
VLSI ARCHITECTURES

FOR HIGH SPEED

FOURIER TRANSFORM PROCESSING

BY

lAIN ROSS MACTAGGART

A Thesis submitted to the Faculty of Science

of the University of Edinburgh, for the

degree of Doctor of Philosophy.

Department of Electrical Engineering

November 1984

(;I)

Acknowledgements

I would like to thank Dr. Mervyn Jack, my supervisor for the

encouragement and guidance he has offered throughout the three years

of this research and also Dr. James Dripps for his interest and sup-

port in this work as my second supervisor. Thanks are also due to

the staff of the Edinburgh Microfabrication Facility who fabricated

the MOS devices described in this thesis, in particular Mr. Alan

Gundlach. Miss Maureen Gray who typed the captions for the figures

in this thesis also deserves my grateful thanks.

Lastly, I would like to thank my close friends, in particular

my own family for their invaluable support.

DECLARATION OF ORIGINALITY

This Thesis, composed entirely by myself, reports on work con-

ducted by myself in the Department of Electrical Engineering at the

University of Edinburgh.

Signed:

I. R. Mactaggart

Definition of Pen Colours

in Silicon Layout Plots

N-channel MOS Plots

Colour 	 Mask

Green

Blue (dotted)

Red

Black

Black (dotted)

Blue

Diffusion

Buried Contact

Poly-Silicon

Contact

Implant

Metal

Silicon on Sapphire Plots

Colour

Green

Green (dotted)

Red

Black (dotted)

Black

Blue

Mask

Islands

PMOS device Implant

Poly-Silicon

NMOS device Implant

Contact

Metal

Contents

CHAPTER 1 	Introduction Page

1.1 	General i
1.1.1 	FFT Memory 4
1.1.2 	FFT Control 4
1.1.3 	FFT Fast Arithmetic 6

1.2 	Layout of Thesis 7

CHAPTER 2 	Fourier Transform Processing 12

2.1 	Introduction 12
2.2 	The Discrete Fourier Transform 13
2.3 	The Fast Fourier Transform 22

2.3.1 	The Radix-2 Decimation-in-Time
Fast Fourier Transform 25

2.4 	The Prime Radix Fourier Transform 39
2.4.1 	The Prime DFT 40
2.4.2 	Analogue Prime DFT Computation 44

2.5 	FFT System Considerations 47
2.5.1 	Arithmetic Concurrency in the FFT 47
2.5.1.1 	Single Arithmetic Unit FFT System 47
2.5.1.2 	Pipelined FFT System using One

Arithmetic Unit per Pass 49
2.5.1.3 	Highly Concurrent FFT System

using N/2 Arithmetic Units 50
2.5.2 	Control Distribution 51
2.5.3 	The use of Associative Memory 53
2.5.4 	Input Conditioning 56
2.5.5 	Output Conditioning 58
2.5.6 	Signal Growth and Data Scaling 59
2.5.7 	Noise Considerations in

a Practical FFT System 60
2.5.7.1 	Analogue to Digital Conversion Noise 60
2.5.7.2 	Coefficient Quantisation Noise (W) 61
2.5.7.3 	Roundoff Noise due to Data Scaling 62

2.6 	Review of VLSI FFT Devices 63
2.6.1 	Single Chip FFT Processors 63
2.6.2 	FFT Arithmetic Processors 66
2.6.3 	Parallel Digital Multipliers 68

2.7 	FFT Control Devices 70
2.7.1 	General Purpose Control Units 71
2.7.2 	Silicon Compilation for

FFT Control Units 74
2.8 	Special Memories for the FPT 76
2.9 	Summary 77

CHAPTER 3 	High Bandwidth Vector Arithmetic 83

3.1 	Introduction 83
3.2 	CORDIC Arithmetic Approaches 83

3.2.1 	Vector Rotation in Cartesian
Coordinates 89

3.3 	Distributed Arithmetic Methodology 93

3.3.1 Introduction 	 93
3.3.2 consequences of using

Distributed Arithmetic 	 97
3.4 	Distributed Arithmetic for

Computing Small DFr's 	 99
3.4.1 General 	 99
3.4.2 Distributed Arithmetic and

the Prime DFT 	 100
3.5 	Distributed Arithmetic and the FFT 	100

CHAPTER 4 	VLSI Datapath Architectures for
Complex Number Arithmetic 112

4.1 Introduction 112
4.2 Conventional Arithmetic Datapaths 112
4.3 Distributed Arithmetic Datapaths 118

4.3.1 	Pipelining 119
4.4 Summary 131

CHAPTER 5 	MOS-LSI/VLSI Distributed
Arithmetic Processors 134

5.1 Introduction 134
5.2 EU20I - A Totally Parallel 6-Bit

Radix-2 FFT Butterfly 136
5.2.1 	General 136
5.2.2 	Fast Adder for Data Assimilation

at Array Output 141
5.2.3 	Clocking Scheme 145
5.2.4 	Performance of EU20I Device 145
5.2.5 	Summary of EU20I Butterfly Processor 146

5.3 EU219 - A Configurable 8-Bit
Version of EU20I 148

5.3.1 	General 148
5.3.2 	Single Input and Single Output Port 148
5.3.3 	High Speed Multiplexer 150
5.3.4 	Global Four Phase Clock 151
5.3.5 	Tri-State Logic and

Timing Considerations 154
5.3.6 	Formation of Butterfly Outputs 156

5.4 Digital and Analog Testing of E1J219 156
5.4.1 	General 159
5.4.2 	Probe Testing 159
5.4.3 	Testing EU219 on a Logic Analyser 160
5.4.4 	Testl for EU219 161
5.4.5 	Testl Results 163
5.4.6 	Test2 Results 163
5.4,7 	Test3 171
5.4.8 	Test4 171
5.4.9 	Test5 171
5.4.10 	Analogue Performance of EU219 177
5.4.11 	Summary of the EU219

Butterfly Processor 180
5.5 A 16-Bit CMOS-SOS Arithmetic Processor 185

5.5.1 	General 185
5.6 CMOS SOS Processor Architecture 186

5.6.1 Systolic Array Complex Multiplier
using D.A. 188

5.6.1.1 High Data Throughput 188
5.6.1.2 High Arithmetic Precision 191
5.6.1.3 Low Rounding and Arithmetic Noise 191
5.6.1.4 Low PowerConsumption 194
5.6.2 Data Sorter 194
5.6.3 Final Adder/Subtractor 196
5.6.4 CMOS Design Considerations 196
5.6.5 Clocking Scheme 202
5.6.6 Timing Requirements 206
5.6.7 Latching of Input Data

and Coefficients 208
5.6.8 Control Signals Required

by Pipeline 210
5.7 	Logic Simulation 212
5.8 	Additional Cell-Level Details 212
5.9 	Summary 223

CHAPTER 6 Conclusions 225
6.1 	Future Research Work 228

Appendix I - PLA's in Silicon Compilers 229
Appendix 2 - Authors Publications 235

Chapter 1 - Introduction

1.1. General

The central aim of this thesis is to study the application of

Very Large Scale Integration (VLSI) to high speed computation of the

Fourier Transform, and in particular, the Fast Fourier Transform

(FFT) algorithm.

The FFT system will be discussed with a view towards the con-

struction of VLSI architectures, however, much of the original work

in this connection will be centred on VLSI architectures for comput-

ing the arithmetic requirements of the discrete and fast Fourier

transform which involves the use of complex numbers.

The use of distributed arithmetic is shown to be highly appli-

cable (1,2,3,4] to parallel arithmetic datapaths for operation on

complex numbers, and the datapaths that will be described are very

efficient at performing vector rotation (as complex multiplication)

and addition.

Some specific VLSI implementations of these datapath architec-

tures are described and their performance is compared with commer -

cial devices.

The Fourier Transform [5) named after the French mathematician,

Jean Baptiste Joseph de Fourier (1768 - 1830) allows a continuous or

discontinuous function defined over a finite interval to be

represented as the integral (infinite summation) of an infinite

number of complex exponentials, each with a potentially unique

amplitude and phase. The record of these amplitudes and phases is

1

commonly referred to as the frequency domain if the input is derived

from the time domain. This can be expressed mathematically as shown

in equation (1. 1. 1).

X(f) = x(t) e2 ft) dt

Where x(t) represents the input time domain waveform which is

transformed to a frequency domain output waveform X(f).

If the time domain signal is periodic, bandwidth limited and

sampled, then it is possible to represent the Fourier integral as a

finite summation of complex exponentials (5] to a good approxima-

tion. In the Discrete Fourier Transform (DFT), a periodic time

domain waveform of N complex samples are transformed to another N

complex samples, each sample representing the magnitude and fre-

quency of a specific rotating vector which may be considered to be

present in the input waveform as determined by the process of com-

plex multiplication with fixed unity magnitude coefficient vectors

rotating in the opposite direction (" beating " these frequency com-

ponents in the data vector to DC), followed by summation. When all

the resultant (equally spaced) integer frequencies of rotation

described in the output record of the DFT are summed as is done in

the inverse discrete Fourier transform (IDFT), the original time

domain waveform may be reconstructed.

The DFT has applications in radars, (6,7] (such as in high

bandwidth Doppler beam sharpening systems), vocoders, [8,9,10] and

also, scientific work [11] such as X-ray diffraction analyses. In

2

many of these applications, the DFT itself may not be fast enough

and in such cases, a Fast Fourier Transform (FFT) algorithm may be

used, of which there are many. The FFT is particularly useful in

performing high speed convolutions where two signals may be con-

volved together by performing multiplication in the frequency domain

followed by an inverse Fourier Transform. This approach can result

in real computational savings (12] for medium to large convolutions

(lengths greater than 64 or 128 samples).

Described by Cooley and Tukey, (13] the Fast Fourier Transform

(FFT) algorithm, allows the DFT to be computed very efficiently for

transform sizes that are some positive integer power of two. Subse-

quently, a large number of similar algorithms (14,15,16,17,1 8] have

been described for computing the DFT very efficiently. Even with

the improvement offered by FFT algorithms, however, high bandwidth

signal processing often requires that special purpose hardware be

used instead of general purpose hardware.

The advent of Very Large Scale Integration (VLSI) has greatly

influenced the design of digital systems, allowing partitioning of

systems to be considered at ever increasing levels of functionality.

The precise partitioning of a given FFT system depends on the

degree of arithmetic concurrency required in the system, however, in

general three major partitions of the FFT can be identified. These

are

3

4

Memory to buffer and store intermediate data and results.

Control unit for coordinating memory and arithmetic.

C) Arithmetic unit which must handle complex arithmetic.

1.1.1. Memory

Current memory technology and designs have greatly advanced

(19] to what could almost be described as an art form. The design

of high performance memory is an extremely skilled and profoundly

complex task which industry has been addressing for many years now.

Special purpose memory designs for FFT work would therefore have to

offer substantial gains over general purpose Random Access Memories

(RAM) to be considered for use in FPT systems. There do appear to

be special memory architectures which could offer some advantages

over standard RAM for FFT computation which will be discussed in

Chapter 2, however, none of the ideas will be pursued since ordinary

RAM can be used [12] without much inconvenience.

1.1.2. Control

The control requirement is highly algorithm dependent, which

dictates that the control unit be general purpose, or easily pro-

grammable. Ordinary Read Only Memory (ROM) can be used to store con-

trol data, however, a single memory is not usually an optimum

approach [20] as this does not support a control hierarchy effi-

ciently. This is because all communications to and from internal

memory registers must take place via the data port which therefore

limits the bandwidth of a control unit. Also, a single large memory

will generally be slower than a number of (interconnected) smaller

memories, each handling a specific elementary control routine.

The design of a control unit and the design of a data storage

unit (memory) are thus closely related, since both operation codes

and data can be held in memory. Although random logic can offer

lower area and higher speed than memory based logic, a general pur-

pose, or programmable control unit would have to be ROM based, to

allow ease of programming which is the main consideration in VLSI

design. The problem of control is primarily seen therefore, as a

software problem, with the hardware design being closely related to

memory hardware design.

General principles and approaches to FFT control will, however,

be discussed later with the Programmable Logic Array (PLA) being

advocated for the construction of Finite State Machines (FSM's). The

PLA is highly suited for incorporation into a silicon compiler as

one of the basic cells for producing dedicated control chips. A sil-

icon compiler is a piece of software which can translate a high

level description of a circuit or system to an actual design layout

which conforms to the layout rules for a given fabrication process,

and can thus be used directly for the generation of masks for that

process. The compiler may also have the facility for simulation and

test vector generation so that when the device is fabricated, the

testing can be run automatically, by comparing the device output

data with computer simulated data.

5

1.1.3. Fast Arithmetic

High performance, complex arithmetic processors are not gen-

erally available and are most likely to be the limiting part of a

system, particularly with large wordlengths. Also, the availability

of a FFT arithmetic unit as a major partition of the FFT does not

impose any major constraints on a system designer, in terms of

transforms sizes or degree of arithmetic concurrency in the system.

A high bandwidth FFT arithmetic unit, streamlined to performing com-

plex arithmetic is therefore an Important feature in any FFT system.

As mentioned therefore, most of the original work described in this

thesis is centred on the design of a number of high bandwidth com-

plex number arithmetic datapaths which represent highly optimised

structures, streamlined to the computation of the DFT and FFT arith-

metic requirements and are therefore major building blocks in such

systems.

This work has involved a study of bit-level arithmetic algo-

rithms with a view to achieving the most efficient mapping onto sil-

icon that is likely to be possible. It was noted that distributed

arithmetic techniques appeared to offer good properties in relation

to mapping onto silicon, and this realisation eventually led to the

design of a number of special purpose arithmetic units which made

use of distributed arithmetic techniques to efficiently compute the

complex multiply which is a central arithmetic requirement of the

DFT and FFT.

1.2. Layout of Thesis

The second chapter, which follows this introductory chapter

discusses the DFT and FFF computation techniques. The prime DFT is

also discussed, as this can be computed in a unique manner. The FFT

system is then looked at in detail in regard to partitioning, arith-

metic concurrency, control methodology, signal growth, input and

output signal conditioning and problems in achieving sufficient ver-

satility in high bandwidth systems.

Having discussed the various requirements of the FPT system, it

is concluded that a VLSI arithmetic processor chip would represent a

highly suitable partition of the FFT which would not constrain the

system designer in regard to arithmetic concurrency or transform

size.

This leads directly on to chapter 3 which investigates the

mathematical basis of a number of algorithms for highly efficient

arithmetic processing some of which are highly suited to silicon

implementation. This includes distributed arithmetic, which allows

the re-formulation of well behaved mathematical functions, and can

be used in computing the complex multiply, through the merging of

multiplier partial products.'

Chapter 4 then looks at specific VLSI datapath, architectures

and a comparison is made between conventional arithmetic datapaths

and those that make use of distributed arithmetic. In particular,

distributed arithmetic is applied to parallel data computation of

the complex multiply which is a dominant arithmetic requirement of

the DFT and FFT. Structures with various degrees of pipelining are

rA

[]

considered, offering a variety of processing bandwidths.

In chapter 5 some of the architectures described in chapter 4

are applied to some specific VLSI implementations for fabrication in

two Metal Oxide Silicon (MOS) technologies, n-channel MOS (nMOS) and

Silicon on Sapphire complementary MOS (SOS-CMOS). This chapter is

largely devoted to the description of actual silicon devices, and

the simulations and digital testing of some of these devices will be

described along with their performance.

This leads finally to Chapter 6 which contains the• conclusions

so far reached with this work, and some suggestions for future VLSI

processor architectures based on distributed arithmetic techniques.

Chaptersl to 3 are thus largely devoted to introducing the

subject area and reviewing literature that is relevant to the DFT,

FFT and VLSI signal processing in general. There is some original

content present in these chapters mixed in with the literature

review during discussion. Chapters 4 and 5 which describes some

specific parallel data distributed arithmetic architectures and

three silicon implementations is original work. A speed programm-

able nMOS PLA generator, the concept of which was discussed in

chapter 2, and is described in appendix [1], is also original

material.

References

I. R. Mactaggart and M. A. Jack, "Radix-2 FFT Butterfly Proces-

sor using Distributed Arithmetic," Electronic Letters, Vol. 19,

pp. 43-44 (20th January 1983).

I. R. Mactaggart and M. A. Jack, "A Distributed Arithmetic

Radix-2 FFT Butterfly Processor," lEE Pxocds. pn The Impact of

High Speed and VLSI Technolo gy gn Communication Systems, pp.

50-52 (November 1983).

I. R. Mactaggart and M. A. Jack, "A Distributed Arithmetic

Radix-2 FFT Butterfly Processor," Ninth European Solid-S tate

Circuits Conference, pp. 41-44 (21-23 September 1983).

I. R. Mactaggart and M. A. Jack, "A Single Chip Radix-2 FFT

Butterfly. Architecture Using Parallel Data Distributed Arith-

metic," IEEE Journal j Sljd Stgte Circuits, Vol. SC-19 No.3,

pp. 368-373 (June 1984).

E. 0. Brigham, The Fast Fourier Transform, Prentice Hall

(1974).

M. Schwartz and L. Shaw, Siqnal. Processing, McGraw Hill and

Kogakusha (1975).

K. Ainslie, "Synthetic Aperture Radar," BSq Hops. Dissertation

UP 1321 (May 1981).

P. E. Blankenship, "A Review of Narrowband Speech Processing

Techniques," IEE Conference Publications jQ, pp. 108-118 Q.

M. C. Davie, "Low Bit Rate Speech Communication Based on Charge

Coupled Device Fourier Transform Processors," ThQ Thepis, Dept.

glectrical jjg.., 	Edinburgh, (September 1979).

N. C. Davie, "A Channel Vocoder Based on CCD DFF Processors,"

Proceedings 1EE Pp,t F, Vol. 127, Issue 2, '(April 1980).

C. Kittel, Introduction to Solid State phvsjç., Wiley (1976

(5th Edition)).

L. R. Rabiner and B. I. Gold, Theory and Applicajrj 2t Digital

Signal Processing, Prentice Hall '(1975).

J. M. Cooley and J. N. Tukey, "An Algorithm for Machine Compu-

tation of Complex Fourier Series.," Math Comp., pp. 297-301

(April 1965).

E. Dubois and A. N. Venetsanopoulos, "A New Algorithm for the

Radix-3 FFT," IEEE Trans. ASS?, Vol. ASSP-26, pp. 222-225

(June 1978).

S. Prakesh and V. V. Rao, "A New Radix-6 FFT Algorithm," IEEE

ASS?, Vol. ASSP-29, pp. 939-941 (August 1981).

R. C. Singleton, "An Algorithm for Computing the Mixed Radix

Fast Fourier Transform," IEEE Trans. Audio Electroçpustics,

Vol. AU-15, pp. 45 - 55 (June 1967).

11

L. R. Rabiner and C. M. Rader, Digital Signal Processing, IEEE

Press (1972).

C. S. Burrus and P. W. Eschenbacher, "An In-Place In-Order

Prime Factor FFT Algorithm," IEEE Trans. on Acoustics, Speech

and Signal Procegsinct, Vol. ASSP-29, 	pp. 806-817 (August

1981).

S. K. Wiedmann, "Advancements in Bipolar VLSI Circuits and

Technologies," IEEE Journal of SQlA State Circuits , Vol. Vol.

SC-19 No. 3, pp. 282-290 (June 1984).

C. Mead and L. Conway, Introduction 	LI Systems, Addison

Wesley (1980).

12

Chapter 2 - Fourier Transform Processing

2.1. Introduction

In this chapter, the emphasis will be on the influence of VLSI

(Very Large Scale Integration) on Fourier transform processing with

the focus being on digital techniques which allows higher precision

and performance control than can be achieved using analogue

approaches. The latter will be discussed only briefly in connection

with prime length Discrete Fourier Transforms.

The various ways of computing the Discrete Fourier Transform

(DFT) from direct methods to algorithmic Fast Fourier Transform

(FFT) approaches will be reviewed, and much of the emphasis will be

placed on how these algorithms can be partitioned and mapped an to

silicon to produce high performance VLSI processing elements. Exist-

ing signal processing devices and system design methodologies

relevant to Fourier transform processing will therefore be reviewed.

Most of the structures discussed are not general purpose in the true

sense but could be reconfigured in real time, to produce a variety

of signal processing functions.

The chapter will start by discussing the theoretical aspects of

the Discrete Fourier Transform (DFT) and vector rotation alongside

silicon realisations o the basic DFT. This will be followed by a

summary of the original Cooley Tukey FFT with its associated

hardware implications. The Prime length DFT will then be reviewed

separately from the non-prime length OFT. The final section in this

chapter looks at system considerations of the FFT processor such as

partitioning, the problems of input and output signal conditioning

and bandwidth matching of the various processing elements in a

hardware FFT system.

2.2. The Discrete Fourier Transform

Any periodic waveform can be represented (1] as the sum of an

infinite number of orthogonal periodic functions. If these func-

tions are complex exponentials, then determination of the phase and

magnitude of these functions is known as Fourier analysis. For band

limited, sampled signals, it is possible to represent the input

waveform with a finite number of complex exponential functions to

the required degree of accuracy. If an input time domain waveform

consists of N complex samples, then the Discrete Fourier Transform

(DFF) allows this waveform to be represented as an N sample record

of the phases and amplitudes of the N complex exponentials from

which the time domain waveform can be synthesised. The DFT can thus

be expressed as shown in equation (2.2.1)

N-I
X(k) = E x(n) e 2 U ink/N) 	 (2.2.1)

n=O

Where x(n) is the time domain sampled at intervals n=0,1,..N-I

X(k) is the frequency domain at intervals k=0,1,..N-1, and N is the

transform size.

To form each frequency domain result (X(k)), requires N complex

multiply and accumulate operations, so that if all frequency domain

results are computed, then N 2 complex multiply and accumulate opera-

tions must be computed. Future equations will be simplified by

13

defining the complex exponential in the DFT equation as shown in

equation (2.2.2)

W = e2u1 j/N) 	 (2.2.2)

Where the transform size (N) shall be implied from the text. An

eight point (N8) DFT, expressed in matrix form and using the shor-

tened expression of equation (2.2.2), would appear as shown in Fig-

ure (2.2.1).

The matrix of W values shown above, has been simplified by not-

ing the periodicity of W This periodicity is expressed in equation

(2.2.3).

= nk 	m,l = O,+/- 1,+/- 2.... 	(2.2.3)

The unit vectors, W in the W matrix of the eight point DFT can be

illustrated by the vector-matrix notation of Figure (2.2.2). This

shows more clearly how the different rows contain successively

increasing integer rotation rates, moving from the top row, which

represents zero rotation rate (DC), to the bottom row, which

represents maximum rotation rate. If the time domain input

sequence, consists of a simple unity magnitude vector rotating

anti-clockwise at a frequency of one cycle per transform (8 sample

periods), then multiplication and summation of this sequence with

row 2 of the W matrix, results in a large output at X since the

vector sequence of row 2 in the W matrix rotates in an equal and

opposite direction. The time domain data vectors are thus

14

0 w 0 0 0 0 0 r0

x I I 	w 0 w' w 2 w 3 w 1. w 5 w 6 U 7 x 1

X2 W ° W2 w4 U 6 W ° W2 W4 W

w ° w 3 w 6 w w ' w 7 w 2 w 5

X. I I 	W ° W 1 w° W4 w° w' w° W4 I 	x

i x S 1 W6 U3 xS

I X 6 W ° W 6 U' U 2 W ° U6 w4 W 2 X G

X7 w° w7 W 6 W 5 W' w3 t4 2 Wi] x 7 J

Fiaure(2.2.1.) The Eiaht-Point DFT

X

Xi

X

X3

— — — — — — — — X 4

X5

-i-I-I-I Xe

X7

15

X

X

X2

X3

X4

X5

X

X7

Figure(2.2.2.) The Vectors in the W matrix of an Eiaht Point DFT

16

effectively made stationary when multiplied by successive terms in

row 2 of the W matrix. All other rows, containing different rota-

tion directions and rates will not wake the input data sequence sta-

tionary, so these (X(k), k # 2) outputs will all be zero.

In practical situations, the time domain sequence may not con-

tain any frequency components which are perfectly coherent with one

of the integer frequencies represented by the W matrix. This results

in a slightly reduced output in the nearest discrete frequency "bin"

and a small output in adjacent bins. This leakage effect to adja-

cent bins can be minimised [2] by input signal conditioning (data

windowing) as described by Harris.

Analysis of the DFT equation (2.2.1), shows that each frequency

domain result is formed by a complex multiply and accumulate opera-

tion between the data sequence and individual rows of the W matrix.

Control requirements of the DFT therefore consists of accumulator

initialisation and sequential transfer of the time domain data and

coefficient (W) data to a complex multiplier. Latching of the fre-

quency domain result present in the accumulator would finally be

required. Figure (2.2.3) indicates the basic hardware requirements

of the DFT processor. This shows the frequency domain output in

bit-serial [3] form. The output could also be presented in parallel

form, but this was shown in the diagram to etaphasise the fact that,

the data rate at which frequency domain is produced with the DFT is

very low and bit-serial data transmission is capable of handling

these bandwidths (except for very small DFT's where the computation

time is greatly reduced).

x(n) 	W address 	 Reset
17

Fiqure(2.2.3. 	The Basic Hardware Requirements of the DFT

...0 UR••R U •UuUSUU•US•I,

S

a

•

I
I

lUU.UURUUUUUUUUUUU•,

'm--7I"•m m ' ••sUU• JkYAi....UUUUII

iUUUUU..UUUUUUNUUUUUUU9.

IiIiI.1liiUuI:
ieUU*URU.M

DATAPATH !ME
RUU

u_
17

IUUUUUUUUll
PARALLEL/SERIAL CONVEMR

Fiqure(2.2.4. 	The DFT is well suited to VLSI, as it
Yields Hiahly Regular Structures.

Compared with Fast Fourier Transform algorithms (FFT's) - used

to compute the DFT very efficiently for large transforms (discussed

in section 2.3) - the control requirements of the DFT are relatively

simple. Consequently, for limited transform sizes, up to around

256-points, the hardware DFT may be preferable to the hardware FFT

even though at this size of transform the DFT requires about 64

times the number of vector rotation operations than does the FFT.

Other attractions of the DEFT processor over the FFT processor

include marginally improved noise performance [4] and the ability to

compute part of the spectrum efficiently if the whole spectrum is

not required [4] from a single processor, as might be necessary if

it was desired to employ some degree of arithmetic concurrency to

enhance the system bandwidth. (Reasons for marginally improved

noise performance in the DFT are due to practical considerations

related to the finite word lengths used in the hardware rather than

any intrinsic failings of the FFT algorithm.)

VLSI allows the DFT to be integrated onto a single chip [4]

allowing the computation of up to 256 points in as short a time as

6.5 mS. This chip can process data sufficiently fast to cover most

audio applications, (Bandwidth =((1/2) x (256/6.5)) kHz = 19.7 kHz

and illustrates pointedly why the hardware DFT is to be preferred

for all but large transforms and high bandwidths.

A single chip DFT processor would ideally include coefficient

storage, and make use of parallel arithmetic processing. A typical

chip architecture is shown in Figure (2.2.4) which is representative

of a VLSI single chip DFT processor design based on parallel arith-

metic data. This type of controlled datapath architecture allows

19

for a more general purpose approach to be taken than was the case

with the dedicated DFT chip just described. The DFT chip architec-

ture of Figure (2.2.4) could easily be applied in a system by label-

ling the time-domain data to provide a pointer to the W coefficient

stored on-chip. This might be expressed in shorthand as shown below

(see also equation 2.2.1) where the 1+U refers to a requirement for

information, not an arithmetic operation.

(Data Label) + (Bin Number) -> (W Coeft. Address)

Where Bin Numbern is the number of the frequency domain bin that is

being computed. (Bin Number would be constant for each bin computa-

tion.) This can be computed very easily in practice by looking at

the remainder of the product of (Bin Number) and (Data Label) when

divided by the transform size (N) as a consequence of the periodi-

city of the complex exponential described in equation (2.2.3). Data

Label in this case is chosen to be equal to the time domain sample

number. The division by N, however, need not take place if N is a

power of 2. In this case the bottom 109 2 N bits of the product yield

the correct W coefficient address. Thus if the transform length (N)

is a power of two, the correct DFT W coefficient address can be com-

puted with a single multiply operation. In practise, the same multi-

plier used to perform vector rotation operations would be used to

generate the W coefficient addresses in this manner. The general

case for any value of N can be expressed as shown in equation

(2.2.4).

WAddress = Remainder o f [Bin Number x Sample Number/NI

(2.2.4)

20

Although this appears to be a sound approach to the generation

of W addresses in a DFT processor, for higher speeds it is desirable

to free the arithmetic unit for operation on data only. A less com-

putationally intensive method to generation of W addresses is to

perform an accumulation, which allows a new address to be computed

as a function of a previous address and the bin number. This allows

the W addresses to be computed in their natural order (for direct

complex multiplication with data samples) but has the disadvantage

common to all recursions - that the effects of a single error taking

place during the recursion will remain until the recursion is ter-

minated. Thus if an error occurs during the computation of a fre-

quency bin, the whole bin computation needs to be repeated unless

there is a suitable mechanism for detection and removal of the error

as soon as it occurs. In a carefully designed digital circuit, how-

ever, errors should be very infrequent and should not cause serious

problems in small recursions of this nature. The approach to gen-

erating DFT W coefficient addresses using a single accumulator is

shown in Figure (2.2.5). The bin number is latched from a counter

and the new coefficient address is computed by adding this to the

old coefficient address. An example is included in Figure (2.2.5)

for rows 4 and 8 of an eight point DFT. These were chosen to show

the wrap-around effect which is not entirely an obvious phenomenon.

A potential hardware reduction feature of the DFT is that an

input buffer is not required if one chip per frequency bin is used

since no temporary storage or sorting of input data is required.

This approach is quite attractive if bit-serial arithmetic [3]

processors are employed. The use of parallel arithmetic processors

RE5

BIN
NUN

Ill
ADDRESS INCREMENT

A DFT Coefficient Address Generation Scheme

21

Row

000= 0
+011

011= 3(10)

+011
110= 6(10)

+011
[ijool = 1(10)

+011
100 =

:4(10)

101 = 5(10)

+011
[i]000 = 0

Row

000= 0
+111

111=710)
+111
[1:11 10= 6(10)

+111
[i]ioi= 510)

+111
100= 4(10) etc

[1]001= 1(10)

+111
[i]000= 0

Note

Bracket indicates
discarded overflow
bit.

Rows 4 and 8 show

Wrap—around effect

Figure(2.2.5.) DFT, W coefficient Address Generation
using Accumulator-Eight Point Example
uses a 3-Bit Accumulator.

22

would not normally be considered due to high costs for all but lim-

ited transform sizes, or very high bandwidth systems. The use of N

arithmetic processors [5] (one for each frequency channel) provides

a useful means of high bandwidth computation of the OFT, as an

alternative to the FFT for limited transform sizes. Although such a

system is algorithmically less efficient than the FFT, a failure in

a single processor would only affect the frequency bin which that

processor was associated with, thus other bins would not be

affected. In the FFT, described shortly, single arithmetic failures

can affect many frequency bins, not just one, and thus have catas-

trophic effects. In DFT systems using a single chip, the input data

sequence may be held in a simple shift register buffer which can be

re-circulated for computing each new frequency component. Such a

buffer has minimal control requirements. One obstacle to implement-

ing all this on a single chip is that with complex arithmetic, the

memory requirements are doubled. The DFT does, however, require

minimal control and so for small transforms and limited bandwidths

it is the ideal approach to computing the Fourier Transform digi-

tally. When large transforms and high bandwidths are required then

it is necessary to use algorithmic approaches which involves addi-

tional control data and temporary storage in order to reduce the

amount of arithmetic required.

2.3. The Fast Fourier Transform

An analysis of the (W) matrix of a highly composite DFT such as

the eight-point example shown in Figure (2.2.2), reveals that many

of the complex multiplications are redundant, in a manner which is

23

independent of the input time domain sequence, being a feature of

the (W) matrix itself. Although there are obvious redundancies in

the DFT W matrix where some of the multiplications are

Trivial (Multiplications by (+1 -) 1 or (+/-) j)

Repetative (Due to periodicity of the complex exponential)

see equation (2.2.3)

Related (Multiplications that are negative or complex conju-

gates of each other)

the efficiency of the common radix-2,4 and 8 FFT algorithms

hinges on the fact that when the transform length (N) is some

integer power of two (as is the case in all Radix-2,4 and 8

FFT's) then each element in the W matrix can be generated

iteratively by 1092 complex products from a set of elementary

unity magnitude vectors whose angles are binary weighted multi-

ples of WN. These elementary unity magnitude vectors are com-

monly referred to as "twiddle factors" in literature, (6] how-

ever, the algorithm has not yet been fully formulated, so for

the moment, this name only applies to the numerical value of

these vectors.

This now allows each frequency bin computation to be factorised

into these twiddle factors and other terms containing the Input

sequence. The factorisation may be chosen to be such that many

terms are produced which are common to each frequency bin in a sys-

tematic manner thus allowing a reduction in the number of arithmetic

operations. The DFT output may then be generated by 1092N

iterations (or passes) on the input sequence, in which the time

domain is operated on successively by these twiddle factors. The

mathematical basis of the FFT re-formulation of the DFT will be dis-

cussed in more detail in the section dealing with the Radix-2

Decimation-in-time FFT algorithm.

Thus, the FFT algorithm is based upon the principle of reveal-

ing redundancies through factorisation made possible by the itera-

tive re-construction of the W elements in the DFT matrix and

exploiting these redundancies through data-routing. As previously

mentioned, more than one factorisation is possible and so also there

are a number of ways of ordering the data-routing in the computation

to produce a variety of "Fast Fourier Transform" (FFT) algorithms.

The original Cooley-Tukey FFT algorithm [7] described the gen-

eral technique of breaking down large DFT's, whose lengths are

highly composite, into a large number of much smaller DFT's. Thus,

a large DFT could be computed by combining together several much

smaller DFT's. As the number of complex multiplications to compute

the DFT increases as N 2 , and the combination of trivial DFT's in the

FFT algorithm increases only as N/2 1092 N, the basic Cooley-Tukey

FFT algorithm is more efficient than the OFT by a factor of

2N/ 1092 N times.

A mathematical proof of the most important FFT algorithms

already exists (6] so a formal proof is not repeated here. Instead,

the probable thinking that led to the realisation of one of the best

known and most popular Fast Fourier Transform (FFT) Algorithms, the

Radix-2 Decimation-in-Time FFT, will be outlined. There are several

24

25

FFT algorithms all closely related, such as the radix-4, the radix-8

and mixed radix algorithms (6] however, the radix-2 FFT is the most

versatile, since with the lowest radix (two), it permits transform

sizes which are integer multiples of two. It also allows for simple

time domain windowing on the first pass for reasons which will be

apparent when this type of algorithm is examined in the next sec-

tion. (The first pass is trivial).

2.3.1. The Radix-2 Decimation-in-Time FFT.

In the DFT itself, there is no restriction on the transform

length (N), however, if N is restricted to powers of 2, then it is

possible to express any of the N distinct W nk terms in the (N x N)

DFT coefficient array as the complek product of 1092 fixed vectors

which are binary weighted multiple powers of WN. This is expressed

in equation (2.3.1.1).

(log N)-1

WN = 	TI
M=O

rJX
"N

where 	X = Xm =dm 2tm (d = 0 or I only) (2.3.1.1)

(For example, 	W =W . 	. W)

The DFT may thus be conceptualised as shown in equation

(2.3.1.2)

N-I 	(log2N)-1

X(k) = E 	((IT 	W) x(n)) 	(2.3.1.2)
n=0 	M=O

r0fl+
5)l+ re)1+ ri

X(0) = w L .

w L
LW

.4
W

w 1l+[3)1+r4)l+
[.,Www

• 40

w 0
'•°i

•4•0

w 20
[i.oj

I 2

I w 20 Lwl

L

+ k' 1 + x(4+ ri. r,i
I1 c1 +

f•I I.,
= 	 liw1i [w9 Lw 1 1

F:~, Lw''J .w :
. L11 'k Lw1I

i +
I. w

+

.
rZj1+r(3,1+r)I(4)3) + r j

w 4.01
I2.oI

411

-

- w9 11' ' j 1w 21
liw'j k;'• liw'°J w Lw'i Lwul

ri
(4)

i
4.1

+
'0

r

 ['W
2_1

w
 ['W2_1

74. .W

= ww

'10 .ww

r

•:w

+rç

•w
w

(r

k
4

14~
2
' IWW 11

W 1

r6(,)1+ r1~r+r4)1+ ri+

- x(5) -

rq
Iw '2 .w

.I
[~W

:.w .w 4 hI
ri+

 I. 1
Lw'1

i. 2 +4 ,r + + 	ir
• :

W

1

: I I I
_W r

I.

i W i

X(6) :ww
'

[1<1)

:
W

[[

:
[

w Lww

i]

] r

•
'i

ri •)1+ r2)1.k3,1+r4) 1+ rn + k.1+

X(7 	=
4.SI

I:I
I4,U

:'LwI
I 	411 N4.1I

•W0:
I

I
,

I 	44 '4
:

w
'' 1 ' LW J w L J w . Lw J Lw .J

Figure(2.3.1.1.) The Eight Point DFT Showing
Factorisation of the W Coefficient Terms.

26

tn -3
0 H
 - jL 	(D

N cl - C)
(D 	0

o oo
H- 0

o rf(D
Cl-

) 	rf
rti
H - :-
0•0

Cf
-- a)
•rt.

H-
:0

H- H-

H- cf

Cf
(D
In

rP
.Q 1
H- H-

(D

p.,

1 Tj
I-"

LQ

I-1
(D

t)

00000000
01010101
00000000
01010101
00000000
01010.101
00000000
01010101

d 0 matrix

(ROTATIONS OF W)

00000000
00110011
01010101
01100110
O0000000
00110011
01010101
01100110

I 	d 1 matrix
2

I 	(ROTATIONS OF W8)

1
(= w)

00000000
00001111
00110011
00101101
01010101
01011010
01100110
01111000

I 	d 2 matrix
4

I 	(ROTATIONS OF W 8)

I 	(=W2)

In the above equation each element in the W matrix of the DFT

is now expressed as log2N complex products. This is written out in

full for an eight point example in Figure (2.3.1.1). Figure

(2.3.1.2) shows three matrices containing the binary values of 'd'

in equation (2.3.1.1) for the eight point example indicating how

each term in the original W matrix of the eight point DFT can be

considered to be composed of a product of binary weighted rotations.

(The concept of these 'd' matrices may not be described in litera-

ture)

Analyses of the matrix d0 which indicates which DFT coeffi-

cients require minimum rotations (WN), reveals exceptionally high

symmetry. It is fairly clear that this matrix would be of the same

type for any size (N where N) 2) of DFT provided that N was some

integer power of two.

If this symmetry allowed the N point DFT to be split into two

and expressed as two N/2 point DFT's each of which would have the

same type of d0 matrix (describing minimum rotations for that size

of DFT), then this splitting process could be continued right down

to N=2. If a computational saving could be made each time a DFT was

split into two, then the overall computational saving (N)>2) would

be significant.

Further examination of the d 0 matrix that describes which ele-

ments in the W matrix of the DFT contains minimum rotations reveals

that the EVEN columns contain no such rotations. This implies that

half of the N=8 point DFT may be computed as a single N(=8)/2 point

DFT operating only on the EVEN numbered time domain samples. The ODD

x o W ° W 0 W 0 W 0 X 0 W ° W 0 W 0 W 0

x 1 w ° w2
W 	w 6 x2 w' w 3 w 5 w 7

x 2 w° W 	w° W x w 2 w 6 w 2 w 6

w ° w6
W 	w 2 x6 w 3 w' w 7 w 5

= L_i +

XI' W ° W ° W ° W ° W I' W 1' W " W "

Ks w ° w2 W w 6 w 5 w 7 w 1 w 3

K6 w° W w ° w 1' w 6 w 2 w 6 w 2

K7 	 w ° w6 W w 2 	 w 7 w 5 w 3 w 1

W o o o 0 0 0 0 0 W 0 W ° W ° W 0

o wo o o o o o w o w 2 wI'w 6

o o w 2 o o o o o w°wI'w° W

o o o W 3 0 0 0 0 w0w6wI'w2

o 0 0 0 W I'0 0 0 W ° W ° W ° W °

o 0 0 0 0 W 5 0 0 W ° W 2 W I'W

0 000 00 W 6 0 w ° w I'w ° w I'

0 0 0 0 0 0 0 W 7 W ° W 6 WW 2

29

xl

X3

x5

x7

Figure(2.3.1.3.) The Process of Decimating an Eight Point DFT
into two Four Point DFT's.

Intl

(D

_x o w° w° w ° w° X 0 w 0 0 0 0 0 0 0 W ° W 0 W 0 W 0 X 1

w° w 2 w 4 w6 x 2 0 w 0 0 0 0 0 0 w ° w 2 w 4 w6 x 3

w° w 4 w ° w' X4 0 0 w 2 0 0 0 0 0 W 0 w 4
W 0 w 4, x5

w° w 6 w4 w2 x 6 0 0 0 W 3 0 0 0 0 w 0 w 6 w 4 W 2 X 7
+ - - -

W ° W 0 W 0 W 0 0 0 0 0 w 0 0 0 W 0 W 0 W 0 W 0

x s w° w 2 w 1' w' 0 0 0 0 0 W 5 0 0 W 0 W 2 W " w'

w° W I' w ° w 0 0 0 0 0 0 w 6 0 W0 w w ° W I'

X7 w ° w 6 w w 2 0 0 0 0 0 0 0 w7 w ° w6 W I' W 2

txj
I-..

(-I-

0

1-3

rt-

rj 0

I-'. -3

rt(D
0

c-i
(-to
0 to

On-

ii

00

çt)
rt-

P-ij 0

(DO
• 	frh

31

columns however, do contain minimum rotations. These can be removed

at the expense of N (=8) rotations of which N(=8)/2 are non-trivial,

allowing the remainder of the original N=8 point DFT to be computed

with another N(=8)/2 point DFT this time based on ODD valued sample

numbers. This process is shown for the eight point example in Figure

(2.3.1.3) and (2.3.1.4) showing the construction of an 8-point DFT

from two 4-point DET'S. In general it can be said that instead of

N2 rotations to compute an N-point DFT, only (N/2) 2 + (N/2) 2 +N/2

rotations are required if it is computed as two N/2 point DFT's.

This of course is less than the direct approach. If N is large and

a power of two then the complete decomposition of the N point DFT

into N/2, 2-point DFT's can be accomplished by performing the above

process iteratively resulting in a radix-2 algorithm, so called,

because the transform is built up from 2-point DFT's. This complete

decomposition of the DFT is shown for N=8 in Figure (2.3.1.5). This

is shown for each frequency bin in Figure (2.3.1.6) in full. This

reformulation of the DFT is highly significant in that fewer arith-

metic operations are required and the whole DFT can in principle be

built up from a simple arithmetic function shown in Figure (2.3.1.7)

(frequently described in literature as the radix-2 butterfly" - cf.

wings of a butterfly) using the signal flow graphs shown in Figure

(2.3.1.8) which can be derived from Figure (2.3.1.6). This produces

un-scrambled frequency domain from time-domain which has been scram-

bled into bit-reversed address locations. Figure (2.3.1.9) shows an

alternative flow graph which allows unscrambled time domain as an

input to produce frequency domain in bit-reversed address locations.

Bit-reversal which applies to the address of stored data is defined

as the mirror image of the address word when mirrored in the Y-axis,

1rJ

Fl
(p

I-.

01

N-i nk
X(k) = E w 	 x(n)

n=O z \ (OFT)

rt(D

0
CD to

1)o p
CD H

0

0
'-10

Di z
11
00 1 to

-o
CD H

rf
r1

(N/2)-1
= 	E x(2n)

n=O

z \
(N/4)-1 	 k (N/4)1 nk 	 (N/4)-1 	 (NI 4)-1 = 	E Wnk x(4n) + WN,2 	W,4 x(4n+2) 	+ 	 N/4 x(4n+ 1) 	+ W 12 	E 	w 4 x(4n+3)] n=o 	 n=O 	 n=O 	

nk
n=O

Thus, for N:B

X(k) = W°x(0) + Wx(4) + W(W0x(2) + Wx(6)) + W[(W°x(1) + Wx(5)) + W(W°x(3) + Wx(7))] 	Radix-2

FFT)

nk
+ W 	1 	WN/2 x(2n+1)

n=o

/\

rQ

I-31-3

0(D

IOU
OlD
I-.. 0

rf

00
'1 Cl)

P . i-3

Cl) H.
0

Cni

00
ht)

tIj
(D
Qjt

rt
cli

0 1

•rt

1j

LQ

II
(D

X(0) = [x(C)+x(45+ 1 1 	(1)+x(5) J+ 1 [x(3)+xC5]

X(i) = [x(C)-x(4)j+ WLx(2)-x(6)j+ W8' ,-x(l)-x(5A+ WLx(3)-x(7)j
=FN(C)+x(45-1 N(2)+x(65J+Wrx(1)+X(55]_1' [x(3)+x(75]

 LLX(0)-x(4) --i W,,2
- 	 I

x(2)-x(6AI+ ' 	(l)-x(5j) Wi LLX - W82 Lx(3)-x(7 _A
=(0)+x(4+1 (2)+x(65-

1F(1)+x(5+1 rx(3)±x(7

= W82

= l x (0) +x(4]_ 1 x(2)+x(6YJW8 2 [x(1)+x(5j1 (3) + x(75j

= Lx(0)-x(4)j- Wx(2)-x(6- WQx(i)-x(5)J - W[x(3)-x(7

.I1

rt
0

A

B

A+B.W

A-B.W

34

Figure(2.3.1.7.) The Basic Computational Element of the Radix-2
FFT Algorithm Described in Text (Decimation-

T_c. . 	 -Y JI-IL%JVVII CLM CL
	

ci

"Butterfly".

L

)

C.

I 	0 	 . 	
I 	

I

I 	I I 	 I 	I 	tj

35

Figure(2.3.1.8.) Data Flow Graph of the Radix-2 FFT Algorithm
described in Figure(2.3.1.6).

36

Figure(2.3.1.9.) Alternative Data Flow Graph of Radix-2 FFT
with Un-Shuffled Input Sequence.

37

so that the most significant bits become the least significant bits

and vice-versa.

This particular FFT is normally known as the Radix-2

Decimation-in-Time (DIT) algorithm because at each stage in the

computation, the input time sequence is divided into smaller stages

for processing as outlined in the previous 8-point FFT example. An

alternative decimation-in-frequency algorithm [6] is similar and

uses the same number of operations. The DIT, FFT algorithm is, how-

ever, more useful in hardware oriented systems because the W coeffi-

cients are all unity on the first pass, thus allowing the possibil-

ity of using this pass to perform time domain windowing functions

[6] that are often essential to the operation of real PET systems.

It will be noted that in both flow graphs of the 8-point FFT, the

transform is built up from three distinct stages or "passes". A sig-

nificant feature of Figures (2.3.1.8) and (2.3.1.9) is that the data

address sequence is the same for each pass. This type of addressing

is thus normally referred to as constant geometry addressing,

because of the pass-independent addressing. If pass dependent

addressing is used, [6] it is possible to return the butterfly out-

puts to the same memory address locations from which the inputs were

derived, [6] thus halving the memory requirements. This type of

alaorithm. known as in-n1 	n1,-e 	 1.:

speed performance. Figure (2.3.1.10) shows the two different FFT

systems based on these different addressing -approaches. Figure

(2.3.1.11) shows a possible pipelined FFT approach based on serial

shift register memory, and constant geometry data flow. The time

domain is clocked into a shift register at clock rate (1) and is

XCk)

t paraI1.1

load x(ii3

RAM I 	 I RAM

AU) 	 (AU

RAM

CONSTANT GEOMETRY 	 IN PLACE

Fiaure(2.3.1.10) Two Distinct Single Arithmetic Unit
FFT System Memory Configurations.

Figure(2.3.1.11.) An example of Serial Memory (Shift Register)
to Implement a Radix-2 FFT in a Pipelined
Processor. (Parallel Load Facility Requires
Custom VLSI).

39

then loaded in parallel into another shift register. This is tapped

at the half-way position and clocked at (f/2), thus sorting the data

into the correct order for the butterfly.

Data flow graphs can be very helpful in hardware FFT system

design as they allow the various possible addressing strategies to

be clearly differentiated. They also show how the addressing of

data registers relates to the particular FFT algorithm being con-

sidered.

It is known that there are a large number of FFT algorithms

which work for a variety of data block lengths not necessarily

powers of 2. There exist Radix-3 FFT algorithms, (8] and Radix-6

algorithms, [9] as well as the more conventional Radix-4 and Radix-8

[6] FFT's. These unusual Radix FFT's do not offer computational

advantages over-the Radix-2 and 4 FFT's involving comparable complex

multiply operations, however, their main advantage lies in the abil-

ity to compute the FFT for input time domain sequence lengths that

are not necessarily powers of 2.

2.4. The Prime Radix Fourier Transform

As previously mentioned, the Cooley Tukey FFT algorithm is at

best restricted to trnfnrm qj'j 	Fh- rô 	 4.4

power of two whereas the Prime Radix FFT algorithms [10,11] involve

the building up of a large transform from OFT's some or all of whose

lengths are prime. The simplest case involves building up a P = N.M

point DFT from N, M point DFT's followed by M, N point DFT's.

Unfortunately, the joining up process involves non-trivial rotations

40

which calls for complex multiplication, thus the only apparent

advantage of Prime FFT type algorithms is the ability to compute

unusual length DFT's that are not possible using the standard

Cooley-Tukey FFT or a radix-3 FFT.

It is worth noting, however, that the Prime DFT has itself some

unusual features which make hardware implementations particularly

attractive.

2.4.1. The Prime DFT

The N point DFT, where N is prime, is unique, in that each row

of the W coefficient matrix contains all Nth roots of unity, with

the exception of the row used to compute the DC term. With this one

exception then, each row used to compute non-zero frequency com-

ponents contains every one of the N vector coefficient angles, which

are a multiple of (2 x P1/N) radians. This is true only when N is

prime and does not apply to the row corresponding to the DC term.

Since every other row contains all Nth roots of unity, it is possi-

ble to re-order the expansion of the (N x 1) time domain matrix with

the (N-I x N) W coefficient matrix, such that the time domain is

scrambled, instead of the W matrix, which can now be made the same

for each frequency domain channel, consisting of a rotation of (2 x

P1/N) radians between adjacent elements. The prime length DFT can

now be expressed as a scrambled (N-I x N) time domain matrix multi-

plied by a single column (N x 1) W coefficient matrix, representing

a single integer frequency (rotation). An example of this re-

ordering is shown in Figure (2.4.1), for N=7. The fact that this

single integer frequency can be used to compute all the frequency

41

0

0 a
4-
Q)

-o
C a

-o
C
C)
0
X
LJ

xo
X1

X2

X.3

X4

X5

X6

xl

X3

X4

X5

X6

E
Q)

F-

0

C

0
C

WWWWWWW ° Xo
0 1 2 3 4 5 6

W W W W W W W Xi

w ° w 2 w 4 w 6 w 1 w 3 w 5
w ° w 3 w 6 w 2 w 5 w 1 w 4
w ° w 4 w 1 w 5 w 2 w 6 w 3
W ° W 5 W 3 'N 1 W W W X5

WWWWWW 2 W X6

W a--
Xo Xi X2 X X4 X5 X6 W
XOX4X1 X5X2X6 X3 W
XOX5X3X1 X6X4X2

3
W

XOX2X4X6X1 X3 X5
4

W
XOX3X6X2X5XIX4

5
W

XOX6XSX4X3X2X1
6

W.1

Figure(2.4.1.) The Seven Point Prime DFT Showing Re-ordering of
the W matrix and Input Sequence.

42

domain terms, allows techniques such as distributed arithmetic to be

used - discussed later in Chapter 3 - where the additions in the

multipliers and adders are re-ordered to allow a memory and accumu-

late reformulation. Siu and Chen (12] describe a system based on a

6800 (2MHz) microprocessor which uses distributed arithmetic tech-

niques to compute a 61 point OFT in only 3.1 ms. Distributed arith-

metic can be considered to be a very useful technique in micro-

computer systems, although it should be noted that both hardware and

instruction set usually need to be specifically "geared" to such

programming which includes the ability to efficiently look at indi-

vidual bits in a word as well as perform conventional word arith-

metic. Siu and Chen achieved their high performance by providing

hardware to perform such bit-level functions.

The Prime DFT can be further simplified, however, by using con-

ventional arithmetic in a recursive mode. If a given row of the

scrambled time domain sequence in the 7 point example (shown in Fig-

ure (2.4.1)) is represented as x' 0 x' 6 then, any one of the fre-

quency bins X may be represented by the recursive expression of

equation (2.4.1).

Xn = (((((x' 6 W+x' 5)W-fx' 4)W+x' 3)W+x' 2)W+x' 1)W+x' 0 (2.4. 1)

In this example W has a fixed angle of (2 x P1/7) radians. 	This

equation shows how each frequency cell of the 7 point DFT can be

computed recursively by performing a repeated fixed angle vector-

rotate/vector-add operation on the scrambled time-domain sequence.

The main advantage of this re-formulation is that a fixed-angle

WN

43

Figure (2.4.2.) showing Basic Prime DFT Hardware Requirements.

44

vector rotate can be implemented more efficiently than a variable-

angle vector rotate in both hardware or software by using techniques

such as shift and add or partial table look-up. This again is par-

ticularly attractive in micro-computer systems that are poor at per-

forming signed multiplications but can perform shift and add opera-

tions or table look-up operations with efficiency comparable to that

of dedicated hardware. In hardware implementations, the main advan-

tage of this approach in computing the Prime DFT is that an exten-

sive coefficient Read Only Memory (ROM) is unnecessary, however, the

need for a data-sorter still limits the size of DFT that can be com-

puted on chip. It is likely however that the resulting structure

would be more easy to design and permit a larger size of DFT to be

computed than could be done conventionally. Figure (2.4.2) shows the

basic hardware required to implement the prime DFT.

2.4.2. Analogue Prime DFT Computation

In analogue circuits,the current and/or voltage relationships

of one or more active or passive devices are exploited in such a way

as to model a mathematical relationship. At room temperatures this

model will only exhibit a limited accuracy due to electronic noise

of various types. Also, even in the absence of noise, the model

i-i c Mau -i u 	 t 	 t; 	i

idealities. Such effects can limit the applications of analogue

techniques to algorithms requiring only low degrees of precision.

This often means that only low degrees of recursion may be tolerated

to minimise error build up.

45

In general, the DFT itself is not implemented effectively by

using analogue techniques due to excessive inaccuracies, however,

the Prime DFT offers an exception to this rule since in this special

case, the frequency domain may be computed using a fixed angle vec-

tor rotate circuit, so that the multiplier only has to operate on a

fixed coefficient word. A number of papers have already been writ-

ten on the use of analogue techniques [13,14] in this area. Charged

Coupled Devices (CCD's) can be used to store data, and the multi-

plier can be implemented by using capacitive charge sharing tech-

niques, or by using active devices (Higher Bandwidths). In the case

of the charge sharing analogue multiplier, digital techniques can be

used to switch in small trimming capacitors, thus avoiding the need

to take sensitive analogue signals, off chip. The performance

obtained is then acceptable, offering low power, and medium to high

bandwidths. In general, however, accuracy is still restricted.

Jack, Park and Grant [13] project a, possible 0.5% rms transform

accuracy, from results of a prototype device which displayed an ini-

tial 2% transform accuracy. Although accuracy is not high, low power

at high bandwidths up to 5 MHz can be obtained, offering the possi-

bility of real time signal processing tasks at very low costs.

The effect of device scaling, however, has a quite drastic

- - - -- --- 	
------ - ---------------- 	 - .- 	 , J.J.IL(3J. .L 1J ?

and noise performance are all degraded [15] and the need to handle

information in a noise tolerant manner must be considered. This

gives rise to a need for digital circuits. All digital circuits are

analogue in nature, but by defining a threshold, data can be freed

from the corrupting influence of noise, and be represented as a

46

string of binary (two state) data of any desired precision. It has

long been recognised, however, that there is no advantage in setting

voltage swings (V) and therefore thresholds in logic gates at levels

that vastly exceeds the level needed to ensure good noise immunity

as this serves only to greatly increase the power required to change

the state of a given node (proportional to V2). This has led to the

consideration of special logic gates such as in the case of multiple

valued logic [16,17] where more than one analogue threshold is set

within a given voltage range and therefore more than two possible

states are considered to exist over that range. This quest for

lower power and higher speed has also led to the search for lower

logic voltage swings and thresholds in conventional digital circui-

try, which can still offer good noise immunity with reduced thres-

holds. Multiple valued (MV) logic is in effect, a half way house

between digital and analogue approaches. It is likely, however, that

for the same reasons that analogue circuits are declining in useful-

ness because of device scaling, (which favours digital approaches),

MV logic will eventually decline in its usefulness as well. By

then, digital VLSI circuits will be operating at more optimised

thresholds with lower voltage swings which will offer higher speeds

and lower powers, but still retain an adequate noise immunity. This

thesis will not be pursuing these analogue approaches any further

which are not suited to VLSI. The prime DFr and FFT will not be

pursued any further either as it is more complex than the Cooley-

Tukey FFT to implement in hardware and does not appear to offer any

outstanding advantages. The computational efficiency of both the

prime DFT and Prime FFT is not very high compared to conventional

DFT and FFT approaches.

47

2.5. FFT System Considerations

2.5.1. Arithmetic Concurrency in FFT Systems

One of the notable features of all FFT algorithms is that vari-

ous levels of arithmetic concurrency are possible allowing a wide

range of bandwidths as well as system design philosophies.

The three most important levels of arithmetic concurrency which

apply to Radix-2 systems involve either a single arithmetic unit, or

1092 N, or N/2 arithmetic units, where N is the transform size. The

last approach is really only sensible with serial arithmetic proces-

sors. For a 1024 point FFT therefore, one might consider using 1,10

or 512 butterfly processors. To use numbers other than this is pos-

sible, but would involve additional control, and some inefficiency.

These three different approaches will be discussed briefly.

2.5.1.1. Single Arithmetic Unit FFT System

The single arithmetic unit processor allows low to medium

bandwidth operation, depending on whether serial or parallel arith-

metic processing is used. Assuming a butterfly time of 1 micro-

second a 1024 point complex FFT based on a single arithmetic unit

would take 512 milli-ørnnr1' 	mniø- 	 4,il-

One feature of the single arithmetic unit FFT system, is that

input (time domain) and output (frequency domain) buffering must be

performed in order that the AID conversion may take place on a con-

tinuous basis. This entails extra memory and control requirements.

The constant-geometry algorithm is preferred to the in-place

ENO

algorithm for this type of system where it would be very difficult

to use a greater than unity latency arithmetic unit efficiently.

The latency of an arithmetic processor is defined as the number of

clock cycles required between the input of data to the arithmetic

processor and the output of a result. This may be much greater than

unity even if the processor can absorb data every clock cycle

through the use of pipelining [5] techniques. The reason that the

constant-geometry algorithm may be preferred is that it would be

necessary to execute short bursts of read and write cycles, in order

to take advantage of an AU with latency much greater than one. In

this case, the AU would only be operating 50% of the time. Even

when the constant geometry algorithm is used, problems can arise

with an arithmetic unit with latency much greater than one. There

is a potential delay in moving from the end of one pass to the

beginning of another pass, corresponding to the latency of the

arithmetic unit. This is so because the memory used to "sink 11 pass n

data is the same memory that will be used as a source of pass n+1

data, and since a greater than unity latency AU, will still be com-

puting pass n data (even though it is ready to process pass n+1

data), it is not possible to switch the memory round from being a

data sink to a data source until the arithmetic pipeline containing

the last pass n output data is empty. Thus, the arithmetic pro-

cesser must be idle for a period corresponding to its latency at the

end of each pass. In practice, for large transforms this would

entail a fairly small bandwidth penalty, however, it complicates the

control requirements still further. All these problems are probably

best solved by using a uniy latency fast arithmetic unit instead of

a pipelined unit. Whilst potentially slowing down the system, this

49

would simplify the control requirements for the reasons given above.

2.5.1.2. Pipelined FFT System using one Arithmetic Unit per Pass

This type of radix-2 FFT system configuration uses 1092N arith-

metic units (AU's). The transform is thus computed at a rate com-

parable to the system clock. With a butterfly time of I micro-

second, a 1024 point transform would take 512 micro-seconds to com-

pute. The most notable point about using this level of arithmetic

concurrency is that the throughput of the system is independent of

transform size and input and output buffering is not required. The

pipelined system has the further attribute that each AU can be made

to operate continuously, since the memory can be configured as a

swinging buffer thus allowing a greater than unity latency processor

to output data from a current pass, whilst receiving data from an

earlier pass. Since this type of system works equally well for unity

latency and much greater than unity latency arithmetic processors,

this approach must be considered to be very effective in minimising

control and maximising bandwidth. The bandwidth of this type of sys-

tem is high enough to cover most FFT applications including high

bandwidth radars if a parallel AU is used. Furthermore, the overall

control requirements must be regarded as minimal, with the arith-

metic units comorisina a much aratr nerrntci nf t-hp cvc4-m nf

count than with the previous single AU system. It will be noted,

that the only difference between passes are the W coefficient

values. The possibility of constructing a single pass FET sub-system

which could be programmed to compute any pass can thus be con-

sidered. Then, log2N of these boards could be used in a high

50

bandwidth FFT system.

This approach is highly versatile as it allows very high

bandwidths and also a highly modular system design approach. Also,

the possibility of electronically switching in spare pass boards to

replace defective boards exists, allowing a highly reliable system.

These advantages, together with the absence of input and output

buffering suggest that this approach to a FFT system design is prob-

able the most cost-effective for a wide range of operating

bandwidths.

2.5.1.3. Highly Concurrent FFT System using N/2 Arithmetic Units

This type of FFT system effectively computes a pass at a time,

which might take just a few clock cycles. Bandwidths, therefore are

very high. With a butterfly time of I micro-second, a 1024 point

transform would take only 10 micro-seconds to compute. This

approach, is usually only considered viable if bit-serial data com-

munications and processors are used to avoid a potential plethora of

wires to connect them together. Such highly concurrent FFT systems

cannot be regarded as versatile since there is no simple way to

allow expansion to compute larger transforms, for example.

...

formed such as conversion from real and imaginary data to magnitudes

and logarithm computation for example, must also be performed at

unusually high data-rates, necessitating further specialised

hardware. This type of approach is however quite realistic with the

availability of a bit-serial silicon compiler such as FIRST (181

51

which is intended for implementing digital signal processing func-

tions. Such a complier might, for example, be used to produce usable

chip designs for a) A Butterfly Processor b) A Vector Magnitude Pro-

cessor and C) A Logarithm Processor, and possibly, d) A Data-

Windowing Processor, thus enabling the diverse requirements of a

real system to be met with a minimum of effort.

2.5.2. Control Distribution

System control distribution and structure is of crucial impor-

tance, in all digital systems such as the FFT, since if this is not

carried out methodically, the resulting system may be highly ineffi-

cient in its internal operation and also be difficult to modify.

Many current hardware based single AU FFT systems, may be efficient

in their use of components, but have these sort of deficiencies

caused by the absence of a structured control hierarchy which makes

it impossible for the control store to hold information efficiently.

Distributed control is a prerequisite for efficient control data

storage in all types of complex control tasks. It is not therefore

optimum to have one single control unit in a complex system. Instead

the approach should be to have local control associated with each

distinct system function such as the memory and arithmetic unit, for

example. This would then aiinw fho main rrn4rr1 ni4- 4.r.

with the rest of the processor at much lower bandwidths and also

reduce the degree of abstraction involved in the data communicated

between the various units in the system. Another serious deficiency

of many hardware FFT and DFT processors is that a corrupted control

unit memory address instruction would allow incorrect data to be

52

sent to the arithmetic unit which would then combine two unrelated

data and coefficient vectors to produce an incorrect result. The

arithmetic unit is then fooled into receiving incorrect data passed

to it, whilst at the same time, the control unit expects the arith-

metic unit to produce a given result in a given time frame. In oth-

erwords, such a system has by itself no means of determining that it

is operating correctly, instead, it is the system engineer who ana-

lyses the system and declares it to be sound. Although this is how

many systems are designed today, it is not the best way to tackle

more sophisticated systems that will appear in the future as a

result of VLSI. One possible approach which would provide a power -

ful check that the system was operating correctly, would be to add

to each piece of data in memory, a word which could act as a label

or tag for that piece of data. This would then allow the arithmetic

unit to perform a simple check that the control unit had sent the

right types of data to it for processing. When the arithmetic unit

had received all the required labels and data, it would then compute

the new data together with new labels for the data. Thus, although

the control unit is responsible for addressing memory and sending

instructions to the arithmetic unit, it is possible for the arith-

metic unit to verify that the data types that it receives are

correct. This may seem to be superfluous but it does offer a means

of verifying correct system operation in real time. As most digital

system designers are trained to minimise gate counts and not add to

them, this approach is often not thought of as desirable though, and

consequently such additional features are not usually employed in

most current hardware FFT systems. The main advantage is in reduced

system-debugging time, increased versatility and verifying that

53

system memory accesses are correct. System debugging can be very

expensive, so if this is also considered, it could well prove

cheaper to add such additional hardware which serves to monitor the

systems operation. Owing to the high levels of integration

involved, however, these ideas were not pursued towards actual sili-

con designs, but it is felt that they would be worth considering in

the construction of digital FFT system based on a number of standard

VLSI parts.

2.5.3. The use of Associative Memory

If a content addressable (associative) memory (CAM) was avail-

able which could perform the function "search for any data label of

type corresponding to pass 11j0 and return one such label plus asso-

ciated data" (this is a typical CAM function (5]) then this feature

could be used to ensure that each pass was completed whilst the

arithmetic unit could request the correct data within each pass. To

perform the FFT, then, the main system control unit would instruct

the arithmetic unit to request any pass 1 data present in the CAM

(which of course there would be to start with) and the CAM would

then respond with one valid example. The arithmetic unit would then

compute the labelled data associated with the label fed to it and

outPut a new niece of data wit-h a r,-ia1-zDd 1h1 	 1,4...-.A

this task, the arithmetic unit would then request any additional

pass 1 data still available. If there was any, then another pass I

sample would be sent to the arithmetic unit and so on. The control

is therefore reduced to instructing the arithmetic unit to maximise

the pass number which it does by requesting data of certain types

54

(pass n data) from the CAM. This represents a highly distributed

control approach. A control methodology, involving the use of

"intelligent memory could offer programming simplifications in gen-

eral purpose systems, however, it is possibly overkill for FFT and

similar work. This is so because CAM's do not offer such a low cost

per bit than do conventional coordinate addresses RAM's. The main

advantage, possibly of using a content instead of a coordinate

addressed RAM is that multi-processor tasks are considerably eased,

since individual processors can determine almost instantly, the

current state of the computation, from memory, without needing to

communicate with another processor. Indeed, it appears that many of

the draw-backs [19] of multi-processor based systems can be over-

come by using CAM's. Multi-processing, however, is only of use,

when memory bandwidths greatly exceed processor bandwidths. This

suggests the possibility of an FFT machine based on fast, expandable

CAM connected to a variable number (non-critical) of low bandwidth

bit-serial processors. Figure (2.5.3.1) shows such a system confi-

guration. The CAM may have its own dedicated processor in order to

extend its versatility and perform bus arbitration as shown in Fig-

ure (2.5.3.2). This type of approach is quite useful in that low

bandwidth processors may be added or subtracted from the system to

produce the required overall bandwidth, with an upper limit being

dictated by the relative CAM to processor bandwidth. As the precise

number of processors is non-critical in such a system, the possibil-

ity of switching out defective low bandwidth processors might pro-

vide a basis for yield enhancement which would allow the possibility

of wafer-scale-integration. The low bandwidth processors would be

designed to be capable of computing any arithmetic task in order to

Figure(2.5.3.1.) Possible Multiprocessor FFT Scheme based on
Fast Responsive Content Addressable Memory(CAM).

FAU 	[AU --------------- AU

Figure(2.5.3.:2.) Similar CAM based FFT Scheme with CPU to
Extend Overall System Versatility and
Remove some Load from the smaller
Arithmetic Units (AU1-AUn).

55

allow other system requirements such as input and output condition-

ing to be realised as well as the basic FFT. Unfortunately, the

levels of integration involved in pursuing such ideas are currently

too high to consider specific silicon implementations.

2.5.4. Input Conditioning

Windowing of data is not part of the DFT or FFT itself, but

such a system which is processing real-life signals, (from an analo-

gue to digital converter for example) will not necessarily receive a

data sequence which is periodic. A discontinuity of undetermined

value will exist between the first input sample, and the last input

sample. DFT theory, however, requires that the time signal sampled

for processing be periodic (20] over the data block length. A

discontinuity in the time domain would have the effect of introduc-

ing strong frequency domain components which were a feature of the

discontinuity. These extra frequency components are manifest not

only as a localised spreading (main lobe spread) around a spectral

line but also in a much wider spread (side lobe spread) through the

whole of the frequency domain produced by the transform. Data win-

dowing is one way of reducing this problem, where the idea is to

slightly modify the time domain sequence in such a way as to force

ncrir'ir1i,-i4-t, 	r%t7tr 	4-ô 1-1r-, 1e4- 	rj44-),,,,1- 	-.--l-1.. 	 j.L

----- 	 --. 	 --..

true frequency domain content of the signal. This can be done by

multiplying the time domain with a window function. The many dif-

ferent window functions reach a compromise between main lobe widen-

ing and side lobe reduction. In general the window function will

have a form similar to

57

W(n) = Sin a [n.PI/N) 	where 1.0 < a < 4.0

although more complex windows do exist such as the Blackman, Gaus-

sian, Dolph-Chebyshev and Kaiser-Bessel windows which offer varying

types of sidelobe reduction. Much work has already been covered in

relation to finding optimum windows [2] for given applications by

Harris. When a = 2 the general function (above) yields

0.5 [1.0 - Cos [2n.PI/N] I

which is very close to the popular Hamming window which is described

as

W(n) = 0.54 - 0.46.Cos [2n.PI/N].

The window has the effect of removing the discontinuity in time

domain, with a consequent improvement in the quality of frequency

domain output. This is an important topic primarily because it

posses a considerable processing overhead which must be considered

alongside the butterfly arithmetic requirement for the FFT itself.

On the first pass of the Radix-2 Decimation in Time FPT, the phase

factors are all unity, suggesting that the multiplier in the but-

terfly might be used to perform data windowing on the first pass.

This requirement for data-windowing influenced the design of

the CMOS-SOS 16 bit arithmetic processor device described in Chapter

5. The same complex multiplier used to compute vector rotation

could also be used to perform a time domain windowing function.

2.5.5. Output Conditioning

The output of the DFT or FFT takes the form of Real and Ima-

ginary components of the frequency bin vectors. In many applications

the magnitude of the frequency domain vectors is required, for exam-

ple, if the spectrum is to be subsequently displayed. The magnitude

(Modulus) of a vector is computed as the square root of the sum of

the squares of the real and imaginary parts. This is an additional

processing overhead that may well need to be met. It is possible to

achieve a good approximation to the square root with a reduced com-

putational effort if the data is known to lie within certain ranges,

however, in general this processing requirement may differ substan-

tially from the butterfly arithmetic requirements, and is non-

trivial.

In the section on data windowing it was mentioned that the time

domain sequence must be periodic in order that a true spectrum be

produced. Even with data windowing, the true spectrum is only

evaluated to a fairly good approximation, since the discontinuity

between beginning and end of the time data sequence is only greatly

reduced and not entirely eliminated. If it is expected that the

true spectrum of a signal is only varying very slowly, then if the

magnitude of the frequency domain is averaged at a corresponding

rate, the unwanted effects in frequency domain of the discontinui-

ties in the time domain can be reduced. In addition, noise will

tend to whiten, and weak frequency domain components become more

predominant. The averaging of frequency domain is thus a very use-

ful function, which although not computationally intensive like the

butterfly of the FFT, for example, may be required in a real FFT

59

system.

Logarithm computations are usually only performed on either

large transforms and or frequency domain averaged transforms. They

are useful in presenting the transform results because of the nor-

mally very high dynamic range of the output. As this may only need

to be performed on averaged frequency domain the computational

bandwidth may not be very high, however, thought must be given to

the inclusion of a "log processor" in a real FFT system, which means

that bandwidth matching to the FFT must be carefully considered.

2.5.6. Signal Growth and Data Scaling

From the DFT equation, it is clear that if the number of data

samples is equal to N, then a potential signal growth of N times

(1092 N bits) could take place in the case of a unity magnitude time

domain signal that was coherent with one of the integer frequencies

in the W coefficient matrix. This signal growth would also take

place in the FFT if there was no data scaling. A course of action

often taken with the DFT, is to use an accumulator of larger bit

length than the complex multiplier used to perform vector, rotation,

and allow signal growth to occur. This simple approach is not possi-

ble in the FFT however where the vector rotate and accumulate opera-

tions are shared out so that both vector rotator and accumulator

must handle the signal at equivalent levels. In the Radix-2 FFT

algorithm, the DFT is broken down into 2-point DFT's. Vector-

rotation does not change the magnitude of a data vector, however,

the 2-point DFT which consists of an add and subtract will introduce

a possible signal growth of two (ie one bit of growth). This is the

potential growth therefore which may take place with each Radix-2

butterfly operation. As the complex multiply which is used to per-

form vector-rotation is a computationally intensive operation, and

therefore expensive, data scaling is normally employed at each but-

terfly to avoid excessive signal growth taking place. This allows

optimisation of processor wordlengths. If in the Radix-2 FFT, the

output of the butterfly is scaled down unconditionally by one bit

then signal growth in the system is held to around zero. The gain

of the system is thus held at around unity. This requirement can be

implemented in hardware, trivially as a simple shifter, designed to

shift down the output of the butterfly.

2.5.7. Noise Considerations in a Practical FFT System

This is a fairly large subject on which a substantial amount of

work has already been accomplished, [6] both in the area of theory

and practical simulations as there are quite a large number of

potential noise sources in an FFT system. The main components are

detailed below.

2.5.7.1. Analogue to Digital Conversion Noise

This is not related to the FFT itself of course but is an

important noise source in a practical system. The quantisation in

the Analogue to Digital conversion and non-linearjtjes can give rise

to additional frequency components which show up as harmonics and

distortion products. This problem is purely related to A/D design.

The FFT is a useful tool in adjusting high precision A/D devices as

it allows for these harmonics and distortion products to be

60

61

minimised, given a sufficiently pure sine wave as an analogue input.

2.5.7.2. Coefficient Quantisation Noise (W)

The W "twiddle factors" that are required to implement the FFT

will typically be stored as a finite length string of binary 2's

complement fixed-point data, (defined later in chapter 3, section 5)

which is the same as would be used for signal data throughout the

transform. Floating point operations may also be used, but in gen-

eral the above format is considered to be most appropriate in a sys-

tem that is processing real signals from an A/D converter, since the

A/D converter will generate this or a similar digital format.

There are a number of intuative observations that can be made

about the W noise and the precision needed to represent the W twid-

dle factors in a given transform size.

Firstly, the absolute noise introduced into the transform as a

whole will depend on the magnitude and nature of the signal data,

and how this varies throughout the transform. This will be so

because W, is directly multiplied with signal data. Secondly, the

precision needed to represent the W twiddle factors will be greater

than was required to represent the equivalent W coefficients in the

DFT's W matrix and this will crucially depend on transform size.

The reason that the W twiddle factors will require a greater preci-

sion than the W coefficients of-the DFT, are that in the FFT, each W

element from the DFT W matrix is effectively synthesised from logR

iterations - (one at each pass) - where R is the radix of the

transform and N is the transform size. W quantisation in the DFT

62

itself should also be increased with transform size, however, in

order to ensure good angular resolution of all the N w vectors.

Thus in the FFT, W precision must increase with transform size

slightly faster than is required by the DFT such that after log R N

iterations in the same number of passes, the angular resolution of W

is still maintained. A mathematical treatment of the W guantisation

noise is quite complex [6,21] and it is probably easier to simulate

these effects using a digital computer which allows comparison with

a near ideal transform using floating point arithmetic. In the pass-

ing, it is worth mentioning that signal data itself must also be

held at higher precision for larger transforms for similar reasons.

This can make the A/D conversion very costly for larger transforms.

2.5.7.3. Roundoff Noise due to Data Scaling

This might be expected to be a relatively large source of noise

when compared to the W quantisation noise because data scaling

directly affects the main signal path, and indeed, noise resulting

from data scaling [22,23] does tend to dominate, given that the W

coefficients are held at the same precision as data. As with W

quantisation noise, it would be expected that the final passes would

contribute most noise since noise from earlier passes is scaled down

along with the signal in any data scaling operations that may have

taken place. This noise contribution can be avoided altogether by

allowing signal growth to take place. This is undoubtedly the most

desirable approach when the extra cost of having higher dynamic

range hardware is considered acceptable. This approach may entail a

bandwidth penalty, however, particularly if bit-serial arithmetic

63

processing is employed as the word transfer rate is inversely pro-

portional to the word length used.

2.6. Review of Current Devices

2.6.1. Single Chip FFT Processors

Recent trends in using redundancy with self-test and repair

techniques have allowed the possibility of fabricating a fully pipe-

lined FFT processor on a wafer of silicon such as the 16MHz, 16-

point dedicated FFT processor [24] using yield enhancement tech-

niques as described by Garverick and Pierce. In this context, pipe-

lined refers to a level of arithmetic concurrency that allows a con-

stant stream of data to flow non-recursively from one arithmetic

unit to the next. This is possible where there is one arithmetic

unit for each pass in the transform as described earlier in this

chapter. It is likely that wafer scale integration will provide the

possibility of even more powerful FFT systems in the future. It is

not so easy, however, to apply these sort of yield enhancement tech-

niques to any arbitrary architecture, indeed the approach should

really be to devise an architecture based on a particular yield

enhancement approach rather than try to force yield enhancement on

to an existing architecture which does not employ yield enhancement.

It is possible to fabricate dedicated single chip FFT proces-

sors without using yield enhancement provided the arithmetic unit is

limited in size such as the 32-point FFT processor chip described by

Covert [25] which uses a single arithmetic unit. The limited

transform size (32-point) is indicative of the substantial memory

and complex control requirements, needed to implement the FFT.

Larger transforms can be built up from this basic 32-point

transform. The joining up process requires an external complex mul-

tiplier to implement the requirement for vector rotation.

The advantages of designing a single chip FPT are much the same

as for integrating any digital system. There is the possibility of

optimising the speed of each section which in the FFT, includes

memory, arithmetic and control. Also, system power consumption can

be reduced as high bandwidth memory accesses are contained within

the chip. There are, however, more subtle advantages that can be

derived from integrating a system such as the FFT. Such advantages

can be derived from analysis of the interface between the various

sections of the system. For example, rather than hold coefficient in

ROM as an actual binary numerical representation of the coefficient

vector, it is possible to pre-compute and store in ROM the resulting

control logic that would be presented to a Booth's [26] algorithm

multiplier as a function of the numerical coefficient vectors. The

requirement for on chip Booth's control logic hardware can thus be

bypassed by storing the coefficient vectors in the more abstract

form of a Booth's multiplier control logic word. As well as reduc-

ing gate count, this also reduces power consumptions and propagation

delays. This technique was used in Coverts, 32 point FFT processor

chip. It is important to consider that holding the coefficient in a

more abstract form like this, makes the system more difficult to

understand and therefore de-bug or modify. Despite these disadvan-

tages, the general tend in VLSI designs of this dedicated nature has

been to adopt higher and higher levels of abstraction. As a general

64

65

comment, these trends in dedicated VLSI designs are likely to con-

tinue into the future being made easier by the growth in methods and

tools for coping with system level abstractions. As dedicated chip

design involves some degree of abstraction in the optimisation of

the hardware it might be asked if the case for general purpose

hardware design is thus strengthened since this involves lower

degrees of abstraction at a hardware level by passing system

abstractions to the programmer instead. This indeed is the great

opportunity presented by VLSI; that system abstractions can be moved

more and more into software, thus allowing the hardware designers to

concentrate on architectures that lend themselves to fault toler-

ance, self repair and expandability.

It is not surprising therefore that the general purpose digital

signal processor with on chip RAM, is becoming more common. These

sort of devices are quite fast at performing the PFT however memory

availability usually limits transform sizes to around 64 points such

as with the fast Texas Instruments TMS320 processor and the VLSI

programmable signal processor [27] described by McWilliain. Both of

these processors take around 1-2 milliseconds to compute a 64 point

FFF, however the TMS320 can compute a transform in 0.7 milli-seconds

if program loops are repeated in memory, thus avoiding instruction

branching. It would normally take 1.5 milli-seconds using nested

loops. Such general purpose processors, however, are usually sub-

stantially slower than can be obtained using dedicated hardware, as

the arithmetic is not usually geared to operating on complex data,

and consequently cycles are uburnt up', in transferring double

length complex data between storage and processing areas, on chip.

Also, of course, a general purpose unit would require extra cycles

for the decoding of each instruction. This requirement would typi-

cally be bypassed in a dedicated processor although the technique of

pipelining the instruction fetch, decode, and execute can overcome

speed problems in general purpose units with only branch instruc-

tions being left rather slow.

2.6.2. FFT Arithmetic Processors

In chapter 1, it was shown how the FFF algorithm involves the

repetition of a complex arithmetic function, very often known as the

"butterfly". The precise butterfly function depends exactly on the

particular FFT algorithm, but will involve complex multiplication

and addition when using an x,y (Cartesian) coordinate system. It

has already been mentioned that the FFT butterfly is highly suited

to VLSI implementations and there are a number of butterfly proces-

sor chips currently available, indicating the usefulness [28] of

this partition. This section will look at current arithmetic pro-

cessors relevant to the FFT and also discuss developments in multi-

plier technology which is also relevant to the FET's arithmetic

requirements.

Of the number of single chip FFT butterflies, most commercial

devices are aimed at Radix-2 or 4 systems and employ parallel arith-

metic in internal operation. Whilst bit-serial butterfly processors

allow concurrent multiplications on chip, thus reducing control

requirements, it seems that parallel processor design figures more

prominantly than bit-serial. This is most likely because the design

for parallel arithmetic multiply and accumulate chips, usually

67

already available as a separate product by the large manufacturers

can be adapted to compute the FFT butterfly which can then be sold

as a separate product. Lyon, [3] however, advocates bit-serial tech-

niques for dedicated digital signal processing (DSP) systems that

can be pipelined such as the DFT and FFT. The advantages of this

approach appears to be lower pin counts, and easy bandwidth match-

ing, since data flows as a constant stream of serial data through

the system. Connections between chips are reduced and therefore sys-

tem costs are reduced. Bandwidths can be surprisingly high, due

mainly to the high level of pipelining, although clearly the rate at

which word data is passed is now much more dependent on wordlength.

Perhaps the most important feature of the bit-serial methodology is

however, the ease and efficiency with which interconnections can be

made between different processing elements on chip. This feature

can be used to achieve efficient auto-layout and connection of pro-

cessing elements such as is used in the FIRST (181 silicon compiler.

The bit-serial approach is probably best suited to custom

designs, (which might involve silicon compilation) and systems which

cannot strictly be regarded as general purpose (ie relatively dedi-

cated, though not necessarily non-reconfigurable), however, the

parallel arithmetic approach is perhaps more appropriate for general

purpose uses because of the higher bandwidths, and suitability for

recursive algorithms. 	Other butterfly FFT chips make use of bit

slice techniques to allow various wordlengths to be achieved. 	Such

devices include a serial-parallel 4 bit ECL bit-slice processor and

an 8 bit bipolar bit-slice processor (SN74AS888), which operates

at around 20 MHz. The bit-slice approach appears at first sight, to

be a sensible one, however, it does have serious drawbacks. The time

to propagate carries forward is the limiting factor in all these

bit-slice processors and taking a carry-out off one chip and onto

another chip involves extra delays due to the extra buffering

required. These times add up, resulting in a substantially degraded

carry ripple-through time compared with a fully integrated proces-

sor. In addition, these carry-out nodes will be expected to operate

at high bandwidths, increasing dynamic power consumption substan-

tially. As processing technologies shrink feature sizes further,

the costs in taking signals off chip become proportionately greater.

It is reasonable therefore to conclude that bit-slice techniques are

a remnant from SSI and MSI which have no place at all in LSI and

VLSI designs.

2.6.3. Parallel Digital Multiplier Devices

The digital multiplier is particularly relevant to the computa-

tion of the DFT and FFT, as it allows the complex multiply function

to be readily computed. Most of the parallel multipliers described

in literature are non-pipelined (no latching of data internal to the

actual multiplier except possibly at the input or output) and

operate therefore only in a unity latency configuration (the output

appears a single clock cycle after the input). Such devices can be

used in recursive arithmetic configurations as well as non-

recursive. One example of recursive operation is the active computa-

tion of a rotating coefficient vector from a fixed vector, by using

feedback on a unity latency complex multiplier. The fastest multi-

plier technologies currently appear to be Gallium Arsenide (GaAs)

technologies, such as the 16 x 16 bit multiplier with 10.5 nS

propagation delay [29] described by Nakayama et al. This technology

is so fast, that an attempt to pipeline the multiplier design would

have been counter productive since the distribution of high

integrity clocks could not be efficiently realised at these speeds.

This multiplier would require to be interfaced with a memory devices

of the same technology, such as the lKbit 4 nS access time GaAs dev-

ice described by Yokoyama [30] which is fast enough to permit this

multiplier to operate at its maximum clocking rate.

Zero static power dissipation technologies are best suited to

parallel ripple through multiplier designs, as they consume power

only during logic transitions. Thus, bulk CMOS and CMOS-SOS offer

very low power consumption figures. Table (2.6.3.1) shows a number

of high speed multipliers that represent a high level of perfor-

mance.

Maker Device

Number

vai1a- Word

Length

Latency Techn-

oloqy

Speed

()

Power

(niW) bi]J.tv

TRW MPYI2HJ Yes 12 x 12 Unity Bipolar 80 3000

TRW MPY16HJ Yes 16 x 16 Unity Bipolar 100 4500

TRW MPY24HJ Yes 24 x 24 Unity Bipolar 200 5000

GEC / No 16 x 16 Unity cMOS-SOS 250 40

FUJITSU / No 16 x 16 Unity GaAs 10.5 952

cant..

70
cont..

I Lerouge IESSCIRC831 No 	116 x 16 Unity I nMOS 1 120 1 200

Table

More details of the above TRW devices may be found in [31] and

the nMOS device is described fully in both [32,33] which describes

an interesting speed enhancement technique.

2.7. FFT Control Chips

Random Access Memory will typically be used for data storage in

the FFr, so that some means of addressing this memory is required.

It is apparent that serially based memory storage can also be used

in the computation of most FFT's, [6] but this tends to degrade sys-

tem versatility and should therefore be avoided unless a given Ran-

dom Access Memory (RAM) is too slow. In the special case where data

can be stored serially, a serial memory will generally offer a

higher bandwidth than a RAM. As well as addressing this memory,

read/write control signals will be required and the arithmetic unit

may have its own special control requirements such as data scaling

for example.

The control unit must offer some flexibility for the system

designer, and should therefore either be programmable or be produced

by techniques such as silicon compilation which might be required if

a general purpose unit was too slow or inefficient. Some manufac-

turers produce FFT chip sets which include FFT address generation.

The AMD29540 FFT control sequencer is one example.

71

2.7.1. General Purpose Control Units

The general purpose control unit is one which is programmable

and will be RAN or ROM based. The memory will contain all or some of

the state addresses of the FFT and will output the appropriate con-

trol data associated with each address. Each word in the memory

will comprise a state address, (used to point to the next state

address) and a control word which is read out at each cycle. Part of

the data output of the memory is therefore fed back into the address

input in order to implement a finite state machine (FSM). Figure

(2.7.1.1) shows a typical memory configuration for implementing a

FSM. The programmer, must ensure that each state address that is

output from the memory, points to an existing and correct address

present in the memory or the state loop will reach a "dead end". An

important feature of the FSM, is that it is possible to include

several state loops in the memory and thus data or external control

can be applied to leap between one loop and another loop without any

time penalties. (The other loop may involve only one single state,

feeding back on itself, thus holding the FSM output at some fixed

value.) One problem, however, is that it cannot handle loops within

loops without repeating the inner loops for as long as they must

appear. This is because the FSM can only recognise a single state at

any one time and not several states associated with every loop.

Thus, massive redundancy, would be involved in using a single FSM

controller in computing the FFT, for example. This can be overcome

by using a single FSM for each loop required in the control sequence

as shown in Figure (2.7.1.2). It should be noted, however, that

even in a single loop, there can be hidden loops which could be

Figure(2.7.1.1.) Memory or a Programmable Logic Array may be
Configured as a Finite State Machine.

72

ISM 1

r"-~
DECODER 	DATA ARRAY

FSM2

r,"~
DECODER 	DATA ARRAY

ISM 3

DECODER 	DATA ARRAY

ROM or PtA

ADDRESS 	DATA—DUff

ROM or PtA

ADDRESS 	DATA

ROM or PtA

ADDRESS 	DATA—OUT

I-Il

II
(D

t'J

o3
(D

0
(D

U)
(D (D

)0
rt1
(D

(I)

0<
i(D
rt

0-

ij

0 1—•
rt
(D

Cl)
Zrf.
(D Q)
Wrt-
rtcD
(D

0• :-

0 H.

•(D
(I)

'kj\LWk 'JWJ'
LOOP1 	 LOOP2 	 LOOP3

CONTROL
OUTPUTS

74

implemented more efficiently by using one or more extra FSM's. 	The

decade counter is one simple example of a FSM which could be broken

down into four binary counter FSM's. It is clear then, that a gen-

eral purpose control unit, must have as many FSM's as there are

likely to be loops, and each FSM must have a large enough memory to

hold all the states required for each loop. In practise, if the

number of loops within loops is not very great, the decision to

implement the whole control sequence with a single FSM with some

redundancy, may be made by the system designer as this would invari-

ably result in fewer system components. It is clear that a silicon

compiler which could code up, place and interconnect FSM's as deter-

mined by a simple input language, would allow the size and number of

the FSM's to be tailored to a specific control problem particularly

efficiently.

2.7.2. Silicon Compilation for FET Control Units

The standard and well proven structure used to implement FSM's,

is the Programmable Logic Array (PLA) (5] described in detail by

Mead and Conway. The PLA is essentially a ROM except that only a

fraction of the 2 possible combinations of the N bit input address

are actually decoded as only these input states need to be con-

sidered. In such cases the use of a ROM would be wasteful. (This

means that it is possible to find some input address word which will

not be decoded and therefore produce no meaningful result.) The PLA

can be constructed entirely from NOR type logic gates and is thus

highly suited to technologies such as nMOS which employ ratioed

logic gates. (Gate pull up resistance must be ratloed with worst-case

u...a .0

I
I

I
I

!JA1I

a......

Figure(2.7.2.2.) Generalised Floorplan showing the Constrained
Architecture that is suited to Silicon
Compilation. A One-Dimensional Routing
Channel Connects a number of Finite State
Machines Together.

75

W.,

pull down resistance to achieve satisfactory logic low.) The PLA is

also a highly regular structure, and is thus well suited to silicon

compilation techniques. With a "PLA generators', it is possible to

convert Boolean Logic directly into silicon layout. Such a program

would also be capable of automatically feeding back some of the out-

puts of the PLA to produce a FSM. The regularity of the PLA, how-

ever, also makes it possible to estimate its size very accurately

and simply, making it easy to feed accurate information to placement

software. Ultimately, it would be possible then, to write a program

which could read some high level language, describing a control

task, and place a number of PLA based Finite State Machines (FSM's)

along a one Dimensional routing bus which would handle all the con-

nections. automatically. Figure (2.7.2.2) shows a typical floorplan

that such a compiler might produce.

Performance estimation and control are important in silicon

compilers. The possibility of devising a speed programmable struc-

ture such as the PLA was considered, and some software was written

to assess whether it would be possible to achieve a large enough

degree of control to be useful. This work and its results are shown

in appendix 1.

2.8. Special Memories for the FFT

There is an extensive range of general purpose RAN chips avail-

able, and as a consequence of this there is a general lack of spe-

cial purpose memories, geared to FFT processing. There are, how-

ever, some FFT system memory configurations such as the swinging

buffer, which, if implemented using standard RAN components, result

77

in very high chip counts owing to the extra components needed to

switch data and address from one memory device to its neighbour.

There is a strong case for a case for a swinging buffer type memory

or alternatively a special twin memory which could execute a flash

load of one memories contents (from an A/D for example) into another

memory (for FFT processing for example) as time and frequency domain

buffering is essential to implementing the FPT in a real time

environment. The use of associative (content addressable) memories

may provide easier multiprocessor FPT system design as discussed

earlier in section 4. Multiport memory (where more than one data

write and/or access can take place simultaneously) may be useful in

bandwidth enhancement of the FFT. Certain serial memory architec-

tures (shift register based) may offer very high speeds in those FFT

algorithms that allow for some degree of serial data storage (most

FFT algorithms). Programmable, tapped shift register with parallel

load facilities seems to be particularly attractive in this respect,

particularly as yield enhancement is fairly trivial with this sort

of memory by employing simple bypassing and redundancy techniques.

In general, however, standard RAM can usually be configured to

suit most FFT system architectures that have so far been discussed

in literature, and it is not therefore proposed to pursue this

aspect of the FFT's system requirements further.

2.9. Summary

The memory and control requirements of the FFT involve the

design of fairly general purpose hardware using techniques which are

difficult to improve on. The EFT arithmetic requirement is however,

quite significant, involving vector rotation and addition at very

high data rates and is independent of the degree of concurrency in

the system or the size of transform to be computed. This processing

unit known as the "butterfly" is an ideal candidate for VLSI as it

does not impose any major restrictions on the system designer other

than the normal word-length restrictions experienced with any digi-

tal processor.

The next chapter will consider ways of streamlining the but-

terfly arithmetic requirements by using conventional arithmetic and

also distributed arithmetic techniques.

References

E. Kreyszig, Advanced Engineering Mathematics, Wiley (1972 (3rd

Edition)).

F. J. Harris, "On the Use of Windows for Harmonic Analysis with

the Discrete Fourier Transform," Proc. IEEE, Vol. 66, No.1,

(January 1978).

R. F. Lyon, "A Bit-Serial VLSI Architectural Methodology for

Signal Processing," VLSI'j, pp. 131-140 (August 1981).

J. L. vanNeerbergen and F. J. vanWyk, "A 2 Micron NMOS 256-

Point Discrete Fourier Transform Processor," Thirtieth Interna-

tiong]. Solid State circuits Conference, 	pp. 124-125 (23-25

February 1983).

79

C. Mead and L. Conway, Introduction to VLSI Systjn, Addison

Wesley (1980).

L. R. Rabiner and B. I. Gold, Theo ry and Application of Digital

Signal Processing, Prentice Hall (1975).

J. M. Cooley and J. M. Tukey, "An Algorithm for Machine Compu-

tation of Complex Fourier Series.," Math Comp., pp. 297-301

(April 1965).

E. Dubois and A. N. Venetsanopoulos, "A New Algorithm for the

Radix-3 FFT," IEEE Trans. ASSP, Vol. ASSP-26, pp. 222-225

(June 1978).

S. Prakesh and V. V. Rao, "A New Radix-6 FFT Algorithm," IE

ASS?, Vol. ASSP-29, pp. 939-941 (August 1981).

L. R. Rabiner and C. M. Rader, Digital Signal Processing, IEEE

Press (1972).

T. E. Curtis and J. T. Wickenden, "Hardware-Based Fourier

Transforms: Algorithms and Architectures," Proc JEE Part F,

CRSP, Vol. 130, pp. 423-432 (August 1983).

W. C. Siu and B. S. Chen, "New Realisation Technique of high-

speed discrete Fourier Transform . Described by Distributed

Arithmetic," IM Proceedings, Vol. 130, Part E No.6, pp. 177-

182 (November 1983).

M. A. Jack, D. G. Park, and P. M. Grant, "CCD Spectrum Analyser

using Prime Transform Algorithm," Electronic Letters, Vol. 13

No. 15, pp. 431-432 (21st July 1977).

N. Kapur, J. Mayor, and M. A. Jack, "Convolution Architectures

for Spectrum Analyses employing CCD Programmable Transversal

Filters," Int. J. E1ec,ronics, Vol. 49, No. 2, 	PP. 131-146

(1980).

R. W. Broderson and P. R. Gray, "The Role of Analog Circuits in

Future VLSI Technologies," Diciest of Technical Papers

ESSCI', pp. 105-110 (September 1983).

T. T. Dao and M. Davio, "Complex Number Arithmetic with Odd-

Valued Logic," IEEE Trans. on Computers, Vol. c-29, No.7, pp.

604-611 (July 1980).

J. G. Tront and D. D. Givone, "A Design for Multiple Valued

Logic Gates Based on Mesfets," IEEE Tans. pjl Computers, Vol.

c-28, No.2, p. 854 (July-December 1979).

P. B. Denyer, D. Renshaw, and N. Bergmann, "A Silicon Compiler

for VLSI Signal Processors," ESSCIRC ' 	Digest of Technical

Papers, PP. 215-218 (September 1982).

R. G. Garside, The Architecture of Digital Computers. 1980.

E. 0. Brigham, The Fast Fourier Transform, Prentice Hall

(1974).

81

A. V. Oppenheim and C. J. Weinstein, "Effects of Finite Regis-

ter Length in Digital Filtering and the Fast Fourier

Transform," Proc.IEEEVol. 60, No.8, 	pp. 957-976 (August

1972).

T. Kaneko and B. Liu, "Accumulation of Round-Off Errors in Fast

Fourier Transforms," J. Association Comp. Mach., Vol. 17, No.4,

pp. 637-654 (October 1970).

P. D. Welch, "A Fixed-Point Fast Fourier Transform Error Ana-

lyses," IEEE Trans. pjj Audio and Ejectroacoustics, Vol. AU-17,

No.3, Pp. 151-157 (June 1969).

S. L. Garverick and E. A. Pierce, "A Single Wafer 16-Point

16MHz FFT Processor," Proc. 1983 CICC, (Rochester, New York,

May 1983).

G. D. Covert, "A 32 Point Monolithic FFT Processor Chip,"

Proceeds gf the International Conference gn Acoustics, Speech

and Signal Processing, pp. 1081-1083 (1982).

D. A. Booth, "A Signed Binary Multiplication Technique," Q. J.

Mech. Appl. Maths, Vol. 4, pp. 236-240 (1951).

A. J. McWilliam, "An Architecture and Design Approach for Pro-

grammable Digital Signal Processor VLSI Chip," IEE Procd.. on

The Impact L Uih Speed and VLSI Technology Qfl Communication

Systems, pp. 67-72 (November 1983).

82

B J. Karwoski, "A Four-Cycle Butterfly Arithmetic Architec-

ture," LSI Publication Tli-4/Q1 I.RW. Li PRODUCTS 2525

Segundo Blvd. El Segundo, CA 90245 (.fl) 	-1831, (April

1981).

Y. Nakayama and K. Suyama, "A GaAs 16*16b Parallel Multiplier

using Self-Alignment Technology," Thirtieth International Solid

State 	Conference, pp. 48-49 (23-25 February 1983).

N. Yokoyama and T. Ohnishi, "A GaAs 1K Static RAM using

Tungsten-Suicide Gate Self-Alignment Technology," Thirtieth

International Solid State Circuits Conerpce, pp. 44-45 (23-

25 February 1983).

"Digital Filters and Spectral Analyses," Integrated çpmutr

Systems ICS Publishing 	. () Ltd. Pebblecooinbe, IQr.tli

SuIrey KTQ 7. England, pp. 2-4-0

C. P. Lerouge, P. Girard, and J. S. Colardelle, "A Fast 16 Bit

NMOS Parallel Multiplier," IEEE Journal gf , Solid State Cir-

cuits, Vol. SC-19, No. 3, (June 1984).

C. Lerouge and P. Girard, "A Fast 16 Bit NMOS Parallel Multi-

plier," Ninth European Solid-State Circuits Conference, pp.

29-32 (21-23 September 1983).

Chapter 3 - Algorithms for High Bandwidth Vector Arithmetic

3.1. Introduction

This chapter aims to review various digital approaches to per-

forming high bandwidth vector arithmetic, in particular, vector

rotation which is a dominant arithmetic requirement in the computa-

tion of the DFT and FFT.

The chapter will start by discussing the CORDIC approach and

then move on to look at the complex multiply as a means of perform-

ing vector rotation. Various ways of computing this function using

real multipliers are discussed. The chapter ends by looking at dis-

tributed arithmetic techniques for computing small DFT's directly

and also the complex multiply.

3.2. CORDIC Arithmetic Approaches

Although vector rotation can be achieved trivially using addi-

tion in polar coordinates for example (the magnitude of the input

vector remains unchanged and its new angle is computed by adding the

old angle to the rotation angle), vector addition involves tri-

gonometric functions which, ordinarily, would represent a high com-

putational load. Techniques have been developed for efficiently com-

puting trigonometric functions such as used in COordinate Rotation

DIgital Computers, (or CORDIC's for short) which allows vector rota-

tion and addition operations to be performed more efficiently than

would normally be possible. This technique allows for two basic

modes of operation (1] as described by Volder. In the first of

these modes, the Rotation mode, the coordinate components of a

84

vector are modified by an angle of rotation to produce coordinates

which have been rotated by that angle. In the second mode, the Vec-

toring mode, coordinate components of a vector are returned in the

form of magnitude and angle. CORDIC arithmetic is sufficiently gen-

eral purpose in nature to allow vector rotations to take place

either on hyperbolas, circles, (as is relevant to the DFT and FFT),

or lines.

The rotation of a vector using CORDIC arithmetic is based on

the concept of realising a variable rotation as a step-by-step

series of pseudo rotations. The angles of these rotations may be

chosen to be such that each pseudo rotation step may be computed

using only binary shift and add operations. These special angles

form a set from which any desired angle of rotation can be built up

iteratively. In order to specify this set of angles, it is necessary

to consider a typical pseudo rotation as shown in Figure (3.2.1).

This shows a vector of magnitude R 1 at angle T to the X-axis being

rotated by either + a i or - aj . As well as being rotated, a small

increase in the magnitude of the new vector results. This may be

calculated by using standard trigonometrical relationships to evalu-

ate the length of the side of the right angle triangle that is oppo-

site to angle a1 . This side has length [R tan(a)]. The theorem of

Pythagoras may then be used to evaluate the new magnitude of the

rotated vector. This is equal to [Sqrt(1 + tan 2 (a1))].R1 . Where

Sqrt is short for the square root of whatever follows in brackets.

Trigonometric rules can then be applied to the two right angled tri-

angles of angle (T1 + a) and (T - a) to the X-axis, to produce an

expression for the two values of Y 11 . This is as shown in equation

vi

v I

85

J% .
	

4% .
s+(I 	i+I

A CORDIC Pseudo Rotation

when s. = ten 2(113

ill

Figure(3.2.1.) A Typical "CORDIC" Pseudo-Rotation.

= [Sqrt(1 + tan 2 (a)J.R.sin(T 1 +1 - a)
	

(3.2.1)

86

This is equivalent to

[Srt(1 /cos 2 (a))].R.[sin(T1).cos(a..) +1 - cos(T).sin(a)]

(3.2.2)

From trigonometric relationships, it may be noted that

	

= R.cos(T) 	 (3.2.3)

and similarly

	

Y = R1 .sin(T1) 	 (3.2.4)

It follows then, that

= [1 /cos(a)].Y.cos(a) +1 - X.tan(a) 	(3.2.5)

which implies that

Y1+1 = Y1 	+1- 	X.tan(a1) 	
(3.2.6)

a similar expression can be derived for X 	 which is

X11 =X 	 -f-f 	Y.tan(a1) 	 (3.2.7)

The fundamental principle upon which the CORDIC computing tech-

nique is based, is that if angle a1 is chosen to be such that its

tangent is the reciprocal of some power of 2, then equations (3.2.6)

and (3.2.7) which describe a pseudo rotation, can be computed using

only shift and add operations. The set of angles therefore which may

be considered are described by equation (3.2.8).

a = tan-1 2-U-2) where i = 2,3,4,5,6... 	(3.2.8)

Where the number of rotations by angle a1 is chosen to be large

enough to produce the required accuracy of rotation. The case of

1=1 has been excluded to allow the special case of

a = 90 degrees for which the tangent cannot be expressed. In this

special case, Y = +1 - X and X2 = -/+ Y 1 . This step is unique,

in allowing a perfect rotation, with no alteration in the magnitude

of the vector.

Although the growth in the magnitude of the rotated vector is

unavoidable, it can be kept to a constant by imposing the condition

that at each pseudo rotation step, there may be no zero-rotations

allowed (steps may not be ignored). That is, a decision to rotate by

either + a1 or - a must be made at each step. If this rule is

adhered to, then for a given number of pseudo rotations, the growth

in the magnitude of the resultant vector is held constant. One

disadvantage of this unavoidable signal growth is that unity magni-

tude twiddle factors may not be used in the FPT butterfly, so that

both data inputs to the butterfly must be passed through the CORDIC

hardware even though only one of the inputs actually needs to be

rotated.. This makes this approach rather inefficient for computing

the FFT butterfly. The fact that rotations can be computed using

only shifts and additions makes the CORDIC approach attractive on

machines which do not offer fast digital multiplication. This is

true of most microprocessors that are not geared to digital signal

processing. It is not proposed to cover the mathematical aspects of

CORDICS any further here as this is a large subject area and has

already been suitably covered by the previous reference (1] as well

as (2,3,4,5,6] and more recently [7,8]. Instead it is hoped to sum-

manse the suitability of the CORDIC approach for VLSI implementa-

tions of the DFT and FFT.

Work on specific VLSI implementations of CORDIC hardware such

as that reported by Maxwell (9] give a good indication of the

overall hardware requirements. The CORDIC architecture can be

viewed as a controlled datapath, (frequently organised as two or

three datapaths - one for each iterative loop) where the datapath is

somewhat larger and more complex than a general purpose one. Maxwell

for example used a datapath which contained two adden/subtractors,

three variable barrel shifters, (two left and one right), two ROMS,

five 2:1 multiplexers, one 4:1 multiplexer, two registers and other

logic for operation on sign bits. This datapath must be regarded as

somewhat special purpose compared with general purpose hardware

datapaths, and does not point to a highly regular VLSI structure

making interface with the control unit area inefficient. Also the

overall CORDIC hardware requirement is quite large due to control

requirements and the intricate datapath that is required. It would

appear then, that the CORDIC approach may not be ideally suited to

VLSI implementations, where digital multiplication can be achieved

at low costs and low power consumptions due to the relatively simple

control requirements.

CORDIC's would thus appear to offer a useful general purpose

approach to the computation of trigonometric functions, however,

vector rotation is probably more conveniently described in a Carte-

sian coordinate system where absolute angles are not specified.

This will now be investigated.

3.2.1. Vector Rotation in a Cartesian Coordinate System

Vector rotation can be conveniently described in a Cartesian

coordinate system using the trigonometric relation described in

equations (3.2.1.1) and (3.1.2.2). In this formulation of the rota-

tion function it is not necessary to compute sines or cosines of

angles with both data and coefficient stored in this form at all

times. These equations describe how the sine and cosine of the sum

of two angles can be expressed as the sum or difference of the mul-

tiple of the sine and cosine terms of the individual angles. More-

over with this coordinate system, vector addition is equivalent to

ordinary addition which is relatively trivial.

cos(x+y)=cos(x).cos(y)-sin(x).sin(y) 	(3.2.1.1)

sin(x+y)=cos(x).sin(y)+cos(y).sin(x) 	(3.2.1.2)

ME

Refel

ReW3
ImW

ReIZ

trnZ

Figure(3.2.1.1.) Direct Computation of the Complex Multiply

$Wei

ImfWI

ROZI

!mZj

gure(3.2.1.2.) The Complex Multiply Implemented Using Three Real
Multiplications and Four Signed Additions.

IrntR3

tve1wI

ReZ

IMIZI

Figure(3.2.1.3.) The Complex Multiply Implemented Using Three
Real Multiplications and Five Signed Additions.

91

If the x and y axis are used to represent the real and ima-

ginary dimensions of the complex plane and it is desired to rotate

an input data vector (B) by the angle of some coefficient vector (W)

to form a resultant vector (Z), then the equations which describe

this rotation are simply as shown in equation 3.2.1.3 and 3.2.1.4.

(If only a rotation of (B) is to be performed, with no alteration to

its magnitude, then the magnitude of (W) must be unity.) It can be

seen that four multiplies and two (signed) addition operations must

be performed.

Re(Z)=Re(W)Re(B)-Im(W)Im(B) 	 (3.2.1.3)

Im(Z)=Re(W)Im(B)+Re(B)fln(W) 	 (3.2.1.4)

This might be computed by using a single multiplexed multiplier

with an accumulator or by using distributed arithmetic techniques

which are discussed in the next section. The total number of multi-

plies required to compute the above two equations can, however, be

reduced from four to three with a small increase in the number of

additions (10,11] as described by Golub (Golub's method is described

in a footnote) and Buneman. This reduction in the number of multi-

plies is achieved in both cases by expressing parts of equations

(3.2.1.1) and (3.2.1.2) as a product of sums and not just as a sum

of products. This yields a common term in both equations, as shown

in (3.2.1.5),(3.2.1.6) and similarly in (3.2.1.7),(3.2.1.8).

Re(Z)=Re(B)Re(W)-Im(B)Im(w)(as(3.2.1.3)) 	(3.2.1.5)

92

Im(Z)=(Re(B)+Im(B))(Re(W)+Im(W)) 	 (3.2.1.6)

-[Re(B)Re(W)+Iin(B)Im(W)J
and also

Re(Z)=Re(B)(Re(W)+Im(W))-Int(W)(Re(B)+Im(B)) 	(3.2.1.7)

Im(Z)=Re(B)(Re(W)+Im(W))-Re(W)(Re(B)-Im(B)) 	(3.2.1.8)

Further reductions can be achieved if the vector coefficient

Re(W) and Im(W) is also stored as (Re(W)+Iin(W)) in ROM, so that one

less addition is required per complex multiply described above. Thus

(Re(W)+Im(W)) would not be actively computed. This, however, is not

a highly significant saving and would only be chosen if ROM was

readily available. In summary of the above approaches to performing

vector rotation using real multipliers and adders, Figure (3.2.1.1)

shows the conventional implementation of the complex multiply based

on (3.2.1.1) and (3.2.1.2), whilst Figures (3.2.1.2) and (3.2.1.3)

show implementations based on equations (3.2.1.5) to (3.2.1.8). It

should be noted that the dynamic range requirements of the hardware

implementations in Figures (3.2.1.2) and (3.2.1.3) is slightly

greater than that of the conventional complex multiply shown in Fig-

ure (3.2.1.1) to the extent of one extra bit of precision being

required at some points in the computation. This is particularly

inconvenient in bit-serial implementations where the extra bit of

wordlength reduces the word transfer rate. Although these reformu-

lations of the complex multiply are algorithmically slightly more

efficient than a direct computation, they do not point to any

specific VLSI architectures. On a digital computer the direct

approach might even be faster if hardware multiplication was

employed.

3.3. Distributed Arithmetic Methodology

3.3.1. Introduction

Almost all common arithmetic functions can be built up sequen-

tially from additions. Multiplication, for example, is simply the

sequential addition of a number of partial products which are

closely related to the data and coefficient words. Addition is a

commutative mathematical process, which means that the order in

which the additions are performed does not in any way affect the

final result. This fact means that the arithmetic of many signal

processing structures can be re-configured in a number of ways to

form alternative distributed arithmetic structures. In particular,

where two or more multiplier outputs are combined in an adder (Fig-

ure (3.3.1.1)), it is possible to view each of the multipliers as a

collection of adders connected to this output adder (Figure

(3.3.1.2)). As the whole process can be seen in terms of additions

only where it is possible to bring forward the final combining addi-

tion to form new unique merged multiplier partial products which can

be selected and accumulated (in a similar fashion to the accumula-

tion of partial products in the multipliers originally) to form the

same result (Figure (3.3.1.3)). This reformulation allows computa-

tion of the function by using a data controlled table look-up and

accumulate operation which offers a highly regular design approach -

93

Ao 0+ As 	 0(..4)

Figure(3.3.1.1.) Linear Equation Implemented using
Conventional Arithmetic.

Do 	CO 	 Di 	Ci

94

Figure(3 .3. 1.2. 	Linear Equation showing Additions Present
in Shift and Add Multipliers.

95

well suited to VLSI design techniques.

Much of the original work in distributed arithmetic was centred

on the design of digital filter structures where it was seen as a

way of replacing relatively expensive multiply and accumulate struc-

tures with cheaper memory and accumulate structures such as shown in

Figure (3.3.1.4) [12,13] however it was later recognised that these

techniques could also be applied to other computations [14,15,16]

including the DFT and PET.

Linear equations of the general form shown in equation 3.3. 1

are fundamental to the computation of the DFF and FFT, as the two

term (n=2) linear equation describes the complex multiply, which is

one of the most popular ways of performing vector rotations. D

represents data and A represents the coefficient.

L = A0 D0 +A1 D1 +. . . . +An-I n-I D 	 (3.3.1)

Thus when vector rotation is implemented using real multi-

pliers, the real or imaginary output of the n point DFT becomes a

linear equation with 2n terms - discussed in section 4. It can be

seen from equation 3.3.1 that a linear equation with n terms

requires n multiplications and (n-I) additions. If it is desired to

implement such a function using distributed arithmetic then

arithmetic combinations of multiplier partial products must be

stored since these are the number of combinations of multiplier par-

tial products that are possible. This assumes that none of the dis-

tributed arithmetic merged partial products are allowed to be stored

S SWL

(I,
w rn --4--1--

>>, L1
In z

+ k- -j E-4 a
m U- ER LL-

LLJ
F-

•8 . >M 	SWL
25

Lse
ADDRESS PORTS \)>1.

F j ••• >> Yn or 0-1) if sadder
Can Also Subb'act

idSB Lsa

Figure(3.3.1.3.) Distributed Arithmetic Linear Equation
Computation - Totally Parallel using
Multiple Access Memory.

Standard 	Mr o(Egcs)
Data

RAM/ROM xn

Reset
LATaI

>i Address
	 nt))1

(Wse - L)
	

OUTPUT (L)

Figure(3.3.1.4.) Distributed Arithmetic Linear Equation
Computation-Serial Accumulator and
Standard Memory.

97

more efficiently which has not been proven. They can be computed in

situe to reduce the memory overhead, for example, as described in

the next section.

Distributed arithmetic is quite significant therefore in allow-

ing the replacement of multiplier random logic array structures with

a simple and regular memory and accumulator structure. This can

often mean lower power consumptions, and faster speeds, In addition

to a considerably increased regularity in the chip design itself. In

VLSI designs, regularity is a key requirement as it allows changes

to be made much more easily, as well as making design for yield,

such as self repair techniques, more efficient.

3.3.2. Consequences of using Distributed Arithmetic

It has been explained that distributed arithmetic can offer

savings in speed and power in actual chip implementations, as well

as offering what could be regarded as a complete methodology in

allowing a fairly reliable means of producing regular VLSI designs.

One of the disadvantages of distributed arithmetic, however, is

that the memory requirement goes up as 2m where in is the number of

multipliers that would have been used in a conventional system.

Thus, whilst small linear equations can be implemented quite easily,

larger linear equations can call for excessive memory requirements.

A possible solution to this problem may lie in information

theory [17,18] which notes that in a large array of data, there

often exist constraints which act to reduce the entropy of the

array. In such cases, information is not being stored most

efficiently, with much data in the array being closely related.

Identification of these constraints in an array which contains

distributed arithmetic coefficients could result in a potential

reduction in the storage requirements. it is likely that future

research in the area of information theory may yield ideas which

would make distributed arithmetic techniques practical for large

mathematical functions.

An immediate approach to solving the explosion in the number of

distributed arithmetic coefficients that need to be stored as the

number of multiplies increases, is to actively compute the distri-

buted arithmetic coefficients in situe. This is not algorithmically

more efficient than conventional arithmetic, but in allowing a re-

structuring of the computation, the possibility of producing more

regular layouts suitable for VLSI exists. This is particularly

attractive for applying yield enhancement techniques and therefore

points to the possibility of wafer scale integration. In effect,

the order of bit-level additions has been altered, but - the number of

additions is kept approximately constant (very slight variations may

be required due to dynamic range considerations - ie: word growth).

In chapter 4, the approach of computing the distributed arith-

metic coefficients in situe will be compared with that of storing

them. This is done for a four term linear equation example which is

computed entirely in parallel. The possibility of performing yield

enhancement with this type of structure is demonstrated.

For smaller arithmetic functions, the distributed arithmetic

coefficients can be stored and do not therefore need to be computed

in situe. Distributed arithmetic then appears to be very attrac-

tive. One such arithmetic function mentioned earlier is the complex

multiply which is highly relevant to computation of the DFT and FFT

as a means of performing vector rotations. The use of distributed

arithmetic to compute this function will be discussed in section 5

of this chapter.

3.4. Distributed Arithmetic for Computing Small DFT's

3.4.1. General

It was mentioned, in Section 1, that the real or imaginary out-

put of an n-point DFT, is a linear equation with 2n terms when the

complex multiply is evaluated using real multipliers. Distributed

arithmetic is therefore applicable, in principle, to the computation

of any length of DET. In practice, however, a distributed arithmetic

expansion of the W coefficient sequence would be required for each

row of the W coefficient matrix. This would involve an excessive

memory storage requirement, and so is undesirable.

One area where it would appear practical to use distributed

arithmetic techniques for DFT computation is for prime length DFT's,

as the DFT equation can be expanded and re-ordered to be' expressed

as a circular convolution. This particular case will now be con-

sidered.

100

3.4.2 Distributed Arithmetic and the Prime DFT

Since every (non-DC) row of the W coefficient matrix in the

Prime, n-point DFT contains all nth roots of unity, it is possible

to expand and re-order the DFT expression so that a single integer

frequency term can be used together with a shuffled time domain

sequence to produce any one of the non-zero frequency domain

results. Since only a single integer frequency sequence is required

to compute the DFT in the convolution form, then only a single dis-

tributed arithmetic expansion need be stored in memory. This expan-

sion involves combinations of arithmetically merged W coefficient

terms that appear in the sequence. This data is then accessed as a

function of the time domain bits at various levels of significance.

Slu and Chen describe a 6800 8-bit microprocessor based system [19]

operating with a 500 nS cycle time, which used distributed arith-

metic to compute a 61 point complex DFT in only 3.1 milli-seconds.

Distributed arithmetic DFT computation is therefore highly relevant

to micro-computer based systems which offer large memory availabil-

ity. This approach does however result in a high dependence on

memory (ROM) which also fixes the size of DFr that can be computed.

No specific implementations were considered because of this limita-

tion, however, a possible VLSI architecture is suggested in Figure

(3.4.1), which is suited to the computation of DFT's of fixed size.

3.5. Distributed Arithmetic and the FFT

As previously mentioned, the most computationally intensive

arithmetic requirement of the FF1', is the complex multiply which is

conveniently used to achieve vector rotation in a Cartesian

101

ROM
L

Cd let. arith.

o W coeffs)

Shifter

(fl C Accumltr.
LL 0 () p/S convsn.

x(n) >-

1
-"- x(k)

Figure (3.4.1.) Distributed arithmetic allows

efficient computation of fixed length Prime

DFT's in structures such as shown above.

102

coordinate based system.

In Chapter 2, section 1 on the DFT, is was described how a well

known trigonometric relation could be used to describe the rotation

of one vector by another. This meant that a data vector (B) could be

rotated by a coefficient vector (W) to produce a resultant vector

(Z) as shown in equations (3.5.1) and (3.5.2), whose angle becomes

the sum of the angles of W and B (B, W, Z, complex).

Re(Z) = Re(B).Re(W) - Im(B),Im(W) (3.5.1)

Im(Z) = Re(B),Im(W) + Re(W),Im(B) 	, (3.5.2)

This equation can be realised using conventional arithmetic,

but White (16]has shown that distributed arithmetic allows the com-

plex multiply to be realised particularly efficiently in hardware.

In his paper he described a TTL based two accumulator bit-serial

radix-2 butterfly. This structure is the hardware equivalent of

using two multipliers, instead of four multipliers as would normally

be needed to implement the two equations. This paper by White was

considered to be particularly relevant to this work, as it was

recognised that the complex multiply algorithm (using distributed

arithmetic) had a considerable potential for parallel data array

architectures of a type which is highly suited to VLSI, since it

allowed computation of the real or imaginary complex multiply output

data using only a single accumulator. This can be realised in a

pipelined form as a single array of full adders. The distributed

arithmetic complex multiply algorithm described by White appears to

be largely correct, however, one apparent error relating to the ini-

tialisation of the accumulator was noted which originated from

103

early on in his derivation. Although this error is not large in

numerical terms, it would introduce some degree of unnecessary

arithmetic noise, so a separate derivation of the algorithm will be

given here in detail, with this correction included. The reasons for

each step in the derivation will also be given.

3.5.1. The Complex Multiply using Distributed Arithmetic

The complex multiplication can be computed using four real mul-

tiplications and an add and subtract as shown in equations (3.5.1)

and (3.5.2), where the data vector (B) is rotated by the the coeffi-

cient vector (W) to form the output vector (Z). It is necessary to

define the representation of the real and imaginary binary strings

used to describe these vectors, before deriving.any specific algo-

rithm, as the exact operation of the algorithm is dependent on the

way in which data is to be interpreted.

There are several methods of representing numbers using an n-

bit string of binary data, however, in digital signal processing,

one of the most useful interpretation of such a string is fractional

fixed point 2's complement notation, as this allows both positive

and negative numbers to be represented and allows direct interface

with most types of analogue to digital conversion systems. It is

believed, however, that, a distributed arithmetic algorithm is

likely to exist for most commonly used numerical representations

using binary data. Using the above notation, then, the real and

imaginary words that represent the coefficient vector can be

represented as the summation shown in equations (3.5.3) and (3.5.4).

104

N-I
Re(W) = _WRO + E WRn 2 	 (3.5.3)

n=1

N-I
Im(W) = -W10 + E W 	2 	 (3.5.4)

n=1 In

This allows equations (3.3.1) and (3.3.2) for Real(Z) and Imag(Z),

to be re-written, as can be found in equation (3.5.5) for Re(Z). A

similar expression for Ini(Z) can be written to allow a distributed

arithmetic reformulation of this to be constructed in parallel with

that for Re(Z). In this derivation, only the expression for Re(Z)

will be continued since the derivation of Im(Z) is based on exactly

the same principles used to derive Re(Z).

N-I 	 N-I
Re(Z) = [WRo +
	

WRfl 2
] Re(B) - (-W10 +
	

1 w1 2 	I Im(B)
n I 	 n

(3.5.5)

Since addition is commutative, the order that the additions are per-

formed in can be altered so that the separate summations shown above

can now be combined into a single summation by decoding all the com-

binations of the Real and Imaginary W bits. This process effec-

tively involves the formation of new unique merged partial products

which can be selected by the Real and Imaginary W bits, as shown in

equation (3.5.6).

rNI 	 1
E [W' 	W'1 (0)Rn

n=I
I 	 cone..

Re(Z) JR0 W' 10 (0)

105
I 	I

cont.. 	I

1 W' o W10 	 +W ,

Rn In (-Im(B))

+ W RO W' 10 (-Re(B))
	

H WRn W1 In(Re(B))

+ WRO WI0 (-Re(B)+Im(B)) I +IWRfl W In (Re(B)-Im(B))1 2-n

(3.5.6)
As equation (3.5.6) involves only a single summation, the equation

for Re(Z) can thus be implemented using only a single accumulator.

This equation involves the W controlled selection of one of four

merged partial products, however, a more optimum solution can be

achieved by describing the merged partial products in terms of K and
*

K as defined in equation (3.5.7).

*
K = (Re(B)+Izn(B))/2 and K = (Re(B)-Im(B))/2 	(3.5.7)

This allows equation (3.5.6) to be re-written as shown in equation

(3.5.8).

Re(Z) 	W'RO
W 1

I0(

_K* + K*) 1+1

+ W ' RO W10 (K + K)

+ WRO W'RO (* - K)

+ WRO WI0
(_K* - K)

-1 * 	*
(W 	W' Rn 	In (K -K)

+ W ' Rfl WIn (K - K)

+ WRn
we In(1(+ K)

+ WRO WRfl
(K* + K)]

(3.5.8)

Part of this equation can now be simplified by noting the w indepen-

dence of one of the Ksupt terms to form the final equation, (3.5.9).

This fully describes how Re(Z) is formed in a single accumulator, as

a function of W and B.

Re(Z) = -K* 2-(N-I)

106

+ W'RO
W1 10 (+K) +1

N-I *
E [+W' Rn W9 In (-K) n= 1

+ W1RO W10 (+K)
	

+ WRn W1 (-K)

+ WRO W' 10 (-K)
	

+ WRn
W8

In (+1<)

+ WRO W10 (_K*) 	+ WRfl W1
(+K *)] 2_n

The control signals can conveniently be separated into a data-select

control signal and an add/subtract control signal. The data-select

control can be derived from an exclusive-NOR type relation between

the real and imaginary W bits, whilst the add/subtract control can

be derived from the real W bit itself. This is the form in which

the control requirements of the algorithm would be best implemented

on a chip and was used in the implementations described in the fol-

lowing chapters. This alternative expression of (3.5.9) for Re(Z)

is shown in (3.5.10).

Re(Z) = _K* 2-(N-I)

+ W'RO (WRO 3 W10)(-FK) 1+1
N-I *
E [+ W' 	(WWin)(_K

n:1

107

+ W, RO (WRO • W10)(+K)
	

+ W(WRfl (D W1)(-K)

+ WRO (WRO 9 W10) (-K)
	

+ W 	(W e W1) (+K)Rn

+ WRO (WRO
	* 	

+ WRfl (WRfl i
W1)(+K*)] 2 n

(3.5.10)

The expression for Im(Z) can be generated using the same reasoning

and procedure that was used to generate Re(Z), giving equation

(3.5.11) which completes the description of this algorithm for com-

puting the complex multiply using distributed arithmetic.

Iin(Z) = -K 2-(N-1)

+ WO 	 (W1 (D WR0)(+K) 1+1
N-I *
E [+ W' 1 (W 	W)(-K

n=1

+ W 10 (W10 s WRO)(_K)
	

+ W 1(W1 	WRfl)(+K)

+ W10 (WIO' WRO) (+K)
	

+ W 	(W1 	WRn) (-K)

4. W10 (W10 e WR0)(_K)
	

+ W1 (Win e W)(+K)] 2-n

(3.5.11)

The potential of this algorithm for parallel data implementa-

tions of the FFT butterfly and pipelined datapaths geared to high

speed processing of complex numbers is considered in the next

chapter.

3.6. Summary

This chapter has covered a number of algorithms which allow

high bandwidth vector arithmetic. Some of these algorithms exhibit

somewhat irregular mappings on to silicon such as CORDICS, whilst

other approaches such as distributed arithmetic offer highly regular

silicon structures by reformulating conventional shift and add mul-

tiplier based arithmetic. It is felt that distributed arithmetic

has a considerable potential for parallel data VLSI arithmetic pro-

cessor implementations and the next chapter investigates a number of

possible datapath architectures based on the distributed arithmetic

complex multiply algorithm, just described. This would allow very

high bandwidth computation of the FFT butterfly with the potential

bottleneck resulting from the vector rotation requirement effec-

tively removed.

References

J. E. Voider, "The CORDIC Trigonometric Computing Technique,"

IRE Trans. Electron. Comput., Vol. EC-8, pp. 330 - 334 (August

1959).

A. M. Despain, "Fourier Transform Computers using CORDIC Itera-

tions," IEEE Trgns. pn Computers , Vol. c-23, No.2, pp. 993-

1002 (July-December 1974).

J. S. Walther, "A Unified Algorithm for Elementary Functions,"

Spring Joint Computer Cnh. Proceedings, pp. 379-385 (1971).

G. L. Haviland and A. A. Tuszynski, "A CORDIC Arithmetic Pro-

cessor Chip," IEEE Trans. on Computers, Vol. c-29, No. 2, pp.

68-79 (February 1980).

J. M. Delmose, "VLSI Implementation of Rotations in Pseudo-

Euclidean Spaces," ICASSP 83 Proceedings, pp. 927-930 (1983).

H. N. Ahmed, P. H. Ang, and M Morf, "A VLSI Speech Analysis

Chip Set Utilising Co-ordinate Rotation Arithmetic," IEEE Com-

puters, pp. 737-741 (1981).

D. T. L. Lee and N. Morf, "Generalised Cordic for Digital Sig-

nal Processing," IEEE LCASSP'.Z, pp. 1748-1751 (1982).

H. M. Ahmed, J. N. Delosme, and M. Morf, "Highly Concurrent

Computing Structures for Matrix Arithmetic and Signal Process-

ing," IEEE Computing, pp. 65-82 (January 1982).

110

P. C. Maxwell, "An nMOS Transcendental Function Generator,"

VLSI DESIGN, pp. 70-72 (November 1983).

R. C. Singleton, "An Algorithm for Computing the Mixed Radix

Fast Fourier Transform," IEEE Trans. Audio Electropcpustjcs,

Vol. AU-15, pp. 45 - 55 (June 1967).

0. Buneman, "Inversion of the Helmholtz (or Laplace - Poisson)

Operator for Slab Geometry," Institute for Plaslqa Researc

Stanford Unjversiti Stanford, Calif orni, SUIPR Rep . 	 , p. 5

(April 1972).

A. Peled and B. Liu, "A New Hardware Realisation Technique of

Digital Filters," Presented gt ~ JLe IEEE Arden House Workshop gn

Digital Signal Processing, Harriman, (January 1974).

C. S. Burrus, "Digital Filter Structures Described by Distri-

buted Arithmetic," IEEE Trans. Qfl Circuits and Systems, Vol.

CAS-24, No. 12, pp. 674-680 (December 1977).

S. A. White, "On Mechanisation of Vector Multiplication," Proc.

IEEE, Vol. 63, pp. 730-731 (April 1975).

S. Zohar, "Fast Hardware Fourier Transforms through Counting,"

IEEE Trans. on Computers, Vol. c-23, p. 989 (September 1975).

S. A. White, "A Simple FFT Butterfly Arithmetic Unit," IEEE.

Trans. Pm Circuits and Systems, Vol. CAS-28 No.4, pp. 352-355

(April 1981).

111

L. Brfllouin, Science and Infopiatipn Tjjeoy, Academic Press,

New York (1956).

R. G. Gallager, Information Theory and Reliable 	mnicatipn,

Wiley, New York (1968).

W. C. Siu and B. S. Chen, uNew Realisation Technique of high-

speed discrete Fourier Transform Described by Distributed

Arithmetic," lEE Proceedings, Vol. 130, Part E No.6, pp. 177-

182 (November 1983).

Chapter 4 	- 	VLSI Datapath Architectures for 	
112

Complex Number Arithmetic

4.1. Introduction

This Chapter will first look at VLSI datapath architectures in

general, and then look at datapaths which are specifically optimised

for operation on complex number arithmetic. In particular, distri-

buted arithmetic approaches to computing the complex multiply func-

tion discussed in the previous chapter, will be compared to conven-

tional approaches using real multipliers. The complex multiply is a

central requirement of the DFI' and FFT as a means of performing vec-

tor rotation but is .also the most computationally intensive function

required in computing the basic DFT and FPT.

Real time computation of the FFT demands very high data rates

from the arithmetic processor and the new architectures considered

in this chapter offer hardware computation of the complex multiply

with high efficiency. Conventional approaches will be discussed

first, however, with a look at arithmetic datapath design.

4.2. Conventional Arithmetic Datapaths

The datapaths used in the early microprocessors (eg 6502, 6800,

8080, Z80) typically relied on a single arithmetic unit to perform

the basic add or subtract functions as well as logical operations.

Thus, multiplications using such a datapath could be described as

slow and complex multiplication as very slow. This bus orientated

datapath architecture can be made faster by providing more than one

arithmetic unit thus allowing some of the operations to take place

•tert

113

to

Figure(4.2.1.) Several Low Bandwidth Arithmetic Units
can be Stacked on a single bus provided
that they are synchronised.

I Z

t

I- -

H.

Li

115

concurrently. For example, four arithmetic units would allow the

complex multiply, additions and subtractions required by the Radix-2

FFT butterfly to be performed in around 20 clock cycles at 16 bits.

This type of datapath would need a small Finite State Machine (FSM)

controller to translate specific instructions to direct control of

the datapath. Mactaggart (1] describes one such device with a FSM

control unit which in addition to controlling the datapath arith-

metic, defined inputs and outputs of the datapath and provided tn-

state enable signals for the output port. The control unit sequencer

could be synchronised with other identical devices (up to four) to

enhance arithmetic throughput (by up to four times) by stacking the

devices as shown in Figure (4.2.1). Figure (4.2.2) shows a photo-

graph of the fabricated nMOS device.

More recent processors such as the TMS320 signal processor,

described in chapter 2, make use of a hardware multiplier, thus

allowing the real multiply function to be computed in a single clock

cycle. Although not available as an instruction on the TMS320, dou-

ble precision multiplication can still be computed efficiently (as

might be required for simulation work) if a barrel shifter is

included in the datapath. Four single precision multiplies, two

shifts and three additions are then required to compute a double

precision (dp) multiplication as proven in (4.2.1) to (4.2.5).

Define 	Adp = (2N w) + x 	 (4.2.1)

and 	Bdp = (2N y) + z 	 (4.2.2)

116

where w,x,y and z are single precision numbers (N bits each)

Also C 	 = Adp 	Bdp 	 (4.2.3)dp

Thus

Cdp = ((2N
W) + x)((2N y) + z) 	 (4.2.4)

So that

Cdp = 22N wy) +N (wz+xy)) + xz 	(4.2.5)

The single precision hardware multiplier can thus be used to

compute (Wy), (wz), (xy), and (xz), with the barrel shifter perform-

ing the two shifts that are required. It is important to note how-

ever that this datapath is only efficient if the accumulator used is

a double precision device. This is because of the gain introduced by

the multiplier. So in a 16 bit datapath, for example, a 16 by 16 bit

multiplier would be used in conjunction with a 32 bit

adder/subtractor. In order not to make single precision (16 bit)

addition inefficient, the adder! subtractor might also be configured

as two 16 bit devices which could be allowed to operate con-

currently. Thus the datapath would cater for single and double pre-

cision arithmetic with high efficiency. A typical floorplan for

such a datapath is outlined in Figure (4.2.3). This datapath could

be controlled by a relatively simple sequencer which would allow a

variety of functions to be computed with single or double precision

INPUT DATA PORT

Real

uz2!7
Barrel Shifter

Regsiters

I Adder / Subtractor 	I
Lj 	 I 	 I

OUTPUT DATA PORT

(With Fast Single and

Double Precision Multiply)

Figure(4.2.3.) A Datapath Geared to High Speed Processing
Should Ideally Incorporate a Hardware
Multiplier.

117

0
ci

z
Ui
0
U-

Ui
0
0

I-

0
C-

1
0

I- z
0
0

118

arithmetic. The emphasis with this datapath is on versatility, and

it would therefore use a ripple-through (unity latency) multiplier

to allow efficient recursive arithmetic operations to take place if

required.

High bandwidth datapaths would not normally make use of more

than one parallel real multiplier, although clearly the complex mul-

tiply instruction could potentially use up to four. Thus a single

multiplier would be multiplexed to perform the same function.

In extreme cases, a conventional arithmetic datapath might use

two real multipliers to allow the complex multiply to be executed at

very high bandwidths. Two multipliers, however, are not likely to

map particularly efficiently onto silicon due to irregular multi-

plier structure and extra bus interconnections.

The distributed arithmetic approach to computing the complex

multiply, described in the previous chapter is likely to map onto

silicon much more efficiently because it is based on a single accu-

mulation process. The next section looks therefore at distributed

arithmetic VLSI datapath architectures with hardware orientated com-

plex multiplication.

4.3. Distributed Arithmetic Datapaths

The main significance of the distributed arithmetic complex

multiply algorithm described in Chapter 3 is that it allows the real

or imaginary part of the complex product to be computed in a single

accumulator, as described in equations (3.5.10) and (3.5.11). The

use of a single accumulator (instead of the usual two needed to

119

compute each half of the complex multiply - one for each real multi-

plier) allows the possibility of constructing a highly regular array

for parallel data operation which has the throughput equivalence of

two parallel multipliers although consuming only slightly more area

than a single multiplier. Also, a single distributed arithmetic

array does not require awkward bus interconnections as would be

required to route the outputs of several parallel data sources in a

conventional arithmetic processor, for example from two parallel

multipliers to a parallel adder or subtractor. For this reason as

well as for yield considerations, a conventional parallel arithmetic

approach to the complex multiply would be to use a single multi-

plexed multiplier. The distributed arithmetic approach, however,

allows the possibility of realising on a single chip of modest size,

a structure which has the functional equivalence of two parallel

multipliers when configured to compute (3.5.10) and (3.5.11). This

would probably not even be contemplated using conventional parallel

arithmetic except at limited wordlengths.

In considering possible structures for implementing the complex

multiply using distributed arithmetic, it is necessary to consider

whether the technique of pipelining would be appropriate as this can

often allow further bandwidth enhancements to be achieved.

4.3.1. Pipelining - Bandwidth Enhancement in non-Recursive

Processes

An important feature of the DFT and FFT is that arithmetic

operations may be carried out continuously, as there is no high

bandwidth recursion required between arithmetic processor outputs

120

and inputs. This allows the possibility of employing pipelining

techniques within the discrete arithmetic stages of a structure to

achieve high clocking rates. As a substantial enhancement of

bandwidth can be achieved through this technique, it was decided to

specifically consider structures with some degree of pipelining. It

is important to note, however, that very high levels of pipelining

can cause problems in clock distribution, so that an optimum level

of pipelining must be sought for a given technology. Some of the

very fast technologies such as Emitter Coupled Logic and the newer

Gallium Arsenide technologies are so fast that it is difficult to

consider pipelining anything much smaller than a large parallel mul-

tiplier for example, which would operate on a ripple through basis,

at times in the order of 10 nS. In general, the slower the technol-

ogy, the higher the degree of pipelining that is possible without

running into problems of race as a result of poor clock distribu-

tion.

Equations (3.5.10) and (3.5.11), which describe the distributed

arithmetic complex multiply algorithm, indicate that both real and

imaginary results of the complex product are formed by the coeffi-

cient controlled selection of + or - (K or K) (K's defined in

equation (3.5.7)). The equations which describe the algorithm

further indicate that this selected word must then be added into an

accumulator at some level of significance, which can be achieved by

shifting. The main circuit element required to implement the algo-

rithm is therefore an accumulator so considering only parallel data

array implementations (for which distributed arithmetic techniques

are likely to be most appropriate), the resulting structure

121

resembles a standard shift-and-add parallel multiplier, and can

therefore similarly be :onstructed around a skeleton comprising an

array of full adder cells. In such an array s it is possible to

route the carries, sums and the distributed arithmetic coefficients

in a Va: riety of ways to achieve different structures with various

levels of pipelining.

Simple non-pipelined structures will also be considered how-

ever, because although pipelined structures offer higher bandwidths

than do non-pipelines structures, there are many applications where

the arithmetic may be required to operate in a recursive mode, such

as to generate a rotating vector for example, or in a Prime DFT pro-

cessor as discussed in chapter 2.

A non-pipelined (ripple-through) parallel distributed arith-

metic array requires multiple access of the distributed arithmetic

coefficients. For small functions such as the two term linear equa-

tion for each half of the complex multiply function, it is feasable

to run the coefficients through the chip from top to bottom. The

distributed arithmetic coefficients can be fed vertically down

through the chip producing the architecture shown in Figure

(4.3.1.1) which implements equations (3.5.10) and (3.5.11). This

however, is not the most efficient approach in a ripple through

structure where it is better to implement equation (3.5.9) for Re(Z)

and its counterpart (for Im(Z) - not shown), which is the W con-

trolled selection of either +K,-K,+K* * ,-K . This avoids computing the
*

complements of K and K at each cell in the array (Boolean inversion

on each bit) at the expense of feeding the complements through the

chip which is a small communications overhead in this case. Figure

Reai(B)

Imog(B)

Real(B)

Imog(B)

Real(B)

Imag(B)

RecI(9)

Jmag(B)

(lisa)

S 	 S 	 0

K 	 K 	K Re/Im—Control

122

Ra/bncz) 	 ReAmcZ) 	R./bZ) 	 R.1mZ)

NC

NC

NC

Figure(4.3.1.1.) A Real/Imaginary Programmable Ripple-Through
Complex-Multiply Architecture.

123

(4.3.1.2) shows this slightly better alternative to (4.3.1.1) which

has been expanded to a fully parallel implementation by employing

two full adders and multiplexers per basic cell to allow the complex

multiply function to be computed completely in parallel. This struc-

ture 	is quite 	area efficient because the distributed arithmetic

coefficients required to compute the real output are also used to

compute the imaginary output. Thus the communications overhead of

four bus lines per cell is minimal, with this approach. Performance

could be slightly improved further by using a common decoder for the

multiplexers in each row of cells since the control to each decoder

in a given row is always the saute. In Figure (4.3.1.2), this would

involve four horizontal control lines instead of two, as shown.
*

Were K and K required to be shifted down through the chip as might

be required in a pipelined structure then it would be better to

implement (3.5.10) and (3.5.11) instead.

It is proposed to start by looking at lower levels of pipelin-

ing and then move towards higher levels which allow clocking rates

that are essentially word length independent.

In all the structures considered here it will be useful to view

the array of full adder cells which will form the skeleton of the

distributed arithmetic algorithm implementation, as several rows of

parallel adders. It would not be surprising to consider that the

carries would therefore be fed horizontally within each row which

represents a parallel adder, and that the sums would be fed down to

the next row of full adder cells representing another parallel

adder, with a possible shift in significance if required. Unfor-

tunately if the horizontal carries are latched (ie non ripple

0
a a 	 0 0 	 Ui 0 0

Figure(4.3.1.2.) A Totally Parallel Ripple-Through
Complex Multiply Architecture.

124

125

through) then it would be neccessary to place a skew on the input

data port to ensure match up of data with carry formation. A quite

different approach, however, would be to consider feeding the car-

ries as well as the sums from one row to the row beneath, treating

the carries as being sums of double significance (which is essen-

tially what a carry from a full adder cell is). This then allows

deferal of carry formation until the output of the array where sums

and carries of equal significance appear. At this point, some form

of fast adder would be needed to assimilate the sums and carries of

equal significance. A complete structure which implements the dis-

tributed arithmetic complex multiply based on this carry deferal

approach is shown in Figure (4.3.1.3) together with the basic cell

that would be needed to implement the specific distributed arith-

metic complex multiply algorithm. In addition to the full adder this
. 	. 	 *

involves a data-selector and some shift registers to delay K and K

which are the distributed arithmetic representations of the complex

coefficient. The advantage of this structure is that it is not nec-.

cessary to skew input (or output) data to (and from) the array, how -

ever, the fast add requirement does impose some degree of wordlength

dependence on the speed performance. In this structure, the sums and

carries are fed forward in such a way as to effect a scale down by a

factor of two from one row to the next. This allows K and K
*
 to be

fed down through the array vertically so that it is added in or sub-

tracted at a different level of significance relative to the sums

and carries at each row of cells. It will also be noted that this

structure allows two bits of array initialisation per cell at the

input. One bit could be used for input of a fixed rounding word and

the other bit could be used for the initialisation required by the

4

DISTRIBUTED ARITHMETIC
COEFFICIENT INPUT PORT

KK'o 	XK'i 	K IC2 	XK3

126

Zo 	Z 	Z 	Z3 	Z4

OUTPUT DATA PORT (Z 	Z 4)

cow kI KK' 	sum h

Add/Sub Add/Sub

BASIC CELL A (m o*) A (cvy Out) A (K)

Figure(4.3.1. 3.)

h,4O.

0

l(noI
0-4

R.Os

127

algorithm as described in (3.5.10) and (3.5.11). This type of struc-

ture is particularly compact however it is not highly suited to very

large wordlengths because of the fast add requirement.

One way to overcome this wordlength dependence is, as just men-

tioned, to latch the carries horizontally in an array of full

adders. This also entails latching the horizontal control data

which comprises the data-select control and the add/subtract con-

trol. If, however, instead of scaling down the sums and carries at
*

each row, K and K are scaled down instead then it is not neccessary

for a delay to be placed on them at each cell. Thus the shift regis-

ter count is not increased at all. It is, however, neccessary to

skew all data entering the array and to perform a de-skew operation

at the output. The speed of this type of structure, shown in Figure

(4.3.1.4) will not suffer the same degree of wordlength dependence

as the structure of Figure (4.3.1.3), which has a, fast add require-

ment, however, K and K have to be fed through the array without

being latched so the maximum load placed on the source buffer which
*

supplies (MSB's of) K and K will increase linearly with wordlength.

This of course does not imply a linear decrease in speed with
*

wordlength because the buffers that supply K and K can be

engineered to work optimally into a given load. Also the delay from

other circuits such as the full adder will tend to have the dominat-

ing influence on the overall speed. To summarise, the structure of

Figure (4.3. 1.4) will exhibit some degree of wordlength dependance

on overall speed performance but this can be kept fairly small. The

top row of this structure has one bit of initialisation per cell

thus allowing the initialisation requirements of the distributed

128

DISTRIBUTED ARII'MErjc
COEFFICIENT INPUT PORT

0

Rejo 21
e.

E.. 	R.O,3

z

E-4 	RefOoi

Z 	Z1 	Z 	Z3 	Z4

OUTPUT DATA PORT (z o — z)

Sum In 	LK K'

Select >- 	I 	LJ 1 () 	(Select)
Add/Sub/ 	I•iI I 	(Add/Sub)
Con)' fr 	Adder I 	I!) .A(Ccrry Out)

/ 	..L.
BASIC CELL 	K K A (Sum Out)

Figure(4.3.1.4.

arithmetic complex multiply algorithm to be met. If, however, it

was required to add a small fixed number to minimise noise from the
*

truncated K and K words a sparse row of half adders would be

required to add this to the initialisation word. This is detailed in

the following chapter which considers some specific implementations.

It should be noted that the initialisation word needs to be skewed
*

in this structure as with K and K . The initialisation word is
*

derived from K or K so extra shift register delays are not

required. The basic cell for this structure is fairly small thus

resulting in a fair compromise between clocking rate and overall

area.

For very large wordlengths, it is desirable to seek a structure

which exhibits essentially no wordlength dependence with all cell

communication being latched. One such structure is shown in Figure

(4.3.1.5). Here, the carries are fed horizontally and the sums are

fed down and shifted to reduce their significance in going from one

row to the row beneath. This results in a vertical delay through the

cell of two cycles which is the delay that must be applied to K and
*

K which are fed vertically down through the cell. As the vertical

delay is two cycles per cell, the delay on data entering the control

input data port must increase by two cycles in moving from one row

to the row beneath. That is to say, the equivalent of two series

data skew operations must be performed. Figure (4.3.1.5) shows the

basic cell that this structure entails. The shift register count at

first sight appears to be rather large, however the vertical delay
*

on K and K can be implemented with half the number of shift regis-

ters clocked at half the normal rate as described in the next

129

130

DISTRIBUTED ARITHMETIC

COEFFICIENT INPUT PORT

K Wo 	KWi 	KK'z 	KK'3MS8(Sqn)

C.,

I 	RoDoJ
0 ImOoJ

R.Di3
0 [MID iJ

04
ReQ2
ImQzj

R.D3
IrnO3

Z 	Z 	Z2 	Z3 	Z4

OUTPUT DATA PORT (Zo - Z4)

KK' 	 Sum In

S.Isct ,-

Md/Sub 	
----1.i 1•-L:1•---' (Add/Sub)

I FULL ILJJ
C4" In In _._4 ADDER 	 (Cøny Out)

(Sum Out) 2.A (K K) BASIC CELL

Figure(4.3.1.5.)

131

chapter which looks at a specific implementation. The structure of

Figure (4.3.1.5) has a clocking rate which has no wordlength depen-

dence other than any delays that might be incurred in transmitting

the clocks to each cell. This is indeed a problem for very large

wordlengths and demands the set up of a hierarchy of clock buffers

to distribute the clock with a minimum of delay. The possibilty of

abandoning the synchronous structure and using a self-timed approach

would be one way of avoiding clock distribution problems, however,

this would involve a large area penalty and thus require yield

enhancement for even modest wordlengths.

It was mentioned in the previous chapter that the distributed

arithmetic coefficients can be computed in situe to produce highly

regular structures which are suitable for yield enhancement tech-

niques. Figure (4.3.1.6) shows a basic cell with yield enhancement

that could be used in a large distributed arithmetic array to com-

pute a four term linear equation in parallel.

4.4. Summary

In this chapter a number of distributed arithmetic structures

have been suggested for implementing the complex multiply as part of

a high bandwidth datapath. The next Chapter is devoted to some

specific high bandwidth arithmetic processors for FFF computation,

which use some of these distributed arithmetic structures to stream-

line the computation of the complex multiply function which is the

most intensive computational requirement of the FFT and DFT.

132

cm 	A O,n 	ciN 	A 1,n 	CIN 	A 2.ri 	CIN 	A 3,n

Do
Di.m

D 2.rn

D 3.rn

To Self Repair

 Latch (One per

Full Adder Cell)
>

Note : Each adder In this block operates on data of some significance

Thus, shifts that are required, such as for sums, must be performed

from one such block of cells to another block of cells (sets of 4 in this example)

Figure(4.3.1.6.) Pseudo-Distributed Arithmetic High Level
Cell showing Possible Yield Enhancement
Mechanism. (This computes a four term
linear equation).

133

References

1. 	I. R. Mactaggart, OA VLSI Radix-2 FFT Butterfly,' 1 MSc Project

Report MSP6, (September 1981).

134

Chapter 5 - MOS - LSI/VLSI Distributed Arithmetic Structures

5.1. Introduction

In this chapter, some specific MOS - LSI and VLSI implementa-

tions of the architectures discussed in the previous chapter will be

presented. The structures described here offer efficient high speed

computation of the complex multiply function through the use of dis-

tributed arithmetic.

The first silicon device to be described (number EU20I) is a

totally parallel radix-2 FFT butterfly arithmetic processor, how-

ever, in a later design, greater versatility is obtained by allowing

dynamic re-configuration of the datapath itself. Of the three chips

described in this chapter the first two devices (nMOS) were fabri-

cated and tested. The last design to be described was due for fabri-

cation on a GEC 4 micron CMOS-SOS process but due to poor Applicon

software to allow transfer of the design, this was delayed, making

the fabrication and testing of the design impractical within a rea-

sonable time frame. Test results if available may be added as an

appendix to this thesis. The testing of the second nNOS device

(EU219) is covered in some detail, as a number of working samples

were obtained. The first device (EU20I) which is similar to the

second device could not unfortunately be tested in depth due to a

limited number of samples being available and also a low process

yield was in evidence. This may have been related to very high

depletion thresholds (around -1.0 V) which were measured during

probe testing of some test structures in the chip frame. The un-

fabricated SOS design is described and documented to allow

subsequent testing and application in a system.

135

136

5.2. A Totally Parallel 6 Bit Radix-2 FFT Butterfly

5.2.1. General

To compute the radix-2 FFT butterfly in parallel requires that

the complex multiply be implemented in parallel. The radix-2

declination-in-time butterfly function requires that two data input

words (A,B) (complex) be modified by a coefficient (W) (complex) to

form (A+BW) and (A-BW) (complex). The complex multiply distributed

arithmetic algorithm described in Chapter 3 can be implemented as

two distinct distributed arithmetic arrays, after Figure (4.2.4) one

producing real data and the other producing imaginary data, or

alternatively, a single array can be constructed after the totally

parallel example of Figure (4.2.5). it was decided to pursue a

structure after the former as this would allow a natural progression

to a programmable device if required, with a larger word length -

producing real or imaginary data but not both simultaneously. One

such device is described in the next section (EU219).

Having computed the complex product (BW) an additional adder

and subtractor can be used to compute the required butterfly outputs

(A+BW) and (A-BW). This resulted in the chip floorplan shown in

Figure (5.2.1.1). It was decided to limit the wordlength of this

prototype chip to 6 bits for both data and coefficient. This is too

small a wordlength for most system applications but it was hoped to

obtain some yield data which might indicate whiether longer

wordlengths could be considered in the future. At this small

wordlength most of the larger and more highly pipelined structures

discussed in the previous chapter do not offer much greater

IHOd fflWl' g3a

1).

u_b

mo

0 (,

a.

0.
0.

0

1OèLLNO3

ELL
I 	xnrcc 'SQYd ii'IdNI

>
rx

I
\ C
\ 	0.

I

1-1

U,

a-

siana

- a.

2

o +
0 	•..
C,

4
E

U

E +
0

Figure(5.2.1.1.) Floorplan of Totally Parallel
Radix-2 FFT Butterfly (EU20

137

138

bandwidth and so the carry deferal architecture described in Figure

(4.3.1;:3) may be considered to be highly suitable, even though this

structure requires a fast adder to assimilate the sums and carries

at the output. Other than this fast add requirement, the distributed

arithmetic complex multiply structure may be made up from an array

of identical cells each of which fulfil the three main requirements

of the distributed arithmetic complex multiply algorithm. The basic

cell must be capable of performing a data-select and bit level full

add as well as containing delays for the pipelined operation. The

precise logic of the basic cell used, together with nMOS silicon

layout is shown in Figures (5.2.1.2) and (5.2.1.3) respectively.

*
This cell permits selection of either K or K as required by

the algorithm, and the bit level addition or subtraction of this by

the full adder, which is an integral part of the accumulator.
*

Finally, it presents K and K delayed for operation on by the cell

in the row beneath. Most of the cell area is comprised of the full

adder. This made use of inverter controlled data-select type

exclusive-OR gates which offers a good compromise between area,

speed, and power consumption, when compared with rLA, function

block, and random logic nMOS implementations, as determined by Myers

[1] The latches used were standard nMOS dynamic devices which offer

a lower area and power consumption figures compared to static circu-

itry. This places a minimum safe clocking rate of around 20 KHz on

the chip as a whole, however, the minimum clocking rate may be

reduced further by increasing the clock logic HIGH" to Vdd + Vth

where Vth is the threshold voltage of the enhancement devices. The

output of the distributed arithmetic array contains unassimilated

ADD/
SUB

CLOCK
OUT

DATA
SELECT

CLOCK
IN

139

SUM IN 	 K 	K 	CARRY IN

K Sum Carry K

Figure(5.2.1.2.) Logic used in Basic Cell of the
Distributed Arithmetic Complex Multiplier.

DATA
SELECT

CLOCK
IN

140

SUM 	CARRY
IN 	 IN 	K 	K* 	 A

ADD/
SUB

CLOCK
OUT

A CARRY 	AK 	AK* 	 AA ASUM
OUT 	 OUT

Figure(5.2.1.3.) The nMOS Layout of the
Basic Cell.

141

sums and carries which must be combined to produce the desired out-

put. This may be accomplished with a fast adder.

5.2.2. Fast Adder for Data Assimilation at Array Output

There are several techniques for achieving a fast add. It would

be possible to use a high latency pipelined adder with skewed input

and output data, using latched carries, as shown in Figure

(5.2.2.1). This would not strictly be a fast adder, (with unity

latency) but rather a high bandwidth adder (with greater than unity

latency). Another approach would be to use some form of carry look

ahead (CLA) technique which would offer true high speed, and could

be operated with unity latency. In nMOS technology, however, it is

possible to use an ordinary carry ripple-through (Figure (5.2.2.2))

adder at quite high speed if the carry chain is pre-charged to a

logic 1N, before forming the carries. This technique offers high

speed for small to medium word lengths, but is superseeded by the

CLA adder at larger word lengths (typically)12 bits). In a 6 or 8

bit device, the carry chain pre-charge technique, is likely to offer

the most optimum approach then, since the ripple through adder is

smaller than a carry look ahead adder. The logic used for this

ripple-through adder with pre-charged carry-chain is shown in Figure

(5.2.2.3) and the silicon layout used is shown in Figure (5.2.2.4)

for two adders. This was in fact the final output stage of the chip.

The adder uses random logic.

142

INPUTS(A.B)

MSB 	 LSB

irir•u

AZ A IL
tA

CARRY 	SUM 	 SUM 	 SUM 	 SUM (LSB)

OUT

(MsB)

Figure(5.2.2.1.) Pipelined, High Data Throughput Adder

	

I 	
INPUTS (A,B) 	

I

A 	BI 	IA 	BI

8 	 lo

CARRY 	SUM 	 SUM
OUT

(MsB)

SUM (LSB)

Figure(5.2.2.2.) Ripple-Through Adder

z
(-)

143

Figure(5.2.2.3.) Logic of Ripple-Through Adder using
Pre-charged Carry Chain.

1i a 	IlITI$Pfl13 • I •luu$uI • ____
U
____u•amuu

U-
S

irnin&ri
I 1

I I
IIIIEJIfl1

1.1 1
K3

I
IOirnr P.uiu

III. --

• iIIrulE P.iiu
II,

•IIrmIuIIIuuuuuIIuIILJ'uuuIIuuI
wi=uu. I.vi.=i,I

r1UIIII11kl
Ill_Il

EIIuuIE!Jkt
Ill_Ill

NI4IHhIIIIIIIIISI4JIUEflI
II. • IIIIU.IUfUl!II

E:aII _ fl•IIILIUI1 Rum fl • u•up U
rIIEc
Lu.=

- 	uIupIf1I
iuiiia• t

11251 •1111
1Iilr,m(I1I

II !UII1IiI lUlIlP!tlE_
IIIII[II1JIIuF

•i.uuu uiiuii .uI - d 1U11!i • UI

U
rn

I .II 	I!JII IjI ill 	'1

• YII

N tJ

• Jdá
IbIdI

iiI!•uI II_1_

'1irr •

èI 1113 I
_rJII

COUT

COUT

CLOCK IN

CIN

C IN
PRE -CHARGE

144

A 	B 	(2A)

(A+BW) 	 (P -BW) I =2A- (A+BW) I

Fiqure(5.2.2.4..) Final Adder/Subtractor Used to
Generate Butterfly Outputs for EU20I.

145

5.2.3. Clocking Scheme

It was decided to use a standard two-phase non-overlapping

clock system as is quite. common in nMOS technology. This clock could

be conveniently used to control de-multiplexer circuitry and multi-

plexer circuitry to allow the fast transfer of both real and ima-

ginary complex data within a complete clock cycle at each of the

five input ports. The use of a non-overlapping clock eases the

design problems of minimising clock skews and keeping control over

internal clock rise times throughout the chip, in order to avoid

race conditions in shift register circuitry.

5.2.4. Performance of EU20I

The chip EU20I was not probe tested but rather was bonded up

and ten such devices were made available by the Edinburgh Microfa-

brication Facility (EMF) for testing. It was found that one of the

chips produced entirely correct real results and another produced

entirely correct imaginary results. The design was therefore veri-

fied, however, the yield was not high enough to produce a completely

working sample out of the ten samples.

The depletion thresholds in EU20I were too high (-1.0 V typi-

cal), thus slowing the internal logic rise times. No maximum speed

performance check was therefore made, however, no problems were

encountered at 1MHz on those circuit parts which appeared to operate

at the lower clock rates used initially. (At a clock rate of 4MHz,

six EU20I chips incorporated into a pipelined FFT would compute a

64-point transform in only 48 microseconds). As the chip was not

146

available in sufficient quantities to get suitable yields (wafer

shared with another device), in-depth testing of this device was not

carried out. The device to be described next however which is based

on the same basic distributed arithmetic array as EU20I, was avail-

able in somewhat larger quantities and several working devices were

obtained. Extensive testing of this device was therefore possible.

5.2.5. Summary of EU20I Butterfly Processor

The device just described, was designed to compute the radix-2

Decimation-in-time FFT butterfly function, completely in parallel.

It did not require any external control therefore. A photograph of

the fabricated device is shown in Figure (5.2.5.1). The ability to

re-configure the datapath, however, could offer a great potential in

extending the range of functions that could be computed. This

approach could be extended to allow a single datapath to be pro-

grammed to compute either real or imaginary outputs of the complex

multiply. This approach is useful, as the area of circuitry is

halved, thus allowing larger word lengths to be implemented. The

next chip to be described can be programmed to compute either real

or imaginary outputs of the radix-2 butterfly, and offers a larger

wordlength.

147

L - ...-.

oil I
x 	 >

;1.;1i.!
CP 1j.

p

,,.t ii-•i__ 	
.

Ig
-

•
L'

x 	'': •4.i1ti1;
, 	 S

E X 	U

p j

'114.

vrr
JOL

Figure(5.2.5.1.) Photograph of EU201 Totally
Parallel Radix-2 FFT Butterfly,
with Labels.

5.3. EU219 - A Programmable 8 Bit Version of EU20I

5.3.1. General

The previous section described a totally parallel radix-2 but-

terfly which was based on a distributed arithmetic complex multiply

algorithm. The array used to compute real data and the array used

to compute imaginary data are identical, with fixed internal control

determining whiether real or imaginary data is produced from each

array. It is possible, therefore, to program a single distributed

arithmetic array to produce either real or imaginary data. This par-

tition would of course, half the processing bandwidth per chip, but

allows the possibility of larger word lengths. This section

describes a single programmable distributed arithmetic array which

can output either real or imaginary data every computation cycle.

The device, (number EU219), operates on a more practical 8 bit data

word, and can be interfaced directly with an identical device to

recover (that is, double) processing bandwidths. This is achieved

through the use of a high speed multiplexer and tn-state output

pads on the chip, enabling the interleaving of real and imaginary

output data in time-sequence.

5.3.2. High Speed Input and Output Port

It was decided, in order to avoid external data sorting, and to

keep pin counts as low as possible, that a single 8 bit port would

be used for DATA IN and a separate 8 bit port for DATA OUT. The

coefficient would have a separate data input port also, as before.

In the previous section, it was described how the distributed

148

*
arithmetic coefficients K and K were fed vertically down into the

array from the top of the chip. The input to the butterfly (A) which

is not rotated (not passed through the complex multiplier) was fed

vertically down through the chip, being delayed for subsequent addi-

tion to +1 - BW at the output. The other data input (B) to the but-

terfly which is rotated, was fed in horizontally from a separate

input port where it was passed to the control logic for controlling

the array. If A and B input ports were to be absorbed into a single

data port, then awkward bus interconnections would be required to

connect vertical and horizontal accesses to the array. It was

decided that the problem could be solved by feeding in the coeffi-

cient (W) in horizontally to the control logic and feeding in data

(A,B) at the top of the array. Unfortunately, if data B is fed in at

the top of the array, then it must be presented in the form of K and

K
*

([Re4B}+Im{B}]/2 and [Re(B}-Im(B}]/2), as was done for W in the

previous case. W is now fed in as Re{W} and Im{W} at the control

data port. An add and subtract must therefore be performed at the

top input port on all ReIB) and Im{B) data. It was decided that this

would result in a more regular floorplan and reduced chip area than

would the bus interconnections required otherwise, and would also

mean that all data to the chip was in the form of Real and Imaginary

data only, thus simplifying the coding of coefficient data in ROM.

The use of a single data port also meant the need for a high speed

de-multiplexer to separate the four input data words to the but-

terfly (Re/Im, A and B). Steps must be taken to ensure that this

does not limit the performance of the chip and does not cause prob-

lems with interfacing to the outside world. The single 8-bit output

data port also demands the availability of a high speed multiplexer.

149

150

5.3.3. High Speed Multiplexer

The chip required a 1:4 de-multiplexer at the 8 bit input port,

and a 4:1 multiplexer at the output port, which would be used as a

2:1 multiplexer to allow real/imaginary data interleaving, with

another device.

The standard de-multiplexer or multiplexer consists of two

basic elements. These are a N to 2N decoder, and a 2 row of

switches, only one of which can be placed mono by the decoder at any

one time. Finally the selected data must be latched. The decoder,

however, would involve a minimum of 3 gate delays in nMOS technol-

ogy. These are, input buffering (2), and logical NOR gate for imple-

menting the AND decoder function (1). An additional output buffer

would normally be required, however, further.increasing the overall

decoder delay time. An additional problem that occurs when decoders

are used in a multiplexer and de-multiplexer is that when the

decoder changes state, glitches inevitably result during that short

time interval and can be quite severe. This is caused by the decoder

logic gates receiving transient analogue data from poorly defined

inputs which occurs during input transitions. This effect can be

removed by masking the decoder output (RAND" function) so that the

decoder output would be reset to zero during the time interval when

the input logic to the decoder was changing. It was felt that the

extra time penalty required for this decoder operation would be too

great, so it was decided that a decoder would not be used at all,

and instead the de-multiplexer would be directly controlled by a

global four phase non-overlapping clock, some of the phases of which

could also be put to use elsewhere in the chip for pre-charging

purposes and controlling latches in the array. The multiplexer

would be operated by the same clock control lines. The actual logic

used in these circuits was very simple. Dynamic logic was used to

allow fastest possible operation, and only a single gate delay was

involved in the multiplexer itself. Figure (5.3.3.1) shows the

logic" used.

5.3.4. Global Four Phase Clock

The four-phase clock was chosen, primarily for fast multiplex-

ing and de-multiplexing of data, however, it also made available

highly optimised timing signals required by those circuit elements

which required pre-charging as is quite often useful in nMOS tech-

nology for speed enhancement. The fast adder, described in the pre-

vious section, used a pre-charged carry chain. The time required for

carry pre-charge, is much less than is required for carry ripple

through, however. This means that the pre-charge clock should be

substantially shorter than the time between the pre-charge falling

edge and the output latch falling edge (add-time). The use of the

first phase (CM) for pre-charge and the last phase (CK4) for output

sum latching. gives the adder more time for actual addition compared

with the time that is available in a standard two phase non-

overlapping clock system with CXI being used for pre-charge. Figure

(5.3.4.1) shows the four phase clock used, and those phases used by

the fast adder for pre-charge and output latch. It can be seen that

about 75% of the cycle is made available for add time.

151

Clocks

It'
I 	P, 	 2

152

In

. >
-,>---4

Figure(5.3.3.1.) Basic 1:4 De-Multiplexer Operating on
CK1-CK4. Output is sampled on CKI.

I—'

C 	P
CflCDU)O
(DI 	C

C1
rP-0
o rf< r

I- • I-i.)

II 	-• CD

I

::F, ~1 r 0
çILQ 0 ()
'-1
'..QPJrt
(D1C

QO (I)
=

(n 	QJ

0C
'h — Q O
ctr-t -1'< =

I—i 	Fl- 0
 (DLQ

-

CD- 	¼0

In 	In

'CD

r)QJw

CD

(I) 	-

Port D 	Port W 	Port S
(Data) 	(Coeft) 	(Output) 	

CK4 CK3 ck2 CK1

ReatA Real j Wj ReaIA+BW

Imag J AJ lmag j Wj ImagA+BW

Real j Bj / ReaIA—BW

lmag ~ Bj / ImagA—BW

I-Il

-1
CD

—1

3
CD

LII
(J-

154

5.3.5. Tri-State Logic and Timing Considerations

The global four-phase clock provides four time slots in which

data can be latched on chip and sent to the outside world via the

tn-state output pads. It was decided, that real data transfers

would take place on the rising edge of clocks I and 3, and imaginary

data transfers would take place on the rising edge of clocks 2 and

4. The reason for adopting this timing was that it would be possible

to store data in memory on a complex word basis with one address per

complex data word, comprising real and imaginary data segments, and

then use an external multiplexer for transferring real and imaginary

data to the chip in adjacent time slots. This would be necessary if

the memory was not fast enough to afford a separate address for real

and a separate address for imaginary data. If the device was to be

programmed to output only real or imaginary data, then clearly it

would be necessary to force the outputs of the chip into a high

impedance state for two of the four cycles in which it has no data

to contribute to the outside world. This would allow another chip to

force valid data onto an external bus during those cycles. The logic

used to generate the tn-state enable signal consists of a two input

OR gate, which is connected to clocks I and 3 when real data is

being output, or clocks 2 and 4 if imaginary data is being output.

The timing for the tn-state enable logic is shown in Figure

(5.3.5.1).

155

CK1 	-

CK2 -

CK3 -

CK4 -

ENO

Cntr=1"

ENO

Cntr="O" -

Data 	1mg)(Real Kjmg)(RealA 1mg A RealA 1mg)(aI

Figure(5.3.5.1. 	Tri-State Enable Signals "ENO" as
a function of CK1-4 and CNTR.

156

5.3.6. Formation of Butterfly Outputs

Depending on whether real or imaginary data was being computed,

either Re(A) or Im(A) would be selected at the input port of EU219

and this would be shifted down through the distributed arithmetic

complex multiply array to allow subsequent addition of this with

either Re(BW) or Im(BW). This addition was accomplished using carry

deferal as in the distributed arithmetic array. Thus Re or Im(A+BW)

in unassimilated sums and carries were presented at the output. This

was then assimilated using a fast manchester carry adder as previ-

ously described to form a complete word. The formation of Re or

Im(A-BW) presented a problem because this would have meant feeding

BW as well as A through the previous arithmetic stage. This would in

practice have required that this stage be widened to allow these

signals to pass through. It was therefore decided to form A-BW

without feeding BW forward. This was done by shifting A one place

left to form 2A. The subtraction of the already formed (A+BW) from

2A would produce the required (A-BW). Thus, (A-BW) was formed as

2A-(A+BW). It was checked that this approach would not cause over-

flow to occur in the datapath. A general floorplan of EU219 is shown

in Figure (5.3.6.1) and a more detailed version is shown in Figure

(5.3.6.2).

5.4. Digital and Analogue Testing of EU219

A,B

INPUT PADS and MULTIPLEX

w —

FAST ADD and SUBTRACT (K, K')

ARRAY INITIALISATION

w ---- -

	

-— 	 - + ___+ -------------------------- +

	

- I.— 	 - 	-

—J

CL __j

- + --- + ------ 	 -
ea

CAIRIES

	

CD 	uj

cm

	

~—:31 	 A

-----------+

	

I— 	 - 	-

	

— 	 I
I 	 I

BW

+ I A-s.BW

Re/Im 	 FAST ADD and SUBTRACT

TRI-STATE OUTPUT PADS and MULTIPLEX

4
A+BW
A- BW

Figure(5.3.6.1.) General Floorplan of EU219

157

INPUT PADS & MUX

158

Figure(5.3.6.2.) Detailed Structure of EtJ219

159

5.4.1. General

Twenty wafers, containing around 100 devices per wafer, were

fabricated by the Edinburgh Microfabrication Facility. The devices

were all given an initial probe test to evaluate peripheral circuits

and to give the distributed arithmetic array a sparse testing,

intended to eliminate most of the eventual rejects. Around 5% of

the devices passed this probe test and were bonded up. The bonded

devices were then given a speed check (Analogue Performance) and a

comprehensive digital check on a Tektronix DAS....9 100 series logic

analyser.

5.4.2. Probe Testing

The probe test was primitive, and involved the input of a fixed

binary word to the data and coefficient ports, and changing the

logic on a single pin of the chip which determines whiether real or

imaginary data is to be produced. The value chosen was 1/(SQRT(2))

as this would produce a unity magnitude 45 degree vector at all

input ports. Thus the 45 degree coefficient would rotate a 45 degree

data word to produce a 90 degree result from the complex multiplier.

The expected results of this test are shown in Table 1.

	

Inputs 	 Outputs

RIIrn 	 E(A+} 	{+} 	{A-} 	{-}

	

01011010 	00101101 01101100 00101101 11101101

These precise outputs were obtained during the test in about

5% of the devices. In addition to monitoring the output data port

of the chip, which involved most of the chip logic, the tn-state

enable logic output was also monitored. This represented a small

amount of peripheral circuitry and over 90% of the devices produced

a correct result at this output pin. The probe test was designed

only to eliminate a large number of chips from the bonding process

and was not intended in any way to be interpreted as a final test.

Indeed, this test does not properly exercise the input de-

multiplexer, as the data is held static. The following tests were

performed on the 5% of devices that were bonded up after the simple

probe test.

5.4.3. Testing EU219 on a Logic Analyser

A Tektronix DAS_9 100 logic analyser permitted the testing of

the devices under dynamic conditions, in which data was rapidly

changing and the latches were being fully exercised to check for

possible poor logic conditions such as might occur due to crosstalk

between hard and usofto nodes, for example, the latter being a

feature of dynamic MOS circuits. The initial test involved a check

that the two's complement circuitry was operating correctly with

both data and coefficient being tried in all four quadrants. The

vector rotate circuitry comprises over 90% of the chip transistor

count, so it was decided that the next step should be to attempt to

exercise this part of the device. It was decided therefore to mul-

tiply a unity magnitude data vector which was rotating anti-

clockwise with a unity magnitude coefficient vector, rotating

160

161

clockwise at the same rate. This is the data that a complex multi-

plier in a DFT might be subjected to, for example, and TEST1 to be

described represents the complex multiplier computing the results of

an 8 point DFT, with the utime domain" in coherence with the rotat-

ing coefficient vectors. If the chip was operating correctly then

it should be observed that the resulting vector (BW) was made fully

stationary. An additional feature of this test is that it would

allow the examination of any noise that might appear in a system

based on the chip due to possible fluctuations in the LSB.

5.4.4. TESTI for EU219 (Complex Multiplier Only)

In the specific test, the rotating vectors must both start from

some arbitrary point on the axis. It was decided to start the rota-

tions from a zero degree angle, and rotate in 45 degree increments.

This made calculation of the real and imaginary components fairly

trivial. Figure (5.4.4.1) shows the 8 different vectors that were

used for "B" and "W". In the initial test, "A" was set to zero as

this has nothing to do with testing the complex multiplier part of

the chip. After completing this test "A" was set to a unity magni-

tude, zero angle vector (Real part = hex 7F), and TESTI was re-run,

to give the modified results shown in TEST2, which also exercises

the input de-multiplexer more fully and the final butterfly output

stages. TEST2 also serves to check for arithmetic overflows, by

presenting input signals which should produce the largest output

possible from the chip.

1

p
B,W

RI

3

< B

162

2

El

5

w
p

BW w > w
7 rn

.1

Figure(5.4.4.1.) Each of these Vector Multiplications should
Result in the same Zero Angled Vector of
Unity Magnitude.

5.4.5. TESTI Results

The results of TESTI indicated that the chip was operating

correctly, with some fluctuations appearing on the LSB of the out-

put. These fluctuations are believed to be normal and primarily a

result of arithmetic rounding noise plus quantisation errors in

representing the magnitude and phase of the input data vectors. The

precise program and data used in TESTI is shown in Figure (5.4.5.1),

and the actual logic output obtained is shown in Figure (5.4.5.2)..

5.4.6. TEST2 Results

This test was the same as TESTI, except that Real(M was set to

unity with Imag{A} set to zero as before. This corresponds to a

unity magnitude, zero angle vector. The program and data used in

this test are shown in Figure (5.4.6.1), with the test results shown

in Figure (5.4.6.2). The results obtained were correct, with normal

fluctuations in the LSB only, as in TESTI. This test was designed to

check for overflow as well as providing another test vector for the

output fast adders

Subsequent tests were then performed to specifically look for

possible interactions between data in adjacent time slots, such as

might occur in race situations for example. No such situations were

observed. Figure (5.4.6.3) shows the results of one of the tests

used to evaluate the pipeline for these hazards.

163

164

n—fl_
IIILJ1J1_

D4

Output Sequence

D7D0 (Shifted Hi)

D3

i-i--n_
Di 	 qji__

Do 	 n_I-ill_

S7

S6

S5

S2 	 I_1_
Si

So

j , J 4 4'J 4.4 4

F

F
.1 	41

I'

(A+Bw) Real

(A+Bw) Imag

(A-Bw) Real

(A-Bw) Imag

(A+BW) Real.

(A+Bw) Imag

(A-13w) Real

(A-BW) Imag

(A+Bw) Real

(A+Bw) Imag

(A-Bw) Real

(A-Bw) Imag

Figure (5.4.6.3.) Dynamic Operation of

EU219 Pipeline at 4M Bytes/Second Data

Rate showing device Latency.

165

TEST 1

iPI :T:11iIPRORidi
	

INTERRUPT: ((j = ON U-

III]c
	

NOS NORM PE : A D11BIT OH: II

HEX M HEX
	fAfl 	IHSTRIXTIOHS STROBES

0. 	I 000 L00U) I10UU0U00
1 	SRI 8808 8888 1888188881111111
2 8888 8088 8888188881111111
3 8888 8888 8188188888880888
4 8808 8880 8888180889080888
5 8888 ?F88 8818188888888098
6 8888 7FOO 8088188880880888
7 8888 8880 8881188880880888
8 8888 8888 8888188888008888
9 8808 8088 1888188881811818

18 8888 8088 8888188081811818
11 8888 8888 8188188818188118
12 8880 8880 8888188818188118
13 8808 SAOO 8818188888888888
14 8908 5m 8800188000080808
15 8888 5A88 8001188888080088
16 8880 5A88 8808188880080088
17 8808 8880 1888188088888888
18 8880 8888 8088180880009088
19 8880 8888 8188188818888081
28 8808 8888 8888188818088881
21 8888 8888 8810108088088888
22 8898 8098 0888188888888008
23 0888 ?F88 8881188888800088
24 8888 7F88 8888188088088888
25 8898 8888 1888180810188118
26 8808 8088 8688188818188118
27 0898 8088 8188188818188118
28 0088 8888 880818881@188110
29 8888 AM 8818188088888888
38 8088 Asee 8888188888088888
31 8889 5A08 8801188808888080
32 8888 5A88 8800188808888888

REPET I 20.1

DATA
	

COEFFICIENT
PORT CLOCKS PORT(w)
(8) 	(4)
	

(8)

Figure(5.4.5.1.

33 8800 8008 1888i088i808880i
34 8888 8808 88081088 18888801
35 8808 8088 0190108008888088
36 8808 0888 8888188888888808
37 0888 8188 8818108888908908
38 0088 8188 8880188888808888
39 8880 8088 8881188890988808
48 8880 8088 8880100888888808
41 8080 8888 1888188818188118
42 8880 8808 88981888181881 18
43 8880 8888 8108188881811818
44 8088 8088 8890188881811818
45 8880 A688 0810108880800908
46 88813 A688 08801808088088138
47 8888 A688 0891188808808908
48 8888 A688 0898188880888800
49 8088 8808 1088180888888888
58 81388 0080 0088188889886869
51 8888 8890 8188188881111111
52 8888 8898 88881881381111111
53 8888 8888 8918188888988888
54 0888 81388 8088188888880888
55 8888 8180 8881180880888888
56 8880 8188 8088108889888888
57 8088 0898 1888180881011810
58 8888 8000 8088189081811810
59 8888 8888 8188188881811818
60 8888 8898 8888188881811818
61 8888 5A88 8818189088889088
62 8888 5A88 8888188889609088
63 8888 A680 8981189889889888
64 8888 A608, 8998188888888888 	GOTO 	SRT

166

Figure(5.4.5.1.

1
1
1

LwmJ1flh1ILrWIIflJlflJ1rWAIRr1
I

PoocH ME I
LSB

2A1
2A2

Imaginary 2A 3
Outputs

2A4
2A5
2A6

MSB 	2A7

TEST 1

(Results)

167

POUCH WK
LSB

2A1
2A2
2A3

Real 	2A4
Outputs 	5

2A6
MSB 	2A7

LSB 	POODI MANE

2A1
2A2
2A3

Real
Outputs 2A 4

2A 5
2A6

MSB 	2A7

1
1
8
8

1
8
8
8

8
8
1
1

P00 cM NE I

2A I I
2A2 I
2A3 I

Imaginary 2A 4
Outputs 2A 5

2A6
MSB 	2A7 I 'l l 	IllUl liii

LSB 8
8
8
8

1
1
1
1

1
I
1
I

Figure(5.4.5.2.) Results obtained from the DAS-9100

im

TEST 2

PROCRl1:
	

INTERRUPT: CALL MON

:'rc 	 MOS IMEM PAUSE ON: A INHIBIT OH: A

P040C P004B
sEg LABEL •:ia I3 t8i N INSTRUCTIONS 	STROBES

mm III LIIIi
1 SRI 	8888 7F80
2 0808 7F88
3 88008888
4 88088888
5 0800 7F@8
6 8808 7F88
7 8888 8088
8 0800 8088
9 M 7F88

18 m NN
11 00008888
12 88888088
13 8888 5C8
14
15 8808 5(8
16 m 5a
17 88887F88
18 88887F88
19 8880 8088

•28 88008088
21 0808 8808
22 88008808
23 88887F88
24 8888 7F08
25 08887F88
26 88807F80
27 8888 8888
28 88888808
29 8888A688
38 8888A688
31 8808 58
32 888058

DATA
PORT
(8)

I REPEAT I 	2 I -. 	I
1888188881111111
8088180881111111
8188188888888888
8088188088888880
8818188808888888
8088188888088888
8881188088888888
0000100088008808
1888188881811818
8088188081811818
8188180018188118
8888188818188118
8818188888888080

8881108888088888
8068189880880088
1808188888880808
8088188888888888
8188188018888881
8888180818088881
8818188888888888
8088188088886888
8801188888888888
8808108008088880
1888188818180110
8888188818188110
8188188810188118
8088188018180110
8018188088088888
8008180888888880
8801188888088880
8008188808808008

0 COEFFICIENT
LOCKS PORT(w)
(4) 	(8)

Figure(5.4.6.1.)

33 0880 7FOO 18081889i088088l
34 0880 WOO 8888188818088081
35 8888 0008 8188188080888880
36 8880 0008 8888188088880008
37 0888 8188 8818108888888888
38 0880 8180 0088180888888888
39 8880 8088 8801180888888888
48 0880 8800 0088188888888880
41 8800 WOO 1888188018188118
42 8880 WOO 0088188018188118
43 8080 8888 0188188081011818
44 8888 8808 8888188881811818
45 8888 A688 0818109880088808
46 8888 A688 0088100888089888
47 8888 A680 0081188880888888
48 0080 A608 8888188888880888
49 8888 WOO 1880188888888888
58 8888 WOO 8888188880888888
51 8888 8808 8180188881111111
52 8800 8808 8888188881111111
53 8888 0880 0018188888880888
54 8888 8888 0088180888888088
55 8888 8180 8891188888889888
56 8800 8180 8888188888888888
57 8808 7F88 1888188881811818
58 0888 WOO 8888188881811818
59 8888 8888 8188180881811818
68 8808 8888 8088188881811818
61 8888 5A88 8818189888888888
62 8888 58 8800188880888889
63 8888 A688 8881189880888888
64 0888 A608 0088188888888888 	COb 	SRI

Figure (5 .4 .6. 1.

9
8
8
8

8
8
a
8

170

TEST 2

(Results)

oocii 	NAME U
LS B 	M a 	- Li 	rip 	n rip 	n u rip 	___rip___ 8

2A 1 	rurrLrfl.rLnsLnJ1slnj1.flj1J1J -Lr1nftnrLnsu1Jl 8
2A 2 	fU1J1J1J1J1J1SLflJ1SLfIJ1J1J1J1..flJlfUl.FLfLJ1J1J1J1JIJ1J1J1J1J1. 8

Real 	2A3 	ItFUlJlilJlJl-ILPJ1J1J1J1J1JU1J1J1]1J1SUU1J1J1J1J1ILfU1J1-fl8
Outputs I

4 	IlJlflflflJUlArUlJlJlflJlflSLflflhlJlrUlJlAflJl!LflrLrLflIL 8
2A 5 	I1J1J1J1J1J1J1J1ILrIJ1J1.rIJlrLfl.flflhlJl.rLnJlJlrLflJl.flJ1J1!Lf 1 8
2A 6 	IF1rAnJ'J1srLflLfl.nJlJ1tU1JtrU1J1J1J1JtnJtflAr1 8

MSB 	2A7 	11 _I 	 a

I' nil____llJi-_II_nil____nJl__ 1
2A I
2A 2
2A 3 —i

LSB

Real
Outputs 2A 4

2A5
2A 6

MSB 	2A 7

ran= i

POOcH ME
LSB 	11 a __

2A1
2A2
2A3

Imaginary 2A 4
Outputs 	2A 5

2A 6
MSB 	2A 7

PM cii WE I
I

2A1 I
2A2 I
2A3 I

I
2i4 I
2A5 I
2A6 I
2A 7

LSB

Imaginary
Output

MSB

1
1
I
1

I

If

Figure(5.4.6.2.) Results obtained from the DAS-9100

171

5.4.7. TEST3

The first and second tests involved vectors associated with an

8 point DFT. It was decided to double the number of test vectors and

apply vectors associated with the W coefficients of a 16 point DFT

in order to provide more comprehensive fault detection. This

involved the input of angles which are multiples of 22.5 degrees.

The data used in this test is shown in Figure (5.4.7.1). Figure

(5.4.7.2) shows the results of the test. The correct response was

obtained with fluctuations in the LSB evident. This is thought to be

the result of rounding errors and is believed to be normal. In this

test which was primarily intended to exercise the distributed arith-

metic complex multiplier, the non-rotated input data (A) was set to

zero.

5.4.8. TEST4

A fourth test was run in which the non-rotated input vector (A)

was set to unity (Real (A) =1, Imaginary (A) =0). This test checks

for correct carry and sum formation in the final arithmetic stage of

the processor and also checks for overflow. This test which is very

similar to TEST3 is not shown for this reason. The results of TEST4,

however, are shown in Figure (5.4.8.1).

5.4.9. TEST5

It was felt that it would be useful to view the vector outputs

from the chip directly on an oscilloscope as an analogue signal. The

chip produces digital outputs only, and data is time division

TEST 3

172

Mat
l':

HEX

'

8M OBN
• tip, • a aa •I,,.t

A

.,.,, .

:
: ONO OW
• 0008 ow

11 :: 0088
12 em m
13 OM .•.'
14 OM 7680
15 0808 3108

• ., ONO a'.
p..

17 : we
: '.''.: 01809
• m 0000

20 em ONO
21 ONO 5AO8
I ONO 5AO0
23 ': •:
24 0088 5A80
25 V.. ,

•4a
i ti.t

• om 0000
27 80109 0000
28 :lf OON
29 0000 3100
30 0000 3100
31 vi.,

Lied
t .aa.

V i ' •,:

DATA
PORT
(8)

F8D1
	

INSTRUCT IONS STROBES

W E R E A T,

1111

' ussIII!!s
P 	1111111111
iI 	•I,IIIIISIII

Jil 	I
II 	I
I 	S

?i'i'is•iiii'
J•I.,.S,S,I.I'I,s,,
•...a •lj a •IjI a

JuIIISIIII
If,1,1 II I rSI a

aaajiaja5i,ajija

:. ::•
JSSII,uuII

1 0 	P ff 'LII

COEFFICIENT
CLOCKS PORT(w)

(4) 	(8)

Figure(5.4. 7.1.

r %I
'us sI 	i,uui'us'i'i its,
SI, tJi ill 	iSIISIIIII

•,... ,.,,,•,,,,••.,••.

:,:.... ,i,!,I, •Is,s, 	.1,1. 	.1,

',s I••I • iiJ 111,1 	iIIi,UhuIi p 5,15

$ if 	I USIi 11,111 iii I

::: 	::: 	• 	•
:.:;.: :!X

.s,':.; •1,1,1 	,,•, 	, :.,.:.:
U.S'S •
III III 	II 	5 III • 	-: 	 :•: 	:: 	:
41, ,

•
•'A1 	•1,1 . . . •5,
In 	S,SIIISSSSI

' I , •I •.'• •t'.'I It 	•I'.

:.','. • :':: !,l,
::',' i'•
-11 ',!•

.l.!.i,,1,!..!I,•.

,.:.

i1

. I .

'i'll tJli's •i's'L 	's'S's'i'i'i'i'$'S'I •

: III
laS, 	,ut,I,11
155 	II 	hISS I III

•.I• 4 ,s,$,, ,!.!i,!.ç,
:',','; ,.:'X':').':'X': •s.';': •.;',s,

'.: Smut 	a4•: •.•d , $i5

555
s:' ;'

Ii 	J•Ii Jss• III

èJ S1 aji_a_. lie au_a_a 	apasa_a_Ij_a_a_&

173

Figure(5.4.7.1.

174

•'l,l

:

p 	 1,I I 	i'I 	S's I 	1,S.S.S1 5,5 US

1,11 	 ,,i 	•,':''"p,,'
II 	US IPT Ill .,., 	':', •,• ,., 	

.!

s} 	sisussiss, in

::: 	:.:.:.;:.:.:.:.:•: :::': ::'.
US Iii 	SIlIsISISI III

aji, j• i••j, 1(p 	•A

II Is ii' •
1,1 ••4

4

I'S ' 	i") 	ii', 	'•: 'iii'
VS

:'!:
•I,S,!, ::': 	:'!:!: 	:!:':

; I 4j 	IpI,Ij

• :' 	: '

:

;;•;;
us

;S;,;,;
j is

;;; 	;.;;; 	; 	; 	;
its 	iii
t' • • Igi•I, I

'i''
a•.ja1a••ja1ap.

: • ig
1I Jil .

:' 	•.;,,., •

1 4

POOCH
LSB ME

2A1
2A2
2A3

Real
Outputs

MSB

POD
LSB

2A
Real
Outputs

2A4
2i5
2A6

MSB
	

2i7

4
5
6
7

cH

1
2
3

2A 4
2A 5
2A6

MSB
	

2A7

LSB

:maginary
utputs

LSB

maginary
utputs

ii
2A * 4
2A5
2A6
2A7

TEST 3
	

175

(Results)

I.! Jz 	01~1 	
-11MINIM

_ 	 I
IraftflJrflrlrflflr1rLrLr
M rLwlLnJlrLnrulrulslnJlJlsLrulJ
IW1Uft1LrLflrLrLWWLflArUrLrLrLflJ
inwwmmiruuiirirrw
I 	 I
Inwruw rLnJiftniirumsuu
IflJmflJ1J1rUlJU1J1JWUlrU1JLftft1WRflflh1JLftmU
!lilJlrUlSWflftflflJUlflJlJlflflmLflJlftftfli]Jlflftftftfl
IuwuiinrLrLftrulsuiruiwsuin
I 	 I

1
1
8
8

1
8
8
8

8
8
1
I

8
8

VLMa1AmrJ1J1J1J1su1flILnsU1Jru1JLe
WWU1J1nJ1nJ1J1J1Ir1SUL8

I 	 I
U1SUlflfUflJ1flflflJflJ1SL8
fl 1rLJ1IUlIrULft8

IrLrLru1J1SU1rU1J1J1flIflJlrLflJ1AIflArL8
Dun—Ju1J1J1rU1J1IU1Aftw1ru1JtQru1sLe

I
hhhhhhh1 1 j: hI

Figure(5.4.7.2.) Results obtained from the DAS 9100.

I III IU 111111 II uuIIII mom
8
8
8
8

8
8.
8
8

1
I
I
1

I 	 ..
DflJUlSULflnnsuLnnJlsmJlsulJljlsLrEI-u-LrL
LJtJJ1nJn.annnrwJwLr -msL1

TEST 4 	 IND
(Results)

[SB

Real
Dutputs

'1SB

Zeal
)utputs

POD CH HAME II
E17 Is
2i1
2A2
2A 3

-

8
B
8
8

2A4
	

If 	wJRrrLnJlJlJlsLnrulILrLnrLnJlJulrulre
2A5
	

Lmfl WJ1J1JWUWII1ru1J1JRnsu1J1J8
2s6
	

IfU1rflU1Rfl-flfUlflSWSLftflJ1-fl'J1JlrUlflJLflSU1J8
2A7
	

1 	 8
I 	 I

POOCH WE I
LnJ1_nftarw_n__J1_n ujj-u-uijinn 1

2A 1 	11 1ftft 1 1 1 1 	''1 	I .I.J i 	 ulru=
1
1

2A 2
2A 3IJWJLftfflflJ1flflflfLflfl]'JuIJIfljlJ1j1J1j1J,j,j 1

I 	 I
2A4
2A 5
2A 6

4SB 	2A7

POOCH WE
JSB

2A 1
2A2

Imaginary 2A 3
)utputs

2A'4
2A5
2A6
2A?

PM CH Of
.1SB 	LF a

2A1
2A 2

Imaginary 2A 3
)utputs

2A 4
2A5
2A 6

SB 	2A 7
I
	

I

Figure(5.4.8.1.) Results obtained from the DAS_9100.

177

multiplexed so to do this requires an external de-multiplexer (to

separate real and imaginary outputs), two digital to analogue con-

verters (a single fast one could be used if preferred) and a two-

channel oscilloscope with facilities for x and y inputs.

The coefficients (0 - 180 degrees) of a 1024 point FFT were

loaded into a 2716 eprom with real and imaginary data being held in

even and odd address locations respectively. The eprom could thus be

made to output data corresponding to the coefficients of a 1024

point FFT or any size smaller than this which is an integer power of

two. The data input to EU219 was supplied with a stationary vector

this time so that instead of observing the chip cancelling out two

equal and opposite rotations as was done in tests (1-4), it would be

possible to observe the chip rotate a stationary vector by the vec-

tors held in eprom. Figure (5.4.9.1) shows the test set up and Fig -

ure (5.4.9.2) show some photographs taken from the oscilloscope. The

top half (0 - 180 degrees) of the circle represents the (A+BW) (A

held constant) butterfly output. The bottom half (180 - 360

degrees) of the circle represents the (A-BW) (A held constant) but-

terfly output. The results obtained were somewhat encouraging, as

there were no observable errors in all 1024 ((8 + 8) bit) vectors

that were input to the chip. This test was carried out with several

stationary input data vectors and no anomolies were observed.

5.4.10. Analogue Performance of EU219

The speed of the device was measured using a high speed clock

that was based. on high speed Schottky TTL mbnostables. This was

turned up in speed until the chip started to produce logic errors at

ci)
0

0

0

C

C)
-4.

Real

Imag

Figure(5.4.9.1.) The use of D/A's to monitor EU219's
Output Port on an Oscilloscope.

T: KI

-

:";• it

h

Wrej

the output on a set of data which was worst case for the fast adder.

It was found that the devices clocked at up to 4MHz if the clocks

were allowed to rise to 7.OV, however, at 5V, the maximum speed

obtained was only 2MHz. This unusually high dependence on the clock

voltage was traced to poor clock rise times internal to the chip.

Although the device was fast enough for serious use. it was felt

that if the clock input pads were modified, a useful increase in the

maximum clocking rate should result. Consequently, this modification

was made, and a near identical device, number EU341 was fabricated

later. Other than the fact that EU341 is slightly faster than

EU219, they can otherwise be regarded as the same devices.

5.4.11. Summary of the EJ219 Butterfly Processor

This butterfly arithmetic processor is similar to EU20I, but

differs in that the chip can be programmed to compute either real or

imaginary outputs from the same data. Thus two identical chips can

be combined, with the use of tn-state outputs, to function as one

completely parallel butterfly device. This partition allows longer

wordlengths to be realised and EU219 is an 8 bit device unlike the 6

bits of EU201. Figure (5.4.11.1) shows a chip photograph with pin

data information. Figure (5.4.11.2) shows a close up of the distri-

buted arithmetic complex multiplier array showing a number of the

basic cells connected together. Finally, Figure (5.4.11.3) shows the

pin numbers used when the device is bonded up in a 40 pin dii.

package. A useful modification to these designs would be to allow a

greater degree of configuration of the datapath to make the device

more versatile.

C
C

U

C

-C--

CC
rcr

(U

Ui
C
L.

OL.4
-Co

C)

H
00
H

0

!

t

	

: 1 1 	 t 	•3_-[0

qua

- 	 - - 	I Ncl=:. 	 SW"...

0 	 NrOJC
I 	> 	I 	 I 	I 	 I

(Nt) 	Ui3iBO 	 B)$QO3

-c

D

Figure(5.4.I1.2.) 	Close up Photograph of Snv'rdl
Basic Cells in the Compinx
Multiplier of EU219.

182

1 W5 W440
2W6 W339
3W7 W238
4 CKi Wi 37
5CK2 W036
6 VBB V D D 35
7CK3 D734
8 CK4. D6 33
9 CNTL D5 32
10 ENO D4 31
11 ENB D3 30
12S8 D2 29
13S7 Dl 28
14S6 DO 27
15 NC NC 26
16S0 NC 25
17VSS NC 24
18S1 NC 23
19S2 S5 22
20S3 S4 21

Figure(5.4.11 .3.) pin Identification for
EU219 and EU341

183

The next device to be described is a 16 bit CMOS-SOS datapath.

This may be dynamically re-configured under external control and can

perform time domain windowing functions in addition to the basic FFT

butterfly. It may also be used to compute the DFT at high bandwidths

if desired.

184

185

5.5. A 16 Bit CMOS-SOS Arithmetic Processor (Z686-SOS)

5.5.1. General

In the previous sections, two similar nMOS devices were

described which made use of distributed arithmetic techniques to

achieve a highly efficient silicon implementation of the FFT but-

terfly. These chips, however, do not employ a sufficiently high

enough wordlength for general use and were fabricated on a low to

medium performance process (6 micron nMOS). Both of these chips

employed ripple-through adders internally, thus implying a reduced

performance with increased wordlength.

This section considers a 16 bit distributed arithmetic CMOS-SOS

datapath chip based on the highly pipelined architecture described

earlier in Figure (4.2.8) to allow very high bandwidth computation

of the complex multiply at longer wordlengths.

The SOS device is, like both of the previous nMOS devices,

aimed primarily at computing the Radix-2 Decimation-in-Time FFT but-

terfly, however, unlike the previous devices, by passing all data

through the complex multiply hardware, it is also possible to per-

form time domain windowing with no bandwidth penalty. Further, the

inclusion of a small control port for datapath control allows

(static or dynamic) configuration of the datapath from externally

applied control signals thus increasing the versatility of the dev-

ice.

5.6. CMOS SOS Processor Architecture

All data entering the SOS datapath passes through a hardware

complex multiplier which is based on the architecture of Figure -

(4.2.8). The advantages of this approach are, in addition to the

possibility of time domain windowing just mentioned, that when per-

forming the butterfly function, the precise magnitude of the W coef-

ficient vectors are non-critical, since both data inputs (A,B) to

the butterfly will be scaled by the same amount. In a practical sys-

tem this would lead to some improvement (reduction) in butterfly

arithmetic noise, particularly as in fixed point fractional 2's com-

plement notation it is not possible to represent unity precisely.

(The largest number that can be represented with this notation, is

(Unity - I LSB) which is 0111111111111111 for N=16 bits.)

In addition, this approach allows the complex multiplier coef-

ficient word to be input directly as KandK which would be stored in

fast ROM, thus lowering still further, the power consumption

required to compute the complex multiply.

The SOS datapath was designed in three main sections

A distributed arithmetic, systolic array, complex multiplier.

A data sorter to sort the data derived from 1) above.

An adder/subtractor to accumulate the results from 2) above.

By providing some external control pins to the data-sorter and

adder/subtractor the datapath could be dynamically configured to

increase its versatility, as mentioned earlier.

Coefficient

41,

187

0
-4-,

0 > 0

0
L.

-4-,
C
0
0

HH
Systolic

- Distributed -

— Arithmetic -

Complex

Multiplier --

- -

-

Data Sorter

- Adder / Subtractor

1~

Output

Figure(5.6.1.) Floorplan of the CMOS-SOS Arithmetic
Processor Z686-SOS.

This lead to a general floorplan, of the type shown in Figure

(5.6.1). The above sections will now be described in more detail.

5.6.1. Systolic Array Complex Multiplier using D.A.

Based on the architecture of Figure (4.2.8), the design of this

complex multiplier was undertaken with the following requirements

1/ High Data Throughput

2/ High Arithmetic Precision

3/ Low Rounding and Arithmetic Noise

4/ Low Power Consumption

These requirements influenced the design approach in several -

ways.

5.6.1.1. High Data Throughput

As previously mentioned, high throughputs with large word-

lengths can be achieved by using systolic architectures such as Fig-

ure (4.2.8) which involves a two-dimensional array of bit-level

cells, communicating with their nearest neighbours each clock cycle.

The performance of this structure is not highly dependent on word-

lengths, with only the latency being determined by the word-length

employed. Figure (5.6.1.1.1) shows the logic used in the basic cell

of the complex multiplier and Figure (5.6.1.1.2) shows the

corresponding SOS layout. In signal processing schemes such as the

FFT where there is no essential recursion outside of the arithmetic

K
	Kd 	 SUM IN

01

II
(D

u-I

DATA—SEL EC
CONTROL

CK1
CK2

CK2BAR
ADD/SUBTRACT

CONTROL

CARRY—IN

CK1BAR

JATA—SEL ECT
ONTROL
K1
K2

K2BAR
\DD/SUBTRACT
ONTROL

,WRY—OUT

K1BAR

SUM—OUT K
	

K'

A.

SUM
K 	 IN

190

CK1

DATA
SELECT

ADD/
SUB

CARRY
IN

A (DATA
SELECT)

A (Al)!)
/SUB)

A
CARRY
OUT

2A 	2AK* 	A SUM
OUT

Figure(5.6.1.1.2.) SOS Layout
of Basic Cell

191

unit, the presence of latency need not affect the system bandwidth.

5.6.1.2. High Arithmetic Precision

The precision of the butterfly arithmetic unit directly affects

the precision of the transform as a whole. Clearly, however, in many

systems it is possible that the analogue to digital (A/D) conversion

may be the primary limitation, in terms of linearity and accuracy.

It is, however, useful to have a reserve of arithmetic precision,

beyond that of the AID, as this allows signal growth in the system

to take place, thus avoiding the introduction of rounding noise into

the transform. A 16 bit arithmetic precision would allow this mode

of operation in conjunction with an 8 bit flash converter, for exam-

ple, but would also allow meaningful transform results using any-

thing up to a 16 bit A/D converter. It was decided that 16 bits

would, in general, be precise enough to cover most real-time digital

signal processing applications.

5.6.1.3. Low Rounding and Arithmetic Noise

Intuitively, it would be expected that the DFT or FFT would be

rather sensitive to wordlengths used and also to rounding and arith-

metic noise, since frequency bins with ideally zero or very small

contents may be formed by the cancellation effect of a number of

very large vectors at various angles. Poor magnitude or phase reso-

lution at any stage in the computation would therefore result in

large percentage errors in frequency bins which ideally should have

very small outputs.

192

One source of arithmetic noise is the noise introduced by trun-

cation of the lowest significance sums at each row in the complex

multiplier array where the current partial sum is scaled down I

place, that is to say, by a numerical factor of 2 (The lowest sum is

discarded and the 2nd LSB now becomes the LSB to the next stage).

The discarding of these sums introduces a small error which may be

called 'ERRTR' into the result. The magnitude of 'ERRTR' depends on

the number and significance of logical l's that were present in the

discarded sums. It possible, however, to calculate the range of

this error in numerical terms, from zero, to some number which might

be called 'MAX' (corresponding to all the truncated sums being a

logical '1'). As the result will always be too small by 'ERRTR' the

addition of a fixed number, equal to 'MAX'/2, will ensure that

instead of a maximum error of - ('MAX') being possible, the maximum

error possible would be f/- ('MAX'/2). The precise value of 'MAX'/2

was calculated and later verified by logic simulations. The inclu-

sion of the fixed number 'MAX'/2 was found to be essential in pro-

ducing a true 16 bit result. It turned out that the value of 'MAX'/2

was equivalent to one-half LSB at the output port, or perhaps more

meaningful, equal to the most significant DISCARDED sum.

The distributed arithmetic algorithm also required some ini-

tialisation which was a function of data as described in equations

(3.5.10 and 11). This was also at a low significance like the round-

ing word 'MAX'/2. A special cell was therefore constructed to per-

form both the addition of the rounding word ('MAX'/2) to the array

and the data dependent initialisation word. This cell had to per-

form a half-add function, and is shown in Figure (5.6.1.3.1).

193

K

CK2

R2

CARRY
IN

ii.r

II
III
I. 	_l

rr —.

: II1iu
IiN.l!_PiIJ!l. i1111

W. - 	uis.tàrn(i..

L H
L!J

ME

lu

IMMUNI
 _ so su

111111 i.i NMI a

IU(iiu -- - ul - 	-
pI_,u•

II Uiluu
I

0 	 MEMO

K 	 K 	 SUM
OUT

CARRY
OUT

CK2>
	

I_<

K or-K

In
	

cout

Bout

Figure(5.6.1.3.1.) Silicon Layout of Initialisation Cell.

194

5.6.1.4. Low Power Consumption

Low power consumption is possible with the use of SOS technol-

ogy, where stray capacitances are lower than in bulk CMOS. The com-

plex multiply distributed arithmetic algorithm also offers low power

consumptions due to a high computational efficiency. The storage of
*

the W coefficient in the form of K and K , means that they do not

need to be actively computed on chip. Thus, an add and subtract that

would otherwise be required, need not be computed on chip.

5.6.2. Data Sorter

The complex multiplier, described above, produced a constant

stream of alternate real and imaginary data. This data, must first

be sorted before being passed to the adder/subtractor butterfly out-

put stage. The circuit chosen to do this was a 4 stage shift regis-

ter delay line which was tapped at three different points, separated

by 2 delays each. Thus, as data flows continuously, either real data

only or imaginary data only could be selected and fed to the

adder/subtractor to perform the butterfly. A block diagram of the

data sorter is shown in Figure (5.6.2.1), along with the actual

silicon layout. An important feature of the sorter used was that

the data that it had to operate on was skewed, as it was coming from

the complex multiplier. This meant that the control for the sorter

had to be delayed at each stage, hence the use of an extra shift

register to accomplish this delay requirement. Data leaving the

sorter is also skewed, allowing the final adder/subtractor stage to

operate in the same pipelined configuration as the rest of the chip

before finally de-skewing data to present to the outside world.

L III

t II

:,,

196

5.6.3. Final Adder/Subtractor

Having sorted data from the complex multiplier (as defined by

external control signals), information is then passed to the final

adder/subtractor. This allows the radix-2 butterfly function to be

performed, if desired. Control to this unit allows one of the inputs

to be reset so that the chip can function as a stand alone complex

multiplier. Also, as all data passes through the complex multiplier,

the chip can perform a 2-point non-trivial DFT. Although a 2-point

DFT in itself is of no use, the fact that the chip is capable of

performing the first accumulation operation of the OFT as well as

vector rotation, the bandwidth of data leaving the chip is halved,

thus allowing a slower external accumulator to complete the job of

accumulating each frequency domain bin of the DFT.

In fact, the job of the final adder/subtractor was so similar

to the basic cell used in the rest of the chip that this was actu-

ally used with only a trivial modification (to allow one of its

inputs to be reset).

5.6.4. CMOS Design Considerations

In CMOS design, the basic inverter comprises an n-channel pull

down and a p-channel pull up so that large currents can only flow

under dynamic conditions. Whilst this entails near zero static power

consumption, it is possible for a CMOS design to consume a compar -

able power to nMOS at high clocking rates. The input capacitance of

the CMOS inverter is approximately doubled when compared to the nNOS

inverter, because both the n channel and p channel device gates are

197

connected together. This usually means that the dynamic power con-

sumption in a given CMOS circuit would rise more steeply with fre-

quency than would an nMOS circuit. One problem that must be tackled

in some CMOS designs is one of transients on power lines, which can

occur if a number of logic stages, attached to a single power line,

all change state at around the same time. This can be overcome by

using thick metal conductors in such regions and by arranging that

as few stages as possible will change state all at the same time.

Another notable difference between nMOS and CMOS design

approaches is in connection with shift register design. In nMOS, it

is common to use two phase non-overlapping clocks, as a means of

avoiding race condition problems mainly in shift register elements,

where the ripple through time is potentially very short. Figure

(5.6.4.1) shows a simple but useful model of the dynamic riNOS shift

register, which indicates that the race hazard is proportional to

1/RC, where R is the lowest ("ON") resistance of the single (n-

channel) transistor transmission gate and C is the effective input

capacitance of the inverter. As R and C, both tend to be fairly

small in nMOS technology, the use of non-overlapping clocks is man-

datory, unless the circuit is carefully designed with a large RC

product and highly localised single phase to two phase conversion,

to avoid clock skews. In general, however, the use of a two phase

non-overlapping clock does not entail any substantial overhead, and

is highly preferable to the lengthy analogue simulations, which

would otherwise be necessary.

In CMOS design, however, it is fairly common to use clock and

clock bar signals which may potentially have some degree of overlap

IC 	 I

Figure(5 .6.4.1.) Simple Model of Dynamic nMOS
Shift Register.

im

CLOCK 	 CLOCK

-I-

T 	T
CLOCK 	 CLOCK

Figure(5.6.4.2.) Simple CMOS Dynamic Shift Register has
a Potential Race-Hazard.

present on them. These signals are applied, alternately to the n and

p-channel devices in the transmission gates in adjacent shift regis-

ter cells. The chip to be described was intended to clock at very

high data-rates, and consequently, the use of dynamic circuitry was

considered. The simplest CMOS dynamic shift register consists of a

transmission gate feeding a single inverter with charge storage at

its input, as shown in Figure (5.6.4.2). As with nibS, however, this

type of circuit, presents a considerable race hazard as it requires

clocks with very low overlap indeed. The amount of overlap that is

tolerable, depends on the delay associated with the inverter, and

transmission gate. Figure (5.6.4.3) shows the equivalent CMOS model

of the dynamic shift register, to the nMOS model shown in Figure

(5.6.4.1). It should be noted that some important differences exist

in calculating the race hazard. Since, in the CMOS inverter, the

input is connected to both gates of the n and p-channel devices, it

can said that the input capacitance of the inverter will be at least

double the input capacitance of the nNOS inverter. In practice, the

p-channel pull-up will be given a wider channel than the n-channel

pull-down whose mobility is higher, and thus the real increase in

the input capacitance would be slightly greater than doubled. It can

be concluded therefore that the CMOS inverter input capacitance is

2C instead of C as is the case with the nMOS device. Turning to the

transmission gate, it can be seen that the equivalent circuit of the

NON" transmission gate consists of two parallel resistors,

corresponding to the n and p channel devices both being hard ON.

Assuming that the designer wishes this CMOS shift register to have a

transmission gate of equivalent ON resistance to the nMOS design,

then each of these resistors, must be given a value of 2R, to give

Iwo

Pw

2R
	

2R

2R 	 c=f= 2C 	2R 	 2C

Shift Register Model, with Clock Overlapp

(Race Hazard Proportional to 1/4RC).

Figure(5.6.4.3..)

2R 	 2R

2R 	 2R
2C

Shift Register Model, with Clocks Fully Settled

Figure(5.6.4.4.)

201

the transmission gate an "ON" resistance of IL In the special case

of clock overlap, then, as shown in Figure (5.6.4.3), only half of

the transmission gate is ON when it should be OFF. This means that

the resistance to be taken into account in calculating the race

hazard is 2R instead of R, (with the nNOS design). The overall race

hazard is therefore proportional to 1/4RC. Perhaps, a more accurate

comparison would have been to say that since the inverter input

capacitance is 2C instead of C, the transmission gate ON resistance

should be designed to be (1/2)R instead of R in order to result in

a circuit of the same speed capability. In such a case, the race

hazard of the CMOS design would be proportional to 1/2RC compared to

1/RC for the nt405 case. The main point is that it is much easier to

design a clock overlap tolerant CMOS dynamic shift register which is

race free, than it is, to-design an nt4OS dynamic shift register with

the same attributes. Figure (5.6.4.4) shows the CMOS shift register

model with zero clock overlap.

When, the basic cell for the CMOS chip was being designed, it

was decided to simulate the dynamic shift register using the SPICE

program. This revealed, that the initial aspect ratios used in the

shift register were unacceptable, as it was excessively intolerant

to non-ideal clocks. The model of the shift register shown in Figure

(5.6.4.4) indicated that if the shift register was redesigned with a

transmission gate of much higher ON resistance and the inverter

input gate capacitance was increased, then the subsequent RC delay

introduced, would make the shift register much more tolerant to

clock non-ideality. This involved increasing the channel lengths and

reducing channel widths of the transmission gates, and increasing

202

channel lengths of the inverters. Some results of analogue SPICE

simulations are presented for this modified shift register design,

with clocks ranging from near ideal, to clocks that are worse than

would actually be seen by the shift register. These are shown in

Figure (5.6.4.5).

The clock lines were distributed throughout the chip using very

low resistance paths, to minimise skew and maintain rise-times. In

addition, the clocked array of cells were fed from two sides (not

one side) of the array, thus halving clock line series resistances

caused by underpasses. The chip size was likely to be quite large,

and so in common with many large chips, multiple bonding pads were

made available for both power and clocks, distributed evenly

throughout the chip.

5.6.5. Clocking Scheme

The standard four-phase clocking scheme, involving 'CLOCKIN'

and 'CLOCKOUT' together with their complements is the safest and

most desirable approach where area considerations are not critical.

In this design, however, a substantial area reduction, estimated at

around 20%, would result if a two-phase clocking scheme was used

involving a single clock (CM) and its complement. It was this con-

sideration that resulted in the decision to adopt a two phase clock-

ing scheme.

The chip was intended for operating on complex data, with real

and imaginary data being multiplexed on the same data port. It was

decided that the availability of another main clock (CK2), operating

V(8) V(3) V(1) 	 V(2)

2468 101214161820222426283032343638404244464850
xir8

Time (Seconds)

DYNAMIC SOS SR. WITH IDEAL CLOCKS

0

5
ci
4)

2

Key: 	V(1)
V(7)

2 -41

V(2) 	V(3) 	- 	V(8)

4 	5 	8 	7 	8 	9 	10 	11 	U 13 	14 	15
xir8

Time (Seconds)

23

Dynamic SOS ShiFt Register'-5nS Rise, OnS Skew
0

23 45

.1

• 	 I

12 	1
I
3 	14 	15

xir8
Time (Seconds)

ON

-I

0

(D

U,

Key: 	V(1)
	

V(2) 	V(3) 	V(8)
V(7)

Dynamic SOS ShiFt Register'-5n5 Rise, 4n9 Skew 	
0

¼J1

206

at half the micro-cycle frequency, would be useful in the internal

de-multiplexing of real and imaginary data. This clock could also be

used as a control in the basic cell to clock the shift registers
*

that carry K and K through the array. This is possible because they

are both required to compute real and imaginary data at each cell in

the array and thus only need to be fed forward once every two cycles

and not every cycle, resulting in the chip computing real data and

imaginary data on adjacent micro-cycles. This, however, is not a

restriction, meaning only that it is not possible to use two chips,

one programmed to produce real data, and the other programmed to

produce imaginary data, as was the case with the 8-bit nMOS device

(as a means of doubling system bandwidth). It is believed to be

more efficient and cost effective to perform the computation in this

manner where real and imaginary data is computed on alternate

cycles, thus reducing power consumptions further. In addition to the

half frequency clock, which determines whiether real or imaginary

data is being input to the datapath, an extra quarter frequency

clock (CK3) is needed for the butterfly itself. This controls the

data sorter, and the add/subtract in the butterfly output stage and

corresponds to the rate at which the chip can perform windowing

and/or butterfly functions. Figure (5.6.5.1) shows the clocks

required to operate the chip.

5.6.6. Timing Requirements.

It was decided that clock signals would be derived externally

from this chip, as the quality of the clock signals could then be

controlled, if necessary. As the chip uses a two-phase clocking

CK1

CK1

CK2

CK2

CK3

5v

Ov

5v

Ov

5v

Ov

5v

Ov

5v

Ov

207

Figure(5.6.5.1.) Clocks Required for Butterfly Operation.

scheme, all clocks, with the exception of CK3 (ie CK1 and 2) must be

provided with high integrity complements. If possible, a small (RC)

analogue delay should be inserted into the leading transition to

ensure that the clocks have a minimum overlap. Rise times should be

kept as small as possible, preferably under 5ns, which can achieved

by using bipolar devices for pull-up and down. It is intended that

the chip should be clocked at or near to its maximum clocking fre-

quency, as the error rate due to background alpha-radiation is

minimised in this situation. There are no strict requirements for

CK3, which does not require a complemented signal, other than that

its falling edge must not come before the rising edge of CK1. A

similar requirement exists for CK2 and its complement, whose falling

edges must not come before the rising edge of CKI, or put another

way, the rising edges of CK2ICK2BAR must come on or after (prefer-

ably just immediately after) the rising edge of CK1.

5.6.7. Latching of Input Data and Coefficients

The inputs to the chip are latched on CKIBAR. Thus, data must

have settled before the falling edge of CK1BAR. If data is to be fed

in to the latch without being corrupted, it must not alter state

until after CK1BAR has returned to zero. The precise timing of data

transitions relative to CK1 and CKIBAR is non-critical other than

this requirement. One simple way of ensuring that this occurs is to

synchronise inputs data transitions with CK2/CK2BAR rising and fal-

ling edges. It was mentioned that this clock should be very slightly

delayed with respect to CKI/CK1BAR to ensure that its rising/falling

edges would never come before the rising edge of CK1 (falling edge

CK1

CK1

CK2J 	I 	I 	I 	I 	I 	I

CK2

DATA

Figure(5.6.7.1.) Timing of Data Input and
Output relative to CK1 and CK2.

209

210

of CK1BAR). A typical timing diagram of the chip receiving data

relative to the clocks is shown in Figure (5.6.7.1). This also shows

the output of data from the CMOS-SOS processor device. Data transi-

tions at the output takes place on the rising edge of CK1. This is

to be consistent with sampling data on the rising edge of CKIBAR as

is done at the input ports of the chip.

5.6.8. Control Signals Required by Pipeline

Control data is sampled on the rising edge of CK1BAR as with

all other data entering the device. Thus, timing for the input of

control data is the same as for signal and coefficient data.

The CMOSSOS device has a total of seven control pins, CNTI-7,

four of which (CNT4-7) are aids to the testing of the device and

three of which (CNTI-3) allow the pipeline to compute the functions

described below.

If no connections are made to these control pins, in common

with all other data pins, a logic zero default will be assumed by

the chip.

I) 	The complex multiply, +1 - A x W 1 : CNTI="l" for complex multi-

ply only, CNT2='I for DU, CNT2=N0u for 	CNT3=(don't care,

however, if CNT3 is a 	then data will appear with extra two

CKI delays but will be the same)

2) 	A 	two 	point 	DFT, 	+1 - A x W I +1 - B x W2 	: 	CNTI"O°,

CNT2=CNT3=CK3 (shown in Figure (5.6.5.1)). 	This function

allows both butterfly operation (decimation-in-time) and data

211

windowing. It can also be used to compute the DFT using a

slower, external accumulator.

The control signals, CNT4-7 are intended primarily for testing

the device. The function of these pins are to control two ROMS, each

storing two 16-bit words which may be input to the data port and the

coefficient port. Two of the pins, CNT4 and 5 select either the ROM

or the input pads for the two input ports. The remaining two pins,

CNT6 and 7 select one of two words which have been stored in the

small ROM. These words have been chosen to produce predictable

results, consistent with exercising the internal logic. This allows

• test of a similar level to the probe test of EU219, which was not

• final test, but was designed to eliminate obviously faulty dev-

ices. This allows a simple probe test to be conducted with only four

data pins instead of 32. The functions of CNT4-7 are detailed below.

1) CNT4 : Select Data ROM 	1, or input pads

2) CNT5 : Select Coefficient ROM "1", or input pads nOel .

3) CNT6 : Select 1010010101111111 "0, or 0101101010000001 	Ulhl 	at

DATA input port.

4) CNT7 : Select 0000000000000000 "0", 	or 0011111111111111 	"1" 	at

COEFFICIENT port.

Note : 0101101010000001 = 1/SQRT(2) = - (1010010101111111)

212

5.7. Logic Simulation

The chip logic was simulated at a switch level at a depth of 8

bits and later, 4 bits (to speed up the process). This was to ver-

ify correct operation of the pipeline, rounding and initialisation

of the distributed arithmetic array. A fixed binary count was

applied to the data port and a +1 and -1 coefficient vector was

applied to the coefficient port. The simulation results, shown in

Figure (5.7.1) indicated no observable rounding errors and even

weighting for both positive and negative number ranges. The logic

simulator used was known as SLS which was designed at Edinburgh

University and was run on a VAX750 mini-computer.

5.8. Additional Cell Level Details of the Z686-SOS Processor

The logic used in the control cell for the distributed arith-

metic array in the SOS device is shown in Figure (5.8.1). Figure

(5.8.2) shows the corresponding SOS layout. This cell produces

alternate real and imaginary control data under the control of CK2.

The de-multiplexing of real and imaginary data may be accom-

plished under control of CK2. Figure (5.8.3) shows the logic used

for de-multiplexing both data and coefficient input ports. Real data-

is sampled on CK2 and imaginary data is sampled on the complement of

CR2. The SOS layout for the de-multiplexer is shown in Figure

(5.8.4).

The complete chip includes input and output pads, shift regis-

ter delays and two very small ROMS for testing purposes. Figure

(5.8.5) shows the regular shift register layout and Figure (5.8.6)

Results
initialisation complete

Data

t R4 R3 R2 Ri RO CiT CIB C2T C2B K3 K2 K1K0 D3 D2 Dl DO

0 1 0 0 0 0 1 0 1 O/K11000
211000 1 0 0 ,1K1100 0000
401100 1 0 1 '01<0100 0 . 000
610010 1 0 0/1K"O1 0 0 0000
811011 1 0 1 0 etc 1 100 0001
1001111 1 0/0 1 1100 0001
1210011 1 0/1. 0 0100 0001

1400011 1 0 0 1 0100 0001

1600101 1/0 1 0 1100 0010
1800011 1/0 0 1 1100 0010
2000011 1 0 1 0 0100 0010

22 00000/1 0 0 1 0100 0010
(Stcrt))24 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1

2600000 1 0 0 1 1100 0011
2800000 1 0 1 0 0100 0011
3000000 1 0 0 1 0100 0011
3200000 1 0 1 0 1100-0100

34 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0
3611111 1 0 1 0 0100 0100
3800001 1 0 0 1 0100 0100
4000001 1 0 1 0 1100 0101
4211110 1 0 0 1 1100 0101
4411110 1 0 1 0 0100 0101
4600010 1 0 0 1 0100 0101
4800010 1 0 1 0 1100 0110
5011101 1 0 0 1 1100 0110

52 1 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0
5400011 1 0 0 1 0100 0110
5600011 1 0 1 0 1100 0111
5811100 1 0 0 1 1100 0111
6011100 1 0 1 0 0100 0111
6200100.1 0 0 1 0100 0111
6400100 1 0 1 0 11001000
6611011 1 0 0 1 1100 1000
6811011 1 0 1 0 0100 1000

7000101 1 0 0 1 0100 1000
7200101 1 0 1 0 1100 1001
7411010 1 0 0 1 1100 1001
7611010 1 0 1 0 0100 1001
7800110 1 0 0 1 0100 1001
8000110 1 0 1 0 1100 1010
8211001 1 0 0 1 1100 1010
8411001 1 0 1 0 0100 1010
8600111 1 0 0 1 0100 1010

213

Figure (5 . 7. 1.)

00000000 000000 00 1.-4r4 0000000

0000 0000000000000000 ,,-4r-4r4r-4

.-4,- -4.-4.-40 0000000000000000000000

0000000000000000 00000000000000000000 0000000

0000000000000000 000000 000000 00 000000 0000000

4 r4 r4 4 ,-4 ,4 .4 ,4 .4 4 4 4 4 4 4 4 4 4 l 4 l' 'l 4

00.-4.-400 	00 	00 	00 r4 4 00 	00 	00.-4,-4004.-100.-4.-40

0000000000000000 000 000000000 00000000 000000 0

l 4 ,4 .-4 ,-4 .-I .-1 ,-4 - 	4 .-4.-4 ,-4 ,-1.4 ,-4 4 .-1 .-4 -4 .-4 ,4 '4 ,-I '-4 .4 ,-4 .-1 .-4 ,-4 .-4 ,-4 r4 r4 .- ,-i .-4 ,-i .-4 .-4 .- ,-i

-40000

-40000 00-4 00 0000 00 00 0000 00-4

-400Q0 	00 	00 	00 r4,4 4,40 0 	00 	00 	0000400'44

000 	00 	00 	00 	00 4 r4 00 	00 	00 	00004,-40044

00 0 N --t %0 OD 0 c-I - 0 00 0 N - %D 000 N t %0 000 N 	CO 0 04 4 '-0 000 N -4t D 00 0 N It 'O 000 c4
000% ON ON 0% 0% 00000 -4 '-4 -4,-4 - N N N N N Cn Cn Cn (Y) C 	-' 	- - tfl UI UI UI UI O %O O %0 'O N N

'4 4 4 ,-I r4 	4 .4 	,4 ..4 .4 r4 ,-4 i-I .-4 r4 ,.4 r4 r4 r.4 .-4 r4 .-4 .-I r4 ,-4 .-4 .-4 ,-4 .-I .-4 .-4 r4 ,-4 ,.4 ,-4 ,-4

(,J

-4

N

UI

a)
S-i

215

17400010 1 0 0 I 0100 0101
17600010 1 0 1 0 1100 0110
17811101 I 0 0 1 1100 0110
18011101 1 0 1 0 0100 0110
18200011 1 0 0 1 0100 0110
1840001.1 1 0 1 0 1100 0111
18611100 1 0 0 1 1100 0111
18811100 1 0 1 0 0100 0111
19000100 1 0 0 1 01 0 0111
19200100 1 0 1 0 1100 1000:
194 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0

196 1 1 0 1 1 1 0 1 0 0 1 0 0 1 0 0 0
19800101 1 0 0 1 0100 1000
20000101 1 0 1 0 1100 1001
20211010 1 0 0 1 1100 1001
204 1 1 0 1 0 I 0 1 0 0 1 0 0 1 0 0 1
20600110 1 0 0 1 0100 1001

20800110 10 1 0 1100 1010
2101 1001 1 0 0 1 1100 1010
21211001 1 0 1 0 0100 1010
21400111 1 0 0 1 0100 1010
21600111 1 0 1 0 1100 1011
21801000 1 0 0 1 1100 1011
22001000 1 0 1 0 0100 1011
22211000 1 0 0 1 0100 1011
22411000 1 0 1 0 1100 1100
22600111 1 0 0 1 1100 1100
22800111 10 1 0 0100 1100
2301 1001 1 0 0 1 0100 1100
23211001 1 0 1 0 1100 1101
234 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1 0 1
23600110 1 0 1 0 0100 1101
2381 1010 1 0 0 1 0100 1101

240 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 0
24200101 1 0 0 1 1100 1110
24400101 1 0 1 0 0100 1110
24611011 1 0 0 1 0100 1110
248 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1
25000100 1 0 0 1 1100 1111
25200100 1 0 1 0 0100 1111
2541 1100 1 0 0 1 0100 1111

Figure (5. 7. 1.)

216

FWAL

In

Figure(5.8.1.) Control Cell used in Z686-SOS. Device

Figure(5.8.2.) SOS Layout of Control Cell

Real
{B1

Imaginary

{B}

217

IMAG

REAL

218

CK1

Figure(5.8.3.) High Speed De-multiplexer used to
separate Real and Imaginary Data.

219

Figure(5.8.4.) SOS Layout of De-multiplexer

L. ___ _,• u.i
U

Li m.I- ju.i!i

__qji
I

LJ ___

MEIN

i

Im' IMN III.
MINE 0 NNNLN

DA Ti
IN

IMAGINARY
DATA OUT

REAL DATA
OUT

! !L'IRi$IIH
a =iii: i

0

II.

.SU
- 	 If 	 • 	ii

_Iat 	fl U 	 - 	 U 1ff 	$ 	 U

VP

111 1

221

Figure (5-8 6.) SOS Layout of Output Pad

222

	

Clocks 	Coefficient (K)

	

I 	I 	 I
211v8!p 	 llVdd

	

liii 	IllIlItlIlpi

12 1
- 	 __

	

K

cn

- 3-i2f
-

, 	 -

a 	 S

-

'p.---
-

-r.
-

-

15

2 	12

cn CL

cn : 	 I 1II1I!!1 	j 12

VUS vaso 	 'Jd

Outputs

V88

Vd d

Z686-SOS

Figure(5.8.7.) Completed CMOS-S(I)S Design with
Pad Identification.

223

shows the output pad used. The complete chip design is shown in

Figure (5.8.7) which includes pad identification. It is expected

that this device will have a maximum clocking rate of around 40MHz

and consume around 0.5 Watts, including clock generation.

5.9. Summary

This chapter has described three LSI to VLSI complexity paral-

lel data arithmetic datapaths which use some of the architectures

presented in Chapter 4 for computing the complex multiply very effi-

ciently. It is evident that the use of distributed arithmetic

greatly facilitates a regular design approach which is particularly

advantageous in the case of parallel data implementations as it

avoids the need for multiple bus structures. The testing of device

number EtJ2I9 is described in depth and it is hoped that the CMOS-SOS

device (Z686-SOS) will be fabricated and tested in the near future

to provide the basis for a high performance DFT or FFT processing

system. Both EU219 and Z686-SOS have the throughput equivalence of

two parallel real multipliers by virtue of the distributed arith-

metic techniques used. The architectures described therefore offer

about double the throughput that comparable [2] single parallel mul-

tiplier FFT arithmetic processors can offer.

References

224

D. J. Myers, Multipliers for LSI and VLSI Signal Processing

Application, MSc Project Report MSP5, (September 1981).

R J. Karwoski, 'A Four-Cycle Butterfly Arithmetic Architec-

ture," LSI Publication IE9.-4/8.Q TRW LSI PRODUCTS 2525

Seaundo Blvd. El Segundo, CA 90245 	 -1831, (April

1981).

225
Chapter 6 - Conclusions

This thesis has covered various aspects in the application of

Very Large Scale Integration (VLSI) to digital computation of the

discrete Fourier transform and the fast Fourier transform which

approximates the continuous Fourier transform. In particular, much

of the work has concentrated on VLSI architectures for implementing

the arithmetic requirements of these computations with high data

rates.

A variety of algorithms and system design methodologies have

been reviewed in order to highlight the range of structures that are

possible. It has been observed that whilst the discrete Fourier

transform can be easily realised as a single monolithic VLSI proces-

sor, the fast Fourier transform is not quite so easily realised as a

single monolithic device owing to the higher levels of integration

required. A notable characteristic of the fast Fourier transform is

that various distinct levels of arithmetic concurrency are possible

which allows a great variety of system configurations and partitions

as well as processing bandwidths. It has been noted, however, that

very high bandwidth systems must be based on a system design metho-

dology which allows a high degree of programmability to obtain the

necessary versatility for system use. it is believed that configur-

able pipelines can offer both high bandwidths and suitable versatil-

ity, for systems use, although it is recognised that silicon compiler

approaches, such as ISFIRSTU described in chapter 2 which obtain ver-

satility by offering control over the actual hardware, has a role to

play where the extra cost of mask-making and fabrication is not a

major consideration.

It is apparent that an important requirement for efficient VLSI

designs is regularity and modularity. Not only do such approaches

allow quick design times, but they are more likely to result in

structures to which yield enhancement approaches can be applied if

required. It is noted that distributed arithmetic approaches in par-

ticular can yield highly regular structures thus allowing the design

of highly efficient VLSI arithmetic processors. In this thesis, a

great deal of attention has been focussed on the arithmetic require-

ments of the fast Fourier transform as it has been noted that the

availability of a high performance arithmetic unit does not con-

strain a system to any one level of arithmetic concurrency or impose

limitations on transform size (assuming wordlengths are adequate).

Chapter 5 has described three LSI/VLSI MOS distributed arith-

metic devices which offer very high bandwidths. In the case of the

complex multiply, the throughput rate is effectively doubled as a

result of using distributed arithmetic. Moreover, these approaches

offer a highly regular VLSI design approach. Figure (6.1) shows a

comparison of the expected performance of the CMOS-SOS device

(Z686-SOS) and the measured performance of E0219 in computing com-

plex multiply and accumulate operations against that which could be

obtained using commercially available devices, including single real

multipliers in conjunction with accumulators. The TRW figure is

based on the MPYI6HJ 16 by 16 bit real multiplier device, which is

commonly available. The GaAs figure is derived from the 16 by 16 bit

multiplier device described in chapter 2.

It is believed that distributed arithmetic offers a signifi-

cantly lower power consumption than is possible with conventional

1 	 -

15

10

5

f

Thi

P.1W

/Bac

20

Figure (6.1) Comparision of Commercial Devices

with Datapaths' described in this thesis in

Computing Complex Multiplications

227

multiplier based arithmetic. This reasoning is based on the fact

that only a single accumulation process is required. The extra power

consumption required by data-select operations can be made small as

the number of logic gates required to toggle in a given data-select

operation is not large. Low power consumptions are particularly

important in high bandwidth fast Fourier transform systems, such as

are used in avionics, where heat dissipation constraints and power

constraints often exist.

6.1. Future Research Work

The various devices described in this thesis have moved pro-

gressively towards some form of (low level) programmability through

pipeline re-configuration. It is felt that this area could be

further explored. The principle advantage of developing configurable

arithmetic pipelines further is not only the consequent increase in

versatility, but also the possibility of bypassing defective circui-

try through redundancy which would provide a basis for yield

enhancement. Distributed arithmetic has a definite role to play in

the construction of such pipelines because of the regularity which

it allows. Looking ahead to wafer scale integration, power consump-

tions become increasingly important. Here again it is believed that

distributed arithmetic will have a role to play.

228

229
Appendix I

Programmable Logic Array's (PLA's) in Silicon Compilers

The main problem with the PLA, is that its speed is dependent

on its size. Larger PLA structures cannot be clocked as fast as

smaller ones. This is due to an increase in internal capacitances

which cannot be matched with a lowering in the "ONO resistance of

the switching elements in that structure. A clocked control circuit

using a number of PLA's of different size will only clock as fast as

the slowest PLA. The PLA itself, however, is a particularly effec-

tive way of mapping logic directly on to silicon.

A silicon-compiler that generates synchronous assemblies is

virtually useless if it has no means of controlling the actual speed

of individual clocked units in that assembly in order to achieve

some control over performance. If an assembly is constructed from a

number of PLA's, some means therefore must be found to allow control

over the speed of individual PLA's in that assembly. This would then

allow some degree of optimisation to bebuilt into the system as

well as allowing overall system clocking rates to be achieved that

might otherwise not be possible.

PLA Performance Control

The regularity of the PLA has a significant advantage, in addi-

tion to those already mentioned. It allows easy calculation of the

capacitances in the "AND" and "OR" planes of the PLA as a function

of inputs, product terms, outputs, and if desired, the truth table

itself. This function should also include process parameters, which

would normally be fixed. A knowledge of these capacitances,

230

together with transistor aspect ratios allows the maximum operating

speed of the PLA to be calculated. An experimental FORTRAN program

was written, which could both perform this speed calculation and

generate nMOS transistor layouts with a variety of aspect ratios

(continuously variable). This subroutine, which could generate

variable aspect ratio transistors would allow some control over PLA

speed performance. The algorithm (not consciously copied) that was

used in this speed programmable PLA generator is outlined in Figure

(1). This program was primarily written in order to empirically

determine the extent of control possible over the PLA speed perfor-

mance using software techniques. Results are outlined below, in the

section "PLA Run Results".

This program might be incorporated in the complier discussed

previously as a "soft" operator, allowing several PLA's to be inter-

connected automatically on a one dimensional routing channel. Such a

compiler, suited to control tasks, would offer a high degree of per-

formance control. The design rules used in the PLA generator

described here, were based on fixed Mead and Conway type rules for

nMOS, however, it would have been feasible to produce PLA silicon

layout which was a function of certain design rules, that might have

been liable to fluctuations. (The program took into account process

length and width modifications.)

PLA Run Results

There were two main points that were noted in running the speed

programmable PLA generator program. Firstly, there was a minimum

area which occurred at some particular speed. Secondly, once this

area was reached, higher speed requirements forced the area to rise

231

very sharply (and power consumption). This effect is mainly due to

the relative interconnect capacitances tending to a very low value.

Figure (2) shows the actual silicon layout of four different speed

performance decade counters produced by this program. The rise in

area was quite pronounced as shown in Figure (3) which shows the

area of a decade counter at various speed requests.

It was found that a useful PLA speed range of about 10:1 could

be produced by the program. At low speeds, the depletion pull-up

devices started to consume too much area and at high speeds the

enhancement pull-downs started to cause an area explosion as the

relative interconnect to active-area capacitance tended to very low

values.

It was felt that although little could be done to avoid this

area explosion and therefore little done to produce clocking rates

beyond a critical point just after this takes place, the program

would go some way to optimising the performance of a compiled syn-

chronous control system which is based on a number of different

software generated PLA's.

The PLA compiler was used to produce several silicon layouts of

counters which were subsequently fabricated and exhibited maximum

clocking rates slightly greater (about 20%) than that requested by

the software.

Start

232

Estimate Capacitance in
Vertical Section of 'OR'

Plane.

From Enhancemt Aspect
Ratio, CoIc. Capacitance
in Horizontal Section of

PLA. (Product Uneg)

From Speed Requested
CaIc. Depletion Pull Up
Aspect Ratio('AND' Leg)

From Speed Requested
Calculate Input Buffer
Aspect Ratio's

From Speed Requested
CaIc. Depletion Pull Up
Aspect Ratio('OR' Legs)

From Depletion Aspect
Ratio, Calc. Enhoncemt
Aspect Rotio('OR' Legs)

From Depletion Aspect
Ratio. Calc. Enhoncemt
Aspect Ratlo('AND' Leg)

From Enhancemt Aspect
Ratio, Caic. Capacitance
in Vertical Section of
'AND' Plane

Yes Significant

Geometry Revision

'. Required? ,

No Compile Silicon

> Layout of PLA

Stop

Figure 1

233

41,

lit Li

N. YVV.Vh R.

-

2 M Hz

u

4 M H z

lf~ 1011. 1glo

 NNW
ii

1" :MW 1xr' it 	II

ILtIttti1ttt1II

it

3M H z
	 B M Hz

Figure' 2. Silicon Layout from Silicon Compiler

PLA Performance

234

PLA Area

5

4

3

2

I 	I 	I 	I 	I 	I>

2 	3 	4 	5 	6 	MHz

Figure 3

1PPENDIX 2

AUTHORS

PUBLICATIONS

ADIX-2 FFT BUTTERFLY PROCESSOR
	

In 2's complement notation, an N -bit digital word can be

SING DISTRIBUTED ARITHMETIC
	

represented as:

Indexing terms: Computers. Fast Fourier transforms. Pro-
cessors 	 -

A parallel-data VLSI architecture for computation of the fast
Fourier transform lIFT) is described. The processor is based
on a computationally efficient vector rotate algorithm. Use
of a 2-dimensional pipeline configuration allows a radix-2
butterfly operation to be performed once every system clock
cycle (250 ns) to generate real or Imaginary transform com-
ponents. The architecture is considered to be a computa-
tionally efficient VLSI approach for high-bandwidth
computation of the FIT. The design and performance of an
8-hit FFT huttertl% processor are described.

'entral to computation of the FFT algorithm' is a require-

tent for vector rotation (multiplication by a unit vector). The

ector rotation involved in the computation of the FFT
uttertly can be written

Re Z = Re B .Rc U' - Em B . Em IV} 	(1)

Em Zk = Re B . Em ji'• + Em B . Re 	(2)

here B is the input data sector. Z is the output data vector

nd U' is a unit vector termed the 'twiddle factor'. 2 Thus

irect implementation of vector rotation involves four multi-

lications plus an addition and a subtraction. Computation of
ie Radix-2 FFT butterfly requires a further two additions
nd two subtractions.
The algorithm employed in the processor considered here is

ased on the fact that when the outputs of two or more digital
hilt-and-add) multipliers are involved in subsequent arith-
etic operations such as addition or subtraction, more ciii-

ient use can be made of the multiplier structure using
istributed arithmetic techniques.'
For the vector rotation arrangement described by eqns. I

nd 2. there exist only four possible ways in which the Se-
arate components of Z considered on a bit-by-bit basis will

e modified by the results of the multiplication operations.

'hese are described in Table 1.

able I PARTIAL PRODUCT FORMATION IN
VECTOR ROTATION

Twiddle factor U' 	Resulting partial product Z
(bit level) 	 (word level)

ReEm (3'} 	Re {Z} 	 Im Z}
o 	0 	 0-0 	 0+0
0 	 1 	 0 — Im f B Ij Re{B}+0

1 	0 	ReB}-0 	 0+Im{B}

1 	1 	ReB}—Im{B} Re'B}+Im{B}

If. instead of using Re B} and Im W
, . the values

= [Re B} + Im B],. 2 and K' = [Re jw - Em .'B}J" are
iade available, it is possible to compute each of these four
ossible modifications to the partial products of Z for each bit
I W as shown in Table 2.

'able 2 PARTIAL PRODUCT FORMATION USING
DISTRIBUTED ARITHMETIC

Tiddle fziunr tV 	 R,ulting partial product Z
itiit le%elI 	 1 word level)

te :ts' 	I 	w: 	Re ;z: 	 Im z;
o 	0 	K' - [R :s: - lm 8] 2 	K - [Re :8) + Im B)J12
o 	1 	K'— (Re 8 	tmB)i'2 	K+ (Re B}—lm)8(],/2
I 	 0 	K'' (Re B: tm8) , 2 	K— (Re 8)—lmB)]/2

K' + (Re B - tm 8) 2 	K + (Re 8) Im {B)]/2

here K = [Re 8 + im 8]2 and K' (Re 8 - tm 8],2

The K and K' terms as defined in Table 2 are independent
I W and can therefore be derived separately from the main
ccumulation process.

A = —a02°
± 	

ca,.2"n 	 (3)

Table 2 can be further simplified since, using 2's complement
notation, the subtraction of K' involved in the most significant
partial product formation would serve to cancel the accumula-
ted (increasing significance) K' terms, except for a lowest sig-
nificance term in K'. For the Em Z partial products, a
similar argument applies for K. The individual partial prod-
ucts of Z can thus be formed by an add or subtract operation
involving K or K' at each computation cycle. The selection of
K or K' is made on the basis of the exclusive OR or exclusive

NOR combination of Re { Wt, and Em W}. The add'subtract
selection is made on the basis of Re W or Em' W', for
Re {Z} or Tm respectively (see Table 2),

The salient feature of this algorithm is that Re 'Z} can be
formed by a single accumulation-type operation, and similarly
Im 1, Z 11 can be formed by a separate accumulation operation
thus permitting the design to partition into two identical parts
with a single control line to define real or imaginary outputs.

This distributed arithmetic algorithm has been realised as a
single monolithic circuit based on a 2-dimensionally pipelined
configuration which allows the constant throughput of paral-
lel data. The chip architecture incorporates an array of 2-bit-

4.8

input pads and multiplex

fast add and subtract (KK)

array initialisation

WHL*tJI.II.

1_~_

"sums
carries

Isw

4.8W

ft odd and Subtract

ristate output pads and multiplex

4.8W
	MM

I-11 A-BW

Fig. I Block diagram of distributed arithmetic processor

sum in 	K K' carry in

K Skim rryPc' 212
out Out

Fig. 2 Basic cell

data
selec

Clock

add I
Sub

clock
out

control

eprinted from ELECTRONICS LETTERS 20th January 1983 Vol. 19. No. 2PD. 43-44
	

235

shift registers which shift the (modified) input words K
K' separately from lop-to-bottom' of the chip through an
y of full adder cells. Fig. 1. A data select on these two

it words I K and K) is performed at the inputs to each full
er cell under the control of the exclusive-OR or eclusive-
R block which operates on the separate bits of Re { W}
Im (see Table 2). The word selected (i.e. either K or
at each full adder is then either added to, or subtracted
i. the accumulated partial product as determined by the
ropriate bit of Re' W', (for the Re I ZI accumulator) or

W (for the Im ', Zt accumulator). Fig. 2. A time wedge
ed on the W input port ensures that a constant data
)ughput can be maintained in the pipeline.

elusion: A 2-dimensionally pipelined FFT butterfly pro-
or based on a distributed arithmetic algorithm has been
)rted.
n 8-bit processor based on this algorithm has been fabri-

on a 5 pm single polysilicon. single metal, N-channel
ancement depletion MOS process. The chip, measuring 6-7
63 mm. contained approximately 8000 transistors. Power

consumption was 0-5 W at the designed speed of 4 MHz. The
rchitecture discussed here is currently being extended to a

16-bit CMOS-SOS implementation, using 15 pm geometries.

Acknowledgments: This work was carried out under a UK
Science & Engineering Research Council grant.

I. R. MACTAGGART 	 3rd December 1982
M. A. JACK

Department of Electrical Engineering
University of Edinburgh
Mayfield Road. Edinburgh EH9 iii... Scotland

References

I coot.ay, j. w., and TUKEY, j. w.: 'An algorithm for the machine
calculation of complex Fourier series. Math. Corn put.. 1965. 19

2 BRIGHAM, E. 0.: 'The fast Fourier transform (Prentice Hall. 1974)
3 WHITE, S. A.: 'A simple FFT butterfly arithmetic unit'. IEEE

Trans.. 1981. CAS-28

0013-5194/83/020043-0251.50/0

236

A DISTRIBUTED ARITHMETIC RADIX-2 FFT BUTTERFLY PROCESSOR
	

237

A DISTRIBUTED ARITHMETIC RADIX-2 FFT BUTTERFLY PROCESSOR

I.R.Mactaggart and M.A..Jack
Department of Electrical Engineering,

Edinburgh University,
Scotland

Abstract
An efficient distributed arithmetic architecture for computation

of the Radix-2 FFT butterfly is reported. Results for a prototype NMOS
processor exhibit data rates in excess of 8 Mbytes/second.

I. Introduction
This paper describes an eight-bit NMOS processor chip based on an

efficient, distributed arithmetic complex multiply algorithm [1,2]. The
algorithm is used to compute the Radix-2 FFT Decimation-in-Time
"butterfly" (3]. This approach to the computation yields a highly
regular structure which is particularly advantageous with parallel
arithmetic systems.

2. 	The Algorithm
The FFT algorithm, like the OFT, has a requirement for vector

rotation. This can be realised conveniently as the multiplication by a
unit vector in a cartesian coordinate system. The equations for this
vector rotation can thus be written as

Re(Z} = Re(B}.Re{W} - Irn{B}.Im{W} 	(1)
Im{Z} = Re{B}.Im{W} + Im(B}.Re{W} 	(2)

Where B is the data vector, Z is the output vector and W is the unit
vector coefficient used to rotate B. A direct implementation of these
equations requires four multiplies and two additions. The Radix-2
butterfly requires a further four real additions [3].

If, instead of using Re{B} and Im(B}, two new inputs, defined as K
= [Re{B} + Im(B}]/2 and K [Re(B} - ImfB}]/ 2 are made available at
various levels of significance, then it is possible to merge the partial
products of the Re{Z} multipliers together in a single accumulator
structure, and similarly it is possible to merge the Im{Z} multiplier
partial products into a single accumulation, as illustrated in Table 1

Coefficient (W)
	

Resulting Partial Product (Z)

(bit level)
	

(word level)

Re (WI 	Im{W}
	

Re { Z }
	

Im{Z}

O 	0 	K-[Re{B}-Im{B}J/2 	K-[Re{B}+ImB}}/2
0 	1 	K-[Re{B}+Im{B})/2 	K+[Re{B}-Im{B})/2
1 	0. 	K+[Re{B}+ItniB}1/2 	K-[Re(B}-Im(B}]/2
I 	I 	K-[Re(B}-Im(B}]/2 	K+[Re{B}+Im{B}]/2

Where K = [Re{B}+Im{B}J/2 and K = [Re{B}-Im(B}]/2

Table ! Showing Formation of Z using Distributed Arithmetic

A DISTRIBUTED ARITHMETIC RADIX-2 FFT BUTTERFLY PROCESSOR 	238

Table I illustrates how the exclusive-OR and 	exclusive-NOR
combination of the individual hits of Re{W} and lm(W} can be used to
control the selection of words K or Kand how the ReW} hit or ImJ}
bit, for Re{Z} or Im(Z} respectively, can be used to control the
add/subtract operation.

The salient feature of this algorithm is that Re{Z} and likewise
Im{Z} can be formed in a single accumulation type of operation thus
allowing the design to partition into a single programmable distributed
arithmetic array, capable of computing either Re{Z} or Im[Z} every clock
cycle.

3. 	Chip Architecture
The chip consists of an array of two-dimensionally pipelined cells

of the type shown in Figure 1. These cells each contain a two hit wide
shift register which carry K and K through the chip from top to bottom.
At each cell, a data-select is performed under the control of the
exclusive-OR/exclusive NOR gates.

The full adder used in the basic cell makes use of inverter-
controlled data-select exclusive OR gates. The add and subtract control
signal is fed horizontally through the cell array. A fast adder and
subtractor is used at the input to generate K and K and similarly a
fast add is used at the output to assimilate the sums and carries of the
full adder array. The fast adder uses a pre-charged carry chain and was
designed to operate with a settle time of 65nS, worst case. Other main
features included a time wedge placed on the coefficient (W) input port,
a multiplexer on both input and output ports, tn-state output pads and
system control logic.-

INPUT 	K K' INPUT

DATA-SELEC
CONTROL

CLOCK IN

ADD/SUB
CONTROL

CLOCK OUT

(K S C K')

FIGURE 1 Showing Basic Cell

4 31J

,
4 4•1 4 • j 4 4•.a

y
4 j • J j . a 4 4•J

4
 •4a' 	'a'

aAIJ Lii,

1 r,
1 Lji

f rT' Ii

p 	r.p r r.p
4 4 . j 4.4 4 A.a

(A+BW) Irnag

(A+Bw) Real

(A-Bw) Imag

(A-Sw) Real

(A±Bw) Imag

(A+Bw) P.eal.

(A-Bw) Imag

(A-BW) Real

(A+Bw) Imag

(A+Bw) Real

(A-Bw) Imag

(A-Bw) Real

A DISTRIBUTED ARITHMETIC RADIX-2 FFT BUTTERFLY PROCESSOR
	

239

COEFFICIENT

C
-3

C

-3

0
-

0
'1

Figure 2 Photograph of Radix-2 FFT Butterfly

Output Sequence

Dç (Shifted Ri)

D5

D4

D3

n-fl_
Di 	 qfl_
Do 	 ILflfl_

S7

S6

S5

S4

S3

S2

Si

So

Figure 3 Dynamic Operation at 414bytes/s. as Recorded by

Logic Analyser

A DISTRIBUTED ARITHMETIC RADIX-2 FF1 BUTTERFLY PROCESSOR 	240

Performance
The chip was fabricated on a 6 micron single polysilicon, single

metal, N-channel enhancement/depletion MOS process, Figure 2. The chip
measured 6.7 by 6.3 mm and contained around 8000 transistors. With a
process yield of about 5% a number of devices were obtained and bonded
up. Chip parameters are shown in Table 2. 	Logically, the chip
performed as predicted. 	Figure 3 shows the input and output logic
signatures obtained by feeding in four cycles of data equal to the
reciprocal of the square root of two (01011010) for all inputs, and then
four cycles of zeros, followed by four cycles of the negative of the
reciprocal of root two (10100110) for all inputs. The figure shows the
latency of the pipeline and its operation under dynamic conditions for
this input sequence. This test was performed at 4 Mbytes/second.

Parameter 	 Value

	

Computation Cycle 	250 	nS

	

Data Rate 	8 M Bytes/s

	

Word Length 	8 Bits

	

Power Consumption 	0.5 Watts (Average)

	

Package 	40 Pin Dii

Table 2 Showing Chip Parameters

Conclusions
This paper has described a working monolithic FFT butterfly

circuit based on a distributed arithmetic algorithm for computation of
the complex multiply. It is evident that the resulting distributed
arithmetic structure is area efficient and highly regular. Results for
the 6 micron prototype are encouraging and given a commercial quality
process, an order of magnitude improvement can be expected. The chip
does, however, serve to illustrate the modularity afforded by this
algorithm for systems based on parallel data flow.

It is possible to remove the requirement for a fast add by
inserting extra delays in the horizontal and vertical hit streams. This
approach is more suitable for larger word lengths. A 16 hit version of
the chip with these extra delays included, is currently being designed
for a high performance CMOS-SOS process using 3.5 micron geometries.

Acknowledgments
This work was carried out under a UK Science and Engineering

Research Council Grant.

References

Stanley A. White : "A Simple FFT Butterfly Arithmetic
Unit",
IEEE Transactions on Circuits and Systems,
Vol-CAS-28 No.4 April 1981
I. R. Mactaggart and H. A. Jack : "Radix-2 FFT
Butterfly Processor
using distributed arithmetic"
Elecronics Letters Vol-19 No-2 January 1983
L. R. Rabirter and B. Cold 	"Theory and Application
of Digital Signal Processing'.
Prentice Hall (1975)

A DISTRIBUTED ARITHMETIC RAUIX-2 FF1 BUTTERFLY PROCESSOR

l.R.Mactaggart and M.A.Jack

241

Edinburgh University, Scotland

INTRODUCTION

Real time computation of the Fast Fourier Transform
(FFT) is assuming an increasingly important role in
wideband communication systems. circuItS
traditionally implemented using analogue techniques
will be implemented digitally as the price of digital
signal processing falls. This is possible because
very fast analogue-to-digital converters are becoming
available (1) to enable these fast processors to
operate at their full capability. High bandwidth
FFT's, however, require dedicated hardware to achieve
the necessary performance. These large arithmetic
overheads demand special consideration for cost
effective solutions. it will be Shown how
distributed arithmetic techniques can be used to
achieve regular and efficient VLSI designs in the
special case of 2-dimensional array structures. An
example is given of a FF1 butterfly arithmetic unit
which has been designed and fabricated in NMOS and is
streamlined to computing complex arithmetic with the
throughput equivalence of two real parallel
multipliers on a single chip. A 16 bit CMUS-SOS
design to be fabricated in November '83 is compared
with the NMUS design.

The Complex Multiply

The FF1 álgoithm (2), like the 	OFT." has 	a
requirement for vector rotation. This can be
realised conveniently as the multiplication by a unit
vector in a Cartesian coordinate system. The
equations for this vector rotation can thus be
written as

Re(Z) 	Re(B).Re(W) - Im(B),Im(W) 	(1)
Im(Z) 	Re(B),Im(W) + Im(B).Re(W) 	(2)

Where B is the data vector, 2 is the output vector
and W is the unit vector coefficient used to rotate
B. A direct implementation of these equations
requires four real multiplications and two additions.
The Radix-2 butterfly requires a further four real
additions (2). If we assume a standard shift-arid-add
multiplier scheme then we can construct a table
showing the partial product formation as a function
of the Inputs. This is shown in Table 1.

Coefficient (14) 	Multiplier Partial Product (2)

	

(Bit-level) 	 (Word Level)

	

nth bit 	 shifted n places

Re(W) Im(W) Re(Z) tin(Z)
O 0 (0 	- 	0) (0 	+ 	0)
o 1 (0 	- 	lm(B)) (Re(b) 	+ 	0)
1 0 (Re(B) 	- 	0) (0 	liii(B))
1 1 (Re(S) 	- 	iii(B)) (Re(S)

Ml 	M2 M3 	M4

FOUR MULTIPLIERS Ml -

Table 1 Showing Partial Products

Mill tip Ii cation

In the conventional approach the final product Of

multiplier M2 is subtracted from MI to form Re(Z) and
M4 is added to M3 to form im(Z). There is, however,
no need to defer this subtraction and addition until
final product formation in the multipliers. In
distributed arithmetic (3,4), we no longer consider
the multiplication as an individual isolated function
• but instead we try to derive how the formation of
Re(Z) and im(Z) can be accomplished given special
distributed arithmetic operands which are elementary
only to the complete function (In this case, the
complex multiply). If then, instead of using Re(B)
and Im(B), two new inputs, defined as K = (Re(S) +
Im(B))/2 and K (Re(S) - Im(B))/2 are made
available, multiplied by some integer power of two
(shifted), it is possible to form the Re(Z) and lm(Z)
complex partial products in a single accumulator, as
illustrated in Table 2. This approach is not only
algorithmically efficient, but, also important,
yields a highly regular, and area efficient
structure, since real or Imaginary merged partial
products can be formed at each node in the
distributed arithmetic array during each clock cycle.

Coefficient (14) 	Resulting Partial Product (Z)

(Bit-level) 	 (Word level)

Re(W) Im(W) 	Re(Z) 	 Im(Z)
* 	 4

	

K'-(Re(B)-Im(8))/2 	K-(Re(B)+Im(B))/2

	

K'-(Re(B)+Im(8))/2 	K+(Re(B)-lm(B))/2

	

K'+(Re(B)+Im(B))/2 	K-(Re(B)-im(l3))/2

	

K'+(Re(B)-Im(b))/2 	K+(ke(8)+lm(B))/2

Where K 	(Re(B)+Im(B))/2 and K' 	(Re(B)-Im(B))/2

4: 14 independent - do NOT enter accumulator

Table 2 Showing Formation ofZ

RjjU Distributed Arithmetic

Table 2 Illustrates how 	the 	exclusive-OR 	and
exclusive-NOR combination of the individual bits ot
Re(W) and Im(W) can be used to control the selection
of words K or K' and how the Re(W) bit or Im(W) bit,
for Re(Z) or Im(Z) respectively, can be used to
control the add/subtract operation. The salient
feature of this algorithm is that Re(Z) and likewise
Im(Z) can be formed in a single accumulation type of
operation thus allowing the design to partition into
a single, programmable, distributed arithmetic array,
capable of computing either Re(Z) or Im(Z) every
clock cycle.

Chip Architecture

The chip consists of an array of two-dimensionally
pipelined cells of the type Shown in Figure 1. These
cells each contain a two bit wide shift register
which carries K and K' through the chip friu. to r.,
bottom. At each cell in the .irrdy, , a da ti-SI

242

performed 	under 	the control of thexclusive-
OR/exclusive NOR gates. The full adder 	in the

basic cell makes use of inverter-conlr(, l led data-

select exclusive OR Yates. 	The add 	subtract

control signal 	is fed horizontally thruul' the cell
array. A fast adder and subtractOr is 	su at the

input to generate K and K' and similarly r, hst adder

is used at the output to assimilate the sums and
carries of the full adder array. The fast edder uses
a pre-charged carry chain and was designed to operate
with a settle time of 65nS, worst case. Jther main
features (Figure 2) include a time wedge placed on
the coefficient (W) input port, a multipler on both
input and output ports, tn -state output pads and
system control logic.

Sum in 	K K carry in

data
selec

clock

add
Sub

clock
Out

Conclusions
This paper has described a working monolithiC 	FT

butterfly processor based on a distributed arithmetic
algorithm for computation of the conuple ivimitiply.

The resulting distributed arithmetic structure is
area efficient and highly regular. Results for tile
prototype are encouraging and designs have been
completed for a high performance 16-bit CMOS-sOS
version. The lIMOS chip does, however, serve to
illustrate the modularity afforded by this algorithm
for systems based on parallel data flow.

The 16-bit CMOS-SOS design features d two

dimensional pipeline structure and incorporates etre
delays in the horizontal and vertical bit streams -
an approach whiCh is more suitable for larger wori
lengths. The device should be capable of operat1r
at data-rates of around 20 million (couples)
multiply, sort and accumulate operations per second.

Acknowledgments

This work was carried out under a UK Science and
Engineering Research Council Grant.

REFERENCES

Blauschild Robert A. : "An Sb SOns Monolithic 4/0
Converter with Internal S/H." Digest of Technical
Papers ISSCC 1983 pp.178-179 	-

L. R. Rabiner and B. Gold 	"Theory 	and

Application of Digital Signal Processing". Prentice

Hall (1975)

Stanley A. White 	"A Simple FFT Butterfly
Arithmetic Unit". IEEE Transactions on Circuits and
Systems, Vol CAS-28N _ 0.4 April 1981 pp.352-355

1. R. Mactaggart and N. A. Jack : "Radix-2 FFT
Butterfly Processor using Distributed Arithmetic"
Electronics Letters Vol.19 No.2 January 1983 pp. 43-4b

K sum (wry K
Out Out

	

Figure 1: 	Basic Cell

Performance
The chip was fabricated on a 6 micron 	single
polysilicon, single metal, n-channel
enhancement/depletion MOS process and measured 6.7rn
by 5.3 mn, containing around 8000 transistors. With
a process yield of about 5% a number of devices were
obtained and bonded up. Chip parameters are shown in
Table 3. The chip performed functionally as
predicted. Figure 3 shows the input and output logic
signatures obtained by feeding in four cycles of data
equal to the reciprocal of the square root of 2
(01011010) for all inputs, and then four cycles of
zero's, followed by four cycles of the negative of
the reciprocal of root 2 (1010011U) for dil inputs.

Figure 2 shows the latency of the pipeline and its
operation under dynamic conditions for this input
sequence. This test was perforou at 4
Mbytes/second.

Parameter 	 Value

'p

Computation Cycle
Data Rate

Word Length
Power Consumption

(Average)
Package

250 n
b B Bytes/S
B Bits

II. S 	Watts

40 tin Dii

Table 3 Showing Chip Parameters

A ,B

I 	INPUT PADS and MULTIPLEX

FAST ADD and SUBTRACT (K, K)

ARRAY INITIALISATION

'C ----------------
+ ___ 	-------------------------- +

I-. I— 	
- 	

-
+

---------------+

I j- ' SUMS

8W

A+BW

Re/Irn

	

	 FAST ADD and SUBTRACT

TRI-STATE nd MULTIPLEX

A+BW
A-BW

Figure 2: 	Floorplan

Output Sequence

11J1__JUI____ 	D7 D0 (Shifted RI)
D5

D4

________________n__
88088888
80888888
81181188 	(A+BW) leag

03
_________________________I•1_______

r_ji_____ 	80181181 	(A+Bv) Real
02

11181181 	(A-8') us Iag

______________________________flJ1. 88101181 	(A-SW) Real
Do

88888880 	(A+BW) teag

88888880 	(A+BW) Real

88888888 	(A-BW) Imag

80888888 	(A-Bw) Real

S4 	

80018801 	(A+BW) 1-9

11018811 	(A+BW) Real

10818188 	(A-By)

1-9
S3 fl

11818811 	(A-By) Real
S2 88888888
St

omen
SO

243

Figure 3: 	Typical Test Results

IEEE JOURNAL OF SOLID-STATE CIRCUITS. VOL. SC-19. NO. 3. JUNE 1984

A Single Chip Radix-2 FFT Butterfly 244

Architecture Using Parallel Data
Distributed Arithmetic

I. ROSS MACTAGGART AND MERVYN A. JACK

REAL-TIME digital signal processing favors the use of
very high-speed parallel data arithmetic operations.

Distributed arithmetic techniques [ii, [21 offer a means of
mapping parallel data systems onto silicon with a high
degree of regularity and efficiency. The specific structures
considered here are two versions of a Radix-2 Butterfly
processor for computation of the fast Fourier transform
(FFT) algorithm [31, using distributed arithmetic.

The FFT algorithm is introduced and discussed briefly
to highlight the Butterfly processing requirements and to
indicate how distributed arithmetic approaches can be used
in this processing task.

The paper includes a detailed discussion of the distrib-
uted arithmetic reformulation of the FFT Butterfly to show
in detail how the silicon floorplan for the Butterfly
processor can be derived.

Using an available, in-house NMOS process a prototype
8-bit processor has been realized to validate the distri-
buted arithmetic architecture. Details of this design are
presented and test results together with performance data
for this chip are discussed. A similar, but much more
powerful 16-bit CMOS-SOS design with modified architec-
ture using a commercially available process will also be

described.

Manuscript received October 1. 1983: revised December 21, 1983. This
work was supported by a Science and Engineering Research Council
Grant.

The authors are with the Department of Electrical Engineering. Univer-
sity of Edinburgh. Edinburgh EH9 31L. Scotland.

11. THE FFT ALGORITHM

Of the several important FFT algorithms which have
been developed for efficient computation of the discrete
Fourier transform (DFT) 131. the most widely used is the
Radix-2 decimation-in-time FFT [3], [4], where the trans-
form length (N) may be any positive integer power of 2. A
symbolic representation of this algorithm is shown in Fig. I
for N = 8. Here, the time-domain sequence (x,,) is con-
verted to the frequency domain sequence (X,,) by means of
12 identical processing nodes, each of which is known as a
Butterfly. Each Butterfly processing node consists of a
two-point DFT (vector add and subtract), symbolized by
the circle in Fig. 1, with a vector rotation requirement
(multiplication by a unit vector) on one of the inputs,
symbolized by the arrow in Fig. 1. It is this vector rotation
requirement which dominates any silicon implementation
of the Butterfly since this entails a complex multiplication
for each Butterfly operation.

Abstract —This paper describes how distributed arithmetic techniques

can be applied in parallel-data arithmetic computations to achieve highly
regular and efficient VLSI structures on silicon. Two individual arithmetic
processor chips are described as examples of the technique.

The chips described, which are intended primarily for computation of the
FIT Butterfly, each contain the functional equivalence of two parallel

pipelined multipliers.
The first chip is an 8-bit prototype device which has been designed and

fabricated on a standard 5 sm silicon gate n-channel MOS process. The
second chip is a 16-bit CMOS-SOS design which uses a modified architec-
ture to achieve higher clocking rates and improved versatility in systems

use.

I. INTRODUCTION

III. DISTRIBUTED ARITHMETIC CONCEPTS

Complex multiplication involves four real multiplica-
tions, plus an addition and subtraction as shown in Fig.
2(a), to implement the equations

Re(Z) =Re(B}.Re(W)_Im(B).Im(W) (1)

Im(Z) =Re(B),Im(W)+Re(W}m(B). (2)

It is clear, from Fig. 2(a), that the two multiplier struc-

ture used to form Re (Z) is essentially the same as the two

multiplier structure used to form 1 i (Z), differing only in
an add and subtract. This two multiplier structure might
therefore be considered to be a suitable candidate for a
VLSI implementation of the complex multiply requirement
of the Butterfly. In the case of parallel arithmetic, however,
this general structure does not map onto silicon very
efficiently due to problems arising from bus interconnec-
tions and irregular multiplier structures when special multi-
ply algorithms, such as Booth's [51, are used. For this
reason, as well as for yield considerations, current parallel-
data Butterfly devices use a single, multiplexed, parallel

multiplier.
This paper shows how it is possible to replace the two

parallel multiplier structure in Fig. 2(a) with a single dis-

001 89200/84/0600-0368$01 .00 101984 IEEE

MACTAGGART AND JACK SINGLE CHIP RADIx•2 EFT BUTTERFLY ARCHITECTURE

FIRST PASS 	 SECOND PASS 	THIRD PASS
245

Fig. I. 8-point FFT.

R.(8)
R R.(W) 	 .(Z)

In(0)
IM(W)

II

B— 	+jo

I 	+
w

Fig. 2. Distributed arithmetic concept.

tributed arithmetic array which is regular and maps onto
silicon efficiently. This is achieved in distributed arithmetic
by bringing forward the final add and subtract in the
complex multiply structure of Fig. 2(a) to the level of
multiplier partial product formation, in order to form new
unique arithmetically merged partial products which can
be stored in temporary data registers. This allows the
formation of real and imaginary complex outputs (Z) by
performing a data-select and accumulate operation on these
new merged partial products. The importance of this refor-
mulation is that the resulting structure [Fig. 2(b)] involves
only a single accumulator and therefore allows a highly
regular VLSI structure. The distributed arithmetic ap-
proach Eli is generally useful when the products of more
than one multiplier are subsequently combined in other
arithmetic operations such as add or subtract to form a
single output. In the case of the complex multiply, as
described in (1) and (2), the real output requires two
individual multipliers, each with two possible partial prod-
ucts. The same is true for the imaginary output. The two
shift and add multipliers thus present four possible combi-
nations of partial products, corresponding to the four
possible combinations of the two real and imaginary coeffi-
cient bits being considered. It is the number of combina-
tions of partial products that is important, as this de-
termines the number of arithmetically merged distributed
arithmetic partial products that will need to be stored. It
will be shown later, however, that only two merged partial

products are nontrivial in this case, and actually need to be
stored.

Let us assume that N-bit, fixed point, two's complement
arithmetic is used so that Re(W) and Im(W) might be

described as
–1

	

Re(W)—WRO+ 	WRn
'
-
•" 	 (3)

nL

N—i

	

lm(W)=—W,o+ 	 (4)
n'i

This allows equation (1) for Re { Z) to be expressed as
N–i 	 1

Re(Z)1 — WRO+ 	wRfl .2 1 . Re(B)
L 	nI 	 i

[N–i

- —wto+ 	W.2H.Im(B)
(5)

ni

Combining the separate summations into one summa-
tion and decoding all possible combinations of the real and
imaginary w bits to select these new merged partial prod-
ucts gives

Re(Z) _'RO 'IO(0)

• WRO . W,O(Im(B))

•WRO.W,O (Re(B})

+WRO.W,O (— Re(B)+Im(B))

- I

+ :
+WRfl .W, fl (Im(B})

+ WR fl . W, fl (Re(B))

+ WR fl . W, fl (Re(B)—Im(B))] 2". (6)

Equation (6) shows how Re (Z) can be formed in a
single accumulator by selecting one of four merged partial
products. This was not the chosen solution, however, as
only two are actually required if we define

K=(Re(B)+Im(B))/2 and

K'= (Re (B)—Im(B))/2. 	 (7)

Replacing the Re (B) and Im (B) terms in (6) by the K
and K' terms shown in (7) (and Table I), yields (8), which

246 	
IEEE JOURNAl. Of SOLID-STATE CIRCUITS, vol. sc-19. NO. 3. JUNE 1984

TABLE I

PERFORMANCE

PARAMETER NMOS CMOs—SOS *

CLOCK CYCLE 250 	S 25nS

DATA RATE 8 M Wd./. 40 M Wd./.

WORD LENGTH 6 site 16 Bit.

POWER 0.5 Watt. 0.25 Watts

PACKAGE 40 Pin Dii 64 Pin Dii

* Available for testing December 83

:an be further simplified to give (9):

Re(Z) =WRO •W, o (— K'+ K')

+WRO W, o (K'+ K)

• WRQW,Q(— K'— K)

• WROW,o(— K'— K')
- 1

+
'I 	I

'R fl "! fl (K 	K)

WR,,.W, fl (K+ K)

	

WRfl .WJfl (K+K)1 2 	(8)

Re(Z) = - K'.2''+W 0 W, 0 (+ K')

+WR0 WIO (+ K)

• WRO•W,Q(— K)

• WRO . WJo(— K')

IV-1
+ 	[+WRfl .W, fl (—K')

+WRI •W, fl (K)

+WRfl .W, fl (+ K)

+WRfl .Wffl (+K)]'2. (9)

Equation (9) shows how Re(Z) can be formed in a
single accumulator by adding in or subtracting a selected
K or K' as a function of the real and imaginary w bits.

The selection of K or K' can be based on the Exclusive-OR
of the i ii and imagir.ary w bits and the add/subtract
logic can be derived from the appropriate w bit directly, as
shown in (10):

Re(Z) = - K'.2'+WRo (WRO W,o)(+ K')

+WRO (WROOW, o)(+ K)

• WRO(WRoW,o)(— K)

• WRQ(WROeW, O)(— K')

',' + 	
[+WRfl (wR fliW, fl)(— K')

+WRfl (WRfleWJC)(—K)

• WR fl (WR fl W4r fl)(+K)

• WR fl (WRflW,j(+ K')1.2" (10)

The expression for lm (Z) can be obtained similarly.
giving

	

lm(Z) = - K•2 	+W',o (W,QVRo)(+ K)

+ W,Q (W,WRo)(— K)

+W,O (W,WRo)(+ K)

+ W,O (W, QeJVRO)(— K')

+

+W,,,(W,,W R)(+ K)

+W, fl (w,,wgfl)(— K)

+ LV,(+ K')] .2_v . (Il)

Table I depicts this algorithm for nonsign bits only.
alongside the conventional arithmetic approach using shift
and add multipliers. This table serves to illustrate how the
individual merged partial products in the distributed arith-
metic approach are related to the individual partial prod-
ucts in the conventional shift-and-add multiplier scheme.
For example, in the Re(Z) formation columns (1-4) of
Table I, row 3 shows how Re(B) can be expressed as
K'+ K. with a W independent K' term. In the same
columns, row 4 shows how Re (B) - Im (B) can be ex-
pressed as K ' + K'.

In the shift and add multiplier, the final product is
formed by the successive accumulation of partial products
which are formed by the logical "AND" of the data word
(B) with successive coefficient bits (W) at various levels of
significance which are all powers of 2. The partial products
for the four multipliers in the conventional arithmetic case
are shown in columns 1,2; 5,6 in the table as a function of
the individual bits of W. Table I shows how the data word
is added in, only if the coefficient bit (W) is a "1."
However, in the conventional approach, the final subtract
(for Re(Z)) and add (for Im(Z)) is not considered until
final product formation in the individual multipliers. Table
I shows how the final add and subtract operation can be
brought forward to the level of partial product formation
so as to form four new merged partial products. Thus,
individual multiplier partial products in columns 1 and 2
are now considered to be combined arithmetically to form
a single column containing merged partial products for
Re(Z). Similarly, columns 5 and 6 are now considered to
be merged to form a single column from which Im (Z) can
be formed directly. Table I goes on to show how these
merged multiplier partial products can be replaced with the
expressions involving K and K' (7) in columns 3.4.7,8.
The K' term in column 3 for Re(Z) and the K term in
column 7 for Im { Z) are both independent of the V
coefficient bits. This means that these columns do not need
to be included in the main accumulation process used to
form real and imaginary Z. Instead, they can be accounted
for during array initialization. The table shows how, by the
W-controlled selection of + K, - K, + K', - K' [+/—(K

MACTAGGART AND JACK: SINGLE CHIP RADIX-2 FF1 Bt'TrERFLy ARCHITECTURE 	

247

Fast Add and Subtract l (K.K')

flit
W

2: 	 SUWS

I-

Fig. 3. Floorplan of NMOS chip.

or K')] (as shown in columns 4 for Re(Z) and column 8
for lm{Z}). the complex product Re (Z) and similarly
]in {Z} can be formed in a single data-select and accu-
mulate structure. It can be seen how an Exclusive-OR/NOR
type relation of the W bits can be used to select either K
or K' and how the real W bit (imaginary W bit) can
determine whether this selected K or K' is added or
subtracted for Re(Z) (Im(Z)).

IV. DISTRIBUTED ARITHMETIC ARCHITECTURE

Using these distributed arithmetic concepts. the two
multiplier structure of Fig. 2(a) can now be replaced with a
regular array of bit-level data-select/accumulate cells to
form the floorplan of the 8-bit NMOS chip shown in Fig.
3. Data words (A. B) enter the chip and are demultiplexed
into real and imaginary components. A fast adder and
subtractor is used at this point to convert Re(B) and
Im (B) to K and K', (7) which are then fed down to the
first row of cells in the distributed arithmetic array. to-
gether with an array initialization word which comprises
the very low significance - K' or - K present as the first
term in (10) and (11) and a rounding word which is fixed.
This rounding word was equal to the mean value of all the
sums which had to be truncated in the array. At each cell.
K or K' was selected under the control of the Exclusive-OR
(Re(Z)) or Exclusive-NOR (lm(Z)) gates whose inputs
were the real and imaginary W coefficient bits. Each cell
was also fed an add/subtract control signal which was
derived from the buffered real or imaginary W coefficient
bits directly, as outlined in Table 1. Only for the sign bits
of W. when the bits have a negative significance is the
add/subtract logic inverted so that the selected K or K' is
added if the appropriate W bit is a "zero" instead of a
"one"—as is the case with the nonsign bits of W.

In the NMOS chip, the CARRY data is fed forward along
with the sums, so that it is necessary to assimilate SUM and
CARRY data of equal significance at the output of the array.
This was accomplished by means of a fast adder employing
a precharged carry-chain. SUM and CARRY data in the array
were latched, so it was necessary to skew the coefficient W

sum in 	K K carry in

do to
selec

clock

oOdI
Sub

clock
Out

K Sum carry K
Out Out

Fig. 4. Basic cell (NMOS).

Fig. 5. NMOS chip photograph.

input data to the control gates as depicted in Fig. 3. There
was no need for skewing input or output data because of
the use of the fast adder at the output. The nonrotated
Butterfly input (A). which is shifted directly through the
complex multiplier was finally added to the complex out-
put (BW) to form the Butterfly output (A + BW). The
other Butterfly output (A - BW) was formed as (2A—(A
+ BW)) as this avoided the need to feed BW forward,
through the row of cells used to form (A + B W).

Fig. 4 shows the basic cell logic in detail. Invertor
controlled data-select type Exclusive-OR gates were used in
the carry-save adder, as this offers a good tradeoff in
area-speed-power.

Sui N
I
JATA-StLE
CONTROL

CKI
CKZ

CK29AR

AOD/SUBTR C -
CONTROL

CARRY-CUT

CKIBAR

CA TA -SEL E Cl
CONTROL

CK1
CK2

CK2BAR
A ,20/SUBTRACT

CONTROL

CARRY-IN

CKIBAR

248 	IEEE JOURNAL Of SOLID-STATE CIRCUITS. VOL sc•19. NO. 3. JUNE 1984

TABLE H
DISTRIBUTED ARITHMETIC

ALGORITHM (COMPUTERS Z— BW

REAL4Z) 	I IILAG(Z)
Re Jim 1 	2 	345 6 	70
0j0 0-0 	-K'—K' 0+0 	K-

0 	I 0-1m(9)W—K Re(8)+0 	k+K

1 , 	0 Re(B)—O 	Ke.K 0+1m(B)K—C
cc

Re($)-Im(9)K+K Re(B)+(8)X4.I(

W!l.f. 	(R.(13),Im(0))/2 and K.(R.(8)—Im(9))12

COEFFICIENT (AS K,K)

INPUT PADS & MUX

(I,
I 	+ 	+

I 	- 	 CARRIES

•1 sums
2Nt 	 - 	 - 	AWl

BW2

'1- 	•-

OUTPUT PADS
AWl +8W2 AW1-8W2

Fig. 6. Floorplan of SOS chip.

V. DETAILS AND PERFORMANCE OF NMOS
PROCESSOR

The NMOS prototype chip (Fig. 5) contains around
8000 transistors and measures about 5.3X6.7 mm. The
process used was a standard 5 ttin feature size, single
polysilicon, single metal n-channel MOS process using
depletion mode load devices. Table H shows the measured
performance of the 8-bit NMOS processor. The device
clocked at 4 MHz corresponding to a data rate of 8
megabytes/s, which was slightly slower than expected
owing to the use of a clock input pad which was limiting
internal clock risetimes.

VI. CMOS-SOS 16-BIT PROCESSOR

In general. 8-bit word lengths are not adequate to cover
most FFT application areas, such as radar signal process-
ing, where 12-16-bit accuracy is typically required and for
these reasons a 16-bit processor design which was similarly
based on the distributed arithmetic complex multiply algo-
rithm was undertaken. The floorplan for this device is
shown in Fig. 6. For larger word lengths it is desirable to
pipeline the distributed arithmetic in two dimensions so as
to eliminate the fast add requirement. Extra latches (de-
lays) must then be inserted into the basic cell.

CMOS Processor Pipeline

In the CMOS distributed arithmetic processor, (coeffi-
cient) data entering from the top is skewed, with the nth

SUM-CUT K

Fig. 7. Basic cell (SOS).

input bit receiving a delay of n. going from least to most
significant bits. This allows the control and carries in each
17 cell row to be latched (extra cell per row for two's
complement operation). The effect of this pipelining scheme
is to produce a computation front which moves down
through the array at an angle of 45°. This skewed compu-
tation front now means that data entering the vertical data
port associated with the Exclusive-OR control gates, needs
to be skewed by 2n delays for the nth input bit, moving
from least significant to most significant bits, in order that
control signals will match up correctly with data in the
array. Fig. 7 shows the basic cell used in the 16-bit CMOS-
SOS processor chip which results in a completely systolic
architecture [6]. This cell feeds the CARRY right and the
SUM is fed down and left to scale down the result of each
cell by 2. The control passes from left to right at the same
rate as the carries. The distributed arithmetic coefficients.
K and K' needed to be delayed by two clock cycles in each
2-D pipelined cell because of the 450 skew on the compu-
tation front. As the same K and K' needs to be made
available for both real and imaginary computations. this
delay was implemented in a single shift register, clocked at
half the main clock rate. This was done to save chip area,
with the only condition that outputs would have to alter-
nate between real and imaginary. The maximum clock rate
of the chip is determined primarily by the time to produce
a carry-out from the basic cell. It was stated that the
vertical delay through this cell is equal to two clock cycles.
This gives the array a latency of the order of 2n where n is
the word length; however, the time-wedge used at the input
to the array and the output of the array to skew and
deskew data increases the latency of the chip by another n
resulting in a total latency of around 3n.

CMOS Architectural Modifications

The CMOS-SOS design contains some other significant
architectural modifications. In the NMOS chip, data enters
at the top of the chip, and was converted to the form of K
and K' as defined in (7). In the CMOS-SOS design, the
coefficient enters the top data port in the form of K and
K'. The coefficient can therefore be stored in this form and

..-' .,.11 	 - 	- '-.-... 	 , 	 •1 	.- 	 -

MACTAGOART AND JACK: SINGLE CHIP RADIX-2 FF1 BUTIIRFLY ARCHITECTURE
	

249

Fig. 8. SOS chip layout.

is not actively computed on the chip. This further lowered
the power needed to compute the complex multiply. Unlike
the NMOS chip, however, all data in the CMOS-SOS
design passes through the complex multiplier. This has
several advantages which are:

simple time-domain windowing on the first pass if
required;

lower Butterfly noise caused by amplitude errors in W

coefficient; and
easier system design with fewer components.

Further, the CMOS-SOS chip can compute a two-point
nontrivial DFF, allowing larger DFTs to be built up using
a slower external accumulator.

VII. DETAILS AND EXPECTED PERFORMANCE OF
CMOS-SOS DEVICE

The CMOS-SOS device (Fig. 8) measures 7 x 8 mm and
contains around 30 000 transistors. The device was design-
ed using 4 Am feature CMOS-SOS design rules. This device
uses an external clock generator to allow the highest possi-
ble clock rates to be achieved. Table II shows the expected
performance of the CMOS-SOS device in comparison to
the measured performance for the NMOS prototype.

VIII. CONCLUSIONS

Two LSI/ VLSI chips which use distributed arithmetic to
compute the arithmetic requirements of the Radix-2 FFT
Butterfly have been described. Each of these devices has
the throughput equivalence of two parallel multipliers,
allowing very high bandwidths.

Distributed arithmetic offers a highly regular design
approach in parallel data systems and also offers lower

power consumptions than is possible using conventional
arithmetic.

These techniques are thus highly suited to parallel data
arithmetic, where an irregular structure can be replaced
with a highly regular and compact array which offers a
high degree of algorithmic efficiency.

ACKNOWLEDGMENT

The authors would like to thank the Edinburgh Micro-
fabrication Facility for silicon processing and the General
Electric Company for providing design rules for their high
performance SOS process.

REFERENCES

[1] S. A. White. A simple FFT butterfly arithmetic unit." IEEE Trans.
Circuits Si st.. vol. CAS-28. Apr. 1981.

(2) I. R. Mactaggart and M. A. Jack. Radix-2 butterfly processor using
distributed arithmetic." Electron. Len.. vol. 19. pp. 43-44. Jan. 1983.

[3] L. R. Rabiner and B. I. Gold. Theory and Application of Digital
Signal Processing. Englewood Cliffs. NJ: Prentice-Hall. 1975.

14 E. 0. Brigham, The Fast Fourier Trans(ornz. 1974.
15 D. A. Booth. "A signed binary multiplication technique." Q.J.

Mech. App!. Maths.. vol. 4, pp. 236-240. 1951 (Oxford Univ. Press.
no. 4. Apr. 1951).

[6] H. T. Kung and C. Leiserson. "Systolic arrays for (VLSI)." in
Introduction to VLSI Svstents. Mead and Conways. Eds. Reading,
MA: Addison-Wesley. 1980.

I. Ross Mactaggart received the B.Sc. (Hons.)
(degree in chemical physics in 1980 and the M.Sc.

degree in the design and manufacture of micro-
electronic systems. both from Edinburgh Univer-
sity.

• 	He is currently a member of the Integrated
Systems Group at Edinburgh University where
he is involved in semi-custom and full-custom
design and research activities.

Mervyn A. Jack was born in Edinburgh. Scot-
land, on June 20. 1949. He received the B.Sc.
degree in electronic engineering and the M.Sc.
degree in digital techniques from the Heriot-Watt
University. Edinburgh. in 1971 and 1975. respec-

- 	Lively, and the Ph.D. degree from the University
of Edinburgh in 1978.
• From 1971 to 1975 he worked as a project • 	
engineer-with Microwave and Electronic Sys-
tems. Ltd.. Edinburgh. where he was responsible
for the design and development of security sys-

tems based on passive infrared and microwave Doppler intruder detec-
tors. In 1975 he was appointed to a Research Fellowship at the University
of Edinburgh to study the design and application of Fourier transform
processors based on surface acoustic wave and charge coupled devices. In
1979 he was appointed to a lectureship in the Department of Electrical
Engineering at Edinburgh University.

Dr. Jack is a member of the Institution of Electrical Engineers.

- 	 	 -:'- 	
- - - 	

