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Chapter 1 - Introduction 

1.1. General 

The central aim of this thesis is to study the application of 

Very Large Scale Integration (VLSI) to high speed computation of the 

Fourier Transform, and in particular, the Fast Fourier Transform 

(FFT) algorithm. 

The FFT system will be discussed with a view towards the con-

struction of VLSI architectures, however, much of the original work 

in this connection will be centred on VLSI architectures for comput-

ing the arithmetic requirements of the discrete and fast Fourier 

transform which involves the use of complex numbers. 

The use of distributed arithmetic is shown to be highly appli-

cable (1,2,3,4] to parallel arithmetic datapaths for operation on 

complex numbers, and the datapaths that will be described are very 

efficient at performing vector rotation (as complex multiplication) 

and addition. 

Some specific VLSI implementations of these datapath architec-

tures are described and their performance is compared with commer -

cial devices. 

The Fourier Transform [5) named after the French mathematician, 

Jean Baptiste Joseph de Fourier (1768 - 1830) allows a continuous or 

discontinuous function defined over a finite interval to be 

represented as the integral (infinite summation) of an infinite 

number of complex exponentials, each with a potentially unique 

amplitude and phase. The record of these amplitudes and phases is 
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commonly referred to as the frequency domain if the input is derived 

from the time domain. This can be expressed mathematically as shown 

in equation (1. 1. 1). 

X( f) = x(t) e2 ft)  dt  

Where x(t) represents the input time domain waveform which is 

transformed to a frequency domain output waveform X(f). 

If the time domain signal is periodic, bandwidth limited and 

sampled, then it is possible to represent the Fourier integral as a 

finite summation of complex exponentials (5] to a good approxima-

tion. In the Discrete Fourier Transform (DFT), a periodic time 

domain waveform of N complex samples are transformed to another N 

complex samples, each sample representing the magnitude and fre-

quency of a specific rotating vector which may be considered to be 

present in the input waveform as determined by the process of com-

plex multiplication with fixed unity magnitude coefficient vectors 

rotating in the opposite direction ( " beating "  these frequency com-

ponents in the data vector to DC), followed by summation. When all 

the resultant (equally spaced) integer frequencies of rotation 

described in the output record of the DFT are summed as is done in 

the inverse discrete Fourier transform (IDFT), the original time 

domain waveform may be reconstructed. 

The DFT has applications in radars, (6,7] (such as in high 

bandwidth Doppler beam sharpening systems), vocoders, [8,9,10] and 

also, scientific work [11] such as X-ray diffraction analyses. In 
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many of these applications, the DFT itself may not be fast enough 

and in such cases, a Fast Fourier Transform (FFT) algorithm may be 

used, of which there are many. The FFT is particularly useful in 

performing high speed convolutions where two signals may be con-

volved together by performing multiplication in the frequency domain 

followed by an inverse Fourier Transform. This approach can result 

in real computational savings (12] for medium to large convolutions 

(lengths greater than 64 or 128 samples). 

Described by Cooley and Tukey, (13] the Fast Fourier Transform 

(FFT) algorithm, allows the DFT to be computed very efficiently for 

transform sizes that are some positive integer power of two. Subse-

quently, a large number of similar algorithms (14,15,16,17,1 8] have 

been described for computing the DFT very efficiently. Even with 

the improvement offered by FFT algorithms, however, high bandwidth 

signal processing often requires that special purpose hardware be 

used instead of general purpose hardware. 

The advent of Very Large Scale Integration (VLSI) has greatly 

influenced the design of digital systems, allowing partitioning of 

systems to be considered at ever increasing levels of functionality. 

The precise partitioning of a given FFT system depends on the 

degree of arithmetic concurrency required in the system, however, in 

general three major partitions of the FFT can be identified. These 

are 
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Memory to buffer and store intermediate data and results. 

Control unit for coordinating memory and arithmetic. 

C) Arithmetic unit which must handle complex arithmetic. 

1.1.1. Memory 

Current memory technology and designs have greatly advanced 

(19] to what could almost be described as an art form. The design 

of high performance memory is an extremely skilled and profoundly 

complex task which industry has been addressing for many years now. 

Special purpose memory designs for FFT work would therefore have to 

offer substantial gains over general purpose Random Access Memories 

(RAM) to be considered for use in FPT systems. There do appear to 

be special memory architectures which could offer some advantages 

over standard RAM for FFT computation which will be discussed in 

Chapter 2, however, none of the ideas will be pursued since ordinary 

RAM can be used [12] without much inconvenience. 

1.1.2. Control 

The control requirement is highly algorithm dependent, which 

dictates that the control unit be general purpose, or easily pro-

grammable. Ordinary Read Only Memory (ROM) can be used to store con-

trol data, however, a single memory is not usually an optimum 

approach [20] as this does not support a control hierarchy effi-

ciently. This is because all communications to and from internal 

memory registers must take place via the data port which therefore 

limits the bandwidth of a control unit. Also, a single large memory 



will generally be slower than a number of (interconnected) smaller 

memories, each handling a specific elementary control routine. 

The design of a control unit and the design of a data storage 

unit (memory) are thus closely related, since both operation codes 

and data can be held in memory. Although random logic can offer 

lower area and higher speed than memory based logic, a general pur-

pose, or programmable control unit would have to be ROM based, to 

allow ease of programming which is the main consideration in VLSI 

design. The problem of control is primarily seen therefore, as a 

software problem, with the hardware design being closely related to 

memory hardware design. 

General principles and approaches to FFT control will, however, 

be discussed later with the Programmable Logic Array (PLA) being 

advocated for the construction of Finite State Machines (FSM's). The 

PLA is highly suited for incorporation into a silicon compiler as 

one of the basic cells for producing dedicated control chips. A sil-

icon compiler is a piece of software which can translate a high 

level description of a circuit or system to an actual design layout 

which conforms to the layout rules for a given fabrication process, 

and can thus be used directly for the generation of masks for that 

process. The compiler may also have the facility for simulation and 

test vector generation so that when the device is fabricated, the 

testing can be run automatically, by comparing the device output 

data with computer simulated data. 
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1.1.3. Fast Arithmetic 

High performance, complex arithmetic processors are not gen-

erally available and are most likely to be the limiting part of a 

system, particularly with large wordlengths. Also, the availability 

of a FFT arithmetic unit as a major partition of the FFT does not 

impose any major constraints on a system designer, in terms of 

transforms sizes or degree of arithmetic concurrency in the system. 

A high bandwidth FFT arithmetic unit, streamlined to performing com-

plex arithmetic is therefore an Important feature in any FFT system. 

As mentioned therefore, most of the original work described in this 

thesis is centred on the design of a number of high bandwidth com-

plex number arithmetic datapaths which represent highly optimised 

structures, streamlined to the computation of the DFT and FFT arith-

metic requirements and are therefore major building blocks in such 

systems. 

This work has involved a study of bit-level arithmetic algo-

rithms with a view to achieving the most efficient mapping onto sil-

icon that is likely to be possible. It was noted that distributed 

arithmetic techniques appeared to offer good properties in relation 

to mapping onto silicon, and this realisation eventually led to the 

design of a number of special purpose arithmetic units which made 

use of distributed arithmetic techniques to efficiently compute the 

complex multiply which is a central arithmetic requirement of the 

DFT and FFT. 



1.2. Layout of Thesis 

The second chapter, which follows this introductory chapter 

discusses the DFT and FFF computation techniques. The prime DFT is 

also discussed, as this can be computed in a unique manner. The FFT 

system is then looked at in detail in regard to partitioning, arith-

metic concurrency, control methodology, signal growth, input and 

output signal conditioning and problems in achieving sufficient ver-

satility in high bandwidth systems. 

Having discussed the various requirements of the FPT system, it 

is concluded that a VLSI arithmetic processor chip would represent a 

highly suitable partition of the FFT which would not constrain the 

system designer in regard to arithmetic concurrency or transform 

size. 

This leads directly on to chapter 3 which investigates the 

mathematical basis of a number of algorithms for highly efficient 

arithmetic processing some of which are highly suited to silicon 

implementation. This includes distributed arithmetic, which allows 

the re-formulation of well behaved mathematical functions, and can 

be used in computing the complex multiply, through the merging of 

multiplier partial products.' 

Chapter 4 then looks at specific VLSI datapath, architectures 

and a comparison is made between conventional arithmetic datapaths 

and those that make use of distributed arithmetic. In particular, 

distributed arithmetic is applied to parallel data computation of 

the complex multiply which is a dominant arithmetic requirement of 

the DFT and FFT. Structures with various degrees of pipelining are 
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considered, offering a variety of processing bandwidths. 

In chapter 5 some of the architectures described in chapter 4 

are applied to some specific VLSI implementations for fabrication in 

two Metal Oxide Silicon (MOS) technologies, n-channel MOS (nMOS) and 

Silicon on Sapphire complementary MOS (SOS-CMOS). This chapter is 

largely devoted to the description of actual silicon devices, and 

the simulations and digital testing of some of these devices will be 

described along with their performance. 

This leads finally to Chapter 6 which contains the• conclusions 

so far reached with this work, and some suggestions for future VLSI 

processor architectures based on distributed arithmetic techniques. 

Chaptersl to 3 are thus largely devoted to introducing the 

subject area and reviewing literature that is relevant to the DFT, 

FFT and VLSI signal processing in general. There is some original 

content present in these chapters mixed in with the literature 

review during discussion. Chapters 4 and 5 which describes some 

specific parallel data distributed arithmetic architectures and 

three silicon implementations is original work. A speed programm-

able nMOS PLA generator, the concept of which was discussed in 

chapter 2, and is described in appendix [1],  is also original 

material. 
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Chapter 2 - Fourier Transform Processing 

2.1. Introduction 

In this chapter, the emphasis will be on the influence of VLSI 

(Very Large Scale Integration) on Fourier transform processing with 

the focus being on digital techniques which allows higher precision 

and performance control than can be achieved using analogue 

approaches. The latter will be discussed only briefly in connection 

with prime length Discrete Fourier Transforms. 

The various ways of computing the Discrete Fourier Transform 

(DFT) from direct methods to algorithmic Fast Fourier Transform 

(FFT) approaches will be reviewed, and much of the emphasis will be 

placed on how these algorithms can be partitioned and mapped an to 

silicon to produce high performance VLSI processing elements. Exist-

ing signal processing devices and system design methodologies 

relevant to Fourier transform processing will therefore be reviewed. 

Most of the structures discussed are not general purpose in the true 

sense but could be reconfigured in real time, to produce a variety 

of signal processing functions. 

The chapter will start by discussing the theoretical aspects of 

the Discrete Fourier Transform (DFT) and vector rotation alongside 

silicon realisations o the basic DFT. This will be followed by a 

summary of the original Cooley Tukey FFT with its associated 

hardware implications. The Prime length DFT will then be reviewed 

separately from the non-prime length OFT. The final section in this 

chapter looks at system considerations of the FFT processor such as 

partitioning, the problems of input and output signal conditioning 



and bandwidth matching of the various processing elements in a 

hardware FFT system. 

2.2. The Discrete Fourier Transform 

Any periodic waveform can be represented (1] as the sum of an 

infinite number of orthogonal periodic functions. If these func-

tions are complex exponentials, then determination of the phase and 

magnitude of these functions is known as Fourier analysis. For band 

limited, sampled signals, it is possible to represent the input 

waveform with a finite number of complex exponential functions to 

the required degree of accuracy. If an input time domain waveform 

consists of N complex samples, then the Discrete Fourier Transform 

(DFF) allows this waveform to be represented as an N sample record 

of the phases and amplitudes of the N complex exponentials from 

which the time domain waveform can be synthesised. The DFT can thus 

be expressed as shown in equation (2.2.1) 

N-I 
X(k) = E x(n) e 2 U ink/N) 	 (2.2.1) 

n=O 

Where x(n) is the time domain sampled at intervals n=0,1,..N-I 

X(k) is the frequency domain at intervals k=0,1,..N-1, and N is the 

transform size. 

To form each frequency domain result (X(k)), requires N complex 

multiply and accumulate operations, so that if all frequency domain 

results are computed, then N 2  complex multiply and accumulate opera-

tions must be computed. Future equations will be simplified by 
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defining the complex exponential in the DFT equation as shown in 

equation (2.2.2) 

W  = e2u1 j/N) 	 (2.2.2) 

Where the transform size (N) shall be implied from the text. An 

eight point (N8) DFT, expressed in matrix form and using the shor-

tened expression of equation (2.2.2), would appear as shown in Fig-

ure (2.2.1). 

The matrix of W values shown above, has been simplified by not-

ing the periodicity of W This periodicity is expressed in equation 

(2.2.3). 

= nk 	m,l = O,+/- 1,+/- 2.... 	(2.2.3) 

The unit vectors, W   in the W matrix of the eight point DFT can be 

illustrated by the vector-matrix notation of Figure (2.2.2). This 

shows more clearly how the different rows contain successively 

increasing integer rotation rates, moving from the top row, which 

represents zero rotation rate (DC), to the bottom row, which 

represents maximum rotation rate. If the time domain input 

sequence, consists of a simple unity magnitude vector rotating 

anti-clockwise at a frequency of one cycle per transform (8 sample 

periods), then multiplication and summation of this sequence with 

row 2 of the W matrix, results in a large output at X since the 

vector sequence of row 2 in the W matrix rotates in an equal and 

opposite direction. The time domain data vectors are thus 
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effectively made stationary when multiplied by successive terms in 

row 2 of the W matrix. All other rows, containing different rota-

tion directions and rates will not wake the input data sequence sta-

tionary, so these (X(k), k # 2) outputs will all be zero. 

In practical situations, the time domain sequence may not con-

tain any frequency components which are perfectly coherent with one 

of the integer frequencies represented by the W matrix. This results 

in a slightly reduced output in the nearest discrete frequency "bin" 

and a small output in adjacent bins. This leakage effect to adja-

cent bins can be minimised [2] by input signal conditioning (data 

windowing) as described by Harris. 

Analysis of the DFT equation (2.2.1), shows that each frequency 

domain result is formed by a complex multiply and accumulate opera-

tion between the data sequence and individual rows of the W matrix. 

Control requirements of the DFT therefore consists of accumulator 

initialisation and sequential transfer of the time domain data and 

coefficient (W) data to a complex multiplier. Latching of the fre-

quency domain result present in the accumulator would finally be 

required. Figure (2.2.3) indicates the basic hardware requirements 

of the DFT processor. This shows the frequency domain output in 

bit-serial [3] form. The output could also be presented in parallel 

form, but this was shown in the diagram to etaphasise the fact that, 

the data rate at which frequency domain is produced with the DFT is 

very low and bit-serial data transmission is capable of handling 

these bandwidths (except for very small DFT's where the computation 

time is greatly reduced). 
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Fiqure(2.2.4. 	The DFT is well suited to VLSI, as it 
Yields Hiahly Regular Structures. 



Compared with Fast Fourier Transform algorithms (FFT's) - used 

to compute the DFT very efficiently for large transforms (discussed 

in section 2.3) - the control requirements of the DFT are relatively 

simple. Consequently, for limited transform sizes, up to around 

256-points, the hardware DFT may be preferable to the hardware FFT 

even though at this size of transform the DFT requires about 64 

times the number of vector rotation operations than does the FFT. 

Other attractions of the DEFT processor over the FFT processor 

include marginally improved noise performance [4] and the ability to 

compute part of the spectrum efficiently if the whole spectrum is 

not required [4] from a single processor, as might be necessary if 

it was desired to employ some degree of arithmetic concurrency to 

enhance the system bandwidth. (Reasons for marginally improved 

noise performance in the DFT are due to practical considerations 

related to the finite word lengths used in the hardware rather than 

any intrinsic failings of the FFT algorithm.) 

VLSI allows the DFT to be integrated onto a single chip [4] 

allowing the computation of up to 256 points in as short a time as 

6.5 mS. This chip can process data sufficiently fast to cover most 

audio applications, (Bandwidth =((1/2) x (256/6.5)) kHz = 19.7 kHz 

and illustrates pointedly why the hardware DFT is to be preferred 

for all but large transforms and high bandwidths. 

A single chip DFT processor would ideally include coefficient 

storage, and make use of parallel arithmetic processing. A typical 

chip architecture is shown in Figure (2.2.4) which is representative 

of a VLSI single chip DFT processor design based on parallel arith-

metic data. This type of controlled datapath architecture allows 
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for a more general purpose approach to be taken than was the case 

with the dedicated DFT chip just described. The DFT chip architec-

ture of Figure (2.2.4) could easily be applied in a system by label-

ling the time-domain data to provide a pointer to the W coefficient 

stored on-chip. This might be expressed in shorthand as shown below 

(see also equation 2.2.1) where the 1+U refers to a requirement for 

information, not an arithmetic operation. 

(Data Label) + (Bin Number) -> (W Coeft. Address) 

Where Bin Numbern is the number of the frequency domain bin that is 

being computed. (Bin Number would be constant for each bin computa-

tion.) This can be computed very easily in practice by looking at 

the remainder of the product of (Bin Number) and (Data Label) when 

divided by the transform size (N) as a consequence of the periodi-

city of the complex exponential described in equation (2.2.3). Data 

Label in this case is chosen to be equal to the time domain sample 

number. The division by N, however, need not take place if N is a 

power of 2. In this case the bottom 109 2  N bits of the product yield 

the correct W coefficient address. Thus if the transform length (N) 

is a power of two, the correct DFT W coefficient address can be com- 

puted with a single multiply operation. In practise, the same multi-

plier used to perform vector rotation operations would be used to 

generate the W coefficient addresses in this manner. The general 

case for any value of N can be expressed as shown in equation 

(2.2.4). 

WAddress = Remainder o f [Bin Number x Sample Number/NI 

(2.2.4) 
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Although this appears to be a sound approach to the generation 

of W addresses in a DFT processor, for higher speeds it is desirable 

to free the arithmetic unit for operation on data only. A less com-

putationally intensive method to generation of W addresses is to 

perform an accumulation, which allows a new address to be computed 

as a function of a previous address and the bin number. This allows 

the W addresses to be computed in their natural order (for direct 

complex multiplication with data samples) but has the disadvantage 

common to all recursions - that the effects of a single error taking 

place during the recursion will remain until the recursion is ter-

minated. Thus if an error occurs during the computation of a fre-

quency bin, the whole bin computation needs to be repeated unless 

there is a suitable mechanism for detection and removal of the error 

as soon as it occurs. In a carefully designed digital circuit, how-

ever, errors should be very infrequent and should not cause serious 

problems in small recursions of this nature. The approach to gen-

erating DFT W coefficient addresses using a single accumulator is 

shown in Figure (2.2.5). The bin number is latched from a counter 

and the new coefficient address is computed by adding this to the 

old coefficient address. An example is included in Figure (2.2.5) 

for rows 4 and 8 of an eight point DFT. These were chosen to show 

the wrap-around effect which is not entirely an obvious phenomenon. 

A potential hardware reduction feature of the DFT is that an 

input buffer is not required if one chip per frequency bin is used 

since no temporary storage or sorting of input data is required. 

This approach is quite attractive if bit-serial arithmetic [3] 

processors are employed. The use of parallel arithmetic processors 
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Row  

000= 0 
+011 

011= 3(10) 

+011 
110= 6(10) 

+011 
[ijool = 1(10) 

+011 
100 = 

:4(10)  

101 = 5(10) 

+011 
[i]000 = 0 

Row  

000= 0 
+111 

111=710) 
+111 
[1:11 10= 6(10) 

+111 
[i]ioi= 510) 

+111 
100= 4(10) etc 

[1]001= 1(10) 

+111 
[i]000= 0 

Note 

Bracket indicates 
discarded overflow 
bit. 

Rows 4 and 8 show 

Wrap—around effect 

Figure(2.2.5.) DFT, W coefficient Address Generation 
using Accumulator-Eight Point Example 
uses a 3-Bit Accumulator. 
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would not normally be considered due to high costs for all but lim-

ited transform sizes, or very high bandwidth systems. The use of N 

arithmetic processors [5] (one for each frequency channel) provides 

a useful means of high bandwidth computation of the OFT, as an 

alternative to the FFT for limited transform sizes. Although such a 

system is algorithmically less efficient than the FFT, a failure in 

a single processor would only affect the frequency bin which that 

processor was associated with, thus other bins would not be 

affected. In the FFT, described shortly, single arithmetic failures 

can affect many frequency bins, not just one, and thus have catas-

trophic effects. In DFT systems using a single chip, the input data 

sequence may be held in a simple shift register buffer which can be 

re-circulated for computing each new frequency component. Such a 

buffer has minimal control requirements. One obstacle to implement-

ing all this on a single chip is that with complex arithmetic, the 

memory requirements are doubled. The DFT does, however, require 

minimal control and so for small transforms and limited bandwidths 

it is the ideal approach to computing the Fourier Transform digi-

tally. When large transforms and high bandwidths are required then 

it is necessary to use algorithmic approaches which involves addi-

tional control data and temporary storage in order to reduce the 

amount of arithmetic required. 

2.3. The Fast Fourier Transform 

An analysis of the (W) matrix of a highly composite DFT such as 

the eight-point example shown in Figure (2.2.2), reveals that many 

of the complex multiplications are redundant, in a manner which is 
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independent of the input time domain sequence, being a feature of 

the (W) matrix itself. Although there are obvious redundancies in 

the DFT W matrix where some of the multiplications are 

Trivial (Multiplications by (+1 - ) 1 or (+/-) j) 

Repetative (Due to periodicity of the complex exponential) 

see equation (2.2.3) 

Related (Multiplications that are negative or complex conju-

gates of each other) 

the efficiency of the common radix-2,4 and 8 FFT algorithms 

hinges on the fact that when the transform length (N) is some 

integer power of two (as is the case in all Radix-2,4 and 8 

FFT's) then each element in the W matrix can be generated 

iteratively by 1092  complex products from a set of elementary 

unity magnitude vectors whose angles are binary weighted multi-

ples of WN.  These elementary unity magnitude vectors are com-

monly referred to as "twiddle factors" in literature, (6] how-

ever, the algorithm has not yet been fully formulated, so for 

the moment, this name only applies to the numerical value of 

these vectors. 

This now allows each frequency bin computation to be factorised 

into these twiddle factors and other terms containing the Input 

sequence. The factorisation may be chosen to be such that many 

terms are produced which are common to each frequency bin in a sys-

tematic manner thus allowing a reduction in the number of arithmetic 

operations. The DFT output may then be generated by 1092N 



iterations (or passes) on the input sequence, in which the time 

domain is operated on successively by these twiddle factors. The 

mathematical basis of the FFT re-formulation of the DFT will be dis-

cussed in more detail in the section dealing with the Radix-2 

Decimation-in-time FFT algorithm. 

Thus, the FFT algorithm is based upon the principle of reveal-

ing redundancies through factorisation made possible by the itera-

tive re-construction of the W elements in the DFT matrix and 

exploiting these redundancies through data-routing. As previously 

mentioned, more than one factorisation is possible and so also there 

are a number of ways of ordering the data-routing in the computation 

to produce a variety of "Fast Fourier Transform" (FFT) algorithms. 

The original Cooley-Tukey FFT algorithm [7] described the gen-

eral technique of breaking down large DFT's, whose lengths are 

highly composite, into a large number of much smaller DFT's. Thus, 

a large DFT could be computed by combining together several much 

smaller DFT's. As the number of complex multiplications to compute 

the DFT increases as N 2 , and the combination of trivial DFT's in the 

FFT algorithm increases only as N/2 1092  N, the basic Cooley-Tukey 

FFT algorithm is more efficient than the OFT by a factor of 

2N/ 1092  N times. 

A mathematical proof of the most important FFT algorithms 

already exists (6] so a formal proof is not repeated here. Instead, 

the probable thinking that led to the realisation of one of the best 

known and most popular Fast Fourier Transform (FFT) Algorithms, the 

Radix-2 Decimation-in-Time FFT, will be outlined. There are several 

24 
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FFT algorithms all closely related, such as the radix-4, the radix-8 

and mixed radix algorithms (6] however, the radix-2 FFT is the most 

versatile, since with the lowest radix (two), it permits transform 

sizes which are integer multiples of two. It also allows for simple 

time domain windowing on the first pass for reasons which will be 

apparent when this type of algorithm is examined in the next sec-

tion. (The first pass is trivial). 

2.3.1. The Radix-2 Decimation-in-Time FFT. 

In the DFT itself, there is no restriction on the transform 

length (N), however, if N is restricted to powers of 2, then it is 

possible to express any of the N distinct W  nk terms in the (N x N) 

DFT coefficient array as the complek product of 1092  fixed vectors 

which are binary weighted multiple powers of WN.  This is expressed 

in equation (2.3.1.1). 

(log N)-1 

WN = 	TI 
M=O 

rJX 
"N 

where 	X = Xm =dm 2tm  (d = 0 or I only) (2.3.1.1) 

(For example, 	W =W . 	. W) 

The DFT may thus be conceptualised as shown in equation 

(2.3.1.2) 

N-I 	(log2N)-1 

X(k) = E 	(( 	IT 	W) x(n)) 	(2.3.1.2) 
n=0 	M=O 
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In the above equation each element in the W matrix of the DFT 

is now expressed as log2N complex products. This is written out in 

full for an eight point example in Figure (2.3.1.1). Figure 

(2.3.1.2) shows three matrices containing the binary values of 'd' 

in equation (2.3.1.1) for the eight point example indicating how 

each term in the original W matrix of the eight point DFT can be 

considered to be composed of a product of binary weighted rotations. 

(The concept of these 'd' matrices may not be described in litera-

ture) 

Analyses of the matrix d0  which indicates which DFT coeffi-

cients require minimum rotations (WN),  reveals exceptionally high 

symmetry. It is fairly clear that this matrix would be of the same 

type for any size (N where N ) 2) of DFT provided that N was some 

integer power of two. 

If this symmetry allowed the N point DFT to be split into two 

and expressed as two N/2 point DFT's each of which would have the 

same type of d0  matrix (describing minimum rotations for that size 

of DFT), then this splitting process could be continued right down 

to N=2. If a computational saving could be made each time a DFT was 

split into two, then the overall computational saving (N)>2) would 

be significant. 

Further examination of the d 0  matrix that describes which ele-

ments in the W matrix of the DFT contains minimum rotations reveals 

that the EVEN columns contain no such rotations. This implies that 

half of the N=8 point DFT may be computed as a single N(=8)/2 point 

DFT operating only on the EVEN numbered time domain samples. The ODD 
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columns however, do contain minimum rotations. These can be removed 

at the expense of N (=8) rotations of which N(=8)/2 are non-trivial, 

allowing the remainder of the original N=8 point DFT to be computed 

with another N(=8)/2 point DFT this time based on ODD valued sample 

numbers. This process is shown for the eight point example in Figure 

(2.3.1.3) and (2.3.1.4) showing the construction of an 8-point DFT 

from two 4-point DET'S. In general it can be said that instead of 

N2  rotations to compute an N-point DFT, only (N/2) 2  + (N/2) 2  +N/2 

rotations are required if it is computed as two N/2 point DFT's. 

This of course is less than the direct approach. If N is large and 

a power of two then the complete decomposition of the N point DFT 

into N/2, 2-point DFT's can be accomplished by performing the above 

process iteratively resulting in a radix-2 algorithm, so called, 

because the transform is built up from 2-point DFT's. This complete 

decomposition of the DFT is shown for N=8 in Figure (2.3.1.5). This 

is shown for each frequency bin in Figure (2.3.1.6) in full. This 

reformulation of the DFT is highly significant in that fewer arith-

metic operations are required and the whole DFT can in principle be 

built up from a simple arithmetic function shown in Figure (2.3.1.7) 

(frequently described in literature as the radix-2 butterfly" - cf. 

wings of a butterfly) using the signal flow graphs shown in Figure 

(2.3.1.8) which can be derived from Figure (2.3.1.6). This produces 

un-scrambled frequency domain from time-domain which has been scram-

bled into bit-reversed address locations. Figure (2.3.1.9) shows an 

alternative flow graph which allows unscrambled time domain as an 

input to produce frequency domain in bit-reversed address locations. 

Bit-reversal which applies to the address of stored data is defined 

as the mirror image of the address word when mirrored in the Y-axis, 
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Figure(2.3.1.8.) Data Flow Graph of the Radix-2 FFT Algorithm 
described in Figure(2.3.1.6). 
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Figure(2.3.1.9.) Alternative Data Flow Graph of Radix-2 FFT 
with Un-Shuffled Input Sequence. 
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so that the most significant bits become the least significant bits 

and vice-versa. 

This particular FFT is normally known as the Radix-2 

Decimation-in-Time (DIT) algorithm because at each stage in the 

computation, the input time sequence is divided into smaller stages 

for processing as outlined in the previous 8-point FFT example. An 

alternative decimation-in-frequency algorithm [6] is similar and 

uses the same number of operations. The DIT, FFT algorithm is, how-

ever, more useful in hardware oriented systems because the W coeffi-

cients are all unity on the first pass, thus allowing the possibil-

ity of using this pass to perform time domain windowing functions 

[6] that are often essential to the operation of real PET systems. 

It will be noted that in both flow graphs of the 8-point FFT, the 

transform is built up from three distinct stages or "passes". A sig-

nificant feature of Figures (2.3.1.8) and (2.3.1.9) is that the data 

address sequence is the same for each pass. This type of addressing 

is thus normally referred to as constant geometry addressing, 

because of the pass-independent addressing. If pass dependent 

addressing is used, [6] it is possible to return the butterfly out-

puts to the same memory address locations from which the inputs were 

derived, [6] thus halving the memory requirements. This type of 

alaorithm. known as in-n1 	n1,-e 	 1.: 

speed performance. Figure (2.3.1.10) shows the two different FFT 

systems based on these different addressing -approaches. Figure 

(2.3.1.11) shows a possible pipelined FFT approach based on serial 

shift register memory, and constant geometry data flow. The time 

domain is clocked into a shift register at clock rate (1) and is 



XCk) 

t paraI1.1 

load x(ii3 

RAM I 	 I RAM 

AU) 	 (AU 

RAM 

CONSTANT GEOMETRY 	 IN PLACE 

Fiaure(2.3.1.10) Two Distinct Single Arithmetic Unit 
FFT System Memory Configurations. 

Figure(2.3.1.11.) An example of Serial Memory (Shift Register) 
to Implement a Radix-2 FFT in a Pipelined 
Processor. (Parallel Load Facility Requires 
Custom VLSI). 



39 

then loaded in parallel into another shift register. This is tapped 

at the half-way position and clocked at (f/2), thus sorting the data 

into the correct order for the butterfly. 

Data flow graphs can be very helpful in hardware FFT system 

design as they allow the various possible addressing strategies to 

be clearly differentiated. They also show how the addressing of 

data registers relates to the particular FFT algorithm being con-

sidered. 

It is known that there are a large number of FFT algorithms 

which work for a variety of data block lengths not necessarily 

powers of 2. There exist Radix-3 FFT algorithms, (8] and Radix-6 

algorithms, [9] as well as the more conventional Radix-4 and Radix-8 

[6] FFT's. These unusual Radix FFT's do not offer computational 

advantages over-the Radix-2 and 4 FFT's involving comparable complex 

multiply operations, however, their main advantage lies in the abil-

ity to compute the FFT for input time domain sequence lengths that 

are not necessarily powers of 2. 

2.4. The Prime Radix Fourier Transform 

As previously mentioned, the Cooley Tukey FFT algorithm is at 

best restricted to trnfnrm qj'j 	Fh- rô 	 4.4 

power of two whereas the Prime Radix FFT algorithms [10,11] involve 

the building up of a large transform from OFT's some or all of whose 

lengths are prime. The simplest case involves building up a P = N.M 

point DFT from N, M point DFT's followed by M, N point DFT's. 

Unfortunately, the joining up process involves non-trivial rotations 
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which calls for complex multiplication, thus the only apparent 

advantage of Prime FFT type algorithms is the ability to compute 

unusual length DFT's that are not possible using the standard 

Cooley-Tukey FFT or a radix-3 FFT. 

It is worth noting, however, that the Prime DFT has itself some 

unusual features which make hardware implementations particularly 

attractive. 

2.4.1. The Prime DFT 

The N point DFT, where N is prime, is unique, in that each row 

of the W coefficient matrix contains all Nth roots of unity, with 

the exception of the row used to compute the DC term. With this one 

exception then, each row used to compute non-zero frequency com-

ponents contains every one of the N vector coefficient angles, which 

are a multiple of (2 x P1/N) radians. This is true only when N is 

prime and does not apply to the row corresponding to the DC term. 

Since every other row contains all Nth roots of unity, it is possi-

ble to re-order the expansion of the (N x 1) time domain matrix with 

the (N-I x N) W coefficient matrix, such that the time domain is 

scrambled, instead of the W matrix, which can now be made the same 

for each frequency domain channel, consisting of a rotation of (2 x 

P1/N) radians between adjacent elements. The prime length DFT can 

now be expressed as a scrambled (N-I x N) time domain matrix multi-

plied by a single column (N x 1) W coefficient matrix, representing 

a single integer frequency (rotation). An example of this re-

ordering is shown in Figure (2.4.1), for N=7. The fact that this 

single integer frequency can be used to compute all the frequency 
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domain terms, allows techniques such as distributed arithmetic to be 

used - discussed later in Chapter 3 - where the additions in the 

multipliers and adders are re-ordered to allow a memory and accumu-

late reformulation. Siu and Chen (12] describe a system based on a 

6800 (2MHz) microprocessor which uses distributed arithmetic tech-

niques to compute a 61 point OFT in only 3.1 ms. Distributed arith-

metic can be considered to be a very useful technique in micro-

computer systems, although it should be noted that both hardware and 

instruction set usually need to be specifically "geared" to such 

programming which includes the ability to efficiently look at indi-

vidual bits in a word as well as perform conventional word arith-

metic. Siu and Chen achieved their high performance by providing 

hardware to perform such bit-level functions. 

The Prime DFT can be further simplified, however, by using con-

ventional arithmetic in a recursive mode. If a given row of the 

scrambled time domain sequence in the 7 point example (shown in Fig- 

ure (2.4.1)) is represented as x' 0  x' 6  then, any one of the fre-

quency bins X may be represented by the recursive expression of 

equation (2.4.1). 

Xn = (((((x' 6  W+x' 5  )W-fx' 4  )W+x' 3  )W+x' 2  )W+x' 1  )W+x' 0  (2.4. 1) 

In this example W has a fixed angle of (2 x P1/7) radians. 	This 

equation shows how each frequency cell of the 7 point DFT can be 

computed recursively by performing a repeated fixed angle vector-

rotate/vector-add operation on the scrambled time-domain sequence. 

The main advantage of this re-formulation is that a fixed-angle 
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Figure (2.4.2.) showing Basic Prime DFT Hardware Requirements. 
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vector rotate can be implemented more efficiently than a variable-

angle vector rotate in both hardware or software by using techniques 

such as shift and add or partial table look-up. This again is par-

ticularly attractive in micro-computer systems that are poor at per-

forming signed multiplications but can perform shift and add opera-

tions or table look-up operations with efficiency comparable to that 

of dedicated hardware. In hardware implementations, the main advan-

tage of this approach in computing the Prime DFT is that an exten-

sive coefficient Read Only Memory (ROM) is unnecessary, however, the 

need for a data-sorter still limits the size of DFT that can be com-

puted on chip. It is likely however that the resulting structure 

would be more easy to design and permit a larger size of DFT to be 

computed than could be done conventionally. Figure (2.4.2) shows the 

basic hardware required to implement the prime DFT. 

2.4.2. Analogue Prime DFT Computation 

In analogue circuits,the current and/or voltage relationships 

of one or more active or passive devices are exploited in such a way 

as to model a mathematical relationship. At room temperatures this 

model will only exhibit a limited accuracy due to electronic noise 

of various types. Also, even in the absence of noise, the model 

i-i c Mau -i u 	 t 	 t; 	i 

idealities. Such effects can limit the applications of analogue 

techniques to algorithms requiring only low degrees of precision. 

This often means that only low degrees of recursion may be tolerated 

to minimise error build up. 
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In general, the DFT itself is not implemented effectively by 

using analogue techniques due to excessive inaccuracies, however, 

the Prime DFT offers an exception to this rule since in this special 

case, the frequency domain may be computed using a fixed angle vec-

tor rotate circuit, so that the multiplier only has to operate on a 

fixed coefficient word. A number of papers have already been writ-

ten on the use of analogue techniques [13,14] in this area. Charged 

Coupled Devices (CCD's) can be used to store data, and the multi-

plier can be implemented by using capacitive charge sharing tech-

niques, or by using active devices (Higher Bandwidths). In the case 

of the charge sharing analogue multiplier, digital techniques can be 

used to switch in small trimming capacitors, thus avoiding the need 

to take sensitive analogue signals, off chip. The performance 

obtained is then acceptable, offering low power, and medium to high 

bandwidths. In general, however, accuracy is still restricted. 

Jack, Park and Grant [13] project a, possible 0.5% rms transform 

accuracy, from results of a prototype device which displayed an ini-

tial 2% transform accuracy. Although accuracy is not high, low power 

at high bandwidths up to 5 MHz can be obtained, offering the possi-

bility of real time signal processing tasks at very low costs. 

The effect of device scaling, however, has a quite drastic 

- - - -- --- 	
------ - ---------------- 	 - .- 	 , J.J.IL(3J. .L 1J ? 

and noise performance are all degraded [15] and the need to handle 

information in a noise tolerant manner must be considered. This 

gives rise to a need for digital circuits. All digital circuits are 

analogue in nature, but by defining a threshold, data can be freed 

from the corrupting influence of noise, and be represented as a 
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string of binary (two state) data of any desired precision. It has 

long been recognised, however, that there is no advantage in setting 

voltage swings (V) and therefore thresholds in logic gates at levels 

that vastly exceeds the level needed to ensure good noise immunity 

as this serves only to greatly increase the power required to change 

the state of a given node (proportional to V2 ). This has led to the 

consideration of special logic gates such as in the case of multiple 

valued logic [16,17] where more than one analogue threshold is set 

within a given voltage range and therefore more than two possible 

states are considered to exist over that range. This quest for 

lower power and higher speed has also led to the search for lower 

logic voltage swings and thresholds in conventional digital circui-

try, which can still offer good noise immunity with reduced thres-

holds. Multiple valued (MV) logic is in effect, a half way house 

between digital and analogue approaches. It is likely, however, that 

for the same reasons that analogue circuits are declining in useful-

ness because of device scaling, (which favours digital approaches), 

MV logic will eventually decline in its usefulness as well. By 

then, digital VLSI circuits will be operating at more optimised 

thresholds with lower voltage swings which will offer higher speeds 

and lower powers, but still retain an adequate noise immunity. This 

thesis will not be pursuing these analogue approaches any further 

which are not suited to VLSI. The prime DFr and FFT will not be 

pursued any further either as it is more complex than the Cooley-

Tukey FFT to implement in hardware and does not appear to offer any 

outstanding advantages. The computational efficiency of both the 

prime DFT and Prime FFT is not very high compared to conventional 

DFT and FFT approaches. 
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2.5. FFT System Considerations 

2.5.1. Arithmetic Concurrency in FFT Systems 

One of the notable features of all FFT algorithms is that vari-

ous levels of arithmetic concurrency are possible allowing a wide 

range of bandwidths as well as system design philosophies. 

The three most important levels of arithmetic concurrency which 

apply to Radix-2 systems involve either a single arithmetic unit, or 

1092 N, or N/2 arithmetic units, where N is the transform size. The 

last approach is really only sensible with serial arithmetic proces-

sors. For a 1024 point FFT therefore, one might consider using 1,10 

or 512 butterfly processors. To use numbers other than this is pos-

sible, but would involve additional control, and some inefficiency. 

These three different approaches will be discussed briefly. 

2.5.1.1. Single Arithmetic Unit FFT System 

The single arithmetic unit processor allows low to medium 

bandwidth operation, depending on whether serial or parallel arith-

metic processing is used. Assuming a butterfly time of 1 micro-

second a 1024 point complex FFT based on a single arithmetic unit 

would take 512 milli-ørnnr1' 	mniø- 	 4,il- 

One feature of the single arithmetic unit FFT system, is that 

input (time domain) and output (frequency domain) buffering must be 

performed in order that the AID conversion may take place on a con-

tinuous basis. This entails extra memory and control requirements. 

The constant-geometry algorithm is preferred to the in-place 
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algorithm for this type of system where it would be very difficult 

to use a greater than unity latency arithmetic unit efficiently. 

The latency of an arithmetic processor is defined as the number of 

clock cycles required between the input of data to the arithmetic 

processor and the output of a result. This may be much greater than 

unity even if the processor can absorb data every clock cycle 

through the use of pipelining [5] techniques. The reason that the 

constant-geometry algorithm may be preferred is that it would be 

necessary to execute short bursts of read and write cycles, in order 

to take advantage of an AU with latency much greater than one. In 

this case, the AU would only be operating 50% of the time. Even 

when the constant geometry algorithm is used, problems can arise 

with an arithmetic unit with latency much greater than one. There 

is a potential delay in moving from the end of one pass to the 

beginning of another pass, corresponding to the latency of the 

arithmetic unit. This is so because the memory used to "sink 11  pass n 

data is the same memory that will be used as a source of pass n+1 

data, and since a greater than unity latency AU, will still be com-

puting pass n data (even though it is ready to process pass n+1 

data), it is not possible to switch the memory round from being a 

data sink to a data source until the arithmetic pipeline containing 

the last pass n output data is empty. Thus, the arithmetic pro-

cesser must be idle for a period corresponding to its latency at the 

end of each pass. In practice, for large transforms this would 

entail a fairly small bandwidth penalty, however, it complicates the 

control requirements still further. All these problems are probably 

best solved by using a uniy latency fast arithmetic unit instead of 

a pipelined unit. Whilst potentially slowing down the system, this 
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would simplify the control requirements for the reasons given above. 

2.5.1.2. Pipelined FFT System using one Arithmetic Unit per Pass 

This type of radix-2 FFT system configuration uses 1092N  arith-

metic units (AU's). The transform is thus computed at a rate com-

parable to the system clock. With a butterfly time of I micro-

second, a 1024 point transform would take 512 micro-seconds to com-

pute. The most notable point about using this level of arithmetic 

concurrency is that the throughput of the system is independent of 

transform size and input and output buffering is not required. The 

pipelined system has the further attribute that each AU can be made 

to operate continuously, since the memory can be configured as a 

swinging buffer thus allowing a greater than unity latency processor 

to output data from a current pass, whilst receiving data from an 

earlier pass. Since this type of system works equally well for unity 

latency and much greater than unity latency arithmetic processors, 

this approach must be considered to be very effective in minimising 

control and maximising bandwidth. The bandwidth of this type of sys-

tem is high enough to cover most FFT applications including high 

bandwidth radars if a parallel AU is used. Furthermore, the overall 

control requirements must be regarded as minimal, with the arith- 

metic units comorisina a much aratr nerrntci nf t-hp cvc4-m nf 

count than with the previous single AU system. It will be noted, 

that the only difference between passes are the W coefficient 

values. The possibility of constructing a single pass FET sub-system 

which could be programmed to compute any pass can thus be con- 

sidered. Then, log2N of these boards could be used in a high 
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bandwidth FFT system. 

This approach is highly versatile as it allows very high 

bandwidths and also a highly modular system design approach. Also, 

the possibility of electronically switching in spare pass boards to 

replace defective boards exists, allowing a highly reliable system. 

These advantages, together with the absence of input and output 

buffering suggest that this approach to a FFT system design is prob-

able the most cost-effective for a wide range of operating 

bandwidths. 

2.5.1.3. Highly Concurrent FFT System using N/2 Arithmetic Units 

This type of FFT system effectively computes a pass at a time, 

which might take just a few clock cycles. Bandwidths, therefore are 

very high. With a butterfly time of I micro-second, a 1024 point 

transform would take only 10 micro-seconds to compute. This 

approach, is usually only considered viable if bit-serial data com-

munications and processors are used to avoid a potential plethora of 

wires to connect them together. Such highly concurrent FFT systems 

cannot be regarded as versatile since there is no simple way to 

allow expansion to compute larger transforms, for example. 

................................................. 

formed such as conversion from real and imaginary data to magnitudes 

and logarithm computation for example, must also be performed at 

unusually high data-rates, necessitating further specialised 

hardware. This type of approach is however quite realistic with the 

availability of a bit-serial silicon compiler such as FIRST (181 
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which is intended for implementing digital signal processing func-

tions. Such a complier might, for example, be used to produce usable 

chip designs for a) A Butterfly Processor b) A Vector Magnitude Pro-

cessor and C) A Logarithm Processor, and possibly, d) A Data-

Windowing Processor, thus enabling the diverse requirements of a 

real system to be met with a minimum of effort. 

2.5.2. Control Distribution 

System control distribution and structure is of crucial impor-

tance, in all digital systems such as the FFT, since if this is not 

carried out methodically, the resulting system may be highly ineffi-

cient in its internal operation and also be difficult to modify. 

Many current hardware based single AU FFT systems, may be efficient 

in their use of components, but have these sort of deficiencies 

caused by the absence of a structured control hierarchy which makes 

it impossible for the control store to hold information efficiently. 

Distributed control is a prerequisite for efficient control data 

storage in all types of complex control tasks. It is not therefore 

optimum to have one single control unit in a complex system. Instead 

the approach should be to have local control associated with each 

distinct system function such as the memory and arithmetic unit, for 

example. This would then aiinw fho main rrn4rr1 ni4- 4.r. 

with the rest of the processor at much lower bandwidths and also 

reduce the degree of abstraction involved in the data communicated 

between the various units in the system. Another serious deficiency 

of many hardware FFT and DFT processors is that a corrupted control 

unit memory address instruction would allow incorrect data to be 
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sent to the arithmetic unit which would then combine two unrelated 

data and coefficient vectors to produce an incorrect result. The 

arithmetic unit is then fooled into receiving incorrect data passed 

to it, whilst at the same time, the control unit expects the arith-

metic unit to produce a given result in a given time frame. In oth-

erwords, such a system has by itself no means of determining that it 

is operating correctly, instead, it is the system engineer who ana-

lyses the system and declares it to be sound. Although this is how 

many systems are designed today, it is not the best way to tackle 

more sophisticated systems that will appear in the future as a 

result of VLSI. One possible approach which would provide a power -

ful check that the system was operating correctly, would be to add 

to each piece of data in memory, a word which could act as a label 

or tag for that piece of data. This would then allow the arithmetic 

unit to perform a simple check that the control unit had sent the 

right types of data to it for processing. When the arithmetic unit 

had received all the required labels and data, it would then compute 

the new data together with new labels for the data. Thus, although 

the control unit is responsible for addressing memory and sending 

instructions to the arithmetic unit, it is possible for the arith-

metic unit to verify that the data types that it receives are 

correct. This may seem to be superfluous but it does offer a means 

of verifying correct system operation in real time. As most digital 

system designers are trained to minimise gate counts and not add to 

them, this approach is often not thought of as desirable though, and 

consequently such additional features are not usually employed in 

most current hardware FFT systems. The main advantage is in reduced 

system-debugging time, increased versatility and verifying that 
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system memory accesses are correct. System debugging can be very 

expensive, so if this is also considered, it could well prove 

cheaper to add such additional hardware which serves to monitor the 

systems operation. Owing to the high levels of integration 

involved, however, these ideas were not pursued towards actual sili-

con designs, but it is felt that they would be worth considering in 

the construction of digital FFT system based on a number of standard 

VLSI parts. 

2.5.3. The use of Associative Memory 

If a content addressable (associative) memory (CAM) was avail-

able which could perform the function "search for any data label of 

type corresponding to pass 11j0 and return one such label plus asso-

ciated data" (this is a typical CAM function (5] ) then this feature 

could be used to ensure that each pass was completed whilst the 

arithmetic unit could request the correct data within each pass. To 

perform the FFT, then, the main system control unit would instruct 

the arithmetic unit to request any pass 1 data present in the CAM 

(which of course there would be to start with) and the CAM would 

then respond with one valid example. The arithmetic unit would then 

compute the labelled data associated with the label fed to it and 

outPut a new niece of data wit-h a r,-ia1-zDd 1h1 	 1,4...-.A 

this task, the arithmetic unit would then request any additional 

pass 1 data still available. If there was any, then another pass I 

sample would be sent to the arithmetic unit and so on. The control 

is therefore reduced to instructing the arithmetic unit to maximise 

the pass number which it does by requesting data of certain types 
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(pass n data) from the CAM. This represents a highly distributed 

control approach. A control methodology, involving the use of 

"intelligent memory could offer programming simplifications in gen-

eral purpose systems, however, it is possibly overkill for FFT and 

similar work. This is so because CAM's do not offer such a low cost 

per bit than do conventional coordinate addresses RAM's. The main 

advantage, possibly of using a content instead of a coordinate 

addressed RAM is that multi-processor tasks are considerably eased, 

since individual processors can determine almost instantly, the 

current state of the computation, from memory, without needing to 

communicate with another processor. Indeed, it appears that many of 

the draw-backs [19] of multi-processor based systems can be over-

come by using CAM's. Multi-processing, however, is only of use, 

when memory bandwidths greatly exceed processor bandwidths. This 

suggests the possibility of an FFT machine based on fast, expandable 

CAM connected to a variable number (non-critical) of low bandwidth 

bit-serial processors. Figure (2.5.3.1) shows such a system confi-

guration. The CAM may have its own dedicated processor in order to 

extend its versatility and perform bus arbitration as shown in Fig-

ure (2.5.3.2). This type of approach is quite useful in that low 

bandwidth processors may be added or subtracted from the system to 

produce the required overall bandwidth, with an upper limit being 

dictated by the relative CAM to processor bandwidth. As the precise 

number of processors is non-critical in such a system, the possibil-

ity of switching out defective low bandwidth processors might pro-

vide a basis for yield enhancement which would allow the possibility 

of wafer-scale-integration. The low bandwidth processors would be 

designed to be capable of computing any arithmetic task in order to 



Figure(2.5.3.1.) Possible Multiprocessor FFT Scheme based on 
Fast Responsive Content Addressable Memory(CAM). 

FAU 	[AU --------------- AU 

Figure(2.5.3.:2.) Similar CAM based FFT Scheme with CPU to 
Extend Overall System Versatility and 
Remove some Load from the smaller 
Arithmetic Units (AU1-AUn). 
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allow other system requirements such as input and output condition-

ing to be realised as well as the basic FFT. Unfortunately, the 

levels of integration involved in pursuing such ideas are currently 

too high to consider specific silicon implementations. 

2.5.4. Input Conditioning 

Windowing of data is not part of the DFT or FFT itself, but 

such a system which is processing real-life signals, (from an analo-

gue to digital converter for example) will not necessarily receive a 

data sequence which is periodic. A discontinuity of undetermined 

value will exist between the first input sample, and the last input 

sample. DFT theory, however, requires that the time signal sampled 

for processing be periodic (20] over the data block length. A 

discontinuity in the time domain would have the effect of introduc-

ing strong frequency domain components which were a feature of the 

discontinuity. These extra frequency components are manifest not 

only as a localised spreading (main lobe spread) around a spectral 

line but also in a much wider spread (side lobe spread) through the 

whole of the frequency domain produced by the transform. Data win-

dowing is one way of reducing this problem, where the idea is to 

slightly modify the time domain sequence in such a way as to force 

ncrir'ir1i,-i4-t, 	r%t7tr 	4-ô 1-1r-, 1e4- 	rj44-),,,,1- 	-.--l-1.. 	 j.L 
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true frequency domain content of the signal. This can be done by 

multiplying the time domain with a window function. The many dif-

ferent window functions reach a compromise between main lobe widen-

ing and side lobe reduction. In general the window function will 

have a form similar to 
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W(n) = Sin a  [n.PI/N) 	where 1.0 < a < 4.0 

although more complex windows do exist such as the Blackman, Gaus-

sian, Dolph-Chebyshev and Kaiser-Bessel windows which offer varying 

types of sidelobe reduction. Much work has already been covered in 

relation to finding optimum windows [2] for given applications by 

Harris. When a = 2 the general function (above) yields 

0.5 [1.0 - Cos [2n.PI/N] I 

which is very close to the popular Hamming window which is described 

as 

W(n) = 0.54 - 0.46.Cos [2n.PI/N]. 

The window has the effect of removing the discontinuity in time 

domain, with a consequent improvement in the quality of frequency 

domain output. This is an important topic primarily because it 

posses a considerable processing overhead which must be considered 

alongside the butterfly arithmetic requirement for the FFT itself. 

On the first pass of the Radix-2 Decimation in Time FPT, the phase 

factors are all unity, suggesting that the multiplier in the but-

terfly might be used to perform data windowing on the first pass. 

This requirement for data-windowing influenced the design of 

the CMOS-SOS 16 bit arithmetic processor device described in Chapter 

5. The same complex multiplier used to compute vector rotation 

could also be used to perform a time domain windowing function. 



2.5.5. Output Conditioning 

The output of the DFT or FFT takes the form of Real and Ima-

ginary components of the frequency bin vectors. In many applications 

the magnitude of the frequency domain vectors is required, for exam-

ple, if the spectrum is to be subsequently displayed. The magnitude 

(Modulus) of a vector is computed as the square root of the sum of 

the squares of the real and imaginary parts. This is an additional 

processing overhead that may well need to be met. It is possible to 

achieve a good approximation to the square root with a reduced com-

putational effort if the data is known to lie within certain ranges, 

however, in general this processing requirement may differ substan-

tially from the butterfly arithmetic requirements, and is non-

trivial. 

In the section on data windowing it was mentioned that the time 

domain sequence must be periodic in order that a true spectrum be 

produced. Even with data windowing, the true spectrum is only 

evaluated to a fairly good approximation, since the discontinuity 

between beginning and end of the time data sequence is only greatly 

reduced and not entirely eliminated. If it is expected that the 

true spectrum of a signal is only varying very slowly, then if the 

magnitude of the frequency domain is averaged at a corresponding 

rate, the unwanted effects in frequency domain of the discontinui-

ties in the time domain can be reduced. In addition, noise will 

tend to whiten, and weak frequency domain components become more 

predominant. The averaging of frequency domain is thus a very use-

ful function, which although not computationally intensive like the 

butterfly of the FFT, for example, may be required in a real FFT 
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system. 

Logarithm computations are usually only performed on either 

large transforms and or frequency domain averaged transforms. They 

are useful in presenting the transform results because of the nor-

mally very high dynamic range of the output. As this may only need 

to be performed on averaged frequency domain the computational 

bandwidth may not be very high, however, thought must be given to 

the inclusion of a "log processor" in a real FFT system, which means 

that bandwidth matching to the FFT must be carefully considered. 

2.5.6. Signal Growth and Data Scaling 

From the DFT equation, it is clear that if the number of data 

samples is equal to N, then a potential signal growth of N times 

(1092 N bits) could take place in the case of a unity magnitude time 

domain signal that was coherent with one of the integer frequencies 

in the W coefficient matrix. This signal growth would also take 

place in the FFT if there was no data scaling. A course of action 

often taken with the DFT, is to use an accumulator of larger bit 

length than the complex multiplier used to perform vector, rotation, 

and allow signal growth to occur. This simple approach is not possi-

ble in the FFT however where the vector rotate and accumulate opera-

tions are shared out so that both vector rotator and accumulator 

must handle the signal at equivalent levels. In the Radix-2 FFT 

algorithm, the DFT is broken down into 2-point DFT's. Vector-

rotation does not change the magnitude of a data vector, however, 

the 2-point DFT which consists of an add and subtract will introduce 

a possible signal growth of two (ie one bit of growth). This is the 



potential growth therefore which may take place with each Radix-2 

butterfly operation. As the complex multiply which is used to per-

form vector-rotation is a computationally intensive operation, and 

therefore expensive, data scaling is normally employed at each but-

terfly to avoid excessive signal growth taking place. This allows 

optimisation of processor wordlengths. If in the Radix-2 FFT, the 

output of the butterfly is scaled down unconditionally by one bit 

then signal growth in the system is held to around zero. The gain 

of the system is thus held at around unity. This requirement can be 

implemented in hardware, trivially as a simple shifter, designed to 

shift down the output of the butterfly. 

2.5.7. Noise Considerations in a Practical FFT System 

This is a fairly large subject on which a substantial amount of 

work has already been accomplished, [6] both in the area of theory 

and practical simulations as there are quite a large number of 

potential noise sources in an FFT system. The main components are 

detailed below. 

2.5.7.1. Analogue to Digital Conversion Noise 

This is not related to the FFT itself of course but is an 

important noise source in a practical system. The quantisation in 

the Analogue to Digital conversion and non-linearjtjes can give rise 

to additional frequency components which show up as harmonics and 

distortion products. This problem is purely related to A/D design. 

The FFT is a useful tool in adjusting high precision A/D devices as 

it allows for these harmonics and distortion products to be 

60 
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minimised, given a sufficiently pure sine wave as an analogue input. 

2.5.7.2. Coefficient Quantisation Noise (W) 

The W "twiddle factors" that are required to implement the FFT 

will typically be stored as a finite length string of binary 2's 

complement fixed-point data, (defined later in chapter 3, section 5) 

which is the same as would be used for signal data throughout the 

transform. Floating point operations may also be used, but in gen-

eral the above format is considered to be most appropriate in a sys-

tem that is processing real signals from an A/D converter, since the 

A/D converter will generate this or a similar digital format. 

There are a number of intuative observations that can be made 

about the W noise and the precision needed to represent the W twid-

dle factors in a given transform size. 

Firstly, the absolute noise introduced into the transform as a 

whole will depend on the magnitude and nature of the signal data, 

and how this varies throughout the transform. This will be so 

because W, is directly multiplied with signal data. Secondly, the 

precision needed to represent the W twiddle factors will be greater 

than was required to represent the equivalent W coefficients in the 

DFT's W matrix and this will crucially depend on transform size. 

The reason that the W twiddle factors will require a greater preci-

sion than the W coefficients of-the DFT, are that in the FFT, each W 

element from the DFT W matrix is effectively synthesised from logR 

iterations - (one at each pass) - where R is the radix of the 

transform and N is the transform size. W quantisation in the DFT 
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itself should also be increased with transform size, however, in 

order to ensure good angular resolution of all the N w vectors. 

Thus in the FFT, W precision must increase with transform size 

slightly faster than is required by the DFT such that after log R N 

iterations in the same number of passes, the angular resolution of W 

is still maintained. A mathematical treatment of the W guantisation 

noise is quite complex [6,21] and it is probably easier to simulate 

these effects using a digital computer which allows comparison with 

a near ideal transform using floating point arithmetic. In the pass-

ing, it is worth mentioning that signal data itself must also be 

held at higher precision for larger transforms for similar reasons. 

This can make the A/D conversion very costly for larger transforms. 

2.5.7.3. Roundoff Noise due to Data Scaling 

This might be expected to be a relatively large source of noise 

when compared to the W quantisation noise because data scaling 

directly affects the main signal path, and indeed, noise resulting 

from data scaling [22,23] does tend to dominate, given that the W 

coefficients are held at the same precision as data. As with W 

quantisation noise, it would be expected that the final passes would 

contribute most noise since noise from earlier passes is scaled down 

along with the signal in any data scaling operations that may have 

taken place. This noise contribution can be avoided altogether by 

allowing signal growth to take place. This is undoubtedly the most 

desirable approach when the extra cost of having higher dynamic 

range hardware is considered acceptable. This approach may entail a 

bandwidth penalty, however, particularly if bit-serial arithmetic 
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processing is employed as the word transfer rate is inversely pro-

portional to the word length used. 

2.6. Review of Current Devices 

2.6.1. Single Chip FFT Processors 

Recent trends in using redundancy with self-test and repair 

techniques have allowed the possibility of fabricating a fully pipe-

lined FFT processor on a wafer of silicon such as the 16MHz, 16-

point dedicated FFT processor [24] using yield enhancement tech-

niques as described by Garverick and Pierce. In this context, pipe-

lined refers to a level of arithmetic concurrency that allows a con-

stant stream of data to flow non-recursively from one arithmetic 

unit to the next. This is possible where there is one arithmetic 

unit for each pass in the transform as described earlier in this 

chapter. It is likely that wafer scale integration will provide the 

possibility of even more powerful FFT systems in the future. It is 

not so easy, however, to apply these sort of yield enhancement tech-

niques to any arbitrary architecture, indeed the approach should 

really be to devise an architecture based on a particular yield 

enhancement approach rather than try to force yield enhancement on 

to an existing architecture which does not employ yield enhancement. 

It is possible to fabricate dedicated single chip FFT proces-

sors without using yield enhancement provided the arithmetic unit is 

limited in size such as the 32-point FFT processor chip described by 

Covert [25] which uses a single arithmetic unit. The limited 

transform size (32-point) is indicative of the substantial memory 



and complex control requirements, needed to implement the FFT. 

Larger transforms can be built up from this basic 32-point 

transform. The joining up process requires an external complex mul-

tiplier to implement the requirement for vector rotation. 

The advantages of designing a single chip FPT are much the same 

as for integrating any digital system. There is the possibility of 

optimising the speed of each section which in the FFT, includes 

memory, arithmetic and control. Also, system power consumption can 

be reduced as high bandwidth memory accesses are contained within 

the chip. There are, however, more subtle advantages that can be 

derived from integrating a system such as the FFT. Such advantages 

can be derived from analysis of the interface between the various 

sections of the system. For example, rather than hold coefficient in 

ROM as an actual binary numerical representation of the coefficient 

vector, it is possible to pre-compute and store in ROM the resulting 

control logic that would be presented to a Booth's [26] algorithm 

multiplier as a function of the numerical coefficient vectors. The 

requirement for on chip Booth's control logic hardware can thus be 

bypassed by storing the coefficient vectors in the more abstract 

form of a Booth's multiplier control logic word. As well as reduc-

ing gate count, this also reduces power consumptions and propagation 

delays. This technique was used in Coverts, 32 point FFT processor 

chip. It is important to consider that holding the coefficient in a 

more abstract form like this, makes the system more difficult to 

understand and therefore de-bug or modify. Despite these disadvan-

tages, the general tend in VLSI designs of this dedicated nature has 

been to adopt higher and higher levels of abstraction. As a general 

64 
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comment, these trends in dedicated VLSI designs are likely to con-

tinue into the future being made easier by the growth in methods and 

tools for coping with system level abstractions. As dedicated chip 

design involves some degree of abstraction in the optimisation of 

the hardware it might be asked if the case for general purpose 

hardware design is thus strengthened since this involves lower 

degrees of abstraction at a hardware level by passing system 

abstractions to the programmer instead. This indeed is the great 

opportunity presented by VLSI; that system abstractions can be moved 

more and more into software, thus allowing the hardware designers to 

concentrate on architectures that lend themselves to fault toler-

ance, self repair and expandability. 

It is not surprising therefore that the general purpose digital 

signal processor with on chip RAM, is becoming more common. These 

sort of devices are quite fast at performing the PFT however memory 

availability usually limits transform sizes to around 64 points such 

as with the fast Texas Instruments TMS320 processor and the VLSI 

programmable signal processor [27] described by McWilliain. Both of 

these processors take around 1-2 milliseconds to compute a 64 point 

FFF, however the TMS320 can compute a transform in 0.7 milli-seconds 

if program loops are repeated in memory, thus avoiding instruction 

branching. It would normally take 1.5 milli-seconds using nested 

loops. Such general purpose processors, however, are usually sub-

stantially slower than can be obtained using dedicated hardware, as 

the arithmetic is not usually geared to operating on complex data, 

and consequently cycles are uburnt  up', in transferring double 

length complex data between storage and processing areas, on chip. 



Also, of course, a general purpose unit would require extra cycles 

for the decoding of each instruction. This requirement would typi-

cally be bypassed in a dedicated processor although the technique of 

pipelining the instruction fetch, decode, and execute can overcome 

speed problems in general purpose units with only branch instruc-

tions being left rather slow. 

2.6.2. FFT Arithmetic Processors 

In chapter 1, it was shown how the FFF algorithm involves the 

repetition of a complex arithmetic function, very often known as the 

"butterfly". The precise butterfly function depends exactly on the 

particular FFT algorithm, but will involve complex multiplication 

and addition when using an x,y (Cartesian) coordinate system. It 

has already been mentioned that the FFT butterfly is highly suited 

to VLSI implementations and there are a number of butterfly proces-

sor chips currently available, indicating the usefulness [28] of 

this partition. This section will look at current arithmetic pro-

cessors relevant to the FFT and also discuss developments in multi-

plier technology which is also relevant to the FET's arithmetic 

requirements. 

Of the number of single chip FFT butterflies, most commercial 

devices are aimed at Radix-2 or 4 systems and employ parallel arith-

metic in internal operation. Whilst bit-serial butterfly processors 

allow concurrent multiplications on chip, thus reducing control 

requirements, it seems that parallel processor design figures more 

prominantly than bit-serial. This is most likely because the design 

for parallel arithmetic multiply and accumulate chips, usually 
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already available as a separate product by the large manufacturers 

can be adapted to compute the FFT butterfly which can then be sold 

as a separate product. Lyon, [3] however, advocates bit-serial tech-

niques for dedicated digital signal processing (DSP) systems that 

can be pipelined such as the DFT and FFT. The advantages of this 

approach appears to be lower pin counts, and easy bandwidth match-

ing, since data flows as a constant stream of serial data through 

the system. Connections between chips are reduced and therefore sys-

tem costs are reduced. Bandwidths can be surprisingly high, due 

mainly to the high level of pipelining, although clearly the rate at 

which word data is passed is now much more dependent on wordlength. 

Perhaps the most important feature of the bit-serial methodology is 

however, the ease and efficiency with which interconnections can be 

made between different processing elements on chip. This feature 

can be used to achieve efficient auto-layout and connection of pro-

cessing elements such as is used in the FIRST (181 silicon compiler. 

The bit-serial approach is probably best suited to custom 

designs, (which might involve silicon compilation) and systems which 

cannot strictly be regarded as general purpose (ie relatively dedi-

cated, though not necessarily non-reconfigurable), however, the 

parallel arithmetic approach is perhaps more appropriate for general 

purpose uses because of the higher bandwidths, and suitability for 

recursive algorithms. 	Other butterfly FFT chips make use of bit 

slice techniques to allow various wordlengths to be achieved. 	Such 

devices include a serial-parallel 4 bit ECL bit-slice processor and 

an 8 bit bipolar bit-slice processor ( SN74AS888 ), which operates 

at around 20 MHz. The bit-slice approach appears at first sight, to 

be a sensible one, however, it does have serious drawbacks. The time 



to propagate carries forward is the limiting factor in all these 

bit-slice processors and taking a carry-out off one chip and onto 

another chip involves extra delays due to the extra buffering 

required. These times add up, resulting in a substantially degraded 

carry ripple-through time compared with a fully integrated proces-

sor. In addition, these carry-out nodes will be expected to operate 

at high bandwidths, increasing dynamic power consumption substan-

tially. As processing technologies shrink feature sizes further, 

the costs in taking signals off chip become proportionately greater. 

It is reasonable therefore to conclude that bit-slice techniques are 

a remnant from SSI and MSI which have no place at all in LSI and 

VLSI designs. 

2.6.3. Parallel Digital Multiplier Devices 

The digital multiplier is particularly relevant to the computa-

tion of the DFT and FFT, as it allows the complex multiply function 

to be readily computed. Most of the parallel multipliers described 

in literature are non-pipelined (no latching of data internal to the 

actual multiplier except possibly at the input or output) and 

operate therefore only in a unity latency configuration (the output 

appears a single clock cycle after the input). Such devices can be 

used in recursive arithmetic configurations as well as non-

recursive. One example of recursive operation is the active computa-

tion of a rotating coefficient vector from a fixed vector, by using 

feedback on a unity latency complex multiplier. The fastest multi-

plier technologies currently appear to be Gallium Arsenide (GaAs) 

technologies, such as the 16 x 16 bit multiplier with 10.5 nS 



propagation delay [29] described by Nakayama et al. This technology 

is so fast, that an attempt to pipeline the multiplier design would 

have been counter productive since the distribution of high 

integrity clocks could not be efficiently realised at these speeds. 

This multiplier would require to be interfaced with a memory devices 

of the same technology, such as the lKbit 4 nS access time GaAs dev-

ice described by Yokoyama [30] which is fast enough to permit this 

multiplier to operate at its maximum clocking rate. 

Zero static power dissipation technologies are best suited to 

parallel ripple through multiplier designs, as they consume power 

only during logic transitions. Thus, bulk CMOS and CMOS-SOS offer 

very low power consumption figures. Table (2.6.3.1) shows a number 

of high speed multipliers that represent a high level of perfor-

mance. 

Maker Device 

Number 

vai1a- Word 

Length 

Latency Techn- 

oloqy 

Speed 

() 

Power 

(niW) bi]J.tv 

TRW MPYI2HJ Yes 12 x 12 Unity Bipolar 80 3000 

TRW MPY16HJ Yes 16 x 16 Unity Bipolar 100 4500 

TRW MPY24HJ Yes 24 x 24 Unity Bipolar 200 5000 

GEC / No 16 x 16 Unity cMOS-SOS 250 40 

FUJITSU / No 16 x 16 Unity GaAs 10.5 952 

cant.. 
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I Lerouge IESSCIRC831 No 	116 x 16 Unity I nMOS 1  120 1 200 

Table 

More details of the above TRW devices may be found in [31] and 

the nMOS device is described fully in both [32,33] which describes 

an interesting speed enhancement technique. 

2.7. FFT Control Chips 

Random Access Memory will typically be used for data storage in 

the FFr, so that some means of addressing this memory is required. 

It is apparent that serially based memory storage can also be used 

in the computation of most FFT's, [6] but this tends to degrade sys-

tem versatility and should therefore be avoided unless a given Ran-

dom Access Memory (RAM) is too slow. In the special case where data 

can be stored serially, a serial memory will generally offer a 

higher bandwidth than a RAM. As well as addressing this memory, 

read/write control signals will be required and the arithmetic unit 

may have its own special control requirements such as data scaling 

for example. 

The control unit must offer some flexibility for the system 

designer, and should therefore either be programmable or be produced 

by techniques such as silicon compilation which might be required if 

a general purpose unit was too slow or inefficient. Some manufac-

turers produce FFT chip sets which include FFT address generation. 

The AMD29540 FFT control sequencer is one example. 
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2.7.1. General Purpose Control Units 

The general purpose control unit is one which is programmable 

and will be RAN or ROM based. The memory will contain all or some of 

the state addresses of the FFT and will output the appropriate con-

trol data associated with each address. Each word in the memory 

will comprise a state address, (used to point to the next state 

address) and a control word which is read out at each cycle. Part of 

the data output of the memory is therefore fed back into the address 

input in order to implement a finite state machine (FSM). Figure 

(2.7.1.1) shows a typical memory configuration for implementing a 

FSM. The programmer, must ensure that each state address that is 

output from the memory, points to an existing and correct address 

present in the memory or the state loop will reach a "dead end". An 

important feature of the FSM, is that it is possible to include 

several state loops in the memory and thus data or external control 

can be applied to leap between one loop and another loop without any 

time penalties. (The other loop may involve only one single state, 

feeding back on itself, thus holding the FSM output at some fixed 

value.) One problem, however, is that it cannot handle loops within 

loops without repeating the inner loops for as long as they must 

appear. This is because the FSM can only recognise a single state at 

any one time and not several states associated with every loop. 

Thus, massive redundancy, would be involved in using a single FSM 

controller in computing the FFT, for example. This can be overcome 

by using a single FSM for each loop required in the control sequence 

as shown in Figure (2.7.1.2). It should be noted, however, that 

even in a single loop, there can be hidden loops which could be 



Figure(2.7.1.1.) Memory or a Programmable Logic Array may be 
Configured as a Finite State Machine. 
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implemented more efficiently by using one or more extra FSM's. 	The 

decade counter is one simple example of a FSM which could be broken 

down into four binary counter FSM's. It is clear then, that a gen-

eral purpose control unit, must have as many FSM's as there are 

likely to be loops, and each FSM must have a large enough memory to 

hold all the states required for each loop. In practise, if the 

number of loops within loops is not very great, the decision to 

implement the whole control sequence with a single FSM with some 

redundancy, may be made by the system designer as this would invari-

ably result in fewer system components. It is clear that a silicon 

compiler which could code up, place and interconnect FSM's as deter-

mined by a simple input language, would allow the size and number of 

the FSM's to be tailored to a specific control problem particularly 

efficiently. 

2.7.2. Silicon Compilation for FET Control Units 

The standard and well proven structure used to implement FSM's, 

is the Programmable Logic Array (PLA) (5] described in detail by 

Mead and Conway. The PLA is essentially a ROM except that only a 

fraction of the 2 possible combinations of the N bit input address 

are actually decoded as only these input states need to be con-

sidered. In such cases the use of a ROM would be wasteful. (This 

means that it is possible to find some input address word which will 

not be decoded and therefore produce no meaningful result.) The PLA 

can be constructed entirely from NOR type logic gates and is thus 

highly suited to technologies such as nMOS which employ ratioed 

logic gates. (Gate pull up resistance must be ratloed with worst-case 
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Figure(2.7.2.2.) Generalised Floorplan showing the Constrained 
Architecture that is suited to Silicon 
Compilation. A One-Dimensional Routing 
Channel Connects a number of Finite State 
Machines Together. 
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pull down resistance to achieve satisfactory logic low.) The PLA is 

also a highly regular structure, and is thus well suited to silicon 

compilation techniques. With a "PLA generators', it is possible to 

convert Boolean Logic directly into silicon layout. Such a program 

would also be capable of automatically feeding back some of the out-

puts of the PLA to produce a FSM. The regularity of the PLA, how-

ever, also makes it possible to estimate its size very accurately 

and simply, making it easy to feed accurate information to placement 

software. Ultimately, it would be possible then, to write a program 

which could read some high level language, describing a control 

task, and place a number of PLA based Finite State Machines (FSM's) 

along a one Dimensional routing bus which would handle all the con-

nections. automatically. Figure (2.7.2.2) shows a typical floorplan 

that such a compiler might produce. 

Performance estimation and control are important in silicon 

compilers. The possibility of devising a speed programmable struc-

ture such as the PLA was considered, and some software was written 

to assess whether it would be possible to achieve a large enough 

degree of control to be useful. This work and its results are shown 

in appendix 1. 

2.8. Special Memories for the FFT 

There is an extensive range of general purpose RAN chips avail-

able, and as a consequence of this there is a general lack of spe-

cial purpose memories, geared to FFT processing. There are, how-

ever, some FFT system memory configurations such as the swinging 

buffer, which, if implemented using standard RAN components, result 
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in very high chip counts owing to the extra components needed to 

switch data and address from one memory device to its neighbour. 

There is a strong case for a case for a swinging buffer type memory 

or alternatively a special twin memory which could execute a flash 

load of one memories contents (from an A/D for example) into another 

memory (for FFT processing for example) as time and frequency domain 

buffering is essential to implementing the FPT in a real time 

environment. The use of associative (content addressable) memories 

may provide easier multiprocessor FPT system design as discussed 

earlier in section 4. Multiport memory (where more than one data 

write and/or access can take place simultaneously) may be useful in 

bandwidth enhancement of the FFT. Certain serial memory architec-

tures (shift register based) may offer very high speeds in those FFT 

algorithms that allow for some degree of serial data storage (most 

FFT algorithms). Programmable, tapped shift register with parallel 

load facilities seems to be particularly attractive in this respect, 

particularly as yield enhancement is fairly trivial with this sort 

of memory by employing simple bypassing and redundancy techniques. 

In general, however, standard RAM can usually be configured to 

suit most FFT system architectures that have so far been discussed 

in literature, and it is not therefore proposed to pursue this 

aspect of the FFT's system requirements further. 

2.9. Summary 

The memory and control requirements of the FFT involve the 

design of fairly general purpose hardware using techniques which are 

difficult to improve on. The EFT arithmetic requirement is however, 



quite significant, involving vector rotation and addition at very 

high data rates and is independent of the degree of concurrency in 

the system or the size of transform to be computed. This processing 

unit known as the "butterfly" is an ideal candidate for VLSI as it 

does not impose any major restrictions on the system designer other 

than the normal word-length restrictions experienced with any digi-

tal processor. 

The next chapter will consider ways of streamlining the but-

terfly arithmetic requirements by using conventional arithmetic and 

also distributed arithmetic techniques. 
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Chapter 3 - Algorithms for High Bandwidth Vector Arithmetic 

3.1. Introduction 

This chapter aims to review various digital approaches to per-

forming high bandwidth vector arithmetic, in particular, vector 

rotation which is a dominant arithmetic requirement in the computa-

tion of the DFT and FFT. 

The chapter will start by discussing the CORDIC approach and 

then move on to look at the complex multiply as a means of perform-

ing vector rotation. Various ways of computing this function using 

real multipliers are discussed. The chapter ends by looking at dis-

tributed arithmetic techniques for computing small DFT's directly 

and also the complex multiply. 

3.2. CORDIC Arithmetic Approaches 

Although vector rotation can be achieved trivially using addi-

tion in polar coordinates for example (the magnitude of the input 

vector remains unchanged and its new angle is computed by adding the 

old angle to the rotation angle), vector addition involves tri-

gonometric functions which, ordinarily, would represent a high com-

putational load. Techniques have been developed for efficiently com-

puting trigonometric functions such as used in COordinate Rotation 

DIgital Computers, (or CORDIC's for short) which allows vector rota-

tion and addition operations to be performed more efficiently than 

would normally be possible. This technique allows for two basic 

modes of operation (1] as described by Volder. In the first of 

these modes, the Rotation mode, the coordinate components of a 
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vector are modified by an angle of rotation to produce coordinates 

which have been rotated by that angle. In the second mode, the Vec-

toring mode, coordinate components of a vector are returned in the 

form of magnitude and angle. CORDIC arithmetic is sufficiently gen-

eral purpose in nature to allow vector rotations to take place 

either on hyperbolas, circles, (as is relevant to the DFT and FFT), 

or lines. 

The rotation of a vector using CORDIC arithmetic is based on 

the concept of realising a variable rotation as a step-by-step 

series of pseudo rotations. The angles of these rotations may be 

chosen to be such that each pseudo rotation step may be computed 

using only binary shift and add operations. These special angles 

form a set from which any desired angle of rotation can be built up 

iteratively. In order to specify this set of angles, it is necessary 

to consider a typical pseudo rotation as shown in Figure (3.2.1). 

This shows a vector of magnitude R 1  at angle T to the X-axis being 

rotated by either + a i or - aj . As well as being rotated, a small 

increase in the magnitude of the new vector results. This may be 

calculated by using standard trigonometrical relationships to evalu-

ate the length of the side of the right angle triangle that is oppo-

site to angle a1 . This side has length [R tan(a)]. The theorem of 

Pythagoras may then be used to evaluate the new magnitude of the 

rotated vector. This is equal to [Sqrt(1 + tan 2 (a1 ))].R1 . Where 

Sqrt is short for the square root of whatever follows in brackets. 

Trigonometric rules can then be applied to the two right angled tri-

angles of angle (T1  + a) and (T - a) to the X-axis, to produce an 

expression for the two values of Y 11 . This is as shown in equation 
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Figure(3.2.1.) A Typical "CORDIC" Pseudo-Rotation. 



= [Sqrt(1 + tan 2 (a)J.R.sin(T 1  +1 -  a) 
	

(3.2.1) 
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This is equivalent to 

[Srt( 1 /cos 2 (a))].R.[sin(T1 ).cos(a..) +1 -  cos(T).sin(a)] 

(3.2.2) 

From trigonometric relationships, it may be noted that 

	

= R.cos(T) 	 (3.2.3) 

and similarly 

	

Y  = R1 .sin(T1 ) 	 ( 3.2.4) 

It follows then, that 

= [ 1 /cos(a)].Y.cos(a) +1 -  X.tan(a) 	(3.2.5) 

which implies that 

Y1+1  = Y1 	+1- 	X.tan(a1 ) 	
( 3.2.6) 

a similar expression can be derived for X 	 which is 



X11  =X 	 -f-f 	Y.tan(a1 ) 	 ( 3.2.7) 

The fundamental principle upon which the CORDIC computing tech-

nique is based, is that if angle a1  is chosen to be such that its 

tangent is the reciprocal of some power of 2, then equations (3.2.6) 

and (3.2.7) which describe a pseudo rotation, can be computed using 

only shift and add operations. The set of angles therefore which may 

be considered are described by equation (3.2.8). 

a  = tan-1 2-U-2)  where i = 2,3,4,5,6... 	(3.2.8) 

Where the number of rotations by angle a1  is chosen to be large 

enough to produce the required accuracy of rotation. The case of 

1=1 has been excluded to allow the special case of 

a = 90 degrees for which the tangent cannot be expressed. In this 

special case, Y = +1 - X and X2 = -/+ Y 1 . This step is unique, 

in allowing a perfect rotation, with no alteration in the magnitude 

of the vector. 

Although the growth in the magnitude of the rotated vector is 

unavoidable, it can be kept to a constant by imposing the condition 

that at each pseudo rotation step, there may be no zero-rotations 

allowed (steps may not be ignored). That is, a decision to rotate by 

either + a1  or - a must be made at each step. If this rule is 

adhered to, then for a given number of pseudo rotations, the growth 

in the magnitude of the resultant vector is held constant. One 

disadvantage of this unavoidable signal growth is that unity magni-

tude twiddle factors may not be used in the FPT butterfly, so that 



both data inputs to the butterfly must be passed through the CORDIC 

hardware even though only one of the inputs actually needs to be 

rotated.. This makes this approach rather inefficient for computing 

the FFT butterfly. The fact that rotations can be computed using 

only shifts and additions makes the CORDIC approach attractive on 

machines which do not offer fast digital multiplication. This is 

true of most microprocessors that are not geared to digital signal 

processing. It is not proposed to cover the mathematical aspects of 

CORDICS any further here as this is a large subject area and has 

already been suitably covered by the previous reference (1] as well 

as (2,3,4,5,6] and more recently [7,8]. Instead it is hoped to sum-

manse the suitability of the CORDIC approach for VLSI implementa-

tions of the DFT and FFT. 

Work on specific VLSI implementations of CORDIC hardware such 

as that reported by Maxwell (9] give a good indication of the 

overall hardware requirements. The CORDIC architecture can be 

viewed as a controlled datapath, (frequently organised as two or 

three datapaths - one for each iterative loop) where the datapath is 

somewhat larger and more complex than a general purpose one. Maxwell 

for example used a datapath which contained two adden/subtractors, 

three variable barrel shifters, (two left and one right), two ROMS, 

five 2:1 multiplexers, one 4:1 multiplexer, two registers and other 

logic for operation on sign bits. This datapath must be regarded as 

somewhat special purpose compared with general purpose hardware 

datapaths, and does not point to a highly regular VLSI structure 

making interface with the control unit area inefficient. Also the 

overall CORDIC hardware requirement is quite large due to control 



requirements and the intricate datapath that is required. It would 

appear then, that the CORDIC approach may not be ideally suited to 

VLSI implementations, where digital multiplication can be achieved 

at low costs and low power consumptions due to the relatively simple 

control requirements. 

CORDIC's would thus appear to offer a useful general purpose 

approach to the computation of trigonometric functions, however, 

vector rotation is probably more conveniently described in a Carte-

sian coordinate system where absolute angles are not specified. 

This will now be investigated. 

3.2.1. Vector Rotation in a Cartesian Coordinate System 

Vector rotation can be conveniently described in a Cartesian 

coordinate system using the trigonometric relation described in 

equations (3.2.1.1) and (3.1.2.2). In this formulation of the rota-

tion function it is not necessary to compute sines or cosines of 

angles with both data and coefficient stored in this form at all 

times. These equations describe how the sine and cosine of the sum 

of two angles can be expressed as the sum or difference of the mul-

tiple of the sine and cosine terms of the individual angles. More-

over with this coordinate system, vector addition is equivalent to 

ordinary addition which is relatively trivial. 

cos(x+y)=cos(x).cos(y)-sin(x).sin(y) 	(3.2.1.1) 

sin(x+y)=cos(x).sin(y)+cos(y).sin(x) 	(3.2.1.2) 

ME 
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If the x and y axis are used to represent the real and ima-

ginary dimensions of the complex plane and it is desired to rotate 

an input data vector (B) by the angle of some coefficient vector (W) 

to form a resultant vector (Z), then the equations which describe 

this rotation are simply as shown in equation 3.2.1.3 and 3.2.1.4. 

(If only a rotation of (B) is to be performed, with no alteration to 

its magnitude, then the magnitude of (W) must be unity.) It can be 

seen that four multiplies and two (signed) addition operations must 

be performed. 

Re(Z)=Re(W)Re(B)-Im(W)Im(B) 	 (3.2.1.3) 

Im(Z)=Re(W)Im(B)+Re(B)fln(W) 	 (3.2.1.4) 

This might be computed by using a single multiplexed multiplier 

with an accumulator or by using distributed arithmetic techniques 

which are discussed in the next section. The total number of multi-

plies required to compute the above two equations can, however, be 

reduced from four to three with a small increase in the number of 

additions (10,11] as described by Golub (Golub's method is described 

in a footnote) and Buneman. This reduction in the number of multi-

plies is achieved in both cases by expressing parts of equations 

(3.2.1.1) and (3.2.1.2) as a product of sums and not just as a sum 

of products. This yields a common term in both equations, as shown 

in (3.2.1.5),(3.2.1.6) and similarly in (3.2.1.7),(3.2.1.8). 

Re(Z)=Re(B)Re(W)-Im(B)Im(w)(as(3.2.1.3)) 	(3.2.1.5) 
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Im(Z)=(Re(B)+Im(B))(Re(W)+Im(W)) 	 (3.2.1.6) 

-[Re(B)Re(W)+Iin(B)Im(W)J 
and also 

Re(Z)=Re(B)(Re(W)+Im(W))-Int(W)(Re(B)+Im(B)) 	(3.2.1.7) 

Im(Z)=Re(B)(Re(W)+Im(W))-Re(W)(Re(B)-Im(B)) 	(3.2.1.8) 

Further reductions can be achieved if the vector coefficient 

Re(W) and Im(W) is also stored as (Re(W)+Iin(W)) in ROM, so that one 

less addition is required per complex multiply described above. Thus 

(Re(W)+Im(W)) would not be actively computed. This, however, is not 

a highly significant saving and would only be chosen if ROM was 

readily available. In summary of the above approaches to performing 

vector rotation using real multipliers and adders, Figure (3.2.1.1) 

shows the conventional implementation of the complex multiply based 

on (3.2.1.1) and (3.2.1.2), whilst Figures (3.2.1.2) and (3.2.1.3) 

show implementations based on equations (3.2.1.5) to (3.2.1.8). It 

should be noted that the dynamic range requirements of the hardware 

implementations in Figures (3.2.1.2) and (3.2.1.3) is slightly 

greater than that of the conventional complex multiply shown in Fig-

ure (3.2.1.1) to the extent of one extra bit of precision being 

required at some points in the computation. This is particularly 

inconvenient in bit-serial implementations where the extra bit of 

wordlength reduces the word transfer rate. Although these reformu-

lations of the complex multiply are algorithmically slightly more 

efficient than a direct computation, they do not point to any 



specific VLSI architectures. On a digital computer the direct 

approach might even be faster if hardware multiplication was 

employed. 

3.3. Distributed Arithmetic Methodology 

3.3.1. Introduction 

Almost all common arithmetic functions can be built up sequen-

tially from additions. Multiplication, for example, is simply the 

sequential addition of a number of partial products which are 

closely related to the data and coefficient words. Addition is a 

commutative mathematical process, which means that the order in 

which the additions are performed does not in any way affect the 

final result. This fact means that the arithmetic of many signal 

processing structures can be re-configured in a number of ways to 

form alternative distributed arithmetic structures. In particular, 

where two or more multiplier outputs are combined in an adder (Fig-

ure (3.3.1.1)), it is possible to view each of the multipliers as a 

collection of adders connected to this output adder (Figure 

(3.3.1.2)). As the whole process can be seen in terms of additions 

only where it is possible to bring forward the final combining addi-

tion to form new unique merged multiplier partial products which can 

be selected and accumulated (in a similar fashion to the accumula-

tion of partial products in the multipliers originally) to form the 

same result (Figure (3.3.1.3)). This reformulation allows computa-

tion of the function by using a data controlled table look-up and 

accumulate operation which offers a highly regular design approach - 
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Figure(3 .3. 1.2. 	Linear Equation showing Additions Present 
in Shift and Add Multipliers. 
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well suited to VLSI design techniques. 

Much of the original work in distributed arithmetic was centred 

on the design of digital filter structures where it was seen as a 

way of replacing relatively expensive multiply and accumulate struc-

tures with cheaper memory and accumulate structures such as shown in 

Figure (3.3.1.4) [12,13] however it was later recognised that these 

techniques could also be applied to other computations [14,15,16] 

including the DFT and PET. 

Linear equations of the general form shown in equation 3.3. 1 

are fundamental to the computation of the DFF and FFT, as the two 

term (n=2) linear equation describes the complex multiply, which is 

one of the most popular ways of performing vector rotations. D 

represents data and A represents the coefficient. 

L = A0  D0  +A1  D1  +. . . . +An-I n-I D 	 (3.3.1) 

Thus when vector rotation is implemented using real multi-

pliers, the real or imaginary output of the n point DFT becomes a 

linear equation with 2n terms - discussed in section 4. It can be 

seen from equation 3.3.1 that a linear equation with n terms 

requires n multiplications and (n-I) additions. If it is desired to 

implement such a function using distributed arithmetic then 

arithmetic combinations of multiplier partial products must be 

stored since these are the number of combinations of multiplier par-

tial products that are possible. This assumes that none of the dis-

tributed arithmetic merged partial products are allowed to be stored 
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more efficiently which has not been proven. They can be computed in 

situe to reduce the memory overhead, for example, as described in 

the next section. 

Distributed arithmetic is quite significant therefore in allow-

ing the replacement of multiplier random logic array structures with 

a simple and regular memory and accumulator structure. This can 

often mean lower power consumptions, and faster speeds, In addition 

to a considerably increased regularity in the chip design itself. In 

VLSI designs, regularity is a key requirement as it allows changes 

to be made much more easily, as well as making design for yield, 

such as self repair techniques, more efficient. 

3.3.2. Consequences of using Distributed Arithmetic 

It has been explained that distributed arithmetic can offer 

savings in speed and power in actual chip implementations, as well 

as offering what could be regarded as a complete methodology in 

allowing a fairly reliable means of producing regular VLSI designs. 

One of the disadvantages of distributed arithmetic, however, is 

that the memory requirement goes up as 2m  where in is the number of 

multipliers that would have been used in a conventional system. 

Thus, whilst small linear equations can be implemented quite easily, 

larger linear equations can call for excessive memory requirements. 

A possible solution to this problem may lie in information 

theory [17,18] which notes that in a large array of data, there 

often exist constraints which act to reduce the entropy of the 

array. In such cases, information is not being stored most 



efficiently, with much data in the array being closely related. 

Identification of these constraints in an array which contains 

distributed arithmetic coefficients could result in a potential 

reduction in the storage requirements. it is likely that future 

research in the area of information theory may yield ideas which 

would make distributed arithmetic techniques practical for large 

mathematical functions. 

An immediate approach to solving the explosion in the number of 

distributed arithmetic coefficients that need to be stored as the 

number of multiplies increases, is to actively compute the distri-

buted arithmetic coefficients in situe. This is not algorithmically 

more efficient than conventional arithmetic, but in allowing a re-

structuring of the computation, the possibility of producing more 

regular layouts suitable for VLSI exists. This is particularly 

attractive for applying yield enhancement techniques and therefore 

points to the possibility of wafer scale integration. In effect, 

the order of bit-level additions has been altered, but - the number of 

additions is kept approximately constant (very slight variations may 

be required due to dynamic range considerations - ie: word growth). 

In chapter 4, the approach of computing the distributed arith-

metic coefficients in situe will be compared with that of storing 

them. This is done for a four term linear equation example which is 

computed entirely in parallel. The possibility of performing yield 

enhancement with this type of structure is demonstrated. 

For smaller arithmetic functions, the distributed arithmetic 

coefficients can be stored and do not therefore need to be computed 



in situe. Distributed arithmetic then appears to be very attrac-

tive. One such arithmetic function mentioned earlier is the complex 

multiply which is highly relevant to computation of the DFT and FFT 

as a means of performing vector rotations. The use of distributed 

arithmetic to compute this function will be discussed in section 5 

of this chapter. 

3.4. Distributed Arithmetic for Computing Small DFT's 

3.4.1. General 

It was mentioned, in Section 1, that the real or imaginary out-

put of an n-point DFT, is a linear equation with 2n terms when the 

complex multiply is evaluated using real multipliers. Distributed 

arithmetic is therefore applicable, in principle, to the computation 

of any length of DET. In practice, however, a distributed arithmetic 

expansion of the W coefficient sequence would be required for each 

row of the W coefficient matrix. This would involve an excessive 

memory storage requirement, and so is undesirable. 

One area where it would appear practical to use distributed 

arithmetic techniques for DFT computation is for prime length DFT's, 

as the DFT equation can be expanded and re-ordered to be' expressed 

as a circular convolution. This particular case will now be con-

sidered. 
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3.4.2 Distributed Arithmetic and the Prime DFT 

Since every (non-DC) row of the W coefficient matrix in the 

Prime, n-point DFT contains all nth roots of unity, it is possible 

to expand and re-order the DFT expression so that a single integer 

frequency term can be used together with a shuffled time domain 

sequence to produce any one of the non-zero frequency domain 

results. Since only a single integer frequency sequence is required 

to compute the DFT in the convolution form, then only a single dis-

tributed arithmetic expansion need be stored in memory. This expan-

sion involves combinations of arithmetically merged W coefficient 

terms that appear in the sequence. This data is then accessed as a 

function of the time domain bits at various levels of significance. 

Slu and Chen describe a 6800 8-bit microprocessor based system [19] 

operating with a 500 nS cycle time, which used distributed arith-

metic to compute a 61 point complex DFT in only 3.1 milli-seconds. 

Distributed arithmetic DFT computation is therefore highly relevant 

to micro-computer based systems which offer large memory availabil-

ity. This approach does however result in a high dependence on 

memory (ROM) which also fixes the size of DFr that can be computed. 

No specific implementations were considered because of this limita-

tion, however, a possible VLSI architecture is suggested in Figure 

(3.4.1), which is suited to the computation of DFT's of fixed size. 

3.5. Distributed Arithmetic and the FFT 

As previously mentioned, the most computationally intensive 

arithmetic requirement of the FF1', is the complex multiply which is 

conveniently used to achieve vector rotation in a Cartesian 
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coordinate based system. 

In Chapter 2, section 1 on the DFT, is was described how a well 

known trigonometric relation could be used to describe the rotation 

of one vector by another. This meant that a data vector (B) could be 

rotated by a coefficient vector (W) to produce a resultant vector 

(Z) as shown in equations (3.5.1) and (3.5.2), whose angle becomes 

the sum of the angles of W and B (B, W, Z, complex). 

Re(Z) = Re(B).Re(W) - Im(B),Im(W) (3.5.1) 

Im(Z) = Re(B),Im(W) + Re(W),Im(B) 	, (3.5.2) 

This equation can be realised using conventional arithmetic, 

but White (16]has shown that distributed arithmetic allows the com-

plex multiply to be realised particularly efficiently in hardware. 

In his paper he described a TTL based two accumulator bit-serial 

radix-2 butterfly. This structure is the hardware equivalent of 

using two multipliers, instead of four multipliers as would normally 

be needed to implement the two equations. This paper by White was 

considered to be particularly relevant to this work, as it was 

recognised that the complex multiply algorithm (using distributed 

arithmetic) had a considerable potential for parallel data array 

architectures of a type which is highly suited to VLSI, since it 

allowed computation of the real or imaginary complex multiply output 

data using only a single accumulator. This can be realised in a 

pipelined form as a single array of full adders. The distributed 

arithmetic complex multiply algorithm described by White appears to 

be largely correct, however, one apparent error relating to the ini-

tialisation of the accumulator was noted which originated from 
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early on in his derivation. Although this error is not large in 

numerical terms, it would introduce some degree of unnecessary 

arithmetic noise, so a separate derivation of the algorithm will be 

given here in detail, with this correction included. The reasons for 

each step in the derivation will also be given. 

3.5.1. The Complex Multiply using Distributed Arithmetic 

The complex multiplication can be computed using four real mul-

tiplications and an add and subtract as shown in equations (3.5.1) 

and (3.5.2), where the data vector (B) is rotated by the the coeffi-

cient vector (W) to form the output vector (Z). It is necessary to 

define the representation of the real and imaginary binary strings 

used to describe these vectors, before deriving.any specific algo-

rithm, as the exact operation of the algorithm is dependent on the 

way in which data is to be interpreted. 

There are several methods of representing numbers using an n-

bit string of binary data, however, in digital signal processing, 

one of the most useful interpretation of such a string is fractional 

fixed point 2's complement notation, as this allows both positive 

and negative numbers to be represented and allows direct interface 

with most types of analogue to digital conversion systems. It is 

believed, however, that, a distributed arithmetic algorithm is 

likely to exist for most commonly used numerical representations 

using binary data. Using the above notation, then, the real and 

imaginary words that represent the coefficient vector can be 

represented as the summation shown in equations (3.5.3) and (3.5.4). 
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N-I 
Re(W) = _WRO + E WRn 2 	 (3.5.3) 

n=1 

N-I 
Im(W) = -W10  + E W 	2 	 (3.5.4) 

n=1 In 

This allows equations (3.3.1) and (3.3.2) for Real(Z) and Imag(Z), 

to be re-written, as can be found in equation (3.5.5) for Re(Z). A 

similar expression for Ini(Z) can be written to allow a distributed 

arithmetic reformulation of this to be constructed in parallel with 

that for Re(Z). In this derivation, only the expression for Re(Z) 

will be continued since the derivation of Im(Z) is based on exactly 

the same principles used to derive Re(Z). 

N-I 	 N-I 
Re(Z) = [WRo + 
	

WRfl 2 
	] Re(B) - (-W10 + 
	

1 w1 2 	I Im(B) 
n I 	 n 

(3.5.5) 

Since addition is commutative, the order that the additions are per-

formed in can be altered so that the separate summations shown above 

can now be combined into a single summation by decoding all the com-

binations of the Real and Imaginary W bits. This process effec-

tively involves the formation of new unique merged partial products 

which can be selected by the Real and Imaginary W bits, as shown in 

equation (3.5.6). 

rNI 	 1 
E [W' 	W'1 (0)Rn 

n=I  
I 	 cone.. 

Re(Z) JR0  W' 10  (0) 
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I 	I 

cont.. 	I 

1 W' o  W10 	 +W , 
 
Rn In  (-Im(B)) 

+ W RO  W'  10 (-Re(B)) 
	

H WRn W1 In(Re(B)) 

+ WRO  WI0 ( -Re(B)+Im(B)) I +IWRfl W In  (Re(B)-Im(B))1 2-n 

(3.5.6) 
As equation (3.5.6) involves only a single summation, the equation 

for Re(Z) can thus be implemented using only a single accumulator. 

This equation involves the W controlled selection of one of four 

merged partial products, however, a more optimum solution can be 

achieved by describing the merged partial products in terms of K and 
* 

K as defined in equation (3.5.7). 

* 
K = (Re(B)+Izn(B))/2 and K = ( Re(B)-Im(B))/2 	(3.5.7) 

This allows equation (3.5.6) to be re-written as shown in equation 

(3.5.8). 

Re(Z) 	W'RO 
W 1 

I0(

_K* + K* )  1+1 

+ W ' RO W10  (K + K) 

+ WRO W'RO (* - K) 

+ WRO WI0 
( _K* - K) 

-1 * 	* 
(W 	W' Rn 	In (K -K) 

+ W ' Rfl  WIn  (K - K) 

+ WRn 
we  In(1( + K) 

+ WRO WRfl 
(K* + K)] 

(3.5.8) 



Part of this equation can now be simplified by noting the w indepen-

dence of one of the Ksupt terms to form the final equation, (3.5.9). 

This fully describes how Re(Z) is formed in a single accumulator, as 

a function of W and B. 

Re(Z) = -K* 2-(N-I) 
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+ W'RO 
W1 10 (+K) +1 

N-I * 
E [+W' Rn  W9  In  (-K) n= 1 

+ W1RO W10  (+K) 
	

+ WRn W1  (-K) 

+ WRO W' 10  (-K) 
	

+ WRn 
W8 

In (+1<) 

+ WRO W10 (_K*) 	+ WRfl W1 
(+K * )] 2_n 

The control signals can conveniently be separated into a data-select 

control signal and an add/subtract control signal. The data-select 

control can be derived from an exclusive-NOR type relation between 

the real and imaginary W bits, whilst the add/subtract control can 

be derived from the real W bit itself. This is the form in which 

the control requirements of the algorithm would be best implemented 

on a chip and was used in the implementations described in the fol-

lowing chapters. This alternative expression of (3.5.9) for Re(Z) 

is shown in (3.5.10). 

Re(Z) = _K* 2-(N-I) 



+ W'RO (WRO 3 W10 )(-FK) 1+1 
N-I * 
E [ + W' 	(WWin)(_K 

n:1 
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+ W, RO (WRO • W10 )(+K) 
	

+ W(WRfl  (D W1 )(-K) 

+ WRO (WRO 9 W10 ) (-K) 
	

+ W 	(W e W1 ) (+K)Rn  

+ WRO (WRO 
	* 	

+ WRfl  (WRfl i 
W1)(+K* )] 2 n 

(3.5.10) 

The expression for Im(Z) can be generated using the same reasoning 

and procedure that was used to generate Re(Z), giving equation 

(3.5.11) which completes the description of this algorithm for com-

puting the complex multiply using distributed arithmetic. 

Iin(Z) = -K 2-(N-1) 

+ WO 	 (W1  (D WR0)(+K) 1+1 
N-I * 
E [ + W' 1  (W 	W)(-K 

n=1 

+ W 10  (W10  s WRO)(_K) 
	

+ W 1(W1 	WRfl)(+K) 

+ W10 (WIO'  WRO) (+K) 
	

+ W 	(W1 	WRn) (-K) 

4. W10  (W10  e WR0)(_K) 
	

+ W1 (Win  e W)(+K)] 2-n 

(3.5.11) 



The potential of this algorithm for parallel data implementa-

tions of the FFT butterfly and pipelined datapaths geared to high 

speed processing of complex numbers is considered in the next 

chapter. 

3.6. Summary 

This chapter has covered a number of algorithms which allow 

high bandwidth vector arithmetic. Some of these algorithms exhibit 

somewhat irregular mappings on to silicon such as CORDICS, whilst 

other approaches such as distributed arithmetic offer highly regular 

silicon structures by reformulating conventional shift and add mul-

tiplier based arithmetic. It is felt that distributed arithmetic 

has a considerable potential for parallel data VLSI arithmetic pro-

cessor implementations and the next chapter investigates a number of 

possible datapath architectures based on the distributed arithmetic 

complex multiply algorithm, just described. This would allow very 

high bandwidth computation of the FFT butterfly with the potential 

bottleneck resulting from the vector rotation requirement effec-

tively removed. 
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Chapter 4 	- 	VLSI Datapath Architectures for 	
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Complex Number Arithmetic 

4.1. Introduction 

This Chapter will first look at VLSI datapath architectures in 

general, and then look at datapaths which are specifically optimised 

for operation on complex number arithmetic. In particular, distri-

buted arithmetic approaches to computing the complex multiply func-

tion discussed in the previous chapter, will be compared to conven-

tional approaches using real multipliers. The complex multiply is a 

central requirement of the DFI' and FFT as a means of performing vec-

tor rotation but is .also the most computationally intensive function 

required in computing the basic DFT and FPT. 

Real time computation of the FFT demands very high data rates 

from the arithmetic processor and the new architectures considered 

in this chapter offer hardware computation of the complex multiply 

with high efficiency. Conventional approaches will be discussed 

first, however, with a look at arithmetic datapath design. 

4.2. Conventional Arithmetic Datapaths 

The datapaths used in the early microprocessors (eg 6502, 6800, 

8080, Z80) typically relied on a single arithmetic unit to perform 

the basic add or subtract functions as well as logical operations. 

Thus, multiplications using such a datapath could be described as 

slow and complex multiplication as very slow. This bus orientated 

datapath architecture can be made faster by providing more than one 

arithmetic unit thus allowing some of the operations to take place 
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concurrently. For example, four arithmetic units would allow the 

complex multiply, additions and subtractions required by the Radix-2 

FFT butterfly to be performed in around 20 clock cycles at 16 bits. 

This type of datapath would need a small Finite State Machine (FSM) 

controller to translate specific instructions to direct control of 

the datapath. Mactaggart (1] describes one such device with a FSM 

control unit which in addition to controlling the datapath arith-

metic, defined inputs and outputs of the datapath and provided tn-

state enable signals for the output port. The control unit sequencer 

could be synchronised with other identical devices (up to four) to 

enhance arithmetic throughput (by up to four times) by stacking the 

devices as shown in Figure (4.2.1). Figure (4.2.2) shows a photo-

graph of the fabricated nMOS device. 

More recent processors such as the TMS320 signal processor, 

described in chapter 2, make use of a hardware multiplier, thus 

allowing the real multiply function to be computed in a single clock 

cycle. Although not available as an instruction on the TMS320, dou-

ble precision multiplication can still be computed efficiently (as 

might be required for simulation work) if a barrel shifter is 

included in the datapath. Four single precision multiplies, two 

shifts and three additions are then required to compute a double 

precision (dp) multiplication as proven in (4.2.1) to (4.2.5). 

Define 	Adp = (2N w ) + x 	 (4.2.1) 

and 	Bdp = (2N y ) + z 	 (4.2.2) 
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where w,x,y and z are single precision numbers (N bits each) 

Also C 	 = Adp 	Bdp 	 (4.2.3)dp  

Thus 

Cdp = ((2N 
W ) + x)((2N y ) + z) 	 (4.2.4) 

So that 

Cdp = 22N wy) +N  (wz+xy)) + xz 	(4.2.5) 

The single precision hardware multiplier can thus be used to 

compute (Wy), (wz), (xy), and (xz), with the barrel shifter perform-

ing the two shifts that are required. It is important to note how-

ever that this datapath is only efficient if the accumulator used is 

a double precision device. This is because of the gain introduced by 

the multiplier. So in a 16 bit datapath, for example, a 16 by 16 bit 

multiplier would be used in conjunction with a 32 bit 

adder/subtractor. In order not to make single precision (16 bit) 

addition inefficient, the adder! subtractor might also be configured 

as two 16 bit devices which could be allowed to operate con-

currently. Thus the datapath would cater for single and double pre-

cision arithmetic with high efficiency. A typical floorplan for 

such a datapath is outlined in Figure (4.2.3). This datapath could 

be controlled by a relatively simple sequencer which would allow a 

variety of functions to be computed with single or double precision 
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arithmetic. The emphasis with this datapath is on versatility, and 

it would therefore use a ripple-through (unity latency) multiplier 

to allow efficient recursive arithmetic operations to take place if 

required. 

High bandwidth datapaths would not normally make use of more 

than one parallel real multiplier, although clearly the complex mul-

tiply instruction could potentially use up to four. Thus a single 

multiplier would be multiplexed to perform the same function. 

In extreme cases, a conventional arithmetic datapath might use 

two real multipliers to allow the complex multiply to be executed at 

very high bandwidths. Two multipliers, however, are not likely to 

map particularly efficiently onto silicon due to irregular multi-

plier structure and extra bus interconnections. 

The distributed arithmetic approach to computing the complex 

multiply, described in the previous chapter is likely to map onto 

silicon much more efficiently because it is based on a single accu-

mulation process. The next section looks therefore at distributed 

arithmetic VLSI datapath architectures with hardware orientated com-

plex multiplication. 

4.3. Distributed Arithmetic Datapaths 

The main significance of the distributed arithmetic complex 

multiply algorithm described in Chapter 3 is that it allows the real 

or imaginary part of the complex product to be computed in a single 

accumulator, as described in equations (3.5.10) and (3.5.11). The 

use of a single accumulator (instead of the usual two needed to 
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compute each half of the complex multiply - one for each real multi-

plier) allows the possibility of constructing a highly regular array 

for parallel data operation which has the throughput equivalence of 

two parallel multipliers although consuming only slightly more area 

than a single multiplier. Also, a single distributed arithmetic 

array does not require awkward bus interconnections as would be 

required to route the outputs of several parallel data sources in a 

conventional arithmetic processor, for example from two parallel 

multipliers to a parallel adder or subtractor. For this reason as 

well as for yield considerations, a conventional parallel arithmetic 

approach to the complex multiply would be to use a single multi-

plexed multiplier. The distributed arithmetic approach, however, 

allows the possibility of realising on a single chip of modest size, 

a structure which has the functional equivalence of two parallel 

multipliers when configured to compute (3.5.10) and (3.5.11). This 

would probably not even be contemplated using conventional parallel 

arithmetic except at limited wordlengths. 

In considering possible structures for implementing the complex 

multiply using distributed arithmetic, it is necessary to consider 

whether the technique of pipelining would be appropriate as this can 

often allow further bandwidth enhancements to be achieved. 

4.3.1. Pipelining - Bandwidth Enhancement in non-Recursive 

Processes 

An important feature of the DFT and FFT is that arithmetic 

operations may be carried out continuously, as there is no high 

bandwidth recursion required between arithmetic processor outputs 
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and inputs. This allows the possibility of employing pipelining 

techniques within the discrete arithmetic stages of a structure to 

achieve high clocking rates. As a substantial enhancement of 

bandwidth can be achieved through this technique, it was decided to 

specifically consider structures with some degree of pipelining. It 

is important to note, however, that very high levels of pipelining 

can cause problems in clock distribution, so that an optimum level 

of pipelining must be sought for a given technology. Some of the 

very fast technologies such as Emitter Coupled Logic and the newer 

Gallium Arsenide technologies are so fast that it is difficult to 

consider pipelining anything much smaller than a large parallel mul-

tiplier for example, which would operate on a ripple through basis, 

at times in the order of 10 nS. In general, the slower the technol-

ogy, the higher the degree of pipelining that is possible without 

running into problems of race as a result of poor clock distribu-

tion. 

Equations (3.5.10) and (3.5.11), which describe the distributed 

arithmetic complex multiply algorithm, indicate that both real and 

imaginary results of the complex product are formed by the coeffi-

cient controlled selection of + or - ( K or K ) (K's defined in 

equation (3.5.7)). The equations which describe the algorithm 

further indicate that this selected word must then be added into an 

accumulator at some level of significance, which can be achieved by 

shifting. The main circuit element required to implement the algo-

rithm is therefore an accumulator so considering only parallel data 

array implementations (for which distributed arithmetic techniques 

are likely to be most appropriate), the resulting structure 
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resembles a standard shift-and-add parallel multiplier, and can 

therefore similarly be :onstructed around a skeleton comprising an 

array of full adder cells. In such an array s  it is possible to 

route the carries, sums and the distributed arithmetic coefficients 

in a Va: riety of ways to achieve different structures with various 

levels of pipelining. 

Simple non-pipelined structures will also be considered how-

ever, because although pipelined structures offer higher bandwidths 

than do non-pipelines structures, there are many applications where 

the arithmetic may be required to operate in a recursive mode, such 

as to generate a rotating vector for example, or in a Prime DFT pro-

cessor as discussed in chapter 2. 

A non-pipelined (ripple-through) parallel distributed arith-

metic array requires multiple access of the distributed arithmetic 

coefficients. For small functions such as the two term linear equa-

tion for each half of the complex multiply function, it is feasable 

to run the coefficients through the chip from top to bottom. The 

distributed arithmetic coefficients can be fed vertically down 

through the chip producing the architecture shown in Figure 

(4.3.1.1) which implements equations (3.5.10) and (3.5.11). This 

however, is not the most efficient approach in a ripple through 

structure where it is better to implement equation (3.5.9) for Re(Z) 

and its counterpart (for Im(Z) - not shown), which is the W con-

trolled selection of either +K,-K,+K* * ,-K . This avoids computing the 
* 

complements of K and K at each cell in the array (Boolean inversion 

on each bit) at the expense of feeding the complements through the 

chip which is a small communications overhead in this case. Figure 
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(4.3.1.2) shows this slightly better alternative to (4.3.1.1) which 

has been expanded to a fully parallel implementation by employing 

two full adders and multiplexers per basic cell to allow the complex 

multiply function to be computed completely in parallel. This struc- 

ture 	is quite 	area efficient because the distributed arithmetic 

coefficients required to compute the real output are also used to 

compute the imaginary output. Thus the communications overhead of 

four bus lines per cell is minimal, with this approach. Performance 

could be slightly improved further by using a common decoder for the 

multiplexers in each row of cells since the control to each decoder 

in a given row is always the saute. In Figure (4.3.1.2), this would 

involve four horizontal control lines instead of two, as shown. 
* 

Were K and K required to be shifted down through the chip as might 

be required in a pipelined structure then it would be better to 

implement (3.5.10) and (3.5.11) instead. 

It is proposed to start by looking at lower levels of pipelin-

ing and then move towards higher levels which allow clocking rates 

that are essentially word length independent. 

In all the structures considered here it will be useful to view 

the array of full adder cells which will form the skeleton of the 

distributed arithmetic algorithm implementation, as several rows of 

parallel adders. It would not be surprising to consider that the 

carries would therefore be fed horizontally within each row which 

represents a parallel adder, and that the sums would be fed down to 

the next row of full adder cells representing another parallel 

adder, with a possible shift in significance if required. Unfor-

tunately if the horizontal carries are latched (ie non ripple 
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through) then it would be neccessary to place a skew on the input 

data port to ensure match up of data with carry formation. A quite 

different approach, however, would be to consider feeding the car-

ries as well as the sums from one row to the row beneath, treating 

the carries as being sums of double significance (which is essen-

tially what a carry from a full adder cell is). This then allows 

deferal of carry formation until the output of the array where sums 

and carries of equal significance appear. At this point, some form 

of fast adder would be needed to assimilate the sums and carries of 

equal significance. A complete structure which implements the dis-

tributed arithmetic complex multiply based on this carry deferal 

approach is shown in Figure (4.3.1.3) together with the basic cell 

that would be needed to implement the specific distributed arith-

metic complex multiply algorithm. In addition to the full adder this 
. 	. 	 * 

involves a data-selector and some shift registers to delay K and K 

which are the distributed arithmetic representations of the complex 

coefficient. The advantage of this structure is that it is not nec-. 

cessary to skew input (or output) data to (and from) the array, how -

ever, the fast add requirement does impose some degree of wordlength 

dependence on the speed performance. In this structure, the sums and 

carries are fed forward in such a way as to effect a scale down by a 

factor of two from one row to the next. This allows K and K
* 
 to be 

fed down through the array vertically so that it is added in or sub-

tracted at a different level of significance relative to the sums 

and carries at each row of cells. It will also be noted that this 

structure allows two bits of array initialisation per cell at the 

input. One bit could be used for input of a fixed rounding word and 

the other bit could be used for the initialisation required by the 
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algorithm as described in (3.5.10) and (3.5.11). This type of struc-

ture is particularly compact however it is not highly suited to very 

large wordlengths because of the fast add requirement. 

One way to overcome this wordlength dependence is, as just men-

tioned, to latch the carries horizontally in an array of full 

adders. This also entails latching the horizontal control data 

which comprises the data-select control and the add/subtract con-

trol. If, however, instead of scaling down the sums and carries at 
* 

each row, K and K are scaled down instead then it is not neccessary 

for a delay to be placed on them at each cell. Thus the shift regis-

ter count is not increased at all. It is, however, neccessary to 

skew all data entering the array and to perform a de-skew operation 

at the output. The speed of this type of structure, shown in Figure 

(4.3.1.4) will not suffer the same degree of wordlength dependence 

as the structure of Figure (4.3.1.3), which has a, fast add require-

ment, however, K and K have to be fed through the array without 

being latched so the maximum load placed on the source buffer which 
* 

supplies (MSB's of) K and K will increase linearly with wordlength. 

This of course does not imply a linear decrease in speed with 
* 

wordlength because the buffers that supply K and K can be 

engineered to work optimally into a given load. Also the delay from 

other circuits such as the full adder will tend to have the dominat-

ing influence on the overall speed. To summarise, the structure of 

Figure (4.3. 1.4) will exhibit some degree of wordlength dependance 

on overall speed performance but this can be kept fairly small. The 

top row of this structure has one bit of initialisation per cell 

thus allowing the initialisation requirements of the distributed 
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arithmetic complex multiply algorithm to be met. If, however, it 

was required to add a small fixed number to minimise noise from the 
* 

truncated K and K words a sparse row of half adders would be 

required to add this to the initialisation word. This is detailed in 

the following chapter which considers some specific implementations. 

It should be noted that the initialisation word needs to be skewed 
* 

in this structure as with K and K . The initialisation word is 
* 

derived from K or K so extra shift register delays are not 

required. The basic cell for this structure is fairly small thus 

resulting in a fair compromise between clocking rate and overall 

area. 

For very large wordlengths, it is desirable to seek a structure 

which exhibits essentially no wordlength dependence with all cell 

communication being latched. One such structure is shown in Figure 

(4.3.1.5). Here, the carries are fed horizontally and the sums are 

fed down and shifted to reduce their significance in going from one 

row to the row beneath. This results in a vertical delay through the 

cell of two cycles which is the delay that must be applied to K and 
* 

K which are fed vertically down through the cell. As the vertical 

delay is two cycles per cell, the delay on data entering the control 

input data port must increase by two cycles in moving from one row 

to the row beneath. That is to say, the equivalent of two series 

data skew operations must be performed. Figure (4.3.1.5) shows the 

basic cell that this structure entails. The shift register count at 

first sight appears to be rather large, however the vertical delay 
* 

on K and K can be implemented with half the number of shift regis- 

ters clocked at half the normal rate as described in the next 

129 
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chapter which looks at a specific implementation. The structure of 

Figure (4.3.1.5) has a clocking rate which has no wordlength depen-

dence other than any delays that might be incurred in transmitting 

the clocks to each cell. This is indeed a problem for very large 

wordlengths and demands the set up of a hierarchy of clock buffers 

to distribute the clock with a minimum of delay. The possibilty of 

abandoning the synchronous structure and using a self-timed approach 

would be one way of avoiding clock distribution problems, however, 

this would involve a large area penalty and thus require yield 

enhancement for even modest wordlengths. 

It was mentioned in the previous chapter that the distributed 

arithmetic coefficients can be computed in situe to produce highly 

regular structures which are suitable for yield enhancement tech-

niques. Figure (4.3.1.6) shows a basic cell with yield enhancement 

that could be used in a large distributed arithmetic array to com-

pute a four term linear equation in parallel. 

4.4. Summary 

In this chapter a number of distributed arithmetic structures 

have been suggested for implementing the complex multiply as part of 

a high bandwidth datapath. The next Chapter is devoted to some 

specific high bandwidth arithmetic processors for FFF computation, 

which use some of these distributed arithmetic structures to stream-

line the computation of the complex multiply function which is the 

most intensive computational requirement of the FFT and DFT. 
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Chapter 5 - MOS - LSI/VLSI Distributed Arithmetic Structures 

5.1. Introduction 

In this chapter, some specific MOS - LSI and VLSI implementa-

tions of the architectures discussed in the previous chapter will be 

presented. The structures described here offer efficient high speed 

computation of the complex multiply function through the use of dis-

tributed arithmetic. 

The first silicon device to be described (number EU20I) is a 

totally parallel radix-2 FFT butterfly arithmetic processor, how-

ever, in a later design, greater versatility is obtained by allowing 

dynamic re-configuration of the datapath itself. Of the three chips 

described in this chapter the first two devices (nMOS) were fabri-

cated and tested. The last design to be described was due for fabri-

cation on a GEC 4 micron CMOS-SOS process but due to poor Applicon 

software to allow transfer of the design, this was delayed, making 

the fabrication and testing of the design impractical within a rea-

sonable time frame. Test results if available may be added as an 

appendix to this thesis. The testing of the second nNOS device 

(EU219) is covered in some detail, as a number of working samples 

were obtained. The first device (EU20I) which is similar to the 

second device could not unfortunately be tested in depth due to a 

limited number of samples being available and also a low process 

yield was in evidence. This may have been related to very high 

depletion thresholds (around -1.0 V) which were measured during 

probe testing of some test structures in the chip frame. The un-

fabricated SOS design is described and documented to allow 
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5.2. A Totally Parallel 6 Bit Radix-2 FFT Butterfly 

5.2.1. General 

To compute the radix-2 FFT butterfly in parallel requires that 

the complex multiply be implemented in parallel. The radix-2 

declination-in-time butterfly function requires that two data input 

words (A,B) (complex) be modified by a coefficient (W) (complex) to 

form (A+BW) and (A-BW) (complex). The complex multiply distributed 

arithmetic algorithm described in Chapter 3 can be implemented as 

two distinct distributed arithmetic arrays, after Figure (4.2.4) one 

producing real data and the other producing imaginary data, or 

alternatively, a single array can be constructed after the totally 

parallel example of Figure (4.2.5). it was decided to pursue a 

structure after the former as this would allow a natural progression 

to a programmable device if required, with a larger word length - 

producing real or imaginary data but not both simultaneously. One 

such device is described in the next section (EU219). 

Having computed the complex product (BW) an additional adder 

and subtractor can be used to compute the required butterfly outputs 

(A+BW) and (A-BW). This resulted in the chip floorplan shown in 

Figure (5.2.1.1). It was decided to limit the wordlength of this 

prototype chip to 6 bits for both data and coefficient. This is too 

small a wordlength for most system applications but it was hoped to 

obtain some yield data which might indicate whiether longer 

wordlengths could be considered in the future. At this small 

wordlength most of the larger and more highly pipelined structures 

discussed in the previous chapter do not offer much greater 
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bandwidth and so the carry deferal architecture described in Figure 

(4.3.1;:3) may be considered to be highly suitable, even though this 

structure requires a fast adder to assimilate the sums and carries 

at the output. Other than this fast add requirement, the distributed 

arithmetic complex multiply structure may be made up from an array 

of identical cells each of which fulfil the three main requirements 

of the distributed arithmetic complex multiply algorithm. The basic 

cell must be capable of performing a data-select and bit level full 

add as well as containing delays for the pipelined operation. The 

precise logic of the basic cell used, together with nMOS silicon 

layout is shown in Figures (5.2.1.2) and (5.2.1.3) respectively. 

* 
This cell permits selection of either K or K as required by 

the algorithm, and the bit level addition or subtraction of this by 

the full adder, which is an integral part of the accumulator. 
* 

Finally, it presents K and K delayed for operation on by the cell 

in the row beneath. Most of the cell area is comprised of the full 

adder. This made use of inverter controlled data-select type 

exclusive-OR gates which offers a good compromise between area, 

speed, and power consumption, when compared with rLA, function 

block, and random logic nMOS implementations, as determined by Myers 

[1] The latches used were standard nMOS dynamic devices which offer 

a lower area and power consumption figures compared to static circu-

itry. This places a minimum safe clocking rate of around 20 KHz on 

the chip as a whole, however, the minimum clocking rate may be 

reduced further by increasing the clock logic HIGH" to Vdd + Vth 

where Vth is the threshold voltage of the enhancement devices. The 

output of the distributed arithmetic array contains unassimilated 
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sums and carries which must be combined to produce the desired out-

put. This may be accomplished with a fast adder. 

5.2.2. Fast Adder for Data Assimilation at Array Output 

There are several techniques for achieving a fast add. It would 

be possible to use a high latency pipelined adder with skewed input 

and output data, using latched carries, as shown in Figure 

(5.2.2.1). This would not strictly be a fast adder, (with unity 

latency) but rather a high bandwidth adder (with greater than unity 

latency). Another approach would be to use some form of carry look 

ahead (CLA) technique which would offer true high speed, and could 

be operated with unity latency. In nMOS technology, however, it is 

possible to use an ordinary carry ripple-through (Figure (5.2.2.2)) 

adder at quite high speed if the carry chain is pre-charged to a 

logic 1N,  before forming the carries. This technique offers high 

speed for small to medium word lengths, but is superseeded by the 

CLA adder at larger word lengths (typically )12 bits). In a 6 or 8 

bit device, the carry chain pre-charge technique, is likely to offer 

the most optimum approach then, since the ripple through adder is 

smaller than a carry look ahead adder. The logic used for this 

ripple-through adder with pre-charged carry-chain is shown in Figure 

(5.2.2.3) and the silicon layout used is shown in Figure (5.2.2.4) 

for two adders. This was in fact the final output stage of the chip. 

The adder uses random logic. 
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Fiqure(5.2.2.4..) Final Adder/Subtractor Used to 
Generate Butterfly Outputs for EU20I. 
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5.2.3. Clocking Scheme 

It was decided to use a standard two-phase non-overlapping 

clock system as is quite. common in nMOS technology. This clock could 

be conveniently used to control de-multiplexer circuitry and multi-

plexer circuitry to allow the fast transfer of both real and ima-

ginary complex data within a complete clock cycle at each of the 

five input ports. The use of a non-overlapping clock eases the 

design problems of minimising clock skews and keeping control over 

internal clock rise times throughout the chip, in order to avoid 

race conditions in shift register circuitry. 

5.2.4. Performance of EU20I 

The chip EU20I was not probe tested but rather was bonded up 

and ten such devices were made available by the Edinburgh Microfa-

brication Facility (EMF) for testing. It was found that one of the 

chips produced entirely correct real results and another produced 

entirely correct imaginary results. The design was therefore veri-

fied, however, the yield was not high enough to produce a completely 

working sample out of the ten samples. 

The depletion thresholds in EU20I were too high (-1.0 V typi-

cal), thus slowing the internal logic rise times. No maximum speed 

performance check was therefore made, however, no problems were 

encountered at 1MHz on those circuit parts which appeared to operate 

at the lower clock rates used initially. (At a clock rate of 4MHz, 

six EU20I chips incorporated into a pipelined FFT would compute a 

64-point transform in only 48 microseconds). As the chip was not 
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available in sufficient quantities to get suitable yields (wafer 

shared with another device), in-depth testing of this device was not 

carried out. The device to be described next however which is based 

on the same basic distributed arithmetic array as EU20I, was avail-

able in somewhat larger quantities and several working devices were 

obtained. Extensive testing of this device was therefore possible. 

5.2.5. Summary of EU20I Butterfly Processor 

The device just described, was designed to compute the radix-2 

Decimation-in-time FFT butterfly function, completely in parallel. 

It did not require any external control therefore. A photograph of 

the fabricated device is shown in Figure (5.2.5.1). The ability to 

re-configure the datapath, however, could offer a great potential in 

extending the range of functions that could be computed. This 

approach could be extended to allow a single datapath to be pro-

grammed to compute either real or imaginary outputs of the complex 

multiply. This approach is useful, as the area of circuitry is 

halved, thus allowing larger word lengths to be implemented. The 

next chip to be described can be programmed to compute either real 

or imaginary outputs of the radix-2 butterfly, and offers a larger 

wordlength. 
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5.3. EU219 - A Programmable 8 Bit Version of EU20I 

5.3.1. General 

The previous section described a totally parallel radix-2 but-

terfly which was based on a distributed arithmetic complex multiply 

algorithm. The array used to compute real data and the array used 

to compute imaginary data are identical, with fixed internal control 

determining whiether real or imaginary data is produced from each 

array. It is possible, therefore, to program a single distributed 

arithmetic array to produce either real or imaginary data. This par-

tition would of course, half the processing bandwidth per chip, but 

allows the possibility of larger word lengths. This section 

describes a single programmable distributed arithmetic array which 

can output either real or imaginary data every computation cycle. 

The device, (number EU219), operates on a more practical 8 bit data 

word, and can be interfaced directly with an identical device to 

recover (that is, double) processing bandwidths. This is achieved 

through the use of a high speed multiplexer and tn-state output 

pads on the chip, enabling the interleaving of real and imaginary 

output data in time-sequence. 

5.3.2. High Speed Input and Output Port 

It was decided, in order to avoid external data sorting, and to 

keep pin counts as low as possible, that a single 8 bit port would 

be used for DATA IN and a separate 8 bit port for DATA OUT. The 

coefficient would have a separate data input port also, as before. 

In the previous section, it was described how the distributed 
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* 
arithmetic coefficients K and K were fed vertically down into the 

array from the top of the chip. The input to the butterfly (A) which 

is not rotated (not passed through the complex multiplier) was fed 

vertically down through the chip, being delayed for subsequent addi-

tion to +1 -  BW at the output. The other data input (B) to the but-

terfly which is rotated, was fed in horizontally from a separate 

input port where it was passed to the control logic for controlling 

the array. If A and B input ports were to be absorbed into a single 

data port, then awkward bus interconnections would be required to 

connect vertical and horizontal accesses to the array. It was 

decided that the problem could be solved by feeding in the coeffi-

cient (W) in horizontally to the control logic and feeding in data 

(A,B) at the top of the array. Unfortunately, if data B is fed in at 

the top of the array, then it must be presented in the form of K and 

K 
*

([Re4B}+Im{B}]/2 and [Re(B}-Im(B}]/2),  as was done for W in the 

previous case. W is now fed in as Re{W} and Im{W} at the control 

data port. An add and subtract must therefore be performed at the 

top input port on all ReIB) and Im{B) data. It was decided that this 

would result in a more regular floorplan and reduced chip area than 

would the bus interconnections required otherwise, and would also 

mean that all data to the chip was in the form of Real and Imaginary 

data only, thus simplifying the coding of coefficient data in ROM. 

The use of a single data port also meant the need for a high speed 

de-multiplexer to separate the four input data words to the but-

terfly (Re/Im, A and B). Steps must be taken to ensure that this 

does not limit the performance of the chip and does not cause prob-

lems with interfacing to the outside world. The single 8-bit output 

data port also demands the availability of a high speed multiplexer. 
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5.3.3. High Speed Multiplexer 

The chip required a 1:4 de-multiplexer at the 8 bit input port, 

and a 4:1 multiplexer at the output port, which would be used as a 

2:1 multiplexer to allow real/imaginary data interleaving, with 

another device. 

The standard de-multiplexer or multiplexer consists of two 

basic elements. These are a N to 2N  decoder, and a 2 row of 

switches, only one of which can be placed mono by the decoder at any 

one time. Finally the selected data must be latched. The decoder, 

however, would involve a minimum of 3 gate delays in nMOS technol-

ogy. These are, input buffering (2), and logical NOR gate for imple-

menting the AND decoder function (1). An additional output buffer 

would normally be required, however, further.increasing the overall 

decoder delay time. An additional problem that occurs when decoders 

are used in a multiplexer and de-multiplexer is that when the 

decoder changes state, glitches inevitably result during that short 

time interval and can be quite severe. This is caused by the decoder 

logic gates receiving transient analogue data from poorly defined 

inputs which occurs during input transitions. This effect can be 

removed by masking the decoder output (RAND" function) so that the 

decoder output would be reset to zero during the time interval when 

the input logic to the decoder was changing. It was felt that the 

extra time penalty required for this decoder operation would be too 

great, so it was decided that a decoder would not be used at all, 

and instead the de-multiplexer would be directly controlled by a 

global four phase non-overlapping clock, some of the phases of which 

could also be put to use elsewhere in the chip for pre-charging 



purposes and controlling latches in the array. The multiplexer 

would be operated by the same clock control lines. The actual logic 

used in these circuits was very simple. Dynamic logic was used to 

allow fastest possible operation, and only a single gate delay was 

involved in the multiplexer itself. Figure (5.3.3.1) shows the 

logic" used. 

5.3.4. Global Four Phase Clock 

The four-phase clock was chosen, primarily for fast multiplex-

ing and de-multiplexing of data, however, it also made available 

highly optimised timing signals required by those circuit elements 

which required pre-charging as is quite often useful in nMOS tech-

nology for speed enhancement. The fast adder, described in the pre-

vious section, used a pre-charged carry chain. The time required for 

carry pre-charge, is much less than is required for carry ripple 

through, however. This means that the pre-charge clock should be 

substantially shorter than the time between the pre-charge falling 

edge and the output latch falling edge (add-time). The use of the 

first phase (CM) for pre-charge and the last phase (CK4) for output 

sum latching. gives the adder more time for actual addition compared 

with the time that is available in a standard two phase non-

overlapping clock system with CXI being used for pre-charge. Figure 

(5.3.4.1) shows the four phase clock used, and those phases used by 

the fast adder for pre-charge and output latch. It can be seen that 

about 75% of the cycle is made available for add time. 
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5.3.5. Tri-State Logic and Timing Considerations 

The global four-phase clock provides four time slots in which 

data can be latched on chip and sent to the outside world via the 

tn-state output pads. It was decided, that real data transfers 

would take place on the rising edge of clocks I and 3, and imaginary 

data transfers would take place on the rising edge of clocks 2 and 

4. The reason for adopting this timing was that it would be possible 

to store data in memory on a complex word basis with one address per 

complex data word, comprising real and imaginary data segments, and 

then use an external multiplexer for transferring real and imaginary 

data to the chip in adjacent time slots. This would be necessary if 

the memory was not fast enough to afford a separate address for real 

and a separate address for imaginary data. If the device was to be 

programmed to output only real or imaginary data, then clearly it 

would be necessary to force the outputs of the chip into a high 

impedance state for two of the four cycles in which it has no data 

to contribute to the outside world. This would allow another chip to 

force valid data onto an external bus during those cycles. The logic 

used to generate the tn-state enable signal consists of a two input 

OR gate, which is connected to clocks I and 3 when real data is 

being output, or clocks 2 and 4 if imaginary data is being output. 

The timing for the tn-state enable logic is shown in Figure 

(5.3.5.1). 



155 

CK1 	- 

CK2 - 

CK3 - 

CK4 - 

ENO 

Cntr=1" 

ENO 

Cntr="O" - 

Data 	1mg )(Real Kjmg )( RealA 1mg A RealA 1mg )(aI 

Figure(5.3.5.1. 	Tri-State Enable Signals "ENO" as 
a function of CK1-4 and CNTR. 



156 

5.3.6. Formation of Butterfly Outputs 

Depending on whether real or imaginary data was being computed, 

either Re(A) or Im(A) would be selected at the input port of EU219 

and this would be shifted down through the distributed arithmetic 

complex multiply array to allow subsequent addition of this with 

either Re(BW) or Im(BW). This addition was accomplished using carry 

deferal as in the distributed arithmetic array. Thus Re or Im(A+BW) 

in unassimilated sums and carries were presented at the output. This 

was then assimilated using a fast manchester carry adder as previ-

ously described to form a complete word. The formation of Re or 

Im(A-BW) presented a problem because this would have meant feeding 

BW as well as A through the previous arithmetic stage. This would in 

practice have required that this stage be widened to allow these 

signals to pass through. It was therefore decided to form A-BW 

without feeding BW forward. This was done by shifting A one place 

left to form 2A. The subtraction of the already formed (A+BW) from 

2A would produce the required (A-BW). Thus, (A-BW) was formed as 

2A-(A+BW). It was checked that this approach would not cause over-

flow to occur in the datapath. A general floorplan of EU219 is shown 

in Figure (5.3.6.1) and a more detailed version is shown in Figure 

(5.3.6.2). 

5.4. Digital and Analogue Testing of EU219 
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Figure(5.3.6.2.) Detailed Structure of EtJ219 
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5.4.1. General 

Twenty wafers, containing around 100 devices per wafer, were 

fabricated by the Edinburgh Microfabrication Facility. The devices 

were all given an initial probe test to evaluate peripheral circuits 

and to give the distributed arithmetic array a sparse testing, 

intended to eliminate most of the eventual rejects. Around 5% of 

the devices passed this probe test and were bonded up. The bonded 

devices were then given a speed check (Analogue Performance) and a 

comprehensive digital check on a Tektronix DAS....9 100 series logic 

analyser. 

5.4.2. Probe Testing 

The probe test was primitive, and involved the input of a fixed 

binary word to the data and coefficient ports, and changing the 

logic on a single pin of the chip which determines whiether real or 

imaginary data is to be produced. The value chosen was 1/(SQRT(2)) 

as this would produce a unity magnitude 45 degree vector at all 

input ports. Thus the 45 degree coefficient would rotate a 45 degree 

data word to produce a 90 degree result from the complex multiplier. 

The expected results of this test are shown in Table 1. 

	

Inputs 	 Outputs 

RIIrn 	 E(A+} 	{+} 	{A-} 	{-} 

	

01011010 	00101101 01101100 00101101 11101101 



These precise outputs were obtained during the test in about 

5% of the devices. In addition to monitoring the output data port 

of the chip, which involved most of the chip logic, the tn-state 

enable logic output was also monitored. This represented a small 

amount of peripheral circuitry and over 90% of the devices produced 

a correct result at this output pin. The probe test was designed 

only to eliminate a large number of chips from the bonding process 

and was not intended in any way to be interpreted as a final test. 

Indeed, this test does not properly exercise the input de-

multiplexer, as the data is held static. The following tests were 

performed on the 5% of devices that were bonded up after the simple 

probe test. 

5.4.3. Testing EU219 on a Logic Analyser 

A Tektronix DAS_9 100 logic analyser permitted the testing of 

the devices under dynamic conditions, in which data was rapidly 

changing and the latches were being fully exercised to check for 

possible poor logic conditions such as might occur due to crosstalk 

between hard and usofto nodes, for example, the latter being a 

feature of dynamic MOS circuits. The initial test involved a check 

that the two's complement circuitry was operating correctly with 

both data and coefficient being tried in all four quadrants. The 

vector rotate circuitry comprises over 90% of the chip transistor 

count, so it was decided that the next step should be to attempt to 

exercise this part of the device. It was decided therefore to mul-

tiply a unity magnitude data vector which was rotating anti-

clockwise with a unity magnitude coefficient vector, rotating 
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clockwise at the same rate. This is the data that a complex multi-

plier in a DFT might be subjected to, for example, and TEST1 to be 

described represents the complex multiplier computing the results of 

an 8 point DFT, with the utime domain" in coherence with the rotat-

ing coefficient vectors. If the chip was operating correctly then 

it should be observed that the resulting vector (BW) was made fully 

stationary. An additional feature of this test is that it would 

allow the examination of any noise that might appear in a system 

based on the chip due to possible fluctuations in the LSB. 

5.4.4. TESTI for EU219 (Complex Multiplier Only) 

In the specific test, the rotating vectors must both start from 

some arbitrary point on the axis. It was decided to start the rota-

tions from a zero degree angle, and rotate in 45 degree increments. 

This made calculation of the real and imaginary components fairly 

trivial. Figure (5.4.4.1) shows the 8 different vectors that were 

used for "B" and "W". In the initial test, "A" was set to zero as 

this has nothing to do with testing the complex multiplier part of 

the chip. After completing this test "A" was set to a unity magni-

tude, zero angle vector (Real part = hex 7F), and TESTI was re-run, 

to give the modified results shown in TEST2, which also exercises 

the input de-multiplexer more fully and the final butterfly output 

stages. TEST2 also serves to check for arithmetic overflows, by 

presenting input signals which should produce the largest output 

possible from the chip. 
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5.4.5. TESTI Results 

The results of TESTI indicated that the chip was operating 

correctly, with some fluctuations appearing on the LSB of the out-

put. These fluctuations are believed to be normal and primarily a 

result of arithmetic rounding noise plus quantisation errors in 

representing the magnitude and phase of the input data vectors. The 

precise program and data used in TESTI is shown in Figure (5.4.5.1), 

and the actual logic output obtained is shown in Figure (5.4.5.2).. 

5.4.6. TEST2 Results 

This test was the same as TESTI, except that Real(M was set to 

unity with Imag{A} set to zero as before. This corresponds to a 

unity magnitude, zero angle vector. The program and data used in 

this test are shown in Figure (5.4.6.1), with the test results shown 

in Figure (5.4.6.2). The results obtained were correct, with normal 

fluctuations in the LSB only, as in TESTI. This test was designed to 

check for overflow as well as providing another test vector for the 

output fast adders 

Subsequent tests were then performed to specifically look for 

possible interactions between data in adjacent time slots, such as 

might occur in race situations for example. No such situations were 

observed. Figure (5.4.6.3) shows the results of one of the tests 

used to evaluate the pipeline for these hazards. 
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S6 

S5 

S2 	 I_1_ 
Si  

So 

j , J 4 4'J 4.4 4 

F 

F 
.1 	41 

I'  

(A+Bw) Real 

(A+Bw) Imag 

(A-Bw) Real 

(A-Bw) Imag 

(A+BW) Real. 

(A+Bw) Imag 

(A-13w) Real 

(A-BW) Imag 

(A+Bw) Real 

(A+Bw) Imag 

(A-Bw) Real 

(A-Bw) Imag 

Figure (5.4.6.3.) Dynamic Operation of 

EU219 Pipeline at 4M Bytes/Second Data 

Rate showing device Latency. 
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TEST 1 

iPI :T:11iIPRORidi 
	

INTERRUPT: ((j =  ON U- 

III]c 
	

NOS NORM PE : A D11BIT OH: II 

HEX  M HEX 
	fAfl 	IHSTRIXTIOHS STROBES 

0. 	I 000 L00U) I10UU0U00 
1 	SRI 8808 8888 1888188881111111 
2 8888 8088 8888188881111111 
3 8888 8888 8188188888880888 
4 8808 8880 8888180889080888 
5 8888 ?F88 8818188888888098 
6 8888 7FOO 8088188880880888 
7 8888 8880 8881188880880888 
8 8888 8888 8888188888008888 
9 8808 8088 1888188881811818 

18 8888 8088 8888188081811818 
11 8888 8888 8188188818188118 
12 8880 8880 8888188818188118 
13 8808 SAOO 8818188888888888 
14 8908 5m 8800188000080808 
15 8888 5A88 8001188888080088 
16 8880 5A88 8808188880080088 
17 8808 8880 1888188088888888 
18 8880 8888 8088180880009088 
19 8880 8888 8188188818888081 
28 8808 8888 8888188818088881 
21 8888 8888 8810108088088888 
22 8898 8098 0888188888888008 
23 0888 ?F88 8881188888800088 
24 8888 7F88 8888188088088888 
25 8898 8888 1888180810188118 
26 8808 8088 8688188818188118 
27 0898 8088 8188188818188118 
28 0088 8888 880818881@188110 
29 8888 AM 8818188088888888 
38 8088 Asee 8888188888088888 
31 8889 5A08 8801188808888080 
32 8888 5A88 8800188808888888 

REPET I 20.1 

DATA 
	

COEFFICIENT 
PORT CLOCKS PORT(w) 
(8) 	(4) 
	

(8) 

Figure(5.4.5.1. 



33 8800 8008 1888i088i808880i 
34 8888 8808 88081088 18888801 
35 8808 8088 0190108008888088 
36 8808 0888 8888188888888808 
37 0888 8188 8818108888908908 
38 0088 8188 8880188888808888 
39 8880 8088 8881188890988808 
48 8880 8088 8880100888888808 
41 8080 8888 1888188818188118 
42 8880 8808 88981888181881 18 
43 8880 8888 8108188881811818 
44 8088 8088 8890188881811818 
45 8880 A688 0810108880800908 
46 88813 A688 08801808088088138 
47 8888 A688 0891188808808908 
48 8888 A688 0898188880888800 
49 8088 8808 1088180888888888 
58 81388 0080 0088188889886869 
51 8888 8890 8188188881111111 
52 8888 8898 88881881381111111 
53 8888 8888 8918188888988888 
54 0888 81388 8088188888880888 
55 8888 8180 8881180880888888 
56 8880 8188 8088108889888888 
57 8088 0898 1888180881011810 
58 8888 8000 8088189081811810 
59 8888 8888 8188188881811818 
60 8888 8898 8888188881811818 
61 8888 5A88 8818189088889088 
62 8888 5A88 8888188889609088 
63 8888 A680 8981189889889888 
64 8888 A608, 8998188888888888 	GOTO 	SRT 
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Figure(5.4.5.2.) Results obtained from the DAS-9100 
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TEST 2 

PROCRl1: 
	

INTERRUPT: CALL MON 

:'rc 	 MOS IMEM PAUSE ON: A INHIBIT OH: A 

P040C P004B 
sEg LABEL •:ia I3 t8i N INSTRUCTIONS 	STROBES 

mm III LIIIi 
1 SRI 	8888 7F80 
2 0808 7F88 
3 88008888 
4 88088888 
5 0800 7F@8 
6 8808 7F88 
7 8888 8088 
8 0800 8088 
9 M 7F88 

18 m NN 
11 00008888 
12 88888088 
13 8888 5C8 
14 
15 8808 5(8 
16 m 5a 
17 88887F88 
18 88887F88 
19 8880 8088 

•28 88008088 
21 0808 8808 
22 88008808 
23 88887F88 
24 8888 7F08 
25 08887F88 
26 88807F80 
27 8888 8888 
28 88888808 
29 8888A688 
38 8888A688 
31 8808 58 
32 888058 

DATA 
PORT 
(8) 

I REPEAT  I 	2 I -. 	I 
1888188881111111 
8088180881111111 
8188188888888888 
8088188088888880 
8818188808888888 
8088188888088888 
8881188088888888 
0000100088008808 
1888188881811818 
8088188081811818 
8188180018188118 
8888188818188118 
8818188888888080 

8881108888088888 
8068189880880088 
1808188888880808 
8088188888888888 
8188188018888881 
8888180818088881 
8818188888888888 
8088188088886888 
8801188888888888 
8808108008088880 
1888188818180110 
8888188818188110 
8188188810188118 
8088188018180110 
8018188088088888 
8008180888888880 
8801188888088880 
8008188808808008 

0 COEFFICIENT 
LOCKS PORT(w) 
(4) 	(8) 

Figure(5.4.6.1.) 



33 0880 7FOO 18081889i088088l 
34 0880 WOO 8888188818088081 
35 8888 0008 8188188080888880 
36 8880 0008 8888188088880008 
37 0888 8188 8818108888888888 
38 0880 8180 0088180888888888 
39 8880 8088 8801180888888888 
48 0880 8800 0088188888888880 
41 8800 WOO 1888188018188118 
42 8880 WOO 0088188018188118 
43 8080 8888 0188188081011818 
44 8888 8808 8888188881811818 
45 8888 A688 0818109880088808 
46 8888 A688 0088100888089888 
47 8888 A680 0081188880888888 
48 0080 A608 8888188888880888 
49 8888 WOO 1880188888888888 
58 8888 WOO 8888188880888888 
51 8888 8808 8180188881111111 
52 8800 8808 8888188881111111 
53 8888 0880 0018188888880888 
54 8888 8888 0088180888888088 
55 8888 8180 8891188888889888 
56 8800 8180 8888188888888888 
57 8808 7F88 1888188881811818 
58 0888 WOO 8888188881811818 
59 8888 8888 8188180881811818 
68 8808 8888 8088188881811818 
61 8888 5A88 8818189888888888 
62 8888 58 8800188880888889 
63 8888 A688 8881189880888888 
64 0888 A608 0088188888888888 	COb 	SRI 

Figure (5 .4 .6. 1. 
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TEST 2 

(Results) 

oocii 	NAME U 
LS B 	M a 	- Li 	rip 	n rip 	n u rip 	___rip___ 8 

2A 1 	rurrLrfl.rLnsLnJ1slnj1.flj1J1J -Lr1nftnrLnsu1Jl 8 
2A 2 	fU1J1J1J1J1J1SLflJ1SLfIJ1J1J1J1..flJlfUl.FLfLJ1J1J1J1JIJ1J1J1J1J1. 8 

Real 	2A3 	ItFUlJlilJlJl-ILPJ1J1J1J1J1JU1J1J1]1J1SUU1J1J1J1J1ILfU1J1-fl8 
Outputs I 

4 	IlJlflflflJUlArUlJlJlflJlflSLflflhlJlrUlJlAflJl!LflrLrLflIL 8 
2A 5 	I1J1J1J1J1J1J1J1ILrIJ1J1.rIJlrLfl.flflhlJl.rLnJlJlrLflJl.flJ1J1!Lf 1 8 
2A 6 	IF1rAnJ'J1srLflLfl.nJlJ1tU1JtrU1J1J1J1JtnJtflAr1 8 

MSB 	2A7 	11 _I 	 a 

I' nil____llJi-_II_nil____nJl__ 1 
2A I
2A 2 
2A 3 —i 

LSB 

Real 
Outputs 2A 4 

2A5 
2A 6 

MSB 	2A 7 

ran= i 

POOcH ME 
LSB 	11 a __ 

2A1 
2A2 
2A3 

Imaginary 2A 4 
Outputs 	2A 5 

2A 6 
MSB 	2A 7 

PM cii WE I 
I 

2A1 I 
2A2 I 
2A3 I 

I 
2i4 I 
2A5 I 
2A6 I 
2A 7 

LSB 

Imaginary 
Output 

MSB 

1 
1 
I 
1 

I 

If 

Figure(5.4.6.2.) Results obtained from the DAS-9100 
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5.4.7. TEST3 

The first and second tests involved vectors associated with an 

8 point DFT. It was decided to double the number of test vectors and 

apply vectors associated with the W coefficients of a 16 point DFT 

in order to provide more comprehensive fault detection. This 

involved the input of angles which are multiples of 22.5 degrees. 

The data used in this test is shown in Figure (5.4.7.1). Figure 

(5.4.7.2) shows the results of the test. The correct response was 

obtained with fluctuations in the LSB evident. This is thought to be 

the result of rounding errors and is believed to be normal. In this 

test which was primarily intended to exercise the distributed arith-

metic complex multiplier, the non-rotated input data (A) was set to 

zero. 

5.4.8. TEST4 

A fourth test was run in which the non-rotated input vector (A) 

was set to unity (Real (A) =1, Imaginary (A) =0). This test checks 

for correct carry and sum formation in the final arithmetic stage of 

the processor and also checks for overflow. This test which is very 

similar to TEST3 is not shown for this reason. The results of TEST4, 

however, are shown in Figure (5.4.8.1). 

5.4.9. TEST5 

It was felt that it would be useful to view the vector outputs 

from the chip directly on an oscilloscope as an analogue signal. The 

chip produces digital outputs only, and data is time division 
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Mat
l':

HEX 

' 

8M OBN  
• tip, • a aa •I,,.t 

A 

.,.,, . 

: 
: ONO OW 
• 0008 ow 

11 :: 0088 
12 em m 
13 OM .•.' 
14 OM 7680 
15 0808 3108 

• ., ONO a'. 
p.. 

17 : we 
: '.''.: 01809 
• m 0000 

20 em ONO 
21 ONO 5AO8 
I ONO 5AO0  
23 ': •: 
24 0088 5A80 
25 V.. , 

•4a 
i ti.t 

 

• om 0000 
27 80109 0000 
28 :lf OON 
29 0000 3100 
30 0000 3100 
31 vi., 

Lied 
t .aa. 

V i '  •,: 

DATA 
PORT 
(8) 

F8D1 
	

INSTRUCT IONS STROBES 

W E R E A T,  

1111 

' ussIII!!s 
P 	1111111111 
iI 	•I,IIIIISIII 

Jil 	I 
II 	I 
I 	S 

?i'i'is•iiii' 
J•I.,.S,S,I.I'I,s,, 
•...a •lj a  •IjI a 

JuIIISIIII 
If,1,1 II I rSI a 

aaajiaja5i,ajija 

:. ::• 
JSSII,uuII 

1 0 	P ff 'LII 

COEFFICIENT 
CLOCKS PORT(w) 

(4) 	(8) 

Figure( 5.4. 7.1. 
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' I ,  •I •.'• •t'.'I It 	•I'. 

:.','. • :':: !,l, 
::',' i'• 
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,.:.
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'.: Smut 	a4•: •.•d , $i5  
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s:' ;'  

Ii 	J•Ii Jss•  III 
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II Is ii' • 
1,1 ••4 

4  

I'S ' 	i") 	ii', 	'•: 'iii' 
VS 

:'!: 
•I,S,!, ::': 	:'!:!: 	:!:': 

; I 4j 	IpI,Ij 

• :' 	: ' 

: 

;;•;; 
us 

;S;,;,; 
j is 

;;; 	;.;;; 	; 	; 	; 
its 	iii 
t' • • Igi•I, I  

'i'' 
a•.ja1a••ja1ap. 

: • ig  
1I Jil . 

:' 	•.;,,., • 

1 4 



POOCH 
LSB ME 

2A1 
2A2 
2A3 

Real 
Outputs 

MSB 

POD 
LSB 

2A 
Real 
Outputs 

2A4 
2i5 
2A6 

MSB 
	

2i7 

4 
5 
6 
7 

cH 

1 
2 
3 

2A 4 
2A 5 
2A6 

MSB 
	

2A7 

LSB 

:maginary 
utputs 

LSB 

maginary 
utputs 

ii 
2A * 4 
2A5 
2A6 
2A7 

TEST 3 
	

175 

(Results) 
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Figure(5.4.7.2.) Results obtained from the DAS 9100. 
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Figure(5.4.8.1.) Results obtained from the DAS_9100. 
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multiplexed so to do this requires an external de-multiplexer (to 

separate real and imaginary outputs), two digital to analogue con-

verters (a single fast one could be used if preferred) and a two-

channel oscilloscope with facilities for x and y inputs. 

The coefficients (0 - 180 degrees) of a 1024 point FFT were 

loaded into a 2716 eprom with real and imaginary data being held in 

even and odd address locations respectively. The eprom could thus be 

made to output data corresponding to the coefficients of a 1024 

point FFT or any size smaller than this which is an integer power of 

two. The data input to EU219 was supplied with a stationary vector 

this time so that instead of observing the chip cancelling out two 

equal and opposite rotations as was done in tests (1-4), it would be 

possible to observe the chip rotate a stationary vector by the vec-

tors held in eprom. Figure (5.4.9.1) shows the test set up and Fig -

ure (5.4.9.2) show some photographs taken from the oscilloscope. The 

top half (0 - 180 degrees) of the circle represents the (A+BW) (A 

held constant) butterfly output. The bottom half (180 - 360 

degrees) of the circle represents the (A-BW) (A held constant) but-

terfly output. The results obtained were somewhat encouraging, as 

there were no observable errors in all 1024 (( 8 + 8 ) bit) vectors 

that were input to the chip. This test was carried out with several 

stationary input data vectors and no anomolies were observed. 

5.4.10. Analogue Performance of EU219 

The speed of the device was measured using a high speed clock 

that was based. on high speed Schottky TTL mbnostables. This was 

turned up in speed until the chip started to produce logic errors at 
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Figure(5.4.9.1.) The use of D/A's to monitor EU219's 
Output Port on an Oscilloscope. 
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the output on a set of data which was worst case for the fast adder. 

It was found that the devices clocked at up to 4MHz if the clocks 

were allowed to rise to 7.OV, however, at 5V, the maximum speed 

obtained was only 2MHz. This unusually high dependence on the clock 

voltage was traced to poor clock rise times internal to the chip. 

Although the device was fast enough for serious use. it was felt 

that if the clock input pads were modified, a useful increase in the 

maximum clocking rate should result. Consequently, this modification 

was made, and a near identical device, number EU341 was fabricated 

later. Other than the fact that EU341 is slightly faster than 

EU219, they can otherwise be regarded as the same devices. 

5.4.11. Summary of the EJ219 Butterfly Processor 

This butterfly arithmetic processor is similar to EU20I, but 

differs in that the chip can be programmed to compute either real or 

imaginary outputs from the same data. Thus two identical chips can 

be combined, with the use of tn-state outputs, to function as one 

completely parallel butterfly device. This partition allows longer 

wordlengths to be realised and EU219 is an 8 bit device unlike the 6 

bits of EU201. Figure (5.4.11.1) shows a chip photograph with pin 

data information. Figure (5.4.11.2) shows a close up of the distri-

buted arithmetic complex multiplier array showing a number of the 

basic cells connected together. Finally, Figure (5.4.11.3) shows the 

pin numbers used when the device is bonded up in a 40 pin dii. 

package. A useful modification to these designs would be to allow a 

greater degree of configuration of the datapath to make the device 

more versatile. 
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Figure(5.4.I1.2.) 	Close up Photograph of Snv'rdl 
Basic Cells in the Compinx 
Multiplier of EU219. 
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1 W5 W440 
2W6 W339 
3W7 W238 
4 CKi Wi 37 
5CK2 W036 
6 VBB V D D 35 
7CK3 D734 
8 CK4. D6 33 
9 CNTL D5 32 
10 ENO D4 31 
11 ENB D3 30 
12S8 D2 29 
13S7 Dl 28 
14S6 DO 27 
15 NC NC 26 
16S0 NC 25 
17VSS NC 24 
18S1 NC 23 
19S2 S5 22 
20S3 S4 21 

Figure(5.4.11 .3.) pin Identification for 
EU219 and EU341 
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The next device to be described is a 16 bit CMOS-SOS datapath. 

This may be dynamically re-configured under external control and can 

perform time domain windowing functions in addition to the basic FFT 

butterfly. It may also be used to compute the DFT at high bandwidths 

if desired. 

184 
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5.5. A 16 Bit CMOS-SOS Arithmetic Processor (Z686-SOS) 

5.5.1. General 

In the previous sections, two similar nMOS devices were 

described which made use of distributed arithmetic techniques to 

achieve a highly efficient silicon implementation of the FFT but-

terfly. These chips, however, do not employ a sufficiently high 

enough wordlength for general use and were fabricated on a low to 

medium performance process (6 micron nMOS). Both of these chips 

employed ripple-through adders internally, thus implying a reduced 

performance with increased wordlength. 

This section considers a 16 bit distributed arithmetic CMOS-SOS 

datapath chip based on the highly pipelined architecture described 

earlier in Figure (4.2.8) to allow very high bandwidth computation 

of the complex multiply at longer wordlengths. 

The SOS device is, like both of the previous nMOS devices, 

aimed primarily at computing the Radix-2 Decimation-in-Time FFT but-

terfly, however, unlike the previous devices, by passing all data 

through the complex multiply hardware, it is also possible to per-

form time domain windowing with no bandwidth penalty. Further, the 

inclusion of a small control port for datapath control allows 

(static or dynamic) configuration of the datapath from externally 

applied control signals thus increasing the versatility of the dev-

ice. 



5.6. CMOS SOS Processor Architecture 

All data entering the SOS datapath passes through a hardware 

complex multiplier which is based on the architecture of Figure - 

(4.2.8). The advantages of this approach are, in addition to the 

possibility of time domain windowing just mentioned, that when per-

forming the butterfly function, the precise magnitude of the W coef-

ficient vectors are non-critical, since both data inputs (A,B) to 

the butterfly will be scaled by the same amount. In a practical sys-

tem this would lead to some improvement (reduction) in butterfly 

arithmetic noise, particularly as in fixed point fractional 2's com-

plement notation it is not possible to represent unity precisely. 

(The largest number that can be represented with this notation, is 

(Unity - I LSB) which is 0111111111111111 for N=16 bits.) 

In addition, this approach allows the complex multiplier coef-

ficient word to be input directly as KandK which would be stored in 

fast ROM, thus lowering still further, the power consumption 

required to compute the complex multiply. 

The SOS datapath was designed in three main sections 

A distributed arithmetic, systolic array, complex multiplier. 

A data sorter to sort the data derived from 1) above. 

An adder/subtractor to accumulate the results from 2) above. 

By providing some external control pins to the data-sorter and 

adder/subtractor the datapath could be dynamically configured to 

increase its versatility, as mentioned earlier. 



Coefficient 

41,  

187 

0 
-4-,  

0 > 0 

0 
L. 

-4-,  
C 
0 
0 

HH 
Systolic 

- Distributed - 

— Arithmetic - 

Complex 

Multiplier -- 

- - 

- 

Data Sorter 

- Adder / Subtractor 

1~ 

Output 

Figure(5.6.1.) Floorplan of the CMOS-SOS Arithmetic 
Processor Z686-SOS. 



This lead to a general floorplan, of the type shown in Figure 

(5.6.1). The above sections will now be described in more detail. 

5.6.1. Systolic Array Complex Multiplier using D.A. 

Based on the architecture of Figure (4.2.8), the design of this 

complex multiplier was undertaken with the following requirements 

1/ High Data Throughput 

2/ High Arithmetic Precision 

3/ Low Rounding and Arithmetic Noise 

4/ Low Power Consumption 

These requirements influenced the design approach in several - 

ways. 

5.6.1.1. High Data Throughput 

As previously mentioned, high throughputs with large word-

lengths can be achieved by using systolic architectures such as Fig-

ure (4.2.8) which involves a two-dimensional array of bit-level 

cells, communicating with their nearest neighbours each clock cycle. 

The performance of this structure is not highly dependent on word-

lengths, with only the latency being determined by the word-length 

employed. Figure (5.6.1.1.1) shows the logic used in the basic cell 

of the complex multiplier and Figure (5.6.1.1.2) shows the 

corresponding SOS layout. In signal processing schemes such as the 

FFT where there is no essential recursion outside of the arithmetic 
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unit, the presence of latency need not affect the system bandwidth. 

5.6.1.2. High Arithmetic Precision 

The precision of the butterfly arithmetic unit directly affects 

the precision of the transform as a whole. Clearly, however, in many 

systems it is possible that the analogue to digital (A/D) conversion 

may be the primary limitation, in terms of linearity and accuracy. 

It is, however, useful to have a reserve of arithmetic precision, 

beyond that of the AID,  as this allows signal growth in the system 

to take place, thus avoiding the introduction of rounding noise into 

the transform. A 16 bit arithmetic precision would allow this mode 

of operation in conjunction with an 8 bit flash converter, for exam-

ple, but would also allow meaningful transform results using any-

thing up to a 16 bit A/D converter. It was decided that 16 bits 

would, in general, be precise enough to cover most real-time digital 

signal processing applications. 

5.6.1.3. Low Rounding and Arithmetic Noise 

Intuitively, it would be expected that the DFT or FFT would be 

rather sensitive to wordlengths used and also to rounding and arith-

metic noise, since frequency bins with ideally zero or very small 

contents may be formed by the cancellation effect of a number of 

very large vectors at various angles. Poor magnitude or phase reso-

lution at any stage in the computation would therefore result in 

large percentage errors in frequency bins which ideally should have 

very small outputs. 
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One source of arithmetic noise is the noise introduced by trun-

cation of the lowest significance sums at each row in the complex 

multiplier array where the current partial sum is scaled down I 

place, that is to say, by a numerical factor of 2 (The lowest sum is 

discarded and the 2nd LSB now becomes the LSB to the next stage). 

The discarding of these sums introduces a small error which may be 

called 'ERRTR' into the result. The magnitude of 'ERRTR' depends on 

the number and significance of logical l's that were present in the 

discarded sums. It possible, however, to calculate the range of 

this error in numerical terms, from zero, to some number which might 

be called 'MAX' (corresponding to all the truncated sums being a 

logical '1'). As the result will always be too small by 'ERRTR' the 

addition of a fixed number, equal to 'MAX'/2, will ensure that 

instead of a maximum error of - ('MAX') being possible, the maximum 

error possible would be f/- ('MAX'/2). The precise value of 'MAX'/2 

was calculated and later verified by logic simulations. The inclu-

sion of the fixed number 'MAX'/2 was found to be essential in pro-

ducing a true 16 bit result. It turned out that the value of 'MAX'/2 

was equivalent to one-half LSB at the output port, or perhaps more 

meaningful, equal to the most significant DISCARDED sum. 

The distributed arithmetic algorithm also required some ini-

tialisation which was a function of data as described in equations 

(3.5.10 and 11). This was also at a low significance like the round-

ing word 'MAX'/2. A special cell was therefore constructed to per-

form both the addition of the rounding word ('MAX'/2) to the array 

and the data dependent initialisation word. This cell had to per-

form a half-add function, and is shown in Figure (5.6.1.3.1). 
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5.6.1.4. Low Power Consumption 

Low power consumption is possible with the use of SOS technol-

ogy, where stray capacitances are lower than in bulk CMOS. The com-

plex multiply distributed arithmetic algorithm also offers low power 

consumptions due to a high computational efficiency. The storage of 
* 

the W coefficient in the form of K and K , means that they do not 

need to be actively computed on chip. Thus, an add and subtract that 

would otherwise be required, need not be computed on chip. 

5.6.2. Data Sorter 

The complex multiplier, described above, produced a constant 

stream of alternate real and imaginary data. This data, must first 

be sorted before being passed to the adder/subtractor butterfly out-

put stage. The circuit chosen to do this was a 4 stage shift regis-

ter delay line which was tapped at three different points, separated 

by 2 delays each. Thus, as data flows continuously, either real data 

only or imaginary data only could be selected and fed to the 

adder/subtractor to perform the butterfly. A block diagram of the 

data sorter is shown in Figure (5.6.2.1), along with the actual 

silicon layout. An important feature of the sorter used was that 

the data that it had to operate on was skewed, as it was coming from 

the complex multiplier. This meant that the control for the sorter 

had to be delayed at each stage, hence the use of an extra shift 

register to accomplish this delay requirement. Data leaving the 

sorter is also skewed, allowing the final adder/subtractor stage to 

operate in the same pipelined configuration as the rest of the chip 

before finally de-skewing data to present to the outside world. 
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5.6.3. Final Adder/Subtractor 

Having sorted data from the complex multiplier (as defined by 

external control signals), information is then passed to the final 

adder/subtractor. This allows the radix-2 butterfly function to be 

performed, if desired. Control to this unit allows one of the inputs 

to be reset so that the chip can function as a stand alone complex 

multiplier. Also, as all data passes through the complex multiplier, 

the chip can perform a 2-point non-trivial DFT. Although a 2-point 

DFT in itself is of no use, the fact that the chip is capable of 

performing the first accumulation operation of the OFT as well as 

vector rotation, the bandwidth of data leaving the chip is halved, 

thus allowing a slower external accumulator to complete the job of 

accumulating each frequency domain bin of the DFT. 

In fact, the job of the final adder/subtractor was so similar 

to the basic cell used in the rest of the chip that this was actu-

ally used with only a trivial modification (to allow one of its 

inputs to be reset). 

5.6.4. CMOS Design Considerations 

In CMOS design, the basic inverter comprises an n-channel pull 

down and a p-channel pull up so that large currents can only flow 

under dynamic conditions. Whilst this entails near zero static power 

consumption, it is possible for a CMOS design to consume a compar -

able power to nMOS at high clocking rates. The input capacitance of 

the CMOS inverter is approximately doubled when compared to the nNOS 

inverter, because both the n channel and p channel device gates are 
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connected together. This usually means that the dynamic power con-

sumption in a given CMOS circuit would rise more steeply with fre-

quency than would an nMOS circuit. One problem that must be tackled 

in some CMOS designs is one of transients on power lines, which can 

occur if a number of logic stages, attached to a single power line, 

all change state at around the same time. This can be overcome by 

using thick metal conductors in such regions and by arranging that 

as few stages as possible will change state all at the same time. 

Another notable difference between nMOS and CMOS design 

approaches is in connection with shift register design. In nMOS, it 

is common to use two phase non-overlapping clocks, as a means of 

avoiding race condition problems mainly in shift register elements, 

where the ripple through time is potentially very short. Figure 

(5.6.4.1) shows a simple but useful model of the dynamic riNOS shift 

register, which indicates that the race hazard is proportional to 

1/RC, where R is the lowest ("ON") resistance of the single (n-

channel) transistor transmission gate and C is the effective input 

capacitance of the inverter. As R and C, both tend to be fairly 

small in nMOS technology, the use of non-overlapping clocks is man-

datory, unless the circuit is carefully designed with a large RC 

product and highly localised single phase to two phase conversion, 

to avoid clock skews. In general, however, the use of a two phase 

non-overlapping clock does not entail any substantial overhead, and 

is highly preferable to the lengthy analogue simulations, which 

would otherwise be necessary. 

In CMOS design, however, it is fairly common to use clock and 

clock bar signals which may potentially have some degree of overlap 
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present on them. These signals are applied, alternately to the n and 

p-channel devices in the transmission gates in adjacent shift regis-

ter cells. The chip to be described was intended to clock at very 

high data-rates, and consequently, the use of dynamic circuitry was 

considered. The simplest CMOS dynamic shift register consists of a 

transmission gate feeding a single inverter with charge storage at 

its input, as shown in Figure (5.6.4.2). As with nibS, however, this 

type of circuit, presents a considerable race hazard as it requires 

clocks with very low overlap indeed. The amount of overlap that is 

tolerable, depends on the delay associated with the inverter, and 

transmission gate. Figure (5.6.4.3) shows the equivalent CMOS model 

of the dynamic shift register, to the nMOS model shown in Figure 

(5.6.4.1). It should be noted that some important differences exist 

in calculating the race hazard. Since, in the CMOS inverter, the 

input is connected to both gates of the n and p-channel devices, it 

can said that the input capacitance of the inverter will be at least 

double the input capacitance of the nNOS inverter. In practice, the 

p-channel pull-up will be given a wider channel than the n-channel 

pull-down whose mobility is higher, and thus the real increase in 

the input capacitance would be slightly greater than doubled. It can 

be concluded therefore that the CMOS inverter input capacitance is 

2C instead of C as is the case with the nMOS device. Turning to the 

transmission gate, it can be seen that the equivalent circuit of the 

NON" transmission gate consists of two parallel resistors, 

corresponding to the n and p channel devices both being hard ON. 

Assuming that the designer wishes this CMOS shift register to have a 

transmission gate of equivalent ON resistance to the nMOS design, 

then each of these resistors, must be given a value of 2R, to give 

Iwo 
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the transmission gate an "ON" resistance of IL In the special case 

of clock overlap, then, as shown in Figure (5.6.4.3), only half of 

the transmission gate is ON when it should be OFF. This means that 

the resistance to be taken into account in calculating the race 

hazard is 2R instead of R, ( with the nNOS design). The overall race 

hazard is therefore proportional to 1/4RC. Perhaps, a more accurate 

comparison would have been to say that since the inverter input 

capacitance is 2C instead of C, the transmission gate ON resistance 

should be designed to be (1/2)R instead of R in order to result in 

a circuit of the same speed capability. In such a case, the race 

hazard of the CMOS design would be proportional to 1/2RC compared to 

1/RC for the nt405 case. The main point is that it is much easier to 

design a clock overlap tolerant CMOS dynamic shift register which is 

race free, than it is, to-design an nt4OS dynamic shift register with 

the same attributes. Figure (5.6.4.4) shows the CMOS shift register 

model with zero clock overlap. 

When, the basic cell for the CMOS chip was being designed, it 

was decided to simulate the dynamic shift register using the SPICE 

program. This revealed, that the initial aspect ratios used in the 

shift register were unacceptable, as it was excessively intolerant 

to non-ideal clocks. The model of the shift register shown in Figure 

(5.6.4.4) indicated that if the shift register was redesigned with a 

transmission gate of much higher ON resistance and the inverter 

input gate capacitance was increased, then the subsequent RC delay 

introduced, would make the shift register much more tolerant to 

clock non-ideality. This involved increasing the channel lengths and 

reducing channel widths of the transmission gates, and increasing 
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channel lengths of the inverters. Some results of analogue SPICE 

simulations are presented for this modified shift register design, 

with clocks ranging from near ideal, to clocks that are worse than 

would actually be seen by the shift register. These are shown in 

Figure (5.6.4.5). 

The clock lines were distributed throughout the chip using very 

low resistance paths, to minimise skew and maintain rise-times. In 

addition, the clocked array of cells were fed from two sides (not 

one side) of the array, thus halving clock line series resistances 

caused by underpasses. The chip size was likely to be quite large, 

and so in common with many large chips, multiple bonding pads were 

made available for both power and clocks, distributed evenly 

throughout the chip. 

5.6.5. Clocking Scheme 

The standard four-phase clocking scheme, involving 'CLOCKIN' 

and 'CLOCKOUT' together with their complements is the safest and 

most desirable approach where area considerations are not critical. 

In this design, however, a substantial area reduction, estimated at 

around 20%, would result if a two-phase clocking scheme was used 

involving a single clock (CM) and its complement. It was this con-

sideration that resulted in the decision to adopt a two phase clock-

ing scheme. 

The chip was intended for operating on complex data, with real 

and imaginary data being multiplexed on the same data port. It was 

decided that the availability of another main clock (CK2), operating 
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at half the micro-cycle frequency, would be useful in the internal 

de-multiplexing of real and imaginary data. This clock could also be 

used as a control in the basic cell to clock the shift registers 
* 

that carry K and K through the array. This is possible because they 

are both required to compute real and imaginary data at each cell in 

the array and thus only need to be fed forward once every two cycles 

and not every cycle, resulting in the chip computing real data and 

imaginary data on adjacent micro-cycles. This, however, is not a 

restriction, meaning only that it is not possible to use two chips, 

one programmed to produce real data, and the other programmed to 

produce imaginary data, as was the case with the 8-bit nMOS device 

(as a means of doubling system bandwidth). It is believed to be 

more efficient and cost effective to perform the computation in this 

manner where real and imaginary data is computed on alternate 

cycles, thus reducing power consumptions further. In addition to the 

half frequency clock, which determines whiether real or imaginary 

data is being input to the datapath, an extra quarter frequency 

clock (CK3) is needed for the butterfly itself. This controls the 

data sorter, and the add/subtract in the butterfly output stage and 

corresponds to the rate at which the chip can perform windowing 

and/or butterfly functions. Figure (5.6.5.1) shows the clocks 

required to operate the chip. 

5.6.6. Timing Requirements. 

It was decided that clock signals would be derived externally 

from this chip, as the quality of the clock signals could then be 

controlled, if necessary. As the chip uses a two-phase clocking 
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Figure(5.6.5.1.) Clocks Required for Butterfly Operation. 



scheme, all clocks, with the exception of CK3 (ie CK1 and 2) must be 

provided with high integrity complements. If possible, a small (RC) 

analogue delay should be inserted into the leading transition to 

ensure that the clocks have a minimum overlap. Rise times should be 

kept as small as possible, preferably under 5ns, which can achieved 

by using bipolar devices for pull-up and down. It is intended that 

the chip should be clocked at or near to its maximum clocking fre-

quency, as the error rate due to background alpha-radiation is 

minimised in this situation. There are no strict requirements for 

CK3, which does not require a complemented signal, other than that 

its falling edge must not come before the rising edge of CK1. A 

similar requirement exists for CK2 and its complement, whose falling 

edges must not come before the rising edge of CKI, or put another 

way, the rising edges of CK2ICK2BAR  must come on or after (prefer-

ably just immediately after) the rising edge of CK1. 

5.6.7. Latching of Input Data and Coefficients 

The inputs to the chip are latched on CKIBAR. Thus, data must 

have settled before the falling edge of CK1BAR. If data is to be fed 

in to the latch without being corrupted, it must not alter state 

until after CK1BAR has returned to zero. The precise timing of data 

transitions relative to CK1 and CKIBAR is non-critical other than 

this requirement. One simple way of ensuring that this occurs is to 

synchronise inputs data transitions with CK2/CK2BAR rising and fal-

ling edges. It was mentioned that this clock should be very slightly 

delayed with respect to CKI/CK1BAR to ensure that its rising/falling 

edges would never come before the rising edge of CK1 (falling edge 
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of CK1BAR). A typical timing diagram of the chip receiving data 

relative to the clocks is shown in Figure (5.6.7.1). This also shows 

the output of data from the CMOS-SOS processor device. Data transi-

tions at the output takes place on the rising edge of CK1. This is 

to be consistent with sampling data on the rising edge of CKIBAR as 

is done at the input ports of the chip. 

5.6.8. Control Signals Required by Pipeline 

Control data is sampled on the rising edge of CK1BAR as with 

all other data entering the device. Thus, timing for the input of 

control data is the same as for signal and coefficient data. 

The CMOSSOS device has a total of seven control pins, CNTI-7, 

four of which (CNT4-7) are aids to the testing of the device and 

three of which (CNTI-3) allow the pipeline to compute the functions 

described below. 

If no connections are made to these control pins, in common 

with all other data pins, a logic zero default will be assumed by 

the chip. 

I) 	The complex multiply, +1 -  A x W 1  : CNTI="l" for complex multi- 

ply only, CNT2='I for DU,  CNT2=N0u for 	CNT3=(don't care, 

however, if CNT3 is a 	then data will appear with extra two 

CKI delays but will be the same) 

2) 	A 	two 	point 	DFT, 	+1 -  A x W I  +1 -  B x W2 	: 	CNTI"O°, 

CNT2=CNT3=CK3 (shown in Figure (5.6.5.1)). 	This function 

allows both butterfly operation (decimation-in-time) and data 
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windowing. It can also be used to compute the DFT using a 

slower, external accumulator. 

The control signals, CNT4-7 are intended primarily for testing 

the device. The function of these pins are to control two ROMS, each 

storing two 16-bit words which may be input to the data port and the 

coefficient port. Two of the pins, CNT4 and 5 select either the ROM 

or the input pads for the two input ports. The remaining two pins, 

CNT6 and 7 select one of two words which have been stored in the 

small ROM. These words have been chosen to produce predictable 

results, consistent with exercising the internal logic. This allows 

• test of a similar level to the probe test of EU219, which was not 

• final test, but was designed to eliminate obviously faulty dev-

ices. This allows a simple probe test to be conducted with only four 

data pins instead of 32. The functions of CNT4-7 are detailed below. 

1) CNT4 : Select Data ROM 	1,  or input pads 

2) CNT5 : Select Coefficient ROM "1", or input pads nOel .  

3) CNT6 : Select 1010010101111111 "0, or 0101101010000001 	Ulhl 	at 

DATA input port. 

4) CNT7 : Select 0000000000000000 "0", 	or 0011111111111111 	"1" 	at 

COEFFICIENT port. 

Note : 0101101010000001 = 1/SQRT(2) = - (1010010101111111) 
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5.7. Logic Simulation 

The chip logic was simulated at a switch level at a depth of 8 

bits and later, 4 bits (to speed up the process). This was to ver-

ify correct operation of the pipeline, rounding and initialisation 

of the distributed arithmetic array. A fixed binary count was 

applied to the data port and a +1 and -1 coefficient vector was 

applied to the coefficient port. The simulation results, shown in 

Figure (5.7.1) indicated no observable rounding errors and even 

weighting for both positive and negative number ranges. The logic 

simulator used was known as SLS which was designed at Edinburgh 

University and was run on a VAX750 mini-computer. 

5.8. Additional Cell Level Details of the Z686-SOS Processor 

The logic used in the control cell for the distributed arith-

metic array in the SOS device is shown in Figure (5.8.1). Figure 

(5.8.2) shows the corresponding SOS layout. This cell produces 

alternate real and imaginary control data under the control of CK2. 

The de-multiplexing of real and imaginary data may be accom-

plished under control of CK2. Figure (5.8.3) shows the logic used 

for de-multiplexing both data and coefficient input ports. Real data-

is sampled on CK2 and imaginary data is sampled on the complement of 

CR2. The SOS layout for the de-multiplexer is shown in Figure 

(5.8.4). 

The complete chip includes input and output pads, shift regis-

ter delays and two very small ROMS for testing purposes. Figure 

(5.8.5) shows the regular shift register layout and Figure (5.8.6) 



Results 
initialisation complete 

Data 

t R4 R3 R2 Ri RO CiT CIB C2T C2B K3 K2 K1K0 D3 D2 Dl DO 

0 1 0 0 0 0 1 0 1 O/K11000 
211000 1 0 0 ,1K1100 0000 
401100 1 0 1 '01<0100 0 . 000 
610010 1 0 0/1K"O1 0 0 0000 
811011 1 0 1 0 etc  1 100 0001 
1001111 1 0/0 1 1100 0001 
1210011 1 0/1. 0 0100 0001 

1400011 1 0 0 1 0100 0001 

1600101 1/0 1 0 1100 0010 
1800011 1/0 0 1 1100 0010 
2000011 1 0 1 0 0100 0010 

22 00000/1 0 0 1 0100 0010 
(Stcrt))24 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 

2600000 1 0 0 1 1100 0011 
2800000 1 0 1 0 0100 0011 
3000000 1 0 0 1 0100 0011 
3200000 1 0 1 0 1100-0100 

34 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 
3611111 1 0 1 0 0100 0100 
3800001 1 0 0 1 0100 0100 
4000001 1 0 1 0 1100 0101 
4211110 1 0 0 1 1100 0101 
4411110 1 0 1 0 0100 0101 
4600010 1 0 0 1 0100 0101 
4800010 1 0 1 0 1100 0110 
5011101 1 0 0 1 1100 0110 

52 1 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0 
5400011 1 0 0 1 0100 0110 
5600011 1 0 1 0 1100 0111 
5811100 1 0 0 1 1100 0111 
6011100 1 0 1 0 0100 0111 
6200100.1 0 0 1 0100 0111 
6400100 1 0 1 0 11001000 
6611011 1 0 0 1 1100 1000 
6811011 1 0 1 0 0100 1000 

7000101 1 0 0 1 0100 1000 
7200101 1 0 1 0 1100 1001 
7411010 1 0 0 1 1100 1001 
7611010 1 0 1 0 0100 1001 
7800110 1 0 0 1 0100 1001 
8000110 1 0 1 0 1100 1010 
8211001 1 0 0 1 1100 1010 
8411001 1 0 1 0 0100 1010 
8600111 1 0 0 1 0100 1010 
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17400010 1 0 0 I 0100 0101 
17600010 1 0 1 0 1100 0110 
17811101 I 0 0 1 1100 0110 
18011101 1 0 1 0 0100 0110 
18200011 1 0 0 1 0100 0110 
1840001.1 1 0 1 0 1100 0111 
18611100 1 0 0 1 1100 0111 
18811100 1 0 1 0 0100 0111 
19000100 1 0 0 1 01 0 0111 
19200100 1 0 1 0 1100 1000: 
194 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 

196 1 1 0 1 1 1 0 1 0 0 1 0 0 1 0 0 0 
19800101 1 0 0 1 0100 1000 
20000101 1 0 1 0 1100 1001 
20211010 1 0 0 1 1100 1001 
204 1 1 0 1 0 I 0 1 0 0 1 0 0 1 0 0 1 
20600110 1 0 0 1 0100 1001 

20800110 10 1 0 1100 1010 
2101 1001 1 0 0 1 1100 1010 
21211001 1 0 1 0 0100 1010 
21400111 1 0 0 1 0100 1010 
21600111 1 0 1 0 1100 1011 
21801000 1 0 0 1 1100 1011 
22001000 1 0 1 0 0100 1011 
22211000 1 0 0 1 0100 1011 
22411000 1 0 1 0 1100 1100 
22600111 1 0 0 1 1100 1100 
22800111 10 1 0 0100 1100 
2301 1001 1 0 0 1 0100 1100 
23211001 1 0 1 0 1100 1101 
234 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1 0 1 
23600110 1 0 1 0 0100 1101 
2381 1010 1 0 0 1 0100 1101 

240 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 0 
24200101 1 0 0 1 1100 1110 
24400101 1 0 1 0 0100 1110 
24611011 1 0 0 1 0100 1110 
248 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 
25000100 1 0 0 1 1100 1111 
25200100 1 0 1 0 0100 1111 
2541 1100 1 0 0 1 0100 1111 

Figure (5. 7. 1.) 
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Figure(5.8.2. ) SOS Layout of Control Cell 
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Figure(5.8.3.) High Speed De-multiplexer used to 
separate Real and Imaginary Data. 
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Figure(5.8.4.) SOS Layout of De-multiplexer 
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Figure (5-8 6. ) SOS Layout of Output Pad 
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shows the output pad used. The complete chip design is shown in 

Figure (5.8.7) which includes pad identification. It is expected 

that this device will have a maximum clocking rate of around 40MHz 

and consume around 0.5 Watts, including clock generation. 

5.9. Summary 

This chapter has described three LSI to VLSI complexity paral-

lel data arithmetic datapaths which use some of the architectures 

presented in Chapter 4 for computing the complex multiply very effi-

ciently. It is evident that the use of distributed arithmetic 

greatly facilitates a regular design approach which is particularly 

advantageous in the case of parallel data implementations as it 

avoids the need for multiple bus structures. The testing of device 

number EtJ2I9 is described in depth and it is hoped that the CMOS-SOS 

device (Z686-SOS) will be fabricated and tested in the near future 

to provide the basis for a high performance DFT or FFT processing 

system. Both EU219 and Z686-SOS have the throughput equivalence of 

two parallel real multipliers by virtue of the distributed arith-

metic techniques used. The architectures described therefore offer 

about double the throughput that comparable [2] single parallel mul-

tiplier FFT arithmetic processors can offer. 
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Chapter 6 - Conclusions 

This thesis has covered various aspects in the application of 

Very Large Scale Integration (VLSI) to digital computation of the 

discrete Fourier transform and the fast Fourier transform which 

approximates the continuous Fourier transform. In particular, much 

of the work has concentrated on VLSI architectures for implementing 

the arithmetic requirements of these computations with high data 

rates. 

A variety of algorithms and system design methodologies have 

been reviewed in order to highlight the range of structures that are 

possible. It has been observed that whilst the discrete Fourier 

transform can be easily realised as a single monolithic VLSI proces-

sor, the fast Fourier transform is not quite so easily realised as a 

single monolithic device owing to the higher levels of integration 

required. A notable characteristic of the fast Fourier transform is 

that various distinct levels of arithmetic concurrency are possible 

which allows a great variety of system configurations and partitions 

as well as processing bandwidths. It has been noted, however, that 

very high bandwidth systems must be based on a system design metho-

dology which allows a high degree of programmability to obtain the 

necessary versatility for system use. it is believed that configur-

able pipelines can offer both high bandwidths and suitable versatil-

ity, for systems use, although it is recognised that silicon compiler 

approaches, such as ISFIRSTU  described in chapter 2 which obtain ver-

satility by offering control over the actual hardware, has a role to 

play where the extra cost of mask-making and fabrication is not a 

major consideration. 



It is apparent that an important requirement for efficient VLSI 

designs is regularity and modularity. Not only do such approaches 

allow quick design times, but they are more likely to result in 

structures to which yield enhancement approaches can be applied if 

required. It is noted that distributed arithmetic approaches in par-

ticular can yield highly regular structures thus allowing the design 

of highly efficient VLSI arithmetic processors. In this thesis, a 

great deal of attention has been focussed on the arithmetic require-

ments of the fast Fourier transform as it has been noted that the 

availability of a high performance arithmetic unit does not con-

strain a system to any one level of arithmetic concurrency or impose 

limitations on transform size (assuming wordlengths are adequate). 

Chapter 5 has described three LSI/VLSI MOS distributed arith-

metic devices which offer very high bandwidths. In the case of the 

complex multiply, the throughput rate is effectively doubled as a 

result of using distributed arithmetic. Moreover, these approaches 

offer a highly regular VLSI design approach. Figure (6.1) shows a 

comparison of the expected performance of the CMOS-SOS device 

(Z686-SOS) and the measured performance of E0219 in computing com-

plex multiply and accumulate operations against that which could be 

obtained using commercially available devices, including single real 

multipliers in conjunction with accumulators. The TRW figure is 

based on the MPYI6HJ 16 by 16 bit real multiplier device, which is 

commonly available. The GaAs figure is derived from the 16 by 16 bit 

multiplier device described in chapter 2. 

It is believed that distributed arithmetic offers a signifi-

cantly lower power consumption than is possible with conventional 
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multiplier based arithmetic. This reasoning is based on the fact 

that only a single accumulation process is required. The extra power 

consumption required by data-select operations can be made small as 

the number of logic gates required to toggle in a given data-select 

operation is not large. Low power consumptions are particularly 

important in high bandwidth fast Fourier transform systems, such as 

are used in avionics, where heat dissipation constraints and power 

constraints often exist. 

6.1. Future Research Work 

The various devices described in this thesis have moved pro-

gressively towards some form of (low level) programmability through 

pipeline re-configuration. It is felt that this area could be 

further explored. The principle advantage of developing configurable 

arithmetic pipelines further is not only the consequent increase in 

versatility, but also the possibility of bypassing defective circui-

try through redundancy which would provide a basis for yield 

enhancement. Distributed arithmetic has a definite role to play in 

the construction of such pipelines because of the regularity which 

it allows. Looking ahead to wafer scale integration, power consump-

tions become increasingly important. Here again it is believed that 

distributed arithmetic will have a role to play. 

228 
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Appendix I 

Programmable Logic Array's (PLA's) in Silicon Compilers 

The main problem with the PLA, is that its speed is dependent 

on its size. Larger PLA structures cannot be clocked as fast as 

smaller ones. This is due to an increase in internal capacitances 

which cannot be matched with a lowering in the "ONO resistance of 

the switching elements in that structure. A clocked control circuit 

using a number of PLA's of different size will only clock as fast as 

the slowest PLA. The PLA itself, however, is a particularly effec-

tive way of mapping logic directly on to silicon. 

A silicon-compiler that generates synchronous assemblies is 

virtually useless if it has no means of controlling the actual speed 

of individual clocked units in that assembly in order to achieve 

some control over performance. If an assembly is constructed from a 

number of PLA's, some means therefore must be found to allow control 

over the speed of individual PLA's in that assembly. This would then 

allow some degree of optimisation to bebuilt into the system as 

well as allowing overall system clocking rates to be achieved that 

might otherwise not be possible. 

PLA Performance Control 

The regularity of the PLA has a significant advantage, in addi-

tion to those already mentioned. It allows easy calculation of the 

capacitances in the "AND" and "OR" planes of the PLA as a function 

of inputs, product terms, outputs, and if desired, the truth table 

itself. This function should also include process parameters, which 

would normally be fixed. A knowledge of these capacitances, 
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together with transistor aspect ratios allows the maximum operating 

speed of the PLA to be calculated. An experimental FORTRAN program 

was written, which could both perform this speed calculation and 

generate nMOS transistor layouts with a variety of aspect ratios 

(continuously variable). This subroutine, which could generate 

variable aspect ratio transistors would allow some control over PLA 

speed performance. The algorithm (not consciously copied) that was 

used in this speed programmable PLA generator is outlined in Figure 

(1). This program was primarily written in order to empirically 

determine the extent of control possible over the PLA speed perfor-

mance using software techniques. Results are outlined below, in the 

section "PLA Run Results". 

This program might be incorporated in the complier discussed 

previously as a "soft" operator, allowing several PLA's to be inter-

connected automatically on a one dimensional routing channel. Such a 

compiler, suited to control tasks, would offer a high degree of per-

formance control. The design rules used in the PLA generator 

described here, were based on fixed Mead and Conway type rules for 

nMOS, however, it would have been feasible to produce PLA silicon 

layout which was a function of certain design rules, that might have 

been liable to fluctuations. (The program took into account process 

length and width modifications.) 

PLA Run Results 

There were two main points that were noted in running the speed 

programmable PLA generator program. Firstly, there was a minimum 

area which occurred at some particular speed. Secondly, once this 

area was reached, higher speed requirements forced the area to rise 
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very sharply (and power consumption). This effect is mainly due to 

the relative interconnect capacitances tending to a very low value. 

Figure (2) shows the actual silicon layout of four different speed 

performance decade counters produced by this program. The rise in 

area was quite pronounced as shown in Figure (3) which shows the 

area of a decade counter at various speed requests. 

It was found that a useful PLA speed range of about 10:1 could 

be produced by the program. At low speeds, the depletion pull-up 

devices started to consume too much area and at high speeds the 

enhancement pull-downs started to cause an area explosion as the 

relative interconnect to active-area capacitance tended to very low 

values. 

It was felt that although little could be done to avoid this 

area explosion and therefore little done to produce clocking rates 

beyond a critical point just after this takes place, the program 

would go some way to optimising the performance of a compiled syn-

chronous control system which is based on a number of different 

software generated PLA's. 

The PLA compiler was used to produce several silicon layouts of 

counters which were subsequently fabricated and exhibited maximum 

clocking rates slightly greater (about 20%) than that requested by 

the software. 



Start 

232 

Estimate Capacitance in 
Vertical Section of 'OR' 

Plane. 

From Enhancemt Aspect 
Ratio, CoIc. Capacitance 
in Horizontal Section of 

PLA. (Product Uneg) 

From Speed Requested 
CaIc. Depletion Pull Up 
Aspect Ratio('AND' Leg) 

From Speed Requested 
Calculate Input Buffer 
Aspect Ratio's 

From Speed Requested 
CaIc. Depletion Pull Up 
Aspect Ratio('OR' Legs )  

From Depletion Aspect 
Ratio, Calc. Enhoncemt 
Aspect Rotio('OR' Legs) 

From Depletion Aspect 
Ratio. Calc. Enhoncemt 
Aspect Ratlo('AND' Leg) 

From Enhancemt Aspect 
Ratio, Caic. Capacitance 
in Vertical Section of 
'AND' Plane 

Yes Significant 

Geometry Revision 

'. Required? , 

No Compile Silicon 

> Layout of PLA 

Stop 

Figure 1 



233 

41, 

lit Li 

N. YVV.Vh R. 

- 

2 M Hz 

u 

4 M H z 

lf~ 1011. 1glo 

 NNW
ii  

1" :MW 1xr' it 	II 

ILtIttti1ttt1$I$I 

it 

3M H z 
	 B M Hz 

Figure' 2. Silicon Layout from Silicon Compiler 



PLA Performance 

234 

PLA Area 

5 

4 

3 

2 

I 	I 	I 	I 	I 	I> 

2 	3 	4 	5 	6 	MHz 

Figure 3 



1PPENDIX 2 

AUTHORS 

PUBLICATIONS 



ADIX-2 FFT BUTTERFLY PROCESSOR 
	

In 2's complement notation, an N -bit digital word can be 

SING DISTRIBUTED ARITHMETIC 
	

represented as: 

Indexing terms: Computers. Fast Fourier transforms. Pro-
cessors 	 - 

A parallel-data VLSI architecture for computation of the fast 
Fourier transform lIFT) is described. The processor is based 
on a computationally efficient vector rotate algorithm. Use 
of a 2-dimensional pipeline configuration allows a radix-2 
butterfly operation to be performed once every system clock 
cycle (250 ns) to generate real or Imaginary transform com-
ponents. The architecture is considered to be a computa-
tionally efficient VLSI approach for high-bandwidth 
computation of the FIT. The design and performance of an 
8-hit FFT huttertl% processor are described. 

'entral to computation of the FFT algorithm' is a require-

tent for vector rotation (multiplication by a unit vector). The 

ector rotation involved in the computation of the FFT 
uttertly can be written 

Re Z = Re B .Rc U' - Em B . Em IV} 	(1) 

Em Zk = Re B . Em ji'• + Em B . Re 	(2) 

here B is the input data sector. Z is the output data vector 

nd U' is a unit vector termed the 'twiddle factor'. 2  Thus 

irect implementation of vector rotation involves four multi-

lications plus an addition and a subtraction. Computation of 
ie Radix-2 FFT butterfly requires a further two additions 
nd two subtractions. 
The algorithm employed in the processor considered here is 

ased on the fact that when the outputs of two or more digital 
hilt-and-add) multipliers are involved in subsequent arith-
etic operations such as addition or subtraction, more ciii-

ient use can be made of the multiplier structure using 
istributed arithmetic techniques.' 
For the vector rotation arrangement described by eqns. I 

nd 2. there exist only four possible ways in which the Se-
arate components of Z considered on a bit-by-bit basis will 

e modified by the results of the multiplication operations. 

'hese are described in Table 1. 

able I PARTIAL PRODUCT FORMATION IN 
VECTOR ROTATION 

Twiddle factor U' 	Resulting partial product Z 
(bit level) 	 (word level) 

ReEm (3'} 	Re {Z} 	 Im Z} 
o 	0 	 0-0 	 0+0 
0 	 1 	 0 — Im  f B Ij  Re{B}+0 

1 	0 	ReB}-0 	 0+Im{B} 

1 	1 	ReB}—Im{B} Re'B}+Im{B} 

If. instead of using Re B} and Im W
, . the values 

= [Re B} + Im B],. 2  and K' = [Re jw - Em .'B}J" are 
iade available, it is possible to compute each of these four 
ossible modifications to the partial products of Z for each bit 
I W as shown in Table 2. 

'able 2 PARTIAL PRODUCT FORMATION USING 
DISTRIBUTED ARITHMETIC 

Tiddle fziunr tV 	 R,ulting partial product Z 
itiit le%elI 	 1 word level) 

te :ts' 	I 	w: 	Re ;z: 	 Im z; 
o 	0 	K' - [R :s: - lm 8] 2 	K - [Re :8) + Im B)J12 
o 	1 	K'— (Re  8 	tmB)i'2 	K+ (Re B}—lm)8(],/2 
I 	 0 	K'' (Re B: tm8) , 2 	K— (Re 8)—lmB)]/2 

K' + (Re B - tm 8) 2 	K + (Re 8) Im {B)]/2 

here K = [Re 8 + im 8]2 and K' (Re 8 - tm 8],2 

The K and K' terms as defined in Table 2 are independent 
I W and can therefore be derived separately from the main 
ccumulation process. 

A = —a02° 
± 	

ca,.2"n 	 (3) 

Table 2 can be further simplified since, using 2's complement 
notation, the subtraction of K' involved in the most significant 
partial product formation would serve to cancel the accumula-
ted (increasing significance) K' terms, except for a lowest sig-
nificance term in K'. For the Em Z partial products, a 
similar argument applies for K. The individual partial prod-
ucts of Z can thus be formed by an add or subtract operation 
involving K or K' at each computation cycle. The selection of 
K or K' is made on the basis of the exclusive OR or exclusive 

NOR combination of Re { Wt,  and Em W}. The add'subtract 
selection is made on the basis of Re W or Em' W', for 
Re {Z} or Tm respectively (see Table 2), 

The salient feature of this algorithm is that Re 'Z} can be 
formed by a single accumulation-type operation, and similarly 
Im 1, Z 11  can be formed by a separate accumulation operation 
thus permitting the design to partition into two identical parts 
with a single control line to define real or imaginary outputs. 

This distributed arithmetic algorithm has been realised as a 
single monolithic circuit based on a 2-dimensionally pipelined 
configuration which allows the constant throughput of paral-
lel data. The chip architecture incorporates an array of 2-bit- 
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shift registers which shift the (modified) input words K 
K' separately from lop-to-bottom' of the chip through an 
y of full adder cells. Fig. 1. A data select on these two 

it words I K and K) is performed at the inputs to each full 
er cell under the control of the exclusive-OR or eclusive-
R block which operates on the separate bits of Re { W} 
Im (see Table 2). The word selected (i.e. either K or 
at each full adder is then either added to, or subtracted 
i. the accumulated partial product as determined by the 
ropriate bit of Re' W', (for the Re I ZI accumulator) or 

W (for the Im ', Zt accumulator). Fig. 2. A time wedge 
ed on the W input port ensures that a constant data 
)ughput can be maintained in the pipeline. 

elusion: A 2-dimensionally pipelined FFT butterfly pro-
or based on a distributed arithmetic algorithm has been 
)rted. 
n 8-bit processor based on this algorithm has been fabri- 

on a 5 pm single polysilicon. single metal, N-channel 
ancement depletion MOS process. The chip, measuring 6-7 
63 mm. contained approximately 8000 transistors. Power 

consumption was 0-5 W at the designed speed of 4 MHz. The 
rchitecture discussed here is currently being extended to a 

16-bit CMOS-SOS implementation, using 15 pm geometries. 
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A DISTRIBUTED ARITHMETIC RADIX-2 FFT BUTTERFLY PROCESSOR 

I.R.Mactaggart and M.A..Jack 
Department of Electrical Engineering, 

Edinburgh University, 
Scotland 

Abstract 
An efficient distributed arithmetic architecture for computation 

of the Radix-2 FFT butterfly is reported. Results for a prototype NMOS 
processor exhibit data rates in excess of 8 Mbytes/second. 

I. Introduction 
This paper describes an eight-bit NMOS processor chip based on an 

efficient, distributed arithmetic complex multiply algorithm [1,2]. The 
algorithm is used to compute the Radix-2 FFT Decimation-in-Time 
"butterfly" (3]. This approach to the computation yields a highly 
regular structure which is particularly advantageous with parallel 
arithmetic systems. 

2. 	The Algorithm 
The FFT algorithm, like the OFT, has a requirement for vector 

rotation. This can be realised conveniently as the multiplication by a 
unit vector in a cartesian coordinate system. The equations for this 
vector rotation can thus be written as 

Re(Z} = Re(B}.Re{W} - Irn{B}.Im{W} 	(1) 
Im{Z} = Re{B}.Im{W} + Im(B}.Re{W} 	(2) 

Where B is the data vector, Z is the output vector and W is the unit 
vector coefficient used to rotate B. A direct implementation of these 
equations requires four multiplies and two additions. The Radix-2 
butterfly requires a further four real additions [3]. 

If, instead of using Re{B} and Im(B}, two new inputs, defined as K 
= [Re{B} + Im(B}]/2 and K [Re(B} - ImfB}]/ 2  are made available at 
various levels of significance, then it is possible to merge the partial 
products of the Re{Z} multipliers together in a single accumulator 
structure, and similarly it is possible to merge the Im{Z} multiplier 
partial products into a single accumulation, as illustrated in Table 1 

Coefficient (W) 
	

Resulting Partial Product (Z) 

(bit level) 
	

(word level) 

Re (WI 	Im{W} 
	

Re { Z } 
	

Im{Z} 

O 	0 	K-[Re{B}-Im{B}J/2 	K-[Re{B}+ImB}}/2 
0 	1 	K-[Re{B}+Im{B})/2 	K+[Re{B}-Im{B})/2 
1 	0. 	K+[Re{B}+ItniB}1/2 	K-[Re(B}-Im(B}]/2 
I 	I 	K-[Re(B}-Im(B}]/2 	K+[Re{B}+Im{B}]/2 

Where K = [Re{B}+Im{B}J/2 and K = [Re{B}-Im(B}]/2 

Table ! Showing Formation of Z using Distributed Arithmetic 
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Table I illustrates how the exclusive-OR and 	exclusive-NOR 
combination of the individual hits of Re{W} and lm(W} can be used to 
control the selection of words K or Kand how the ReW} hit or ImJ} 
bit, for Re{Z} or Im(Z} respectively, can be used to control the 
add/subtract operation. 

The salient feature of this algorithm is that Re{Z} and likewise 
Im{Z} can be formed in a single accumulation type of operation thus 
allowing the design to partition into a single programmable distributed 
arithmetic array, capable of computing either Re{Z} or Im[Z}  every clock 
cycle. 

3. 	Chip Architecture 
The chip consists of an array of two-dimensionally pipelined cells 

of the type shown in Figure 1. These cells each contain a two hit wide 
shift register which carry K and K through the chip from top to bottom. 
At each cell, a data-select is performed under the control of the 
exclusive-OR/exclusive NOR gates. 

The full adder used in the basic cell makes use of inverter-
controlled data-select exclusive OR gates. The add and subtract control 
signal is fed horizontally through the cell array. A fast adder and 
subtractor is used at the input to generate K and K and similarly a 
fast add is used at the output to assimilate the sums and carries of the 
full adder array. The fast adder uses a pre-charged carry chain and was 
designed to operate with a settle time of 65nS, worst case. Other main 
features included a time wedge placed on the coefficient (W) input port, 
a multiplexer on both input and output ports, tn-state output pads and 
system control logic.- 

INPUT 	K K' INPUT 

DATA-SELEC 
CONTROL 

CLOCK IN 

ADD/SUB 
CONTROL 

CLOCK OUT 

(K S C K') 

FIGURE 1 Showing Basic Cell 
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COEFFICIENT 

C 
-3 

C 

-3 

0 
- 

0 
'1 

Figure 2 Photograph of Radix-2 FFT Butterfly 

Output Sequence 

Dç (Shifted Ri) 

D5  

D4  

D3 

n-fl_ 
Di 	 qfl_ 
Do 	 ILflfl_ 

S7 

S6 

S5 

S4  

S3 

S2 

Si  

So 

Figure 3 Dynamic Operation at 414bytes/s. as Recorded by 

Logic Analyser 
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Performance 
The chip was fabricated on a 6 micron single polysilicon, single 

metal, N-channel enhancement/depletion MOS process, Figure 2. The chip 
measured 6.7 by 6.3 mm and contained around 8000 transistors. With a 
process yield of about 5% a number of devices were obtained and bonded 
up. Chip parameters are shown in Table 2. 	Logically, the chip 
performed as predicted. 	Figure 3 shows the input and output logic 
signatures obtained by feeding in four cycles of data equal to the 
reciprocal of the square root of two (01011010) for all inputs, and then 
four cycles of zeros, followed by four cycles of the negative of the 
reciprocal of root two (10100110) for all inputs. The figure shows the 
latency of the pipeline and its operation under dynamic conditions for 
this input sequence. This test was performed at 4 Mbytes/second. 

Parameter 	 Value 

	

Computation Cycle 	250 	nS 

	

Data Rate 	8 M Bytes/s 

	

Word Length 	8 Bits 

	

Power Consumption 	0.5 Watts (Average) 

	

Package 	40 Pin Dii 

Table 2 Showing Chip Parameters 

Conclusions 
This paper has described a working monolithic FFT butterfly 

circuit based on a distributed arithmetic algorithm for computation of 
the complex multiply. It is evident that the resulting distributed 
arithmetic structure is area efficient and highly regular. Results for 
the 6 micron prototype are encouraging and given a commercial quality 
process, an order of magnitude improvement can be expected. The chip 
does, however, serve to illustrate the modularity afforded by this 
algorithm for systems based on parallel data flow. 

It is possible to remove the requirement for a fast add by 
inserting extra delays in the horizontal and vertical hit streams. This 
approach is more suitable for larger word lengths. A 16 hit version of 
the chip with these extra delays included, is currently being designed 
for a high performance CMOS-SOS process using 3.5 micron geometries. 
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INTRODUCTION 

Real time computation of the Fast Fourier Transform 
(FFT) is assuming an increasingly important role in 
wideband communication systems. circuItS 
traditionally implemented using analogue techniques 
will be implemented digitally as the price of digital 
signal processing falls. This is possible because 
very fast analogue-to-digital converters are becoming 
available (1) to enable these fast processors to 
operate at their full capability. High bandwidth 
FFT's, however, require dedicated hardware to achieve 
the necessary performance. These large arithmetic 
overheads demand special consideration for cost 
effective solutions. it will be Shown how 
distributed arithmetic techniques can be used to 
achieve regular and efficient VLSI designs in the 
special case of 2-dimensional array structures. An 
example is given of a FF1 butterfly arithmetic unit 
which has been designed and fabricated in NMOS and is 
streamlined to computing complex arithmetic with the 
throughput equivalence of two real parallel 
multipliers on a single chip. A 16 bit CMUS-SOS 
design to be fabricated in November '83 is compared 
with the NMUS design. 

The Complex Multiply 

The FF1 álgoithm (2), like the 	OFT." has 	a 
requirement for vector rotation. This can be 
realised conveniently as the multiplication by a unit 
vector in a Cartesian coordinate system. The 
equations for this vector rotation can thus be 
written as 

Re(Z) 	Re(B).Re(W) - Im(B),Im(W) 	(1) 
Im(Z) 	Re(B),Im(W) + Im(B).Re(W) 	(2) 

Where B is the data vector, 2 is the output vector 
and W is the unit vector coefficient used to rotate 
B. A direct implementation of these equations 
requires four real multiplications and two additions. 
The Radix-2 butterfly requires a further four real 
additions (2). If we assume a standard shift-arid-add 
multiplier scheme then we can construct a table 
showing the partial product formation as a function 
of the Inputs. This is shown in Table 1. 

Coefficient (14) 	Multiplier Partial Product (2) 

	

(Bit-level) 	 (Word Level) 

	

nth bit 	 shifted n places 

Re(W) Im(W) Re(Z) tin(Z) 
O 0 (0 	- 	0) (0 	+ 	0) 
o 1 (0 	- 	lm(B)) (Re(b) 	+ 	0) 
1 0 (Re(B) 	- 	0) (0 	liii(B)) 
1 1 (Re(S) 	- 	iii(B)) (Re(S) 

Ml 	M2 M3 	M4 

FOUR MULTIPLIERS Ml - 

Table 1 Showing Partial Products 

Mill tip Ii cation 

In the conventional approach the final product Of 

multiplier M2 is subtracted from MI to form Re(Z) and 
M4 is added to M3 to form im(Z). There is, however, 
no need to defer this subtraction and addition until 
final product formation in the multipliers. In 
distributed arithmetic (3,4), we no longer consider 
the multiplication as an individual isolated function 
• but instead we try to derive how the formation of 
Re(Z) and im(Z) can be accomplished given special 
distributed arithmetic operands which are elementary 
only to the complete function (In this case, the 
complex multiply). If then, instead of using Re(B) 
and Im(B), two new inputs, defined as K = (Re(S) + 
Im(B))/2 and K (Re(S) - Im(B))/2 are made 
available, multiplied by some integer power of two 
(shifted), it is possible to form the Re(Z) and lm(Z) 
complex partial products in a single accumulator, as 
illustrated in Table 2. This approach is not only 
algorithmically efficient, but, also important, 
yields a highly regular, and area efficient 
structure, since real or Imaginary merged partial 
products can be formed at each node in the 
distributed arithmetic array during each clock cycle. 

Coefficient (14) 	Resulting Partial Product (Z) 

(Bit-level) 	 (Word level) 

Re(W) Im(W) 	Re(Z) 	 Im(Z) 
* 	 4 

	

K'-(Re(B)-Im(8))/2 	K-(Re(B)+Im(B))/2 

	

K'-(Re(B)+Im(8))/2 	K+(Re(B)-lm(B) )/2 

	

K'+(Re(B)+Im(B))/2 	K-(Re(B)-im(l3))/2 

	

K'+(Re(B)-Im(b))/2 	K+(ke(8)+lm(B) )/2 

Where K 	(Re(B)+Im(B))/2 and K' 	(Re(B)-Im(B))/2 

4: 14 independent - do NOT enter accumulator 

Table 2 Showing Formation ofZ 

RjjU Distributed Arithmetic 

Table 2 Illustrates how 	the 	exclusive-OR 	and 
exclusive-NOR combination of the individual bits ot 
Re(W) and Im(W) can be used to control the selection 
of words K or K' and how the Re(W) bit or Im(W) bit, 
for Re(Z) or Im(Z) respectively, can be used to 
control the add/subtract operation. The salient 
feature of this algorithm is that Re(Z) and likewise 
Im(Z) can be formed in a single accumulation type of 
operation thus allowing the design to partition into 
a single, programmable, distributed arithmetic array, 
capable of computing either Re(Z) or Im(Z) every 
clock cycle. 

Chip  Architecture 

The chip consists of an array of two-dimensionally 
pipelined cells of the type Shown in Figure 1. These 
cells each contain a two bit wide shift register 
which carries K and K' through the chip friu. to  r., 
bottom. At each cell in the .irrdy,  , a da ti-SI 
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performed 	under 	the control of thexclusive- 
OR/exclusive NOR gates. The full adder 	in the 

basic cell makes use of inverter-conlr( , l led data- 

select exclusive OR Yates. 	The add 	subtract 

control signal 	is fed horizontally thruul' the cell 
array. A fast adder and subtractOr is 	su at the 

input to generate K and K' and similarly r, hst adder 

is used at the output to assimilate the sums and 
carries of the full adder array. The fast edder uses 
a pre-charged carry chain and was designed to operate 
with a settle time of 65nS, worst case. Jther main 
features (Figure 2) include a time wedge placed on 
the coefficient (W) input port, a multipler on both 
input and output ports, tn -state output pads and 
system control logic. 

Sum in 	K K carry in 

data 
selec 

clock 

add  
Sub 

clock 
Out 

Conclusions 
This paper has described a working monolithiC 	FT 

butterfly processor based on a distributed arithmetic 
algorithm for computation of the conuple ivimitiply. 

The resulting distributed arithmetic structure is 
area efficient and highly regular. Results for tile 
prototype are encouraging and designs have been 
completed for a high performance 16-bit CMOS-sOS 
version. The lIMOS chip does, however, serve to 
illustrate the modularity afforded by this algorithm 
for systems based on parallel data flow. 

The 16-bit CMOS-SOS design features d two 

dimensional pipeline structure and incorporates etre 
delays in the horizontal and vertical bit streams - 
an approach whiCh is more suitable for larger wori 
lengths. The device should be capable of operat1r 
at data-rates of around 20 million (couples) 
multiply, sort and accumulate operations per second. 
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Figure 1: 	Basic Cell 

Performance 
The chip was fabricated on a 6 micron 	single 
polysilicon, single metal, n-channel 
enhancement/depletion MOS process and measured 6.7rn 
by 5.3 mn, containing around 8000 transistors. With 
a process yield of about 5% a number of devices were 
obtained and bonded up. Chip parameters are shown in 
Table 3. The chip performed functionally as 
predicted. Figure 3 shows the input and output logic 
signatures obtained by feeding in four cycles of data 
equal to the reciprocal of the square root of 2 
(01011010) for all inputs, and then four cycles of 
zero's, followed by four cycles of the negative of 
the reciprocal of root 2 (1010011U) for dil inputs. 

Figure 2 shows the latency of the pipeline and its 
operation under dynamic conditions for this input 
sequence. This test was perforou at 4 
Mbytes/second. 

Parameter 	 Value 

'p 

Computation Cycle 
Data Rate 

Word Length 
Power Consumption 

(Average) 
Package 

250 n  
b B Bytes/S 
B Bits 

II. S 	Watts 

40 tin Dii 

Table 3 Showing Chip Parameters 
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Output Sequence 

11J1__JUI____ 	D7 ..... D0 (Shifted RI) 
D5  

D4 

________________n__ 
88088888 
80888888 
81181188 	(A+BW) leag 

03 
_________________________I•1_______ 

r_ji_____ 	80181181 	(A+Bv) Real  
02 

11181181 	(A-8') us Iag 

______________________________flJ1. 88101181 	(A-SW) Real 
Do 

88888880 	(A+BW) teag 

88888880 	(A+BW) Real 

88888888 	(A-BW) Imag 

80888888 	(A-Bw) Real 
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_______________________________ 
80018801 	(A+BW) 1-9 

11018811 	(A+BW) Real 
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Architecture Using Parallel Data 
Distributed Arithmetic 

I. ROSS MACTAGGART AND MERVYN A. JACK 

REAL-TIME digital signal processing favors the use of 
very high-speed parallel data arithmetic operations. 

Distributed arithmetic techniques [ii, [21 offer a means of 
mapping parallel data systems onto silicon with a high 
degree of regularity and efficiency. The specific structures 
considered here are two versions of a Radix-2 Butterfly 
processor for computation of the fast Fourier transform 
(FFT) algorithm [31, using distributed arithmetic. 

The FFT algorithm is introduced and discussed briefly 
to highlight the Butterfly processing requirements and to 
indicate how distributed arithmetic approaches can be used 
in this processing task. 

The paper includes a detailed discussion of the distrib-
uted arithmetic reformulation of the FFT Butterfly to show 
in detail how the silicon floorplan for the Butterfly 
processor can be derived. 

Using an available, in-house NMOS process a prototype 
8-bit processor has been realized to validate the distri-
buted arithmetic architecture. Details of this design are 
presented and test results together with performance data 
for this chip are discussed. A similar, but much more 
powerful 16-bit CMOS-SOS design with modified architec-
ture using a commercially available process will also be 

described. 

Manuscript received October 1. 1983: revised December 21, 1983. This 
work was supported by a Science and Engineering Research Council 
Grant. 

The authors are with the Department of Electrical Engineering. Univer- 
sity of Edinburgh. Edinburgh EH9 31L. Scotland.  

11. THE FFT ALGORITHM 

Of the several important FFT algorithms which have 
been developed for efficient computation of the discrete 
Fourier transform (DFT) 131. the most widely used is the 
Radix-2 decimation-in-time FFT [3], [4], where the trans-
form length (N) may be any positive integer power of 2. A 
symbolic representation of this algorithm is shown in Fig. I 
for N = 8. Here, the time-domain sequence (x,,) is con-
verted to the frequency domain sequence (X,,) by means of 
12 identical processing nodes, each of which is known as a 
Butterfly. Each Butterfly processing node consists of a 
two-point DFT (vector add and subtract), symbolized by 
the circle in Fig. 1, with a vector rotation requirement 
(multiplication by a unit vector) on one of the inputs, 
symbolized by the arrow in Fig. 1. It is this vector rotation 
requirement which dominates any silicon implementation 
of the Butterfly since this entails a complex multiplication 
for each Butterfly operation. 

Abstract —This paper describes how distributed arithmetic techniques 

can be applied in parallel-data arithmetic computations to achieve highly 
regular and efficient VLSI structures on silicon. Two individual arithmetic 
processor chips are described as examples of the technique. 

The chips described, which are intended primarily for computation of the 
FIT Butterfly, each contain the functional equivalence of two parallel  

pipelined multipliers. 
The first chip is an 8-bit prototype device which has been designed and 

fabricated on a standard 5 sm silicon gate n-channel MOS process. The 
second chip is a 16-bit CMOS-SOS design which uses a modified architec-
ture to achieve higher clocking rates and improved versatility in systems 

use. 

I. INTRODUCTION 

III. DISTRIBUTED ARITHMETIC CONCEPTS 

Complex multiplication involves four real multiplica-
tions, plus an addition and subtraction as shown in Fig. 
2(a), to implement the equations 

Re(Z) =Re(B}.Re(W)_Im(B).Im(W) (1) 

Im(Z) =Re(B),Im(W)+Re(W}m(B). (2) 

It is clear, from Fig. 2(a), that the two multiplier struc-

ture used to form Re ( Z) is essentially the same as the two 

multiplier structure used to form 1 i ( Z ), differing only in 
an add and subtract. This two multiplier structure might 
therefore be considered to be a suitable candidate for a 
VLSI implementation of the complex multiply requirement 
of the Butterfly. In the case of parallel arithmetic, however, 
this general structure does not map onto silicon very 
efficiently due to problems arising from bus interconnec-
tions and irregular multiplier structures when special multi-
ply algorithms, such as Booth's [51, are used. For this 
reason, as well as for yield considerations, current parallel-
data Butterfly devices use a single, multiplexed, parallel 

multiplier. 
This paper shows how it is possible to replace the two 

parallel multiplier structure in Fig. 2(a) with a single dis- 

001 89200/84/0600-0368$01 .00 101984 IEEE 
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Fig. I. 8-point FFT. 
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Fig. 2. Distributed arithmetic concept. 

tributed arithmetic array which is regular and maps onto 
silicon efficiently. This is achieved in distributed arithmetic 
by bringing forward the final add and subtract in the 
complex multiply structure of Fig. 2(a) to the level of 
multiplier partial product formation, in order to form new 
unique arithmetically merged partial products which can 
be stored in temporary data registers. This allows the 
formation of real and imaginary complex outputs (Z) by 
performing a data-select and accumulate operation on these 
new merged partial products. The importance of this refor-
mulation is that the resulting structure [Fig. 2(b)] involves 
only a single accumulator and therefore allows a highly 
regular VLSI structure. The distributed arithmetic ap-
proach Eli is generally useful when the products of more 
than one multiplier are subsequently combined in other 
arithmetic operations such as add or subtract to form a 
single output. In the case of the complex multiply, as 
described in (1) and (2), the real output requires two 
individual multipliers, each with two possible partial prod-
ucts. The same is true for the imaginary output. The two 
shift and add multipliers thus present four possible combi-
nations of partial products, corresponding to the four 
possible combinations of the two real and imaginary coeffi-
cient bits being considered. It is the number of combina-
tions of partial products that is important, as this de-
termines the number of arithmetically merged distributed 
arithmetic partial products that will need to be stored. It 
will be shown later, however, that only two merged partial 

products are nontrivial in this case, and actually need to be 
stored. 

Let us assume that N-bit, fixed point, two's complement 
arithmetic is used so that Re(W) and Im(W) might be 

described as 
–1 

	

Re(W)—WRO+ 	WRn
'  
- 
•" 	 ( 3) 

nL 

N—i 

	

lm(W)=—W,o+ 	 (4) 
n'i 

This allows equation (1) for Re { Z) to be expressed as 
N–i 	 1 

Re(Z)1 — WRO+ 	wRfl .2 1 . Re( B ) 
L 	nI 	 i 

[ 	 N–i 

- —wto+ 	W.2H.Im( B) 
(5) 

ni 

Combining the separate summations into one summa-
tion and decoding all possible combinations of the real and 
imaginary w bits to select these new merged partial prod-
ucts gives 

Re(Z) _'RO 'IO(0) 

• WRO . W,O(Im( B)) 

•WRO.W,O (Re(B}) 

+WRO.W,O ( —  Re( B)+Im(B)) 

- I 

+ : 
+WRfl .W, fl (Im(B}) 

+ WR fl . W, fl (Re( B)) 

+ WR fl . W, fl (Re( B)—Im(B))] 2". (6) 

Equation (6) shows how Re ( Z) can be formed in a 
single accumulator by selecting one of four merged partial 
products. This was not the chosen solution, however, as 
only two are actually required if we define 

K=(Re(B)+Im(B))/2 and 

K'= (Re (B)—Im(B))/2. 	 (7) 

Replacing the Re ( B) and Im ( B) terms in (6) by the K 
and K' terms shown in (7) (and Table I), yields (8), which 
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TABLE I 

PERFORMANCE 

PARAMETER NMOS CMOs—SOS  * 

CLOCK CYCLE 250 	S 25nS 

DATA RATE 8 M Wd./. 40 M Wd./. 

WORD LENGTH 6 site 16 Bit. 

POWER 0.5 Watt. 0.25 Watts 

PACKAGE 40 Pin Dii 64 Pin Dii 

* Available for testing December 83 

:an be further simplified to give (9): 

Re(Z) =WRO •W, o (— K'+ K') 

+WRO W, o ( K'+ K) 

• WRQW,Q( —  K'— K) 

• WROW,o( —  K'— K') 
- 1 

+ 
'I 	I 

'R fl "! fl (K 	K) 

WR,,.W, fl (K+ K) 

	

WRfl .WJfl (K+K)1 2 	(8) 

Re(Z) = - K'.2''+W 0 W, 0 (+ K') 

+WR0 WIO (+ K) 

• WRO•W,Q( —  K) 

• WRO . WJo( —  K') 

IV-1  
+ 	[+WRfl .W, fl (—K') 

+WRI •W, fl (K) 

+WRfl .W, fl (+ K) 

+WRfl .Wffl (+K)]'2. (9) 

Equation (9) shows how Re( Z ) can be formed in a 
single accumulator by adding in or subtracting a selected 
K or K' as a function of the real and imaginary w bits. 

The selection of K or K' can be based on the Exclusive-OR 
of the i ii and imagir.ary w bits and the add/subtract 
logic can be derived from the appropriate w bit directly, as 
shown in (10): 

Re(Z) = - K'.2'+WRo ( WRO W,o)(+ K') 

+WRO (WROOW, o )(+ K) 

• WRO( WRoW,o)( —  K) 

• WRQ( WROeW, O )(— K') 

',' + 	
[+WRfl ( wR fliW, fl )( —  K') 

+WRfl (WRfleWJC )(—K) 

• WR fl (WR fl W4r fl )(+K) 

• WR fl ( WRflW,j(+ K')1.2" (10) 

The expression for lm (Z) can be obtained similarly. 
giving 

	

lm(Z) = - K•2 	+W',o ( W,QVRo)(+ K ) 

+ W,Q ( W,WRo)( —  K) 

+W,O (W,WRo)(+ K) 

+ W,O ( W, QeJVRO )(— K') 

+ 

+W,,,(W,,W R )(+ K) 

+W, fl (w,,wgfl )(— K) 

+ LV,( + K')] .2_v .  (Il) 

Table I depicts this algorithm for nonsign bits only. 
alongside the conventional arithmetic approach using shift 
and add multipliers. This table serves to illustrate how the 
individual merged partial products in the distributed arith-
metic approach are related to the individual partial prod-
ucts in the conventional shift-and-add multiplier scheme. 
For example, in the Re( Z ) formation columns (1-4) of 
Table I, row 3 shows how Re( B) can be expressed as 
K'+ K. with a W independent K' term. In the same 
columns, row 4 shows how Re ( B) - Im ( B) can be ex-
pressed as K ' +  K'. 

In the shift and add multiplier, the final product is 
formed by the successive accumulation of partial products 
which are formed by the logical "AND" of the data word 
(B) with successive coefficient bits (W) at various levels of 
significance which are all powers of 2. The partial products 
for the four multipliers in the conventional arithmetic case 
are shown in columns 1,2; 5,6 in the table as a function of 
the individual bits of W. Table I shows how the data word 
is added in, only if the coefficient bit (W) is a "1." 
However, in the conventional approach, the final subtract 
(for Re( Z)) and add (for Im(Z)) is not considered until 
final product formation in the individual multipliers. Table 
I shows how the final add and subtract operation can be 
brought forward to the level of partial product formation 
so as to form four new merged partial products. Thus, 
individual multiplier partial products in columns 1 and 2 
are now considered to be combined arithmetically to form 
a single column containing merged partial products for 
Re( Z). Similarly, columns 5 and 6 are now considered to 
be merged to form a single column from which Im ( Z) can 
be formed directly. Table I goes on to show how these 
merged multiplier partial products can be replaced with the 
expressions involving K and K' (7) in columns 3.4.7,8. 
The K' term in column 3 for Re( Z) and the K term in 
column 7 for Im { Z) are both independent of the V 
coefficient bits. This means that these columns do not need 
to be included in the main accumulation process used to 
form real and imaginary Z. Instead, they can be accounted 
for during array initialization. The table shows how, by the 
W-controlled selection of + K, - K, + K', - K' [+/—(K 
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Fig. 3. Floorplan of NMOS chip. 

or K')] (as shown in columns 4 for Re( Z) and column 8 
for lm{Z}). the complex product Re (Z) and similarly 
]in {Z} can be formed in a single data-select and accu-
mulate structure. It can be seen how an Exclusive-OR/NOR 
type relation of the W bits can be used to select either K 
or K' and how the real W bit (imaginary W bit) can 
determine whether this selected K or K' is added or 
subtracted for Re(Z) (Im(Z)). 

IV. DISTRIBUTED ARITHMETIC ARCHITECTURE 

Using these distributed arithmetic concepts. the two 
multiplier structure of Fig. 2(a) can now be replaced with a 
regular array of bit-level data-select/accumulate cells to 
form the floorplan of the 8-bit NMOS chip shown in Fig. 
3. Data words (A. B) enter the chip and are demultiplexed 
into real and imaginary components. A fast adder and 
subtractor is used at this point to convert Re( B) and 
Im ( B) to K and K', (7) which are then fed down to the 
first row of cells in the distributed arithmetic array. to-
gether with an array initialization word which comprises 
the very low significance - K' or - K present as the first 
term in (10) and (11) and a rounding word which is fixed. 
This rounding word was equal to the mean value of all the 
sums which had to be truncated in the array. At each cell. 
K or K' was selected under the control of the Exclusive-OR 
(Re(Z)) or Exclusive-NOR (lm(Z)) gates whose inputs 
were the real and imaginary W coefficient bits. Each cell 
was also fed an add/subtract control signal which was 
derived from the buffered real or imaginary W coefficient 
bits directly, as outlined in Table 1. Only for the sign bits 
of W. when the bits have a negative significance is the 
add/subtract logic inverted so that the selected K or K' is 
added if the appropriate W bit is a "zero" instead of a 
"one"—as is the case with the nonsign bits of W. 

In the NMOS chip, the CARRY data is fed forward along 
with the sums, so that it is necessary to assimilate SUM and 
CARRY data of equal significance at the output of the array. 
This was accomplished by means of a fast adder employing 
a precharged carry-chain. SUM and CARRY data in the array 
were latched, so it was necessary to skew the coefficient W 

sum in 	K K carry in 

do to 
selec 

clock 

oOdI 
Sub 

clock 
Out 

K Sum carry K 
Out Out 

Fig. 4. Basic cell (NMOS). 

Fig. 5. NMOS chip photograph. 

input data to the control gates as depicted in Fig. 3. There 
was no need for skewing input or output data because of 
the use of the fast adder at the output. The nonrotated 
Butterfly input (A). which is shifted directly through the 
complex multiplier was finally added to the complex out-
put (BW) to form the Butterfly output (A + BW). The 
other Butterfly output (A - BW) was formed as (2A—(A 
+ BW)) as this avoided the need to feed BW forward, 
through the row of cells used to form (A + B W). 

Fig. 4 shows the basic cell logic in detail. Invertor 
controlled data-select type Exclusive-OR gates were used in 
the carry-save adder, as this offers a good tradeoff in 
area-speed-power. 
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TABLE H 
DISTRIBUTED ARITHMETIC 

ALGORITHM (COMPUTERS Z— BW 

REAL4Z) 	I IILAG(Z) 
Re Jim 1 	2 	345 6 	70 
0j0 0-0 	-K'—K' 0+0 	K- 

0 	I 0-1m(9)W—K Re(8)+0 	k+K 

1 , 	0 Re(B)—O 	Ke.K 0+1m(B)K—C 
cc 

Re($)-Im(9)K+K Re(B)+(8)X4.I( 

W!l.f. 	(R.(13),Im(0))/2 and K.(R.(8)—Im(9))12 

COEFFICIENT (AS K,K) 

INPUT PADS & MUX 
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Fig. 6. Floorplan of SOS chip. 

V. DETAILS AND PERFORMANCE OF NMOS 
PROCESSOR 

The NMOS prototype chip (Fig. 5) contains around 
8000 transistors and measures about 5.3X6.7 mm. The 
process used was a standard 5 ttin feature size, single 
polysilicon, single metal n-channel MOS process using 
depletion mode load devices. Table H shows the measured 
performance of the 8-bit NMOS processor. The device 
clocked at 4 MHz corresponding to a data rate of 8 
megabytes/s, which was slightly slower than expected 
owing to the use of a clock input pad which was limiting 
internal clock risetimes. 

VI. CMOS-SOS 16-BIT PROCESSOR 

In general. 8-bit word lengths are not adequate to cover 
most FFT application areas, such as radar signal process-
ing, where 12-16-bit accuracy is typically required and for 
these reasons a 16-bit processor design which was similarly 
based on the distributed arithmetic complex multiply algo-
rithm was undertaken. The floorplan for this device is 
shown in Fig. 6. For larger word lengths it is desirable to 
pipeline the distributed arithmetic in two dimensions so as 
to eliminate the fast add requirement. Extra latches (de-
lays) must then be inserted into the basic cell. 

CMOS Processor Pipeline 

In the CMOS distributed arithmetic processor, (coeffi-
cient) data entering from the top is skewed, with the nth 

SUM-CUT K 

Fig. 7. Basic cell (SOS). 

input bit receiving a delay of n. going from least to most 
significant bits. This allows the control and carries in each 
17 cell row to be latched (extra cell per row for two's 
complement operation). The effect of this pipelining scheme 
is to produce a computation front which moves down 
through the array at an angle of 45°. This skewed compu-
tation front now means that data entering the vertical data 
port associated with the Exclusive-OR control gates, needs 
to be skewed by 2n delays for the nth input bit, moving 
from least significant to most significant bits, in order that 
control signals will match up correctly with data in the 
array. Fig. 7 shows the basic cell used in the 16-bit CMOS-
SOS processor chip which results in a completely systolic 
architecture [6]. This cell feeds the CARRY right and the 
SUM is fed down and left to scale down the result of each 
cell by 2. The control passes from left to right at the same 
rate as the carries. The distributed arithmetic coefficients. 
K and K' needed to be delayed by two clock cycles in each 
2-D pipelined cell because of the 450  skew on the compu-
tation front. As the same K and K' needs to be made 
available for both real and imaginary computations. this 
delay was implemented in a single shift register, clocked at 
half the main clock rate. This was done to save chip area, 
with the only condition that outputs would have to alter-
nate between real and imaginary. The maximum clock rate 
of the chip is determined primarily by the time to produce 
a carry-out from the basic cell. It was stated that the 
vertical delay through this cell is equal to two clock cycles. 
This gives the array a latency of the order of 2n where n is 
the word length; however, the time-wedge used at the input 
to the array and the output of the array to skew and 
deskew data increases the latency of the chip by another n 
resulting in a total latency of around 3n. 

CMOS Architectural Modifications 

The CMOS-SOS design contains some other significant 
architectural modifications. In the NMOS chip, data enters 
at the top of the chip, and was converted to the form of K 
and K' as defined in (7). In the CMOS-SOS design, the 
coefficient enters the top data port in the form of K and 
K'. The coefficient can therefore be stored in this form and 

..-' .,.11 	 - 	- '-.-... 	 , 	 •1 	.- 	 - 
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Fig. 8. SOS chip layout. 

is not actively computed on the chip. This further lowered 
the power needed to compute the complex multiply. Unlike 
the NMOS chip, however, all data in the CMOS-SOS 
design passes through the complex multiplier. This has 
several advantages which are: 

simple time-domain windowing on the first pass if 
required; 

lower Butterfly noise caused by amplitude errors in W 

coefficient; and 
easier system design with fewer components. 

Further, the CMOS-SOS chip can compute a two-point 
nontrivial DFF, allowing larger DFTs to be built up using 
a slower external accumulator. 

VII. DETAILS AND EXPECTED PERFORMANCE OF 
CMOS-SOS DEVICE 

The CMOS-SOS device (Fig. 8) measures 7 x 8 mm and 
contains around 30 000 transistors. The device was design-
ed using 4 Am feature CMOS-SOS design rules. This device 
uses an external clock generator to allow the highest possi-
ble clock rates to be achieved. Table II shows the expected 
performance of the CMOS-SOS device in comparison to 
the measured performance for the NMOS prototype. 

VIII. CONCLUSIONS 

Two LSI/ VLSI chips which use distributed arithmetic to 
compute the arithmetic requirements of the Radix-2 FFT 
Butterfly have been described. Each of these devices has 
the throughput equivalence of two parallel multipliers, 
allowing very high bandwidths. 

Distributed arithmetic offers a highly regular design 
approach in parallel data systems and also offers lower  

power consumptions than is possible using conventional 
arithmetic. 

These techniques are thus highly suited to parallel data 
arithmetic, where an irregular structure can be replaced 
with a highly regular and compact array which offers a 
high degree of algorithmic efficiency. 
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