest segment from the 

queue, a queue empty check is performed. If the segment drained was the last segment and 

a download is currently active, an abort timeout is immediately triggered, forcing a bitrate 
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Procedure 5.4 SegmentPlayoutComplete() 

inputs 
c € {0... C — 1} 

do 
q c < - q c -  1  
if qc = 0 then 

if abortTimer ^ 0 then 
AbortTimeoutExpired(c) 

end if 
else if qc = Q - 1 then 

StartNextDownload(c) 
end if 

down-switch and backoff as described in Procedure 5.3. Otherwise, if the segment drained 

causes the queue to no longer be full, the algorithm immediately begins download of the 

next segment. 

Procedure 5.5 Backoff Timer ExpiredQ 
inputs 

c e  { 0 . . . C - 1 }  
do 

backoff Timer <- 0 
StartNextDownload(c) 

Finally, Procedure 5.5 shows the backoff timer expiration callback. Whenever a segment 

abort or empty queue condition occurs, the backoff timer is set to help reduce congestion in 

the network. When the backoff timer expires, the algorithm immediately begins download 

of the next segment. 

5.5 Rate Distribution Numerical Estimation 

To model the steady-state distribution of bandwidth between classes of service, we developed 

the function G(x) to determine the discrete target bitrate for a given CoS. The function 

G{x), shown in Equation 5.10, applies the bitrate floor function to the average bandwidth 

per client function g(x). The bitrate floor function selects the highest bitrate b' that does 



not exceed the calculated average bandwidth, i.e., 3i & 0. 

g(x) Abj >bi=> bj > g(x). 
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1 :bi < 

G{x) = [5(X )J6 (5.10) 

The average bandwidth per client function g(x), shown in Equation 5.12, starts with 

the weighted average bandwidth per client ^ where ^ corresponds to the ac weighting 

defined in Equation 5.3, and adds to that, the unused bandwidth of all lower classes of 

service. The bandwidth reclamation function g'(x), shown in Equation 5.11, normalizes the 

unused average bandwidth (1 — A) • by to distribute it across only those clients 
2-ij=i+l j 

N U.. Cj 
-j=i+ 

in higher classes of service. 

£—1 /-l jr_\ N_ ri 

i=0 2L,j=i+1 

9(x) = 
W " (^+s , /(a:))» x>0 

x = 0 

(5.12) 

Because the bandwidth reclamation function g'(x) also applies the weighting condition 

(1 — ^-), excess unused bandwidth will still exist in the network. Applying the random jitter 

to initiate rate up-switches helps to utilize this excess capacity, however, the random nature 

of its distribution makes it hard to quantify numerically. Our simulation results verify the 

numerical results with deterministic up-switches and then show the throughput benefits of 

applying random up-switches. 

5.6 Multi-Client Rate Adaptation Simulation Environment 

In order to accurately model the network interactions of HTTP adaptive streaming clients, 

we use a network model where the network capacity N is divided into packet chunks of 

size P, distributed randomly between actively downloading clients in each one second time 

quanta. Though our rate adaptation algorithm works at the segment level, the ability of 
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the network model to accurately reflect segment completion is a critical component. If at 

any point there are no actively downloading clients, because each client is either backing 

off or has a full queue, then the remaining unallocated bandwidth for that time quanta is 

marked as unused. 

Procedure 5.6 describes the simulation methodology, where given a simulation duration 

T, a fixed number of clients C, a fixed network capacity N, and a fixed network packet size 

P, the simulator loops through each time quanta and performs per-client upkeep operations, 

as well as distributes download bandwidth on a per-packet basis. Each client is modeled 

with a segment drain counter dc measured in seconds, and a segment fill counter fc measured 

in bits. For each time quanta, drain counters are updated and segment playout completion 

callbacks are triggered as necessary. For each network packet, a fill counter is updated and 

segment download completion callbacks are triggered as necessary. The abort timeout is 

also checked in the network packet loop. This allows 8C to achieve a sub-second resolution, 

for more precise modeling. The simulation keeps track of network usage statistics for unused 

bandwidth, goodput, and badput (bandwidth wasted on aborted segment downloads). 

5.6.1 Simulation Configuration 

For the results presented in this section, we use a fixed number of clients C = 30, the 

standard HLS target segment duration of L = 10 seconds, and the Apple suggested stan­

dard definition bitrates of: {150,240,440,640,1240} [97]. We use the Apple recommended 

bitrates given their status as the de facto standard. As mentioned previously, the Apple 

recommended bitrates are not evenly distributed, nor are they distributed in any mathe­

matically uniform manner. Rate switch inflection points are directly affected by the distri­

bution of bitrate intervals, as the bitrate interval directly impacts the up-switch bandwidth 

requirement (6t+i - 6t) • Cw. 

For each test case, we ran simulations, varying the network capacity over the range 

[500 : 40000] kbps, using increments of 500 kbps. We chose the range [500 : 40000] so 

that we could evaluate both the high and low edge conditions, i.e., where ^ < bo and 
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Procedure 5.6 Network Simulation Model 

unused«— 0 
goodput <— 0 
badput «- 0 
t i— 0 
while t < T do 

for all c € 0... C - 1 do 
if qc i=- 0 then 

dc ^— dc + 1 
if dc mod L = 0 then 

Segment Play outComplete(c) 
end if 

end if 
if backoff Timer 0 then 

backoff Timer «- backoffTimer — 1 
if backoffTimer = 0 then 

BackoffT imerExpired(c) 
end if 

end if 
end for 
n « —  0  
while n < N do 

if  Vc €  0 . . .  C — 1 : qc = Q V backoffTimer ^ 0 then 
unused <- unused + (N -n) 
n <— N 

else 
c«- RAND(C') 
fc «— fc + P 
if fc>tfL then 

goodput <— goodput + fc 

fc*~ 0 
SegmentDownloadComplete(c) 

else if Sc > ac then 
badput badput + fc 

fc+~ 0 
AbortT imeoutExpired(c) 

end if 
n i— n-\- P 

end if 
end while 
t 4— t -f- 1 

end while 
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where > bs-i- Each simulation was run for T = 100000 seconds. The simulation 

period of 100000 seconds (« 27.78 hours) is more than sufficient for achieving a steady 

state condition from which to evaluate the rate adaptation algorithm's performance. In 

all cases, we start each client with a full queue, i.e., qc = Q, to simulate a "good" steady 

state starting condition. In most cases, we also start each client at the highest bitrate, i.e., 

bf — bs-i- The exceptions are the numerical estimation case, where we start each client at 

the estimated bitrate, i.e., bc
{ = G(wc), and the bounded manifest file case where we start 

each client at the maximum bitrate for that client, i.e., 6? = bB-i~w+wc-

5.6.2 Simulation Evaluation Metrics 

We use three primary metrics to evaluate network performance: 

• Throughput: comparing goodput vs. badput vs. unused bandwidth at different 

network capacities. 

• Average client bitrate: comparing the average bitrate of clients within a given CoS, 

at different network capacities. 

• Average number of rate switches: comparing the average number of rate switches per 

client, within a given CoS, at different network capacities. 

Using these metrics, we can evaluate the effectiveness of our rate adaptation algorithm 

to implement CoS differentiation and compare it to other methods for implementing CoS 

differentiation. 

5.7 Multi-Client Rate Adaptation Simulation Results 

Using the methodology described above, we ran various simulations with different numbers 

of classes of service, W G {1,3,5}, to verify the basic functionality of our scheme. We also 

performed a series of experiments to show the incremental effects of the different features 

that were added to the base scheme. We then compared the simulation results for our 
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rate adaptation algorithm implementation, with our numerical estimates and an alternate 

manifest-based CoS enforcement scheme. The following sections provide a view of the 

efficiency of the existing algorithm, as well as opportunities for customization and further 

tuning. 

5.7.1 Multi-Client Rate Adaptation CoS Differentiation 

Our first test was to confirm that CoS differentiation could really be achieved through the 

intelligent abort timeout mechanism defined in our rate adaptation algorithm. For this 

comparison, we performed test runs with W = 1, which corresponds to a typical group of 

non-CoS-aware clients, W = 3, which corresponds to a non-atypical even distribution of 

clients across three classes of service ("Gold", "Silver", and "Bronze"), and W = 5, which 

represents an even distribution of clients across five classes of service ("Gold", "Silver", 

"Bronze", "Stone", and "Wood"). In all three test runs, random backoff and random up-

switch initiation with latching were enabled. 

Figures 5-1 (a)-(c) show the average bitrate played out by clients within a given CoS, 

for the W = 1, W = 3, and W = 5 cases, respectively. The encoded video bitrates are 

shown as dotted horizontal lines, for reference. The equal-share distributed (ESD) bitrate 

of £r is also plotted, as a reference point for unconditional fair access. In Figure 5-1 (a), 

the single CoS clients compete for bandwidth, each with equal priority. As expected, the 

average bitrates asymptotically approach the ESD line as it crosses each encoded bitrate. 

We refer to these points as the encoded bitrate inflection points, i.e., where ^ = 6*. 

In Figures 5-1 (b) and (c), we can see that the average bitrates for the different classes 

of service are clearly differentiated. The gold level clients are able to acquire more than 

their equal share, as can be seen by the gold plot being consistently above the ESD line. 

In the 5 CoS case, silver level clients also tend to get more than their equal share, though, 

in general, less than gold level subscribers. To compensate, the other classes of service get 

less than an equal share. Bronze, stone, and wood level clients never reach the ESD fine, 

and are not able to attain bitrates higher than the next higher class of service. Silver level 
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Figure 5-1: Average client bitrate for: (a) single Cos (W = 1), (b) multiple CoS (W = 3), 

and (c) multiple CoS (W = 5). 
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clients, in general get less bandwidth than gold level clients. Bronze level clients, in general 

get less bandwidth than silver level clients. Stone level clients, in general get less bandwidth 

than bronze level clients. Wood level clients, in general get less bandwidth than stone level 

clients. Lower CoS clients are still able to attain higher bitrates, they just require higher 

levels of excess bandwidth availability before they may do so. 

As we have discussed, our download abort scheme does result in some amount of excess 

capacity being unused, which we will see in Figures 5-2 (a)-(c). As such, any client, of 

any CoS, may gain access to that excess capacity. The strict interval timeouts and backoff 

schemes are designed to prevent priority inversion. However, there is always a non-zero 

probability that a lower CoS client can find gaps in the segment downloads through which 

it can successfully download higher bitrate content. We can see such points in Figure 5-

1 (c). Continued investigation into enforcement of excess bandwidth allocations provides 

an interesting topic for future research. 

Figures 5-2 (a)-(c) show the network throughput for the W  =  1, W  =  3, and W  =  

5 cases, respectively. In the single CoS case, shown in Figure 5-2 (a), we can see that 

goodput is very high, though some badput does exist between bitrate inflection points. 

Increased competition for network resources results in segment download aborts when the 

ESD bitrate does not match an encoded video bitrate. In the multiple CoS cases, shown in 

Figures 5-2 (b) and (c), we can see fairly good utilization, though, under-utilization does 

occur when lower classes of service are yet unable to switch to the next higher bitrate. 

This is exacerbated by the super-linear increases in the intervals between bitrates, as larger 

amounts of excess capacity are required before up-switches can occur. 

Though we show both the W  —  3 and W  =  5 cases to demonstrate the effectiveness of 

abort timeouts, it should be noted that large W values are not necessarily practical. Existing 

network protocols, e.g., Ethernet, MPLS, and TCP, use three bit fields for signaling priority. 

With respect to segment download aborts and our linear mapping of abort timeouts to CoS 

(see Equation 5.3), a large W value limits the elasticity of the time range, especially with 

smaller segment durations L. Use of alternate abort timeout mapping schemes, as well as 
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Figure 5-2: Network throughput for: (a) single CoS, (b) multiple CoS W = 3, and (c) 

multiple CoS W = 5. 
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overlapping abort timeout ranges are another interesting topic for future research. 

5.7.2 Random Backoff and Up-switch Initiation Performance 

In our rate adaptation algorithm, we discussed two randomization features: random backoff 

and random up-switch initiation, with and without latching. The random backoff was 

designed to help reduce congestion in low network capacity conditions where empty queue 

conditions are prevalent. The random up-switch initiation was designed to help increase 

utilization in high network capacity conditions where large inter-bitrate gaps require a 

lot of excess capacity before an entire CoS can increase their bitrate. Latching was also 

incorporated with random up-switch initiation to prevent bitrate thrashing. To show the 

impact of each of these features, we performed multiple simulations, progressively adding 

on features. We started with no random backoff and no random up-switch initiation, then 

added random backoff, then added random up-switch with no latching, and finally added 

random up-switch with latching. Figures 5-3 (a)-(d) show the overall network utilization 

as a percentage, for the progression of the four scenarios, respectively, in the W — 3 case. 

Figures 5-4 (a)-(d) show the overall network utilization as a percentage, for same four 

scenario progression, in the W = 5 case. 

In Figures 5-3 (a) and 5-4 (a), we can see that at the low end of the network capacity 

spectrum there is 100% badput as all clients compete for bandwidth, but none are able to 

complete any downloads. At the high end of the network capacity spectrum in Figures 5-

3 (a) and 5-4 (a), there is a lot of unused bandwidth, as there is not enough excess bandwidth 

for an entire CoS to up-switch to the next bitrate. With Figures 5-3 (b) and 5-4 (b), the 

addition of random backoff clearly helps the low end utilization by reducing congestion. 

There are no longer any cases of 100% badput, and goodput quickly rises to ~80%. 

In Tables 5.2 and 5.3 we can see comparisons of the overall throughput across all the 

simulated network capacities. The first row of each table shows the average goodput, 

badput, and unused bandwidth percentages which correspond to the data show in Figures 5-

3 (a) and 5-4 (a). The subsequent rows show the average goodput, badput, and unused 
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Figure 5-3: Network throughput percentage for: (a) no random backoff, random up-switch 

initiation, or latching, (b) with random backoff, but no random up-switch initiation or 

latching, (c) with random backoff and random up-switch initiation, but no latching, and 

(d) with random backoff, random up-switch initiation, and latching, W — 3. 
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Figure 5-4: Network throughput percentage for: (a) no random backoff, random up-switch 

initiation, or latching, (b) with random backoff, but no random up-switch initiation or 

latching, (c) with random backoff and random up-switch initiation, but no latching, and 

(d) with random backoff, random up-switch initiation, and latching, W = 5. 
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Goodput Badput Unused 
no random backoff, 
no random up-switch 
initiation, and no latching 65.14 22.64 12.22 
with random backoff, 
but no random up-switch 
initiation, and no latching 76.88 (+18.03%) 10.23 (-54.81%) 12.89 (+5.48%) 
with random backoff, 
with random up-switch 
initiation, but no latching 88.42 (+35.75%) 8.65 (-61.81%) 2.93 (-76.01%) 
with random backoff, 
with random up-switch 
initiation, and with latching 91.02 (+39.74%) 1.89 (-91.65%) 7.09 (-41.99%) 

Table 5.2: Throughput percentage comparison for random backoff, random up-switch initi­
ation, and latching, W = 3. 

bandwidth percentages, as well as the percentage differences compared to the first row, i.e., 

the comparison of Figures 5-3 (b)-(d) and 5-4 (b)-(d) to Figures 5-3 (a) and 5-4 (a). We 

can see that the addition of random backoff improves goodput percentage by 18% and 22%, 

while reducing badput percentages by almost 55% and 60%, for the W = 3 and W = 5 

cases, respectively. 

In Figures 5-3 (c) and 5-4 (c), with the further addition of random up-switch initiation 

without latching, we can see a significant improvement in the mid-range goodput, as well 

as better utilization at the high end of the network capacity spectrum. We can see from 

Tables 5.2 and 5.3 that with random up-switch initiation goodput percentage increases an 

additional 17% and 9% beyond the gains observed from random backoff, in the W = 3 and 

W = 5 cases, respectively. In some cases, however, goodput comes at the cost of higher 

badput. Though, overall, the average badput percentage is reduced with random up-switch 

initiation, it is accompanied by a significant reduction in unused bandwidth which reduces 

the elasticity of the network. The selection of new random 7C values for each segment 

introduces the possibility of bitrate thrash, where a given 7C value is sufficient for up-

switching, but a subsequent 7C value is no longer sufficient for sustaining the higher bitrate. 

Latching provides a solution to the thrashing issue, as can be seen in Figures 5-3 (d) and 5-
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Goodput Badput Unused 
no random backoff, 
no random up-switch 
initiation, and no latching 65.79 23.87 10.34 
with random backoff, 
but no random up-switch 
initiation, and no latching 80.29 (+22.03%) 9.58 (-59.89%) 10.14 (-1.93%) 
with random backoff, 
with random up-switch 
initiation, but no latching 86.67 (+31.73%) 8.21 (-65.61%) 5.12 (-50.43%) 
with random backoff, 
with random up-switch 
initiation, and with latching 85.83 (+30.46%) 2.48 (-89.59%) 11.68 (+13.02%) 

Table 5.3: Throughput percentage comparison for random backoff, random up-switch initi­
ation, and latching, W = 5. 

4 (d). Latching reduces the number of aborts, decreasing badput percentage and improv­

ing goodput percentage over the entire network capacity spectrum. The last rows of Tar 

bles 5.2 and 5.3 show a 90% reduction in badput percentage with the use of latching with 

random up-switch initiation. We can also see that the unused bandwidth percentage more 

than doubles when adding latching to random up-switch initiation. In the W = 5 case, the 

goodput percentage actually decreases slightly due to the latching of sub-optimal random 

7C values. 

Figures 5-3 (c) and (d), as well as Figures 5-4 (c) and (d), show the trade of between ag­

gressive up-switching and the use of latching to prevent bitrate thrashing. For the purposes 

o f  t h i s  d i s c u s s i o n ,  w e  h a v e  c h o s e n  a  v e r y  s i m p l e  r a n d o m  u p - s w i t c h  f o r m u l a ,  i . e . ,  R A N D  ( ^ ) ,  

which maintains the CoS boundary, and a very simple latching model, i.e., hold until abort, 

to demonstrate the effect of these rate adaptation algorithm features. Further investigation 

into the impact of random value distributions is an interesting area for future research. 

5.7.3 Numerical Estimation Comparison 

In order to better simulate real-world network uncertainty, we introduced randomization 

into the bandwidth distribution, in our simulations. Furthermore, to prevent client syn-
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Figure 5-5: Average client bitrate for: (a) round robin bandwidth distribution vs. (b) G ( x )  

numerical estimate, W = 3. 

chronization, we introduced random jitter to our rate adaptation algorithm. To confirm 

that our numerical estimation closely approximates our rate adaptation algorithm imple­

mentation, we added a deterministic bandwidth distribution mode to our simulator which 

allocates bandwidth uniformly between active clients. We compared the W = 3 determin­

istic simulation results with the numerical estimate. In the deterministic simulation case, 

both random backoff and random up-switch initiation were disabled. 

Figures 5-5 (a) and (b) show the average bitrate played out by clients for the deter-

ministically simulated and numerically estimated W = 3 cases, respectively. We can see 

from Figure 5-5 (b), that the numerical estimate G(x) generates a uniform step function, 

as expected. The up-switch points in the deterministic simulation results, shown in Fig­

ure 5-5 (a), correspond fairly well to the numerical estimate up-switch points shown in 

Figure 5-5 (b). The primary exception is in the low network capacity cases, where com­

petition for bandwidth causes aborts and high badput prevents clients from playing. The 
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Figure 5-6: Average client bitrate for: (a) round robin bandwidth distribution vs. (b) G ( x )  

numerical estimate, W = 5. 

bronze level clients have no clear idea of when sufficient bandwidth exists, so they attempt 

to retrieve segments even when only partial playback is possible. In this situation, a band­

width capping scheme, as described in Chapter 4 would be a good solution, to be used 

in combination with the CoS-aware rate adaptation scheme, to provide access control and 

prevent lower CoS download attempts. 

Figures 5-6 (a) and (b) show the average bitrate played out by clients for the deter-

ministically simulated and numerically estimated W = 5 cases, respectively. Just as with 

Figure 5-5 (b), we can see the expected step function in Figure 5-6 (b), generated by the nu­

merical estimate G(x). Again, the up-switch points in the deterministic simulation results, 

shown in Figure 5-6 (a), correspond fairly well to the numerical estimate up-switch points 

shown in Figure 5-6 (b). Similar to the W = 3 case, the low network capacity cases do not 

correlate as well, due to the competition for bandwidth and the lack of access control on 

the lowest CoS, in this case wood. 
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5.7.4 Manifest-based CoS Differentiation Comparison 

In evaluating abort timeout-based CoS differentiation, we compare our scheme to an existing 

methods for implementing CoS differentiation. The only client-side method of performing 

CoS differentiation, that we are aware of, is to limit the bitrates advertised in the manifest 

file. The obvious disadvantage to such an approach is the inability to react dynamically 

to changes in network conditions, specifically, increases in network capacity. We start by 

simulating unbounded manifest files with no CoS differentiation, then show the effect of 

using a bounded manifest file, and finally compare it with our download abort-based CoS 

enforcement scheme. Figures 5-7 (a)-(c) show the distribution of goodput between classes 

of service for each of the three scenarios, respectively, in the W = 3 case. Figures 5-

8 (a)-(c) show the show distribution of goodput between classes of service for the same 

three scenarios, but for the W = 5 case. In all six test runs, random backoff and random 

up-switch initiation with latching were enabled. 

Figure 5-7 (a) shows a simulation with three groups of clients: A, B, and C, all with the 

same CoS. As expected, the distribution of bandwidth between clients, regardless of CoS, 

is fairly even. In Figure 5-7 (b), the three groups of clients are assigned different classes 

of service and special manifest files are generated for clients of each CoS. The different 

manifest files advertise a different set of bitrates, where the maximum bitrate advertised 

in the manifest file bmax = bs-i-w+wc *s successively lower for each CoS. We can see 

that as each CoS hits its maximum bitrate, the goodput levels off and under-utilization of 

the network occurs. Figure 5-7 (c), shows the bandwidth distribution for our intelligent 

download abort scheme. We can clearly see the differentiation in bandwidth distribution 

between the three classes of service, however, there is no hard cap on the total network 

throughput, as in the bounded manifest case. Our scheme, shown in Figure 5-7 (c), is able 

to provide CoS differentiation, unlike the single CoS case, shown in Figure 5-7 (a), and it 

provides better network utilization than the bounded manifest file case, shown in Figure 5-

7 b. Table 5.4 shows the aggregate utilization percentages across all network capacities 

corresponding to Figures 5-7 (a)-(c). We can see that the single CoS case clearly has 
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Figure 5-7: Per-CoS goodput distribution for: (a) single CoS unbounded manifest files, (b) 

per-CoS bounded manifest files, and (c) multiple CoS unbounded manifest files, W = 3. 
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Bandwidth Usage 
single CoS, unbounded manifest file 97.36% 
per-CoS bounded manifest file 81.19% 
multiple CoS, unbounded manifest file 88.96% 

Table 5.4: Bandwidth usage percentage comparison for single CoS unbounded manifest 
files, per-CoS bounded manifest files, and multiple CoS unbounded manifest files, W — 3. 

Bandwidth Usage 
single CoS, unbounded manifest file 94.89% 
per-CoS bounded manifest file 63.96% 
multiple CoS, unbounded manifest file 81.77% 

Table 5.5: Bandwidth usage percentage comparison for single CoS unbounded manifest 
files, per-CoS bounded manifest files, and multiple CoS unbounded manifest files, W = 5. 

the best overall utilization percentage, but that our approach provides a higher utilization 

percentage than the bounded manifest file case, providing access to excess capacity to lower 

CoS clients, while still enforcing CoS differentiation. 

Figure 5-8 (a) shows a simulation with five groups of clients: A, B, C, D, and E, all with 

the same CoS. As expected, the distribution of bandwidth between clients, regardless of CoS, 

is fairly even. In Figure 5-8 (b), just as in Figure 5-7 (b), the each group of clients is assigned 

a different CoS and per-CoS manifest files are provided to clients of each group. Each CoS 

manifest file advertises a successively lower maximum bitrate such that bmax = bs-i-w+wc-

We can again see that as each CoS hits its maximum bitrate, the goodput flattens and under-

utilization of the network occurs. Figure 5-8 (c), shows the bandwidth distribution for our 

intelligent download abort scheme. As with Figure 5-7 (c), Figure 5-8 (c) clearly shows 

the differentiation in bandwidth distribution between the five classes of service, unlike the 

single CoS case shown in Figure 5-8 (a), and exhibits no hard cap on the total network 

throughput, unlike the bounded manifest case shown in Figure 5-7 (b). Table 5.5 shows the 

aggregate utilization percentages across all network capacities corresponding to Figures 5-

8 (a)-(c). We can clearly see that our approach provides a significantly higher utilization 

percentage than the bounded manifest file case, while continuing to CoS differentiation. 
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Figure 5-8: Per-CoS goodput distribution for: (a) single CoS unbounded manifest files, (b) 

per-CoS bounded manifest files, and (c) multiple CoS unbounded manifest files, W = 5. 
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Figure 5-9: Average number of client rate switches per CoS for: (a) single CoS vs. multiple 

CoS W = 3, and (b) single CoS vs. multiple CoS W = 5. 

5.7.5 Bitrate Consistency Comparison 

Beyond the ability to provided differentiated CoS, our rate adaptation algorithm can provide 

improved bitrate consistency. Reducing bitrate thrashing decreases badput and can improve 

playback continuity. Figures 5-9 (a) and (b) show the average number of rate switches per 

client for each CoS in the W = 3 and W = 5 multiple CoS cases, respectively, and compares 

them to the single W = 1 CoS case. In the majority of cases, bitrate switches occur less 

than 6% of the time, where the 100000 second runtime results in 10000 segment requests 

and the average number of rate switches being less than 600 is less than 6%. Though the 

multiple CoS cases show elevated (~10%) rate switch counts at the low end of the network 

capacity spectrum, the performance outside of the low bandwidth corner case shows much 

better consistency than the single CoS case. As expected, the rate switch spikes directly 

correlate to the visible badput in Figures 5-2 (a)-(c). 
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Examining the data in Figures 5-9 (a) and (b), we can see that in the multiple CoS 

cases, bitrate switches are most prevalent when there is not yet clear bitrate differentiation 

between classes, i.e., at low network capacity, before all clients have stabilized above the 

lowest bitrate. The rate switches are dominated by the gold CoS, due to it having the most 

aggressive rate adaptation parameters. At higher network capacities, latching prevents 

excessive bitrate thrashing, in the multiple CoS cases. However, for the single CoS case, 

because all clients have equal access to bandwidth, bitrate thrashing is more prevalent at 

encoded bitrate inflection points, as each client competes to be the first to up-switch to the 

next bitrate. The lack of excess bandwidth, due to the lack of success and abort backoffs 

in the single CoS case, prevents latching from having the same rate switch reduction effects 

as in the multiple CoS cases. 

5.8 Network Throughput Dependency 

Unlike the network proxy case described in Chapter 4, which has access to network capacity 

information, individual clients rely on segment download statistics to estimate the network 

throughput available to them. In the rate adaptation algorithm defined above, the estimated 

throughput is used in the up-switch decision making process. Throughput is also he primary 

factor in the download abort decision making process. As such, traditional per-packet 

traffic shaping schemes, along with server-side schemes like the one detailed in Chapter 2, 

can affect client rate selection decisions. While network-level traffic shaping rarely isolates 

individual streaming sessions, especially in the case of HTTP adaptive streaming, where 

sessions include many disjoint TCP connections, higher level intelligent devices like the 

network proxies described in Chapter 4 could be used to modify throughput, using pacing 

schemes similar to the ones used by the streaming servers described in Chapter 2. An 

HTTP adaptive streaming session-based traffic shaper could be used to influence client 

rate selection decisions, i.e., reducing throughput to induce down-switches or increasing 

throughput to induce up-switches. Further investigation into the use of delivery pacing to 

control client rate adaptation is another interesting area for future research. 
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5.9 Summary of Rate Adaptation Algorithm Contributions 

Though the development of the client rate adaptation architectures described in Chapter 3 

required implementation of a rate adaptation algorithm, a simple threshold-based algo­

rithm, somewhat biased to the greedy side, was more than sufficient for those needs. As 

we investigated CoS enforcement schemes with respect to the network proxy architecture 

discussed in Chapter 4, our focus began to shift toward the definition of a distributed CoS 

enforcement scheme. Concerned with the scalability of the centralized network proxy-based 

approach, we turned to the client to investigate what controls were available and began to 

investigate the influence of the rate adaptation algorithm. 

The first contribution of our client rate adaptation algorithm was the formal modeling of 

a rate adaptation algorithm that is fully discretized at a segment level, and completely sep­

arate from the lower layer network model. Our model enforces the separation of application 

layer controls from the transport layer information that is often hidden by different device 

OS platform APIs. In working with the various client architectures discussed in Chapter 3, 

it became clear that not only were TCP-based statistics unreliable for predicting bandwidth 

at the segment time scale, but, in most cases, TCP statistics were unavailable to external 

application developers. By defining an application callback architecture for our rate adap­

tation algorithm, we are able to abstract the networking and timer infrastructure, typically 

provided by the OS, out of the rate adaption model and into our generic network simulation 

model. While much of the research into HTTP adaptive streaming continues to focus on 

TCP-level optimizations, our segment-level treatment highlights the capabilities available 

at the segment time scale. 

As with the network proxy scenarios discussed in Chapter 4, we continued to focus 

on developing an infrastructure for managed OTT video delivery, with support for large 

numbers of unmanaged OTT clients. Using only parameters within the application's scope 

of control, we began to investigate fair bandwidth distribution using less greedy clients, but 

with the firm restriction that clients not be aware of and not have to communicate with 

other clients in the network. The second contribution of our rate adaptation algorithm 
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research was our ability to create a system of CoS-aware fair use OTT video streaming 

clients using only minor modifications to our basic segment-level rate adaptation scheme. 

We also investigated optimization techniques for reclaiming excess bandwidth while still 

maintaining CoS-based fair use enforcement. The third contribution comes from our multi-

client simulation environment which has allowed us to gain a much deeper understanding of 

the true impact of burst download interleaving, and has opened up an array of new research 

questions and opportunities with respect to segment-based network optimization. 



Chapter 6 

Conclusion 

For well over a decade, researchers have been investigating methods for enhancing the 

capabilities of the RTP streaming protocol to improve the content delivery reliability with 

the ultimate goal of improving the quality of the rendered content. The RTP protocol 

was defined with the specific intent of delivery real-time content. To minimize latency, 

content generated in real-time must be delivered just-in-time. Any content that is lost 

in transmission must be ignored as the stream must go on. With these constraints in 

mind, RTP was designed to use frame-based packetization and unreliable UDP transport 

to enable "graceful degradation", i.e., the ability to ignore lost frames. While graceful 

degradation is necessary for real-time content and offers advantages in extremely challenging 

networking environments, under normal circumstances RTP-based delivery simply creates 

the possibility for unnecessary degradation. Researchers have long regarded RTP as a one 

size fits all video delivery protocol, applying it equally to live and interactive real-time 

video, as well as VoD and time-shifted broadcast video. Though RTP is a capable video 

delivery protocol, it is not optimal in all cases. 

A large majority of consumers get their video from either a television provider (MSOs 

and MNOs) or over the Internet. In general, neither of these distribution mechanisms use 

RTP. MSOs and MNOs typically distribute content using MPEG2-TS over UDP. Though 

a standard exists for transporting MPEG-TS inside RTP over UDP [98], it is generally 

considered an unnecessary overhead [99]. For Internet-based video distribution, the for­

merly closed RTMP protocol [100] continues to be the dominant method for Web-based 

delivery distribution, while HTTP adaptive streaming protocols like HLS and Microsoft® 
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Silverlight™ Smooth Streaming are the preferred methods for mobile devices and OTT 

video delivery services. Where RTP uses graceful degradation to cope with network in­

terruptions, HTTP adaptive streaming relies on bitrate adaptation and playback buffer 

elasticity to deal with changes in network conditions without randomly discarding data. 

With the growing popularity of HTTP adaptive streaming technology, MSOs and MNOs 

have begun to migrate toward OTT video delivery, both as a way to lower operational ex­

penses, as well as a way to offer new services to their customers who have grown to expect 

content availability on their mobile devices. 

MSOs and MNOs are accustomed to having complete control over an entire network of 

managed devices. Each linear television channel is provisioned for bandwidth and multicast 

distribution over a QAM, while individual STBs and modems axe registered and provisioned 

for on-demand bandwidth requirements. Moving to an OTT model with unmanaged clients 

poses a significant issue for operators who wish to deliver their own "on-deck" (i.e., operator 

managed) services. For "off-deck" services (i.e. services not administered by the network 

operator), the operator simply sees a generic data connection. Traditional traffic manage­

ment techniques can be used to throttle individual clients. Because the service is off-deck, 

there is no concern about any impact to quality which may occur from rate limiting. With 

on-deck services, however, operators want to ensure high QoE so that customers will con­

tinue to pay for the service. In these on-deck cases, the ability to manage OTT delivery in 

a way that ensures high QoE is highly desirable. 

Our research has followed the evolution of HTTP-based content delivery, from our early 

work with HTTP streaming servers, through the development of our client rate adaptation 

architecture, to our network proxy-based traffic management schemes, and culminating with 

our distributed CoS enforcement scheme. Though we have surveyed a large portion of the 

prior work in the RTP space, we have approached HTTP-based content delivery with a 

clean slate. Taking the primary advantage of streaming delivery, i.e., pacing, and removing 

the primary disadvantage of streaming delivery, i.e., silent data loss, we embarked on a 

journey to understand the barriers to an efficient (i.e., paced), high quality (i.e., lossless), 



and manageable HTTP-based video delivery protocol. 
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6.1 Server Pacing 

We originally implemented our Zippy HTTP streaming server to provide a scalable option 

for server-paced progressive download and succeeded in providing better scalability than 

the de facto standard Apache HTTP server for video downloads. Our high concurrency 

architecture for serving long lived connections included session pacing for more even band­

width distribution, as well as intelligent bursting to help preload client playback buffers 

and to support client-side paced downloads. Though HTTP adaptive streaming is gener­

ally driven by client requests and an assumption that commodity HTTP servers will not 

perform pacing, it does not mean that server-side (or proxy-based) pacing has become ob­

solete. Pacing can still play a role in server and network scalability, there is just a new 

bounds on time scale for pacing delays. Where we went from zero pacing to pacing based 

on video bitrate, there is still a fair amount of middle ground in which to investigate the 

effects. Understanding the effects of limited pacing on HTTP adaptive bitrate clients may 

prove server-side (or proxy-based) pacing to be a viable tool for OTT video delivery client 

management. 

6.2 Client Rate Adaptation 

Our data proxy-based client rate adaptation architecture was developed to address the need 

for a common software architecture, that could be used across device and OS platforms, 

to implement different rate adaptation schemes and algorithms. The primary concern was 

the ability to test rate adaptation on client devices which did not natively support any 

of the existing HTTP adaptive streaming protocols (i.e., HLS or Smooth Streaming). We 

abstracted the generic components that all rate adaptation clients need, namely: an HTTP 

download module for retrieving segmented data, a data proxy module for interfacing with 

the native media player, and a control module for monitoring downloads, monitoring play­
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back, performing rate selection, and managing the interface to the application and viewer. 

Due to the widely disparate native media player interface support, the data proxy module 

was the least generic component. We were able to categorize four types of native media 

player interfaces: HTTP, RTSP, local file (byte-based) data source, and frame-based data 

source. The data proxy also encapsulated content decryption logic and support for a number 

of cipher algorithms, including: AES-128, RC4, HC-128, and fixed key. 

We developed two novel rate adaptation schemes to integrate with legacy media player 

interfaces. The first uses stitched media files to address media players that only understood 

legacy container formats, e.g., 3GP and MP4. Individual bitrate encodings are concate­

nated into a single stitched media file. Content retrieval is performed using HTTP Range 

GETs and rate adaptation is performed using seek operations to jump to an alternate en­

coding. The second uses RTP segment files to address media players that only supported 

the RTSP and RTP protocols. An RTP encapsulated stream is recorded and segmented for 

each encoding. The segmentation is similar to the HLS protocol, only the segment files con­

tain RTP and RTCP frames rather than MPEG2-TS data. Rate adaptation is performed 

transparently from the perspective of the player, similar to the other RTP stream splicing 

methods [101]. These two schemes use very different approaches to both content retrieval 

and rate switching. The stitched media file approach uses pseudo-segmentation (i.e., vir­

tual segment boundaries enforced in the HTTP Range requests), while the RTP segment 

approach uses separate physical files. The stitched media file also uses native media player 

controls to issue seek commands for rate switch, while the RTP segment approach simply 

switches encodings without notifying the media player at all. We can see from these im­

plementations the flexibility and versatility of the our client rate adaptation architecture. 

Having a variety of individual platform implementations provided us with both interesting 

data points on the magnitude of disparity between different devices and OS platforms, as 

well as an invaluable set of actual devices and platforms from which to test our network 

proxy architecture and our rate adaptation algorithms. 
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6.3 Network Proxy Bitrate Override 

Using the knowledge we gathered through the development of the Zippy HTTP streaming 

server and the numerous client rate adaptation architectures we turned our attention to an 

intelligent network proxy which could recognize and optimize HTTP adaptive streaming 

sessions. One of the unique considerations for detecting and monitoring HTTP adaptive 

streaming sessions is that each segment request is typically performed over a different TCP 

connection. Traditional mechanisms for classifying flows based on network 5-tuples (i.e., 

source IP address, destination IP address, source port, destination port, and protocol) does 

not work for HTTP adaptive streaming sessions. HTTP adaptive streaming session must 

be correlated based on the content which is being requested and the temporal proximity of 

the requests. Under normal playback conditions, a request for a given segment should be 

followed by a request for the subsequent segment (as defined by the manifest file) within 

L seconds, where L is the segment duration. The first step in creating an HTTP adaptive 

streaming session-aware network proxy is defining an algorithm for classifying sessions based 

on information gleaned from individual requests. Our scheme uses URI prefix information 

from the manifest files, coupled with client identifiers to correlate intrarsession requests. 

To optimize individual HTTP adaptive streaming sessions, we developed the concept of 

rate selection override, with the goal of optimizing overall network utilization and providing 

equal QoE to all users. We observed the greedy nature of clients causing congestion which 

impacted the QoE of all clients. Our goal was to eliminate excessive congestion caused by 

over-aggressive clients, while still being able to differentiate based on CoS. Our rate selection 

override scheme was based on the interchangeable nature of segment files in HLS, DASH, 

and our own RTP segment schemes. Given the knowledge about the available bitrates and 

segment locations (as defined in the manifest files), the network proxy is able to intercept 

requests and perform simple URL rewrites or HTTP 302 redirects to override the client 

bitrate selection. We implemented two modes: full override mode which hides all bitrate 

information from the client allowing the network proxy to make all rate selection decisions, 

and bandwidth capping mode which advertises all bitrates to the client allowing the client 
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to make rate selection decisions based on localized network conditions while the network 

proxy only overrides the selected bitrate if the network bandwidth cap has been exceeded. 

Both modes have valid deployment uses cases, but the generalized model for centralized 

traffic management coincides with the typical management practices of large scale network 

operators. Understanding the need for manageability in OTT video delivery services, our 

network proxy-based rate selection override architecture provides a basis for addressing 

those needs. 

6.4 Distributed CoS Enforcement 

Having successfully demonstrated the ability to perform CoS enforcement using a central­

ized network proxy-based approach, we set out to find a distributed method for enforcing 

CoS differentiation. Though P2P-based media player clients are known to implement dis­

covery methods and communicate with each other to acquire content and exchange network 

information, most typical media players are independent and do not rely on any inter-player 

coordination. Our objective was to define a distributed algorithm for providing fair access 

to network resources, on a CoS basis, that did not require individual clients to be aware of 

the existence of other clients or the specific network activities of other clients. We assume 

that each client is made aware of its CoS, and that each client is able to glean information 

about its own network resource allocation, but no other inputs from the operator, the net­

work, or the other clients would be available to the client. Client awareness of their own 

network resource availability is typically an inherent part of the rate adaptation algorithm 

as clients measure the download time of each segment to determine the sustainability of a 

given bitrate. Our approach was to weight the inferred bandwidth measurements in order 

to adjust the perceived network availability, relative to the CoS. 

We started by defining a segment-level rate adaptation model. Adhering to a segment-

level abstraction provides two benefits: it works within the client application's scope of 

control (i.e., not assuming control over low-level networking functions hidden by the OS), 

and it represents the proper time scale, relative to the client playback buffer, over which to 
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amortize bandwidth estimates. HTTP downloads are bursty, and bursts can occur at any 

time during a segment download. For frame-based schemes like RTP, where the minimum 

unit of granularity (i.e. a frame) is very small (on the order of one or tens of IP packets), 

instantaneous throughput measurements are a reasonable estimate of the network conditions 

that will be experienced by the next frame. However, with HTTP adaptive streaming, 

where the minimum unit of granularity is a complete segment (on the order of hundreds or 

thousands of IP packets), making rate adaptation decisions on the basis of instantaneous 

throughput measurements is less justifiable as instantaneous bandwidth measurements over 

the course of the entire segment download are likely to vary significantly. 

Using the segment level abstraction allowed us to recognize the value of segment down­

load aborts. Though other rate adaptation algorithms work at a segment level, they do not 

consider the necessity of the segment download abort [43]. Completing a download which is 

taking much longer than the segment duration is a losing effort, especially for live streams 

where the client will only fall further and further behind. This is an issue that we also dealt 

with in the Zippy HTTP streaming server, where falling behind required catch-up bursting. 

In the client rate adaptation algorithm case, the segment download abort allows the client 

to more aggressively apply "catch-up" bursting (i.e., download of a lower bitrate segment). 

In our standard rate adaptation algorithm, segment download abort timeouts are set to be 

equal to the segment duration. For class of service differentiation, we use more aggressive 

segment download abort timeouts for lower CoS clients. Whenever a segment download is 

terminated (either due to the segment download completing or a segment download abort 

occurring), a backoff (pacing) delay, relative to the CoS, is inserted before the next down­

load is initiated. A natural backoff (pacing) also occurs whenever a client's queue fills. The 

net effect is a limitation on the amortized bandwidth consumed by clients of a given CoS, 

without limiting the peak burst throughput. The backoff between downloads create pockets 

of network availability that allow high throughput bursts of which any client can take ad­

vantage, regardless of their CoS. The resultant interleaving of bursted segment downloads 

represents a more appropriate traffic pattern for multi-client HTTP adaptive streaming. 
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The strict distribution of bandwidth that results from using segment download aborts 

and inter-segment request backoffs can cause under-utilization of network resources when the 

intervals between bitrates are large. We introduce a random up-switch initiation technique 

which allows clients to be more aggressive in claiming excess bandwidth, but only up to the 

level of the next higher CoS (to prevent random priority inversion). Overly aggressive up-

switch attempts, however, can negatively impact all clients by increasing congestion, so we 

introduced random up-switch initiation value latching to slow the rate of aggression and help 

to find a network usage equilibrium point. Though other optimizations for various client 

and network scenarios undoubtedly exist, with our CoS differentiated segment-based rate 

adaptation algorithm and flexible network model, we have provided a basis for additional 

network usage optimization research. 

6.5 HTTP Adaptive Streaming 

Over the course of this research, we have had the opportunity to work with a variety of 

emerging and rapidly evolving technologies. We have witnessed and contributed to the 

launch of a new area of research, namely this new class of HTTP adaptive streaming video 

delivery protocols which break the mold of traditional RTP-based streaming. While our 

network proxy-based and distributed rate adaptation algorithm-based CoS differentiation 

schemes have enhanced our understanding of these new problem areas, many interesting 

questions remain. Using the foundation which we have laid out, we can continue to in­

vestigate the network implications of segment-based delivery, the paradigm shifts required 

to optimize throughput on segment time scales, the enhancements required to implement 

OTT client monitoring and management, and the trade-offs involved in optimizing rate 

adaptation algorithms. 



Bibliography 

[1] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee, "Hypertext transfer protocol - HTTP/1.1," Internet Engineering Task Force 
(IETF), RFC 2616, June 1999. 

[2] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP: a transport protocol 
for real-time applications," Internet Engineering Task Force (IETF), RFC 3550, July 
2003. 

[3] H. Schulzrinne, A. Rao, and R. Lanphier, "Real time streaming protocol (RTSP)," 
Internet Engineering Task Force (IETF), RFC 2326, April 1998. 

[4] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnson, J. Peterson, R. Sparks, 
M. Handley, and E. Schooler, "SIP: session initiation protocol," Internet Engineering 
Task Force (IETF), RFC 3261, June 2002. 

[5] C. Riede, A. Al-Hezmi, and T. Magedanz, "Session and media signaling for IPTV via 
IMS," in Proceedings of the 2008 ACM International Conference on Mobile Wireless 
Middleware, Operating Systems, and Applications (MOBILWARE 2008), February 
2008, pp. 20:1-20:6. 

[6] K. J. Ma, R. Bartos, and S. Bhatia, "Scalability of HTTP streaming with intelligent 
bursting," in Proceedings of the 2009 IEEE International Conference on Multimedia 
& Expo (ICME 2009), June 2009, pp. 798-801. 

[7] K. J. Ma, M. Li, A. Huang, and R. Bartos, "Video rate adaptation in mobile de­
vices via HTTP progressive download of stitched media files," IEEE Communications 
Letters, pp. 320-322, March 2011. 

[8] K. J. Ma, M. Mikhailov, and R. Bartos, "DRM optimization for stitched media file rate 
adaptation," in Proceedings of the 2011 IEEE International Conference on Multimedia 
& Expo (ICME 2011), July 2011. 

[9] B. Wang, J. Kurose, P. Shenoy, and D. Towsley, "Multimedia streaming via TCP: An 
analytic performance study," in Proceedings of the 2004 ACM Multimedia, October 
2004. 

[10] A. Goel, C. Krasic, and J. Walpole, "Low-latency adaptive streaming over TCP," 
ACM Transactions on Multimedia Computing Communications and Applications, 
vol. 4, no. 3, August 2008. 

[11] S. Tullimas, T. Nguyen, and R. Edgecomb, "Multimedia streaming using multiple 
TCP connections," ACM Transactions on Multimedia Computing Communications 
and Applications, vol. 2, no. 2, May 2008. 

[12] B. Wang, W. Wei, Z. Guo, and D. Towsley, "Multipath live streaming via TCP: 
Scheme, performance and benefits," ACM Transactions on Multimedia Computing 
Communications and Applications, vol. 5, no. 3, August 2009. 

[13] S. Sen, J. Rexford, and D. Towsley, "Proxy prefix caching for multimedia streams," 
in Proceedings of the 1999 IEEE International Conference on Computer Communi­
cations (InfoCom 1999), March 1999, pp. 1310-1319. 

127 



128 

K. Kalapriya and S. K. Nandy, "Throughput driven, highly available streaming stored 
playback video service over a peer-to-peer network," in Proceedings of the 2005 
IEEE International Conference on Advanced Information Networking and Applica­
tions (AINA 2005), March 2005, pp. 229-234. 

E. Kusmierek, Y. Dong, and D. H. C. Du, "Loopback: Exploiting collaborative caches 
for large scale streaming," IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 233-
242, April 2006. 

S. Deshpande and J. Noh, "P2TSS: Time-shifted and live streaming of video in peer-
to-peer systems," in Proceedings of the 2008 IEEE International Conference on Mul­
timedia & Expo (ICME 2008), June 2008, pp. 649-652. 

L. Shen, W. Tu, and E. Steinbach, "A flexible starting point based partial caching 
algorithm for video on demand," in Proceedings of the 2007 IEEE International Con­
ference on Multimedia & Expo (ICME 2007), July 2007, pp. 76-79. 

X. Li, W. Tu, and E. Steinbach, "Dynamic segment based proxy caching for video on 
demand," in Proceedings of the 2008 IEEE International Conference on Multimedia 
& Expo (ICME 2008), June 2008, pp. 1181-1184. 

W. Tu, E. Steinbach, M. Muhammad, and X. Li, "Proxy caching for video-on-demand 
using flexible start point selection," IEEE Transactions on Multimedia, vol. 11, no. 4, 
pp. 716-729, June 2009. 

W. Ma and D. H. C. Du, "Reducing bandwidth requirement for delivering video over 
wide area networks with proxy server," IEEE Transactions on Multimedia, vol. 4, 
no. 4, pp. 539-550, December 2002. 

S. Chen, B. Shen, S. Wee, and X. Zhang, "Designs of high quality streaming proxy 
systems," in Proceedings of the 2004 IEEE International Conference on Computer 
Communications (InfoCom 2004), March 2004, pp. 1512-1521. 

"Segment-based streaming media proxy: Modeling and optimization," IEEE 
Transactions on Multimedia, vol. 8, no. 2, pp. 243-256, April 2006. 

"Sproxy: A caching infrastructure to support Internet streaming," IEEE Trans­
actions on Multimedia, vol. 9, no. 5, pp. 1064-1074, August 2007. 

S. Wee, W. Tan, J. Apostolopoulos, and M. Etoh, "Optimized video streaming for net­
works with varying delay," in Proceedings of the 2002 IEEE International Conference 
on Multimedia & Expo (ICME 2002), August 2002, pp. 89-92. 

Y. J. Liang and B. Girod, "Network-adaptive low-latency video communication over 
best-effort networks," IEEE Transactions on Circuits and Systems for Video Tech­
nology, vol. 16, no. 1, pp. 72-81, January 2006. 

Y. J. Liang, J. G. Apostolopoulos, and B. Girod, "Analysis of packet loss for com­
pressed video: Does burst-length matter?" in Proceedings of the 2003 IEEE Interna­
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP 2003), April 
2003, pp. 684-687. 

Y. J. Liang, J. Apostolopoulos, and B. Girod, "Analysis of packet loss for compressed 
video: Effect of burst losses and correlation between error frames," IEEE Transactions 
on Circuits and Systems for Video Technology, vol. 18, no. 7, pp. 861-874, July 2008. 

P. Baccichet, J. Noh, E. Setton, and B. Girod, "Content-aware P2P video stream­
ing with low latency," in Proceedings of the 2007 IEEE International Conference on 
Multimedia & Expo (ICME 2007), July 2007, pp. 400-403. 

E. Setton, J. Noh, and B. Girod, "Low latency video streaming over peer-to-peer 
networks," in Proceedings of the 2006 IEEE International Conference on Multimedia 
& Expo (ICME 2006), July 2006, pp. 569-572. 



129 

J. Li, C. K. Yeo, and B. S. Lee, "Peer-to-peer streaming scheduling to improve real­
time latency," in Proceedings of the 2007 IEEE International Conference on Multi­
media & Expo (ICME 2007), July 2007, pp. 36-39. 

R. Alimi, R. Penno, and Y. Yang, "ALTO protocol," Internet Engineering Task Force 
(IETF), Internet-Draft version 10 (draft-ietf-alto-protocol-10), May 2012, work in 
progress. 

J. Chakareski and P. Frossard, "Rate-distortion optimized distributed packet schedul­
ing of multiple video streams over shared communication resources," IEEE Transac­
tions on Multimedia, vol. 8, no. 2, pp. 207-218, April 2006. 

Y. Li, Z. Li, M. Chiang, and A. R. Calderbank, "Content-aware distortion-fair video 
streaming in congested networks," IEEE Transactions on Multimedia, vol. 11, no. 6, 
pp. 1182-1193, October 2009. 

W. Tan, W. Cui, and J. G. Apostolopoulos, "Playback-buffer equalization for stream­
ing media using stateless transport prioritization," in Proceedings of the 2003 IEEE 
Packet Video Workshop, April 2003. 

Y. Li, A. Markopoulou, J. Apostolopoulos, and N. Bambos, "Content-aware playout 
and packet scheduling for video streaming over wireless links," IEEE Transactions on 
Multimedia, vol. 10, no. 5, pp. 885-895, August 2008. 

R. Pantos and W. May, "HTTP Live Streaming," Internet Engineering Task Force 
(IETF), Internet-Draft Version 7 (draft-pantos-http-live-streaming-07), September 
2011, work in progress. 

I. Sodagar, "The MPEG-DASH standard for multimedia streaming over the Internet," 
IEEE Multimedia Magazine, vol. 18, no. 4, pp. 62-67, April 2011. 

S. Akhshabi, A. C. Begen, and C. Dovrolis, "An experimental evaluation of rate-
adaptation algorithms in adaptive streaming over HTTP," in Proc. of the 2011 ACM 
Conference on Multimedia Systems (MMSys 2011), February 2011, pp. 157-168. 

K. J. Ma and R. Bartos, "Rate adaptation with CoS enforcement for cloud-based 
HTTP streaming," IEEE Transactions on Multimedia, (submitted for publication). 

R. Kuschnig, I. Kofler, and H. Hellwagner, "An evaluation of TCP-based rate-control 
algorithms for adaptive Internet streaming of H.264/SVC," in Proc. of the 2010 ACM 
SIGMM Conference on Multimedia Systems (MMSys 2010), February 2010, pp. 157-
168. 

C. Liu, I. Bouazizi, and M. Gabbouj, "Segment duration for rate adaptation of adap­
tive HTTP streaming," in Proc. of the 2011 IEEE International Conference on Mul­
timedia and Expo (ICME 2011), July 2011. 

T. Kupka, P. Halvorsen, and C. Griwodz, "An evaluation of live adaptive HTTP 
segment streaming request strategies," in Proc. of the 2011 IEEE Conference on Local 
Computer Networks (LCN 2011), October 2011, pp. 604-612. 

C. Liu, I. Bouazizi, and M. Gabbouj, "Rate adaptation for adaptive HTTP stream­
ing," in Proc. of the 2011 ACM SIGMM Conference on Multimedia Systems (MMSys 
2011), February 2011, pp. 169-174. 

H. Yu, E. Chang, W. T. Ooi, M. C. Chan, and W. Cheng, "Integrated optimization 
of video server resource and streaming quality over best-effort network," IEEE Trans­
actions on Circuits and Systems for Video Technology, vol. 19, no. 3, pp. 374-385, 
March 2009. 

C. Kao and C. Lee, "Aggregate profit-based caching replacement algorithms for 
streaming media transcoding proxy systems," IEEE Transactions on Multimedia, 
vol. 9, no. 2, pp. 221-230, February 2007. 



130 

[46] R. Kumax, "A protocol with transcoding to support QoS over Internet for multimedia 
traffic," in Proc. of the 2003 IEEE International Conference on Multimedia & Expo 
(ICME 2003), July 2003, pp. 465-468. 

L. Zhijun and N. D. Georganas, "Rate adaptation transcoding for video streaming over 
wireless channels," in Proc. of the 2003 IEEE International Conference on Multimedia 
& Expo (ICME 2003), July 2003, pp. 433-436. 

T. Kim and M. H. Ammar, "A comparison of heterogeneous video multicast schemes: 
Layered encoding or stream replication," IEEE Transactions on Multimedia, vol. 7, 
no. 6, pp. 1123-1130, December 2005. 

T. Schierl, T. Stockhammer, and T. Wiegand, "Mobile video transmission using scal­
able video coding," IEEE Transactions on Circuits and Systems for Video Technology, 
vol. 17, no. 9, pp. 1204-1217, September 2007. 

V. K. Goyal, "Multiple description coding: Compression meets the network," IEEE 
Signal Processing Magazine, vol. 18, no. 5, pp. 74-93, September 2001. 

Y. Wang, A. R. Reibman, and S. Lin, "Multiple description coding for video delivery," 
Proceedings of the IEEE, vol. 93, no. 1, pp. 57-70, January 2005. 

P. Frojdh, U. Horn, M. Kampmann, A. Nohlgren, and M. Westerlund, "Adaptive 
streaming within the 3GPP packet-switched streaming service," IEEE Network Mag­
azine, vol. 20, no. 2, pp. 34-40, March 2006. 

T. Schierl, T. Wiegand, and M. Kampmann, "3GPP compliant adaptive wireless video 
streaming using H.264/AVC," in Proc. of the 2005 IEEE International Conference on 
Image Processing (ICME 2005), September 2005, pp. 696-699. 

J. G. Apostolopoulos and M. D. Trott, "Path diversity for enhanced media streaming," 
IEEE Communications Magazine, pp. 80-87, August 2004. 

J. Chakareski and B. Girod, "Server diversity in rate-distorted optimized media 
streaming," in Proceedings of the 2003 IEEE International Conference on Image Pro­
cessing (ICIP 2003), September 2003, pp. 645-648. 

J. Chakareski and P. Frossard, "Distributed streaming via packet partitioning," in 
Proceedings of the 2006 IEEE International Conference on Multimedia & Expo (ICME 
2006), July 2006, pp. 1529-1532. 

"Distributed collaboration for enhanced sender-driven video streaming," IEEE 
Transactions on Multimedia, vol. 10, no. 5, pp. 858-870, August 2008. 

T. Nguyen and A. Zakhor, "Distributed video streaming over Internet," in Proceedings 
of the 2002 SPIE Multimedia Computing and Networking (MMCN 2002), January 
2002, pp. 186-195. 

"Multiple sender distributed video streaming," IEEE Transactions on Multi­
media, vol. 6, no. 2, pp. 315-326, April 2004. 

M. Guo, Q. Zhang, and W. Zhu, "Selecting path-diversified servers in content distri­
bution networks," in Proceedings of the 2003 IEEE Global Telecommunications Con­
ference (GlobeCom 2003), December 2003, pp. 3181-3185. 

A. D. Mauro, D. Schonfeld, and C. Casetti, "A peer-to-peer overlay network for real 
time video communication using multiple paths," in Proceedings of the 2006 IEEE 
International Conference on Multimedia & Expo (ICME 2006), July 2006, pp. 921-
924. 



131 

[62] J. G. Apostolopoulos, W. Tan, and S. J. Wee, "Performance of a multiple descrip­
tion streaming media content delivery network," in Proceedings of the 2002 IEEE 
International Conference on Image Processing (ICIP 2002), September 2002, pp. II-
189—III—192. 

[63] J. Apostolopoulos, W. Tan, S. Wee, and G. W. Wornell, "Modeling path diversity for 
multiple description video communication," in Proceedings of the 2002 IEEE Inter­
national Conference on Acoustics Speech and Signal Processing (ICASSP 2002), May 
2002. 

[64] J. G. Apostolopoulos, W. Tan, and S. J. Wee, "On multiple description streaming with 
content delivery networks," in Proceedings of the 2002 IEEE International Conference 
on Computer Communications (InfoCom 2002), June 2002, pp. 1736-1745. 

[65] F. A. Mogus, "Performance comparison of multiple description coding and scalable 
video coding," in Proc. of the 2011 IEEE International Conference on Communication 
Software and Networks (ICCSN 2011), May 2011, pp. 452-456. 

[66] D. Renzi, P. Amon, and S. Battista, "Video content adaptation based on SVC and 
associated RTP packet loss detection and signaling," in Proc. of the 2008 IEEE Inter­
national Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 
2008), May 2008, pp. 97-100. 

[67] T. Schierl, K. Gruneberg, and T. Wiegand, "Scalable video coding over RTP and 
MPEG-2 transport stream in broadcast and IPTV channels," IEEE Wireless Com­
munications Magazine, vol. 16, no. 5, pp. 64-71, October 2009. 

[68] Z. Avramova, D. D. Vleeshauwer, K. Spaey, S. Wittevrongel, H. Bruneel, and C. Blon-
dia, "Comparison of simulcast and scalable video coding in terms of the required ca­
pacity in an IPTV network," in Proc. of the 2007 IEEE International Packet Video 
Workshop, November 2007, pp. 113-122. 

[69] T. Schierl, K. Ganger, C. Hellge, T. Wiegand, and T. Stockhammer, "SVC-based 
multisource streaming for robust video transmission in mobile ad hoc networks," IEEE 
Wireless Communications Magazine, vol. 13, no. 5, pp. 96-203, October 2006. 

[70] C. Hellge, T. Schierl, and T. Wiegand, "Mobile TV using scalable video coding and 
layer-aware forward error correction," in Proceedings of the 2008 IEEE International 
Conference on Multimedia & Expo (ICME 2008), June 2008, pp. 1177-1180. 

[71] , "Multidimensional layered forward error correction using rateless codes," in 
Proceedings of the 2008 IEEE International Conference on Communications (ICC 
2008), May 2008, pp. 480-484. 

[72] , "Receiver driven layered multicast with layer-aware forward error correction," 
in Proceedings of the 2008 IEEE International Conference on Image Processing (ICIP 
2008), October 2008, pp. 2304-2307. 

[73] X. Zhu, R. Pan, N. Dukkipati, V. Subramanian, and F. Bonomi, "Layered internet 
video engineering (LIVE): network-assisted bandwidth sharing and transient loss pro­
tection for scalable video streaming," in Proceedings of the 2010 IEEE International 
Conference on Computer Communications (InfoCom 2010), March 2010. 

[74] S. Chattopadhyay, L. Ramaswamy, and S. M. Bhandarkar, "A framework for encoding 
and caching of video for quality adaptive progressive download," in Proceedings of the 
2007 ACM International Conference on Multimedia, September 2007, pp. 775-778. 

[75] Y. Li and K. Ong, "Optimized cache management for scalable video streaming," in 
Proceedings of the 2007 ACM International Conference on Multimedia, September 
2007, pp. 799-802. 



132 

J. Kangasharju, F. Hartanto, M. Reisslein, and K. W. Ross, "Distributing layered 
encoded video through caches," IEEE Transactions on Computers, vol. 51, no. 6, pp. 
622-636, June 2002. 

S. Gouache, G. Bichot, A. Bsila, and C. Howson, "Distributed & adaptive HTTP 
streaming," in Proc. of the 2011 IEEE International Conference on Multimedia and 
Expo (ICME 2011), July 2011. 

M. Baugher, D. McGrew, M. Naslund, and K. Norrman, "The Secure Real-time 
Transport Protocol (SRTP)," Internet Engineering Task Force (IETF), RFC 3711, 
March 2004. 

T. Stutz and A. Uhl, "A survey of H.264 AVC/SVC encryption," IEEE Transactions 
on Circuits and Systems for Video Technology, vol. 22, no. 3, pp. 325-339, March 
2012. 

V. Swaminathan and S. Mitra, "A partial encryption scheme for AVC video," in 
Proceedings of the 2012 IEEE International Conference on Emerging Signal Processing 
Applications (ESPA 2012), January 2012. 

S. Lian, Z. Liu, Z. Ren, and H. Wang, "Secure advanced video coding based on se­
lective encryption algorithms," IEEE Transactions on Consumer Electronics, vol. 52, 
no. 2, pp. 621-629, May 2006. 

D. Wang, Y. Zhou, D. Zhao, and J. Mao, "A partial video encryption scheme for 
mobile handheld devices with low power consideration," in Proceedings of the 2009 
IEEE International Conference on Multimedia Information Networking and Security 
(MINES 2009), November 2009, pp. 99-104. 

C. Li, C. Yuan, and Y. Zhong, "Layered encryption for scalable video coding," in 
Proceedings of the 2009 IEEE International Congress on Image and Signal Processing 
(CISP 2009), October 2009. 

M. Asghar and M. Ghanbari, "Cryptographic keys management for H.264 scalable 
coded video security," in Proceedings of the 2011 IEEE International ISC Conference 
on Information Security and Cryptology (ISCISC 2011), September 2011, pp. 83-86. 

K. J. Ma, R. Nair, and R. Bartos, "DRM workflow analysis for over-the-top HTTP 
segmented delivery," in Proceedings of the 2011 IEEE International Conference on 
Multimedia & Expo (ICME 2011), July 2011. 

B. Girod, M. Kalman, Y. J. Liang, and R. Zhang, "Advances in channel-adaptive 
video streaming," in Proceedings of the 2002 IEEE International Conference on Image 
Processing (ICIP 2002), September 2002, pp. I—9—I—12. 

M. Kalman, E. Steinbach, and B. Girod, "Adaptive media playout for low-delay video 
streaming over error-prone channels," IEEE Transactions on Circuits and Systems for 
Video Technology, vol. 14, no. 6, pp. 841-851, June 2004. 

Y. Li, A. Markopoulou, N. Bambos, and J. Apostolopoulos, "Joint power/playout 
control schemes for media streaming over wireless links," in Proceedings of the 2004 
IEEE Packet Video Workshop, December 2004. 

"Joint packet scheduling and content-aware playout control for video sreaming 
over wireless links," in Proceedings of the 2005 International Workshop on Multimedia 
Signal Processing, October 2005. 

S. C. Hui and J. Y. B. Lee, "Playback-adaptive multi-source video streaming," in Pro­
ceedings of the 2006 IEEE Global Telecommunications Conference (GlobeCom 2006), 
November 2006, pp. 819-922. 



133 

[91] A. Argyriou, "Improving the performance of TCP wireless video streaming with a 
novel playback adaptation algorithm," in Proceedings of the 2006 IEEE International 
Conference on Multimedia & Expo (ICME 2006), July 2006, pp. 1169-1172. 

K. J. Ma, R. Bartos, S. Bhatia, and R. Nair, "Mobile video delivery with HTTP," 
IEEE Communications Magazine, vol. 49, no. 4, pp. 166-175, April 2011. 

A. C. Begen, T. Akgul, and M. Baugher, "Watching video over the Web: Part 1: 
Streaming protocols," IEEE Internet Computing Magazine, vol. 15, no. 2, pp. 54-63, 
March 2011. 

Microsoft, "[MS-WMSP]: Windows Media HTTP streaming protocol specification," 
June 2010, http: / /msdn. microsoft .com/en- us/library/cc251059(PROT .10) .aspx. 

M. Handley, V. Jacobson, and C. Perkins, "SDP: Session Description Protocol," In­
ternet Engineering Task Force (IETF), RFC 4566, July 2006. 

Microsoft, "IIS smooth streaming technical overview," March 2009, http: 
/ / www.microsoft .com/downloads/details. aspx?display lang=en\&FamilyID= 
03d22583-3ed6-44da-8464-blb4b5ca7520. 

"Best practices for creating and deploying HTTP Live Streaming media for the iPhone 
and iPad," Apple, Technical Note TN2224, July 2011. 

D. Hoffman, G. Fernando, V. Goyal, and M. Civanlar, "RTP payload format for 
MPEG1/MPEG2 video," Internet Engineering Task Force (IETF), RFC 2250, Jan­
uary 1998. 

"Edge qam video stream interface specification," CableLabs, Tech. Rep. CM-SP-
EQAM-VSI-I01-081107, November 2008, http://www.cabIelabs.com/cablemodem/ 
specifications/mha.html. 

"Real-time messaging protocol (RTMP) specification," Adobe, Tech. Rep., April 2009, 
http://www.adobe.com/devnet/rtmp.html. 

J. Xia, "Content splicing for RTP sessions," Internet Engineering Task Force (IETF), 
Internet-Draft version 7 (draft-ietf-avtext-splicing-for-rtp-07), August 2012, work in 
progress. 

http://www.adobe.com/devnet/rtmp.html


Appendix A 

Abbreviations 

AAC-LC - Advanced Audio Coding Low-Complexity Audio Codec 
AES - Advanced Encryption Standard 
CBC - Cipher Block Chaining 
CDN - Content Delivery Network 
CoS - Class of Service 
DASH - Dynamic Adaptive Streaming over HTTP 
DRM - Digital Rights Management 
ESD - Equal Share Distribution 
FEC - Forward Error Correction 
GOP - Group of Pictures 
H.264 - MPEG-4 Advanced Video Coding (AVC) 
HLS - HTTP Live Streaming 
HTTP - Hyper-Text Tranfer Protocol 
ISP - Internet Service Provider 
IV - Initialization Vector 
JIT - Just In Time 
MDC - Multiple Description Coding 
MNO - Mobile Network Operator 
MSO - Multiple System Operator 
OS - Operating System 
OTT - Over The Top 
P2P - Peer to Peer 
POP - Point of Presence 
QoE - Quality of Experience 
RAN - Radio Access Network 
RC4 - Rivest Cipher 4 
RTCP - Real-time Transport Control Protocol 
RTP - Real-time Transport Protocol 
RTT - Round Trip Time 
SDP - Session Description Protocol 
SIP - Session Initiation Protocol 
SLA - Service Level Agreement 
SRTP - Secure Real-time Transport Protocol 
STB - Set Top Box 
UGC - User Generated Content 
VoD - Video on Demand 
WAN - Wide Area Network 
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