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Chapter 1 - Introduction

1.1. General

The central aim of this thesis is to study the application of
Very Large Scale Integration (VLSI) to high speed computation of the
Fourier Transform; and in particular, the Fast Fourier Transform

(FFT) algorithm.

The FFT system will be discussed with a view towards the con-
struction of VLSI architectures, however, much of the original work
in this connection will be centred on VLSI architectures for comput-
ing the arithmetic requirements of the discrete and fast Fourier

transform which involves the use of complex numbers.

The use of distributed arithmetic is shown to be highly appli-
cable [1,2,3,4] to parallel arithmetic datapaths for operation on
complex numbers, and the datapaths that will be described are very
efficient at performing vector rotation (as complex multiplication)

and addition.

Some specific VLSI implementations of these datapath architec-
tures are described and their performance is compared with commer-

cial devices.

The Fourier Transform [5] named after the French mathematician,
Jean Baptiste Joseph de Fourier (1768 - 1830) allows a continuous or
discontinuous function defined over a finite interval to be
represented as the integral (infinite summation) of an infinite
number of complex exponentials, each wWith a potentially .unique

amplitude and phase. The record of these amplitudes and phases is



commonly referred to as the frequency domain if the input is derived

from the time domain. This can be expressed mathematically as shown

in equation (1.1.1).

X( f) = ff: x(t) 72" £8) 4 (1.1.

Where x(t) represents the input time domain waveform which is

transformed to a frequency domain output waveform X(f).

If the time domain signal is periodic, bandwidth 1limited and
sampled, then it is possible to represent the Fourier integral as a
finite summation of complex exponentials [5] to a good approxima-
tion. In the Discrete Fourier Transform (DFT), a periodic time
domain waveform of N complex samples are transformed to another N
complex samples, each sample representing the magnitude and fre-
quency of a specific rotating vector which may be considered to be
present in the input waveform as determined by the process of com-
plex multiplication with fixed unity magnitude coefficient vectors

rotating in the opposite direction ("beating” these frequency com-

ponents in the data vector to DC), followed by summation. When all

the resultant (equally spaced) integer frequencies of rotation
described in the output record of the DFT are summed as is done in
the inverse discrete Fourier transform (IDFT), the original time

domain waveform may be reconstructed.

The DFT has applications in radars, [6,7) (such as in high
bandwidth Doppler beam sharpening systems), vocoders, {8,9,10] and

also, scientific work [11] such as X-ray diffraction analyses. In



many of these applications, the DFT itself may not be fast enough
and in such cases, a Fast Fourier Transform'(FFT) algorithm may be
used, of which there are many. The FFT is particularly useful in
performing high speed convolutions where two signals may be con-
volved together by performing multiplication in the frequency domain
followed by an inverse Fourier Transform. This approach can result
in real computational savings [12] for medium to large convolutions

(lengths greater than 64 or 128 samples).

Described by Cooley and Tukey, [13] the Fast Fourier Transform
(FFT) algorithm, allows the DFT to be computed very efficiently for
transform sizes that are some positive integer power of two. Subse-
quently, a large number of similar algorithms [14,15,16,17,18] have
been described for computing the DFT very efficiently. Even with
the improvement. offered by FFT algor;thms, however, high bandwidth
signal processing often requires that special purpose hardware be

used instead of general purpose hardware.

The advent of Very Large Scale Integration (VLSI) has greatly
influenced the design of digital systems, allowing partitioning of

systems to be considered at ever increasing levels of functionality.

The precise partitioning of a given FFT system depends on the
degree of arithmetic concurrency required in the system, however, in
general three major partitions of the FFT can be identified. These

are :



a) Memory to buffer and store intermediate data and results.
b) Control unit for coordinating memory and arithmetic.

c) Arithmetic unit which must handle complex arithmetic.

1.1.1. Memory

Current memory technology and designs have greatly advanced
(19] to what could almost be described as an art form. The design
of high performance memory is an extremely skilled and profoundly
complex task which industry has been addressing for many years now.
Specia1~purpose memory designs for FFT work would therefore have to
offer substantial gains over general purpose Random Access Memories
(RAM) to be considered for use in FFT systems. There do appear to
be special memory architectures which cduld offer some advantages
over standard RAM for FFT computation which will be discussed in
Chapter 2, however, none of the ideas will be pursued since ordinary

RAM can be used [12] without much inconvenience.

1.1.2. Control

The control requirement is highly algorithm dependent, which
dictates that the control unit be general purpose, or easily pro-
grammable. Ordinary Read Only Memory (ROM) can be used to store con-
trol data, however, a single memory is not usually an optimum
approach [20] as this does not support a control hierarchy effi-
ciently. This is because all communications to and from internal
memory registers must take place via the data port which therefore

limits the bandwidth of a control unit. Also, a single large memory



will generally be slower than a number of (interconnected) smaller

memories, each handling a specific elementary control routine.

~ The design of a control unit and the design of a data storage
unit (memory) are thus closely related, since both operation codes
and data can be held in memory. Although random logic can offer
lower area and higher speed than memory based logic, a general pur-
pose, or programmable control unit would have to be ROM based, to
allow ease of programming which is the main consideration in VLSI
design. The problem of control is primarily seen therefore, as a
software problem, with the hardware design being closely related to

memory hardware design.

General principles and approaches to FFT control will, however,
be discussed 1later with the Programmable ioqic Array (PLA) being
advocated for the construction of Finite State Machines (FSM’'s). The
PLA is highly suited for incorporation into a silicon compiler as
one of the basic cells for producing dedicated control chips. A sil-
icon compiler is a piece of software which can translate a high
level description of a circuit or system to an actual design layout
which conforms to the layout rules for a given fabrication process,
and can thus be used directly for fhe generation of masks for that
process. The compiler may also have the facility for simulation(and
test vector generation so that when the device is fabricated, the
testing can be run automatically, by comparing the device output

data with computer simulated data.



1.1.3. Fast Arithmetic

High performance, complex arithmetic processors are not gen-
erally available and are most likely to be the limiting part of a
system, particularly with large wordlengths. Also, the availability
of a FFT arithmetic unit as a major partition of the FFT does not
' impose any major constraints on a system designer, in terms of
transforms sizes or degree of arithmetic concurrency in the system.
A high bandwidth FFT arithmetic unit, -streamlined to performing com-
plex arithmetic is therefore an important feature in any FFT system.
As mentioned therefore, most of the original work described in this
thesis is centred on the design of a number of high bandwidth com-
plex number arithmetic datapaths which represent highly optimised
structures, streamlined to the computation of the DFT and FFT arith-
metic requiremenfs and are therefore major building blocks in such

systems.

This work has involved a study of bit-level arithmetic algo-
rithms with a view to achieving the most efficient mapping onto sil-
‘icon that is likely to be possible. It was noted that distributed
arithmetic techniques appeared to offer good properties in relation
to mapping onto silicon, and this realisation eventually led to the
design of a number of special purpose arithmetic units which made
use of distributed arithmetic techniques to efficiently compute the
complex multiply which 1is a central arithmetic requirement of the

DFT and FFT.



1.2. Layout of Thesis

The second chapter, which follows this introductory chapter
discusses the DFT and FFT computation techniques. The prime DFT is
also discussed, as this can be computed in a unique manner. The FFT
system is then looked at in detail in regard to partitioning, arith-
metic concurrency, control methodology, signal growth, input and
output signal conditioning and problems in achieving sufficient ver-

satility in high bandwidth systems.

Having discussed the various requirements of the FFT system, it
is concluded that a VLSI arithmetic processor chip would represent a
highly suitable partition of the FFT which would not constrain the
system designer in regard to arithmetic concurrency or transform

size.

This leads directly on to chapter 3 which investigates the
mathematical basis of a number of algorithms for highly efficient
arithmetic processing some of which are highly suited to silicon
implementation. ~This includes distributed arithmetic, which allows
the re-formulation of well behaved mathematical functions, and can
be used in computing the complex multiply, through the merging of

multiplier partial products.

Chapter 4 then looks at specific VLSI datapath architectures
and a comparison is made between conventional arithmetic datapaths
and those that make use of distributed arithmetic. In particular,
distributed arithmetic 1is applied to parallel data computation of
the complex multiply which is a dominant arithmetic requirement of

the DFT and FFT. Structures with various degrees of pipelining are



considered, offering a variety of processing bandwidths.

In chapter 5 some of the architectures described in chapter 4
are applied to some specific VLSI implementations for fabrication in
two Metal Oxide Silicbn (MOS) technologies, n-channel MOS (nMOS) and
Silicon on Sapphire complementary MOS (S0S-CMOS). This chapter is
largely devoted to the description of actual silicon \devices, and
the simulations and digital testing of some of these devices will be

described along with their performance.

This leads finally to Chapter 6 which contains the- conclusions
so far reached with this work, and some suggestions for future VLSI

processor architectures based on distributed arithmetic techniques.

Chapters "1 to 3 are thus largely devoted to 'introducing the
subject area and reviewiqg literature that is relevant to the DFT,
FFT and VLSI signal processing in general. There is some original
content present in these chapters mixed in with the literature
review during discussion. Chapters 4 and 5 which describes some
specific 'parallel data distributed arithmetic architectures and
three silicon implementations is original work. A speed programm-
able nMOS PLA generator, the concept of which was discussed in
chapter 2, and is described in appendix [1], is also original

material.
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Chapter 2 - Fourier Transform Processing

2.1. Introduction

In this chapter, the emphasis will be on the influence of VLSI
(Very Large Scale Integration) on Fourier transform processing with
the focus being on digital techniques which allows higher precision
and performance control than can be achieved using analogue
approaches. The latter will be discussed only briefly in connection

with prime length Discrete Fourier Transforms.

The various ways of computing the Discrete Fourier Transform
(DFT) from direct methods to algorithmic Fast Fourier Transform
(FFT) approaches will be reviewed, and much of the emphasis will be
placed on how these algorithms can be partitioned and mapped on to
silicon to produce high performance VLSI processing elements. Exist-
ing signal processing devices and system design methodologies
relevant to Fourier transform processing will therefore be reviewed.
Most of the structures discussed are not general purpose in the true
sense but could be reconfigured in real time, to produce a variety

of signal processing functions.

The chapter will start by discussing the theoretical aspects of
the Discrete Fourier Transform (DFT) and vector rotation alongside
silicon realisations of the basic DFT. This will be followed by a
summary of the original Cooley Tukey FFT with its associated
hardware implications. The Prime length DFT will then be reviewed
separately from the non-prime length DFT. The final section in this
chapter looks at system considerations of the FFT processor such as

partitioning, the problems of input and output signal éonditioning



and bandwidth matching of the various processing elements in a

hardware FFT system.

2.2. The Discrete Fourier Transform

Any périodic waveform can be represented [1] as the sum of an
infinite number of orthogonal periodic functions. If these func-
tions are complex exponentials, then determination of the phase and
magnitude of these functions is known as Fourier analysis. For band
limited, sampled signals, it is possible to represent the input
waveform with a finite number of complex exponential functions to
the required degree of accuracy. If an input time domain waveform
consists of N complex samples, then the Discrete Fourier Transform
(DFT) allows this waveform to be represented as an N sample record
of the phases and amplitudes of the N complex exponentials from
which the time domain waveform can be synthesised. The DFT can thus

be expressed as shown in equation (2.2.1)

N-1 .
X(k) = [ x(n) ef™2m Ink/N) (2.2.1)
n=0 )

Where x(n) is the time domain sampled at intervals n=0,1,..N-1 ;
X(k) 1is the frequency domain at intervals k=0,1,..N-1, and N is the

transform size.

To form each frequency domain result (X(k)), requires N complex
multiply and accumulate operations, so that if all frequency domain
results are computed, then N2 complex multiply and accumulate opera-

tions must be computed. Future equations will be simplified by

13



defining the complex exponential in the DFT equation as shown in

equation (2.2.2)

Wy = {72 IN) (2.2.2)
where the transform size (N) shall be implied from the text. An
eight point (N=8) DFT, expressed in matrix form and using the shor-
tened expression of equation (2.2.2), would appear as shown in Fig-

ure (2.2.1).

The matrix of W values shown above, has been simplified by noﬁ—
ing the periodicity of W. This periodicity is expressed in equation

(2.2.3).

p(mmN) (kM) ynk p 2 0,4/- 1,47- 2.0 (2.2.3) .

The unit vectors, WN in the W matrix of the eight point DFT can .be
illustrated by the vector-matrix notation of Figure (2.2.2). This
shows more clearly how the different rows contain successively
increasing integer rotation rates, moving from the top row, which
represents zero rotation rate (DC), to the bottom row, which
represents maximum rotation rate. If the time domain input
sequence, consists of a simple unity magnitude vectqr rotating
anti-clockwise at a frequency of one cycle per transform (8 sample
periods), then multiplication and summation of this sequence with
row 2 of the W matrix, results in a large output at X1 since the
vector sequence of row 2 in the W matrix rotates in an equal and

opposite direction. The time domain data vectors are thus

14
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effectively made stationary when multiplied by successive terms in
row ‘2 of the W matrix. All other rows, containing different rota-
tion directions and rates will not make the input data sequence sta-

tionary, so these (X(k), k # 2) outputs will all be zero.

In practical situations, the time domain sequence may not con-
tain any frequency components which are perfectly coherent with one
of the integer frequencies represented by the W matrix. This results
in a slightly reduced output in the nearest discrete frequency "bin"
and a small output in adjacent bins. This leakage effect to adja-
cent bins can be minimised [2] by input signal conditioning (data

windowing) as described by Harris.

Analysis of the DFT equation (2.2.1), shows that each frequency
domain result is formed by a complex multiply and accumulate opera-
tion between the data sequence and individual rows of the W matrix.
Control requirements of the DFT therefore consists of accumulator
initialisatidn and sequential transfer of the time domain data and
coefficient (W) data to a complex multiplier. Latching of the fre-
quency domain result present in the accumulator would finally be
required. Figure (2.2.3) indicates the basic hardware requirements
of the DFT processor. This shows the frequency domain output in
bit-serial [3] form. The output could also be presented in parallel
form, but this was shown in the diagram to emphasise the fact that.
the data rate at which frequency domain is produced With the DFT is
very low and bit-serial data transmission is capable of handling
these bandwidths (except for very small DFT’s where the computation

time is greatly reduced).
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Compared with Fast Fourier Transform algorithms (FFT's) - used
to compute the DFT very efficiently for large transforms (discussed
in section 2.3) - the control requirements of the DFT are relatively
simple. Consequently, for limited transform sizes, up to around
256-points, the hardware DFT may be preferable to the hardware FFT
even though at this size of transform the DFT requires about 64
times the number of vector rotation operations than does the FFT.
Other attractions of the DFT processor over the FFT processor
include marginally improved noise performénce [4] and the ability to
compute part of the spectrum efficiently if the whole spectrum is
not required [4] from a single processor, as might be necessary if
it was desired to employ some degree of arithmetic concurrency to
enhance the system bandwidth. (Reasons for marginally improved
noise performance in the DFT are due to practical considerations
related to the finite word lengths-used in the hardware rather than

any intrinsic failings of the FFT algorithm.)

VLSI allows the DFT to be integrated onto a single chip [4]
allowing the computation of up to 256 points in as short a time as
6.5 mS. This chip can process data sufficiently fast to cover most
audio applications, (Bandwidth =((1/2) x (256/6.5)) kHz = 19.7 kHz
and illustrates pointedly why the hardware DFT is to be preferred

for all but large transforms and high bandwidths.

A single chip DFT processor would ideally include coefficient
storage, and make use of parallel arithmetic processing. A typical
chip architecture is shown in Figure (2.2.4) which is representative
of a VLSI single chip DFT processor design based on parallel arith-

metic data. This type of controlled datapath architecture allows
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for a more general purpose approach to be taken than was the case
with the dedicated DFT chip just described. The DFT chip architec-
ture of Figure (2.2.4) could easily be applied in a system by label-
ling the time-domain data to provide a pointer to the W coefficient
stored on-chip. This might be expre§sed in shorthand as shown below
(see also equation 2.2.1) where the "+" refers to a requirement for
information, not an arithmetic operation.

(Data Label) + (Bin Number) -> (W Coeft. Address)
Where "Bin Number® is the number of the frequency domain bin that is
being computed. (Bin Number would be constant for each bin computa-
tion.) This can be computed very easily in practice by looking at
the remainder of the product of (Bin Number) and (Data Label) when
divided by the transform size (N) as a consequence of the periodi-
city of the complex exponential described in equation (2.2.3). Data
Label in this case is chosen to be equal to the time domain sample
number. The division by N, however, need not take place if N is a
power of 2. In this case the bottom log2 N bits of the product yield
the correct W coefficient address. Thus if the transform length (N)
is a power of two, the correct DFT W coefficient address can be com-
puted with a single multiply operation. In practise, the same multi-
plier used to perform vector rotation operations would be used to
generate the W coefficient addresses in this manner. The general
case for any value of N can be expressed as shown in equation

(2.2.4).

wAddress = Remainder o f [Bin Number x Sample Number/N]

(2.2.4)
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Although this appears to be a sound approach to the generation
of W addresses in a DFT processor, for higher speeds it is desirable
to free the arithmetic unit for operation on data only. A less com-
putationally intensive method to generation of W addresses is to
perform an accumulation, which allows a new address to be computed
as a function of a previous address and the bin number. This allows
the W addresses to be computed in their natural order (for direct
complex multiplication with data samples) but has the disadvantage
common to all recursions - that the effects of a single error taking
place during the recursion will remain until the recursion is ter-
minated. Thus if an error occurs during the computation of a fre-
quency bin, the whole bin computation needs to be repeated unless
there is a suitable mechanism for detection and removal of the error
as soon as it occurs. In a carefully designed digital circuit, how-
ever, errors should be very infrequent and should not cause serious
problems in small recursions of this nature. The approach to gen-
erating DFT W coefficient addresses using a single accumulator is
shown in Figure (2.2.5). The bin number is latched from a counter
and the new coefficient address is computed by adding this to the
0ld coefficient address. An example is included in Figure (2.2.5)
for rows 4 and 8 of an eight point DFT. These were chosen to show

the wrap-around effect which is not entirely an obvious phenomenon.

A potential hardware feduction feature of the DFT is that an
input buffer is not required if one chip per frequency bin is used
since no temporary storage or sorting of input data 1is required.
This approach 1is quite attractive if bit-serial arithmetic [3]

processors are employed. The use of parallel arithmetic processors
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would not normally be considered due to high costs for all but lim-
'~ ited transform sizes, or very high bandwidth systems. The use of N
arithmetic processors [5] (one for each frequency channel) provides
a useful means of high bandwidth computation of the DFT, as an
alternative to the FFT for limited transform sizes. Although such a
system is algorithmically less efficient than the FFT, a failure in
a single processor would only affect the frequency bin which that
processor was associated with, thus other bins would not be
affected. In the FFT, described shortly, single arithmetic failures
can affect many frequency bins, not just one, and thus have catas-
trophic effects. 1In DFT systems using a single chip, the input data
sequence may be held in a simple shift register buffer which can be
re-circulated for computing each new frequency component. Such a
buffer has minimal control requirements. One obstacle to implement-
ing all this on a single chip is that with complex arithmetic, the
memory requirements are doubled. The DFT does, however, require

minimal control and so for small transforms and limited bandwidths
it is the ideal approach to computing the Fourier Transform digi-
tally. When large transforms and high bandwidths are required then
it is necessary to use algorithmic approaches which involves addi-
tional control data and temporary storage iﬁ order to reduce the

amount of arithmetic required.

2.3. The Fast Fourier Transform

An analysis of the (W) matrix of a highly composite DFT such as
the eight-point example shown in Figure (2.2.2), reveals that many

of the complex multiplications are redundant, in a manner which is
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independent of the input time domain sequence, being a feature of

the (W) matrix itself. Although there are obvious redundancies in

the DFT W matrix where some of the multiplications are ..
1) Trivial (Multiplications by (+/-) 1 or (+/-) j)

2) Repetative (Due to periodicity of the complex exponential) -

see equation (2.2.3)

3) Related (Multiplications that are negative or complex conju-

gates of each other)

the efficiency of the common radix-2,4 and 8 FFT algorithms
hinges on the fact that when the transform length (N) is some
integer power‘of two (as is the case in all Radix-2,4 and 8
FFT’s) then each element in —;he W matrix can be generated
iteratively by logzN complex products from a set of elementary
unity magnitude vectors whose angles are binary weighted multi-
ples of WN' These elementary unity magnitude vectors are com-
monly referred tq as "twiddle factors” in literature, (6] how-
ever, the algorithm has not yet been fully formulated, so for
the moment, this name only applies to the numerical value of

these vectors. -

This now allows each frequency bin computation to be factorised
into these twiddle factors and other terms containing the input
sequence. The factorisatioh may be chosen to be such that many
terms are produced which are common to each frequency bin in a sys-
tematic manner thus allowing a reduction in the number of arithmetic

operations. The DFT output may then be generated by logzN



iterations (or passes) on the input sequence, in which the time
domain is operated on successively by these twiddle factors. The
mathematical basis of the FFT re-formulation of the DFT will be dis-
cussed in more detail in the section dealing with the Radix-2

Decimation-in-time FFT algorithm.

Thus, the FFT algorithm is based upon the principle of reveal-
ing redqndancies through factorisation made possible by the itera-
tive re-construction of the W elements in the DFT matrix and
exploiting these redundancies through data-routing. As previously
mentioned, more than one factorisation is possible and so also there
are a number of ways of ordering the data-routing in the computation

to produce a variety of "Fast Fourier Transform®” (FFT) algorithms.

The original Cooley-Tukey FFT algorithm [7] described the gen-
eral technique of breaking down 1large DFT’s, whose lengths are
highly composite, into a large number of much smaller DFT’s. Thus,
a large DFT .could be computed by combining together several much
smaller DFT’s. As the number of complex multiplications to compute
the DFT increases as Nz, and the combination of trivial DFT’s in the
FET algorithm increases only as N/Zlog2 N, the basic Cooley-Tukey
FFT algorithm is more efficient than the DFT by a factor of

2N/10g2 N times.

A mathematical proof of the most important FFT algorithms
already exists (6] so a formal proof is not repeated here. Instead,
the probable thinking that led'to the realisation of one of the best
known and most popular Fast Fourier Transform (FFT) Algorithms, the

Radix-2 Decimation-in-Time FFT, will be outlined. There are several

24
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FFT algorithms-all closely related, such as the radix-4, the radix-8
and mixed radix algorithms [6] however, the radix-2 FFT is the most
versatile, since with the lowest radix (two), it permits transform
sizes which are integer multiples of two. It also allows for simple
time domain windowing on the first pass for reasons which will be
apparent when this type of algorithm is examined in the next sec-

tion. (The first pass is trivial).

2.3.1. The Radix-2 Decimation-in-Time FFT. .

In the DFT itself, there is no restriction on the transform
length (N), however, if N is restricted to powers of 2, then it is
possible to express any of the N distinct ng terms in the (N x N)
DFT coefficient array as the complex product of logzN fixed vectors

which are binary weighted multiple powers of W,.. This is expressed

N-
in equation (2.3.1.1).
(log2 N)-1
w{,‘k = m wg
m=0
- - m =
where X = X, = dm 2 (dm = 0 or 1 only) (2.3.1.1)

5 _
(For example,— W8 = W8 . WB . W8)

The DFT may thus be conceptualised as shown in equation

(2.3.1.2)

N-1 (logzN)-1

X(k) = L (( m wﬁ) x(n)) (2.3.1.2)
n=0 n=0
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In the above equation each element in the W matrix of the DFT
is now expressed as log2N complex products. This is written out in
full for an eight point example in Fiqure (2.3.1.1). Figure
(2.3.1.2) shows three matrices containing the binary values of ’d’
in equation (2.3.1.1) for the eight point example indicating how
each term in the original W matrix of the eight point DFT can be
considered to be composed of a product of binary weighted rotations.
(The concept of these 'd’ matrices may not be described in litera-

ture)

Analyses of the matrix do which indicates which DFT coeffi-
cients require minimum rotations (WN), reveals exceptionally high
symmetry. It is fairly clear that this matrix would be of the same
tyﬁe for any size (N where N > 2) of DFT provided that N was some

integer power of two.

If this symmetry allowed the N point DFT to be split into two
and expressed as two N/2 point DFT’s each of which would have the
same type of d0 matrix (describing minimum rotations for that size
of DFT), then this splitting process could be continued right down
to N=2. If a computational saving could be made each time a DFT was
split into two, then the overall computational saving (N>>2) would

be significant.

Further examination of the dO matrix that describes which ele-
ments in the W matrix of the DFT contains minimum rotations reveals
that the EVEN columns contain no such rotations. This implies that
half of the N=8 point DFT may be computed as a single N(=8)/2 point

DFT operating only on the EVEN numbered time domain samples. The 0ODD
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columns however, do contain minimum rotations. These can be removed
at the expense of N (=8) rotations of which N(=8)/2 are non-trivial,
allowing the remainder of the original N=8 point DFT to be computed
with another N(=8)/2 point DFT this time based on ODD valued sample
numbers. This process is shown for the eight point example in Figure
(2.3.1.3) and (2.3.1.4) showing the construction of an 8-point DFT
from two 4-point DFT’s. In general it can be said that instead of
N2 rotations to compute an N-point DFT, only (N/2)2 + (N/Z)2 +N/2
rotations are required if it is computed as two N/2 point DFT’s.
This of course is less than the direct approach. If N is large and
a power of two then the complete decomposition of the N point DFT
into N/2, 2-point DFT’s can be accomplished by performing the above
process iteratively resulting in a radix-2 algorithm, so called,
because the transform is built up from 2-point DFT’s. This complete
decomposition of the DFT is shown for N=8 in Figure (2.3.1.5). This
is shown for each frequency bin in Figure (2.3.1.6) in full. This
reformulation of the DFT is highly significant in that fewer arith-
metic operations are required and the whole DFT can in principle be
built up from a simple arithmetic function shown in Figure (2.3.1.7)
(frequently described in literature as the radix-2 "butterfly” - cf.
wings of a butterflyi) using the signal flow graphs shown in Figure
(2.3.1.8) which can be derived from Figure (2.3.1.6). This produces
un-scrambled frequency domain from time-domain which has been scram-
bled into bit-reversed address locations. Figure (2.3.1.9) shows an
alternative flow graph which allows unscrambled time domain as an
input to produce frequency domain in bit-reversed address locations.
Bit-reversal which applies to the address of stored data is defined

as the mirror image of the address word when mirrored in the Y-axis,
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so that the most significant bits become the least significant bits

and vice-versa.

This particular FFT is normally Xknown as the Radix-2
Decimation-in-Time (DIT) algorithm because at each stage in the
computation, the input time sequence is divided into smaller stages
for processing as outlined in the previous 8-point FFT example. An
alternative decimation-in-frequency algorithm [6] is similar and
uses the same number of operations. The DIT, FFT algorithm is, how-
ever, more useful in hardware oriented systems because the W coeffi-
cients are all unity on the first pass, thus allowing thé possibil-
ity of using this pass to perform time domain windowing functions
[6] that are often essential to the operation of real FFT systems.
It will be noted that in both flow graphs of the 8-point FFT, the
transform is built up from three distinct stages or "passes". A sig-
nificant feature of Figures (2.3.1.8) and (2.3.1.9) is that the data
address sequenée is the same for each pass. This type of addressing
is thus normally referred to as constant geometry addressing,
because of the pass-independent addressing. If pass dependent
addressing is used, [6] it is possible to return the butterfly out-
puts to the same memory address locations from which the inputs were

derived, [6] thus halving the memory requirements. This type of

algorithm. known as "in-nlare” nlacac araator Aamands aAnm tha —oeoe.

m—— = wrew  swwmiwa g

speed performance. Figure (2.3.1.10) shows the two different FFT
systems based on these different addressing -approaches. Figure
(2.3.1.11) shows a possible pipelined FFT approach based on serial
sh;ft register memory, and constant geometry data flow. The time

domain is clocked into a shift register at clock rate (f) and is
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then loaded in parallel into another shift register. This is tapped
at the half-way position and clocked at (£/2), thus sorting the data

into the correct order for the butterfly.

Data flow graphs can be very helpful in hardwa;e FFT systenm
design as they allow the various possible addressing strategies to
be clearly differentiated. They also show how the addressing of
data registers relatés to the particular FFT algorithm being con-

sidered.

It is known that there are a large number of FFT algorithms
which work for a variety of data block lengths not necessarily
powers of 2. There exist Radix-3 FFT algorithms, ([8] and Radix-6
algorithms, (9] as well as the more conventional Radix-4 anq Radix-8
[6] FFT’s. These unusual Radix FFT's do not offer computational
advantages §verfthe Radix-2 and 4 FFT’s involving comparable complex
multiply operations, however, their main advantage lies in the abil-
ity to compute the FFT for input time domain sequence lengths that

are not necessarily powers of 2.

2.4. The Prime Radix Fourier Transform

As previously mentioned, the Cooley Tukey FFT.algorithm is at

best restricted to transform cizee that ara eamo nacition inba~aw

power of two whereas the Prime Radix FFT algorithms [10,11] involve
the building up of a large transform from DFT’s some or all of whose
lengths are prime. The simplest case involves building up a P = N.M
point DFT from N, M point DFT’s followed by M, N point DFT’s.

Unfortunately, the joining up process involves non-trivial rotations
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which calls for complex multiplication, thus the only apparent
advantage of Prime FFT type algorithms is the ability to compute
unusual length DFT’'s that are not possible wusing the standard

Cooley-Tukey FFT or a radix-3 FFT.

It is worth noting, however, ;hat the Prime DFT has itself some
unusual features which make hardware implementations particularly

attractive.

2.4.1. The Prime DFT

The N point DFT, where N is prime, is unique, in that each row
of the W coefficient matrix contains all Nth roots of unity, with
the exception of the row used to compute the DC term. With this one
exception then, each row used to compute non-zero frequency com-
ponents contains every one of the N vector coefficient angles, which
are a multiple of (2 x PI/N) radians. This is true only when N is
prime and does not apply to the row corresponding to the bC tern.
Since every other row contains all Nth roots of unity, it is possi-
ble to re-order the expansion of the (N x 1) time domain matrix with
the (N-1 x N) W coefficient matrix, such that the time domain is
scrambled, instead of the W matrix, which can now be made the same
for each frequency domain channel, consisting of a rotation of (2 x
PI/N) radians between adjacent elements. The prime length DFT can
now be expressed as a scrambled (N-1 x N) time domain matrix multi-
plied by a single column (N x 1) W coefficient matrix, representing
a single integer frequency (rotation). An example of this re-
ordering is shown in Fiqure (2.4.1), for N=7. The fact that this

single integer frequency can be used to compute all the frequency
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domain terms, allows techniques such as distributed arithmetic to be
used - discussed later in Chapter 3 - where the additions in the
multipliers and adders are re-ordered to allow a memory and accumu-
late reformulation. Siu and Chen {12] describe a system based on a
6800 (2MHz) microprocessor which uses distributed arithmetic tech-
niques to compute a 61 point DFT in only 3.1 ms. Distributed arith-
metic can be considered to be a very useful technique in micro-
computer systems, although it should be noted that both hardware and
instruction set usually need to be specifically “"geared" to such
programming which includes the ability to efficiently look at indi-
vidual bits in a word as well as perform conventional word arith-
metic. Siu and Chen achieved their high performance by providing

hardware to perform such bit-level functions.

The Prime DFT can be further simplified, however, by using con-
ventional arithmetic in a recursive mode. If a given row of the

scrambled time domain sequence in the 7 point example (shown in Fig-

ure (2.4.1)) 1is represented as x'o x'6 then, any one of the fre-
quency bins xn may be represented by the recursive expression of

equation (2.4.1).

X, = (((((X'6 W+X’5 )W+X'4 )W+x'3 )W+x'2 )W+x'1 )W+x'0 (2.4.1)

In this example W has a fixed angle of (2 x PI/7) radians. This
equation shows how each frequency cell of the 7 point DFT can be
computed recursively by performing a repeated fixed angle vector-
rotate/vector-add operation on the scrambled time-domain sequence.

The main advantage of this re-formulation is that a fixed-angle
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vector rotate can be implemented more efficiently than a variable-
angle vector rotate in both hardware or software by using techniques
such as shift and add or partial table look-up. This again is par-
ticularly attractive in micro-computer systems that are poor at per-
forming signed multiplications but can perform shift and add opefa-
tions or table look-up operations with efficiency comparable to that
of dedicated hardware. In hardware implementations, the main advan-
tage of this approach in computing the Prime DFT is that an exten-
sive coefficient Read Only Memory (ROM) is unnecessary, however, the
need for a data-sorter still limits the size of DFT that can be com-
puted on chip. It is likely however that the resulting structure
would be more easy to design and permit a larger size of DFT to be
computed than could be done conventionally. Figure (2.4.2) shows the

basic hardware required to implement the prime DFT.

2.4.2. Analogue Prime DFT Computation

In analogue circuits, the current and/or voltage relationships
of one or more active or passive devices are exploited in such a way
as to model a mathematical relationship. At room temperatures this
model will only exhibit a limited accuracy due to electronic nbise

of various types. Also, even in the absence of noise, the model
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idealities. Such effects can 1limit the applications of analogque
techniques to algorithms requiring only low deqrees of precision.
This often means that only low degrees of recursion may be tolerated

to minimise error build up.



45 -

In general, the DFT itself is not implemented effectively by
using analogue techniques due to excessive inaccuracies, however,
the Prime DFT offers an exception to this rule since in this special
case, the frequency domain may be computed using a fixed angle vec-
tor rotate circuit, so that the multiplier only has to operate on a
fixed coefficient word. A number of papers have already been writ-
ten on the use of analogue techniques [13,14] in this area. Charged
Coupled Devices (CCD's) can be used to store data, and the multi-
plier can be implemented by using capacitive charge sharing tech-
niques, or by using active devices (Higher Bandwidths). 1In the case
of the charge sharing analogue multiplier, digital techniques can be
used to switch in small trimming capacitors, thus avoiding the need
to take sensitive analogue signals, off chip. The performance
obtained is.then acceptable, offéring low power, and medium to high
bandwidths. In general, however, accuracy is still restricted.
Jack, Park and Grant ([13] project a possible 0.5% rms transform
accuracy, from results of a prototype device which displayed an ini-
tial 2% transform accuracy. Although accuracy is not high, low power
at high bandwidths up to 5 MHz can be obtained, offering the possi-

bility of real time signal processing tasks at very low costs.

The effect of device scaling, however, has a quite drastic
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and noise performance are all degraded [15] and the need to_ handle
information in a noise tolerant manner must be considered. This
gives rise to a need for digital circuits. All digital circuits are
analogue in nature, but by defining a threshold, data can be freed

from the corrupting influence of noise, and be represented as a
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string of binary (two state) data of any desired precision. It has
long been recognised, however, that there is no advantage in setting
voltage swings (V) and therefore thresholds in logic gates at levels
that vastly exceeds the level needed to ensure good noise immunity
as this serves only to greatly increase the power required to change
the state of a given node (proportional to Vz). This has led to the
consideration of special logic gates such as in the case of multiple
valued logic [16,17] where more than one analogue threshold is set
within a given voltage range and therefore more than two possible
states are considered to exist over that range. This quest for
lower power and higher speed has also led to the search for lower
logic voltage swings and thresholds in conventional digital circui-
try, which can still offer good noise immunity with reduced thres-
holds. Multiple valued (MV) logic is in effect, a half way house
between digitél and analogue approaches. It is likely, however, that
for the same feasons that analogue circuits are decliﬁing in useful-
ness because of device scaling, (which favours digital approaches),
MV logic will}eventually decline in its wusefulness as well. By
then, digital VLSI circuits will be operating at more optimised
thresholds with lower voltage swings which will offer higher speeds
and lower powers, but still retain an adequate noise immunity. This
thesis wWill not be pursuing‘these analogue approaches any further
which are not suited to VLSI. The prime DFT and FFT will not be
pursued any further either as it is more complex than the Cooley-
Tukey FFT to implement in hardware and does not appear to offer any
outstanding advantages. The computational efficiency of both the
prime DFT and Prime FFT is not very high compared to conventional

DFT and FFT approaches.
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2.5. FFT System Considerations

2.5.1. Arithmetic Concurrency in FFT Systems

One of the notable features of all FFT algorithms is that vari-
ous levels of arithmetic concurrency are possible allowing a wide

range of bandwidths as well as system design philosophies.

The ‘three most important levels of arithmetic concurrency which
apply to Radix-2 systems involve either a single arithmetic unit, or
log2 N, or N/2 arithmetic units, where N is the transform size. The
last approach is really only sensible with serial arithmetic proces-
sors. For a 1024 point FFT therefore, one might consider using 1,10
or 512 butterfly processors. To use numbers other than this is pos-
sible, but would involve additional control, and some inefficiency.

These three different approaches will be discussed briefly.

2.5.1.1. Single Arithmetic Unit FFT System

The single arithmetic wunit processor allows 1low +to medium
bandwidth operation, depending on whether serial or parallel arith-
metic processing is used. Assuming a butterfly time of 1 micro-

second a 1024 point complex FFT based on a single arithmetic unit

would take 5.12 milli-cerande +n romnlata a2 AN24_naink kranafave

One feature of the single arithmetic unit FFT system, is that
input (time domain) and output (frequency domain) buffering must be
performed in order that the A/D conversion may take place on a con-
tinuous basis. This entails extra memory and control requirements.

The constant-geometry algorithm is preferred to the in-place
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algorithm for this type of system where it would be very difficult
to use a greater than unity latency arithmetic unit efficiently.
The 1latency of an arithmetic processor is defined as the number of
clock cycles required between the input of data to the arithmetic
processor and the output of a result. This may be much greater than
unity even if the processor can absorb data every clock cycle
through the wuse of pipelining [5] techniques. The reason that the
constant-geometry algorithm may be preferred is that it would be
necessary to execute short bursts of read and write cycles, in order
to take advantage of an AU with latency much greater than one. In
this case, the AU would only be operating 50% of the time. Even
when the constant geometry algorithm is used, problems can arise
with an arithmetic unit with latency much greater than one. There
is a potential delay in moving from the end of one pass to the
beginning of another pass, corresponding to the latency of the
arithmetic unit. This is so because the memory used to "sink" pass n
data is the same memory that will be used as a sourcé of pass n+1
data, and since a greater than unity latency AU, will still be com-
puting pass n data (even though it is ready to érocess pass n+1
data), it is not possible to switch the memory round from being a
data sink to a data source until the arithmetic pipeline containing
the last pass n output data is empty. Thus, the arithmetic pro-
cesser must be idle for a period corresponding to its latency at the
end of each pass. 1In practice, for large transforms this would
entail a fairly small bandwidth penalty, however, it complicates the
control requirements still further. All these problems are probably
best solved by using a uniEy latency fast arithmetic unit instead of

a pipelined unit. Whilst potentially slowing down the system, this
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would simplify the control requirements for the reasons given above.

2.5.1.2. Pipelined FFT System using one Arithmetic Unit per Pass

This type of radix-2 FFT system configuration uses logzN arith-
metic units (AU’s). The transform is thus computed at a rate com-
parable to the system clock. With a butterfly time of 1 micro-
second, a 1024 point transform would take 512 micro-seconds to com-
pute. 4The most notable point about using this level of arithmetic
concurrency is that the throughput of the system is independent of
transform size and input and output buffering is not required. The
pipelined system has the further attribute that each AU can be made
to operate continuously, since the memory can be confiqured as a
swinging buffer thus allowing a greater than unity latency processor
to output data from a current pass, whilst receiving data from an
- earlier pass. Since this type of system works equally well for unity
latency and much greater than unity latency arithmetic processors,
this approach must be considered to be very effective in minimising
control and maximising bandwidth. The bandwidth of this type of sys-
tem is high enough to cover most FFT applications including high
bandwidth radars if a parallel AU is used. Furthermore, the overall
control requirements must be regarded as minimal, with the arith-
metic units comobrisinag a much areater percentaae of the g?g#nm aate
count than with the previous single AU system. It will be noted,
that the only difference between passes are the W coefficient
values. The possibility of constructing a single pass FFT sub-system
which could be programmed to compute any. pass can thus be con-

sidered. Then, logzN of these boards could be used in a high
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bandwidth FFT system.

This approach is highly versatile as it allows very high
bandwidths and also a highly modular system design approach. Also,
the possibility of electronically switching in spare pass boards to
replace defective boards exists, allowing a highly reliable system.
These advantages, together with the absence of input and output
buffering suggest that this approach to a FFT system design is prob-
able the most cost-effective for a wide range of operating

bandwidths.

2.5.1.3. Highly Concurrent FFT System using N/2 Arithmetic Units

This type of FFT system effectively computes a pass at a time,
which might take just a few clock cycles. Bandwidths, therefore are
very high. With a butterfly time of 1 micro-second, a 1024 point
transform would take only 10 micro-seconds to compute. This
approach, is usually only coﬁsidered viable if bit-serial data com-
munications and processors are used to avoid a potential plethora of
wires to connect them together. Such highly concurrent FFT systems
cannot be regarded as versatile since there is no simple way to

allow expansion to compute larger transforms, for example.
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formed such as conversion from real and imaginary data to magnitudes
and logarithm computation for example, must also be performed at
unusually high data-rates, necessitating further specialised
hardware. This type of approach is however quite realistic with the

availability of a bit-serial silicon compiler such as FIRST [18]
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which 1is intended for implementing digital signal processing func-
tions. Such a complier might, for example, be used to produce usable
chip designs for a) A Butterfly Processor b) A Vector Magnitude Pro-
cessor and c¢) A Logarithm Processor, and possibly, d) A Data-
Windowing Processor, thus enabling the diverse requirements of a

real system to be met with a minimum of effort.

2.5.2. Control Distribution

System control distribution and structure is of crucial impor-
tance, in all digital systems such as the FFT, since if this is not
carried out methodically, the resulting system may be highly ineffi-
cient in 1its internal operation and also be difficult to modify.
Many current hardware-based single AU FFT systems, may be efficient
in their use of components, but have these sort of deficiencies
caused by the absence of a structured control hierarchy which makes
it impossible for the control store to hold information efficiently.
Distributed control is a prerequisite for efficient control data
storage in all types of complex control tasks. It is not therefore
optimum to have one single control unit in a complex system. Instead
the approach should be to have local control associated with each
distinct system function such as the memory and arithmetic unit, for

examble. This would then allow the main cAantral nmi+ +n ﬁt\mT‘:giCa&n

with the rest of the processor at much lower bandwidths and also
reduce the degree of abstraction involved in the data communicated
between the various units in the system. Another serious deficiency
of many hardware FFT and DFT processors is that a corrupted control

unit memory address instruction would allow incorrect data to be
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sent to the arithmetic unit which would then combine two unrelated
data and coefficient vectors to produce an incorrect result. The
arithmetic unit is then fooled into receiving incorrect data passed
to it, whilst at the same time, the control unit expects the arith-
metic unit to produce a given result in a given time frame. In oth-
erwords, such a system has by itself no means of determining that it
is operating correctly, instead, it is the system engineer who ana-
lyses the system and declares it to be sound. Although this is how
many systems are désigned today, it is not the best way to tackle
more sophisticated systems that will appear in the future as a
result of VLSI. One possible approach which would provide a power-
ful check that the system was operating correctly, would be to add
to each piece of data in memory, a word which could act as a label
or tag for that piece of data. This would then allow the arithmetic
unit to perform a simple check that the control unit had sent the
right types of data to it for processing. When the arithmetic unit
had received all the required labels and data, it would then compute
the new data toéether with néw labels for the data. Thus, although
the control unit is responsible for addressing memory and sending
instructions to the arithmetic unit, it is possible for the arith-
metic unit to verify .that the data types that it receives are
correct. This may seem to be superfluous but it does offer a means
of verifying correct system operation in real time. As most digital
system designers are trained to minimisé gate counts and not add to
them, this approach is often not thought of as desirable though, and
consequently such additional features are not wusually employed in
most current hardware FFT systems. The main advantage is in reduced

system-debugging time, increased versatility and verifying that
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system memory accesses are correct. System debugging can be very
expensive, so if this is also considered, it could well prove
cheaper to add such additional hardware which serves to monitor the
systems operation. OwWwing to the high 1levels of integration
involved, however, these ideas were not pursued towards actual sili-
con designs, but it is felt that they would be worth considering in
the construction of digital FFT system based on a number of standafd

VLSI parts.

2.5.3. The use of Associative Memory

If a content addressable (associative) memory (CAM) was avail-
able which could perform the function "search for any data label of
type corresponding to pass "n" and return one such label plus asso-
ciated data" (this is a typical CAM function [5] ) then this feature
could be used to ensure that each pass was completed whilst the
arithmetic unit could request the correct data within each pass. To
perform the FFT, then, the main system control unit would instruct
the arithmetic unit to request any pass 1 data present in the CAM
(which of course there would be to start with) and the CAM would
then respond with one valid example. The arithmetic unit would then

compute the labelled data associated with the label fed to it and

output a new piece of data with acencriatad 1ahal Hauvinm ~aAmnlAs~d
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this task, the arithmetic unit would then request any additional
pass 1 data still available. If there was any, then aﬁother pass 1
sample would be sent to the arithmetic unit and so on. The control
is therefore reduced to instructing the arithmetic unit to maximise

the pass number which it does by requesting data of certain types
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(pass n data) from the CAM. This represents a highly distributed
control approach. A control methodology, involving the use of
"intelligent® memory could offer programming simplifications in gen-
eral purpose systems, however, it is possibly overkill for FFT and
similar work. This 'is so because CAM’s do not offer such a low cost
per bit than do conventional coordinate addresses RAM’s. The main
advantage, possibly of wusing a content instead of a coordinate
addressed RAM is that multi-processor tasks are considerably eased,
since individual processors can determine almost instantly, the
current state of the computation, from memory, without needing to
communicate with another processor. 1Indeed, it appears that many of
the draw-backs [19] of multi-processor based systems can be over-
come by using CAM’s. Multi-processing, however, is only of use,
when memory bandwidths greatly exceed processor bandwidths. This
suggests the possibility of an FFT machine based on fast, expandable
CAM connected to a variable number (non-critical) of 1low bandwidth
bit-serial processors. Figure (2.5.3.1) shows such a system confi-
guration. The CAM may have its own dedicated processor‘in order to
extend its versatility and perform bus arbitration as shown in Fig--
ure (2.5.3.2). This type of approach is quite useful in that low
bandwidth processors may be adaed or subtracted from the system to
produce the required overall bandwidth, with an upper 1limit being
dictated by the relative CAM to processor bandwidth. As the precise'
number of processors is non-critical in such a system, the possibil-
ity of switching out defective low bandwidth processors might pro-
vide a basis for yield enhancement which would allow the possibility
of wafer-scale-integration. The low bandwidth processors would be

designed to be capable of computing any arithmetic task in order to
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Figure(2.5.3.1.) Possible Multiprocessor FFT Scheme based on
, Fast Responsive Content Addressable Memory(CAM).
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Figure(2.5.3.2.) Similar CAM based FFT Scheme with CPU to

Extend Overall System Versatility and
Remove some Load from the smaller
Arithmetic Units (AUl1-AUn).
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allow other system requirements such as input and output condition-
ing to be realised as well as the basic FFT. Unfortunately, the
levels of integration involved in pursuing such ideas are currently

too high to consider specific silicon implementations.

2.5.4. Input Conditioning

Windowing of data is not part of the DFT or FFT itself, but
such a system which is processing real-life signals, (from an analo-
gue to digital converter for example) will not necessarily receive a
data sequence which is periodic. A discontinuity of undetermined
value will exist between the first input sample, and the last input
saﬁple. DFT theory, however, requires that the time signal sampled
for processing be periodic [20] over the data block length. A
discontinuity in the time domain would have the effect of introduc-
ihg strong frequency domain components which were a feature of the
discontinuity. These extra frequency components are manifest not
only as a localised spreading (main lobe spread) around a spectral‘
line but also in a much wider spread (side lobe spread) through the
whole of the frequency domain produced by the transform. Data win-
dowing is one way of reducing this problem, where the idea is to
slightly modify the time domain sequence in such a way as to force
pnrinﬂi:—if-y Avor  +hao ﬂ1nnb Tan~+th  withand Araakle 4;.:1.;,...-4..- L
true frequency domain content of the signal. This can be done by
multiplying the time domain with a window function. The many dif-
ferent window functions reach a compromise between main lobe widen-
ing and side 1lobe reduction. In general the window function will

have a form similar to :
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W(n) = sin® [n.PI/N] where 1.0 ¢ a < 4.0
although more complex windows do exist such as the Blackman, Gaus-
sian, Dolph-Chebyshev and Kaiser-Bessel windows which offer varying
types of sidelobe reduction. Much work has already been covered in
relation to finding optimum windows (2] for given applications by
Harris. When a = 2 the general function (above) yieids :
0.5 {1.0 - Cos [2n.PI/N] ]
which is very close to the popular Hamming window which is described
as :

W(n) = 0.54 - 0.46.Cos [2n.PI/N].

The window has the effect of removing the discontinuity in time
domain, with a consequent improvement in the quality of frequency
domain output. This is an important topic primarily because it
posses a considerable processing overhead which must be considered
alongside the butterfly arithmetic requirement for the FFT itself.
.0n the first pass of the Radix-2 Decimation in Time FFT, the phase
factors are all unity, suggesting that the multiplier in the but-

terfly might be used to perform data windowing on the first pass.

This requirement for data-windowing influenced the design of
the CM0S-SOS 16 bit arithmetic processor device described in Chapter
5. The same complex multiplier used to compute vector rotation

could also be used to perform a time domain windowing function.
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2.5.5. OQutput Conditioning

The output of the DFT or FFT takes the form of Real and Ima-
ginary compohents of the frequency bin vectors. In many applications
the magnitude of the frequency domain vectors is required, for exam-
ple, if the spectrum is to be subsequently displayed. The magnitude
(Modulus) of a vector is computed as the square root of the sum of
the squares of the real and imaginary parts. This is an additional
processing overhead that may well need to be met. It is possible to
achieve a good approximation to the square root with a reduced com-
putational effort if the data is known to lie within certain ranges,
however, in geﬁeral this processing requirement may differ substan-
tially from the butterfly arithmetic requirements, and is non-

trivial.

In the section on data windowing it was mentioned that the time
domain sequence must be periodic in order that a true spectrum be
produced. Even with data windowing, the true spectrum' is only
evaluated to a fairly good approximation, since the discontinuity
between beginning and end of the time data sequence is only greatly
reduced and not entirely eliminated. If it is expected that the
true spectrum of a signal is only varying very slowly, then if the
- magnitude of the frequency domain is averaged at a corresponding
rate, the unwanted effects in frequency domain of the discontinui-
ties in the time domain can be reduced. In addition, noise will
tend to whiten, and weak frequency domain components become more
predominant. The averaging of frequency domain is thus a very use-
ful function, which although not computationally intensive like the

butterfly of the FFT, for example, may be required in a real FFT
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systen.

Logarithm computations are usually only performed on either
large transforms and or frequency domain averaged transforms. They
are useful in presenting the transform results because of the nor-
mally very high dynamic range of the output. As thié may only need
to be performed on averaged frequency domain the computational
bandwidth may not be very high, however, thought must be given to
the inclusion of a "log processor" in a feal FFT system, which means

that bandwidth matching to the FFT must be carefully considered.

2.5.6. Signal Growth and Data Scaling

From the DFT equation, it is clear that if the number of data
samples is equal to N, then a potential signal growth of N times
(log2 N bits) could take place in the case of a unity magnitude time
domain signal that was coherent with one of the integer frequencies
in the W coefficient matrix. This signal growth would also take
place vin the FFT if there was no data scaling. A course of action
often taken with the DFT, is to use an accumulator of larger bit
length than the complex multiplier used to perform vector rotation,
and allow signal growth to occur. This simple approach is not possi-
ble in the FFT however where the vector rotate and accumulate opera-
tions are shared out so that both vector rotator and accumulator
must handle the signal at equivalent levels. In the Radix-2 FFT
algorithm, the DFT is broken down into 2-point DFT’s. Vector-
rotation does not change the magnitude.of a data vector, however,
the 2-point DFT which consists of an add and subtract will introduce

a8 possible signal growth of two (ie one bit of growth). This is the
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potential growth therefore which may take place with each Radix—z
butterfly operation. As the complex multiply which is used to per-
form vector-rotation is a computationally intensive operation, and
therefore expensive, data scaling is normally employed at each but-
terfly to avoid excessive signal growth taking place. This allows
optimisation of processor wordlengths. If in the Radix-2 FFT, the
output of the butterfly is scaled down unconditionally by one bit
then signal growth in the system is held to around zero. The gain
of the system is thus held at around unity. This requirement can be
implemented in hardware, trivially as a simple shifter, designed to

shift down the output of the butterfly.

2.5.7. Noise Considerations in a Practical FFT System

This is a fairly large subject on which a substantial amount of
work has already been accomplished, [6] both in the area of theory
and practical simﬁlations as there are quite a large number of
potential noise sources in an FFT system. The main components are

detailed below.

2.5.7.1. Analogue to Digital Conversion Noise

This is not related to the FFT itself of course but is an
important noise source in a practical system. The quantisation in
the Analogue to Digital conversion and non-linearities can give rise
to additional frequency components which show up as harmonics and
distortion products. This problem is purely related to A/D design.
The FFT is a useful tool in adjusting high precision A/D devices as

it allows for these harmonics and distortion products to be
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minimised, given a sufficiently pure sine wave as an analogue input.

2.5.7.2. Coefficient Quantisation Noise (W)

The W "twiddle factors" that are required to implement the FFT
will typically be stored as a finite length string of binary 2’'s
complement fixed-point data, (defined later in chapter 3, section 5)
which is the same as would be used for signal data throughout the
transform. Floating point operations may also be used, but in gen-
eral the above format is considered to be most appropriate in a sys-
tem that is processing real signals from an A/D converter, since the

A/D converter will generate this or a similar digital format.

There are a number of intuative observations that can be made
about the W noise and the precision needed to represent the W twid-

dle factors in a given transform size.

Firstly, the absolute noise introduced into the transform as a
whole will depend on the magnitude and nature of the signal data,
and how this varies throughout the transform. This will be so
because W, 1is directly multiplied with signal data. Secondly, the
precision needed to represent the W twiddle factors will be greater
than was required to represent the equivalent W coefficignts in the
DFT’s W matrix and this will crucially depend on transform size.
The reason that the W twiddle factors will require a greater preci-
sion than the W coefficients of:-the DFT, are that in the FFT, each W
element from the DFT W matrix is effectively synthesised from 1ogRN
iteratiens - (one at each pass) - where R is the radix of the

transform and N is the transform size. W quantisation in the DFT
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itself should also be increased with transform size, however, in
order to ensure good angular resolution of all the N wgk vectors.
Thus in the FFT, W precision must increase with transform size
slightly faster than is required by the DFT such that after logRN
iterations in the same number of passes, the angular resolution of W
is still maintained. A mathematical treatment of the W quantisation
noise is quite complex ([6,21] and it is probably easier to simulate
these effects using a digital computer which allows comparison with
a near ideal transform using floating point arithmetic. In the pass-
ing, it 1is worth mentioning that signal data itself must also be

held at higher precision for larger transforms for similar reasons.

This can make the A/D conversion very costly for larger transforms.

2.5.7.3. Roundoff Noise due to Data Scaling

This might be expected to be a relatively large source of noise
when compared to the W quantisation noise because data scaling-:
directly affects the main signal path, and indeed, noise resulting
from data scaling [22,23] does tend to dominate, given that the W
coefficients are held at the same precision as data. As with W
quantisation noise, it would be expected that the finalbpasses would
contribute most noise since noise from earlier passes is scaled down
along with the signal in any data scaling operations that may have
taken place. This noise contribution can be avoided altogether by
allowing signal growth to take place. This is undoubtedly the most
desirable approach when the extra cost of having higher dynamic
range hardware is considered acceptable. This approach may entail a

bandwidth penalty, however, particularly if bit-serial arithmetic
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processing is employed as the word transfer rate is inversely pro-

portional to the word length used.
2.6. Review of Current Devices

2.6.1. Single Chip FFT Processors

Recent trends in using redundancy with self-test and repair
techniques have allowed the possibility of fabricating a fully pipe-
lined FFT processor on a wafer of Qilicon such as the 16MHz, 16-
point dedicated FFT processor [24] using yield enhancement tech-
niques as described by Garverick and Pierce. In this context, pipe-
lined refers to a level of arithmetic concurrency that allows a con-
stant stream of data to flow non-recursively from one arithmetic
unit to the next. This is possible where there is one arithmetié
unit for each pass in the transform as described earlier in this
chapter. It is likely that wafer scale integration will provide the
possibility of even more powerful FFT systems in the future. It is
not so easy, however, to apply these sort of yield enhancement tech-
niques to any arbitrary architecture, indeed the approach should
really be to devise an architecture based on a particular yield
enhancement approach rather than try to force yield enhancement on

to an existing architecture which does not employ yield enhancement.

It is possible to fabricate dedicated single chip FFT proces-
sors without using yield enhancement provided the arithmetic unit is
limited in size such as the 32-point FFT processor chip described by
Covert [25] which uses a single arithmetic unit. The limited

transform size (32-point) is indicative of the substantial memory



and complex control requirements, needed to implement the FFT.
Larger transforms can be built up from this basic 32-point
transform. The joining up process requires an external complex mul-

tiplier to implement the requirement for vector rotation.

The advantages of designing a single chip FFT are much the same
as for integrating any digital system. There is the possibility of
optimising the speed of each section which in the FFT, includes
memory, arithmetic and control. Also, system power consumptibn can
be reduced as high bandwidth memory accesses are contained within
the chip. There are, however, more subtle advantages that can be
derived from integrating a system such as the FFT. Such advantages
can be derived from analysis of the interface between the various
sections of the system. For example, rather than hold coeffi;ient in
ROM as an actual binary numerical representation of the coefficient
vector, it is possible to pre-compute and store in ROM the resulting
control logic that would be presented to a Booth’s [26] algorithm
multiplier as a function of the numerical coefficient vectors. The
requirement for on chip Booth’s control logic hardware can thus be
bypassed by storing the coefficient vectors in the more abstract
form of a Booth’s multiplier control logic word. As well as reduc-
ing gate count, this also reduces power consumptions and propagation
delays. This technique was used in Coverts, 32 point FFT processor
chip. It is important to consider that holding the coefficient in a
more abstract form 1like this, makes the system more difficult to
understand and therefore de-bug or modify. Despite these disadvan-
tages, the general tend in VLSI designs of this dedicated nature has

been to adopt higher and higher levels of abstraction. As a general

64
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comment, these trends in dedicated VLSI designs are likely to con-
tinue into the future being made easier by the growth in methods and
tools for coping with system level abstractions. As dedicated chip
design involves some degree of abstraction in the optimisation of
the hardware it might be asked if the case for general purpose
hardware design is thus strengthened since this involves lower
degrees of abstraction at a hardware 1level by passing system
abstractions to the programmer instead. This indeed is the great
opportunity presented by VLSI; that system abstractions can be moved
more and more into software, thus allowing the hardware designers to
concentrate on architectures that lend themselves to fault toler-

ance, self repair and expandability.

It is not surprising therefore that the general purpose digital
signal processor with on chip RAM, is becoming more common. These
sort of devices are quite fast at'performing the FFT however memory—
availability usually limits transform sizes to around 64 points such
as with the fast Texas Instruments TMS320 processor and the VLSI
programmable signal processor [27]) described by McWilliam. Both of
these processors take around 1-2 milliseconds to compute a 64 point
FFT, however the TMS320 can compute a transform in 0.7 milli-seconds
if program loops are repeated in memory, thus avoiding instruction
branching. It would normally take 1.5 milli-seconds using nested
loops. Such general purpose processors, however, are usually sub-
stantially slower than can be obtained using dedicated hardware, as
the arithmetic is not usually geared to operating on complex data,
and consequently cycles are ‘“burnt up®, in transferring double

length complex data between storage and processing areas, on chip.
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Also, of course, a general purpose unit would require extra cycles
for the decoding of each instruction. This requirement would - typi-
cally be bypassed in a dedicated processor although the technique of
pipelining the instruction fetch, decode, and execute can overcome
speed problems in general purpose units with only branch instruc-

tions being left rather slow.

2.6.2. FFT Arithmetic Processors

In chapter 1, it was shown how the FFT algorithm involves the
repetition of a complex arithmetic function, very often known as the
"butterfly”. The precise butterfly function depends exactly-on the
particular FFT algorithm, but will involve complex multiplication
and addition when using an X,y (Cartesian) coordinate system. It
has already been mentioned that the fFT butterfly is highly suited
to VLSI implementations and there are a number of butterfly proces-
sor chips currently available, indicating the usefulness [28] of
this partition. This section will look at current arithmetic pro-
cessors - relevant to the FFT and also discuss developments in multi-
plier technology which is also relevant to the FFT’s arithmetic

requirements.

0f the number of single chip FFT butterflies, most 'commercial
devices are aimed at Radix-2 or 4 systems and employ parallel arith-
metic in internal operation. Whilst bit-serial butferfly processors
allow concurrent multiplications on chip, thus reducing control
requirements, it seems that parallel processor design figures more
prominantly than bit-serial. This is most likely because the design

for parallel arithmetic multiply and accumulate chips, usually
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already available as a separate product by the large manufacturers
can be adapted to compute the FFT butterfly which can then be sbld
as a separate product. Lyon, [3] however, advocates bit-serial tech-
niques for dedicated digital signal processing (DSP) systems that
can be pipelined such as the DFT and FFT. The advantages of this
approach appears to be lower pin counts, and easy bandwidth match-
ing, since data flows as a constant stream of serial data through
the system. Connections between chips are reduced and therefore sys-
tem costs are reduced. Bandwidths can be surprisingly high, due
mainly to the high level of pipelining, although clearly the rate at
which word data is passed is now much more dependent on wordlength.
Perhaps the most important feature of the bit-serial methodology is
however, the ease and efficiency with which interconnections can be
made between different processing elements on chip. This feature
can be used to achieve efficient auto-layout and connection of pro-
cessing elements such as is used in the FIRST (18] silicon compiler.
The bit-serial approach is probably best suited to custom
designs, (which might involve silicon compilation) and systems which
cannot strictly be regarded as general purpose (ie relatively dedi-
cated, though not necessarily non-reconfigurable), however, the
parallel arithmetic approach is perhaps more appropriate for general
purpose uses because of the higher bandwidths, and suitability for
recursive algorithms. Other butterfly FFT chips make use of bit
slice techniques to allow various wordlengths to be achieved. Such
devices include a serial-parallel 4 bit ECL bit-slice processor and
an 8 bit bipolar bit-slice processor ( SN74A5888‘), which operates
at around 20 MHz. The bit-slice approach appears at first sight, to

be a sensible one, however, it does have serious drawbacks. The time



to propagate carries forward is the limiting factor in all these
bit-slice processors and taking a carry-out off one chip and onto
- another chip involves extra delays due to the extra buffering
required. These times add up, resulting in a substantially degraded
carry ripple-through time compared with a fully integrated proces-
sor. In addition, these carry-out nodes will be expected to operate
at high bandwidths, increasing dynamic power consumption substan-
tially. As processing technologies shrink feature sizes further,
the costs in taking signals off chip become proportionately greater.
It is reasonable therefore to conclude that bit-slice techniques are
a remnant from SSI and MSI which have no place at all in LSI and

VLSI designs.

2.6.3. Parallel Digital Multiplier Devices

The digital multiplier is particularly relevaﬁt to the computa-
tion of the DFT and FFT, as it allows the complex multiply function
to be readily computed. Most of the parallel multipliers described
in literature are non-pipelined (no latching of data internal to the
actual multiplier except possibly at the input or output) and
operate therefore only in a unity latency configuration (the output
appears a single clock cycle after the input). Such devices can be
used in recursive arithmetic configurations as well as non-
recursive. One example of recursive operation is the active computa-
tion of a rotating coefficient vector from a fixed vector, by using
feedback on a unity latency complex multiplier. The fastest multi-
plier technologies currently appear to be Gallium Arsenide (GaAs)

technologies, such as the 16 x 16 bit multiplier with 10.5 nS
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propagation delay [29] described by Nakayama et al. This technology
is so fast, that an attempt to pipeline the multiplier design would
have been counter productive since the distribution of high
integrity clocks could not be efficiently realised at these speeds.
This multiplier would require to be interfaced with a memory devices
of the same technology, such as the 1Kbit 4 nS access time GaAs dev-
ice described by Yokoyama [30] which is fast enough to permit this

multiplier to operate at its maximum clocking rate.

Zero static power dissipation techndlogies are best suited to
parallel ripple through multiplier designs, as they consume power
only during logic transitions. Thus, bulk cMOS and cM0S-S0S offer
very low power consumption figures. Table (2.6.3.1) shows a number
of high speed multipliers that represent a high level’ of perfor-

mance. -

Maker | Device |Availa-| Word atenc Techn- |Speed |Power’
Number |bility | Length ology (ns) | (mwW)

TRW} MPY12HJ | Yes 12 x 12| Unity | Bipolar 80 3000
TRW MPY16HJ | Yes 16 x 16| Unity | Bipolar 100. 4500
TRW MPY24HJ | Yes 24 x 24| Unity | Bipolar| 200 |[5000
GEC / No 16 X 16| Unity |cMO0S-S0S| 250 40

FUJITSU | / No 16 x 16| Unity GaAs 10.5] 952

cont..
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cont..

Lerouge | ESSCIRC83| No 16 X 16| Unity nMos 120 | 200

Table (2.6.3.1)

More details of the above TRW devices may be found in (31] and
the nMOS device is described fully in both [32,33] which describes

an interesting speed enhancement technique.

2.7. FFT Control Chips

Random Access Memory will typically be used for data storage in
the FFT, so that some means of addressing this memory is required.
It is apparent that serially based memory storage can also be used
in the computation of most FFT's, [6] but this tends to degrade sys-
tem versatility and should therefore be avoided unless a given Ran-
dom Access Memory (RAM) is too slow. In the special case where data
can be stored serially, a serial memory will generally offer a
higher bandwidth than a RAM. As well as addressing this memory,
read/write control signals will be required and the arithmetic unit
may have its own special control requirements such as data scaling

for example.

The control unit must offer some flexibility for the system
designer, and should therefore either be programmable or be produced
by techniques such as silicon compilation which might be required if
a general purpose unit was too slow or inefficient. Some manufac-
turers produce FFT chip sets which include FFT address generation.

The AMD29540 FFT control sequencer is one example.
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2.7.1. General Purpose Control Units

The general purpose control unit is one which is programmablé
and will be RAM or ROM based. The memory will contain all or some of
the state addresses of the FFT and will output the appropriate con-
trol data associated with each address. Each word in the memory
will comprise a state address, (used to point to the next state
address) and a control word which is read out at each cycle. Part of
the data output of the memory is therefore fed back into the address
input in order to implement a finite state machine (FSM). Figure
(2.7.1.1) shows a typical memory configuration for implementing a
FSM.  The programmer, must ensure that each state address that is
output from the memory, points to an existing and correct address
present in the memory or the state loop will reach a "dead end". An
important feature of the FSM, is that it 1is possible to include
several state loops in the memory and thus data or external control
can be applied to leap between one loop and another loop without any
time penalties. (The other loop may involve only one single state,
feeding back on itself, thus holding the FSM output at some £fixed
value.) One problem, however, is that it cannot handle loops within
loops without repeating the inner loops for as long as they must
appear. This is because the FSM can only recognise a single state at
any one time and not several states associated with every 1loop.
Thus, massive redundancy, would be involved in using a single FSM
controller in computing the FFT, for example. This can be overcome
by using a single FSM for each loop required in the control sequence
as shown in Figure (2.7.1.2). It should be noted, however, that

even in a single 1loop, there can be hidden loops which could be
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implemented more efficiently by using one or more extra FSM's. The
decade counter is one simple example of a FSM which could be broken
down into four binary counter FSM’s. It is clear then, that a gen-
eral purpose control unit, must have as many FSM’s as there are
likely to be loops, and each FSM must have a large enough memory to
hold all the states required for each loop. In practise, if the
number of loops within loops is not very great, the decision to
implement the whole control sequence with a single FSM with some
redundancy, may be made by the system designer as this would invari-
ably result in fewer system components. It is clear that a silicon
compiler which could code up, pléce and interconnect FSM’'s as deter-
mined by a simple input language, would allow the size and number of
the FSM’s to be tailored to a specific control problem particularly

efficiently.

2.7.2. Silicon Compilation for FFT Control Units

The standard and well proven structure used to implement FSM’s,
is the Programmable Logic Array (PLA) (5] described in detail by
Mead and Conway. The PLA is essentially a ROM except that only a
fraction of the ZN possible combinations of the N bit input address
are actually decoded as only these input states need to be con-
sidered. In such cases the use of a ROM would be wasteful. (This
means that it is possible to find some input address word which will
not be decoded and therefore produce no meaningful result.) The PLA
can be constructed entirely from NOR type logic gates and is thus
highly suited to technologies such as nMOS which employ ratioed

logic gates. (Gate pull up resistance must be ratioed with worst-case
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pull down resistance to achieve satisfactory logic low.) The PLA is
-also a highly regular structure, and is thus well suited to silicon
compilation techniques. With a "PLA generator”, it is possible to
convert Boolean Logic directly into silicon layout. Such a program
would also be capable of automatically feeding back some of the out-
puts of the PLA to produce a FSM. The regularity of the PLA, how-
ever, also makes it possible to estimate its size very accurately
and simply, making it easy to feed accurate information to placement
software. Ultimately, it would be possible then, to write a program
which could read some high 1level 1language, describing a control
task, and place a number of PLA based Finite State Machines (FSM's)
along a one Dimensional routing bus which would handle all the con-
nections. aﬁtomatically. Figure (2.7.2.2) shows a typical floorplan

that such a compiler might produce.

Performance estimation and control are important in silicon
compilers. The possibility of devising a speed programmable struc-
ture such as the PLA was considered, and some software was written
to assess whether it would be possible to achieve a large enough
degree of control to be useful. This work and its results are shown

in appendix 1.

2.8. Special Memories for the FFT

There is an extensive range of general purpose RAM chips avail-
able, and as a consequence of this there is a general lack of spe-
cial purpose memories, geared to FFT processing. There are, how-
ever, some FFT system memory configurations such as the swinging

buffer, which, if implemented using standard RAM components, result
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in very high chip counts owing to the extra components needed to
switch data and address from one memory device to its neighbour.
There is a strong case for a case for a swinging buffer type memory
orvalternatively a special twin memory which could execute a flash
load of one memories contents (from an A/D for example) into another
memory (for FFT processing for example) as time and frequency domain
buffering is essential to implementing the FFT in a real time
environment. The use of associative (content addressable) memories
may provide easier multiprocessor FFT system design as discussed
earlier in section 4. Multiport memory (where more than one data
write and/or access can take place simultaneously) may be useful in
bandwidth enhancement of the FFT. Certain serial memory architec-
tures (shift register based) may oﬁfer very high speeds in those FFT
algorithms that allow for some degree of serial data storage (most
FFT algorithms). Programmable, tapped shift register with parallel
load facilities seems to be particularly attractive in this respect,
particularly as yield enhancement is fairly trivial with this sort

of memory by employing simple bypassing and redundancy techniques.

In general, however, standard RAM can usually be confiqured to
suit most FFT system architectures that have so far been discussed
in literature, and it is not therefore proposed to pursue this

aspect of the FFT’'s system requirements further.

2.9. Summary

The memory and control requirements of the FFT involve the
design of fairly general purpose hardware using techniques which are

difficult to improve on. The FFT arithmetic requirement is however,
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quite significant, involving vector rotation and addition at very
high data rates and is independent of the degree of concurrency in
the system or the size of transform to be computed. This processing
unit known as the "butterfly” is an ideal candidate for VLSI as it
does not impose any major restrictions on the system designer other
than the normal word-length reétrictions experienced with any digi-

tal processor.

The next chapter will consider ways of streamlining the but-
terfly arithmetic requirements by using conventional arithmetic and

also distributed arithmetic techniques.
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Chapter 3 - Algorithms for High Bandwidth Vector Arithmetic

3.1. Introduction

This chapter aims to review various digital approaches to per-
forming high bandwidth vector arithmetic, in particular, vector
rotation which is a dominant arithmetic requirement in the computa-

tion of the DFT and FFT.

The chapter will start by discussing the CORDIC approach and
then move on to look at the complex ﬁultiply as a means of perform-
ing vector rotation. Various ways of computing this function using
real multipliers are discussed. The chapter ends by looking at dis-
tributed arithmetic techniques for computing small DFT’s directly

and also the complex multiply.

3.2. CORDIC Arithmetic Approaches

Although vector rotation can be achieved trivially using qddi-
tion in polar coordinates for example (the magnitude of the ;nput
vector remains unchanged and its new angle is computed by adding the
old angle to the rotation angle), vector addition involves tri-
gonometric functions which, ordinarily, would represent a h;gh com-
putational load. Techniques have been developed for efficiently com-
puting trigonometric functions such as used in COordinate Rotation
DIgital Computers, (or CORDIC's for short) which allows vector rota-
tion and addition operations to be performed more efficiently 'than
would normally be pdssible. This technique allows for two basic
modes of operation [1] as described by Volder. In the first of

these modes, the Rotation mode, the coordinate components of a
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vector are modified by an angle of rotation to produce coordinates'
which have been rotated by that angle. In the second mode, the Vec-
toring mode, coordinate components of a vector are returned in the
form of magnitude and angle. CORDIC arithmetic is sufficiently gen-
eral purpose in nature to allow vector‘ rotations to take place
either on hyperbolas, circles, (as is relevant to the DFT and FFT),

or lines. -

The rotation of a vector using CORDIC arithmetic is based on
the concept of realising a variable rotation as a step-by-step
series of pseudo rotations. The angles of these rotations may be
chosen to be such that each pseudo rotation step may be computed
using only binary shift and add operations. These special angles
form a set from which any desired angle of rotation can be built up
iteratively. In order to specify this set of angles, it is necessary
to consider a typical pseudo rotation as shown in Figure (3.2.1).
This shows a vector of magnitude R, at angle T, to the X-axis being

rotated by either + a,

i or - ai. As well as being rotated, a small

increase in the magnitude of the new vector results. This may be
calculated by using standard trigonometrical relationships to evalu-
ate the iength of the side of the right angle triangle that is oppo-
site to angle a; . This side has length [Ri tan(ai)]. The'theorem of
Pythagoras may then be used to evaluate the new magnitude of the
rotated vector. This 1is equal to [Sqrt(1 + tanz(ai))].Ri. Where
"Sqrt” is short for the square root of whatever follows in brackets. -
Trigonometric rules can then be applied to the two right angled tri-
angles of angle ('1‘i + ai) and (Ti - ai) to the X-axis, to produce an

. expression for the two values of Yi+1‘ This is as shown in equation



85

ﬂi .tanta;)

iel i i+l

A CORDIC Pseudo Rotatiaon
-(i=12

when a, = can~! 2

irl

Figure(3.2.1.) A Typical "CORDIC" Pseudo-Rotation.
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(3.2.1).

_ 2 .
Yi+1 = [Sqrt(1 + tan (ai)]'Ri'51n(Ti +/- ai) (3.2.1)

This is equivalent to

[Sqrt(1/cosz(ai))].Ri.[sin(Ti).cos(ai) +/- cos(Ti).sin(ai)]

(3.2.2)
From trigonometric relationships, it may be noted that
xi = Ri.cos(Ti) (3.2.3)
and similarly
Yi = Ri.sin(Ti) (3.2.4)
It follows then, that
Yi+1 = [1/cos(ai)].Yi.cos(ai) +/- Xi.tan(ai) (3.2.5)
which implies that
Yi+1 = Yi +/- xi.tan(ai) (3.2.6)

a similar expression can be derived for Xi+1 which is
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= X. -/+ Yi.tan(ai) (3.2.7)

The fundamental principle upon which the CORDIC computing tech-
nique 1is based, is that if angle a; is chosen to be such that its
tangent is the reciprocal of some power of 2, then equations (3.2.6)
and (3.2.7) which describe a pseudo rotation, can be computed using
only shift and add operations. The set of angles therefore which may

be considered are described by equation (3.2.8).
a, = tan"' 271072) ynere i =2,3,4,56... (3.2.8)

Where the number of rotations by angle ay is chosen to be 1large
enough to produce the required accuracy of rotation. The case of
i=1 has been excluded to allow the special <case of
a; = 90 degrees for which the tangent cannot be expressed. In this
special case, YZ = +/- X1 and X2 = -/+ Y1. This step is unique,

in allowing a perfect rotation, with no alteration in the magnitude

of the vector.

Although the growth in the magnitude of the rotated vector is
unavoidable, it can be kept to a constant by imposing the condition
that at each pseudo rotation step, there may be no zero-rotations
allowed (steps may not be ignored). That is, a decision to rotate by
either + a; or - a; must be made at each step. If this> rule is
adhered to, then for a given number of pseudo rotations, the growth
in the magnitude of the resultant vector is held constant. One

disadvantage of this unavoidable signal growth is that unity magni-

tude twiddle factors may not be used in the FFT butterfly, so that
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both data inputs to the butterfly must be passed through the CORDIC
hardware even though only one of the inputs actually needs to be
rotated. This makes this approach rather inefficient for computing
the FFT butterfly. The fact that rotations can be computed using
only shifts and additions makes the CORDIC approach attractive on
machines which do not offer fast digital multiplication. This is
true of moét microprocessors that are not geared to digital signal
processing. It is not proposed to cover the mathematical aspects of
CORDICS any further here as this is a large éubject area and has
already been suitably covered by the previous reference (1] as well
as [2,3,4,5,6] and more recently [7,8). Instead it is hoped to sum-
marise the suitability of the CORDIC approach for VLSI implementa-

tions of the DFT and FFT.

Work on specific VLSI implementations of CORDIC hardware such
as that reported by Maxwell ([9] give a good indication of the
overall hardware requirements. The CORDIC architecture can be
viewed as a controlled datapath, (frequently organised as two dr
three datapaths - one for each iterative loop) where the datapath is
somewhat larger and more complex than a general purpose one. Maxwell
for example used a datapath which contained two adder/subtractors,
three variable barrel shifters, (two left and one right), two ROMS,
five 2:1 multiplexers, one 4:1 multiplexer, two regiéters‘and other
logic for operation on sign bits. This datapath must be regarded as
somewhat special purpose compared with general purpose hardware
datapaths, and does not point to a highly regular VLSI structure
making interface with the control unit area inefficient. Also the

overall CORDIC hardware requirement is quite large due to control



requirements and the intricate datapath that is required. It would
appear then, that the CORDIC approach may not be ideally suited to
VLSI implementations, where digital multiplication can be achieved

at low costs and low power consumptions due to the relatively simple

control requirements.

CORDIC’s would thus appear to offer a wuseful general purpose
approach to. the computation of trigonometric functions, however,
vector rotation is probably more conveniently described in a Carte-
sian coordinate system where absolute angles are not specified.

This will now be investigated.

3.2.1. Vector Rotation in a Cartesian Coordinate System

Vector rotation can be conveniently described in a Cartesian
coordinate system using the trigonometric relation described in
equations (3.2.1.1) and (3.1.2.2). In this formulation of the rota-
tion function it is not necessary to compute sines or cosines of
angles with both data and coefficient stored in this form at all
times. These equations describe how the sine and cosine of the sum
of two angles can be expressed as the sum or difference of the mul-
tiple of the sine and cosine terms of the individual angles. More-
over with this coordinate system, vector addition is equivalent to

ordinary addition which is relatively trivial.
cos(x+y)=cos(x).cos(y)-sin(x).sin(y)  (3.2.1.1)

sin(x+y)=cos(x).sin(y)+cos(y).sin(x) (3.2.1.2)
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If the x and y axis are used to represent the real and ima-
ginary dimensions of the complex plane and it is desired to rotate
an input data vector (B) by the angle of some coefficient vector (W)
to form a resultant vector (Z), then the equations which describe
this rotation are simply as shown in equation 3.2.1.3 and 3.2.1.4.
(If only a rotation of (B) is to be performed, with no alteration to
its magnitude, then the magnitude of (W) must be unity.) It can be
seen that four multiplies and two (signed) addition operations must

be performed.

Re(Z)=Re(W)Re(B)-Im(W)Im(B) (3.2.1.3)

Im(Z)=Re(W)Im(B)+Re(B)Im(W) (3.2.1.4)

This might be computed by using a single multiplexed multiplier
Wwith an accumulator or by using distributed arithmetic techniques
which are discussed in the next section. The total number of multi-
plies required to compute the above two equations can, however, be
reduced from four to three with a small increase in the number of
additions (10,11] as described by Golub (Golub’s method is described
in a footnote) and Buneman. This reduction in the number of multi-
plies is achieved in both cases by expressing parts of equations
(3.2.1.1) and (3.2.1.2) as a product of sums and not just as a sum
of products. This yields a common term in both equations, as shown

in (3.2.1.5),(3.2.1.6) and similarly in (3.2.1.7),(3.2.1.8).

Re(Z)=Re(B)Re(W)-Im(B)Im(W)(as(3.2.1.3)) (3.2.1.5)
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Im(Z)=(Re(B)+Im(B)) (Re(W)+Im(W)) (3.2.1.6)

-[Re(B)Re(W)+In(B)In(W)]
and also

Re(Z)=Re(B) (Re(W)+Im(W))-Im(W) (Re(B)+Im(B)) (3.2.1.7)

Im(Z)=Re(B) (Re(W)+Im(W))-Re(W) (Re(B)-Im(B)) (3.2.1.8)

Further reductions can be achieved if the vector coefficient
Re(W) and Im(W) is also stored as (Re(W)+Im(W)) in ROM, so that one
less éddition is required per complex multiply described above. Thus
(Re(W)+Im(W)) would not be actively computed. This, however, is not
a highly significant saving and would only be chosen if ROM was
readily available. 1In summary of the above approaches to performing
vector rotation using real multipliers and adders, Figure (3.2.1.1)
shows the conventional implementation of the complex multiply based
on (3.2.1.1) and (3.2.1.2), whilst Fiqures (3.2.1.2) and (3.2.1.3)
show implementations based on eqﬁations (3.2.1.5) to (3.2.1.8). It
should be noted that the dynamic range requirements of the hardware
implementations in Figures (3.2.1.2) and (3.2.1.3) is slightly
greater than that of the conventional complex multiply shpwn in Fig-
ure (3.2.1.1) to the extent of one extra bit of precision being
required at some points in the computation. This is particularly
inconvenient in bit-serial implementations where the extra bit of
wordlength reduces the word transfer rate. Although these reformu-
lations of the complex multiply are algorithmically slightly more

efficient than a direct computation, they do not point to any



specific VLSI architectures. On a digital computer the direct

approach might even be faster if hardware multiplication was

employed.
3.3. Distributed Arithmetic Methodology

3.3.1. Introduction

Almost all common arithmetic functions can be built up sequen-
tially from additions. Multiplication, for example, is simply the
sequential addition of a number of partial products which are
closely related to the data and coefficient words. Addition is a
commutative mathematical process, which means that the order in
which the additions are <per£ormed does not in any way affect the
final result. This fact means that the arithmetic of many signal
processing structures can be re-configured in a number of ways to
form alternative distributed arithmetic structures. In particular,
where two or more multiplier outputs are combined in an adder (Fig-
ure (3.3.1.1)), it is possible to view each of the multipliers as a
collection of adders connected to this output adder> (Figure
(3.3.1.2)). As the whole process can be seen in terms of additions
only where it is possible to bring forward the final combining addi-
tion to form new unique merged multiplier partial products which can
be selected and accumulated (in a similar fashion to the accumula-
tion of partial products in the multipliers originally) to form the
same result (Figure (3.3.1.3)). This reformulation allows computa-
tion of the function by using a data controlled table look-up and

accumulate operation which offers a highly regular design approach -
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well suited to VLSI design techniques.

Much of the original work in distributed arithmetic was centred
on the design of digital filter structures where it was seen as a
way of replacing relatively expensive multiply and accumulate struc-
tures with cheaper memory and accumulate structures such as shown in
Figure (3.3.1.4) [12,13] however it was later recognised that these
techniques could also be applied to other computations [14,15,16]

including the DFT and FFT.

Linear equations of the general form shown in equation 3.3.1
are fundamental to the computation of the DFT and FFT, as the two
term (n=2) linear equation describes the complex hultiply, which is
one of the most popular ways of performing vector rotations. D

represents data and A represents the coefficient.

L=A,D, tA, D, +....+A

o Do *Aq Dy n-1 D

-1 (3.3.1)

Thus when vector rotation is implemented using real multi-
pliers, the real or imaginary output of the n point DFT becomes a
linear equation with 2n terms - discussed in section 4. It can be
seen from equation 3.3.1 that a linear equation with n terms
requires n multiplications and (n-1) additions. If it is desired to
implement such a function using distributed arithmetic then 20
arithmetic combinations of wmultiplier partial products must be
stored since these are the number of combinations of multiplier par-
tial products that are possible. This assumes that none of the dis-

tributed arithmetic merged partial products are allowed to be stored
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more efficiently which has not been proven. They can be computed in

situe to reduce the memory overhead, for example, as described in

the next section.

Distributed arithmetic is quite significant therefore in allow-
ing the replacement of multiplier random logic array structures with
a simple and reqgular memory and accumulator structure. This can
often mean lower power consumptions, and faster speeds, in addition
to a considerably increased regularity in the chip design itself. In
VLSI designs, regularity is a key requirement as it allows changes
to be made much more easily, as well as making design for vyield,

such as self repair techniques, more efficient.

3.3.2. Consequences of using Distributed Arithmetic

It has been explained that distributed arithmetic can offer
savings in speed and power in actual chip implementations, as well
as offering what could be regarded as a complete methodology in

allowing a fairly reliable means of producing regular VLSI designs.

One of the disadvantages of distributed arithmetic, however, is
that the memory requirement goes up as 2™ where m is the number of
multipliers that would have been used in a conventional system.
Thus, whilst small linear equations can be implemented quite easily,

larger linear equations can call for excessive memory requirements.

A possible solution to this problem may 1lie in information
theory ([17.,18] which notes that in a large array of data, there
often exist constraints which act to reduce the entropy of the

array. In such cases, information is not being stored most



efficiently, with much data in the array being closely related.

Identification of these constraints in an array which contains
distributed arithmetic coefficients could result in a potential
reduction in the storage requi;ements. It is 1likely that future
research in the area of information theory may yield ideas which
would make distributed arithmetic techniques practical for 1large

mathematical functions.

An immediate approach to solving the explosion in the number of
distributed arithmetic coefficients that need to be stored as the
number of multiplies increases, is to actively compute the distri-
buted arithmetic coefficients in situe. This is not algorithmically
more efficient than conventional arithmetic, but in allowing a re-
structuring of the computation, the péssibility of producing more
regular layouts suitable for VLSI exists. This is pafticularly
attractive for applying yield enhancement techniques and therefore
points to the possibility of wafer scale integration. In effect,
the order of bit-level additions has been altered, but the number of
additions is kept approximately constant (very slight variations may

be required due to dynamic range considerations - ie: word growth).

In chapter 4, the approach of computing the distributed arith-
metic coefficients in situe will be compared with thattof storing
them. This is done for a four term linear equation example which is
computed entirely in parallel. The possibility of performing yield

enhancement with this type of structure is demonstrated.

For smaller arithmetic functions, the distributed arithmetic

coefficients can be stored and do not therefore need to be computed

98
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in situe. Distributed arithmetic then appears to be very attrac-
tive. One such arithmetic function mentioned earlier is the complex
multiply which is highly relevant to computation of the DFT and FFT
as a means of performing vector rotations. The use of distributed
arithmetic to compute this function will be discussed in section 5

of this chapter.

3.4. Distributed Arithmetic for Computing Small DFT’s

3.4.1. General

It was mentioned, in Section 1, that the real or imaginary out-
put of an n-point DFT, is a linear equation with 2n terms when the
complex multiply is evaluated using real multipliers. Distributed
arithmetic is therefore applicable, in principle, to the computation
of any length of DFT. In practice, however, a distributed arithmetic
expansion of the W coefficient sequence would be required for each
row of the W coefficient matrix. This would involve an excessive

memory storage requirement, and so is undesirable.

One area where it would appear practical to wuse distributed
arithmetic techniques for DFT computation is for prime length DFT’s,
as the DFT equation can be expanded and re-ordered to be- expressed
as a circular convolution. This particular case will now be con-

sidered.
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3.4.2 Distributed Arithmetic and the Prime DFT

Since every (non-DC) row of the W coefficient matrix in the
Prime, n-point DFT contains all nth roots of unity, it is possible
to expand and re-order the DFT expression so that a single integer
frequency term can be used together with a shuffled time domain
sequence to produce any one of the non-zero frequency domain
results. Since only a single integer frequency sequence is required
to compute the DFT in the convolution form, then only a single dis-
tributed arithmetic expansion need be stored in memory. This expan-
sion involves combinations of arithmetically merged W coefficient
terms that appear in the sequence. This data is then accessed as a
function of the time domain bits at various levels of significance.
Siu and Chen describe a 6800 8-bit microprocessor based system [19]
operating with a 500 nS cycle time, which used distributed arith-
metic to compute a 61 point complex DFT in only 3.1 milli-seconds.
Distributed arithmetic DFT computation is therefore highly relevant
to micro-computer based systems which offer large memory availabil-
ity. This approach does however result in a high dependence on
memory (ROM) which also fixes the size of DFT that can be computed.
No specific implementations were considered becéuse of this limita-
tion, however, a possible VLSI architecture is suggested in Figure

"(3.4.1), which is suited to the computation of DFT’'s of fixed size.

3.5. Distributed Arithmetic and the FFT

As previously mentioned, the most computationally intensive
arithmetic requirement of the FFT, is the complex multiply which is

conveniently used to achieve vector rotation in a Cartesian
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coordinate based system.

- In Chapter 2, section 1 on the DFT, is was described how a well
known trigonometric relation could be used to describe the rotation
of one vector by another. This meant that a data vector (B) could be
rotated by a coefficient vector (W) to produce a resultant vector
(Z) as shown in equations (3.5.1) and (3.5.2), whose angle becomes
the sum of the angles of W and B (B, W, Z, complex).

Re(Z) = Re(B).Re(W) - Im(B).Im(W) ' (3.5.1)

In(Z) = Re(B).Im(W) + Re(W).Im(B) - . . {(3.5.2)

This equation can be realised using conventional arithmetic,
but White [16] has shown that distributed arithmetic allows the com-
plex multiply to be realised particularly efficiently in hardware.
In his paper he described a TTL based two accumulator bit-serial
radix-2 butterfly. This structure is the hardware equivalent of
using two multipliers, instead of four multipliers as would normally
be needed to implement the two equations. This paper by White was
considered to be particularly relevant to this work, as it was
recognised that the complex multiply algorithm (using distributed
arithmetic) had a considerable potential for parallel data array
architectures of a type which is highly suited to VLSI, since it
allowed computation of the real or imaginary complex multiply output
data using only a single accumulator. This can be realised in a
pipelined form as a single array of full adders. The distributed
arithmetic complex multiply algorithm described by White appears to
be largely correct, however, one apparent error relating to the ini-

tialisation of the accumulator was noted which originated from
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early on in his derivation. Although this error is not large in
numerical terms, it would introduce some deqree of unnecessary
arithmetic noise, so a separate derivation of the algorithm will be
given here in detail, with this correction included. The reasons for

each step in the derivation will also be given.

3.5.1. The Complex Multiply using Distributed Arithmetic

The complex multiplication can be computed using four real mul-
 tiplications and an add and subtract as shown in equations (3.5.1)
and (3.5.2), where the data vector (B) is rotated by the the coeffi-
cient vector (W) to form the output vector (Z). It is necessary to
define the representation of the real and imaginary binary strings
used to describe these vectors, before deriving any specific algo;
rithm, as the exact operation of the~algorithm is dependent on the

way in which data is to be interpreted.

There are several methods of representing numbers using an n-
bit string of binary data, however, in digital signal processing,
one of the most useful interpretation of such a string is fractional
fixed point 2°'s complement notation, as this allows both positive
and negative numbers to be represented and allows direct interface
with most types of analogue to digital conversion systems. It is
believed, however, that, a distributed arithmetic algorithm is
likely to exist for most commonly used numerical representations
using binary data. Using the above notation, then, the real and
imaginary words that represent the coefficient vector can be

represented as the summation shown in equations (3.5.3) and (3.5.4).
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Re(W) = -Wpo + L Wp. 271 (3.5.3)
n=1 .
N-1 o

Im(W) = -Wp, + 21 W 2 (3.5.4)
n:

This allows equations (3.3.1) and (3.3.2) for Real(Z) and Imag(2),
to be re-written, as can be found in equation (3.5.5) for Re(Z). A
similar expression for Im(Z) can be written to allow a distributed
arithmetic reformulation of this to be constructed in parallel with
that for Re(Z). In this derivation, only the expression for Re(2)
will be continued since the derivation of Im(Z) is based on exactly

the same principles used to derive Re(2Z).

N-1 -n N-1
Re(Z) = [-WRo + n£1 an 2 ] Re(B) - [—WIO + 51

-n
LI 2 ] Im(B)

I
(3.5.5)

Since addition is commutative, the order that the addifions are per-
formed in can be altered so that the separate summations shown above
can now be combined into a single summation by decoding all the com-
binations of the Real and Imaginary W bits. This process effec-
tively involves the formation of new unique merged partial products
~which can be selected by the Real and Imaginary W bits, as shown in

equation'(3.5.6).

N-1

- '
Re(2) =W o, W'IO (0) + nE1 [W'Rn w'In ()

| i 1 cont..
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cont.. !

+ W'oy Wy (Im(B)) Hu'p, Wi, (-In(B))

]
+ Woo W 10 (-Re(B)) +Wp, w‘In (Re(B))

+ Wpq Wpo (-Re(B)+Im(B))| +|Wp W (Re(B)-Im(B))] 2™

e p - -

(3.5.6)
As equation (3.5.6) involves only a single summation, the equation

for Re(Z) can thus be implemented using only a single accumulator.
This equation involves the W controlled selection of one of four
merged partial products, however, a more optimum solution can be
achieved by describing the merged partial products in terms of K and

K* as defined in equation(3.5.7).
K = (Re(B)+Im(B))/2 and K = (Re(B)-Im(B))/2  (3.5.7)

This allows equation (3.5.6) to be re-written as shown in equation

(3.5.8).
- - . -
* * N-1 *
Re(Z)| W' W' (K +K)|+| L 9. w._ (K -k
! ro ¥ 10 ior en
s W W (<K + K) W' W, (K -K
r0 "10 *Won ¥ (K - K)
+ W . W (—K* K W, w' K*
70 ¥ RO - K) *Wpn Wyp (K +K)
$ W W (K - K W W *+ k) 2"
ro "0 (K - K) * Wpo Wpp (K + K )] )
e - - .

(3.5.8)



Part of this equation can now be simplified by noting the W indepen-

dence of one of the Ksup* terms to form the final equation, (3.5.9).

This fully describes how Re(Z) is formed in a single accumulator, as
a function of W and B.
x - -
Re(Z) = -K 2 (N-1)
r~ - -
* N-1 x
t ' ¢ ] -
t Wipg Wipg (K )+ 51 [+ Won Wy (FK)
) [ -
+ W RO wIO (+K) W W (-K)
] ()
+ WRO W 10 (-K) + W, W In (+K)
W, W K k)] 2®
+ ¥ 10 (-K ) + WRn WIn (+K )] 2 (3.5.9)

The control signals can conveniently be separated into a data-select
control signal and an add/subtract control signal. The data-select
control can be derived from an exclusive-NOR type relation between
the real and imaginary W bits, whilst the add/subtract control can
be derived from the real W bit itself. This is the form" in which
the control requirements of the algorithm would be best implemented
on a chip and was used in the implementations described in the fol-
lowing chapters. This alternative expression of (3.5.9) for Re(Z)

is shown in (3.5.10).

Re(Z) = _K* 2'(N"1)
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+

]
Wipo (Wpg @ Wpp) (4K)

+ WRO (WRO ® WIO)(-K)

+
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Wro (Wpo @ ¥yl (K )

-1
)

- *
o1 [ +W Rn (WRn & WIn)(-K )

+ W'Rn(wRn ® WIn)(-K)
+ an (WRn ® WIn)(+K)

+ W

Rn (W

Rn

(3.5.10)

The expression for Im(Z) can be generated using the same reasoning

and procedure that was

used to generate Re(Z), giving equation

(3.5.11) which completes the description of this algorithm for com-

puting the complex multiply using distributed arithmetic.

Im(z) = k 2~(N-1

*
1
W10 (Wpo @ Wpp) (+K )

+

+

¥ 10 (W @ ¥pg) (-K)

+

[} ——
W10 (W0 @ W¥pg) (+K)

-

*
¥10 (W1 © V¥pg) (-K )

-1
X

n=1

[+ W (W @ W) (K

+ W-m(wIn ® WRn)(+K)

+ W'

+ W (W

In In

(3.5.11)

- x -n
® W J(+K )] 2

® Wy ) (+K )] 27

107

wad

n




108

The potential of this algorithm for parallel data implementa-
tions of the FFT butterfly and pipelined datapaths geared to high
speed processing of complex numbers is considered in the next

chapter.

3.6. Summary

This chapter has covered a number of algorithms which allow
high bandwidth vector arithmetic. Some of these algorithms exhibit
somewhat irregular mappings on to silicon such as CORDICS, whilst
other approacpes such as distributed arithmetic offer highly regular
silicon structures by reformulating conventional shift and add mul-
tiplier based arithmetic. It is felt that distributed arithmetic
has a considerable potential for parallel data VLSI arithmetic pro-
cessor implementations and the next chapter investigates a number of
possible datapath architectures based on the distributed arithmetic
complex multiply algorithm, Jjust described. This would allow very
high bandwidth computation of the FFT butterfly with the potential
bottleneck resulting from the vector rotation requirement effec-

tively removed.
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Thapter 4 - VLSI Datapath Architectures for 112

Complex Number Arithmetic

4.1. Introduction

This Chapter will first look at VLSI datapath architectures in
general, and then look at datapaths which are specifically optimised
for operation on complex number arithmetic. In particular, distri-
buted arithmetic approaches to computing the complex multiply func-
tion discussed in the previous chapter, will be compared to conven-
tional approaches using real multipliers. The complex multiply is a
central réquirement of the DFT and FFT as a means of performing vec-
tor rotation but is .also the most computationally intensive function

required in computing the basic DFT and FFT.

Real time computation of the FFT demands very high data rates
~ from the ~arithmetié processor and the new architectures considered
in this chapter offer hardware computation of the complex multiply
with high efficiency. Conventional approaches will be discussed

first, however, with a look at arithmetic datapath design.

4.2. Conventional Arithmetic Datapaths

The datapaths used in the early microprocessors (eg 6502, 6866,
8080, Z80) typically relied oﬁ a single arithmetic unit to perform
the basic add or subtract functions as well as logical operations.
Thus, multiplications using such a datapath could be described as
slow and complex multiplication as very slow. This bus orientated
datapath architecture can be made faster by providing more than one

arithmetic unit thus allowing some of the operations to take place
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conéurrently. For example, four arithmetic units would allow the
complex multiply, additions and subtractions required by the Radix-2
FFT butterfly to be performed in around 20 clock cycles at 16 bits.
This type of datapath would need a small Finite State Machine (FSM)
controller to translate specific instructions to direct control of
the datapath. Mactaggart (1] describes one such device with a F35M
control unit which in addition to controlling the datapath arith-
metic, defined inputs and outputs of the datapath and provided tri-
state enable signals for the output port. The control unit sequencer
could be synchronised with other identical devices (up to four) to
ehhance arithmetic throughput (by up to four times) by stacking the
devices as shown in Figure (4.2.1). Fiqure (4.2.2) shows a photo-

graph of the fabricated nMOS device.

More recent processors such as the TMS320 signal processor,
described in chapter 2, make use of a hardware multiplier, thus
allowing the real multiply function to be computed in a single clock
cycle. Although not available as an instruction on thé TMS320, dou-
ble precision multiplication can still be computed efficiently. (as
might be required for simulation work) if a barrel shifter is
included in the datapath. Four single precision multiplies, two
shifts and three additions are then required to compute a double

precision (dp) multiplication as proven in (4.2.1) to (4.2.5).
“‘Define - A, = (2N w ) + x (4.2.1)
dp 2.

and =Ny +z (4.2.2)

de
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where w,X,y and z are single precision numbers (N bits each)

Also Cdp = Adp . de (4.2.3)
Thus
Cep = (N wr @y 42 (4.2.4)
So that
Cdp = (22N Wy) + (23 (Wz+xy)) + xz (4.2.5)

The single precision hardware multiplier can thus be used to
compute (wy), (wz), (Xy), and (xz), with the barrel shifter perform-
ing the two shifts that are required. It is important to note how-
ever that this datapath is only efficient if the accumulator used is
a double precision device. This is because of the gain introduced by
the multiplier. So in a 16 bit datapath, for example, a 16 by 16 bit
multiplier would be used in conjunction with a 32 bit
adder/subtracfor. In order not to make single precision (16 bit)
‘addition inefficient, the adder/subtractor might also be configured
as two 16 bit devices which could be allowed to operate con-
currently. Thus the datapath would cater for single and double pre-
cision arithmetic with high effiéiency. A typical floorplan for
such a datapath is outlined in Figure (4.2.3). This datapath could
be controlled by a relatively simple sequencer which would allow a

variety of functions to be computed with single or double precision
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arithmetic. The emphasis with this datapath is on versatility, and
it would therefore use a ripple-through (unity latency) multiplier
to allow efficient recursive arithmetic operations to take place if

required.

High bandwidth datapaths would not normally make use of more
than one parallel real multiplier, although clearly the complex mul-
tiply instruction could potentially use up to four. Thus a single

multiplier would be multiplexed to perform the same function.

In extreme cases, a conventional arithmetic datapath might use
two reai multipliers to allow the compléx multiply to be executed at
very high bandwidths. Two multipliers, however, are not 1likely to
map particularly efficieﬁtly onto silicon due to irregular multi-

plier structure and extra bus interconnections.

The‘&istributed arithmetic approach to computing the complex
multiply, described in the previous chapter is likely to map onto
silicon much more efficiently because it is based on a single accu-
mulation process. The next section looks therefore at distributed
arithmetic VLSI datapath architectures with hardware orientated com-

plex multiplication.

4.3. Distributed Arithmetic Datapaths

The main significance of the distributed arithmetic complex
multiply algorithm described in Chapter 3 is that it allows the real
or imaginary part of the complex product to be computed in a single
accumulator, as described in equations (3.5.10) and (3.5.11). The

use of a single accumulator (instead of the usual two needed to
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compute each half of the complex multiply - one for each real multi-
plier) allows the possibility of const;ucting a highly reqular array
for parallel data operation which has the throughput equivalence of
two parallel multipliers although consuming only slightly more area
‘than a single multiplier. Also, a single distributed arithmetic
array does not require awkward bus interconnections as would be
required to route the oﬁtputs of several parallel data sources in a
conventional arithmetic processor, for example from two parallel
multipliers to a parallel adder or subtractor. For this reason as
well as for yield considerations, a conventional parallel arithmetic
approach to the complex multiply would be to usé a single multi-
plexed multiplier. The distributed arithmetic approach, however,
allows the possibility of realising on a single chip of modest size,
a structure which has the functional equivalence ‘of two parallel
multipliers when configured to compute (3.5.10) and (3.5.11). This
would probably not even be contemplated using conventional parallel

arithmetic except at limited wordlengths.

In considering possible structures for implementing the complex
multiply wusing distributed arithmetic, it is necessary to consider
whether the technique of pipelining would be appropriate as this can

often allow further bandwidth enhancements to be achieved.

4.3.1. Pipelining - Bandwidth Enhancement in non-Recursive

Processes

An important feature of the DFT and FFT is that arithmetic
operations may be carried out continuously, as there is no high

bandwidth recursion required between arithmetic processor outputs
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and inputs. This allows the possibility of employing pipelining
techniques within the discrete arithmetic stages of a structure to
achieve high clocking rates. As a substantial enhancement of
bandwidth can be achieved through this technique, it was decided to
specifically consider structures with some degree of pipelining. It
is important to note, however, that very high levels of pipelining
can cause problems in clock distribution, so that an optimum level
of pipelining must be sought for a given technology. Some of the
very fast technologies such as Emitter Coupled Logic and the newer
Gallium Arsenide technologies are so fast that it is difficult to
consider pipelining anything much smaller than a large parallel mul-
tiplier for example, which would operate on a ripple through basis,
at times in the order of 10 nS. 1In general, the slower the technol-
ogy, the higher the degree of pipelining that is possible without
running into problems of race as a result of poor clock distribu-

tion.

Equations (3.5.10) and (3.5.11), which describe the distributed
arithmetic complex multiply algorithm, indicate that both real and
imaginary results of the complex product are formed by the coeffi-
cient controlled selection of + or - ( K or K*) (K’s defined in
equation (3.5.7)). The equations which describe the algorithm
further indicate that this selected word must then be added into an
accumulator at some level of significance, which can be achieved by
shifting. The main circuit element required to implement the algo-
rithm is therefore an accumulator so considering onlf parallel data
array implementations (for which distributed arithmetic techniques

are likely to be most appropriate), the resulting structure
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resembles a standard shift-and-add parallel multiplier, and can
therefore similarly be constructed around a skeleton comprising an
array of full adder cells. In such an array, it is possible to
route the carrieé, sums and the distributed arithmetic coefficients
in a variety of ways to achieve different structures with various

levels of pipelining.

Simple non-pipelined structures will also be considered how-
ever, Dbecause although pipelined structures offer higher bandwidths
than do non-pipelines structures, there are many appiications where
the arithmetic may be required to operate in a recursive mode, such
as to generate a rotating vector for example, or in a Prime DFT pro-

cessor as discussed in chapter 2.

A non-pipelined (ripple-through) parallel distributed arith-
metic array requires multiple access of the distributed arithmetic
coefficients. For small functions such as the twq term 1ine5r equa-
tion for each half of the complex multiply function, it is feasable
to run the coefficients through the chip from top to bottom. The
distributed arithmetic coefficients can be fed vertically down
through the chip producing the architecture shown in Figure
(4.3.1.1) which implements equations (3.5.10) and (3.5.11). This
however, is not-the most efficient approach in a ripple through
structure where it is better to implement equation (3.5.9) for Re(Z)
and its counterpart (for Im(Z) - not shown), which is the W con-
trolled selection of either +K,-K,+K*,-K*. This avoids computing the
complements of K and K* at each cell in the array (Boolean inversion

on each bit) at the expense of feeding the complements through the

chip which is a small communications overhead in this case. Figure
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(4.3.1.2) shows this slightly better alternative to (4.3.1.1) which
has been expanded to a fully parallel implementation by employing
two full adders and multiplexers per basic cell to allow the complex
multiply function to be computed completely in parallel. This struc-
ture is quite area efficient because the distributed arithmetic
coefficients required to compute the real output are also used to
compute the imaginary output. Thus the communications overhead of
four bus lines per cell is minimal, with this approach. Performance
could be slightly improved further by using a common decoder for the
multiplexers in each row of cells since the control to each decoder
in a given row is always the same. In Figure (4.3.1.2), this would
involve four horizontal control lines instead of two, as shown.
_ ~Were K and K* required to be shifted down through the chip as might
be required in a pipelined structure then it would be better to

implement (3.5.10) and (3.5.11) instead.

It is proposed'to start by looking at lower levels of pipelin-
ing and then move towards higher levels which allow clocking rates

that are essentially word length independent.

In all the structures considered here it will be useful to view
the array of full adder cells which will form the skeleton of the
distributed arithmetic algorithm implementation, as several rows of
parallel adders. It would not be surprising to consider that the
carries would therefore be fed horizontally within each row which
represents a parallel adder, and that the sums would be fed down to
the next row of full adder cells representing another parallel
adder, with a possible shift in significance if required. Unfor-

tunately if the horizontal carries are latched (ie non ripple
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through) then it would be neccessary to place a skew on the input
data port to ensure match up of data with carry formation. A quite
different approach, however, would be to consider feeding the car-
ries as well as the sums from one row to the row beneath, treating
the carries as being sums of double significance (which is essen-
tially what a carry from a full adder cell is). This then allows
deferal of carry formation until the output of the array where sums
and carries of equal significance appear. At this point, some form
of fast adder would be needed to assimilate the sums and carries of
equal significance. A complete structure which implements the dis-
tributed arithmetic complex multiply based on this carry deferal
approach is shown in Figure k4.3.1:3) together with the basic cell
that NWOﬁld be needed to implement the specific distributed arith-
metic complex multiply algorithm. In addition to the full adder this
involves a data-selector and éome shift“registéfs‘fo deia? K and K*.

which are the distributed arithmetic representations of the complex

coefficient. The advantage of this structufe is that it is not nec-

cessary to skew input (or output) data to_(anq from) the array, how-
ever, the fast add requirement does impose some degree of wordlength
dependence on the speed pefformance. In thié structure, the sums and
carries are fed forward in such a way as to effect a scale down by a
factor of two from one row to the next. This allows K and K to be
fed down through the array vertically so that it is added in or sub-
tracted at a different level of significance relative to the sums
and carries at each row of cells. if will also be noted that this
structure allows two bits of array initialisation per cell at the

input. One bit could be used for inputfof 5 fixed rounding word and

‘the other bit could be used for the initialisation required by the
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algorithm as described in (3.5.10) and (3.5.11). This type of struc-
ture is particularly compact however it is not highly suited to very

large wordlengths because of the fast add requirement.

One way to overcome this wordlength dependence is, as just men-
tioned, to latch the carries horizontally in an array of full
adders. This also entails latching the horizontal control data
which combrises the data-select control -and the add/subtract con-
trol. If, however, instead of scaling down the sums and carries at
each row, K and K* are scaled down instead then it is not neccessary
for a delay to be placed on them at each cell. Thus the shift regis-
ter count is not increased at all. It is, however, neccessary to
skew all data entering the array and to perform a de-skew operation
at the output. The speed of this type of structure, shown in Figure
- (4.3.1.4) will not suffer the same degree of wordlength dependence
as * the structure of Figure (4.3.1.3), which has a fas; add require-
ment, however, K and K* have to be fed through the arr;;“.ﬁithout
being latched so the maximum load placed on the source buffer which
supplies (MSB’'s of) K and K* will increase linearly with wordlength.
This of course does not imply a linear decrease in speed with
wordlength because the buffers that supply K and K* can be
engineered to work optimally into a g;ven load. Also the delay from
other circuits such as the full adder will tend to have tﬁe dominat-
ing influence on the overall speed. To summarise, the structure of
Figure (4.3.1.4) will exhibit some degree of wordlength' dependance
on overall speed performance but this can be kept fairly small. The
top row of this structure has one bit of initialisation per cell

thus allowing the initialisation requirements of the distributed
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arithmetic compléx multiply algorithm to be met. If, however, it
was required to add a small fixed number to minimise noise from the
truncated K and K’ words a sparse row of half adders would be
required to add this to the initialisation word. This is detailed in
the following chapter which considers some specific implementations.
It should be noted that the initialisation word needs to be skewed
in this structure as with K and K*. The initialisation word is
derived from K or K* so extra shift register delays are not
required. The basic cell for this structure is fairly small thus
resulting in a fair compromise between clocking rate and overall

area.

For very large wordlengths, it is desirable to seek a structure
which exhibits essentially no wordlength dependence with all cell
communication being latched. One such structure is shown in Figure
(4.3.1.5). Here, the carries are fed horizontally and the sums are
fed down and shifted to reduce their significance in going from one
row to the row beneath. This results in a vertical delay through the
cell of two cycles which is the delay that must be applied to K and
K* which are fed vertically down through the cell. As the vertical
delay is two cycles per cell, the delay on data entering the gontrol
input data port must increase by two cycles in moving f:om one row
to the row beneath. That is to say, the equivalent of two series
data skew operations must be performed. Figure (4.3.1.5) shows the
basic cell that this structure entails. The shift register count at
first sight appears to be rather large, however the vertical delay
on K and K* can be implemented with half the number of shift regis-

ters clocked at half the normal rate as described in the next
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chapter which looks at a sﬁecific implementation. The structure of
Figure (4.3.1.5) has a clocking rate which has no wordlength depen-
dence other than any delays that might be incurred in transmitting
the clocks to each cell. This is indeed a problem for very large
wordlengths and demands the set up of a hierarchy of clock buffers
to distribute the clock with a minimum of delay. The possibilty of
abandoning the synchronous structure and using a self-timed approach
would be one way of avoiding clock distribution problems, however,
this would involve a large area penalty and thus require yield

enhancement for even modest wordlengths.

It was mentioned in the previous chapter that the distributed
arithmetic coefficients can be computed in situe to produce highly
regular structures which are suitable for yield enhancement tech-
niques. Figure (4.3.1.6) shows a basic cell with yield enhancement
that could be used in é large distributed arithmetic array to com-

pute a four term linear equation in parallel.

4.4. Summary

In this chapter a number of distributed arithmetic structures
have been suggested for implementing the complex multiply as part of
a high bandwidth datapath. The next Chapter is devoted to some
specific high bandwidth arithmetic processors for FFT computation,
which use some of these distributed arithmetic structures to stream-
line the computation of the complex multiply function which is the

most intensive computational requirement of the FFT and DFT.
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Chapter 5 -  MOS - LSI/VLSI Distributed Arithmetic Structures

5.1. Introduction

In this chapter, some specific MOS - LSI and VLSI implementa-
tions of the architectures discussed in the previous chapter will be
presented. The structures described here offer efficient high speed
computation of the complex multiply function through the use of dis-

tributed arithmetic.

The first silicon device to be described (number EU201) is a
totally parallel radix-2 FFT butterfly arithmetic processor, how-
ever, in a later design, greater versatility is obtained by allowing
dynamic re-configuration of the datapath itself. Of the three chips
described in this chapter the first two devices (nMOS) were fabri-
cated and tested. The last desigﬁ to be described was due for fabri-
cation on a GEC 4 micron CMOS-SOS process but due to poor Applicon
software to allow transfer of the design, this was delayed, making
the fabrication and testing of the design impractical within a rea-
sonable time frame. Test results if available may be added as an
appendix to this thesis. The testing of the second nMOS device
(EU219) is covered in some detail, as a number of working samples
were obtained. The first device (EU201) which is similar to the
second device could not unfortunately be tested in depth due to a
limited number of samples being available and also a low process
yield was in evidence. This may have been related to very high
depletion thresholds (around -1.0 V) which were measured during
probe testing of some test structures in the chip frame. The un-

fabricated S0S design is described and documented to allow
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subsequent testing and application in a system.
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5.2. A Totally Parallel 6 Bit Radix-2 FFT Butterfly

5.2.1. General

To compute the radix-2 FFT butterfly in parallel requires that
the complex multiply be implemented in parallel. The radix-2
decimation-in-time butterfly function requires that two data input
words (A,B) (complex) be modified by a coefficient (W) (complex) to
form (A+BW) and (A-BW) (complex). The complex multiply distributed
arithmetic algorithm described in Chapter 3 can be implemented as
two distinct distributed arithmetic arrays, after Figure (4.2.4) one
producing real data and the other producing imaginary data, or
alternatively, a single array can be constructed after the totally
parallel example of Figure (4.2.5). It was decided to pursue a
structure after the former as this would allow a natural progression
to a programmable device if required, with a largef word length -
producing real or imaginary data but not both simultaneously. One

such device is described in the next section (EU219).

Having computed the complex product (BW) ' an additional adder
and subtractor can be used to compute the required butterfly outputs
(A+BW) and (A-BW). This resulted in the chip £floorplan shown in
Figure (5.2.1.1). It was decided to limit the wordlength of this
prototype chip to 6 bits for both data and coefficient. This is too
small a wordlength for most system applications but it was hoped to
obtain some yield data which might indicate whiether 1longer
wordlengths could be considered in the future. At this small
wordlength most of the larger and more highly pipelined structures

discussed in the previous chapter do not offer much greater
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bandwidth and so the carry deferal architecture described in Figure
(4.3.1:3) may be considered to be highly suitable, even though this
structure requires a fast adder to assimilate the sums and carries
at the output. Other than this fast add requirement, the distributed
arithmetic complex multiply structure may be made up from an array
of identical cells each of which fulfil the three main requirements
of the distributed arithmetic complex multiply algorithm. The basic
cell must be capable of performing a data-select and bit level full
add as well as containing delays for the pipelined operation. The

precise 1logic of the basic cell used, together with nMOS silicon

layout is shown in Figures (5.2.1.2) and (5.2.1.3) respectively.

This cell permits selection of either K or K* as required by
the algorithm, and the bit level addition or subtraction of this by
the full adder, which is an integral part of the accumulator.
Finally, it presents K and K* delayed for operation on by the cell
in the row beneath. Most of the cell area is comprised of the full
adder. This made use of inverter controlled data-select 'type
exclusive-OR gates which offe;s a good compromise between area,
speed, and power consumption, when compared with PLA, function
block, and random logic nMOS implementations, as determined by Myers
[1] The latches used were standard nMOS dynamic devices which offer
a lower area and power consumption figures compared to stétic circu-
itry. This places a minimum safe clocking rate of around 20 KHz on
the chip as a whole, however, the minimum clocking rate ﬁay be
reduced further by increasing the clock logic "HIGH" to Vag * Vth
where Vth is the threshold voltage of the enhancement devices. The

output of the distributed arithmetic array contains unassimilated
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sums and carries which must be combined to produce the desired out-

put. This may be accomplished with a fast adder.

5.2.2. Fast Adder for Data Assimilation at Array Output

There are several techniques for achieving a fast add. It would
be possible to use a high latency pipelined adder with skewed input
and output data, using latched carries, as shown in Figure
£9.2.2.1). This would not strictly be a fast adder, (with unity
latency) but rather a high bandwidth adder (with greater than unity
latency). Another approach would be to use some form of carry look
ahead (CLA) technique which would offer true high speed, and could
be operated with unity latency. In nMOS technology, however, it is
possible to use an ordinary carry ripple-through (Figure (5.2.2.2))
adder at quite high speed if the carry chain is pre-charged to a
logic "1", before forming the carries. This technique offers high
speed for small to medium word lengths, but is superseeded by the
CLA adder at larger word lengths (typically >12 bits). Ina 6 or 8
bit device, the carry chain pre-charge technique, is likely to offer
the most optimum approach then, since the ripple through adder is
smaller than a carry look ahead adder. The logic used for this
ripple-through adder with pre-charged carry-chain is shown in Figure
(5.2.2.3) and the silicon layout used is shown in Figure (5.2.2.4)
for two adders. This was in fact the final output stage of the chip.

The adder uses random logic.
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5.2.3. Clocking Scheme

It was decided to use a standard two-phase non—overlappiﬁg
clock system as is quite common in nMOS technology. This clock could
be conveniently used to control de-multiplexer circuitry and multi-
plexer circuitry to allow the fast transfer of both real and ima-
ginary complex data within a complete clock cycle at each of the
five input ports. The use of a non-overlapping clock eases the
design problems of minimising clock skews and keeping control over
internal clock rise times throughout the chip, in order to avoid

race conditions in shift register circuitry.

5.2.4. Performance of EU201

The chip EU201 was not probe tested but rather was bénded up
and ten such devices were made available by the Edinburgh Microfa-
brication Facility (EMF) for testing. It was found that one of the
chips produced entirely correct real results and another produced
entirely correct imaginary results. The design was therefore veri-
fied, however, the yield was not high enough to produce a completely

working sample out of the ten samples.

The depletion thresholds in EU201 were too high (-1.0 V typi-
cal), thus slowing the internal logic rise times. No ma#imum speed
performance check was therefore made, however, no problems were
encountered at 1MHz on those circuit parts which appeared to operate
at the lower clock rates used initially. (At a clock rate of 4MHz,
six EU201 chips incorporated into a pipelined FFT would compute a

64-point transform in only 48 microseconds). As the chip was not
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‘available in sufficient quantities to get suitable yields (wafer
shared with another device), in-depth testing of this device was not
carried out. The device to be described next however which is based
on the same basic distributed arithmetic array as EU201, was avail-
able in somewhat larger quantities and several working devices were

obtained. Extensive testing of this device was therefore possible.

5.2.5. Summary of EU201 Butterfly Processor

The device just described, was designed to compute the radix-2
Decimation-in-time FFT butterfly function, completely in parallel.
It did not require any external control therefore. A photograph of
the fabricated device is shown in Figure (5.2.5.1). The ability to
re-configure the datapath, however, could offer a great potential in
extending the range - of functions that could be computed. This
approach could be extended to allow a single datapath to be pro-
grammed to compute either real or imaginary outputs of the complex
multiply. This approach is useful, as the area of circuitry is
halved, thus allowing 1larger word lengths to be implemented. The
next chip to be described can be programmed to compute either real
or imaginary outputs of the radix-2 butterfly, and offers a larger

wordlength.
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5.3. EU219 - A Programmable 8 Bit Version of EU201

5.3.1. General

The previous section described a totally parallel radix-2 but-
terfly which was based on a distributed arithmetic complex multiply
algorithm. The array used to compute real data and the array used
to compute imaginary data are identical, with fixed internal control
determining whiether real or imaginary data is produced from each
array. It 1is possible, therefore, to program a single distributed
arithmetic array to produce either real or imaginary data. This par-
tition would of course, half the processing bandwidth per chip, but
allows the possibility of larger word 1lengths. This section
describes a single programmable distributed arithmetic array which
can output either real or imaginary data every computation cycle.
The device, (number EU219), operates on a more practical 8 bit data
word, and can be interfaced directly with an identical device to
recover (that 1is, double) processing bandwidths. This is achieved
through the use of a high speed multiplexer and tri-state output
pads on the chip, enabling the interleaving of real and imaginary

output data in time-sequence.

5.3.2. High Speed Input and Output Port

It was decided, in order to avoid external data sorting, and to
keep pin counts as low as possible, that a single 8 bit port would
be used for DATA IN and a separate 8 bit port for DATA OUT. The
coefficient would have a separate data input port also, as hefore.

In the previous section, it was described how the distributed



arithmetic coefficients K and K* were fed vertically down into the
array from the top of the chip. The input to the butterfly (A) which
is not rotated (not passed through the complex multiplier) was fed
vertically down through the chip, being delayed for subsequent addi-
tion to +/- BW at the output. The other data input (B) to the but-
terfly which is rotated, was fed in horizontally from a separate
input port where it was passed to the control logic for controlling
the array. If A and B input ports were to be absorbed into a single
data port, then awkward bus interconnections would be required to
connect vertical and horizontal accesses to the array. It was
decided that the problem could be solved by feeding in the coeffi-
cient (W) in horizontally to the control logic and feeding in data
(A,B) at the top of the array. Unfortunétely, if data B is fed in at
the top of the array, then it must be presented in the form of K and
K* ([Re{B}+Im{B}]/2 and [Re{B}-Im{B}]/2), as was done for W in the
previous case. W is now fed in as Re{W} and Im{W} at the control
‘data port. An add and subtract must therefore be performed at the
top input port on all Re{B} and Im{B} data. It was decided that this
would result in a more regular floorplan and reduced chip area than
would the bus interconnections required otherwise, and would also
mean that all data fo the chip was in the form of Real and Imaginary
data only, thus simplifying the coding of coefficient data in ROM.
The use of a single data port also meant the need for a high speed
de-multiplexer to separate the four input data words to the but-
terfly (Re/Im, A and B). Steps must be taken to ensure that this
does not limit the performance of the chip and does not cause prob-
lems with interfacing to the outside world. The single 8-bit output

data port also demands the availability of a high speed multiplexer.
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5.3.3. High Speed Multiplexer

The chip required a 1:4 de-multiplexer at the 8 bit input port,
and a 4:1 multiplexer at the output port, which would be used as a
2:1 multiplexer to allow real/imaginary data interleaving, with

another device.

The standard de-multiplexer or multiplexer consists of two
basic elements. These are a N to ZN decoder, and a ZN row of
sWwitches, only one of which can be placed "on" by the decoder at any
one time. Finally the selected data must be latched. The decoder,
however, would involve a minimum of 3 gate delays in nMOS technol-
ogy.'These are, input buffering (2), and logical NOR gate for imple-
menting the AND decoder function (1). An additional output buffer
would normally be required, however, further increasing the overall
decoder delay time. An additional problem that occurs when décoders
are used in a multiplexer and de-multiplexer is that when the
decoder changes state, glitches inevitably result during that short
time interval and can be quite severe. This is caused by the decoder
logic gates receiving transient analogue data from poorly defined
inputs which occurs during input transitions. This effect can be
removed by masking the decoder output ("AND" function) so that the
decoder output would be reset to zero during the time interval when
the input logic to the decoder was changing. It was felt that the
extra time penalty required for this decoder operation would be too
great, so it was decided that a decoder would not be used at all,
and instead the de-multiplexer would be directly controlled by a
global four phase non-overlapping clock, some of the phases of which

could also be put to use elsewhere in the chip for pre-charging
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purposes and controlling latches in the array. The multiplexer
would be operated by the same clock control lines. The actual logic
used in these circuits was very simple. Dynamic logic was wused to
allow fastest possible operation, and only a single gate delay was
involved in the multiplexer itself. Figure (5.3.3.1) shows the

"logic® used.

5.3.4. Global Four Phase Clock

The four-phase clock was chosen, primarily for fast multiplex-
ing and de-multiplexing of data, however, it also made available
highly optimised timing signals required by those circuit elements
which required pre-charging as is quite often useful in nMOS tech-
nology for speed enhancement. The fast adder, described in the pre-
vious section, used a pre-charged carry chain. The time required for
carry pre-charge, is much less than is required for carry ripple
through, however. This means that the pre-charge clock should be
substantially shorter than the time between the pre-charge falling
edge and the output latch falling edge (add-time). The use of the
first phase (CK1) for pre-charge and the last phase (CK4) for output
sum latching. gives the adder more time for actual addition compared
with the time that is available in a standard two phase non-
overlapping clock system with CK1 being used for pre-charge. Figure
(5.3.4.1) shows the four phase clock used, and those phases used by
the fast adder for pre-charge and output latch. It can be seeﬂ that

about 75% of the cycle is made available for add time.
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5.3.5. Tri-State Logic and Timing Consideratiens

The global four-phase clock provides four time slots in which
data can be 1latched on chip and sent to the outside world via the
tri-state output pads. It was decided, that real data transfers
would take place on the rising edge of clocks 1 and 3,-and imaginary
data transfers would take place on the rising edge of clocks 2 and
4. The reason for adopting this timing was that it would be possible
to store data in memory on a complex word basis with one address per
complex data word, comprising real and imaginary data segments, and
then use an external multiplexer for transferring real and imaginary
data to the chip in adjacent time slots. This would be necessary if
the memory was not fast enough to afford a separate address for real
and a separate address for imaginary data. If the device was to be
programmed to output only real or imaginary data, then clearly it
would be necessary to force the outputs of the chip into a high
impedance state for two of the four cycles in which it has no data
to contribute to the outside world. This would allow another chip to
force valid data onto an external bus during those cycles. The logic
used to generate the tri-state enable signal consists of a two input
OR gate, which is connected to clocks 1 and 3 when real data is
being output, or clocks 2 and 4 if imaginary data is being output.
The timing for the tri-state enable logic is shown in Figure

(5.3.5.1).
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5.3.6. Formation of Butterfly Outputs

Depending on whethef real or imaginary data was being computed,
either Re(A) or Im(A) would be selected at the input port of EU219
and this would be shifted down through the distributed arithmetic
complex multiply array to allow subsequent addition of this with
either Re(BW) or Im(BW). This addition was accomplished using carry
deferal as in the distributed arithmetic array. Thus Re or Im(A+BW)
in unassimilated sums and carries were presented at the output. This
was then assimilated using a fast manchester carry adder as previ-
ously described to form a complete word. The formation of Re or
Im(A-BW) presented a problem becausé this would have meant feeding
BW as well as A through the previous arithmetic stage. This would in
practice have required that this stage be widened to allow these
signals to pass through. It was therefore decided to form A-BW
without feeding BW forward. This was done by shifting A one place
left to form 2A. The subtraction of the already formed (A+BW) £from
2A would produce the required (A-BW). Thus, (A-BW) was formed as
2A-(A+BW). It was checked that this approach would not cause over-
flow to occur in the datapath. A general floorplan of EU219 is shown
in Figure (5.3.6.1) and a more detailed version is shown in Figure

(5.3.6.2).

5.4. Digital and Analogue Testing of EU219
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5.4.1. General

Twenty wafers, containing around 100 devices per wafer, were
fabricated by the Edinburgh Microfabrication Facility. The devices
were all given an initial probe test fo evaluate peripheral circuits
and to give the distributed arithmetic array a sparse testing,
intended to eliminate most of the eventual rejects. Around 5% of
the devices passed this probe test and were bonded up. The bonded
devices were then given a speed check (Analogue Performance) and a
comprehensive digital check on a Tektronix DAS_9100 series logic

analyser.

5.4.2. Probe Testing

The probe test was primitive, and involved thé input of a fixed
binary word to the data and coefficient ports, and changing the
logic on a single pin of the chip which determines whiether real or
imaginary data is to be produced. The value chosen was 1/(SQRT(2))
as this would produce a unity magnitude 45 degree vector at all
input ports. Thus the 45 degree coefficient would rotate a 45 degree
data word to produce a 90 degree result from the complex multiplier.

The expected results of this test are shown in Table 1.

Inputs Outputs
Re/Im {A,B./W} Re{A+BW} Im{A+BW} Re{A-BW} Im{A-BW}

01011010 00101101 01101100 00101101 11101101



These precise outputs were obtained during the test in about
5% of the devices. In addition to monitoring the output data port
of the chip, which involved most of the chip logic, the tri-state
enable logic output was also monitored. This represented a small
amount of peripheral circuitry and over 90% of the devices produced
a correct result at this output pin. The probe test was designed
only to eliminate a large number of chips from the bonding process
and was not intended in any way to be interpreted as a final test.
Indeed, this test does not properly exercise the input de-
multiplexer, as the data is held static. fhe following tests were
performed on the 5% of devices that were bonded up after the simple

probe test.

5.4.3. Testing EU219 on a Logic Analyser

A Tektronix DAS_9100 logic analyser permitted the testing of
the devices under dynamic conditions, in which data was rapidly
changing and the latches were being fully exercised'Ato check for
possible poor logic conditions such as might occur due to crosstalk
between hard and "soft" nodes, for example, the latter being a
feature of dynamic MOS circuits. The initial test involved a check
that the two’s complement circuitry was operating correctly with
both data and coefficient being tried in all four quadrants. The
vector rotate circuitry comprises over 90% of the chip transistor
count, so it was decided that the next step should be to attempt to
exercise this part of the device. It was decided therefore to mul-
tiply a unity magnitude data vector which was rotating anti-

clockwise with a wunity magnitude coefficient vector, rotating
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clockwise at the same rate. This is the data that a complex multi-
plier in a DFT might be subjected to, for example, and TEST1 to be
described represents the complex multiplier computing the results of
an 8 point DFT, with the "time domain” in coherence with the rotat-
ing coefficient vectors. If the chip was operating correctly then
it should be observed that the resulting vector (BW) was made fully
stationary. An additional feature of this test is that it would
allow the examination of any noise that might appear in a system

based on the chip due to possible fluctuations in the LSB.

5.4.4. TEST1 for EU219 (Complex Multiplier Only)

In the specific test, the rotating vectors must both start from
some arbitrary point on the axis. It was decided to start the rota-
tions from a zero degree angle, and rotate in 45 degree increments.
This made calculation of the real and imaginary components fairly
trivial. Figure (5.4.4.1) shows the 8 different vectors that were
used for "B" and "W". In the initial test, "A" was set to zero as
this has nothing to do with testing the complex multiplier part of
the chip. After completing this test "A" was set to a unity magni-
tude, zero angle vector (Real part = hex 7F), and TEST1 was re-run,
to give the modified results shown in TEST2, which also exercises
the input de-multiplexer more fully and the final butterfly output
stages. TEST2 also serves to check for arithmetic overflows, by
presenting input signals which should produce the 1largest output

possible from the chip.
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5.4.5. TEST1 Results

The results of TEST1 indicated that the chip was operating
correctly, with some fluctuations appearing on the LSB of the out-
put. These fluctuations are believed to be normal and primarily a
result of arithmetic rounding noise plus quantisation errors in
representing the magnitude and phase of the input data vectors. The
precise program and data used in TEST1 is shoﬁn in Figure (5.4.5.1),

and the actual logic output obtained is shown in Figqure (5.4.5.2)..

5.4.6. TESTZ2 Results

This test was the same as TEST1, except that Real{A} was set to
unity with Imag{A} set to zero as before. This corresponds to a
unity magnitude, zero angle vector. The program and data used in
this test are shown in Figure (5.4.6.1), with the test results shown
in Figure (5.4.6.2). The results obtained were correct, with normal
fluctuations in the LSB only, as in TEST1. This test was designed to
check for overflow as well as providing another test vector for the

output fast adders.

Subsequent tests were then performed to specifically 1look for
possible interactions between data in adjacent time slots, such as
might occur in race situatiops for example. No such situations were
observed. Figure (5.4.6.3) shows the results of one of the tests

used to evaluate the pipeline for these hazards.
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Output Sequence

..... Do (Shifted R1)

18 =
| B

40000000

08002080
81181188 (a+BW) Real

80181181 (a+Bw) Imag

1]

11181181 (A-BW) Real

=l

o 68161181 (A-BW) Imag

PB0BOGBE (A+BW) Real
PBANBABRE (A+BW) Imag

]

BHDGARAA (A-BW) Real

pAGOBEAE (A-BW) Imag

1

BOR10881 (A+Bw) Real

1 4| 5

11818811 (a+BW) Imag
10910188 (A-BW) Real

1 11818811 (A-Bw) Imag

S 60002608

60069000

Figure (5.4.6.3.) Dynamic Operation of .
EU219 Pipeline at 4M Bytes/Second Data

Rate showing device Latency.



165
TEST 1

PATTERN GENERATOR: INTERRUPT: CALl BRSNS oM A
ws YN PAUSE ON: INHIBIT ON:

POD4OC POD4BA PODICB
SEQ  LABEL INSTRUCTIONS  STROBES

. REFERT e 21
6808

- 1111168085539569

1 SRT 0380 1820leeaalilliil

2 0860 0908 B0A816eE81111111

3 0803 0080 0109180000000080

4 0003 0080 ©0GD1608EEAC00E0

6] 0068 7re8 ©6916106820820809

6 0808 7rE0 @00010£822380000

? 0009 0060 G081180030800880

8 0660 0068 0G00A166890820060

9 0008 0d00 10881866A1611010
18 0909 0080 @0281006a1011010
i1 0608 6069 0160106818180110
12 0608 08E@ ©pAB16BA18160110
13 6608 Oq60 0910166020830060
14 6608 OABO  ©©Y8D108680880000
19 6808 OABO B081188080850060
16 6923 ABO 0B39108930320000
17 0009 0388 1098188000000600
18 0G0 0060 ©809162080008900
19 6608 0080 0100182910080081
28 0008 0080 ©883188018088081
21 G000 0320 ©8016100000030009
2 0000 09 0800100A80080000
23 6303 7ro8 ©881182082000000
24 0300 7700 ©003106000020420
23 6608 0008 10001898161088110
26 0608 0000 ©@800182818188118
27 . 0008 0008 ©102100818168110
28 0000 0008 ©600100810180110
29 0398 o8B  0010102088080088
30 6008 f6BD 00G31880800B0000
31 6008 5ad0 0001180000008080
32 6968 AGE 0OB3108088088080

DATA COEFFICIENT
PORT CLOCKS PORT(w)
(8) (4) (8)

Figure(5.4.5.1.)
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16001060810000081
(000100016000081
0100100803032080
8600104088000060
0010100000000008
(600100066060080
6661 108863000000
0060160803000080
1600108818108110
600a100910160110
#100103801011010
#6081006a1011610
¢a10100606060000
(000100600000060
0801 102682008080
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€001 160000000600
6600160820800068
16091060081811010
60301080801011018
8100160691811810
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#0101 80660600000
6000100080820800
6001 1 60600800000

. ©000180860000808 GOTO
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PATTERN GENERATOR:

168

INTERRUPT: CALL G35

PAUSE ON: INHIBIT ON:

STROBES

oN B

CLOCK: MOS
POD4DC POD4BA PODLCB
S0 LABEL INSTRUCTIONS
1 4000 ma meemaaamuu
2 6900 7Fed  Ge2A19@AR1111111
3 8900 @000  §100180AGAR0RGA
4 0300 0P3)  PARA1GAGAHGDRARD
5 8908 7FG0  0A10100A0000300
6 6E08 7FEA  GA9A1ROAAAASAARH
7 6300 0060  GR91190A3009H090
8 0300 00D  PBAG1RAGAARGAED
9 6360 7FB0  1629109001011010
18 6200 7FO8  ©899109091011010
1 8309 0PE3  918919GA1A109110
12 ) 0359100810169118
13 0800 5409  0A101PABOAGO0BE0
14 8200 5093  B9019082082A090
15 8908 5420  ©B9911PAGAARRRGRR
16 300 5AG0  0OGA10AROAGAA0A
17 6208 7FP8  16901P00PORREGR0
18 6300 7FG0  0ARA1AAGRAGERAGD
19 . 6200 @089 ©196130810650981
28 6008 ©0AA  (BEA1A0A16BAAGA1
21 0300 6P28  ©B101PEAAAGEAGHH
2 0R00 0PE  E0901PHRAAGEH0PD
23 8200 7FE3  GA911PAAAAARHAE0
24 G308 7FE8  0020100820020020
5 0e00 7FE8  1099166919106110
26 0300 7F09 0RZA19AA19169110
27 0300 6PG0  9121PAA10168110
28 0300 0000 PRED1AGA1A16A110
29 0308 68D  0910120820009009
3 6008 (6A7  0BG01¢0GRAARAGY
3 6908 5490  089110AG2AA20080
32 0008 5000  ABPA1PAGPAGPAGHY
DATA ° COEFFICIENT
PORT CLOCKS PORT(w)
(8) (4) (8)

Figure(5.4.6.1.)
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1680100010660001
0009100010280001
0100120600000000
0000100000080668
0010160620820000
0600100000880088
8691 160640000086
0860160080080800
16601600101608110
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81608100681011010
638016080101 1618
04101020080600060
6060100000820868
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1660160881011010
0060160601011018
61801e0a81011018
0328160001011010
6018100000000809
068291 60660000000
8081 100800080860

0030180800820868  GOTO
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5.4.7. TEST3

The first and second tests involved vectors associated with an
8 point DFT. It was decided to double the number of test vectors and
apply vectors associated with the W coefficients of a 16 point DFT
in order to provide more comprehensive fault detection. This
involved the input of angles which are multiples of 22.5 degrees.
The data used in this test is shown in Fiqgure (5.4.7.1). Fiqure
(5.4.7.2) shows the results of the test. The correct response was
obtained with fluctuations in the LSB evident. This is thought to be
the result of rounding errors and is believed to be normal. In this
test which was primarily intended to exercise the distributed arith-
metic complex multiplier, the non-rotated input data (A) was set to

Zzero.

5.4.8. TEST4

A fourth test was run in which the non-rotated input vector (A)
was set to unity (Real (A} =1, Imaginary {A} =0). This test checks
for correct carry and sum formation in the final arithmetic stage of
the processor and also checks for overflow. This test which is very
similar to TEST3 is not shown for this reason. The results of TEST4,

however, are shown in Figure (5.4.8.1).

5.4.9. TESTS

It was felt that it would be useful to view the vector outputs
from the chip directly on an oscilloscope as an analogue signal. The

chip produces digital outputs only, and data is time division
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1 SR 6230 602 leesisoealililil
2 6o28 ooz eooaloeeallliill
3 6028 @638 0100100833308008
4 8088 €080 000812080630829
J 6002 7re8 6010168000603889
6 6068 7Fe0 8000100803383300
? 0028 0828 0601160898608809
8 €000 0080 6000]108065008008
9 60c8 0088 1000188391118118

18 €008 0088 0008100801118110
11 go28 0288 6loa10e9116a1111
12 6033 0888 068c0168811891111
13 8088 7680 0018103802330909
14 6028 7608 6000100800200008
13 . 6023 31g@  G91108308692008
16 @388 3188 830010008C308508
17 6028 06880 10609100081811818
18 8088 0dB0 0008102001811818
19 603 928 0103100018160118
20 8038 0990 ©000100910108110
21 6080 5A00  03010168886523008
2 0088 A28  80001080820900000
23 0ese AGG  6001163802008000
24 8088 OAB3  B00A100806528630
5 €088 - 0088 106810680011668]
2% gose 0c08 00081006891 1068)
27 0039 0000 0109100816201810
28 8028 0800 0009100016291810
[ 60a9 2100  00101686286060M0
3 8008 3100 0008108009033909
31 0088 7680 ©681100009620000
32 603 7638  006310080C080660
DATA COEFFICIENT

PORT CLOCKS PORT(w)
(8) (4) (8)

Figure(5.4.7.1.)
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Figure(5.4.7.1.)
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TEST 3
(Results)

m
145]
(|

e DD

- DO OO O v v

SGS& PRISSS SS&&

)] w

+ +

3 3
—~ Q — Q
G + m m [ ] [s1]
v 3 [43] n) QU J 0
x O = 3 O =

PO ® DDOD

wglz.{v ~ O N

WS G S

LSB

maginar
utputs

Y

S85&S

MSB

vl v¢ >t v

>t vt e vt

wglz-(v < 1D WK

SESSE S&&S

LSB

maginary
utputs

MSB
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Results obtained from the DAS 9100.
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TEST 4
(Results)
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Results obtained from the DAS 9100.

Figure(5.4.8.1.)
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multiplexed so to do this requires an external de-multiplexer (to
separate real and imaginary outputs), two digitai to analogue con-
verters (a single fast one could be used if preferred) and a two-

channel oscilloscope with facilities for x and y inputs.

The coefficients (0 - 180 degrees) of a 1024 point FFT were
loaded into a 2716 eprom with real and imaginary data being held in
even and odd address locations respectively. The eprom could thus bev
made to output data corresponding to the coefficients of a 1024
point FFT or any size smaller than this which is an integer power of
two. The data input to EU219 was supplied with a stationary vector
this time so that instead of observing the chip cancelling out two
equal and opposite rotatidns as was done in tests (1-4), it would be
possible to observe the chip rotate a stationary vector by the vec-
tors held in eprom. Figure (5.4.9.1) shows the test set up and Fig-
ure (5.4.9.2) show some photographs taken from the oscilloscope. The
top half (0 - 180 degrees) of the circle represents the (A+BW) (A
held constant) butterfly output. The bottom half (180 - 360
degrees) of the circle represents the (A-BW) (A held constant) but-
terfly output. The results obtained were somewhat encouraging, as
there were no observable errors in all 1024 (( 8 + 8 ) bit) vectors
that were input to the chip. This test was carried out with several

stationary input data vectors and no anomolies were observed.

5.4.10. Analogue Performance of EU219

The speed of the device was measured usihg a high speed clock
that was based. on high speed.SEhoitXX_TTL monostables. This was

turned up in speed until the chip started to produce logic errors at
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1

.-Uo-’ — CNTL o
= § EU219 3 Real
: 3 Real > = De_>1 D/A
; Imag >— S __OIcrm. ~ Mux D/A
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§
& | Coefficient
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EPROM
/F S YG--J
cope X
COUNTER

Figure(5.4.9.1.) The use of D/A's to monitor EU219's
Output Port on an Oscilloscope.
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the output on a set of data which was worst case for the fast adder.
It was found that the devices clocked at up to 4MHz if the clocks
were allowed to rise to 7.0V, however, at 5V, the maximum speed
obtained was only 2MHz. This unusually high dependence on the clock
voltage was traced to poor clock rise times internal to the chip.
Although the device was fast enough for serious use. it was felt
that if the clock input pads were modified, a useful increase in the
maximum clocking rate should result. Consequently, this modification
was made, and a near identical device, number EU341 was fabricated
later. Other than the fact that EU341 is slightly faster than

EU219, they can otherwise be regarded as the same devices.

5.4.11. Summary of the EU219 Butterfly Processor

This butterfly arithmetic processor is similar to EU201, but
differs in that the chip can be programmed to compute either real or
imaginary outputs from the same data. Thus two identical chips can
be combined, with the use of tri-state outputs, to function as one
completely parallel butterfly device. This partition allows longer
wordlengths to be realised and EU219 is an 8 bit device unlike the 6
bits of EU201. Figure (5.4.11.1) shows a chip photograph with pin
data information. Figure (5.4.11.2) shows a close up of the distri-
buted arithmetic complex multiplier array showing a number of the
basic cells connected together. Finally, Figure (5.4.11.3) shows the
pin numbers used when the device is bonded up in a 40 pin dil.
package. A useful modification to these designs would be to allow a
greater degree of configuration of the datapath to make the device

more versatile.
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Figure(5.4.11.2.) Close up Photograph of Several
Basic Cells in the Complex
Multiplier of EU219.
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W5 W4 40
W6 W3 39
w7 w2 38
CKi W1 37
WO 36
VBB VDD 35
CKs D7 34
CKs D6 33
CNTL D5 32
10 ENO D4 31
11 ENB D3 30
12 S8 D2 29
13 S7 D1 28
14S6 . DO 27
15 NC  NC 26
16 SO NC 25
17 VSS  NC 24
18 S1 NC 23
19 S2 S5 22
20 S3 S4 21

OO U A WN =
O
A
N

w

A0rnnfonfnnonAfadaOonanmoMnnonin
'UUUUUUUUUUUUUUUUUDUU

Figure(5.4.11.3.) Pin Identification for
EU219 and EU341 :
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A

The next device to be described is a 16 bit CM0S-S0S datapath.
This may be dynamically re-configured under external control and can
perform time domain windowing functions in addition to the basic FFT
butterfly. It may also be used to compute the DFT at high bandwidths

if desired.
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5.5. A 16 Bit CMOS-SOS Arithmetic Processor (Z686-505)

5.5.1. General

In the previous sections, two similar nMOS devices were
described which made use of distributed arithmetic techniques to
achieve a highly efficient silicon implementation of the FFT but-
terfly. These chips, however, do not employ a sufficiently high
enough wordlength for general use and were fabricated'on a low to
medium performance process (6 micron nMOS). Both of these chips
employed ripple-through adders internally, thus implying a reduced

performance with increased wordlength.

This section considers a 16 bit distributed arithmetic CMO0S-SOS
datapath chip based on the highly pipelined architecture described
earlier in Figure (4.2.8) to allow very high bandwidth computation

of the complex multiply at longer wordlengths.

The S0S device is, like both of the previous nMOS devices,
aimed primarily at computing the Radix-2 Decimation-in-Time FFT but-
terfly, however, unlike the previous devices, by passing all data
" through the complex multiply hardware, it is also possible to per-
form time domain windowing with no bandwidth penalty. Further, the
inclusion of a small control port for datapath confrol allows
(static or dynamic) configuration of the datapath from externally
applied control signals thus increasing the versatility of the dev-

ice.
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5.6. CMOS S0S Processor Architecture

All data entering the SOS datapath passes through a hardware
complex multiplier which is based on the architecture of Figure -
(4.2.8). The advantages of this approach are, in addition to the
possibility of time domain windowing just mentioned, that when per-
forming the butterfly function, the precise magnitude of the W coef-
ficient vectors are non-critical, since both data inputs (A,B) to
the butterfly will be scaled by the same amount. In a practical sys-
tem this would 1lead to some improvement (reductidn) in butterfly
arithmetic noise, particularly as in fixed point fractional 2’s com-
plement notation it is not possible to represent unity precisely.
(The largest number that can be represented with this notation, is

(Unity - 1 LSB) Which is 0111111111111111 for N=16 bits.)

In addition, this approach allows the complex multiplier coef-

x
ficient word to be input directly as KandK which would be stored in
fast ROM, thus lowering still further, the power consumption

required to compute the complex multiply.
The S0S datapath was designed in three main sections :
1) A distributed arithmetic, systolic array, complex multiplier.
2) A data sorter to sort the data derived from 1) above;
3) An adder/subtractor to accumulate the results from 2) above.

By providing some external control pins to the data-sorter and
adder/subtractor the datapath could be dynamically configured to

increase its versatility, as mentioned earlier.
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Figure(5.6.1.) Floorplan of the CMOS-SOS Arithmetic
Processor Z2686-S0S.
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This lead to a general floorplan, of the type shown in Figure

(5.6.1). The above sections will now be described in more detail.

5.6.1. Systolic Array Complex Multiplier using D.A.

Based on the architecture of Figure (4.2.8), the design of this

complex multiplier was undertaken with the following requirements :
1/ High Data Throughput
2/ High Arithmetic Precision
3/ Low Rounding-and Arithmetic Noise
4/ Low Power Consumption

These requirements influenced the design approach in several

ways.

5.6.1.1. High Data Throughput

As previously mentioned, high throughputs with 1large word-
lengths can be achieved by using systolic architectures such as Fig-
ure (4.2.8) which involves a two-dimensional array of bit-level
cells, communicating with their nearest neighbours each clock cycle.
The performance of this structure is not highly dependent on word-
lengths, with only the latency being determined by the word-length
employed. Figure (5.6.1.1.1) shows the logic used in the basic cell
of the complex multiplier and Figure (5.6.1.1.2) shows the
corresponding SOS layout. In signal processing schemes such as the

FFT where there is no essential recursion outside of the arithmetic
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unit, the presence of latency need not affect the system bandwidth.

5.6.1.2. High Arithmetic Precision

The precision of the butterfly arithmetic unit directly affects
the precision of the transform as a whole. Clearly, however, in many
systems it is possible that the analogue to digital (A/D) conversion
may be the primary limitation, in terms of linearity and accuracy.
It is, however, useful to have a reserve of arithmetic precision,
beyond that of the A/D, as this allows signal growth in the system
to take place, thus avoiding the introduction of rounding noise into
the transform. A 16 bit arithmetic precision would allow this mode
of operation in conjunction with an 8 bit flash converter, for exam-
ple, but would also allow meaningful transform results using any-
thing up to a 16 bit A/D converter. It was decided that 16 bits
would, in general, be precise enough to cover most real-time digital

signal processing applications.

5.6.1.3. Low Rounding and‘Arithmetic Noise

Intuitively, it would be expected that the DFT or FFT would be
rather sensitive to wordlengths used and also to rounding and arith-
metic noise, since frequency bins with ideally zero or very small
contents may be formed by the cancellation effect of a number of
very large vectors at various angles. Poor magnitude or phase reso-
lution at any stage in theucomputation would therefore result in
large percentage errors in frequency bins which ideally should have

very small outputs.



192

One source of arithmetic noise is the noise introduced by trun-
cation of the lowest significance sums at each row in the complex
multiplier array where the current partial sum is scaled down 1
place,'that is to say, by a numerical factor of 2 (The lowest sum is
discarded and the 2nd LSB now becomes the LSB to the next stage).
The discarding of these sums introduces a small error which may be
called 'ERRTR’ into the result. The magnitude of ’ERRTR’ depends on
the number and significance of logical 1’s that were present in the
discarded sums. It possible, however, to calculate the range of
this error in numerical terms, from zero, to some number which might
be called 'MAX’ (corresponding to all the truncated sums being a
logical ’1’). As the result will always be too small by ’'ERRTR’ the
addition of a fixed number, equal to °’MAX’/2, will ensure that
instead of a maximum error of - (’MAX’) being possible, the maximum
error possible would be +/- (’MAX’/2). The precise value of ’'MAX’/2
was calculated and later verified by logic simulations. The inclu-
sion of the fixed number ’'MAX’/2 was found to be essential in pro-
ducing a true 16 bit result. It turned out that the value of ’"MAX’/2
was equivalent to one-half LSB at the output port, or perhaps more

meaningful, equal to the most significant DISCARDED sum.

The distributed arithmetic algorithm also required ‘some ini-
tialisation which was a function of data as described in equations
(3.5.10 and 11). This was also at a low significance like the round-
ing word ’'MAX’/2. A special cell was therefore constructed to per-
form both the addition of the rounding word (’'MAX’/2) to the array
and the data dependent initialisation word. This cell had to per-

form a half-add function, and is shown in Figure (5.6.1.3.1).
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5.6.1.4. Low Power Consumption

Low power consumption is possible with the use of SOS technol-
ogy., where stray capacitances are lower than in bulk CMOS. The com-
plex multiply distributed arithmetic algorithm also offers low power
consumptions due to a high computational efficiency. The storage of
the W coefficient in the form of K and K*, means that they do not
need to be actively computed on chip. Thus, an add and subtract that

would otherwise be required, need not be computed on chip.

5.6.2. Data Sorter

The complex multiplier, described above, produced a constant
stream of alternate real and imaginary data. This data, must first
be sorted before being passed to the adder/subtractor butterfly out-
put stage. The circuit chosen to do this was a 4 stage shift regis-
ter delay line which was tapped at three different points, separated
by 2 delays each. Thus, as data flows continuously, either real data
only or imaginary data only cohld be selected and fed to the
adder/subtractor to perform the butterfly. - A block diagram of the
data sorter is shown in Figure (5.6.2.1), along with the actual
silicon layout. An important feature of the sorter used was that
the data that it had to operate on was skewed, as it was coming from
the complex multiplier. This meant that the control for the sorter
had to be delayed at each stage, hence the use of an extra shift
register to accomplish this delay requirement. Data leaving the
sorter is also skewed, allowing the final adder/subtractor stage to
operate in the same pipelined configuration as the rest of the chip

before finally de-skewing data to present to the outside world.
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5.6.3. Final Adder/Subtractor

Having sorted data from the complex multiplier (as defined by
external control signals), information is then passed to the final
adder/subtractor. This allows the radix-2 butterfly function to be
performed, if desired. Control to this unit allows one of the inputs
to be reset so that the chip can function as a stand alone complex
multiplier. Also, as all data passes through the complex multiplier,
the chip can perform a 2-point non-trivial DFT. Although a 2-point
DFT in itself is of no use, the fact that the chip is capable of
performing the first accumulation operation of the DFT as well as
vector rotation, the bandwidth of data leaving the chip is halved,
thus allowing a slower external accumulator to complete the job - of

accumulating each frequency domain bin of the DFT.

In fact, the job of the final adder/subtractor was so similar
to the basic cell used in the rest of the chip that this was actu-
ally used with only a trivial modification (to allow one of its

inputs to be reset).

5.6.4. CMOS Design Considerations

In CMOS design, the basic inverter comprises an n-channel pull
down and a p-channel pull up so that large currents can only flow
under dynamic conditions. Whilst this entails near zero static power
consumption, it is possible for a CMOS design to consume a compar-
able power to nMOS at high clocking rates. The input capacitance of
the CMOS inverter is approximately doubled when compared to the nMOS

inverter, because both the n channel and p channel device gates are
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connected together. This usually means that the dynamic power con-
sumption in a given CMOS circuit would rise more steeply with fre-
quency than would an nMOS circuit. One problem that must be tackled
in some CMOS designs is one of transients on power lines, which can
occur if a number of logic stages, attached to a single power line,
all change state at around the same time. This can be overcome by
using thick metal conductors in such regions and by arranging that

as few stages as possible will change state all at the same time.

Another notable difference between nMOS and CMOS design
approaches is in connection with shift register design. In nMOS, it
is common to use two phase non-overlapping clocks, as a means of
avoiding race condition problems mainly in shift register elements,
where the ripple through time is potentially very short. Figure
(5.6.4.1) shows a simple but useful model of the dynamic nMOS shift
register, which indicates that the race hazard is proportibnal to
1/RC, where R is the 1lowest ("ON") resistance of the single (n-
channel) transistor transmission gate and C is the effective input
capacitance of the inverter. As R and C, both tend to be fairly
small in nMOS technology, the use of non-overlapping clocks is man-
datory, “unless the circuit is carefully designed with a large RC
product and highly localised single phase to two phase qonversion,
to avoid clock skews. In general, however, the use of a two phase
non-overlapping clock does not entail any substantial overhead, and
is highly preferable to the lengthy analogue simulations, which

would otherwise be necessary.

In CMOS design, however, it is fairly common to use clock and

clock bar signals which may potentially have some degree of overlap
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present on them. These signals are applied, alternately to the n and
p-channel devices in the transmission gates in adjacent shift regis-
ter cells. The chip to be described was intended to clock at very
high data-rates, and consequently, the use of dynamic circuitry was
considered. The simplest CMOS dynamic shift register consists of a

transmission gate feeding a single inverter with charge storage at

its input, as shown in Fiqure (5.6.4.2). As with nMOS, however, this

type of circuit, presents a considerable race hazard as it requires
clocks with véry low overlap indeed. The amount of overlap that is
tolerable, depends on the delay associated with the inverter, and
transmission gate. Figure (5.6.4.3) shows the equivalent CMOS model
of the dynamic shift register, to the nMOS model shown in Figure
(5.6.4.1). It should be noted that some important differences exist
in calculating the race hazard. Since, in the CMOS inverter, the
input is connected to both gates of the n and p-channel devices, it
can said that the input capacitance of the inverter will be at least
double the input capacitance of the nMOS inverter. in practice, the
p-channel pull-up will be given a wider channel than the n-channel
pull-down whose mobility is higher, and thus the real increase in
the input capacitance would be slightly greater than doubled. It can
be concluded therefore that the CMOS inverter input capacitance is
2C instead of C as is the case with the nMOS device. Turning to the
transmission gate, it can be seen that the equivalent circuit of the
"ON* transmission gate consists of two parallel resistors,
corresponding to the n and p channel devices both being hard ON.
- Assuming that the designer wishes this CMOS shift register to have a
transmission gate of equivalent ON resistance to the nMOS design,

then each of these resistors, must be given a value of 2R, to give
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Figure(5.6.4.4.)
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the transmission gate an "ON" resistance of R. In the special case
of clock overlap, then, as shown in Figure (5.6.4.3), only half of
the transmission gate is ON when it should be OFF. This means that
the resistance to be taken intohaccouht in calculating the race
hazard is 2R instead of R, ( with the nMOS design). The overall race
hazard is therefore proportional to 1/4RC. Perhaps, a more accurate
comparison would have been to say that since the inverter input
capacitance 1is 2C instead of C, the transmission gate ON resistance
should be designed to be (1/2)R instead of R, in order to result in
a circuit of the same speed capability. In such a case, the race
hazard of the CMOS design would be proportional to 1/2RC compared to
1/RC for the nMOS case. The main point is that it is much easier to
design a clock overlap tolerant CMOS dynamic shift register which is
race free, than it is, to-design an nMOS dynamic shift register with
the same attributes. Figure (5.6.4.4) shows the CMOS shift register

model with zero clock overlap.

When, the basic cell for the CMOS chip was being designed, it
was decided to simulate the dynamic shift register using the SPICE
program. This revealed, that the initial aspect ratios used in the
shift register were unacceptable, as it was excessively intolerant
to non-ideal clocks. The model of the shift register shown in Figure
(5.6.4.4) indicated that if the shift register was redesigned with a
transmission gate of much higher ON resistance and the inverter
input gate capacitance was increased, then the subsequent RC delay
introduced, would make the shift register much more tolerant to
clock non-ideality. This involved increasing the channel lengths and

reducing channel widths of the transmission gates, and increasing
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channel 1lengths of the inverters. Some results of analogue SPICE
simulations are presented for this modified shift register design,
with clocks ranging from near ideal, to clocks that are worse than
would actually be seen by the shift register. These are shown in

Figure (5.6.4.5).

The clock lines were distributed throughout the chip using very
low resistance paths, to minimise skew and maintain rise-times. In
addition, the clocked array of cells were fed from two sides (not
one side) of the array, thus halving clock line series resistances
caused by underpasses. The chip size was likely to be quite large,
and so in common with many large chips, multiple bonding pads were
made available for both power and clocks, distributed evénly

throughout the chip.

5.6.5. Clocking Scheme

The standard foﬁr—phase clocking scheme, involving ’CLOCKIN’
and °’'CLOCKOUT’ together with their complements is the safest and
most desirable approach where area considerations are not critical.
In this design, however, a substantial area reduction, estimated at
around 20%, wbuld result if a two-phase clocking scheme was used
involving a single clock (CK1) and its complement. It was this con-
sideration that resulted in the decision to adopt a two phase clock-

ing scheme.

The chip was intended for operating on complex data, with real
and imaginary data being multiplexed on the same data_port. It was

decided that the availability of another main clock (CK2), operating
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at half the micro-cycle frequency, would be useful in the internal
de-multiplexing of real and imaginary data. This clock could also be
used as a control in the basic cell to clock the shift registers
that carry K and K* through the array. This is possible because they
are both required to compute real and imaginary data at each cell in
the array and thus only need to be fed forward once every two cycles
and not every cycle, resulting in the chip computing real data and
imaginary data on adjacent micro-cycles. This, however, is not a
restriction, meaning only that it is not possible to use two chips,
one programmed to produce real data, and the other programmed to
produce imaginary data, as was the case with the 8-bit nMOS devicé
(as a means of doubling system bandwidth). It is believed to be
more efficient and cost effective to perform the computation in this
manner where real and imaginary data is computed on alternate
cycles, thus reducing power consumptions further. In addition to the
half frequency clock, which determines whiether real or imaginary
data is being input to the datapath, an extra quarter frequency
clock (CK3) is needed for the butterfly itself. This controls the
data sorter, and the add/subtract in the butterfly output stage and
corresponds to the rate at which the chip can perform windowing
and/or butterfly functions. Fiqure (5.6.5.1) shows the clocks

required to operate the chip.

5.6.6. Timing Requirements.

It was decided that clock signals would be derived externally
from this chip, as the quality of the clock signals could then be

controlled, if necessary. As the chip uses a two-phase clocking
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scheme, all clocks, with the exception of CK3 (ie CK1 and 2) must be
provided with high integrity complements. If possible; a small (RC)
analogue delay should be inserted into the leading transition to
ensure that the clocks have a minimum overlap. Rise times should be
kept as small as possible, preferably under 5ns, which can achieved
by using bipolar devices for pull-up and down. It is intended that
the chip should be clocked at or near to its maximum clocking fre-
quency, as the error rate due to background alpha-radiation is
minimised in this situation. There are no strict requirements for
CK3, which does not require a complemented signal, other than that
its falling edge must ‘not come before the rising edge of CK1. A
similar requirement exists for CK2 and its complement, whose falling
edges must not come before the rising edge of CK1, or put another
way, the rising edges of CK2/CK2BAR must come on or after (prefer-

ably just immediately after) the rising edge of CK1.

5.6.7. Latching of Input Data and Coefficients

The inputs to the chip are latched on CK1BAR. Thus, data must
have settled before the falling edge of CK1BAR. If data is to be fed
in to the latch without being corrupted, it must not alter state
until after CK1BAR has returned to zero. The precise timing of data
transitions relative to CK1 and CK1BAR is non-critical other than
this requirement. One simple way of ensuring that this occurs is to
synchronise inputs data transitions with CK2/CK2BAR rising and fal-
ling edges. It was mentioned that this clock should be very slightly
delayed with respect to CK1/CK1BAR to ensure that its rising/falling

edges would never come before the rising edge of CK1 (falling edge
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of CK1BAR). A typical timing diagram of the chip receiving data
relative to the clocks is shown in Figure (5.6.7.1). This also shows
the output of data from the CM0S-SOS processor device. Data transi-
tions at the output takes place on the rising edge of CK1. This is
to be consistent with sampling data on the rising edge of CK1BAR as

is done at the input ports of the chip.

5.6.8. Control Signals Required by Pipeline

Control data is sampled on the rising edge of CK1BAR as with
all other data entering the device. Thus, timing for the input of

control data is the same as for signal and coefficient data.

The CM0S-S0S device has a total of seven control pins, CNT1-7,
four of which (CNT4-7) are aids to the testing of the device and
three of which (CNT1-3) allow the pipeline to compute the functions

described below.

If no connections are made to these control pins, in common
with all other data pins, a logic zero default will be assumed by

the chip. -

1) The complex multiply, +/- A X W1 : CNT1="1" for complex multi-
ply only, CNT2="1" for "+", CNT2="0" for "-", CNT3=(don’t care,
however, if CNT3 is a "0", then data will appear with extra two

CK1 delays but will be the same)

2) A two point DFT, +/- A X W1 +/- B x W CNT1="0",

2
CNT2=CNT3=CK3 (shown in Figure (5.6.5.1)). This function

allows both butterfly operation (decimation-in-time) and data
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windowing. It can also be used to compute the DFT using a

slower, external accumulator.

The control signals, CNT4-7 are intended primarily for testing
the device. The function of these pins are to control two ROMS, each
storing two 16-bit words which may be input to the data port and the
coefficient port. Two of the pins, CNT4 and 5 select either the ROM
or the input pads for the two input ports. The remaining two pins,
CNT6 and 7 select one of two words which have been stored in the
small ROM. These words have been chosen to produce predictable
reéults, consistent with exercising the internal logic. This allows
a test of a similar level to the probe test of EU219, which was notA
a final test, but was designed to eliminate obviously faulty dev-
ices. This allows a simple probe test to be conducted with only four

data pins instead of 32. The functions of CNT4-7 are detailed below.
1) CNT4 : Select Data ROM “"1°, or input pads "0°".
2) CNT5 : Select Coefficient ROM "1", or input pads "0".

3) CNT6 : Select 1010010101111111 "0*, or 0101101010000001 *1* at

DATA input port.

4) CNT7 : Select 0000000000000000 “0", or 0011111111111111 "1" at

COEFFICIENT port.

Note : 0101101010000001 = 1/SQRT(2) = - (1010010101111111)
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5.7. Logic Simulation

The chip logic was simulated at a switch level at a depth of 8
bits and later, 4 bits (to speed up the process). This was to ver-
ify correct operation of the pipeline, rounding and initialisation
of the distributed arithmetic array. A fixed binary count was
applied to the data port and a +1 and -1 coefficient vector was
applied fo the coefficient port. The simulation results, shown in
Figure (5.7.1) indicated no observable rounding errors and even
weighting for both positive and negative number ranges. The logic
simulator used was known as SLS which was designed at Edinburgh

University and was run on a VAX750 mini-computer.

5.8 Additional Cell Level Details of the Z686-S0S Processor

The logic used in the control cell for the distributed arith-
metic array in the S0S device is shown in Figure (5.8.1). Figure
(5.8.2) shows the corresponding S0S 1layout. This cell produces

alternate real and imaginary control data under the control of CK2.

The de-multiplexing of real and imaginary data may be accom-
blished under control of CK2. Figure (5.8.3) shows the logic used
for dé-multiplexing both data and coefficient input ports. Real data.
is sampled on CK2 and imaginary data is sampled on the complement of
CK2. The S0S layout for the de-multiplexer is shown in F;gure
(5.8.4).

The complete chip includes input and output pads, shift regis-
ter delays and two very small ROMS for testing purposes. Figure

(5.8.5) shows the reqular shift register layout and Figure (5.8.6)
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Figure (5.8.5.) SOS Layout of Dynamic Shift

Register
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shows the output pad used. The complete chip design is shown in
Figure (5.8.7) which includes pad identification. It is expected
that this device will have a maximum clocking rate of around 40MHz

and consume around 0.5 Watts, including clock generation.

5.9. Summary

This chapter has described three LSI to VLSI complexity paral-
lel data arithmetic datapaths which use some of the architectures
presented in Chapter 4 for computing the complex multiply very effi-
ciently. It is evident that the use of distributed arithmetic
greatly facilitates a regular design approach which is particularly
advantageous in the case of parallel data implementations as it
avoids the need for multiple bus structures. The testing of device
number EU219 is described in depth and it is hoped that the CMO0S-S0S
device (2686-50S) will be fabricated and tested in the near future
to provide the basis for a high performance DFT or FFT processing
system. Both EU219 and Z686-S0S have the throughput equivalence of
two parallel real multipliers by virtue of the distributed arith-
metic techniques used. The architectures described therefore offer
about double the throughput that comparable [2] single parallel mul-

tiplier FFT arithmetic processors can offer.
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Chapter 6 - Conclusions

This thesis has covered various aspects in the application of
Very Large Scale Integration (VLSI) to digital computation of the
discrete Fourier transform and the fast Fourier transform which
approximates the continuous Fourier transform. In particular, much
- of the work has concentrated on VLSI architectures for implementing
the arithmetic requirements of these computations with high data

rates.

A variety of algorithms and system design methodologies have
been reviewed in order to highlight the range of structures that are
possible. It has been observed that whilst the discrete Fourier
transform can be easily realised as a single monolithic VLSI proces-
sor, the fast Fourier transform is not quite so easily realised as a
single monolithic device owing to the higher levels of integration
required. A notable characteristic of the fast Fourier transform is
that various distinct levels of arithmetic concurrency are possible
which allows a great variety of system configurations and partitions
as well as processing bandwidths. It has been noted, however, that
very high bandwidth systems must be based on a system design metho-
dology which allows a high degree of programmability to obtain the
necessary versatility for system use. It is believed that‘ configur-
able pipelines can offer both high pandwidths and suitable versaﬁil-
ity for systems use, although it is recognised that silicon compiler
approaches, such as "FIRST" described in chapter 2 which obtain ver-
satility by offering control over the actual hardware, has a role to
play where the extra cost of mask-making and fabrication is not a

major consideration.
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It is apparent that an important requirement for efficient VLSI
designs is regularity and modularity. Not only do such approaches
allow quick design times, but they are more 1likely to result in
structures to which yield enhancement approaches can be applied if
required. It is noted that distributed arithmetic approaches in par-
ticular can yield highly regular structures thus allowing the design
of highly efficient VLSI arithmetic processors. In this thesis, a
great deal of attention has been focussed on the arithmetic require-
ments of the fast Fourier transform as it has been noted that the
availability of a high performance arithmetic unit does not con-
strain a system to any one level of arithmetic concurrency or impose

limitations on transform size (assuming wordlengths are adequate).

Chapter 5 has described three LSI/VLSI MOS distributed arith-
metic devices which offer very high béndwidths. In the case of the
complex multiply, the throughput rate is effectively doubled as a
result of using distributed arithmetic. Moreover, these approaches
offer a highly regular VLSI design approach. Figure (6.1) shows a
comparison of the expected performance of the CMOS-SOS device
(2686-505) and the measured performance of EU219 in computing com-
plex multiply and accumulate operations against that which could be
obtained using commercially available devices, including single real
multipliers in conjunction with accumulators. The TRW figure is
based on the MPY16HJ 16 by 16 bit real multiplier device, which is
commonly available. The GaAs figure is derived from the 16 by 16 bit

multiplier device described in chapter 2.

It is believed that distributed arithmetic offers a signifi-

cantly lower power consumption than is possible with conventional
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Figure (6.1) Comparision of Commercial Devices
with Datapaths described in this thesis in
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multiplier based arithmetic. This reasoning is based on the fact
that only a single accumulation process is required. The extra power
consumption required by data-select operations can be made small as
the number of logic gates required to toggle in a given data-select
operation is not large. LowWw power consumptions are particularly
important in high bandwidth fast Fourier transform systems, such as
are used in avionics, where heat dissipation constraints and power

constraints often exist.

6.1. Future Research Work

The various devices described in this thesis have moved pro-
gressively towards some form of (low level) programmability through
pipeline re-configuration. It is felt that this area could be
further explored. The principle advantage of developing configurable
arithmetic pipelines further is not only the consequent increase in
versatility, but also the possibility of bypassing defective circui-
try through redundancy which would provide a basis for yield
enhancement. Distributed arithmetic has a definite role to play in
the construction of such pipelines because of the regularity which
it allows. Looking ahead to wafer scale integration, power consump-
tions become increasingly important. Here again it is believed that

distributed arithmetic will have a role to play.
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Appendix 1

Programmable Logic Array’s (PLA’'s) in Silicon Compilers

The main problem with the PLA, is that its speed 1is dependent
on its size. Larger PLA structures cannot be clocked as fast as
smaller ones. This is due to an increase in internal capacitances
which cannot be matched with a lowering in the "ON" resistance of
the switching elements in that structure. A clocked control circuit
using a number of PLA’s of different size will only clock as fast as
the slowest PLA. The PLA itself, however, is a particularly effec-

tive way of mapping logic directly on to silicon.

A silicon-compiler that generates synchronous assemblies is
virtually useless if-it has no means of controlling the actual speed
of individual clocked units in that assembly in order to achieve
some control over performance. If an assembly is constructed from a
number of PLA’'s, some means therefore must be found to allow control
over the speed of individual PLA’s in that assembly. This would then
allow some degree of optimisation to be built into the system as
well as allowing overall system clocking rates to be achieved that
might otherwise not be possible.

PLA Performance Control

The regularity of the PLA has a significant advantage, in addi-
tion to those already mentioned. It allows easy calculation of the
capacitances in the "AND" and "OR" planes of the PLA as a function
of inputs, product terms, outputs, and if desired, the truth table
itself. This function should also include process parameters, which

would normally be fixed. A knowledge of these capacitances,
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together with transistor aspect ratios allows the maximum operating
speed of the PLA to be calculated. An experimental FORTRAN program
was written, which could both perform this speed calculation and
generate nMOS transistor layouts with a variety of aspect ratios
(continuously variable). This subroutine, which could generate
variable aspect ratio transistors would allow some control over PLA
speed performance. The algorithm (not consciously copied) that was
used in this speed programmable PLA generator is outlined in Figure
(1). This program was primaril& written in order to empirically
determine the extent of control possible over the PLA speed perfor-
mance using sdftware techniques. Results are outlined below, in the

section "PLA Run Results®.

This program might be incorporated in the complier discussed
previously as a "soft" operator, allowing several PLA’s to be inter-
connected automatically on a one dimensional routing channel. Such a
compiler, suited to control tasks, would offer a high degree of ﬁe;-
formance control. The design rules used in the PLA generator
described here, were based on fixed Mead and Conway type rules for
nMOS, however, it would have been feasible to produce PLA silicon
léyout which was a function of certain design rules, that might have
been liable to fluctuations. (The program took into account process
length and width modifications.)

PLA Run Results

There were two main points that were noted in running the speed
pProgrammable PLA generator program. Firstly, there was a minimum
area which occurred at some particular speed. Secondly, once this

area was reached, higher speed requirements forced the area to rise



very sharply (and power consumption). This effect is mainly due to
the relative interconnect capacitances tending to a very low value.

Figure (2) shows the actual silicon layout of four different speed
performance decade counters produced by this program. The rise in
area was quite pronounced as shown in Figure (3) which shows fhe

area of a decade counter at various speed requests.

It was found that a useful PLA speed range of about 10:1 could
be produced by the program. At low speeds, the depletion pull-up
devices started to consume too much area and at high speeds the
enhancement pull-éowns started to cause an area "explosion® as the
relative interconnect to active-area capacitance tended to very 1low

values.

It was felt that although little could be done to avoid this
area explosion and therefore little done to produce clocking rates
beyond a critical point just after this takes place; the program
would go some way to optiﬁising the performance of a compiled syn-
chronous control system which is based on a number of different

softWware generated PLA’s.

The PLA compiler was used to produce several silicon layouts of
counters which were subsequently fabricated and exhibited maximum
clocking rates slightly greater (about 20%) than that requested by

the software.
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ADIX-2 FFT BUTTERFLY PROCESSOR
ISING DISTRIBUTED ARITHMETIC

{ndexing terms: Computers, Fast Fourier transforms. Pro-

cessors -

A parallel-data VLS architecture for computation of the fast
Fourier transform (FFT) is described. The processor is based
on a computationally efficient vector rotate algorithm. Use
of a 2-dimensional pipeline configuration allows a radix-2
butterfly operation to be performed once every system clock
cvcle (250 ns) to generate real or imaginary transform com-
ponents. The architecture is considered 10 be a computa-
tionally efficient VLSl approach for high-bandwidth
computation of the FFT. The design and performance of an
8-bit FFT butterfly processor are described.

entral to computation of the FFT algorithm' is a require-
ient for vector rotation (multiplication by a unit vector). The
ector rotation involved in the computation of the FFT
utterfly can be written

Re |Z! = Re {B;.Re W) —Im (B, . Im | W} (H

Im :Z: =Re B! . Im IV} +Im !B’ . Re :u; (2)

‘here B is the input data vector. Z is the output data vector
nd ¥ is a unit vector termed the ‘twiddle factor’.? Thus
irect implementation of vector rotation involves four multi-
lications plus an addition and a subtraction. Computation of
e Radix-2 FFT butterfly requires a further two additions
nd two subtractions.?

The algorithm emploved in the processor considered here is
ased on the fact that when the outputs of two or more digital
hift-and-add) multipliers are involved in subsequent arith-
\etic operations such as addition or subtraction. more effi-
ient use can be made of the multiplier structure using
istributed arithmetic techniques.?

For the vector rotation arrangement described by eqns. 1
nd 2. there exist only four possible ways in which the se-
arate components of Z considered on a bit-by-bit basis will
e modified by the results of the multiplication operations.
hese are described in Table 1.

able 1 PARTIAL PRODUCT FORMATION IN
VECTOR ROTATION

Resulting partial product Z
(word level)

Twiddle factor '
(bit level)

Re (W} Im (W} Re {Z} Im {Z}
0 0 0-0 0+0
0 1 0—Im{B} Re{B}+0
1 0 Re {B} -0 0+ 1Im{B}
1 1 Re B} —Im {B} Re{B}+Im{

If. instead of using Re {B}! and Im {B}. the values
{ = [Re {B! + Im {B}]:2 and K’ = [Re {B} — Im {B}]/2 are
1ade available, it is possible to compute each of these four
ossible modifications to the partial products of Z for each bit
f W as shown in Table 2.

‘able 2 PARTIAL PRODUCT FORMATION USING
i DISTRIBUTED ARITHMETIC

Twiddle factor W

Resulting parual product Z

thit level) tword level)
e W) Im W} Re ;Z: Im{Z;
0 0 K —[Re ‘B! —Im!B]]2 K - [Re !B} +Im (B}]2
¢ 1 K - [Re !B} +Im B})2 K + [Re |B} — Im {8}]72
1 0 K +[Re (B, + Im {B}):2 K — [Re {8} - Im [B}1/2
i 1 K +{Re (8, -Im ;B!}2 K + [Re B} + Im {B!]/2

here K = [Re !B} + Im !8!)-2230d K' = (Re !B! - Im B}):2

The K and K’ terms as defined in Table 2 are independent
f W and can therefore be derived separately from the main
ccumulation process.

eprinted from ELECTRONICS LETTERS 20th January 1983 Vol. 19 No. 2pp. 43 - 44

In 2's complement notation, an N-bit digital word can be
represented as:

N-1 .
A= —ap2’+ Y aq,27" (3)

Table 2 can be further simplitied since. using 2's complement
notation. the subtraction of K’ involved in the most significant
partial product formation would serve to cancel the accumula-
ted (increasing significance) K’ terms. except for a lowest sig-
nificance term in K'. For the Im {Z] partial products, a
similar argument applies for K. The individual partial prod-
ucts of Z can thus be formed by an add or subtract operation
involving K or K at each computation cycle. The selection of
K or K’ is made on the basis of the exclusive OR or exclusive
NOR combination of Re {W! and Im {¥}. The add/subtract
selection is made on the basis of Re (W} or Im {W] for
Re {Z} or Im | Z}. respectively (sec Table 2).

The salient feature of this algorithm is that Re {Z} can be
formed by a single accumulation-type operation, and similarly
Im {Z} can be formed by a separate accumulation operation
thus permitting the design to partition into two identical parts
with a single control line to define real or imaginary outputs.

This distributed arithmetic algorithm has been realised as a
single monolithic circuit based on a 2-dimensionally pipelined
configuration which allows the constant throughput of paral-
lel data. The chip architecture incorporates an array of 2-bit-

4.8
|

input pads and muitiptex
fast add and subtract (K K)

array initiatisation

&3
nputs pads
ar\% mu%plex

contro{ initialisation

tast add and subtract
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Fig. 1 Block diagram of distributed arithmetic processor
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> shift registers which shift the (modified) input words K
K’ separately from "top-to-bottom’ of the chip through an
y of full adder celis. Fig. I. A data select on these two
it words (K and K') is performed at the inputs to each full
ar cell under the control of the exclusive-OR or exclusive-
R block which operates on the separate bits of Re {W}
Im { W) (see Table 2). The word selected (i.e. either K or
at each full adder is then either added to, or subtracted
1. the accumulated partial product as determined by the
ropriate bit of Re (W} (for the Re {Z} accumulator) or
‘14! (for the Im {Z} accumulator), Fig. 2. A time wedge
ed on the ¥ input port ensures that a constant data
yughput can be maintained in the pipeline.

clusion: A 2-dimensionally pipelined FFT butterfly pro-
or based on a distributed arithmetic algorithm has been
rted.

n $-bit processor based on this algorithm has been fabri-
d on a 5 um single polysilicon, single metal, N-channel
ancement depletion MOS process. The chip, measuring 6-7
5-3 mm, contained approximately 8000 transistors. Power

consumption was 0-5 W at the designed speed of 4 MHz. The
architecture discussed here is currently being extended to a
16-bit CMOS-SOS implementation, using 3-5 um geometries.
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A DISTRIBUTED ARITHMETIC RADIX-2 FFT BUTTERFLY PROCESSOR

I.R.Mactaggart and M.A.Jack
Department of Electrical Engineering,
Edinburgh University,
Scotland

Abstract

An efficient distributed arithmetic architecture for computation
of the Radix-2 FFT butterfly is reported. Results for a prototype NMOS
processor exhibit data rates in excess of 8 Mbytes/second.

1. Introduction

This paper describes an eight-bit NMOS processor chip based on an
efficient, distributed arithmetic complex multiply algorithm [1,2]. The
algorithm 1is wused to compute the Radix~2 FFT Decimation—-in-Time
"butterfly” [3]. This approach to the computation yields a highly
regular structure which 1is particularly advantageous with parallel
arithmetic systems.

2. The Algorithm
The FFT algorithm, like the DFT, has a requirement for vector
rotation. This can be realised conveniently as the multiplication by a

unit vector in a cartesian coordinate system. The equations for this
vector rotation can thus be written as

Re{Z} = Re{B}.Re{W} - Im{B}.Im{W} [eD)
Im{Z} = Re{B}.Im{W} + Im{B}.Re{W} (2)

Where B is the data vector, Z is the output vector and W 1is the unit
vector coefficient used to rotate B. A direct implementation of these
equations requires four multiplies and two additions. The Radix-2
butterfly requires a further four real additions [3].

I1f, instead of using Re{B} and Im{B}, two new inputs, defined as K
= [Re{B} + 1Im{B}]/2 and K""= [Re{B} - Im{B}]/2 are made available at
various levels of significance, then it is possible to merge the partial
products of the Re{Z} wultipliers together 1in a single accumulator
structure, and similarly it is possible to merge the Im{Z} multiplier
partial products into a single accumulation, as illustrated in Table 1.

Coefficient (W) - Resulting Partial Product (Z)
(bit level) (word level)
Re {W} Im{W} Re{Z} Im{Z}

[(Re{B}-Im{B}]/2 K-[Re{B}+Im{B}]/2
[Re{B}+Im{B})/2 K+{Re{B}-Im{B}]/2
(Re{B}+Im{B}]/2 K-{Re{B}-Im{B}]/2
[Re{B}-Im{B}]/2 K+[Re{B}+Im{B}]/2

'

- O — O

4

-

—r—- 0 O

K~
K-
K-
K

Where K = [Re{B}+Im{B}]/2 and X~ = [Re{B}-Im{B}]/2

Table 1 Showing Formation of Z using Distributed Arithmetic
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Table 1 illustrates how the exclusive-OR and exclusive-NOR
combination of the 1individual bits of Re{W} and Im{W} can be used to
control the selection of words K or K“and how the Re{W} bit or Im{u}
bit, for Re{Z} or Im{Z} respectively, can be wused to control the
add/subtract operation.

The salient feature of this alzorithm is that Re{Z} and likewise
Im{Z} can be formed 1in a single accumulation type of oparation thus
allowing the design to partition into a single programmable distributed
arithmetic array, capable of computing either Re{Z} or Im{Z} every clock
cycle.

3. Chip Architecture

- The chip consists of an array of two-dimensionally pipelined cells
of the type shown in Figure 1. These cells each contain a two bit wide
shift register which carry K and X” through the chip from top to bottom.
At each cell, a data-select 1Is performed under the control of the
exclusive—-OR/exclusive NOR gates.

The full adder used in the basic cell makes wuse of inverter-
controlled data-select exclusive OR gates. The add and subtract control
signal is fed horizontally through the cell array. A fast adder and
subtractor 1is used at the input to generate X and K~ and similarly a
fast add is used at the output to assimilate the sums and carries of the
full adder array. The fast adder uses a pre-charged carry chain aud was
designed to operate with a settle time of 65nS, worst case. Other main
features included a time wedge placed on the coefficient (W) input port,
a multiplexer on both input and output ports, tri-state output pads and
system control logic.-

INPUT. , X K/ INPUT
i
DATA-SELECT D e
CONTROL £ ]FP— 2R
CLOCK IN L , N s
A A A A
V d ’d \i/ K‘;/‘
ADD/SUB Y
CONTROL 1 R
.._L.\r
\
< (Y
R ‘ $
M =
L4 ¢
; <
Ll g
]
CLOCK OUT ;Ir. L
‘; |
A
v?%é.
A(K S C K')
FIGURE 1 Showing Basic Cell
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Output Sequence

n_n
in__fn D7 wu... Do (Shifted R1)
=

M peRGALEA

680830668

[ | 81101168 (A+BYW) Imag |
'an

08181181 (a+Bw) Real

N
: m 11101101 (A-BY) Imag

mn 06161161 (a-Bw) Real

8%%@% (A+BW) Imag
1 PBRARREA (A+BW) Real

00008008 (A-BW) Imag

1 POoGIPER (A-BW) Real

11816811 (A+Bw) Real
10918163 (A-BW) Imag

|
I ge81BAA1 (A+BY) Imag
1

1 11816811 (A-BW) Real

S I 08360000

06302009

Figure 3 Dynamic Operation at 4Mbytes/s, as Recorded by

Logic Analyser
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4. Performance

The chip was fabricated on a 6 micron single polysilicon, single
metal, N-chaanel enhancement/depletion MOS process, Figure 2. The chip
measured 6.7 by 6.3 mm and contained around 8000 transistors. With a
process yield of about 5% a number of devices were ohtained and bonded
up. Chip parameters are shown 1in Table 2. Logically, the chip
performed as predicted. Figure 3 shows the input and output logic
signatures obtained by feeding in four «cycles of data equal to the
reciprocal of the square root of two (01011010) for all inputs, and then
four cycles of zero”s, followed by four cycles of the negative of the
reciprocal of root two (10100110) for all inputs. The figure shows the
latency of the pipeline and its operation under dynamic conditions for
this input sequence. This test was performed at 4 Mbytes/second.

Parameter Value
Computation Cycle 250 nS
Data Rate 8 M Bytes/s
Word Length 8 Bits
Power Consumption 0.5 Watts (Average)
Package 40 Pin Dil

Table 2 Showing Chip Parameters

3. Conclusions

This paper has described a working monolithic FFT butterfly
circuit based on a distributed arithmetic algorithm for computation of
the complex multiply. It is evident that the resulting distributed
arithmetic structure is area efficient and highly regular. Results for
the 6 micron prototype are encouraging and given a commercial quality
process, an order of mwagnitude improvement can be expected. The chip
does, however, serve to 1llustrate the modularity afforded by this
algorithm for systems based on parallel data flow.

It is possible to remove the requirement Ffor a fast add by
inserting extra delays in the horizontal and vertical bit streams. This
approach is more suitable for larger word lengths. A 16 bit version of
the chip with these extra delays included, is currently being designed
for a high performance CMOS-SOS process using 3.5 micron geometries.
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INTRODUCTIUN

Real time computation of the Fast Fourier Transform
(FFT) is assuming an increasingly important role in
wideband communication systems. Lircuits
traditionally implemented using analogue techniques
will be implemented digitally as the price of diyital
signal processing falls., This is possible because
very fast analogue~to-digital converters are becoming
available (1) to enable these fast processors to
operate at their full capability. High bandwidth
FFT's, however, require dedicated hardware to achieve
the necessary performance. These large arithmetic
overheads demand special consideration for cost
effective solutions. It will be shown how
distributed arithmetic techniques can be used to
achieve regular and efficient VLSl designs in the
special case of 2-dimensional array structures. An
example is given of a FFT butterfly arithmetic unit
which has been designed and fabricated in NMOS and is
streamlined to computing complex arithmetic with the
throughput equivalence of two real parallel
multipliers on a single chip. A 16 bit CMUS-S0S
design to be fabricated in November '83 is compared
with the NMUS design.

The Complex Multiply

The FFT algorithm (2), like "the DOFT, has a
requirement for vector rotation. This can be
realised conveniently as the multiplication by a unit
vector in a Cartesian coordinate system. The
equations for this vector rotation can thus be
written as :

Re{Z) = Re(B).Re(W) - Im(B).Im(W) {1)
Im{Z) = Re(8).Im(W) + Im(B).Re(W) (2)

Where B is the data vector, Z is the output vector
and W is the unit vector coefficient used to rotate
B. A direct implementation of these equations
requires four real multiplications and two additions.
The Radix-2 butterfly requires a further four real
additions (2). [f we assume a standard shift-and-add
multiplier scheme then we can construct & table
showing the partial product formation as a function
of the inputs. This is shown in Table 1.

Coefficient (W)
(Bit-level)

Multiplier Partial Product (2)
{Word Level)

nth bit shifted n places

Re(W) Im(W) Re(Z) tn(2)
0 0 (0 - 0) (0 + 0)
0] 1 (0 - Im{(B)) (Re(B) + 9)
i 0 (Re(8) - 0) (0 + tm(B))
1 1 (Re(8) - Im(B)) (Re(B) + iui(B))

141 M2 M3 44
( FOUR MULTIPLIERS Ml - =% )
Table 1 Showing Partial Products

ir Complex Multiplication
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In the conventional approach the final product ot
muyltiplier M2 is subtracted from M1 to form Re(Z) ana
M4 is added to M3 to form Im(Z). There is, however,
no need to defer this subtraction and addition until
final product formation in the multipliers. In
distributed arithmetic (3,4), we no longer consider
the multiplication as an individual isolated function
, but instead we try to derive how the formation of
Re(Z) and Im(Z) can be accomplished given special
distributed arithmetic operands which are elementary
only to the complete function (in this case, the
complex multiply). If then, instead of using Re(8)
and Im(8), two new inputs, defined as K = (Re(B) +
Im(B))/2 and K' = (Re(B) - Im(B))/2 are made
available, multiplied by some integer power of two
(shifted), it is possible to form the Re(Z) and Im(Z)
camplex partial products in a single accumulator, as
illustrated in Table 2. This approach is not only
algorithmically efficient, but, also .important,
yields a highly regqular, and area efficient
structure, since real or imaginary merged partial
products can be formed at each node in the
distributed arithmetic array during each clock cycle.

Coefficient (W) Resulting Partial Product (Z)

(Bit-level)
Re(W) Im(W) Re(2) Im(2)

*
0 K'«(Re(B)-Im(8))/2 K-(Re(B)+Im(B))/2
1 X‘'-(Re(B)+Im(B))/2 K+(Re(B)-Im(B))/2
0 K'+(Re{B)+Im(B))/2 K-(Re(B)-Im(B))/2
1 K'+(Re(B)=-Im(B))/2 K+(Re(8)+Im(B))/2

(Word level)

r—0O0

where K = (Re(B)+Im(B))/2 and K' = (Re(B)-Im(B))/2

*: W independent - do NOT enter accumulator

Table 2 Showing Formation of 2

using UVistributed Arithmetic

Table 2 illustrates how the exclusive-0R ana
exclusive-NOR combination of the individual bits ot
Re(W) and Im(W) can be used to control the selection
of words K or K' and how the Re(W) bit or Im(W) bit,
for Re(Z) or Im{Z) respectively, can be used to
control the add/subtract operation. The salient
feature of this algorithm is that Re(Z) and likewise
Im(Z) can be formed in a single accumulation type of
operation thus allowing the design to partition into
a single, proyrammable, distributed arithmetic array,
capable of computing either Re(l) or Im(Z) every
clock cycle.

Chip Architecture

The chip consists of an array of two-dimensionally
pipelined cells of the type shown in Figure 1. These
cells each contain @ two bit wide shift regyister
which carries K and X' through the chip frow to, to
bottom, At each cell in the array, a data-select o



performed  under  the control of th: exclusive-
OR/exclusive NOR yates. The full adder unecu in the
pasic cell makes use of inverter-controlled data-
select exclusive UR yates. The add and subtract
control signal is fed horizontally throuyn the cell
array. A fast adder and subtractor is use¢ at the
input to generate K and k' and similarly » tast adder
is used at the output to assimilate the sums and
carries of the full adder array. The fast adder uses
a pre-charged carry chain and was designed to operate
with a settle time of 65nS, worst case. Uther main
features (Figure 2) include a time wedye pslaced on
the coefficient (W) input port, a multipli-xer on both
input and output ports, tri-state output pads and
system control logic.

sum in K K carey in
3 J
dala """’<}]
select >—

clock in>- 3 +

add/ >
sub
{ |
clock CTJ -TT
" ‘éé ‘g; <£7
sum aarcy K'
K out ouy
Figure 1: Basic Cell
Performance
he chip was fabricated on a & micron single
polysilicon, single metal, n-channel

enhancement/depletion MOS process and measured 6. 7min
by 5.3 mm, containing around 8000 transistors. With
a process yield of about 5% a number of devices were
obtained and bonded up. Chip parameters are shown in
Table 3. The chip performed functionally as
predicted. Figure 3 shows the input and vutput logic
signatures obtained by feeding in four cycles of data
equal to the reciprocal of the square root of 2
(01011010) for all inputs, and then four cycles of
zero's, followed by four cycles of the negative of
the reciprocal of root 2 (10100110) for ail inputs.
Figure 2 shows the latency of the pipeline and its
operation under aynamic conditions for <this input

sequence. This test was performed at 4
Mbytes/second,
Parameter Value
Computation Cycle 250 nS
Data Rate b M Bytes/s
wWord Length 8 Bits
Power Consumption .5  Watts
{Average)
Package Ay +in Dil

Table 3 Showing Chip Parameters
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Conclusions

LR TAL AL LY . . S -
This paper has described a workiny monolithic FFT

butterfly processor based on a distributea arithmetic
algorithm for computation of the comples wultiiply.
The resulting distributed arithmetic structure is
area efficient and highly regular. Results for the
prototype are encouraging and designs have been
completed for a high performance 16-bit CMUS->0S
version. The WMOS chip does, however, serve to
iTlustrate the modularity afforded by this algorithu
for systems based on parallel data flow.

The 16-bit (M0S-S0S design features a two
dimensional pipeline structure and incorporates extra
delays in the horizontal and vertical bit streaws -
an approach which is more suitable for laruer woru
lengths. The device shoula be capable of operating
at  data-rates of around 20 million (complex)
multiply, sort and accumulate operations per second.
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Architecture Using Parallel Data
' Distributed Arithmetic

L. ROSS MACTAGGART anp MERVYN A. JACK

Abstract — This paper describes how distributed arithmetic techniques
can be applied in paraliel-data arithmetic computations to achieve highly
regular and efficient VLSI structures on silicon. Two individual arithmetic
processor chips are described as examples of the technique.

The chips described, which are intended primarily for computation of the
FFT Butterfly, each contain the functional equivalence of two parallel
pipelined multipliers.

The first chip is an 8-bit prototype device which has been designed and
fabricated on a standard 5 pm silicon gate n-channel MOS process. The
second chip is a 16-bit CMOS-SOS design which uses a modified architec-
ture to achieve higher clocking rates and improved versatility in systems
use.

I. INTRODUCTION

REAL-TIME digital signal processing favors the use of
very high-speed parallel data arithmetic operations.
Distributed arithmetic techniques [1], [2] offer a means of
mapping parallel data systems onto silicon with a high
degree of regularity and efficiency. The specific structures
considered here are two versions of a Radix-2 Butterfly
processor for computation of the fast Fourier transform
(FFT) algorithm {3}, using distributed arithmetic.

 The FFT algorithm is introduced and discussed briefly
to highlight the Butterfly processing requirements and to
indicate how distributed arithmetic approaches can be used
in this processing task.

The paper includes a detailed discussion of the distrib-
uted arithmetic reformulation of the FFT Butterfly to show
in detail how the silicon floorplan for the Butterfly
processor can be derived. )

Using an available. in-house NMOS process, a prototype
8-bit processor has been realized to validate the distri-
buted arithmetic architecture. Details of this design are
presented and test results together with performance data
for this chip are discussed. A similar, but much more
powerful 16-bit CMOS-SOS design with modified architec-
ture using a commercially available process will also be
described.

Manuscript received October 1. 1983: revised December 21, 1983. This
\(v}ork was supported by a Science and Engineering Research Council
rant.
_The authors are with the DeEartmem of Electrical Engineering, Univer-
sity of Edinburgh, Edinburgh EH9 JJL. Scotland.

II. Tue FFT ALGORITHM

Of the several important FFT algorithms which have
been developed for efficient computation of the discrete
Fourier transform (DFT) [3]. the most widely used is the
Radix-2 decimation-in-time FFT 3], 4], where the trans-
form length (~) may be any positive integer power of 2. A
symbolic representation of this algorithm is shown in Fig. 1
for N =8. Here, the time-domain sequence (x,) is con-
verted to the frequency domain sequence ( X)) by means of
12 identical processing nodes, ¢ach of which is known as a
Butterfly. Each Butterfly processing node consists of a
two-point DFT (vector add and subtract), symbolized by
the circle in Fig. 1, with a vector rotation requirement
(multiplication by a unit vector) on one of the inputs,
symbolized by the arrow in Fig. 1. It is this vector rotation
requirement which dominates any silicon implementation.
of the Butterfly since this entails a complex multiplication
for each Butterfly operation. :

[II. DISTRIBUTED ARITHMETIC CONCEPTS

Complex multiplication involves four real multiplica-
tions. plus .an addition and subtraction as shown in Fig.
2(a). to implement the equations

Re{Z}=Re{B}~Re{W}—lm{B}-lm{W} (1)
Im({Z} =Re{B}-Im{W}+Re{W}-lm{B}. (2)

It is clear, from Fig. 2(a), that the two multiplier struc-
ture used to form Re { Z} is essentially the same as the two
multiplier structure used to form im{ Z}. differing only in
an add and subtract. This two multiplier structure might
therefore be considered to be a suitable candidate for a
VLS! implementation of the complex multiply requirement
of the Butterfly. In the case of parallel arithmetic, however,
this general structure does not map onto silicon very
efficiently due to problems arising from bus interconnec-
tions and irregular multiplier structures when special multi-
ply algorithms, such as Booth's [5]), are used. For this
reason. as well as for yield considerations, current parallel-
data Butterfly devices use a single, multiplexed, parallel
multiplier. )

This paper shows how it is possible to replace the two
parallel multiplier structure in Fig. 2(a) with a single dis-

0018-9200 /84 ,/0600-0368301.00 ©1984 IEEE
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X X’
Fig. 1. 8-point FFT.

(b)

Fig. 2. Distributed arithmetic concept.

tributed arithmetic array which is regular and maps onto

silicon efficiently. This is achieved in distributed arithmetic

by bringing forward the final add and subtract in the
complex multiply structure of Fig. 2(a) to the level of
multiplier partial product formation, in order to form new
unique arithmetically merged partial products which can
be stored in temporary data registers. This allows the
formation of real and imaginary complex outputs (Z) by
performing a data-select and accumulate operation on these
new merged partial products. The importance of this refor-
mulation is that the resulting structure (Fig. 2(b)] involves
only a single accumulator and therefore allows a highly
regular VLSI structure. The distributed arithmetic ap-
proach {1] is generally useful when the products of more
than one multiplier are subsequently combined in other
arithmetic operations such as add or subtract to form a
single output. In the case of the complex multiply, as
described in (1) and (2), the real output requires two
individual multipliers, each with two possible partial prod-
ucts. The same is true for the imaginary output. The two
shift and add multipliers thus present four possible combi-
nations of partial products, corresponding to the four
possible combinations of the two real and imaginary coeffi-
cient bits being considered. It is the number of combina-
tions of partial products that is important, as this de-
termines the number of arithmetically merged distributed
arithmetic partial products that will need to be stored. It
will be shown later, however, that only two merged partial

products are nontrivial in this case, and actually need to be
stored.

Let us assume that N-bit, fixed point, two's complement
arithmetic is used so that Re{#} and Im{W '} might be

described as
N-1

Re{W}=—Waot L Wra2™" (3)
n=1
N-1
Im{W}==Weo+ L Wi, 27" (4)
n=1
This allows equation (1) for Re{Z} to be expressed as
N-1
Re{Z}=[— Weo + L WRn-Z'”]-Re{B}
n=1 .
N -1
[ E s Jrmton.
n=1

Combining the separate summations into one summa-
tion and decoding all possible combinations of the real and
imaginary w bits to select these new merged partial prod-
ucts gives

Re{Z} =Wro W;0(0)

+ Wro Wio(Im{ B})
+ WroWio(—Re{B})
+ Wro Wio(—Re{B}+Im{B})

‘N-1
+ Z [WRn—u—/In(O)

n=1
+ WRn'WIn( -Im{B})
+ WRn'WIn(Re{B})
+ Way Wia(Re( B} =Im(B})]-27". (6)

Equation (6) shows how Re{Z} can be formed in a
single accumulator by selecting one of four merged partial
products. This was not the chosen solution, however, as
only two are actually required if we define

K=(Re{B}+Im(B})/2 and
K’'=(Re(B}-Im{B})/2. (7

Replacing the Re{ B} and Im{ B} terms in (6) by the K
and K’ terms shown in (7) (and Table I), yields (8), which
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TABLE |
PERFORMANCE
PARAMETER NMOS CM0S-SO0S *
CLOCX CYCLE 250 oS 2%nS
DATA RATE 8 M Wds/s | 40 M Wds/s
WORD LENGTH 8 Bits 16 Bits
POWER 0.5 Watts | 0.25 Watts
PACKAGE 40 Pin Dil | 64 Pin Dil

* Availoble for testing December ‘83

~an be further simplified to give (9):
Re{Z) =W Wip(— K’ +K")
+ WeoWio(— K'— K)
+ WyoWio(— K = K')
V-1
+ L [Wen W (K- K)
n=1
WR"'W[,,(K,'— K)
Wer'Wln(K,+ K)

W, Wi (K" + K")] 27" (8)
RC{Z} = - K"z‘(lv“l)“'WRo'—W-lo(‘*' KI)
+ Wio Wio(— K)
+ Wao Wil - K7)
Nol
+ Z [+WRn'u/In(-K’)
n=1
’ +WRn.W}n(—K)
+WRn'W1n(+K)
+ We, W, (+K)]-27" (9)

Equation (9) shows how Re{Z} can be formed in a
single accumulator by adding in or subtracting a selected
K or K’ as a function of the real and imaginary w bits.
The selection of K or K’ can be based on the Exclusive-OR
of the s 1l and imagirary w bits and the add/subtract
logic can be derived from the appropriate w bit directly, as
shown in (10):

Re{Z)} =~ K27V D4+ Woo(Weo®Wo)(+ K')
+ Wro(Wro®W;o)(+ K)
+ Wro(Wro®W;o)(- K)
+ Wao(Wro® W0 )(— K”)
N-1
+ ) ["’WRn(WRneWI}.)(‘K')
n=1

+ WRn(WRne W’ﬂ)( - K)
+ WRn(WRneyVln)( + K)

+WRn(WRn5Wln)(+K’)]'2-"' (10)
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The expression for Im{Z} can be obtained similarly.
giving

Im{Z})=—-K-2"W D+ W, (W;@Weo)(+ K')
+ WIO( WIOEWIRO)( - K)
+ Wio(Wio®Weo )(+ K)

+ Wio(Wi0®Weo)(— K7)
N-1
+ Z [+ u/ln(wlu@WRn)(— Kl)

n=1
+ W’II(WIII§WR")( + K)
+ Wln(Wlngan)( - K)

(11)

Table I depicts this algorithm for nonsign bits only.
alongside the conventional arithmetic approach using shift
and add multipliers. This table serves to illustrate how the
individual merged partial products in the distributed arith-
metic approach are related to the individual partial prod-
ucts in the conventional shift-and-add multiplier scheme.
For example, in the Re{Z} formation columns (1-4) of
Table I, row 3 shows how Re{B} can be expressed as
K’+ K., with a W independent K’ term. In the same
columns, row 4 shows how Re{B}-Im{B} can be ex-
pressed as K'+ K.

In the shift and add multiplier, the final product is
formed by the successive accumulation of partial products
which are formed by the logical “AND” of the data word
( B) with successive coefficient bits (W) at various levels of
significance which are all powers of 2. The partial products
for the four multipliers in the conventional arithmetic case
are shown in columns 1,2; 5,6 in the table as a function of
the individual bits of W. Table I shows how the data word
is added in, only if the coefficient bit (W) is a “1.”
However, in the conventional approach, the final subtract
(for Re{Z}) and add (for Im{ Z}) is not considered until
final product formation in the individual multipliers. Table
I shows how the final add and subtract operation can be
brought forward to the level of partial product formation
s0 as to form four new merged partial products. Thus,
individual multiplier partial products in columns 1 and 2
are now considered to be combined arithmetically to form
a single column containing merged partial products for
Re{ Z}. Similarly, columns 5 and 6 are now considered to
be merged to form a single column from which Im{Z} can
be formed directly. Table I goes on to show how these
merged multiplier partial products can be replaced with the
expressions involving K and K’ (7) in columns 3.4,7,8.
The K’ term in column 3 for Re{Z} and the K term in
column 7 for Im{Z} are both independent of the W
coefficient bits. This means that these columns do not need
to be included in the main accumulation process used to
form real and imaginary Z. Instead, they can be accounted
for during array initialization. The table shows how, by the
W-controlled selectionof + K, - K, + K’,— K’ [+ /—(K

+ Wlu( W,"@ WRn)( + K')] '2_.\"
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Fig. 3. Floorplan of NMOS chip.

or K')] (as shown in columns 4 for Re{ Z} and column 8
for Im{Z}). the complex product Re{Z} and similarly
Im{Z} can be formed in a single data-select and accu-
mulate structure. It can be seen how an Exclusive-oRr /NOR
type relation of the W bits can be used to select either K
or K’ and how the real W bit (imaginary W bit) can
determine whether this selected X or K’ is added or
subtracted for Re{Z} (Im{ Z})).

IV. DISTRIBUTED ARITHMETIC ARCHITECTURE

Using these distributed arithmetic concepts. the two
multiplier structure of Fig. 2(a) can now be replaced with a
regular array of bit-level data-select/accumulate cells to
form the floorplan of the 8-bit NMOS chip shown in Fig.
3. Data words (A, B) enter the chip and are demultiplexed
into real and imaginary components. A fast adder and
subtractor is used at this point to convert Re{B} and
Im{B} to K and K’, (7) which are then fed down to the
first row of cells in the distributed arithmetic array. to-
gether with an array initialization word which comprises
the very low significance — K’ or — K present as the first
term in (10) and (11) and a rounding word which is fixed.
This rounding word was equal to the mean value of all the
sums which had 1o be truncated in the array. At each cell,
K or K’ was selected under the control of the Exclusive-oR
(Re{Z}) or Exclusive-NOR (Im{Z)}) gates whose inputs
were the real and imaginary W coefficient bits. Each cell
was also fed an add/subitract control signal which was
derived from the buffered real or imaginary W coefficient
bits directly, as outlined in Table I. Only for the sign bits
of W. when the bits have a negative significance is the
add/subtract logic inverted so that the selected K or K * is
added if the appropriate W bit is a “zero” instead of a
“one™—as is the case with the nonsign bits of W.

In the NMOS chip. the caRRY data is fed forward along
with the suMs, so that it is necessary to assimilate suM and
CARRY data of equal significance at the output of the array.
This was accomplished by means of a fast adder employing
a precharged carry-chain. sum and carrY data in the array
were laiched. so it was necessary to skew the coefficient W
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Fig. 4. Basic cell (NMOS).

Fig. 5. NMOS chip photograph.

input data to the control gates as depicted in Fig. 3. There
was no need for skewing input or output data because of
the use of the fast adder at the output. The nonrotated
Butterfly input (A). which is shifted directly through the
complex multiplier was finally added to the complex out-
put (BW) to form the Butterfly output (A + BW). The
other Butterfly output (4 — BW) was formed as (2A — (4
+ BW)) as this avoided the need to feed BW forward,
through the row of cells used to form (4 + BW).

Fig. 4 shows the basic cell logic in detail. Invertor
controlled data-select type Exclusive-OR gates were used in
the carry-save adder, as this offers a good tradeoff in
area-speed-power.
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TABLE Il
DISTRIBUTED ARITHMETIC
ALGORITHM (COMPUTERS Z = B- W)

REAL(Z) IMAG(2)
12 3 4 s 8
0-0 a=k-«| 0+0

' 0~im(B)=K'~K | Re(B)+0
i 0 |Re(B)-0 0+Im(B)sK-K'
1 | Re(B)~im(B)aK'+K'| Re(B)+Im(B)aK+K

L |

7 8
aK-~K

=K+K

ol|®
a
=
ol

}

N

Level

sK'+K

it

- - O

(8

Where K=(Re(B)+Im(B))/2 and K'=(Re(B)-Im(8))/2

COEFFICIENT (AS K.K')

[ INPUT PADS & MUX

T I3 —— Na
ARRAY_INITIALISATION

DATA

JL\\\U\\l

[cTr]iNPUT PADS & MuX|

OQUTPUT PADS |
AW1+BW2 , AW1-BW2
Fig. 6. Floorplan of SOS chip.

V. DETAILS AND PERFORMANCE OF NMOS
PROCESSOR

The NMOS prototype chip (Fig. 5) contains around
8000 transistors and measures about 5.3X6.7 mm. The
process used was a standard 5 pm feature size, single
polysilicon, single metal n-channel MOS process using
depletion mode load devices. Table II shows the measured
performance of the 8-bit NMOS processor. The device
clocked at 4 MHz corresponding to a data rate of 8
megabytes/s, which was slightly slower than expected
owing to the use of a clock input pad which was limiting
internal clock risetimes.

V1. CMOS-SOS 16-BIT PROCESSOR

In general, 8-bit word lengths are not adequate to cover
most FFT application areas, such as radar signal process-
ing, where 12-16-bit accuracy is typically required and for
these reasons a 16-bit processor design which was similarly
based on the distributed arithmetic complex multiply algo-
rithm was undertaken. The floorplan for this device is
shown in Fig. 6. For larger word lengths it is desirable to
pipeline the distributed arithmetic in two dimensions so as
to eliminate the fast add requirement. Extra latches (de-
lays) must then be inserted into the basic cell.

CMOS Processor Pipeline

In the CMOS distributed arithmetic processor, (coeffi-
- cient) data entering from the top is skewed. with the nth
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Fig. 7. Basic cell (SOS).

input bit receiving a delay of n. going from least to most
significant bits. This allows the control and carries in each
17 cell row to be latched (extra cell per row for two’s
complement operation). The effect of this pipelining scheme
is to produce a computation front which moves down
through the array at an angle of 45°. This skewed compu-
tation front now means that data entering the vertical data
port associated with the Exclusive-OR control gates, needs
to be skewed by 2n delays for the nth input bit, moving
from least significant to most significant bits, in order that
control signals will match up correctly with data in the
array. Fig. 7 shows the basic cell used in the 16-bit CMOS-
SOS processor chip which results in a completely systolic
architecture [6]. This cell feeds the CARRY right and the
suM is fed down and left to scale down the result of each
cell by 2. The control passes from left to right at the same
rate as the carries. The distributed arithmetic coefficients.
K and K’ needed to be delayed by two clock cycles in each
2-D pipelined cell because of the 45° skew on the compu-
tation front. As the same K and K’ needs to be made
available for both real and imaginary computations, this
delay was implemented in a single shift register, clocked at
half the main clock rate. This was done to save chip area,
with the only condition that outputs would have to alter-
nate between real and imaginary. The maximum clock rate
of the chip is determined primarily by the time to produce
a carry-out from the basic cell. It was stated that the
vertical delay through this cell is equal to two clock cycles.
This gives the array a latency of the order of 27 where n is
the word length; however, the time-wedge used at the input
to the array and the output of the array to skew and
deskew data increases the latency of the chip by another n
resulting in a total latency of around 3n.

CMOS Architectural Modifications

The CMOS-SOS design contains some other significant
architectural modifications. In the NMOS chip, data enters
at the top of the chip, and was converted to the form of K
and K’ as defined in (7). In the CMOS-SOS design, the
coefficient enters the top data port in the form of K and
K ’. The coefficient can therefore be stored in this form and
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Fig. 8. SOS chip layout.

is not actively computed on the chip. This further lowered
the power needed to compute the complex multiply. Unlike
the NMOS chip. however, all data in the CMOS-SOS
design passes through the complex multiplier. This has
several advantages which are:

1) simple nme-dommn wmdowmg on the first pass if
required;

2) lower Butterfly noise caused by amplitude errors in W
coefficient; and '

3) easier system design with fewer components.

Further, the CMOS-SOS chip can compute a two-point
nontrivial DFT, allowing larger DFT’s to be built up using
a slower external accumulator.

VII. DETAILS AND EXPECTED PERFORMANCE OF

CMOS-SOS DEvICE
The CMOS-SOS device (Fig. 8) measures 7 X8 mm and

* contains around 30 000 transistors. The device was design-

ed using 4 pm feature CMOS-SOS design rules. This device
uses an external clock generator to allow the highest possi-
ble clock rates to be achieved. Table II shows the expected
performance of the CMOS-SOS device in comparison to
the measured performance for the NMOS prototype.

VIII. CONCLUSIONS

Two LSI/VLSI chips which use distributed arithmetic to
compute the arithmetic requirements of the Radix-2 FFT
Butterfly have been described. Each of these devices has
the throughput equivalence of two parallel multipliers,
allowing very high bandwidths.

Distributed arithmetic offers a highly regular design
approach in parallel data systems and also offers lower
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power consumptions than is possible using conventional
arithmetic.

These techniques are thus highly suited to parallel data
arithmetic, where an irregular structure can be replaced
with a highly regular and compact array which offers a
high degree of algorithmic efficiency.
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