300 research outputs found

    VLSI architectures for high speed Fourier transform processing

    Get PDF

    Reconfigurable architecture for very large scale microelectronic systems

    Get PDF

    Serial-data computation in VLSI

    Get PDF

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Project OASIS: The Design of a Signal Detector for the Search for Extraterrestrial Intelligence

    Get PDF
    An 8 million channel spectrum analyzer (MCSA) was designed the meet to meet the needs of a SETI program. The MCSA puts out a very large data base at very high rates. The development of a device which follows the MCSA, is presented

    Stochastic arrays and learning networks

    Get PDF
    This thesis presents a study of stochastic arrays and learning networks. These arrays will be shown to consist of simple elements utilising probabilistic coding techniques which may interact with a random and noisy environment to produce useful results. Such networks have generated considerable interest since it is possible to design large parallel self-organising arrays of these elements which are trained by example rather than explicit instruction. Once the learning process has been completed, they then have the potential ability to form generalisations, perform global optimisation of traditionally difficult problems such as routing and incorporate an associative memory capability which can enable such tasks as image recognition and reconstruction to be performed, even when given a partial or noisy view of the target. Since the method of operation of such elements is thought to emulate the basic properties of the neurons of the brain, these arrays have been termed neural 'networks. The research demonstrates the use of stochastic elements for digital signal processing by presenting a novel systolic array, utilising a simple, replicated cell structure, which is shown to perform the operations of Cyclic Correlation and the Discrete Fourier Transform on inherently random and noisy probabilistic single bit inputs. This work is then extended into the field of stochastic learning automata and to neural networks by examining the Associative Reward-Punish (A(_R-P)) pattern recognising learning automaton. The thesis concludes that all the networks described may potentially be generalised to simple variations of one standard probabilistic element utilising stochastic coding, whose properties resemble those of biological neurons. A novel study is presented which describes how a powerful deterministic algorithm, previously considered to be biologically unviable due to its nature, may be represented in this way. It is expected that combinations of these methods may lead to a series of useful hybrid techniques for training networks. The nature of the element generalisation is particularly important as it reveals the potential for encoding successful algorithms in cheap, simple hardware with single bit interconnections. No claim is made that the particular algorithms described are those actually utilised by the brain, only to demonstrate that those properties observed of biological neurons are capable of endowing collective computational ability and that actual biological algorithms may perhaps then become apparent when viewed in this light

    A DFT investigation of Al-based atomically precise epitaxy

    Get PDF
    This thesis is about the growth and placement of dopants in silicon semiconductor devices and specifically acceptor dopants as device dimensions enter the nanoscale. Single-atom donor dopant devices have already been demonstrated in the laboratory. Using density functional theory (DFT) and the aluminium atom we now show how acceptor sites might be fabricated and characterize their electronic behaviour. The thesis opens with a review of the physical basis of statistical doping and the operation of the silicon CMOS transistor which is the most widespread microfabricated device by a wide margin. We show how downscaling requires ever-increasing accuracy in dopant placement and illustrate using some current process techniques. Next, we describe some prototype single-dopant devices and the chapter concludes with a description of a phosphorus nuclear spin qubit and its application. Chapter 2 outlines the theoretical basis of the DFT nanostructure models found in later chapters and chapter 3 presents some elementary calculations intended to validate the local DFT environment. Chapters 4, 5 and 6 are based on published papers produced during this work and listed on page 11. In chapter 4 we introduce patterned atomic layer epitaxy (PALE), an experimental fabrication technique for Si nanostructures. Chapters 5 and 6 describe how PALE could be applied to locate Al dopant atoms in an Si substrate. The final chapter offers some calculations indicating the electronic behaviour of this dopant when embedded in Si nanostructures of various kinds

    Integrating simultaneous bi-direction signalling in the test fabric of 3D stacked integrated circuits.

    Get PDF
    Jennions, Ian K. - Associate SupervisorThe world has seen significant advancements in electronic devices’ capabilities, most notably the ability to embed ultra-large-scale functionalities in lightweight, area and power-efficient devices. There has been an enormous push towards quality and reliability in consumer electronics that have become an indispensable part of human life. Consequently, the tests conducted on these devices at the final stages before these are shipped out to the customers have a very high significance in the research community. However, researchers have always struggled to find a balance between the test time (hence the test cost) and the test overheads; unfortunately, these two are inversely proportional. On the other hand, the ever-increasing demand for more powerful and compact devices is now facing a new challenge. Historically, with the advancements in manufacturing technology, electronic devices witnessed miniaturizing at an exponential pace, as predicted by Moore’s law. However, further geometric or effective 2D scaling seems complicated due to performance and power concerns with smaller technology nodes. One promising way forward is by forming 3D Stacked Integrated Circuits (SICs), in which the individual dies are stacked vertically and interconnected using Through Silicon Vias (TSVs) before being packaged as a single chip. This allows more functionality to be embedded with a reduced footprint and addresses another critical problem being observed in 2D designs: increasingly long interconnects and latency issues. However, as more and more functionality is embedded into a small area, it becomes increasingly challenging to access the internal states (to observe or control) after the device is fabricated, which is essential for testing. This access is restricted by the limited number of Chip Terminals (IC pins and the vertical Through Silicon Vias) that a chip could be fitted with, the power consumption concerns, and the chip area overheads that could be allocated for testing. This research investigates Simultaneous Bi-Directional Signaling (SBS) for use in Test Access Mechanism (TAM) designs in 3D SICs. SBS enables chip terminals to simultaneously send and receive test vectors on a single Chip Terminal (CT), effectively doubling the per-pin efficiency, which could be translated into additional test channels for test time reduction or Chip Terminal reduction for resource efficiency. The research shows that SBS-based test access methods have significant potential in reducing test times and/or test resources compared to traditional approaches, thereby opening up new avenues towards cost-effectiveness and reliability of future electronics.PhD in Manufacturin

    LSI/VLSI design for testability analysis and general approach

    Get PDF
    The incorporation of testability characteristics into large scale digital design is not only necessary for, but also pertinent to effective device testing and enhancement of device reliability. There are at least three major DFT techniques, namely, the self checking, the LSSD, and the partitioning techniques, each of which can be incorporated into a logic design to achieve a specific set of testability and reliability requirements. Detailed analysis of the design theory, implementation, fault coverage, hardware requirements, application limitations, etc., of each of these techniques are also presented

    Air Force Institute of Technology Contributions to Air Force Research and Development, Calendar Year 1987

    Get PDF
    From the introduction:The primary mission of the Air Force Institute of Technology (AFIT) is education, but research and consulting are essential integral elements in the process. This report highlights AFIT\u27s contributions to Air Force research and development activities [in 1987]
    • …
    corecore