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ABSTRACT

With the inexorable increase in integrated circuit complexity and \’b_} chip size, an
efficient defect tolerant method must be incorporated into the design of large silicon
integrated systems to avoid dramatic yield loss. Furthermore, it is highly desirable that
future integrated systems be high performance, low cost, and particularly have system
level reconfigurability. This thesis introduces an architecture embodied in a large silicon
chip, called superchip, which can be tailored by the user to a specific system to perform
a particular processing task. The methodology of ‘system design using the superchip
architecture is presented both at the top level of system organisation and at a lower
level of system customisation, through a suite of supporting software. The superchip
architecture offers defect/fault tolerant capability and system reconfigurability by incor-
porating & crossbar switching network in the system. This crossbar switching network
connects all the processing elements in the superchip together to accommodate the
required communication. Defect/fault tolerance is achicved by introducing redundancy

through the switching network.

Cost-effectiveness is one of the major issues investigated in the thesis. By
employing the optimal redundancy predicted by yield models and the redundancy selec-
tor developed during this research, a dramatic yield improvement over the yield without
redundancy can be achieved. This brings the superchip yield up to an economically

acceptable level, while keeping the hardware overhead at @ minimum.

Finally, an example is given to illustrate the design and customisation process for
implementing an FFT system in the superchip style. High performance anﬁ flexibility
are achieved by reconfigurability of the architecture. The example system, having
35x35 mmz silicon area, is capable of approximately 150 million arithmetic operations
per second. More powerful systems can be achieved by extending the concept to an
entire silicon wafer by using the same processing technology, or by increasing the den-

sity using a smaller geometry processing technology.
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NOTATION

ALU arithmetic—logic unit

BPE butterfly processing element

CAD computer-aided design

CMOS complementary metal— oxide— semiconductor
CPU central processing unit

Ctrlln control input of a processing element

CtrlQut  control output of a processing element

CvD chemical vapour deposition

DAS digital analysis system

DFT discrete fourier transform

DIF decimation-in-frequency

DSP digital signal processor

ECL emitter—coupled logic

EPROM  erasgble programmable read—only memory
FET field — effect transistor

FFT fast fourier transform

GaAs gallium sarsenide

IC integrated circuit

LSB least significant bit

LSI large scale integration

MSB most significant bit

NMOS N channel metal— oxide— semiconductor-
PCB printed—circuit board

PE processing clement

ROM read—only memory

SA1 stuck at 1

SAQ stuck at 0

SEM scanning electron microscope

Sigln signal input of a processing element
SigOut signal output of a processing element
S_ON stuck on

S _OF stuck open

SSI small scale integration

ULSI ultra-large scale integration

VLSI very large scale integration

WSI wafer-scale integration



CHAPTER 1

INTRODUCTION

1.1. Introduction

The evolution of modern electronic systems from the embryonic stage of vacuum
tube realisationsat the beginning of this century through discrete transistor, SSI, and LSI
realisations to todey’s VLSI complexity illustrates the trend in system integration
towards more compact, cheaper, faster, and more reliable systems. For example,
modern VLSI technology has made it possible to integrate hundreds of thousands of
transistors on to one small piece of silicon, typically less than 100 mmz. The integration
evolution has matured over the past decade and resulted in the appearance of single
chip DSP [1,2] and microprocessors [3,4], very large memory chips [5,6], and so on.
Continually, integrated circuit designers have endeavoured to increase chip complexity
by integrating more and more circuits on to a single chip with various design styles.
The trend nowadays is towards a system-on-a-chip which requires an/- 7 entire silicon
wafer to accommodate the entire electronic system [7 8,9,10]. There arec many advan-
tages of having fewer, but larger, IC chips @mfm‘havmg many smaller ones wired

together on a circuit board to form the same system. These include:

] potentially higher speed due to less inter-chip connections. This follows from the
fact that on-chip capacitance is much smaller than off-chip capacitance and, there-
fore, on-chip delay is §ess” than off-chip delay. For current ECL gate arrays, for
example, the internal cells are about 2.5 times faster than the inter-chip delays
(including the wiring delay). For CMOS this ratio can be as high as 10 times

when the internal cells are close to each other [11,10].

1 It might be argued that one can not simply scale this to full wafer products. But
generally, as chip complexity increases, this observation still stands.
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®  lower packaging and assembly cost resulting from the simplification in conven-
tional packaging with fewer bonding pads, gold wires, and package conductor
runs, etc. As a result, more silicon is available for computational elements rather
than being used forAlearge drivers,, required for driving large off-chip capacitive
loads [12,13,10]. 'fhe pin count per logic function is also reduced for the large

single chip system.

L lower power dissipation achieved by having fewer bonding pads. Much lower out-
put capacitances which resullts lead to the requirement-for smaller output drivers
[12,10].

7 < et

. higher reliability expected-through- havin,g fewer mechanical connections, than dis.

the case when mou/nting chipsﬂ ona printed-circuit board [10].

However, problems have emerged in experimental work directed to developing
large, single chip, integrated circuits. One of the most important and dominant probiems
1S ~the rapid degradation \n 2yt - which results whei the chip §i2€"(s appreciably increase |
duction sizes, because, with the increase of integration scale and circuit complexity,
catastrophic processing defects on each chip become increasingly likely. These process-
ing defects degrade the overall yield of the chip dramatically and, thus, increase the
cost. For example, a well *tuned’ processing line can achieve a defect density of two

defects per square centimetre. The probe yield of a typical VLSI chip today with 5x 5
2

rrm:2 size can be around 60%. However, if the chip size is increased to 15%x15 mm
using the Poisson yield model (which is rather pessimistic in practice but often used as
an analytical tool for yield prediction), the new yield could be as low as 1%. The IC
industry can not afford such implied yield losses in the exploration for higher levels of
integration. This is a prime consideration in setting the 6ﬁﬁmgm size of chip for a par-
ticular IC process. Naturally, yield enhancement can be expected by continual improve-
ments in IC processing which lower defect density, but such improvements are gradual
and very expensive to achieve. However, today’s VLSI technology has made it possible
to afford a degree of redundancy,which enables defect tolerance to be included in chips
to achicve acceptable yields,:that current technology can not offer. Therefore, it is more
feasible to enhance yield by designing defect-tolerant integrated systems, than wait for
improvements in the technology. So far, the accepted approach to larger chips is to
introduce some form of hardware redundancy into the circuits. Thus, affected elements

can be switched out via some programmable switches and replaced by fully working



circuit sections.

Besides low yield, there have been some other problems in large integrated sys-
tems; one being reliability. With the increase of system complexity, the probability of
having an operational fault (often classified as,:;oft error or transient error) at any time
also increases. It bas been estimated [14] that a system containing two thousand VLSI
chips would suffer from transient failures at a rate of one every 50 hours and per-
manent hardware failures at a rate of one every 500 hours of operation. For larger sili-
con chips, occasional operational faults of some elements in the chip are still likely dur-
ing ficld operation, although their reliability is better than the same system with smaller
chips because of the level of integration. Such occasional faults in some elements may
cause a great deal of performance degradation as well'as malfunctioning of the whole
system. To improve reliability for complex electronic systems, the conventional fault-
tolerant approaches, such as TMR (Triple Modular Redundancy) {15,16], are required.
However, due to the large hardware overhead, such a technique will become more and

more costly in future.

The approach advocated in this thesis is to achieve fault tolerance for a chip by
avoiding the faulty elements whenever they appear, rather than discarding the whole
system. To be consistent in terminology throughout the thesis, methods' of circumvent-
ing defects in the chip are referred to as defect tolerance. The method of recovering the
. system from an operational fault is called fault tolerance. The replacement of a faulty
element during system operation can be achieved by incorporating hardware redun-

dancy, by introducing a switching network into the system.

Another problem, or perhaps desire, has been the issue of system reconfigurabil-
ity. There has been a great deal of interest in the design of reconfigurable architectures
whose paths between clements (processors, memory and 1/O devices) can be reconfig-
ured by some programmable control. Such reconfiguration can be achieved in two ways
according to different tasks and interconnection networks. One is to set up interconnec-
tion paths once, and prior to the initiation of the tasks, or at compile timeﬁ; this is

here called static reconfiguration. The other is to reconfigure the interconnection paths

t These expressions are in common use [17].

1t This is derived from an analogy with conventional programming. High-level
language programs are compiled to produce executable object code. Similarly, some
specification of the communication requirements of an algorithm can be compiled to
produce control signals to set up the network prior to execution [18].
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'on-the-fly’, or at run time; this is here called dynamic reconfiguration. The latter is par-
ticularly desirable in applications where the communication patterns have to be changed
during the operation, or they are data-dependent. To achieve such flexible reconfigure-

tion schemes, a good interconnection network with simple and easy control is desired.

This thesis addresses the key three issues of yicld, reliability and system reconfi-
gurability, by incorporating a flexible crossbar switching network into integrated sys-
tems. This course should improve yield for very large silicon chips, and achieve system
reconfiguration, either statically or dynamically. A general system architecture is pro-
posed which consists of multiple processing elements (PEs) and a crossbar switching
network. It is capable of performing a range of tasks by programming the crossbar
switching network to customise the system. This programming procedure can be per-
formed either before the system is operational; static reconfiguration, or during opera-
tions as well; dynamic reconfiguration. Static reconfiguration is often preferred when
only system customisation and/or defect-tolerance are to be achicved. Such initial sYys-
tem interconnection is kept unchanged during the operation. Defect-tolerance is
achieved by connecting all the necessary, and working processing elements together
using -working switches in the crossbar switching network. Dynamic reconfiguration,
on the other hand, is usually performed when the connections in the system need to be
changed or a fault is found during its operation. The objective of thft{, thesis is to assess
the potential of employing a crossbar switching network in very large integrated sys-
tems by considering the following factors: intercomnection organisation, defect-

tolerance and fault-tolerance.

1.2. A Brief Review of Defect-Tolerant Techniques in Integrated Systemi

Processing defects exhibit themselves in many different ways resulting in a variety
of fault conditions. These processing defects can be classified in two categories. One is
referred to as a point defect. Each such defect is a local phenomenon affecting only the
microstructure ip its own immediate area. Pinholes in the oxide layer belong to the
point defect category. Processing defects in the other category have a size comparable
with the geometry of circuit layout. They are usually paused by contamination intro-
duced during the processing, typically, resulting in open- or short-circuit conditions.
Typical defects have been analysed and listed by a variety of authors [19,11,20,21,22].
Table 1.1 lists some of the defect types for current double-metal VLSI technology. For
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each type of defect the likely mechanism causing the defect is also listed.

Table 1.1 Classification of Defect Types

Fault Condition Equivalent Source Defects

unexpected opens or shorts among  large contamination spot

features on two metal layers during the process

unexpected opens or shorts among  contamination during

features on polysilicon layer processing

unexpected opens or shorts among  contamination and schedule

features on diffusion layer errors in implantation

poor contact and via high contact resistance or poor metal

coverage over contact regions

unexpected shorts between features  poor oxide quality

on metal and polysilicon layers pinholes in the oxide

unexpected shorts between features  poor oxide quality

on metal and diffusion layers ~ pinholes in the oxide

Any of these defects identified in Table 1.1 may cause a'jojica|) malfunctioning of
the circuit. However, introducing hardware redundancy in design to replace the defec-

tive logic area is the common approach to circumvent such defects. In practice, the part

of the circuit affected may be locally circumvented by disconnecting T

from the whole circuit and connecting (switching in) a working redundant logic part
into the circuit. This idea was originally introduced in the design of large memory
chips, because they are highly regular in design and densely packed and, therefore, are
highly sensitive to defects. However, their highly regular architecture makes it possible
to efficiently implement various redundant elements as a standby to replace any affected

element. Various large memory designs with different defect tolerant schemes have
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been presented [23,24,25,26]. The techniques for implem‘enting defect-tolerant
schemes vary with the different switch implementaﬁoﬂéfor introducing redundancy. The
switches can be classified as physically programmable switches or electrically programm-
able switches. The physically programmable switches are realised by incorporating spe-
cial links on the chip between sections of circuit. The switch setting is performed using
non-electrical metbods, such as a laser, to make the special links conducting or non-
conducting. This approach usually needs special processing steps or programming
equipment. The electrically programmable switches are usually realised using transistor
structures within the chip. For this approach the switch setting is performed at circuit
level by turning on or off transistors using electrical control. Some typical defect-
tolerant techniques using either physically or electrically programmable switches are

summarised in the remainder of this sub-section.

1.2.1 Discretionary Wiring

A large integrated system can be divided into many functional units. These func-
tional units are distributed and processed discretely over a large silicon area like many
chips on a wafer. After processing, each functional unit is tested. The discretionary wir-
ing technique is used to generate correct interconnection patterns by linking the work-
ing functional units 6n the silicon to form a desired large integrated system. Defect-
tolerance is achieved by isolating the defective functional units from the system. When
the wiring pattern is complicated, the resulting systems are small, reliable and poten-
tially cheap comparing to the printed-circuit board approach using individual packaged
chips. However discretionary wiring requires high quality processing steps to generate
metal wiring patterns on the silicon. If these wires are regarded as a set of switch links,

t Tt

then this technique provides non-volatile’ and non-reversible' ' switching.

One of the earliest attempts (% use' the discretiopary wiring technique to build a
large memory chip was in the 1960s, when Texas Instruments Inc. produced a prototype
32K memory product on a 2-inch wafer[7]. With this early approach redundant cir-

cuits, implemented on a ceramic substrate, were connected into systems by discretionary

t A programmable switch is said to be volatile if its control store is volatile, i.e.
testing and reconfiguration (switch setting) must be initiated each time power has
been removed from the part in question. Otherwise, it is non-volatile,

1 A programmable switch is said to be reversible if it can be turned off after it has
been turned on, or vice versa.



.7.

wiring. Unfortunately, this technique was ahead its time and was not then adopted in
production. The reason@;ﬁihat complex wiring processes werc not mature at the time of
its introduction and, therefore, could not be used to produce economically viable large
integrated systems.. However, this approach has been recently reintroduced [27] by
using modern silicon fabrication and CAD techniques, including E-beam writing, thick
film/metal structures with relaxed design rules for wiring patterns, and sophisticated

CAD support.

1.2.2. Laser Programming

Laser programming techniques include laser welding and laser cutting. Typically,
a high energy laser beam is placed precisely on some points or tracks, like bus or power
lines, fuse, or antifuse*, etc, to make connectionsor disconnections, These areas receiv-
ing the laser beam usually use special material and include features to help the welding
or cutting processes. Defective devices within the system can ber disconnected and
replaced by a duplicate circuit using this technique. As compared to the discretionary
wiring technique, laser programming is easier to achieve and more interactive and flexi-
ble to designers, because laser programming facilities are simpler and more accessible

to designers. However, it requires some non-standard processing steps.

The Lincoln Laboratory of MIT demonstrated a so-called "restructurable VLSI”
architecture [28,29,30] using a laser programmed, vertical metal, H-A-Si (Hydro-
genated Amdrphous Silicon) sandwich structure to avoid defective elements in the chip.
A single wafer, 16-point FFT processor has been designed [31,32] with this approach.
Other forms of laser programming include laser-induced CVD conductors [33], and
laser programmed polysilicon doping. Laser programming has been used in large com-
mercial memory designs by Bell Laboratories [34,35,36], Hitachi [37], Toshiba [38],
and more recently by Mitsubishi [25] and Mostek [39].

t Fuse (antifuse) is a linking device. According to its type, it is sensitive to laser,
current or voltage with a circuit-opening (circuit-closing) fusible part controlled to
disconnect (connect) circuit portions.



1.2.3. E-Beam Programming

Use of ao electron-beam programmed transistor switch for performing circuit
repairing was suggested by Shaver [40], in which the switch is a floating-gate FET. This
type of transistor can be fabricated using conventional processing lines and does not
usually require process modification. The programming is performed by applying an
electron-beam to the floating gate of the transistor, causing a negative potential to exist
on its gate. Such a negative potential can turn on an enhancement-mode p-channel FET,
or turn off a depletion-mode n-channel FET. In CMOS, both types of FET can be fabri-
cated, so that both normally "on" or "off” switches are available. A 128K bit NMOS
electronically programmable ROM has demonstrated the feasibility of this approach to
circuit customisation, as well as to repairing and testing [41,42]). A wafer-scale, pipe-
lined processor system u§ing electron-beam programmable switches has also been
reported [43]. 71;1@@3? applying en electron-beam on the floating-gate of a special
designed transistor to reconfigure the circuit, it is also possible to use an electron-beam
or ion-beam to mpxngej\the surface of an IC circuit directly (M\_ Oi:r?b _' ‘i,normal
transistor structures) to alter some characteristics of the transistors,’ So_‘} that system
reconﬁguratllon may be achieved [44]. For example, a strong electron-beam can be
dlre,ctea:]m;oraI normal transistor (not a spccxa.l_ljdeugned floating-gate transistor) to change
its characteristics, so that the transistor is, possibly permanently, turned "on" or "off" to

switch in or out circuit portions.

1.2.4. Transistor Switches

The use of normal trgnsistors to perform programmable, reversible, volatile
switches has been widely studied. Because a normal transistor performs as a volatile
switch, its switch settings should be initialised every time the power is ré}applicd. Such
switch elements can also be used to{!@}conﬁgurc the system ”'g_ﬂ that the communication

pattern can be changed according to different requirements.

Various circuit switching schemes for incorporating redundancy, testing, and re-
structuring around defective circuitry have been proposed. Eérly exploitation was made
in [45] to use transistor switches to form a spiral from a hexagonal array of processing
elements. This work has been further” deva{opechby Shute et al [46,47], in which a
small crossbar interconnection petwork acts for both defect-avoidance and for system

communicatiop link-up. Similarly, fault-tolerant two-dimensional processor arrays



-9.

employing transistor switches for defect-tolerance and system configuration
[48,49,50,51,52,53] have been reported . Memory designs also use such switching
techniques to introduce redundancy, for example, a fast bipolar static RAM by IBM
[54].

1.2.5. Other Techniques

WHIP (Wafer Hybrid Interconnection Packaging) techmology [55,56,57]
developed by Mosaic Inc. used two levels of signal wiring, separated by amorphous sil-
icon, to form a general-purpose cross-point switch. This can be electrically (or by laser)
programmed to form any desired set of interconnection networks. Pre-tested functional
chips are bonded on to a wafer with the signal wiring pattern. Due to the electrical pro-
perty of amorphous silicon, these wires can be connected to form a particular system by
applying a high voltage at the cross-over of any two wires separated by amorphous sili-
con. The use of a silicon substrate minimises thermal stress, and allows the use of stan-
dard IC technology to fabricate densc interconnect wiring. High yield for this signal
wiring pattern has been reported [58]. For a very large and complex system (say, more
than a 100 chip count) this could be an economic approach as compared to PCB realisa-

tion. A similar view bas been taken by researchers at Rensselaer Polytechnic [59].

More recently, another hybrid packeging approach was suggested [60] to circum-
vent the yield and discretionary wiring problems. This advocates putting pre-tested
chips into recesses in pre-etched silicon substrates. Thereafter, a normal two layer

metallisation is carried out to customise the whole system.

These hybrid packaging approaches have advantages over PCB or discretionary
wiring approaches in terms of the flexibility and yield. They also have the potential of
mixing MOS end bipolar chips together or even mixing silicon and GaAs chips
together, to form larger systems with the flexibility of hybrid integrated circuits and the

reliability of monolithic interconnections.

Amongst other approaches are pad relocation [61], MNOS transistors [62,63],
floating-gate electrical erasable, chalcogenide glass and bridging-bond links [64]. Table

1.2 gives a summary of various existing switching techniques for defect tolerance.
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1.3. The Defect/Fanlt Tolerant Approach Introduced in This Research

There is an increasing demand for more processing power ; for applications includ-
ing super-computing, vision and speech recognition, bank or office management, etc.
More flexible and powerful processing systems with millions or even billions of gates,
having better performance and less cost will be vital in future. The trend from VLSI to
ULSI (Ultra Larpe Scale Integration) and WSI (Wafer Scale Integration) is inevitable.
Such high integration levels imply hundreds of processing elements, such as floating-
point proccssors,-' mémories, caches, together with the necessary interface circuits,
integrated on the same silicon substrate. However, cfficient communication among
these processing elements is crucial to the performance of the whole system. Such com-
munication must have high bandwidth, high reliability and flexible reconfigurability.

Defect/fault tolerance is a further factor of equal importance.

In this research, the author believes that the volatility and reversibility of the nor-
mal transistor is advantageous to realising defect/fault tolerance and, particularly, sys-
tem reconfiguration. The switches in other defect-tolerant techniques, such as laser or
electron-beam programming, cannot entirely meet the requirements, due to their non-
reversibility or their requirement for extra complex programming processes. The archi-
tecture advocated in this thesis employs an interconnection network using normal
transistors to efficiently achieve the requirements for high performance communication
among the pr;:cessing elements, defect/fault tolerance in the system, and system reconfi-

gurability.

1.4. Outline of Thesis

In Chapter 2, a user-programmable general purpose computational architecture is
introduced. This uses a large crossbar switching network for system reconfiguration,
system communication, and the defect/fault tolerance medium. The crossbar switching
network is detailed in Chapter 3 by developing yield models for various defect situa-
tions, such as different defect densities and different levels of redundancy. From this
work a redundancy selection scheme is proposed. Results generated by testing the
crossbar switching network desi'gn are discussed in Chapter 4. In Chapter 5, an
automatic message réﬁtiné algorithm in the presence of faulty switches in the crossbar
switching network is presented, along with its implementation in software (C-UNIX).

Some trials and their results show the cfficiency of the algorithm. In Chapter 6,
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potential applications of the architecture are discussed. Finally, Chapter 7 summarizes

the thesis and some suggestions for further research.
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Table 1.2 Summary of Different Defect-Tolerant Techniques

Types Ve Rs switched mode comments
discretionary wiring no no connect nced some extra
processing steps

laser programmed no  once connect or need special

link disconnect fabrication step

laser induced CVD ne no connect or need special
disconnect fabrication step

laser or electrical no no disconnect laser fuse needs

programmed fuse special treatment

laser or electrical no no connect laser antifuse needs

programmed antifuse special treatment

E-beam floating- no  yes connect and need special

gate transistor disconnect treatment

MNOS transistor no  yes connect and need special
disconnect fabrication

active transistor yes yes connect and no special
disconnect treatment

amorphous silicon no no connect special material and

proéessing steps
bridging-bond links no (once) connect no special processing

steps involved

# Due to the limited space, V is for Volatility, and R is for Reversibility.




CHAPTER 2
A RECONFIGURABLE AND DEFECT/FAULT TOLERANT

MONOLITHIC COMPUTING SYSTEM

2.1. Introduction

Before discussing the arch:tccturc of the monohthm computational system intro-
~ duced here, some issues relating to systcm interconnection on which the proposed archi-
tecture is based should be addressed. As discussed in Chapter 1, normal transistor
switches are favoured in this research to achieve defect-tolerance, as well as fault-
tolerance and system reconfiguration. These factors are thought key to the basic

requirements for future large computational systems at VLSI density, and beyond.

2.2. Crossbar vs Other Interconnection Networks

7
Considerable research has been devoted to evaluating the characteristics of variouns

interconnection networks for more than two decades. Many of them have been
reviewed in several survey articles [65,66,67,68,69] to which the reader is referred.
Here, emphasis is laid on the crossbar network with some differences from the other

interconnection networks being pointed out.

A particular interconnection network can usually be categorised according to four
aspects {70]: operation mode, control strategy, switching method, and network topol-
ogy. By further classifying the network in terms of topology [71], a network can be
grouped into two categories: static and dynamic. In a static topelogy, links between pro-
cessing e¢lements are fixed by hardwiring or some similar non-volatile connection so that
subsequent reconfiguration is impossible. On the other hand, processing elements in a
dynamic topology are linked through a set of active switching elements, whose switch-
ing mode can be changed. By setting a particular set of switching elements, reconfigura-

tion can be realised. Multistage [72] and crossbar are the two main types of network in
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the dynamic group. A three stage banyan network {one kind of multistage interconnec-

tion network), and a traditional two-sided normal crossbar network are shown in Fig-
ures 2.1 and 2.2, respectively.
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Figure 2.2 An 8x 8 Traditional crossbar network
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The development of the crossbar switching network was originally motivated by
the increasing interest in expanding the availability of the common bus structure. The
Burroughs D-825 multiprocessor system was among the earliest systems employing the
crossbar interconnection network. One of the major research projects involving a
crossbar interconnection network earlier was the "C.mm", the Carnegie-Mellon multi-
miniprocessor {73,74,75]. The crossbar interconnection network provides full intercon-
nection capability between any two connected elements, known as nonblocking. It also
provides e fast transfer rate and is flexible in term of possible multiple paths between
any two connected elements. Real-time data transfer and computation can be carried out
within the network. However, early developments in the crossbar approach exhibited a
cost growth of O(Nz)? for a network having N inputs and N outputs, which is a major
obstacle limiting its usage. This is due to the unacceptable implementation cost of N2
number of switches using MSI (Medium Scale Integration) or LSI (Large Scale Integra-
tion). On the other hand, multistage interconnection networks have evolved with slower
cost growth over their counterparts in the crossbar network. Various types of multis-
tage interconnection networks have been introduced for connecting N inputs and N out-
puts. Examples include data manipulator [76], baseline [72,77,78], banyan [79],
omega[80], and delta [81], These multistage interconnection networks have a cost
growth of O(NlogN), which has been predicted to be the theoretical lower bound for the
growth rate of the switch components in the interconnection networks”. However,
such an improved cost function is achieved at the expense of increased delay, between
inputs and outputs, due to cither blocking or the inherent (average) transfer delay”f
compared to the crossbar approach. In some applications where speed is not of prime
importance, this is an acceptable tradeoff. For situations which require high perfor-
mance, and 100% realisation of required communications amongst PEs at any time,
crossbar networks are more suitable than their multistage counterparts. This is particu-
larly true when the interconnection network is used to construct a system (by customisa-
tion) rather than just adding more homogeneous processing elements to achieve paral-

lelism.

+ Consult Appendix A for the definition of the "big-OH".

t+ This argument was given by Shannon [82] in 1950. Interested readers should
consult this reference for further details.

+++ This is usually caused by the circuit delay of more complex switching elements
themselves and more switching elements on a single communication route. However,
it may be argued that the communication delay of these two type of networks is of
the same order [18].
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From a defect-tolerance and fault-tolerance point of view, multistage interconnec-
tion networks themselves are much more vulnerable to catastrophic defects in the net-
work. This is mainly attributed to the unique-path property that most of the multistage
interconnection networks have. To alleviate this, researchers have modified the net-
works by adding one or more stages of switches and/or redundant links to the networks
[83,84,85], sc that multiple paths between inputs and outputs can be achieved. How-
ever, such modification can only tolerate defective switches at certain restricted loca-
tions (usually the first and the last stages) rather than for any switch in the network.
This .can not map the real situation where the defects are randomly distributed and all
the switches have an equal chance of being defective. Alternatively, the crossbar inter-
connection network advocated in this thesis is inherently defect-tolerant and fault-
tolerant, because of the structure of its multiple-path between any input and output
which is able to tolerate defective switches at any location. Due to its regular structure
(similar to memory structure), hardware redundancy can be easily and efficiently incor-
porated into the network. Christos [86] ha$? previously discussed various organisations
of the crossbar switching networks to introduce different degrees of fault-tolerance. A
conventional two-sided crossbar network is shown in Figure 2.2. The communication .
path from input 1 to output 3 can be, and only be, made by switching on the switch cell
cl. Thus any communication path between a given input and output in this configura-
tion is unique, although free from traffic contention'. Such a configuration can not
take on e serious defect-tolerance role, because a single failure of any switch cell will
rule out one possible input/output communication path. As an alternative, a one-sided
duplex crossbar switching network shown in Figure 2.3 introduces the possibility of
multiple paths between any input/output pair. With this configuration, all the horizontal
conducting tracks serve only internal connections. Inputs and outputs are located either
at the top or at the bottom of the network or both. The communication path from input
1 to output 3 can either be made by switching on ¢l and ¢2, or ¢3 and ¢4, etc. The
number of paths for any input/output peir equals the total number of horizontal con-

ducting tracks.

t+ In multistage network, implementing several connections may require the same
route in a certain stage, blocking implementing these connections at the same time.
For cxample, in the 8X8 banyan network given in Figure 2.1, if we want to
implement connections "input 1 - output 1" and "input 3 - output 2", then a traffic
contention will happen at the second stage, causing blocking.
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Figure 2.3 An 8% 8 Duplerx crossbar network

From a system point of view, the switching elements in a multistage interconnec-
tion network need to have more switching states (usually more than two) than that for a
crossbar network. They need more involved control circuits to address a set of connec-
tions than does the crossbar network. In most of the defect-tolerant schemes, critical
defects in control circuits are more crucial than those in the switching circuits, because
it is difficult to introduce cfficiently redundancy or other defect-tolerant schemes into
control circuits. Therefore, it follows that simpler control means higher availability of
interconnections. It also indicates that the control overhead for systems employing a
crossbar interconnection network is less than that for multistage networks. Moreover,
the crossbar structure can easily be expanded to a larger interconnection network with
smaller networks. This gives system designers more flexibility in adding additional sys-
tem functions, and/or improving system performance, without redesigning the whole

communication network.

The relatively faster cost growth of crossbar networks appears to be & major prob-
lem for implementation in comparison to multistage networks. Fortunately, the
manufacturing cost of silicon devices (and, therefore, the unit cost of a switch cell in a
crossbar network) has gone down rapidly over the last two decades, and is set to reduce
with the progress of VLSI technology. As a result, the cost of such interconnection net-
works will not become the major cost component in the VLSI era, and beyond. As far
as the efficiency of integration is concerned, architectural regularity is more important

for cost reduction. The previously established cost measure for crossbar networks is no
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longer significant in the VLSI era with respect to the cost of multistage networks. Let
us consider the banyan switching network as an example of multistage network for com-
parison with a crossbar network, because many other networks in the multistage net-
work category, such as the Omega network [80], are topologically equivalent to the
banyan network [72]. A recent study [87] bas already indicated that VLSI realisation of
the crossbar network does not necessarily result in a larger silicon area, as compared
with the banyan network. They both have a cost growth of O(Nz). The time delay
through the network, which is technologically dependent, grows as O(N) for crossbar
and O(Na(logN)z), where 0<a<1, for the banyan network. This contrasts with tradi-
tional results which predict O(Nlog¥N) and O{logN) for the cost and delay growth of a
banyan network [79].

In summary, for future integrated systems which demand higher levels of integra-
tion, better performance and lower cost, the crossbar switching network is a suitable
candidate for the interconnection network for system communication, defect/fault toler-
ance and system reconfiguration. The features that the crossbar networks offers can be

listed as:

' full interconnection capability (allowing any connection from any input to any out-

put),
* nop-blocking,
®  constant response time,
e  simple control,
L) possible system expansion, and
. inherent defect-tolerance and fault-tolerance through redundancy.

The approach advocated in this thesis, towards a defect-tolerant and fault-tolerant
architecture for ULSI and WSI is to use a large crossbar switching network as a pro-
grammable element to achieve both system communication and defect/fault tolerance.
The foundation to this research was inspired by the development of bit-serial architec-

ture employed in the FERST silicon compiler [88].
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2.3. The FIRST Silicon Compiler

In this section, the FIRST silicon compiler and its architecture are briefly

reviewed as a useful background to the research undertaken in this thesis.

2.3.1, Bit-Serial Architecture

Bit-serial architectures are distinguished by their communication strategy. Digital
signals are transmitted bit sequentially on single wires or busses, as opposed to the
simultaneous transmission of the bits of words on parallel buses:: This distinction is the
key to many inherent advantages of the bit-serial approach as a VLSI strategy. Most
significantly, bit-serial transmission leads to efficient communication within and
between VLSI chips. This is an outstanding advantage where communication issues

dominate, as in many signal processing applications.

As discussed earlier, with the increase in chip size, defect/fault tolerance is a cru-
cial factor in system performance and, particularly, economic production. Owing to the
ease of bit-serial communication relative to parallel, the architectural restriction of
nearest-neighbour communication need not be imposed, leading to a much greater
architectural (and therefore algorithmic) flexibility. Additionally, bit-serial processing
elements are generally smaller and therefore intrinsically higher yielding than their bit-
parallel counterparts. It has been discovered [89] that fault coverage of bit-serial circuits
can be high, and may be determined without extensive fault simulation. The cost in sili-
con, power, complexity and dcsign difficulty is low, leading to a better yield of function
per unit silicon area and high fault coverage for the whole system. Furthermore, intro-
ducing pipelined processing in bit-serial systems can result in a better area*timez meas-
ure over its bit-parallel counterparts. Therefore, bit-serial architectures are an attrac-
tive proposition, and can offer architectural and defect/fault-tolerant advantages over

their bit-parallel counterparts.

2.3.2. The FIRST Silicon Compiler [88]

(_}?ilicon compiler is a tool which takes a high level functional description of a sys-
tem as jnput but produces, instead of machine code like a conventional compiler, a
detailed chip mask geometry. The FIRST (for Fast Implementation of Real-time Signal

Transforms) silicon compiler is simply an interpretation at one technology level of the
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bit-serial approach. A chip generated by FIRST comprises a central communication
channel, flanked by two rows of bit-serial primitive modules. Signal routing is omnly
implemented through the central channel, and there is no intimate connection between
neighbouring modules, Thus processing elements communicate by receiving and
transmitting data via a routing channel. Chip input and output signals are fed to peri-
pheral pads via the ends of the channel. A channel router is used to carry out the inter-
PE routing. Figure 2.4 shows a floorplan of an actual design generated by FIRST, in

which the characteristic features are identified.
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Figure 2.4 The floorplan of a design generated by FIRST

2.4, The Superchip Architecture

A system created by FIRST is not reconfigurable; instead, algorithms are hard-
wired through a central routing channel (interconnection network with static topology).
The designer can only change the system configuration during compile-time; variations
are impossible at run-time. Further, in line with the familiar yield problem, a single
catastrophic fabrication defect will result in abandonment of the entire chip. Finally,

the requirement for increasingly large, high performance, low cost signal processing
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systems implies larger chip sizes. Incvitable fabrication defects limit the practical size of

these chips and, thus, the attainable performance level for one substrate.

The approach advocated in this research is to extend the flexibility of the FIRST
approach to build arbitrarily complex networks of bit-serial systems. This is to be
achieved by integrating a crossbar switching network with a large number of bit-serial
PEs. Arbitrary interconnections offered by the crossbar network amongst the bit-serial
processing elements contrast with alternative nearest-neighbour-only communication
strategies, usually advocated for ULSI and WSI. The chip size required to accommo-
date the proposed architecture is expected to extend beyond today’s usual VLSI chip
sizes ( < 100 mm 2) and, hopefully, to a whole silicon wafer. For convenience in later
discussion, the concept of this scale of integration will be referred to as superchip, the
proposed architecture implemented with the superchip as superchip architecture, and the

adopted crossbar switching network as swirch matrix.

The superchip is & large silicon chip containing many independent bit-serial pro-
cessing elements. Computational networks are produced by the electrically programm-
- able ¢rossbar switch matrix controlled by the end user. The end user may thus custom-
ise smperchip to implement a range of signal processing or scientific computational
tasks. Figure 2.5'is a schematic diagram illustrating the superchip architecture. Bit-
serial processing elements arc placed in two rows, above and below a crossbar switch
matrix. All the processing elements communicate with each other via the crossbar
‘switch matrix. The crossbar switch matrix permits users to program arbitrary func-
tiopal networks cbmprising bit-serial processing elements. Redundant processing cle-
ments can be introduced easily by adding extra matrix columns to accommodate these
redundancies. These can be switched into the system through the switch matrix.
Defect/fault tolerance can also be achieved by programming the switch matrix to avoid
faulty elements and employing working redundant elements in the chip, whenever
necessary. The addressing data stored in EPROM is generated by a software program,
calted rouser, which combines the éystcm configuration information and the information
about the defective elements in the chip to produce the correct communication paths
among the processing clements. A key issuc in the superchip architecture is the organi-

sation of the switch matrix and its effect on the performance of the whole system.
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Figure 2.5 A schematic of the superchip architecture

2.4.1. Crossbar Switch Ccll and Switch Matrix

Two different switch cells have been considered in this research, and their relative
‘features compared. This involved two different crossbar matrix architectures: two-sided

and one-sided architectures, already referred to in Figures 2.1 and 2.3.

In the two-sided switch matrix architecture, one row of the matrix is exclusively
assigned to each output of processing elements. Networks are routed in this architecture
by programming connections to the inputs of processing elements. Figure 2.6 illus-
trates the two-sided switch matrix scheme sdopted in the superchip architecture, which
is similar to the architecture shown in Figure 2.2 except that in this diagram the actual
position of the processing clements and the layout style of the matrix are given. The
circuit diagram of the switch cell employed is shown in Figure 2.7. This switch cell, let
us call it swe-1, comprises a latch, a dynamic NAND gate, and a control pass-gate con-
trolled by the latch. During the precharge cycle, the matrix column {connected to a pro-
cessing element input) is charged to a logic one. During the evaluation, the matrix
column holds its precharged state if the switch is switched off, or becomes the comple-
ment of its matrix row (connected to a processing element output) if the switch is
switched on. To turn the switch on or off, "column load” is set to logic one so that the

switching information from row decoder ("row load” signal) is written into the latch via
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Figure 2.7 Circuit diagram of the dynamic switch cell (swc-1)
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the pass gate. Otherwise the latch is isolated from other circuits to maintain the current
switching statc. At the system level operation of the matrix, the output of each process-
ing element drives one horizontal row of the matrix and every processing element input
is driven by a column of the switch matrix. Input and output signals enter and leave the
superchip via the switch matrix. Thus input pads are assigned one horizontal channel in
the matrix, and output pads each come from one switch matrix column. Clearly,
because the switch cell only allows an unidirectional pass of the signal, it is particularly
suited to the realisation of the two-sided crossbar architecture. Such a matrix architec-
ture is called normal matrix in the rest of the thesis, due to its conventional two-sided

matrix organisation.

The alternative switch matrix architecture allows programmable assignment of the
horizontal rows to the nets in a system for more flexible routing strategies. Figure 2.8
illustrates this scheme which is similar to the architecture shown in Figure 2.3, except
that processing elements are placed at both sides of the matrix. The circuit diagram of
this switch cell {(called swc-2) is shown in Figure 2.9. Compared to the circuit of swc-1,
the dynamic NAND gate is replaced here by a bidirectional transmission gate controlled
by the output of the latch. Architecturally, instead of connecting the ocutputs of pro-
cessing elements to the matrix rows, each input and output of the processing ¢lements
are connected to a column of the switch matrix. Input and output signals of all process-
ing elements enter and leave the superchip via particular columns of the switch matrix.
Owing to the use of the bidirectional, static, transmission gate as a switching element
signals can pass through the switch cell, from either one direction or the other. There-
fore, bidirectional I/O pads are assigned to matrix rows so that each processing ele-
ment can communicate with external signal sources. Compared to the normal matrix,
this matrix duplicates the normal matrix in size. In the rest of this thesis, it will be

called the duplex matrix.

The performance difference of these two switch cells is determined by the perfor-
mance of the transmission gate, against that of the dynamic NAND gate. For a quanti-
tative performance comparison, suppose that all the transistors in these two gates have
the same parameters, and g,,, is the transconductance for a single transistor. For swe-1,
the input node of each pmcessihg element is discharged through three transistors in
series. Therefore the total conductance of the dynamic NAND gate becomes g,,/3.

Note that precharging is taken to a whole column of the matrix. For swe-2, the total
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-26 -

conductance of a CMOS transmission gate is equal to 2g,, because two transistors are
here in parallel. However, because a complete path from an output of a processing ele-
ment to an input of a processing element passes through two transmission gates in
series, theﬁ the total conductance of a path is equivalent to the conductance of a single
transistor, g,,. On the other hand, the outputs of the processing elements in swc-1 are
not connected directly to the inputs of processing elements. A processing element needs
only to drive a long horizontal metal track in the matrix (a row of the matrix). In swe-
2, however, an output from a processing element has to drive all its horizontal and vert-
ical metal tracks (a row and two columns of the matrix), because the transmission gates
connect outputs of the processing elements directly to the inputs of the processing ele-
ments they drive. Therefore, the required driving capability for swc-1 is more indepen-
dent of the matrix size. In other words, a larger transmission gate is needed for bigger

switch matrices.

Figures 2.10 and 2.11 illustrate the circuit layout of the two switch cells in A2.5p,m
double-metal CMOS technology, which were fabricated at Plessey. Figure 2.12 shows
the circuit layout of swe-2 in 3pm double-metal CMOS technology which was fabricated
at MCE (Micro-Circuits Engineering Ltd). The results from these designs are presented

in Chapter 4.

2.4.2. Programming Switch Matrix

The information for switch setting within the switch matrix is provided by users
who commit fhe superchip to a specific system task. The information governing all the
switch settings in a switch matrix is here called the switching pattern of the matrix. The
control circuits are not only responsible for loading the switching pattern, but also help
during the testing of the switch matrix. The overall control path of the switch matrix is
shown in Figure 2.13. Two decoders are provided for both matrix column and matrix
row addressing. Static CMOS NOR pgates are adopted here to form both decoders.
Each output of the row decoder is connected to the "row load” of all the switch cells sit-
ting on the row which the row decoder output addresses. Similarly, each output of the
column decoder is connected to the "column load” of all the switch cells sitting on the
column which fhe column decoder output addresses. The required input address for the
control circuits is the binary form of the actual location of the matrix row or column.

For example, the input "1010" to the row decoder will address the 10th row in the
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Figure 2.10 Layout of swc-1 (Plessey technology)
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Figure 2.11 Layout of swc-2 (Plessey technology)
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Figure 2.12 Layout of swc-2 (MCE technology)
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switch matrix. Prior to loading a switching pattern, the whole matrix is initialised
(every switch cell is set to be "off"). To initialise all the switch cells simultaneously, all
the outputs of the row decoder should be set to be at a logic zero at the same time. This
is realised by decoding an address which is greater than the existing number of total
rows in the matrix. If the total number of rows in the matrix is just the value of two to
the power of n (where n is the number of inputs to the row decoder), then a spare input
should be added to the row decoder. Thus the number of inputs to the row decoder
becomes n+1 to ensure that there is at least one address which can set all the outputs
from the row decoder to be logic zero at the same time. Such a condition of the row
decoder when all its outputs are logic zero, at the same time, is called the clearing state.
Every output from the column decoder is fed through a two-input NAND gate. This
allows all the outputs from the column decoder to be set to logic zero, at the same time,
to disable the loading from the row decoder. This is controlled by the signal "Dset"
applied to one input of all the NAND gates. This state of the column decoder is here

called the disabled state.

Column Decoder

Row Decoder

Figure 2.13 Switch matrix control path

The circuit called "Tesc” in Figure 2.14. is an auxiliary circuit for testing the

matrix. During test, all the column addressing lines from the column decoder are
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expected to be at a logic one, simultaneously, so that all the switch cells on the same
matrix row can be addressed and evaluated at the same time. The "Tset" signal sets the
operational mode of the test circuit. When it is logic zero, the signal from the NAND
gate simply goes through this test circuit to the matrix. Otherwise, the circuit isolates
the matrix from the column decoder and sets all the matrix "column load" lines to logic
one. The column decoder (including NAND gates and "Tesc" circuits) is said to be in

the "clearing state" when "Tset" is at logic high.
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Figure 2.14 "Tesc" circuit diagram

2.4.3. System Operation

System customisation within the superchip is specified and performed by the end
user. The whole procedure from the user’s system specification to the physical realisa-
tion of the system can be divided into two phases, as illustrated in Figure 2.15. The
first phase is message generation for system traffic routing. This takes the user’s 8ys-
tem specification and the test results of both the processing elements and the switch

cells as inputs, to produce a set of routing codes (switching pattern) for the switch
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matrix. These routing codes are stored in an external EPROM. The test results, show-
ing types of faults and their locations in a superchip, are called the fault pattern for any
given chip. Defect-tolerance is achieved by connecting working processing elements
together using working switch cells in the switch matrix, whilst avoiding defective pro-
cessing elements and switch cells. Both the routing algorithm and its software imple-
mentation will be discussed in detail in Chapter 5. The second phase is system realisa-
tion (customisation) which is achieved by loading the switching pattern obtained from
the first phase into the switch matrix to realise the interconnections for a specific sys-

tem.

test

results
—> router

\L system description

routing code

system
build—up

customised superchip

Figure 2.15 System synthesis procedure within the superchip

The switching pattern for the switch matrix is loaded on power-up, or in response
to a reset request from an external EPROM. Before actually loading the switching pat-
tern, both the row and column decoder are set to the clearing state to initialise the
whole matrix, after which all the switch cells in the matrix are non-activated (non-
conducting). Although the total number of switch-settings for the switch matrix is large,
the embedded information is much smaller, as at most one switch in any column may be
active. Thus we need only to store and load a row address for the active switch cell in
each column. Row 0 (or any assigned row) is reserved for "no connection" and will be
employed by unused processing elements to inhibit their clock connection. Thus, unused

processing elements do not need to be active, eliminating unnecessary power
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consumption. This convention leads to the loading arrangement shown in Figure 2.16,
in which a counter is used to address the external EPROM. Each address from the
counter is also decoded to activate an associated column in the switch matrix. The
active switch for that column is defined by the returned EPROM address generated by
the router, which is decoded to drive the relevant "row load" line. Whilst loading a
switching pattern, "Tset" is kept low. To prevent possible output signal ’spikes’ occur-
ring when the inputs of both row and column decoders change from being incorrectly
loaded into switch cells, "Dset” should kept low when addresses from the decoders are
being changed. Figure 2.17 shows the waveforms for activating a switch cell in a matrix
column. Every time "Dset" goes high, an addressing signal from the row decoder is
passed on and loaded into a switch cell, so that a switch cell is set to be active (conduct-
ing). The input and output signals are bit-serial, and enter and leave the superchip via
the switch matrix. In other words, any element in the superchip can only communicate

externally through the switch matrix.

row decoder e b
column decoder X X
oy r

Tset (kept Low) I I

Figure 2.16 A loading scheme for switch matrix

The communication and control conventions for bit-serial systems have been
defined by Lyon[90] and Denyer[88]. The lowest level of control is a synchronous bit-
clock controlling the flow of all data in the system at bit level. This level of control is
called cycle 0, or simple c0. One level above this is the cycle indicating the beginning of

every new word in a data stream, called ¢l control. At a higher level, there will
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Figure 2.17 Loading signals for activating one switch cell

probably be a need for levels of control indicating the beginning of every frame of
words €2, and the beginning of a group of frames ¢3, and so on. All these different lev-
els of control signals are generated from an off-chip controller. Figure 2.18 shows a
frame of these control signals. The bit-clock control c0 from the controller is globally
distributed to all the processing elements in the superchip. Other levels of control (par-
ticularly €1) are distributed through a control network in the superchip to adjust various
LSB-times of different nodes in the system. The delay elements for such a control net-
work are a part of the processing elements connected to the switch matrix, so that they
can be routed (distributed) with correct timing alignment, to any processing element in

the superchip.

Synthesizing a system from the superchip can be viewed as a static reconfiguration
procedure i.e. the system is configured before operation. However, such a tailored sys-
tem is also capable of performing dynamic reconfiguration, in which the system confi-
guration can be altered during operation by changing the switch setting in the switch
matrix, provided that no communication is required on the connections during the
change. In the switch matrix, any connection being reconfigured will not affect com-

munication of other unchanged connections.
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Figure 2.18 A frame of control signals at different levels

2.5. Summary

A system architecture based on integrating a crossbar switching network and a
large number of processing elements on a single piece of silicon was presented in this
Chapter. This approach enables a high level of integration, and exhibits better perfor-
mance and lower cost than conventional integration techniques. Some related design
issues have been discussed. Such an approach provides defect/fault tolerance and system
reconfiguration by message routing in the switch matrix. More numerical and algo-
rithmical representations for such a approach will be illustrated in the following

Chapters.



CHAPTER 3

YIELD MODELLING AND REDUNDANCY SELECTION

3.1. Introduction

From the earliest days of integrated circuit manufacture, it has been observed that
yield decreases with increase in chip area with some exponential dependence. The
impact of this observation to today’s VLSI-density chip is the limitation on the chip size
for economic production. However, with the advent of defect tolerant circuit design,
introduction of hardware redundancy can improve the situation. The question now is
one of choosing the right amount of redundancy which is optimal in terms of cost-
effectiveness. In this Chapter, discussion will be concentrated on developing a yield
model for the superchip, from which an optimal level of redundancy can be derived.
Firstly, a brief review of integrated circuit yield modeling is given and, thereafter, these

results are applied to the yield modeling of the switch matrix and the superchip.

3.2. Previous Work on Yield Modeling

Integrated circuit yield estimation has been studied since the earliest silicon IC
processes were introduced, and many yield models have been proposed. At the outset,
the fundamental assumption was that defects occur randomly. In other words, they are
distributed uniformly across the whole wafer. If this is true, then the defect distribution
can described by the Poisson process

iy 8
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=
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where P, is the probability of having n defects in the area A, D, is average defect den-

sity (defects/area), A is critical area (or susceptible areaf), and n are the number of
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defects causing initial electrical failure. The yield is obtained by letting n = 0 (note
that 0! = 1)

Y=e (3-2)

and this expression is widely referred to as the so-called Poisson yield model. The dot-
ted line in Figure 3.1 gives the log yield versus total critical area plot (Y-vs-A) for
equation (3-2). Unfortunately, this lincar relationship (in the log scale for yield) is con-
trary to integrated circuit manufacturing experience. It is known in practice that experi-
mental log Y-vs-A plots are usually concave upward, as shown by the solid line in Fig-

ure 3.1. This fact has led to many modifications of the basic Poisson yield expression.
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Figure 3.1 Yield vs critical area plot

3.2.1. Murphy’s Modification

In 1964 Murphy [91] recognized that the Poisson distribution is not an accurate
description of IC yield vs the total critical area of an IC, and tends to give an increas-
ingly pessimistic yield projection for larger areas. This is because the Poisson process
assumes that all the defects are randomly, and uniformly distributed over the surface of
the silicon wafer. However, in IC manufacturing the defect density varies from chip to

chip as well as wafer to wafer. To relate yield prediction given by equation (3-2) with

t critical area is the area within which a single processing defect will cause incorrect
logical output of the circuit.
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actual manufacturing data, Murphy and some others suggested that the defect density
has a long-range non-uniformity expressible by a normalised distribution function (or,
in the terminology of probability theory, a probability density function £(D)). These are

called mixed Poisson statistics. The resulting yield expression is given by

Y = e P4 yap (3-3)
0

which is known as Murphy’s yield model. In this expression, Murphy used both tri-
angular and rectangular distribution functions for f(D). The resulting yield formulae
derived from these distributions showed that the yield of larger and more complex chips
would be higher than was expected from Poisson statistics. However, according to
actual data, the log Y-vs-A curve is still too pessimistic (related curves will be shown

later in the summary).

Several other forms of distribution function have also been investigated by Seeds
[92], Price [93], Stapper [94,95,96], and Hu [97] etc, in addition to the triangular and
rectangular distribution functions adopted by Murphy. Each assumed distribution

results in a different form of IC yield model.

3.2.2. Seed’s Yield Model
Seeds [92] selected the exponential probability density function:

{ =2
fD)=—e © (3-4)

o

which has the interesting feature that the mean and variance are exactly equal to the

average defect density. This distribution leads to a yield expression:

1
& PR (3-5)
1+ DA

which is regarded as a Bose-Einstein distribution. Price arrived at equation (3-5) by
basic probabilistic arguments in which all the defects concerned are considered to be

indistinguishable. Price favoured the use of Bose-Einstein statistics because they result
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in a yield at large values of chip area that is higher than that given by the Boltzmann
exponential relation (Poisson statistics). The main argument against using Bose-Einstein
statistics is that they assume that the probability of having a defect on a particular chip
is the same as the probability of having a defect in the remainder of the silicon wafer,
having a much larger area. However, it is felt intuitively that the probability of having

a defect should be proportional to its related area.

For a large DA product, the physical meaning of Seed’s model is that the fault dis-
tribution function is a square function, and the fault density for a (square area) wafer
increases linearly across the wafer from 0 to 2g,, where g, is the average number of

faunlt-causing defects per circuit.

3.2.3. Stapper’s Model

Stapper suggested [94,95] the use of the gamma function as a probability distribu-
tion. The gamma distribution function has the form
_D
1 - ——
roy= ——pe-b, B (3-6)
I'(a)B

where a and B are two empirical parameters. The mean, variance, and o/u ratio are

given by:
D = aB (3-7)
w2
Var D = aB (3-8)
o 1
— = —a (3-9)
u or

The resulting yield calculation can be described by the negative binomial distribution:

Y=(1+ E)“"

n

(3-10)
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where
a= ()2 | (3-11)
o .

is a clustering effect coefficient representing the degree of clustering. It is an empirical
parameter and usually ranges from 0.5 to 4 in practice. By itself n does not denote the
balance between on-wafer defect density variation and wafer-to-wafer defect density
variation. However, it is a key clustering parameter and determines the overall yield for
chips without redundancy. For situations where the defect density can be assumed con-
stant over a small sub-area, the clustering of defects, either because of interaction
among themselves, or because of the hospitality of the geographical characteristics of
wafer regions, will tend to result in a higher yield than predicted by the Poisson distri-
bution for a given average defect density. This is because more than one catastrophic
defect resides on the same area or sub-area of a chip leaving other chips to have less

chance of being defective.

3.2.4. Hu's Model

By employing different assumptions for the distribution functions in the original
Murphy yield expression (equation (3-3)) by Seed, Stapper and Murphy, Hu has proved
mathematically [98] three properties of the yield modcl, expressed by equation (3-3).
Firstly, Murpby’s model is always concave upwards. Secondly, the initial slope of
Murphy’s model is the same as that of a Poisson curve with the same defect density.

Thirdly, the lower bound for Murphy’s model is the Poisson yield model.

Hu derived [97] a yield expression from very basic probabilistic considerations,

which turned out to be a binomial yield model:

A n
Y=(1--) (3-12)
s

where n is equal to DS, A is total critical area of a chip, D is defect density distributed
randomly over an area S (A € S) which may be a part of or the whole of a silicon

wafer, so that
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4 S-DA
Y =(1- ;) (3-13)

- A
=e DA for very large §, (— - 0).
$

This equation is the Poisson distribution equation for zero defects, and DA is the sta-
tistical expectation. With this model, Hu concluded that it is not appropriate to take
account of the phenomenon of non-homogeneous defect populations (defect clustering)
by integration with a defect distribution function, either in the geometrical space or in
the density space. Instead, the chip should be partitioned into many sub-areas, and the
overall yield should be obtained by partitioning sub-populations of defects in these
sub-areas. Hu noted that, although almost all the modifications of the Poisson distribu-
tion introduced by integration with a density distribution function show some concavity
in the log yield vs area plot, these modifications are not based on rigorous mathematical
procedures. The yicld data predicted by these modified yield models agree with practi-

cal data, but the extrapolated yield from these models may not be reliable.

Another interesting conclusion that Hu pointed out [97] is that the applicability of
the simple Poisson distribution increases with the area of an IC chip. If the size of a
given IC chip increases to one quarter of a wafer, then the simple Poisson distribution
would become more accurate, regardless of the non-uniformity in defect density. In
other words, if the defect distribution function f(D) is applied, then it must involve chip
area.. Thus variations in defect density tend to be averaged out as the chip size becomes

large with respect to the wafer.

As Stapper commented [99], the difficulty with Hu’s yield mode! is that it requires
the ratio of critical area to chip arca of each partitioned sub-area to be identical. As far
as Poisson statistics are concerned, it is not necéssary to use m sections from different
chips and wafers to allow the binomial statistics to approach Poisson statistics, by con-
sidering the chip area in the defect distribution function f(D). The Poisson model holds
for each chip individually, but A, the average number of faults per chip can, and often
does, vary from chip to chip, even on a single wafer. The mixed Poisson statistics are,

therefore, a valid method for modelling chip-to-chip variations in defect or fault den-

sity.
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Some experimental data collected recently from several IBM manufacturing lines
for some large arca chips suggested [100,101] that the yield predicted by the negative
binomial yield model shows good egreement with measured data, which indicates thé
possible viability of this yield model for large area ICs. The predicted data seem to be
strongly dependent on the clustering parameter n, which indicates the importance of the

clustering effect on yield modeling, particularly for large integrated circuits.

3.2.5. Paz and Lawson’s Yield Model

Paz and Lawson suggested [102] the following yield model:

Y = yge AP (3-14)

where ¥ is a gross cluster yield when the whole chip is partitioned into several smaller
areas, and e_AD represents the simple Poisson random defect yield. The values of Yo

and D were determined with a linear regression technique using
InY = —AD + InYp (3-15)

which was performed for each region on each wafer. Results confirmed that the wafer
to wafer defect densities could be modelled by a gamma distribution. The defect density
in the outer region of a wafer was found to be high and, therefore, the gross cluster
yield ¥ was lower there. Furthermore, it appeared that the wafer to wafer distribu-

tion of ¥ could be modelled with a beta distribution.

3.2.6. Moore’s Model

Independent of the mixed Poisson statistics, an empirical expression describing

integrated-circuit probe yield experience at Intel [103] was reported by Moore:

A
—(—)
A
y=e M (3-16)

where, A is the IC area, and Ag,s is reference area (which can be regarded as the IC

1
area that leads to a probe yield of — or 37%).
e
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3.2.7. Dingwall’s model

According to actual data and experience [104] at TRW, Dingwall suggested [105] a
probe yicld model with a value @ = 3 in equation (3-10).

D A _3
Y=(1+ ——) {(3-17)

3 Aop

where, D is a dimensionless mean defect density (i.e. the average number of point
defects per IC), A is the IC area as before, and Agp is a reference area which is the IC
size for a given process that leads to a probe yield of 42%, when the mean defect den-
sity D is one defect per IC. This empirically modified negative binomial yield model

has proved reliable at TRW over many years.

3.2.8. Warner’'s Composite Model

This model [106,107] combines both Moore’s and Dingwall’s models, making an
assumption that half the aggregate area of all the areas considered for yield evaluation
is homogeneous (in the sense that the point defects therein constitute a single binomial-
Poisson population) and characterised by a low value of defect density. Warner intro-
duced a window method, similar to the conceptl of yield scaling described by Stapper.
The window method concludes a linear relationship between log yield and area. The
statistical meaning of such a linear result is that any catastrophic defects involved con-

stitute a homogeneous Poisson population, such that:

{3-18)
where Y, is the yield at the area A, within the homogeneous region.

3.2.9. The Clustering Effect

Stapper recently described [108] the effects of on-wafer or wafer-to-wafer defect
density variations on IC defect distributions. His result of yield vs area plot for cluster
yield is presented here in Figure 3.2. The two end points are those measured in [109].

The flat portion on the left indicates the constant Y5 range for small chips identified in
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Paz and Lawson’s yicld model expression. The extent of the flatness depends entirely
on the arees of the smallest clusters that are considered. The curvature of the yield plot
for larger chips depends on the size distribution of the clusters. If there are a large
number of small clusters, then the roll-off will be sharp. For a distribution with more
large clusters the yield curve will fall off more slowly. From this curve, it is clear that
success in increasing chip area (therefore, increasing chip complexity) towards the
whole wafer size will depend on the scale of clustering for a given technology. For
large wafer-to-wafer variation of defect density, the yield of larger chips or a whole
wafer can be improved, due to the large population of defects clustered on a limited
number of wafers of a batch. On the other hand, on-wafer variation of defect density
(defect clusters within the chip or wafer ares) incréases the need for redundant circuits
more then that predicted by Poisson statistics and simple Poisson yield models and,

therefore, results in lower yield for chips on the wafer.
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Figure 3.2 Cluster yield vs arca

~ 3.2.10. Summary of The Yield Models

Since Murphy first introduced the defect distribution function, considerable inves-
tigations have been carried out to find a suitable distribution function to predict the
manufacturing yield of chips, over a large range of chip areas. If the Poisson yield
model is considered to be included in the Murphy’s yield expression (mixed Poisson
statistics), then its defect density distribution function is a delta function at its average
defect density. Figure 3.3 is a composite of several defect density distribution functions
previously proposed. The distribution functions given in Figure 3.3 have been normal-

ised to the average defect density D, given in equations (3-1) and (3-25. Figure 3.4 is
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the log Y-vs-A curves related cach equivalent distribution function in Figure 3.3. The
Poisson yield curve in Figure 3.4 corresponds to the delta distribution function labelled
A in Figure 3.3. An exponential probability distribution function, labelled C in Figure
3.3, leads to Seed’s model, which is labelled C in Figure 3.4, The curve B in Figure 3.3
is 2 gamma function proposed by Stapper, which gives the generalized negative bino-
mial yield model indicated by curve B in Figure 3.4. In fact, curve B varies with the
parameter n; when o < 1, and lies below the curve C, otherwise it resides above C.
Curves D and E in Figure 3.3 are for rectangular and triangular functions, explored ini-
tially by Murphy to derive the yield curves D and E in Figure 3.4. Unfortunately,
these two expressions have not found extensive use in subsequent work, primarily
because of the low fault distribution values for the ratio of standard deviation to the
mean, o/u. Data subsequently analysed by Seeds [92], Moore [103], Stapper
[94,109,95,20], and Paz and Lawson [102] suggested higher values for this ratio, lead-
ing to even more optimistic yiclds for large chips than Murphy had anticipated. It
should be noted that all the yield curves shown in the diagram broadly fit today’s typi-
cal VLSI chip size (which lies within several tens of square millimetres) for current sili-
con technology. Therefore, random defects over a chip are still the predominant factor
in determining yield values. In the case of a very large chip, the effect of defect clus-
ters may not be neglected in the yield model. Although the clustering parameter has
been introduced in the negative binomial model (equation (3-10)), for large chips or
(sub) wafer scale integration, there still remains a question about its applicability, par-
ticularly when the degree of clustering is small. To take global clustering into account,
the introduction of the cluster yield ¥, in Paz and Lawson’s model (equation (3-14))
makes it possible not only to separate the cluster yield from the yield caused by the
remaining random defects over the whole area, but also to correct the yield curve
concave-downwards from the yicld models for the mixed Poisson statistics, in the case

of large chip or the whole wafer,

Most of the yield models discussed here are derived from either Poisson statistics
or mixed Poisson statistics. Therefore, there are some inter-relationships amongst these
models. Assuming a pamma distribution for the defect distribution function given in
equation (3-3), a negative binomial yield model can be derived as shown in equation
(3-10). If n - ®, this model becomes the Poisson yield model; whereas, if n = 1, then

it becomes equation (3-5), which is also known as Seed’s equation,
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Figure 3.3 Defect density distribution functions. (A) Delta function leading to
Poisson yield model; (B) Gamma function leading to the pegative binomial
model (here particular values has been chosen for the two adjustable parame-
tres); (C) Exponential function leading to Seed’s model; (D) Rectangular func-

tion used by Murphy; (E) Triengular function used by Murphy.
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Figure 3.4 Yield curves resulting from several different types of defect density
functions. (A) Poisson yield curve from the Delta function; (B) Negative bino-
mial yield curve from the Gamma function; (C) Seed’s curve from the exponen-
tial function; (D) Yield curve from the rectangular function; (E) Yield curve

from the triangular function.
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It should also be pointed out that most of the yield models are derived from equa-
tion (3-3) by choosing a defect density distribution function to best fit the manufactur-
ing yield data. These data are usually collected on site for the normal VLSI chip size (
< 100 mmz). Each of these yield models often suit a particular silicon processing site,
It is very difficult, and probably not sensible at all, to search for a common yield
model. Furthermore, extrapolation of these yield models for larger chip sizes may not
be reliable, although some recent research [110,100] has shown the validity for large

memory chips. However, more information is still needed to validate its correctness.

3.3. Superchip Yield Modclling

The entire yield modelling process for the superchip architecture, introduced in
Chapter 2, can be divided into two parts: switch matrix yield modelling and processing
clement yield modelling. Processing element yicld modelling is largely dependent upon
the processing elements themselves. Depending upon their complexity (size), a suitable
yield model reviewed in Section 3.2 can be chosen. Yield calculation of all the process-
ing elements is a simple probability problem. The most involved aspect is yield model-
ling of the crossbar switch matrix. Most of the discussion in this Chapter relates to
developing a functional yield model for the switch matrix. As a basis for the functional
yield model, yield figures for a single switch cell are extremely important. These yield
figures will be derived from the defect sensitive arcas (critical area) within the two dif-
ferent switch cells. Then, with the yield figures available for the switch cell, a func-
tional yield model for each typé of switch matrix can be developed. Redundanc)} selec-
tion is determined by the measure of cost-effectiveness, concerning the yield improve-

ment and the cost of hardware overhead.

3.3.1. Fault Analysis of the Switch Cells

Logic faults in integrated circuits are usually attributable to the following sources:
physical defects in active devices such as transistors, and physical defects in passive
devices such as interconnect lines, and the contacts and vias between them. Extensive
analysis of such failure mechanisms have been reported [19,111,112,113]. At circuit
and logic level, in which the transistor is the basic device, physical defects can cause
open and/or short-circuit connections to either the source or the drain structures of each

MOS transistor, or a possible missing connection to the gate of an MOS transistor. Two
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classical logic faults namely, stuck-at-one (SA1) and stuck-at-zero (SA0), are attributed
to a low-impedance, short-circuit, to VSS or VDD, respectively, either through a faulty
transistor or a shorted interconnection line. For CMOS circuits, these two logic faults -
are not sufficient. Other logic faults, mainly stuck-open {S_OP) faults, introduce
undesired high impedances at certain nodes which the classical stuck-at fault can not
model. This type of fault is usually called a non-classical fault. To include such faults
within the fault model, the use of gated latches bas been suggested [114]. However,
this approach results in a very complicated fault model even for very simple logic gates,
such as a two-input NOR, or CMOS transmission gates, etc. For CMOS circuits, partic-
ularly static CMOS circuits, all the above SA1, SAD, and stuck-open faulty nodes can be
modelled by, or attributed to, a set of transistors with their sources and drains per-
manently stuck-on (S_ON) or stuck-open (S_OP), thereby losing any gate control. For
the switch cell circuits presented Figures 2.7 and 2.9, probably the more practical way
to analyse the possible faulty behaviour of the circuits is to consider each transistor
S5_OP and S_ON and its contribution to the overall faulty behaviour of the circuit. This
analysis must include not only the classical, but also the non-classical logic faults. Open-
and short-circuits in the interconnection lines are too layout-dependent, so that they will
not be taken into the consideration at the logic level. They will be considered when the
defect-sensitive (criticel) area of the switch cell circuits is calculated later for the switch

cell yield evaluation.

Figures 3.5 and 3.6 show two switch cells again, which have already been given in
Figures 2.7 and 2.9 previously, but now at a logic gate level. Both swe-1 and swe-2
have a CMOS latch controlled by "column load”, which allows the switch-setting mes-
sage, represeated at "row load”, to be loaded and then stored in the latch. A NAND
gate performs a transistor switch in swc-1, while a CMOS transmission gate acts as a
transistor switch in swc-2, both of which are controlled by the output of the latch for its
on or off state. All the following presentations are based on extensive fault simula-
tions, in which a single faulf is mainly assumed. Some multiple faults are also analysed
for particular cases. However, the analysis of random multiple faults is too complicated
and certainly beyond the scope of the discussion at this stage. In the following treat-

ment, all the transistors in two switch cells are named by their labels given in Figures

2.7 and 2.9, and the analysis is carried out part by part within each switch cell.
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Figure 3.5 Gate level diagram of swc-1
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Figure 3.6 Gate level diagram of swc-2

Dynamic Switch of swc-1 (NAND gate):

Any of the three transistors of T9-T1l1 in Figure 2.7 being S_OP, will not
discharge the output‘ node. This is equivelent to the switch being permanently off.
When T9 is S_ON, the switch behaves as though it is permanently on. T10 being S_ON
may cause an incofrect output, if the cell is intended to be on. The incorrect output is
irregular in terms of a switch being permanently "on” or "off”. This fault can be
bypassed by not being activated. It is shown later in the treatment of routing algorithm

that such a cell can be considered the same as being S_OP. T11 being S_ON will not

cause any logic fault.

Transmission Gate

The output of the transmission gate being SA1 or SA0 may be caused by short-

circuits between the output and VDD or VSS. For the structure of the duplex matrix,
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this can cause an entire matrix column or row to be SAl or SAD. As. seea later, this
situation can not be tolerated with the scope of the switch matrix _itself:. Any of these
faults will straightforwardly prevent the use of the particular matrix '.ob‘lq-mn, or matrix
row, where the stuck-at fault resides. These two faults can be viewed as the classical

logical faults (stuck-at faults).

Besides the two classical logic faults, two non-classical logic faults (§_OP, S_ON)
are both possible in a transmission gate. Either of the two transistors in the S_ON state
cause the switch to be permanently on. This may result from a defect in the transistor
itself or a faulty latch causing its output SAl. Similarly, when both transistors are
S_OP, the switch is permanently off. The switch still works when only one transistor in
the pair is logically S_OP, but at lower speed. In the crossbar matrix, the fanout for a
switch is usually large, so that the driving capability of such a switch is crucial to the
system performance. Fault simulation for such a case shows that there is a very long
transmission delay and an intolerable drop in output voltage. Therefore, under this

situation, the switch is regarded as "off".
CMOS Latch:

As shown in the circnit and logic diagrams of the switch cells (Figure 2.7 and
2.9), the latch can be divided into two parts: a CMOS pass gate controlled by "column
load”, and a CMOS static latch with its input controlled by the pass gate. The two series
inverters with positive feedback are capable of storing the switching message from the

pass gate,

The S_OP and S_ON faults in an inverter cause three posibie incorrect outputs:
SAQ, SAl, or S_OP. The two classical logic faults are caused by the transistor being
shorted to VSS or VDD respectively. S_OF may be caused by cither or both transistors
being open to VSS and/or VDD. When S_OP occurs, the inverter output logic value will
eventually drop to logic "0", due to the inevitable leakage current. Consequently, this is
equivaient to the SAO fault at the output. Both transistors being shorted to VSS and
VDD is not a legitimate fault here, because it represents logical inconsistency. In fact,
the output value in this case lies somewhere between VDD and VSS, determined by the
impedance ratio of both ’pull-up’ and ’'pull-down’ transistors. Therefore, faults in a
CMOS inverter exhibit the two classical logic faults, SAl1 and SAQO. For the two series

inverters, the faulty outputs are the same as a single inverter. As a contribution to the
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switch cell, they (SA1l, or SAQ) will force the transmission gate or the transistor switch

(NAND) to be permanently "on" or "off", respectively.

The CMOS pass gate can be further divided into two paths: one path consists of
T1 and T4, the other consists of T2 and T3. For either path, when there is only one
transistor being S_OP, the circuit can still pass signals, except that the loading speed is
slightly slower. This does not affect the system performance so far as the static reconfi-
guration and defect tolerance is concerned. However, the cell having such a fault may
be considered faulty for its lower speed in switch-setting when the matrix is used for
dynamic reconfiguration purposes. The fault simulation of this fault showed that the
reduction of the loading speed is reasonably small. If the two transistors in either path
are both S_OP, then the cell is faulty. This is clear when the open path is actually the
path which is to pass the signal from the "row load" (T2 and T3). If the open path is
the path of the positive feedback (T1 and T4), then the switching message can be writ-
ten into the cell. However, when the path is changéd afterwards to the feedback path
(referring to the loading scheme in Chapter 2), the open path on the feedback route
resuits in a floating input node to the latch. Such a floating capacitive node, when
charged, will eventually leak through any parasitic resistance present, causing the latch
output to approach logic "0”. The switching information stored in the latch is also very
vulnerable to noise. When the S_ON fault occurs in the path which passes the signal
from the "row load”, the cell will be faulty, because the switching setting will be
overwritten when the load signal at the "row load” (logic "1" to turn a switch “on")
disappears. However, when the S_ON occurs in the feedback path, there is no faulty

condition exhibited at the output.

From the above analysis, various faults in the swc-1 and swc-2 mainly cause the
switch of the cell to be permanently "on" or "off”. Therefore, the later discussions will

concentrate on how to tolerate these faults in the switch matrix.

3.3.2. Switch Cell Yield Modelling

Switch cell yield modelling is at the lowest level in the functiona! yield modelling
for the switch matrix. The yield value is related to the geometry of the switch cell lay-
out. According to the fault analysis given earlier, and the actual layout given in Figures

2.10, 2.11, and 2.12, the critical area for each switch cell can be evaluated.
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The critical arca calculation for a switch cell could be involved, because, strictly

speaking, the critical area varies with defect sizef

. The observation made by IBM over
a long period of study suggested a distribution qurﬁe falling off with the increase of
defect size, according to an inverse-cube relationship. During integrated circuit
manufacture, defects introduced at each processing step may be considered in either of
two categories: first, very small defects (point defects) which often occur in chip insula-
tors. These are also known as dielectric pinholes. The second category includes defects
which bave sizes comparable to those of VLSI pattern feature size. All photolitho-
graphic missing patterns or extra patterns belong to this category. Intuitively, the criti-
cal area of a diclectric pinhole is the overlap region between two conductors, which
cross each other. Defects falling outside this area cannot cause logic errors (short cir-
cuits). The critical area of pinholes for most design may be determined readily as the
total overlap area between conducting patterns at different photolithographic levels
(metal layer, polysilicon layer, diffusion layer, etc). The critical area of photolitho-
graphic defects is more involved. Most discussions so far have concentrated on the spe-
cial case that a length of track, 1, is much larger than its width, d. With the inverse-cube
defect size distribution, the average critical area of open circuit for a long conductive

line is [22]

A=1— (3-19)

Similarly, for the casc of short circuits between two very long conductors, the average

critical area X is
A=1— (3-20)

where s is the separation between two conductors and xp is the most frequent defect

size in the IC process.

t For some type of defects, such as missing patterns or extra patterns of metal track,
whether they are catastrophic will depend upon their size. For example, a 2um wide
missing pattern in a metal track Spm wide will sot cause any logic fault, even
though it does reside in the metal track.
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According to the above principles for calculating critical area together with the
actual layout of the two switch cells in Figure 2.10 - 2.12, the overall critical area for
each switch cell can be calculated. The critical area for pinholes in swe-1 and swc-2 are
the same, being 970 p.mz. The average critical area for photolithographic missing or
extra patterns depends on the value of x(. Unfortunately, no values for xg were avail-
able for the process on which the prototype chips were fabricated. However, Marsh
suggested [116] a square-count model for calculating the critical area, where the critical
arca is defined as the minimum dimension specified in the design rules. This simplifica-
tion turns out rather more pessimistic than the final resulting yield data, because it has
been shown [117,115] that the total critical area is less than the total pattern area and,
thus, yield projections based upon the pattern area rather than the critical area will tend
to be pessimistic. Because of the lack of defect size distribution data, this simplification
is used to estimate the critical areas in the switch cells. The resulting areas are 3318|.nm2
and 3296um2, respectively, for swc-1 and swc-2, making the total critical areas for
swe-1 4288um > and for swe-2 4266um > |

The critical areas of both switch cells are very small, so that the choice of yield
model is open. According to Figure 3.4, and one of the properties of the Murphy yield
model expression in equation (3-3), all the models derived from the Murphy’s expres-
sion with different defect density distribution functions will have the same initial slope
as the Poisson mlodel, thus giving roughly the same yield value for circuits with very
small critical area. Therefore, the Poisson model is used to calculate the yield for the

switch cells. Table 3.1 shows the yield values under different defect densities.

3.3.3. Yicld Model for the Normal Matrix
Yield Model

According to the normal matrix structure shown in Figure 2.3, in order to make
an interconnection, one switch cell in an input column of a processing element has to be
set active (conducting), as indicated by the bold line in Figure 2.3. Interconnection

between an output of a processing element and a matrix row is hard-wired. Moreover,

+ The critical area for swc-2 is obtained from the layout designed in Plessey design
rules. However, the critical area of the other swc-2 design in MCE design rules is
very close to this figure.
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Table 3.1 Expected Yield of the Switch Cells
Defect Density(cm '2) 1. 2 | 3 4 5
swe-1 (%) 99.9957 | 99.9914 | 99.9872 | 99.9824 | 99.9786
swc-2 (%) 99.9957 | 99.9915 | 99.9873 | 99.9830 | 99.9787
Defect Density(cm ™~ 2) | 7 10 15 20 25
swe-1 (%) 99.97 99.9572 | 99.9358 | 99.9144 | 99.893
swe-2 (%) 99.97 99.9574 | 99.9360 | 99.9148 | 99.8936

every imterconnect route has to pass several switch cells horizontally and vertically. If
some faults in these cells cause an unwanted inter-cell short circuit between their
equivalent rows and columns, then the attempt to route this interconnection route has to

be abandoned.

The yield of the normal matrix is considered as the probability of having N suc-
cessful interconnection routes in a NXN matrix. Here N is the number interconnections
required by the system. Let y, be the yicld of a single switch cell resulting from the
above Section. Suppose that a switch cell has the same probabdility of permanent short-

circuit and open-circuit between its input and output, y;. Then

1+ y,

»=1- (3-21)

2

Statistically, the average number of non-activated switch cells passed by one intercon-

N
nection route is N vertically end — horizontally. Let the yield loss caused by photol-

ithographic defects in the output metal tracks of the processing e¢lements right across the
switch matrix be y;. Then the probability of successfully embedding a single intercon-
nection route is given by

N+ N

Ysin = Ys¥t(1 — ¥p)



-55.
3N

= ey - ) 2 (3-22)

The yiceld of whole switch matrix without redundancy is

Yo = ()’sin)N (3-23)

Supposing, further, that R redundant columns and R redundant rows are included
in the matrix to make N interconnection routes within this (N+R) by (N+R) switch
matrix. Then the total yield of whole switch matrix with these R redundancies is given
byl'i

RN+ N+i R—1{
Yp= 2 C  (¥sin) (1 = ygin) (3-24)

i=0 N+R -

The relationship between yield and the size of the matrix with various on-chip redun-
dancies, using this equation, is plotted in Figure 3.7. Figurc 3.8 shows the relationship
between yield and matrix size without any redﬁndancy and under various defect density
conditions. In Figure 3.9 and 3.10, the relationships between yield and the amount of

redundancy for various defect densities are given.
From Figures 3.7 to 3.10, several observations can be made:

e Yield decreases with the increase in matrix size. Beyond a certain point, it will
decrease very rapidly {ncarly exponentially). Adding more redundancy will shift
this point along the matrix-size axis, therefore indicating better yield values for

larger matrices.

® The yield curves saturate after a certain amount of redundancy. This shows that,

after a certain level, adding more redundancy is not beneficial,

t Any reader who is not familiar with probability theory, and the basic mathematic
of permutations and combinations, is advised to consult Appendix A.
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Figure 3.7 Yield vs matrix size plot with various redundancies (if the reading

on X-axis is n, then the size of the normal matrix is nXn).
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Figure 3.8 Yield vs matrix size plot without redundancy, but with various

defect densities, Do (cm_z).
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Figure 3.9 Yicld vs redundancy plot with various defect densities (the matrix

size is 64X 64).
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Figure 3.10 Yield vs redundancy plot with various defect densities (the matrix

size is 160x 160)..
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] The increase in yield is greatest amongst the chips with lowest initial yield
(without redundancy). Therefore, a low yielding chip can obtain more benefits

from redundancy in design.

L To obtain the same yield, a larger matrix needs more redundancy if the defect

density remains the same.
Cost of Redundancy

Adding redundancy into & system cap improve its yield. However, as shown
before, adding more and more redundancy will not necessarily exhibit more benefit.
For a chip which employs redundancy in design, let A be the relative increase in the

area due to hardware redundancy, i.e. A indicates the hardware overhead, where

chip area with redundancy Ag

A= (3-25)
chip area without redundancy A,

It is useful here to introduce a "figure of merit" for the normal matrix, FM,,, indicating
the benefit that adding a certain amount of redundancy can achieve. This can be defined

as:
FMy = —X — = — X — (3-26)

When FM, > 1, the cost of a chip with redundancy will be lower than that without

redundancy. FM, = 1 is the boundary case.

In Figure 3.11, the figure of merit, FM,, is plotted for various defect densities
and redundancy for a 60 by 60 normal switch matrix. Figure 3.12 gives the same
parameter, FM,, but for different matrix sizes under a defect density D, = 10. The
same conclusions may be deduced from the these curves as make in last Section: rhe

lower the chip yield, the more benefit there will be from redundancy in design.
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Figure 3.11 FM, vs redundancy plot with various defect densities (the matrix

size is 60%x 60).
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Figure 3.12 FMy vs redundancy plot with various matrix sizes (defect density

is 10 cm-z).
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3.3.4. Yield Model for the Duplex Matrix
Yield Model

Unlike the case of the normal mﬁtrix, for the duplex matrix shown in Figure 2.5
the outputs of each of the processing elements are not hard-wired to the matrix rows.
Instead, through & chain of switch cells, the output can reach any horizontal row in the
matrix. Therefore the duplex matrix is potentially more defect/fault tolerant. To make
a connection, two switch cells have to be activated. As for the normal matrix case, all
the non-activated switch cells through which an interconnection route passes must not
be S_ON. Suppose that a system requires N interconnection routes in the matrix, then
the probability of the i-th route being successfully embedded is given by:

(n + .';.>[

(- )
1- -y

Yei = (1= yp) (3-27)
where m is the number of columns in the matrix, and n is the number of rows in the
matrix (for a matrix without redundancy, n is the same as N). Further, let y, be the

yield of a single switch cell, and y, the yield of a switch cell which is permanently

shorted between its input and cutput.
The yicld of the whole switch matrix without any redundancy is:

n—1

IT ¥
=0C

Y
°

n—1 (n - i)
Jba- ¥5)° [1 -1- y,z)] (3-28)

m
where,a =n + —.
2
Let us consider the case of the matrix with redundancy. Due to the flexible struc-
ture of the duplex matrix, there are several ways to introduce redundancy into the
matrix: by adding extra columns, or extra rows, or both. However, introducing redun-

dant rows into the matrix will not be considered further here. There are three reasons

for this: firstly, IC manufacturing experience suggests that major yield loss is due to the
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process of metallisation. Data collected from a processing line [20] shows that the pro-
bability of having missing or extra patterns in a metal track is much higher than for
other types of defect. The matrix row failures can be mainly attributed to failures of
horizontal metal tracks carrying signals from the row decoder and processing elements.
However, the spacing between the horizontal metal tracks in the switch cell design is
not at the critical separation. The width 6f these tracks is reasonably large so that the
probability of obtaining such big defects (according to inverse-cube defect size distribu-
tion) and, therefore, failure of the horizontal metal track is generally low. Secondly,
the area occupied by a row is twice as large as the area occupied by a column. There-
fore, adding extra columns for redundancy is more economic than adding extra rows.
As far as tolerating a defective switch cell within the switch matrix is concerned, the
number of multiple paths between any input and output is sufficient for choosing an
alternative physical route (mainly an alternative matrix row). As scen later in the yield
model, this is already effective enough to tolerate defective switch cells. Adding a
redundant matrix row only gives more alternatives and does not greatly improve the
defect-tolerance of the switch matrix. Instead, it introduces an unnecessary amount of
hardware overhead. Finally, and most importantly, by adding redundant rows into the
matrix, only faults (catastrophic defects) inside the matrix can possibly be tolerated.
This amount of additional complexity does not give any improvement towards tolerating
any catastrophic defect inside the processing elements. Tolerating defective processing
elements, however, is our main task. Therefore, adding redundant rows in the matrix
is not cost-effective. A very large matrix may only need one or two redundant rows,
which are mainly required to replace the matrix row affected by a defective output (SA1

or SA0) of the row decoder, or the classical logic fault of a given switch cell.

The probability of every route being successfully embedded arises from two con-
siderations: firstly, the probability of successfully embedding a route within the non-
redundant matrix area y,; (the area excluding all the redundant columns); and,
secondly, the probability of successfully embedding the route by using redundant
columns, y';; (in the case that the routing attempt in the non-redundant area has failed
because of some defective switch cells in that area). The second part should be the
intersection of the event of failure to embed the route within the non-redundant matrix
area and the event of successfully embedding the route in the redundant columns. The
combination of these two parts forms the overall yield for embedding a route within the

matrix with redundant columns. Clearly, this overall yield can not be greater than
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100%. Suppose R redundant columns are put into the matrix, then the probability of

the i-th route being successfully embedded can be expressed as
-1 R-i+1 i+1
% = Yei+ (1= ¥e) [ jEIY'cJ](l-(I-y,(l- (1-y) R Dy (=i 1y

i-1
+ [;51“ - y'cj)](l - -y - -y

i-2

+ Zo-(-na-a- ,,)<R-='+f+1)))("-i+1>)] (3-29)

where, when i = 2, 0 ;= 0; when 3 < i =< R, the coefficieat Q ; is

0 NOLJ 1 Mg
g;=C| X | Ix k] - C z LII x ]
7 b=1ke=1P i1 lp=1le=1"*
PPN P Ni-j-1¢i-1
T A B > Ln xpk] (3-30)
' i—-1 p=1 =1
Jjtr
where N, = C . and xp,; is the k-th element of the p-tb selection of j elements for the
;2 :

first term, of {j+1) elements for the second term, ..., and of (i—1) elements for the last

term, from a total of (i—1) elements y'cq (gq=1,2,...i-1).

In the case when i > R, the probability of the i-th route being successfully embed-

ded becomes

i—-1

i = Yei t (l-yci)[[ jgl(l_)"cj)](l—(I—ys(l—(l—ys)R))(n_i+1))

R—l . *
+ 20a- (- yt-a- y,)’n‘"““))] (3-31)
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where, when R = 2, 0 ; = 0; otherwise,

TN B
=c|z|n -
2 7 lp=1le=1"P* j+1 1
R-j[NR-j( R
L E|
R Lp=1 1
J+r

where N, = Cl, and Xpk has the same meaning as that in equation (3-30). The yield
11—

of the entire switch matrix is given by

Yp= Iy (3-33)

Figure 3.13 shows the relationship between yield and the size of the matrix with
various on-chip redundancies. The relationship between the yield and matrix size
without any redundancy, but under two different defect densities, is illustrated in Fig-
ure 3.14. For two matrices with different sizes, Figures 3.15 and 3.16 demonstrate the

relationship between yicld and the amount of redundancy for various defect densities.

From Figures 3.13 to 3.16, several observations for the duplex matrix can be

drawn:

L The yield decreases with an increase in matrix size, but not as rapidly as the nor-
mal matrix does. In fact, the yield of the duplex matrix decreases much more
slowly. This is because, in the duplex matrix, a larger matrix size will offer more
choices for embedding a certain connection, due to the feature of multiple paths,
while in the normal matrix the number of choices for embedding a certain connec-
tion is kept unchanged with the increase of the matrix size. In other words, the
probability of successfully embedding the connection is unchanged, so that the
probability of successfully embedding a larger amount of connections will decrease

exponentially.
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Figure 3.13 Yield vs matrix size plot with various redundancies (if the reading

on X-axis is n, then the size of the duplex matrix is nX 2n).
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Figure 3.14 Yield vs matrix size plot with various defect densities, Do (cm —2).
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Figure 3.15 Yield vs redundancy plot with various defect densities (the matrix

size is 64x 128).
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Figure 3.16 Yield vs redundancy plot with various defect densities (the matrix

size is 160x 320).
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®  The yield curves saturate after a certain amount of redundnnéy. In comparison
with the normal matrix, the duplex matrix needs less redundancy to cause satura-
tion of the yield curves (i.e. to get the maximum yield) and thus the duplex matrix

needs less redundancy than the normal matrix.

] The increase in yield is greatest amongst the chips with lowest initial yield
(without redundancy). Therefore, the low yielding chip can obtain more benefits

from redundant design.

o To achieve the same yield, a larger matrix needs more redundancy, but, as com-

pared to the normal matrix, it needs less redundancy.
Cost of Redundancy

The figure-of-merit definition for the duplex matrix, FM , is the same as that for

the normal matrix, and is written as:

A, Yp
FMg= —X — {3-34)
Agp Y,

FM; versus the amount of redundancy for various defect densities is given in Figure
3.17. Figure 3.18 presents the same relationship but for different matrix sizes. These
curves show that the maximum figure-of-merit that the duplex matrix can achieve is
lower than that for the normal matrix. This is because the yield of the duplex matrix
without redundancy is sufficiently high that by adding redundancy the yield will not'
improve greatly. Instead, the increase in silicon area due to redundancy will become the

dominant factor in the figure-of-merit value.

3.3.5 Other Considerations for Switch Matrix Yield

The yield models for both normal and duplex matrices developed so far are on a
single route basis, as all the embedded routes within the matrix are independent of each
other. Defects in the matrix can result in a change in the physical implementation of a
given route, without considering the physical implementation of any other routes in the
matrix. This is not generally true in a real sitnation in which the processing elements
usually have several input and output ports connected to the matrix, so that the physical

implementation of the routes relating to these input/output ports of the processing
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Figure 3.17 FMy vs redundancy plot with various defect densities (the matrix

size is 100% 200).
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Figure 3.18 FM4 vs redundancy plot with various matrix sizes (defect density

is 10 cm ~ 2).

element are likely to be dependent upon each other. For this case, any change in physi-
cal implementation (for example, using a redundant column and therefore redundant
processing clement) of one of these routes should also consider the changes in physical
implementation of its related routes. Thcreforc,.in general, switch matrix yield model-

ling should be divided into three stages, instead of two:
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1. Calculate the yield value for a single switch cell and the yield value for success-

fully embedding a route in the matrix ygin.

2. According to the number of input and 6utput ports of processing elements,
suppress the number of routes from the original number N to the number of pro-
cessing elements. The new yield value for successfully embedding a route in this

suppressed matrix is

P

Ysu= 11 ya ) (3-35)
i=1

where P is the number of ports for the processing element being considered. For
the normal matrix, y,; has the same meaning as in equation (3-22), and their
values are the same for all the routes. For the duplex matrix, y;; is equivalent to

¥ci in equation (3-27).

3.  After suppression of the number of the routes to be embedded in the matrix, the
sumber of columns in the matrix will shrink to the number of processing elemeats
and be the same as the number of rows (if no redundant fows are introduced).
Within this final stage, one of the yield models developed earlier for the normal
matrix or the duplex matrix is applied to such a shrunk matrix using the new sin-

gle route yield, y;,, to calculate the yield of the switch matrix.

When the yield calculation for a switch cell employs a simple Poisson yield model
(as it did earlier in Section 3.3.2.), it is automatically assumed that defects are ran-
domly distributed over the whole matrix. However, as discussed earlier, defect cluster-
ing is a common feature of a modern VLSI process. The effect of such defect clusters
should be included in yield models. Furthermore, the crossbar switch matrix does not
only contain an array of switch cells, as the decoding and driving circuits for the array
also form part of the matrix. The yield of these circuits should alsod included in the

overall yicld of the switch matrix. Therefore, by combining these two factors, the

overall yield of a crossbar switch matrix becomes
Y p=Y XYgX¥p (3-36)

where ¥, is clustering yield. Y, is the yield of decoding and driving circuits plus all the



- 69 .

T

other necessary auxiliary circuits’'. Yp is the yield gi\;en by equation (3-24) or (3-33).

3.3.6 Consideration of the Entire Superchip

The yield calculation for the entire superchip is based on the yield data of lower
level elements such as the yield of processing elements and the switch matrix. General-
izing the problem, the processing elements contained in the superchip may not be ident-
ical. In fact, the superchip may contain m processing elements, P,, n processing ele-
ments, Py, p processing elements, P, ..., and q processing elements, Pg; each type of
processing element has its own yield Y,, ¥, Y, ... and ¥, respectively. The yield cal-
culation of each processing element is straightforward by calculating the critical area in
the processing element and by using this area in a suitable yield model in terms of the
size of the processing element. Supposing the yield of the switch matrix with redun-

dancy is ¥g)s, then the overall yield of the entire superchip is

: m

Y = Yom(¥g)" ()" (¥)P - - - (7p)? (3-37)
where Y, is the yield of switch matrix without redundancy. If there are R redundan-

cies for P, then the yicld of this processing element with redundancy can be expressed

as

R n+ti .
ra= = ¢ @t a -y ®-9 (339
i=0 a+R

This expression can equally be applied to Py, P., ... and Pg. Therefore, the yield for

the whole superchip with redundancy can be written:

¥ Strictly speaking, simply regarding the yield value of the control circuits {mainly
decoding circuits) as a gross yield in the equation will not be entirely correct,
because onc or two faulty lines in these decoding circuits may not be destructive to
the whole switch matrix (particularly the column decoder). For example, we can use
a redundant matrix column introduced for tolerating defective switch cells and
processing elements to get around the problem. However, as seen in the prototype
analysis later, any fault in the control circuits will do a great deal of damage to the
switch matrix. It is hoped that by adding ¥4 a reasonable amount of redundancy for
the possible faults in the control circuits can be achieved. For instance, the number
of redundant rows should depend on the yield of row decoding circuits, and some
extra columns and processing elements are needed to tolerate faults in column
decoding circuits.
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Y = Yop¥aYpYc '+ Yg (3-39)

According to the earlier analysis, Ygpr can be rénsonably high (more than 80%)
even if the size of the matrix is large. In order to get a reasonable yield, Y4, Yp ... and
Yg should again be reasonably high. This requires a high yield for each processing ele-
ment. For example, if there are 10 processing elements, P,, in the chip and each of
them has yield of 50%, then the overall yield Y, for P, will never reach 3% no matter
bow many redundant elements are included in the chip. Hence, the overall yield of the

chip will never reach 3% either.

3.3.7 Redundancy Sclection

When the yield calculated by equation (3-37) can not meet the required yield
Y;eq» & necessary amount of redundancy should be added into the chip to improve the
yield. The algorithm for selecting and calculating the required amount of redundancy is

shown below, in expanded form:
1.  Calculate each group of elements Y, , ¥, ¥}, Y&, oee Yg.

2.  Calculate the yield of the system without redundancy Y as shown in equation (3-
37).

3. If the calculated yield value satisfies the specified yield value Yreq (Y = Yreq),
calculation terminates successfully. Otherwise, set a yield deviation defined as the

difference between the current yield value minus the previous yield value,
DY=Yoypr — Yprevy (3-40)

and carry on to step 4.

4. Choose the processing element with the lowest yield among Y4, Yg, ¥¢... and
Yg, using Yz, Yy, ¥, ... and Yy, as a first target. Add one such redundant ele-
ment to this group, and update the yield value of this group within Y4, ¥p, Yc...
and ¥g. Increment the switch matrix row and/or column (according to the type of
matrix) by the number of /O ports required to connect an extra processing ele-

ment into the system. Then, update the yield, Ygps, with the introduced
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redundancy. Note that ¥gps should be calculated in three stages indicated in Sec-
tion 3.3.5.

5. Use equation (3-39) to update the yield. Compare this yield Y to Yreqs andif Y =
Y,¢q, the calculation terminates successfully. thcrwise, updatc the "DY". If DY
is greater than a deviation limit set by designer, proceed to step 4, otherwise the

calculation terminates unsuccessfullyf.

Optimal redundancy is derived from the evaluation of the figure of merit. The
peak value of each curve m Figures 3.11, 3.12 and 3.17, 3.18, for example, indicates the
amount of redundancy which results in the most economic hardware overhead to obtain
the greatest possible improvement in yield. From these curves, it is clear that the

optimal amount of redundancy increases with an increase in matrix size.

3.4, Optimal System Block Partitioning Using Crossbar Networks

For a given system architecture using the crossbar switch matrix, there can be
several physical configurations. For instance, a complex multiplier can be regarded as a
processing element, or it can be sub-divided into six smaller processing elements, four
real multipliers and 2 adders, linked by the switch matrix. These two different confi-
gurations result in different complexities of the processing elements, and require a dif-
ferent size for the crossbar switch matrix. A question arises here, which configuration
is better in terms of the cost-effectiveness of defect/fault tolerance? Generally speak-
ing, for a particular system (assuming that the complexity at a system level is constant),
the question may be recasted as; what is the optimal block size of the processing ele-
ment in the superchip? This topic is addressed in this section. The partitioning range
for the processing elements (a range of sizes), within which the cost-effectiveness of
fault-tolerance through the crossbar switch matrix can be achieved, will be discussed

here.

Let us take the two extremes. If a complex system comprises processing elements
at a very low level (NOR, NAND gate level), then to implement such a system in

superchip style, a huge crossbar switch matrix is needed to connect all these small

t Unsuccessful termination means that the required yield is too high to be met by a
given manufacturing technology, even after a large amount of redundancy is
included in the chip.
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processing elements together. On the other hand, if the processing elements are of a
high complexity (ALU, multiplier, etc), a small switch matrix is needed to realise the
whole system. In both cases, the complexity of total functional circuits (excluding
switch matrix) is constant. In the former situation, the yield of ecach individual process-
ing element will be very high. Here, the defect-tolerance of the processing elcrrlxcnts
may be effective in the sense that the sacrifice for any critical defect is very small
(probably one small logic gate). However, the iyield of the extensive crossbar matrix
may be so poor that it will dominate the yield of the whole system. In fact, the system
yield may have been even lower than that of a non-programmable case, e.g. such as a
FIRST implementation discussed in Chapter 2. Also in this case, a large proportion of
the silicon area is used by the switch matrix for system communication instead of com-
putation. This is undesirable from an economic point of view. Therefore, there is little

benefit in using the crossbar switch matrix in this extreme case.

In the latter situation, adding a large amount of redundancy is not economic,
because the prodessing elements are so big that appending a single one into the super-
chip results in a significant hardware overhead. Therefore, the level of redundancy will
be kept very low resulting a very limited useful defect-tolerant capability. In other
words, when there is any critical defect in the system, the system implemented in super-
chip style does not have many alternatives {redundancies) to choose to avoid the defec-
tive processing elements. Ultimately, the defect-tolerant capability in this extreme case

is quite similar to its non-programmable. counterpart.

To measure the cost-effectiveness of using a crossbar switch matrix in a superchip,

a new figure-of-merit parameter, FM,, is defined here for the whole system:
FM,, =X (3-41)
in which

Ay: area occupied by the system without the crossbar switch matrix (non-

programmable case).



-73-

Ap: area occupied by system using the crossbar switch matrix (programmable case).
¥n: yield of system without using the crossbar switch matrix (by fixed wiring).

Yp: yicld of system using the crossbar switch matrix, including the yield of the switch

matrix and the yield of the processing elements.

Given the complexity of a system, different partitioning?

results in a different
complexity for each individual processing element. For each partitioning, a different
degree of redundancy will result in a different value for the figure of merit. However,
the figure of merit for a given partitioning has its highest value at a particular amount
of redundancy. This maximum figure of merit value represents the best possible return
using partitioning. If this value is less than unity, it means that there is no benefit in
using the switch matrix for that partitioning. Figure 3.19 shows the highest value of
FMp that a particular partitioning can achieve versus various partitions shown by the
matrix size, in which the normal matrix architecture is used. The curves in the diagram

represent two different overall system complexities as indicated in the diagram. They

show

® for the same crossbar switch matrix size, more complex {larger in required silicon
arca) processing elements will obtain more benefit from using such a switch

matrix.

®  more complex systems allow a wider range of partitioning within which the switch

matrix will bring benefit for the yield improvement (FM p > 1)

° a specific partitioning of a system which results in a large population of very sim-
ple processing clements will Jead to an unacceptable system cost, indicated by the

fact that the obtainable highest value of FM is below unity.

Figure 3.20 illustrates the relationship between the system complexzity and the beneficial
partitioning range for the normal matrix. This partitioning range is represented by the
maximum number of matrix rows and columns (the maximum size of the switch matrix)

beneficially partitionable for a particular system complexity (required silicon size).

+ In the rest of the discussion, we assume that a system is partitioned into a number
of processing elements each of which has the same complexity.
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Figure 3.19 FM, vs different partitions for a particular system complexity in
the normal matrix organisation {Here the critical area is supposed to be 10% of
the total silicon area, and A is the total silicon area occupied by all the process-

ing elements).

Similarly, Figure 3.21 and 3.22 are the two equivalent diagrams to Figure 3.19 and 3.20
but for the duplex matrix. Again, the partitioning range is indicated by the maximum
number of matrix columns for a particular system complexity. In Figure 3.22, it can be
scen that, with the increase in system complexity, the beneficial partitioning range goes
up very rapidly. This results mainly from the fact that the duplex matrix has inherently
a much higher yield than the normal matrix, Thié applies particularly when the matrix
size is very large, so that even for very fine partitioning (partitioning with low com-
plexity of processing elements) the duplex matrix still funcﬁons correctly as a defect-
tolerant mechanism rather than giving the system an additional yield burden (as the
normal matrix doeé at the same situation). It can also be seen from Figures 3.19 and
3.21 that the partitioning resulting in the maximum value of FM p brings the block size
of the processing elements to around 5 mmz. With current 2 or 3pm, double-metal,
CMOS technology, a transistor count for the processing elements between 104 to 10S

scems to be the optimum block size for the superchip architecture.

3.5. Block Partitioning versus Hierarchical Redundancy

All the discussion and measures developed earlier are based on a single level
redundancy scheme, in which redundancy is only available at a processing element
level. - However, today’s VLSI design sequence is usually based on a structural

hierarchical design methodology in which a chip is partitioned into different levels of
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Figure 3.21 FMpy vs different partitions for a particular system complexity in
the duplex matrix organisation (Here the critical area is supposed tc be 10% of
the total silicon area, and A is the total silicon area occupied by all the process-

ing clements).

building bldcks,according to their functional relationship. In this case, optimal partition-
ing may not be achievable, nor may a good (beneficial) partition be guaranteed. More
importantly, the size of processing elements obtained from an optimal partition, as
presented in the last Section, may not meet the high yfcld requirement for each indivi.
dual processing-clement, mentioned at the end of Section 3.3.6. Low yield for the pro-
cessing elements can result in a very low, and unacceptable, overall yield for the super-

chip, although it can be much better than its non-programmable counterpart. It follows
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total silicon area).

from these considerations that we should think how hierarchical redundancy may ease
these conflicts. Huang and Daughton [118] studied yield and chip cost for the case
where two levels of redundancy are taken into account. They assumed that a VLSI chip
consists of N, modules, each module containing N, elements. Ii the overall hardware
overhead for redundancy is fixed, then different distributions of redundancy at two lev-
els may result in different yield valucs, and therefore cost’. They concluded that when
the number of elements per module is much larger than the number of modules per
chip, it is not beneficial to use two levels of redundancy. Instead, redundancy should
tﬁosﬂy be employed at the lower level (the element level). When the number of ele-
ments per module is comparable to, or smaller than, the number of modules per chip,

then it is beneficial to use two levels of redundancy.

The superchip architecture offers two levels of redundancy by introducing a small
switch matrix into the processing elements, as well as a larger matrix being used for
processing element interconnection. As indicated in Section 3.3.6, however, when pro-
cessing elements are not large, the best yield can be achieved with only one level of
redundancy at the processing element level. When processing clements are large and

complex (this implies fewer processing elements if the system complexity remains

1 A single level of redundancy is the special case here when the distribution at one
level is zero.
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constant), two levels of redundancy may be useful to enhance the yield of an individual
processing element as well as the yield of the entire superchip. Taking the example
given at the end of Section 3.3.6 again, if we assume that a certain amount of redun-
dancy is introduced at a lower level inside P, so that its yield rises from 50% to 80%.
Thus the yield for 10 processing elements, P4, can reach 73% through the higher level
of redundancy (the redundancy at the P, level). Clearly this is a considerable yield
enhancement achieved with two levels of redundancy, in comparison with the previous
3% value achieved with a single level redundancy. This comparison will be exemplified

in more detail in the case study contained in Chapter 6.

3.6. Conclusions

At the beginning of this Chapter, various yield models for predicting the process-
ing yield of integrated circuits were reviewed. Some of these were established in 1960s
and have had to be modified in line with VLSI manufacturing technology trends. Thus
more complicated analytical, but also empirically-based, yield models have been pro-
posed to track the technology. A summary of these yield models has already been
presented at the end of the Section 3.2.10. This was followed by the analysis of the
fault mechanism within the switch cells, which are the most basic building blocks of the
switch matrix. This was the starting point of the numerical analysis of the switch
matrix, leading towards the establishment of a yield model for each switch matrix. The
analysis shows that various processing defects within the switch cells can result in the

following functional fault:

] Switch Cell 5_ON: the input and output of a switch cell are permanently connected
so that the on-off state can not be controlled externally. This fault can possibly be

tolerated within the matrix without affecting the processing elements.

e Switch Cell §_OP: the input and output of a switch cell are permanently discon-
nected so that the on-off state can not be controlled externally. This fault can pos-

sibly be tolerated within the matrix without affecting the processing elements.

L Switch Cell SAD or §AI: the output of a switch cell is permanently stuck at 1 or 0
so that any signal through the switch is likely to be corrupted. This kind of fault

can not be tolerated within the switch matrix itself.



-18 -

From a fault-tolerant point of view, more emphasis has been placed on developing
tolerant techniques for the first two faults alone. Any SAO or SA1 faults within a switch
cell will cause the whole related matrix column or row to be SA0 or SAl. This simply

results in the abandonment of the related matrix column or row.

A functional yield model was developed for each switch matriz, based on indivi-
dual yield values for the switch cells. The yield values were derived from one of the
statistical yield models previously reviewed. This involved the calculation of the critical
geometry within the actual switch cell layout. Figures of merit were also defined. The
results prove that deliberately introduced architectural redundancy is very effective in
- yield improvement under certain conditions. The optimal amount of redundancy can be
obtained from the figure of merit estimation for a system. An algorithm for calculating
the yield figure for the whole superchip, and selecting the necessary amount of redun-

dancy for achieving a desired yieid value, was given in Sections 3.3.6 and 3.3.7.

System partitioﬁing is another important issue. Consideration was given to finding
a cost-effective way of dividing a system into suitable sized processing elements imple-
mented in the superchip style. The results show that the effective partitioning range
goes up with increased system complexity. The growth rate depends upon the structure
of the switch matrix. The best transistor count for the processing elements in the

superchip scems to be between 104 to 105

. Coincidentally, the node complexity of
several large processor array chips existing or currently under development [119] also
lies within or necar the bounds of this range. However, when a partition (within the
partitioning range) makes the yicld of individual processing elements very low, a
second (lower) level of redundancy should then be introduced, rather than employing a
large amount of redundancy at the processing element level, which may still not
enhance the yield up to a reasonable level. By adjusting degree of redundancy at both
levels, a considerable amount of yield improvement can be achieved. An example given

in Section 3.5 showed that such hierarchical redundancy may enhance the yield much

more effectively than single level redundancy.
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Plate 1, Microphotograph of the two switch matrix prototypes fabricated by

Plessey Co.
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CHAPTER 4
THE PROTOTYPE CROSSBAR SWITCH MATRIX DESIGN

AND EXPERIMENTAL RESULTS

4.1. Introduction

The concept and orgenisation of the superchip were introduced in Chapter 2. An
improvement in defect/fault tolerance and system rccdnfigurability were indicated by
using the crossbar switch matrix, in comparison to its non-programmable version (e.g.
a FIRST-compiled chip). Although extensive simulations of the switch matrix design
have been undertaken, it is still important to validate the design in silicon. Further-
more, certain performance parameters of the crossbar switch matrix e.g. ‘signal delay,
distortion etc, play an important role in the overall system performance. Three proto-
type crossbar switch matrices were designed using 2.5pm and 3pm, double-metal,
CMOS technology available at the Plessey Co. and MCE Ltd, to evaluate its functional-
ity and characteristics. Plate 1 shows two prototype designs fabricated at Plessey Co.
One is a 32 by 32 switch matrix organised in the normal switch matrix form shown in
Figure 2.6, the other is a 32 by 64 switch matrix organised in the duplex switch matrix
form shown in Figure 2.8. Plate 2 illustrates another design fabricated at MCE Ltd,
which is 9 by 16 switch matrix organised in the duplex matrix form. This Chapter
presents the test results from these prototypes and compares them to the simulation

results.

4.2. Prototype Design Procedure

Each prototype chip consists of a column decoder, a row decoder, an array of the
switch cells, some NAND gates, and "Tesc” circuit pairs (described earlier in Chapter-
2). All these circuits and their organisation are presented in Figure 2.13. For the

duplex matrix, a signal path from an input pad through two switch cells to an output
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pad brings a situation in which the second switch cell has to drive a very large capaci-
tive load (a large buffer associated with an output pad). This will cause a serious delay
and a degradation of the performance of the switch matrix. In the prototype designs,
therefore, each output from a matrix column passés through an intermediate buffer
which is designed to avoid the above situation, Suppose that the buffer in output pad is
larger than the intermediate buffer by a factor f, the same as the intermediate buffer
and the switch cell. It has been shown [120] that value of f ranging from 2 to 4 @e
optimal in terms of time delay. In the prototype, f was chosen to be 3.7, both for the

switch cell to the intermediate buffer and for the intermediate buffer to the output pad.

For convenience in further discussion, let us name all the input and output pins
available for testing as INO, IN1, IN2, ..., and output pins as OUT0, QUT1 OUT2, ...,
respectively. The addressing signal input has 5 or 6 bits for the matrix row decoder
and the matrix column decoder depending upon different sizes of the matrix; these are
labelled, from the least significant bit to the most significant bit, as RDEC1 to RDEC6
for the row decoder, and CDEC1 to CDEC6 for the column decoder. The "disabled
state” control pin, "Dset”, and the ‘c]earing state” control pin, "Tset", (discussed in
Chapter 2, Section 2.4.2) are named here as ANDIN and TESTIN.

The process of layout and its verification were carried out with a suite of CAD
tools. Most work was based on tools which originated from the University of Califor-
nia, Berkeley, and were then modified and released by the University of Washington
and the VLSI Consortium [121,122] in the USA. These include CAESAR (an interac-
tive graphics editor), LYRA (a design rule checker), MEXTRA {a circuit extractor),

RNL (a switch level simulator), and SPICE (a circuit level simulator)..

4.2.1. Layout Generation

Full custom chip design is very time consuming and prone to human error during
layout. The approach adopted in this research for generating the whole layout for the
prototypes was a cell based approach. All the circuits used in the chip, such as switch
cell, NAND gate, inverter, and "Tesc" circuit, etc., were laid out individually using the
graphics editor CAESAR. The three custom layouts of both swc-1 and swc-2 have
already been illustrated in Figures 2.10, 2.11, and 2.12. Some 'tiling’ blocks for gen-
erating row and column decoders were also designed. The layout data of these cells are

stored in a library, which also includes input and output pads. A layout assembler was
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designed by the author during the development of the prototype and written in C
language {123] and CLAP (a C-based layout language ). [124] According to the matrix
size specification and its organisation (normal matrix or duplex matrix) presented to the
assembler, the latter can generate automatically all the necessary building blocks and
connect them together to form the desired switch matrix chip. The assembler defines
and assembles new large cells, such as the row and column decoders, from the library
before connecting them up to the whole chip. The assembler output is in CIF (Caltech
Intermediate Form) format [120]. Prototype design layoutsof the switch matrix shown

in Plates 1 and 2 were generated by the assembler.

4.2.2. Design Verification

Design verification was performed hierarchically. Firstly, verification was carried
out within the cell library. Basically, each cell in the library was extracted using MEX-
TRA, to switch level and circuit level. Thereafter, switch-level simulation was under-
taken using the RNL switch-level simulator, and, additionally, the circuit level simula-
tor SPICE confirmed the functionality and the timing information for the cells. Finally,
the same circuit extraction routing, and then the switch level simulation were applied to
the whole MCE chip (the two Plessey chips are too complex for the tools to perform
whole chip verifications}. Figure 4.1 shows the result of such a switch-level simulation
on the MCE prototype extracted from the actual layout, including all the input/output
pads. All the input signals are exactly the same and applied simultanéously to the
respective input pads, so only one input signal is shown in the diagram. (I;,0 j) is
used to indicate a signal path from the i-th input to the j-th output. All the loading sig-
nals are arranged such that the first matrix row is assigned to a path (I1,014), the
second matrix row is assigned to a path (I3,03), ... and the eighth matrix row is
assigned to a path (Ig,0g). These paths are serially established as shown in the simula-
tion result. As the switch matrix is organised according to the duplex matrix organisa-
tion, two switch cells on a matrix row are needed to be activated in order to establish a
signal path. In the simulation, these two switch cells are activated (turned on) one after
another according to the required signal path inside the matrix. Figure 4.2 illustrates
the loading signals for establishing a signal path in the duplex matrix during the simula-
tion, which, in principle, follow the loading scheme developed in Section 2.3.4 and
shown in Figure 2.17. The simulation result shows that all the 8 outputs track their

inputs following the appearance of the second pulse of the "Dset” signal, i.c. just after
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the physical path is established for that connection. The loading scheme for the pormal

matrix has been shown in Figure 2.16. Only one switch cell requires to be activated to

establish a signal path in the normal matrix.

RN RESULTS PLOT
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Figure 4.1 Switch level simulation of the whole MCE chip
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Figure 4.2 Loading signals for establishing a signal path in the duplex matrix

4.3. Test Procedure for the Prototypes

The fault pattern must be captured before a switch matrix can be used. This pat-
tern includes the location and fault type of all the defective switch cells in the matrix,
and the location of all the faults present in the decoding and driving circuits. The chip
test exercise sbould sensitize all the switch cells hd determine all the test outputs from
the cells being tested. Due to the limited number of I/O pins available in the proto-
types, particularly the duplex matrix chips, the approach adopted was to use the decod-
ing and driving circuits to pass the test signals on to each switch cell in the matrix. Note
that these deéoding and driving circuits were initially untested at the time when they

were being used to access the switch cells.

S_OP and S_ON are the two possible faults in the switch cells to be detected. The
testing scheme used for these two fault conditions was very straightforward and shown
in Figure 4.3 for swc-1, and Figure 4.4 for swc-2. Basically, if a switch cell is turned
off and its output still follows the input, then this ccll is stuck-on (S§_ON). On the other
hand, if it is turned on and its output does not follow the input, then this switch cell is
stuck-open (S_OP). The entirc switch cell array was tested on a row-by-row basis.
Remembering that when "Tset” is set to logic one, all the switch cells on one matrix
row may be activated by addressing that matrix row through the row decoder. Thus the

testing of one matrix row can be divided into three phases:



-84 -

1 Initialise the whole matrix by setting both the row decoder and the column
decoder to their "clearing state” (seec Chapter 2). Thus all the switch cells in the
matrix are intentionally turned off.

O  Address a particular cell on the matrix row. This switch cell must be located on
the matrix column to which the exercise signal ("input” signal in Figure 4.3) is
epplied. Activating this cell is achieved by passing the exercise signal on to the
matrix row, so that all the other switch cells under test in that matrix row may be

exercised (as Figure 4.3 illustrated). This phase is only for the duplex matrix.

Il Address a matrix row and exercise all the switch cells on that matrix row. For the

duplex matrix, this matrizx row is the one that the switch cell activated in the

second phase resides.

outq;:u!

isading
(from row decoder) > switchcell[—>

input

leading contro!

{from column decoder)

foading n
looding control I
s UL
sutput IR

Figure 4.3 Dynamic switch cell (swc-1) testing

The choice of which particular matrix column to use in the second phase is not impor-
tant. In fact, any column connected with an input pad can be chosen. During such a
test, all the input pads except the one where the test signal is applicd are considered as
output pads for observing the response. This is possible because the structure of the
input pad in tﬁe chip only consists of a protection circnit (two reversed diodes) for

removing possible spikes of input signals, therefore, it can transfer signals
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Figure 4.4 Static switch cell (swc-2) testing

bidirectionally. By observing signal response at the input and output pads connected to
the matrix columns, the following information can help to distinguish the fault types

and locations for the switch matrix under test:

I If the exercise signal (usually a square waveform) appears at any of the observing
points during the first phase, then some short-circuits must exist between these
matrix columns where the exercise signal appears and the matrix column or row
where the exercise signal is applied. For a perfect switch matrix, there should not

be an exercise signal appearing at any of these observing points.

I For the duplex matrix, if the exercise signal appears at any of the observing points
during the second phase, then the switch cells located at the crosspoint of the
matrix row which is currently being tested and the matrix columns where the exer-
cise signal appears are stuck-on (S_ON). For a perfect switch matrix, there

should not be an exercise signal appearing at any of these observing points.

Il During the third phase, the test signal should start appearing at all the observing
points. If any of these observing points exhibits the test signal during this phase,
then the switch cell at the crosspoint of the matrix row being tested and the

column where the exercise signal appears is working. For the duplex matrix, it
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also indicates that the switch cell turned on during the second phase to pass the
exercise signal on to the matrix row from the exercise signal input pad is not
S_OP (i.e. may be working, or S_ON). This switch cell will be referred to as the
testing cell. 1If the exercise signal does not appear at SOME outputs during the
third phase when it should, then it can be concluded that the switch cells on the

cross point are S_OP, and the testing cel! is functioning.

IV If the test signal does not appear at all at any observing point during the third
phase, several possible scenarios could apply. The first possibility is that the test-
ing cell (for the duplex matrix case) was not actually turned on due to its S_OP
fault, so that no exercise signal is passed on to the switch cell under test. The
second possibility is that the intended matrix row was not properly addressed. In
other words, the intended output from the row decoder may not be set to logic
onc (SAQ) to activate the matrix row. Therefore, no information has been written
into any switch cell on that row (including the testing cell). The third possibility is
that all the switch cells on that row arc S_OP. Statistically, there is little chance of
the last situation happening, thus it is basically not considered. To check whether
the second case applies, another switch cell on different matrix column can be
chosen as a new testing cell, with which the test routing is repeated. If the result
shows that the testing cell can be turned on and there are some outputs at the
observing pads during the third phase, then it can be concluded that the row
decoder is working for this matrix row. Otherwise, it is very likely that the row

decoder is not working for the current matrix row,

One uncertainty about the duplex switch matrix from the above tests is that, if the
testing cell is S_ON, then the test results will be exactly the same as that for a perfect
working matrix. However, this can be checked by assigning another switch cell, which
has been shown to be working during the test, to be the new testing cell to see if the

ex-testing cell is §_ ON.

Figure 4.5 illustrates the RNL switch level simulation for such a test to the MCE
prototype chip (defect free). Again, the two Plessey chips are too complex to perform
such simulation. The simulation only shows the results of testing two matrix rows: the
first and the second row. When "RDECS" "TESTIN" are both set to logic one, both
decoders are in the "clearing state” and therefore, the whole matrix is being initialised.

This corresponds to the first phase of the test. Then "RDECS” is set to logic zero,
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letting the row decoder address a testing matrix row (the first, and then the second row
in the diagram). The first half of the time, with "RDECS" set to logic zero, is used to
activate the chosen testing cell on the matrix (the switch cell chosen in the simulation is
the one connecting the "INO" pin). This is related to the second phase of the test. The
third phase is carried out in the second half of the time, with "RDECS" set to logic
zero, during which "TESTIN" is set to logic one. Thereby the whole matrix row is

activated and the exercise signal starts appearing at the observing points.
4.4. Test Results

4.4.1. Generating Fault Patterns

The test scheme discussed earlier can test not only the faults in the switch cell
array but also those in the matrix row decoder. Row decoder faults are assumed to
result in an absent logic one for certain output line(s). This is equivalent to a situation
where all the switch cclls on that (those) matrix row(s) are S_OP. Thus any fault in the
row decoder can be mapped into the switch cell array" by always regarding the row
decoder as perfect. For the matrix column decoder, the same mapping process can be
undertaken. One extreme case may be such that there is no output at all at any matrix
row. This might be caused by complete failure of the row and/or the column decoder,
caused by failure of the NAND gates or the "Tesc” circuits attached to the column

decoder. This situation was observed during the test of the MCE prototype.

A 9100 series Tektronix Digital Analysis System (DAS) [125], and its accompany-
ing UNIX supporting software suite [126], was used to perform the tests. Figure 4.6
shows the output data for one MCE chip obtained in response to test signals, exactly
the same as those shown in Figure 4.5. Because only eight signals at maximum can be
displayed on the screen of the DAS, only RDECS is shown in the diagram labelled as
"TEST" at the middle of the diagram to give timing information for the test signals.
Signals from the seven remaining input pads and the eight output pads are illustrated
above and below the "TEST" signal, respectively. Nine matrix rows were tested in
series. The result shows that there are two permanent shorts between "INO" (where the
cyclic square signal is applied) and "IN5", and also between "INO" and "OUT7". From
a user’s point of view, this is equivalent to the situation where three switch cells are

S_ON, each of which is on one of these three columns, and all of which are on the same
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Figure 4.5 Switch level simulation of the test scheme for the MCE chip

matrix row where there is no other S ON switch cell. The response also indicated ten
switch cells with an S_ON fault, illustrated by the appearance of four pulses during the
period of time when "TEST" (RDECS) is set to logic zero. For three matrix rows

(first, fifth, and last) with no signal present, another input point and, therefore apother
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testing cell, was tried for the test signals. The result for this test produces exactly the
same fault conditions in these three rows as detected before. It is fairly certain that the
row decoder for these three rows does not work properly. Figurc 4.7 shows an output
of a different MCE chip. There is no S_ON fault in the matrix, instead, there are quite
a few S_OP faults. Similarly, there are three lines from the row decoder which do not
function. An interesting finding is that the output from "IN4" has disappeared. This is
caused by the faults causing an absent logic one for that column, or the faulty "Tesc"
circuit for that column. This fault can be mapped on to the matrix as all the switch cells
on that column are S_OP. From these results, a fault pattern for each chip can be gen-
erated. This pattern is particularly useful when message routing is going to be per-
formed within the switch matrix. Such message routing will be discussed in the Chapter
5. Figures 4.8 and 4.9 show the two fault patterns for those two matrices, whose test ‘
results have been shown in Figures 4.6 and 4.7. Figure 4.10 shows a similar test applied
to a Plessey chip with duplex matrix organisation. The Plessey duplex matrix chip is
much bigger than the MCE one, therefore under the same test scheme, the "testing cell”
has to drive a much larger capacitive load than that in the MCE chip. This results in a
poor output response, causing some missing pulses in the DAS output shown in Figure
4.10. By using an oscilloscope, these missing pulses were observed with smaller magni-
tudes. Figure 4.11 illustrates an output of a Plessey chip with the normal matrix organi-
sation. Eight response signals are shown here. Eight matrix rows were tested one-by-
one, addressed by the signals RDECI-RDEC6. Compared to the expected output
response shown in Figure 4.3, Figure 4.11 indicates that those switch cells under test

are functional.

By testing all the sample chips, the yield was found to be unexpectedly low for the
MCE chip. Some recognisable processing defects in the MCE chip have been found
under SEM examination. For example, Figure 4.12 illustrates three metal lines shorted
together. Figure 4.13 shows a short between two metal tracks ip a chip. Other poten-
tia] defects, such as pinholes, which may be present, can not be easily observed under
normal practical examination. For such defects, all the layout patterns may look correct,
but logical faults can exist. However, the yield of the Plessey chips seem very good.
Due to the limitation of the test facilities, such as the limited number of channels for
pattern generation and data acquisition, several portions of the chips were randomly
selected for testing. It was shown that most of the chips near the centre of the wafer are

functional, with few defective switch cells.
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To
Figure 4.12 An SEM photo showing that three metal tracks are shorted each
N

other.

Figure 4.13 An SEM photo showing that two metal tracks are shorted Acach

other.
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4.4.2. Characterising the prototype

To evaluate the characteristics of the switch matrix used in transmitting signals
from the input to the output of the matrix, one route was selected for examinationt.
Furthermore, the correctness of the loading scheme developed earlier in Chapter 2 can
be examined. Figure 4.14 shows how an output follows an input, subsequent to a con-
nection being established within the MCE duplex matrix chip. Referring to the loading
signals shown in Figure 4.2, the column address is represented by one bit in the
diagram to indicate the timing of the column addressing, which is the same as for the
row address signals. Before addressing the route, the entire matrix is initialised by set-
ting both decoders to the “clearing state”. Thereafter, the loading signals, shown Figure
4.2, are applied to the matrix. The signals are changed at different times to avoid possi-
ble race conditions, and left long enough for the matrix to settle down after initialsa-
tion. The output response validates the correctness of the loading scheme. It also proves

that the protofype design is correct,

The same loading signals as shown in Figure 4.1 were applied to all the prototype
chips. Figures 4.15 — 4.18 show four output responses from four different MCE chips.
As compared to Figure 4.1, three chips have only one route correctly established under
this particular addressing arrangement (OUT7, OUT6, and OUTS respectively), and
one chip has four routes correctly established (OUT0, OUT1, OUT4, and OUT7). Fig- |
ure 4.19 illustrates an output response from a Plessey chip with the dupler matrix
organisation, in which 8 signal paths were established one efter another. Compared to
the simulation result in Figure 4.1, the portion of the chip under test is fully functional.
Figure 4.20 shows an output response from a Plessey chip with the normal matrix
organisation, in which 8 signal paths were established one after another. The loading
scheme shown in Figure 2.16 was used to establish a signal path. Again, the portion of

the chip under test is fully functional.

t Which particular route is selected in the matrix is not important, because the
composition of all the possible routes in the matrix are electrically equivalent.
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Figure 4.21 First two pulsesof an output waveform from an MCE chip after a

signal path is established (Time = 200ns/DIV, Voltage = 2V/DIV).

To characterise the quality of signals transmitted by the switch matrix, these out-
put responses were examined using an oscilloscope. For the MCE chip, Figure 4.21
shows the waveform of the first two output pulses after the connection is established.
The output signal is at the top and input signal is at the bottom. The waveform shows
that there is a considerable amount of rising delay on the first output pulse. This occurs
because, at the rising edge of the first input pulse, the physical route has not actually be
established. In fact, the rising edge of the second enabling signal of "Dset" also starts
appearing at the same time as that of the first input pulse. The switch cell will take time
to be turned on, and complete the physical connection. Thus the input signal waits for
the connection to be established, during which time the output does not change with the
input. After about 240ns, the output starts responding to the changes in input signal,
following the physical connection being established. This event has already been dep-
icted in the switch level simulation result shown in Figure 4.1, in which all the first
pulses of the output signals are relatively smaller than the rest of the output pulses. The
actual risetime of a signal caused by the switch matrix when it goes through can be
obtained from the second output pulse, where the physical path has already been esta-

blished. Figures 4.22 and 4.23 show both the rising and falling edges of both the input
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and the output respectively (on the expanded scales to those in Figure 4.21). The rise-
time is shown to be about 60ns and falitime is about 30ns. To validate these results, a
complete signal path was extracted and simulated from the prototype chip using MEX-
- TRA and SPICE. The information extracted includes all the transistors involved in the
path, all the stray capacitances attached to the related nodes and related transistors,
which are not involved in this logic function generation but do contribute junction capa-
citance to the path. The stray capacitances are calculated for the whole chip. Figare
4.24 illustrates the equivalent circuit extracted in the simulation. The resistor appearing
in the circuit is the protection resistor incorporated at the input pad. The first buffer
(inverter) is an intermediate stage buffer in the chip; the second buffer is the output
buffer at the output pad. It was observed that the output voltage level of the test pat-
terns from the DAS is about 3.5V for a logic one, even when the voltage supply is SV.
This is caused by the voltage drop on the test probes. The equivalent circuit incorporat-
ing this effect has been simulated, and Figure 4.25 shows the output. It indicates that
the risetime is about 50ns and the falltime around 30ns. These figures are close to the
data obtained from the test, with the difference resulting from either the inaccuracy of
the parameters employed in the circuit extraction or an unexpected parasitic capacitance
and inductance in the test environment. The longer risetime is mainly caused by the
lower voltage level of the input signal. In practice, when the voltage level is low, the
p-type transistors in the transmission gate paths will not be in a strong conduction state.
Consequently, an increase in the voltage level of the input signal was tried during the
test by increasing the supply voltage above 5V. As a result, the risetime reduced and
falltime increased. The reason for the falltime increasing is caused by the internal nodes
storing more charge now than in the previous case, so that the discharge time will be
longer. Figure 4.26 shows a simulation result of the extracted path circuit with the
ideal 5V input signal swing. This shows that the input signal will potentially have
about 30-40ns risetime and falltime through the switch matrix, with very little signal
distortion (i.e. variation of the pulse width). Figure 4.27 shows the input and output
waveform of a Plessey chip with the normal matrix organisation. The output falltime is
100ns, and the output risetime is 50ms. Figure 4.28 shows the input and output
waveform of a Plessey chip with the duplex matrix organisation. The risetime and fall-

time of the output are about 50ns.
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Figure 4.22 Expanded waveform from Figure 4.21 showing the rising edge

(Time = 100ns/DIV, Voltage = 2V/DIV).

Figure 4.23 Expanded waveform from Figure 4.21 showing the falling edge
(Time = 20ns/DIV, Voltage = 2V/DIV).



Figure 4.24 Equivalent circuit of a single path in the MCE chip.

4.5. Design Deficiencies

A problem encountered during the test was that the fault pattern generated from
the rcspdnse signals to the test pattern does not include information on possible faults
in the column decoder. This happens because all the control for switch-setting during
the testing arc set by "Tset” rather than the column decoder itself. This problem was
particularly serious during the MCE chip testing, because the chips are more defective
than the Plessey chips. For example, the fault pattern in Figure 4.8 shows that five
possible connections can be made in the matrix. However, the result is disappointing.
Some faults exist in that chip in both the column decoder and the NAND gate. Figure
4.29 is an SEM trace which illustrated a fatal fanlt in the loading control sipnals for the
column addressing in the matrix. The bright line in the picture indicates a logic one.
Only the column decoder is stimulated here by applying addressing signals to its inputs
CDEC1-CDEC6. "Dset" is set to logic one and “Tset” is set to logic zero, so that the
loading control signals for matrix columns can go through the NAND and Tesc circuit
before reaching the switch cell array. The picture also shows that outputs from the
column decoder are stopped at the NAND gate and can not reach the array. Therefore,
the switch cells on these columns can not be properly turned on. Figure 4.30 shows that
the same stimulation applied to another chip with working column decoder, NAND
gates, and "Tesc” circuit. The long bright borizontal lines on the right‘ hand side show

that the loading control signals from the column decoder reach the switch cell array.
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Figure 4.27, Input (bottom) and output (top) waveform of a signal through a
path in a Plessey chip with the normal matrix organisation (time =

100nsec/DIV, voltage = 5V/DIV).

Figure 4.28, Input (bottom) and output (top) waveform of a signal through a
path in a Plessey chip with the duplex matrix organisation (time =

100nsec/DIV, voltage = 5V/DIV).
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Figure 4.29 An SEM photo showing a fault in the NAND gate circuits in an
MCE chip.

Figure 4.30 An SEM photo showing a working that the column decoding cir-

cuits in an MCE chip are functional.
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In the present chip organisation it is difficult to test the column decoder effi-
ciently. Additional circuits need to be introduced into the chip to implement a satisfac-
tory test for the column decoder. For example, a chain of shift register stages could be
placed between the column decoder and the switch cell array. In the test mode, these
shift registers fetch outputs from the column decoder and shift them out. In the working
mode, they simply bypass the signals. Such a scheme does not add a considerable
amount of extra I/O pins to the chip. Details of such a modification will be presented in

Chapter 7.

4.6. Summary

This Chapter presents a switch matrix prototype design and its associated test
results. The correctness and characteristics of the prototype have been 'thoroughly
investigated, although the yield is unexpectedly low. From the results obtained, it is
strongly felt that the control circuits, which do not have a defect tolerant cepability,
should be designed with more conservative design rules. This should result in less
sacrifice of some rows and columns of working switch cells. The design has also been
criticised for having difficulties in detecting and locating faults in the column decoder,
‘This should lead to necessary modifications of the prototype, such as will be summar-
ized in Chapter 7. The test results from this Chapter, particularly the fault pattern, lay
down the basis for the discussion in Chapter 5 of automatic message routing within the

switch matrix.



CHAPTER §
A MESSAGE ROUTING ALGORITHM FOR THE CROSSBAR

SWITCH MATRIX IN THE PRESENCE OF FAULTY SWITCHES

5.1. Introduction

In Chapter 3 fault models for the switch cells were established. In Chapter 4, a
method of generating a fault-pattern for a particular switch matrix by testing the switch
cell array, decoders, etc. v;‘as produced. Even after all the processing elements (PEs) in
the superchip have been tested the problem remains of how to use this superchip, and
search for 8 connection set within the crossbar switch matrix to correctly connect the
working PEs together to idrm a desired system. This is not a trivial task, particularly
when the system is large, as there may be many interconnections, and the switch matrix
is not perfect. An algorithﬁ:ic method for searching the interconnection routes within a
faulty crossbar switch matl_'ix is presented here. In this Chapter, the term fault pattern
has a slightly different mea}ling from that used in Chapter 4. Unless otherwise stated,
it here refers to the overa_]l fault pattern including the fault pattern of the switch matrix,
as well as the fault pattern' of the PE bank.

5.2. The Problem and Solution Tactics

Unlike routing problems in some other types of interconnection network [127,128]
where packet switching conventions are assumed, the routing problem in the crossbar
switch matrix relates to circuit switching, so as to establish a physical path between one
source and one or more destinations. As in the system customisation procedure for bit-
serial systems proposed earlier, where all the PEs are linked together to form a system
“\?ia the switch matrix, in this work the routing implementation must be sure of 100%
realisation for all the desired interconnections within the matrix. Any failure in estab-

lishing a physical connection will cause the total failure of system operation. This is
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conceptually different from e conventional multiprocessing system which does not
necessarily need 100% realisation of communication at any tilﬁe. If the switch matrix is
perfect, then the routing is very straightforward and 100% routability can always be
achieved. But, unfortunately, as seen in Chapter 4, processing faults are inevitable.
Therefore, the routing problem becomes one of how to tolerate the existing faults in the
matrix, but still implement all the desired interconnections. In other words, an efficient
way must be found to avoid or utilise defective switch cells in the matrix in a8 maximal
way. As discussed in Chapter 3, the switch cells in the matrix may be faulty in one of
four ﬁvays: 5_OP, S_ON, SA1, and SA0. SA1 and SAOQ faults cannot be tolerated within
the matrix. The whole matrix row or column will be sacrificed where SA1 or SA0
appears. S_OP and S_ON faults may be tolerated within the matrix either by avoiding
them or utilising them. For instance, switch cells with S_ON faults at the right place can

be used to establish interconnections.

To implement a set of interconnections within a switch matrix correctly under the

presence of some switch failures, several factors must be known:

®  the specification of the system organisation which determines all the desired inter-

connections to be routed through the switch matrix.

] the fault pattern of the superchip, indicating locations of all the failed PEs and
switch cells as well as the failure modes: S_OP or §_ON, of the latter.

®  chip composition information which gives the locations of ail processing elements

(cither working or faulty) in the chip.

A npet-list of the system can be derived from the specification of the system organisa-
tion. Because of the switch matrix structure, each matrix row will and can only accom-
modate one net. A system with m nets should at least have m matrix rows. Deciding
which matrix row holds which net is a non-trivial task. The outcome of this study will
directly determine the success of the whole routing procedure. Conceptually, this is
similar to a so-called Linear Assignment problem. To better understand the matrix
row—net assignment problem, the linear assignment problem is illustrated first. The

| following example shows how such a problem is composed.

Example:
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Suppose we have five men and five jobs to do. Each man has z skill level at each
possible job. We are also constrained not to put more than one man on each job. _
According to the different skills, assigning different men to a job will have dif-
ferent cost. Assume that we have a cost matrix shown in Table 5.1, in which "4"
means this man can not do that job at all. The problem is to find a best (the most
economic) way to assign each man to these five different jobs. We may find one
solution of this problem by asking the 1st man do the 1st job, the 2nd man do the
4th job, the 3rd man do the 3rd job, the 4th man do the 5th job and the 5th man
do the 2nd job. :

Table 5.1 Costs of the Job Assignment
1st Man | 2nd Man | 3rd Man | 4th Man | 5th Mag
1st job 1 4 2 3 ' 3
| 2nd job 2 2 2 2 1
3rd job 4 3 2 2 3
4th job 3 2 3 3 2
5th job 1 1 2 1 1

'I'hert.; are various algorithms for optimal linear assignment. Munkres [129], Han-
nan and Kurtzberg [130] have defined and discussed the problem. Many of the algo-
rithms are variants of Kuhn’s method (also known as the Hungarian method). In the
above example, assessing the cost value of each different man for each different job is
crucial to the whole process. This measure relates algorithmic domain (how are the jobs
allocated?) to the situation in the physical domain (is it economic?). The solution will
directly affect the cost-effectiveness of the assignment. Back to our 'routing problem,
instead of having a cost value for the matrix row —net assignment, a goodness measure
will be taken as a measure for row—net assignment. This is complementary to the cost.
The relationship of each assignment and its goodness value is given by a goodness func-
tion. The goodness function for the routing problem will be discussed in Section 5.3.

Here, let us suppose that the goodness value for each possible matrix row—net
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assignment has been given. These goodness values are not put in a matrix form as in
the above example. Instead, all the goodness values related to one net, i.e. all the possi-
ble goodness values of this net being assigned to every matrix row in the switch matrix,
are put into a queue which will be sorted to form a priority quene for this pet. This
priority queue indicates the best choice of assigning this net to some matrix rows. The
overall goodness value for the system is the sum of all the individual goodness value
associated with an assignment sct. According to the priority queues and the actual good-
ness values in the guenes, assign each different net to & different matrix row with the
highest possible overall goodness value. Then try to make the system interconnections
with the assignment set. The goodness value, as shown later, is quantized. Situations
can arise where the overall goodness value for the system is the same for a number of

different assignment sets.
Definition 5.1:

If two nets have the same goodness value (great than zero) for a matrix row, then

a conflict occurs between the two nets. These two nets are called con Flicting nets.

If a conflict happens during an assignment process, then one of the conflicting nets will
be arbitrarily assigned to the matrix row, in the first instance, and at the same time the
conflict information is recorded. If the routing with this assignment set does not
succeed, then the assignments of the two conflicting nets are exchanged, and the whole

routing is performed again.

Once a matrix row—net assignment is finished, the PEs specified by the user are
implemented (or precisely allocated on to the PEs on the physical chip), one-by-one,
together with the interconnection. If all the PEs are implemented and successfully con-
nected to each other via the crossbar switching network, then the whole routing is
regarded as successful. Otherwise, the assignment set is changed again by swapping a
pair of conflicting nets, and then an attempt is made to implement the PEs again, until
successful. If all the conflicting nets have been tried and the implementation has not

been successful, then the system customisation on this particular superchip has failed.
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5.3. Goodncss Function for Net Assignment

An appropriate goodness function for any assignment is crucial to the success of
finding system interconnections within the crossbar switch matrix. The goodness func-
tion proposed next is empirical, in particular with respect to the parameters chosen. It is
the result of many experiments performed during this research, with different fault den-
sities and different fault patterns. The goodness value can be positive or negative
according to the number of faults and their locations in a particular matrix row. The
more positive the goodness value is for a matrix row — net assignment, the better will be

this net assignment for that particular matrix row.

Before commencing on the evaluation qf the goodness function, some special nota-
tion is defined. Once every net has been assigned to a different matrix row, all the
input and output ports of the PEs on a net must be connected to each other via certain
switch cells on the associated matrix row. These switch cells link the ports of the PEs
through the matrix columns, and are called port-attached cells, or "pat” for short. The
switch cells on that matrix row, but not on these columns, are called port-detached cells,
or "patb” for short. Combining this with two fault conditions, S_ON and S _OP, pro-
duces four cases: "S_ON_pat", "S_OP_pat", "S_ON_patb" and *S_OP _patb”. The
number of PEs of one kind (all the PEs required may not be identical) specified by the
user as the system requirement is named as "uPCnt", and the actual number of the PEs
of this kind on the superchip is named as "cPCnt". These could be different due to the
introduction of redundancy of PEs in the superchip. Table 5.2 presents a summary of

the notation adopted.

By examining the positive (good) side and the negative (bad) side of assigning a

net to a matrix row, the following observations have been found by experiment:

Factors in favour of an assignment:

1. The number of S_ON cells on port-attached points (S_ON pat) indicates the
number of S_ON cells that could possibly be used to implement a net by the
assignment. The larger the number of S_ON pat, the better the assipnment will

be and, therefore, the higher the goodness value.
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Table 5.2 Goodness Function Notation

notation meaning
S_ON_pat stuck_on cell at port-attached point
S_OP _pat stuck_open cell at port-attached point
S_ON_patb stuck_on cell at port-detached point
5_OP_patb stuck_open cell at port-detached point
uPCnt number of processing elements of

one kind required by the system
cPCnt number of processing elements of
one kind actually on the chip
uR_S_ON_patb number of redundancies of the processing
elements linked to the S_ON_patb cell
currently being considered
uR_S_OP_pat number of redundancies of the processing
elements linked to the S_OP pat cell

currently being considered

2. The amount of redundancy available from PEs, to be abandoned’ by some § ON
cells on port-detached points (S_ON_patb), illustrates how the damage caused by
S_ON _patb cells in the assignment can be reduced by the availability of redun-
dancy. The more redundancy, the less damage there will be to the customisation
process, and consequently, the higher the goodness value for the assignment.
However, relative redundancy should be considered here because it involves the
complexity information of a PE. For example, if two different types of PE both
have one redundant PE of its own type, but one éerves 10 PEs of the same type,
and the other serves only 3 of its type, then it is clear that the second type of PE
is less defect tolerant and more complex (larger) than the first one. If a PE from
both types has an S_ON_patb cell attached to a matrix row currently under con-

sideration for the assignment, then the outcome should result in the abandonment

T An sbandoned PE, no matter if it is defective or not, is inhibited from being used
for the current routing trial.
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of the PE of the first type (the smaller one). After much experimentation, the

relative redundancy, vy, used in the goodness function is defined to be:

A(uR_S_ON_path)
(uPCnt +B (uR_S_ON parb ))

Y= (5-1)

where A and B are two coefficients. A is actually a °lifting’ coefficient, whose
meaning and value will be discussed later. Strictly speaking, relative redundancy
should be the total redundancy divided by the total number of PEs of that type,

uR 8§ ON patb
, QuR_S_ON patb) (R_S_ON_patb) i1t5 the divider,
uPCnt

the goodness value of the PE with fewer redundancies is increased as the above

ie

However, by adding B

example illustrates. In other words, the goodaess value for a larger PE is

increased to prevent it being abandoned.

The amount of available redundancy for those PEs abandoned due to S_OP cells
on port-attached points (S_OP_pat), indicates how the damage caused by the
S_OP_pat cell in the assignment can be reduced by the availability of redundancy.
The more redundancy, the less damage there will be to the customisation process
and, therefore, the higher the goodness value for the assignment. The composi-

tion of this term is exactly the same as S ON _patb, shown in equation (5-1).

The number of S_OP cells on port-detached points shows that these defective
switch cells have been avoided in the assignment, and have no effect on the rout-
ing process. If an assignment creates many S_OP _patb celis, then it will probably
make these cells not affect other assignments. Therefore, the more S_OP patb
cells present, the higher the goodness value will be for the assignment. Compared
with other terms in the function, this is the least important factor in the reckoning.
This follows because according to the experiments, S_OP cells do much less dam-
age to the success of the routing process than S_ON cells. In other words, an
S_ON_patb cell must be considered much more seriously. Its damage is far greater
than the benefits brought by an S_OP_patb cell. Thereforg,, a small weight C is
assigned to this term, Cx (S_OP_patb).
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Factors against an assignment,

1.  The number of S_OP cells on port-attached points (S_OP_pat) indicates how much
damage is due to an assignment. If there is any S_OP _pat cell in an assignment,
then the PE linked to the column where this S_OP pat cell is located has to be

abandoned, because connection can not be achieved.

2. The number of S_ON cells on the port-detached points (S_ON _patb) shows how
much damage there will be for the assignment. This has the same influence on the

goodness value as that for S_OP_pat cells.

Combining these factors, a goodness function, G, follows:
G = Z(S_ON_par)
+ CxXZ(S_OP_patb)

A(uR_S_ON path)

+ 2
(uPCnt + 3(“R_S_ON _path)

— ZPE[S_ON_patb]

A(uR_S_OP_pat)
(uR_S_OP pat)

+ 2
{(uPCnt + B

— EPE[S_OP_pat] | (5-2)

where TPE[ ] stands for the total number of PEs abandoned due to the S_OP_pat cells,
or S_ON_patb cells, or whatever is contained within the bracket. This applies because,
if two or more S_OP_pat cells or S_ON_patb cells are close on the same matrix row,

they may both cause the same PE to be abandoned.

Values for three coefficients, A, B, and C, has to be determined. A decrease of
the goodness function will reflect an increase in the total number of abandoned PEs,

due to S_OP_pat cells or S_ON_patb cells, and the relationship is linear (two negative
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terms in the function). The redundancy availability of the abandoned PEs reduces the
seriousness of such a PE loss by contributing a certain amount of positive value into the
goodness value. The question is how much should it compensate, in terms of the
amount of redundancy and PE complexity? It is clear that, in any case, any occurrence
of S_OP_pat and S_ON_patb will sacrifice PEs. This is not a desirable situation. Thus,
in comparison with an assignment which does not sacrifice any PE, this should have a
negative effect on the overall goodness value. However, the negative effect will be less
if there is more redundancy available to compensate. The value of compensation
should be less than the value of real loss. The remaining question now is how big this
gap should be. The answer depends on the magnitude of the two coefficients A and B,

The lifting factor A is set to reduce the difference between the pure, relative redun-
uR_S_ON_path ) .
dancy ———————, and its negative counterpart § ON _patb, but not fully compen-
uPCnt

(xPCnt + B)

B
chosen to lie somewhere between 1.05 — 1.1. In fact, the nearer is B to unity, the more

sated. After many experiments  j, A was set equal to

, and B was

linear is the increasing rate of the goodness function with an increase in redundancy,
and the more loss is compensated. The difference between the negative contribution of

S_OP _pat and $_ON_patb cells and the positive compensation of the associated redun-

1
dancy is about 1 — — as a result of this setting of A and B. C is set to reduce the con-
B

tribution of the S_OP_patb, and was chosen to be between 0.01 — 0.04. Actually, the
choice of C is intnitive, because we have to consider its relation to the difference

between the negative contribution of § OP pat and S§_ON_patb cells and the associated

1
compensation (1 — —, set earlier). The problem is that it is not clear by how many
B

S_OP_patb cells the benefit brought should compensate this difference (the negative
effect of sacrificing a PE). If 0.05 is chosen for C, then two S_OP_patb cells will com-
pensate the negative effect caused by abandoning one PE and using one of its redun-

dincy. After many experiments, a value of C = 0.02 appears an appropriate choice,

There are some situations where a net obviously can never be implemented in a

matrix row. These include:
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The number of PEs abandoned by §_ON_patb cells, created by an assignment, is
more than the available redundancy for the PE. This means the number of PEs of
that type required by the system specification are not available on the chip, caus-

ing immediate failure of the routing process.

The number of PEs abandoned by S_OP_pat cells, created by an assignment, is
more than the total number of available PEs of the same type on the chip (the
total number of unused PEs of the same type on the chip). This indicates that, if
this assignment is chosen, the net can never be implemented in a matrix row,
because not enough PEs of the same type can be found on the chip to make up the
net. This causes immediate failure of the routing process. It can be noticed that we
are comparing the number of abandoned PEs with the total number of available
PEs of the same type on the chip, which is different from the S_ON_patb case.
The reason for not comparing with the amount of redundancy is the fact that the
S_OP _pat cells in this assignment do not necessm;ily inhibit the use of their related
PEs entirely throughout the routing process. In other words, these PEs are only
abandoned by this particular assignment. It is still possible for other nets on dif-
ferent matrix rows to use these PEs, without affecting the net creating these

S_OP_pat cells due to open-circuits.

Considering all the different type of PEs, and writting these two situations in

mathematical form, we have the conditions for inhibiting an assignment:

N{PE[S_ON_patb] — (uR_S_ON_path)] > 0 ©(5-3)

I[[PE[S_OP_pat] — (uR_S_OP_pat)) — PE_on_Chip[S_OP _pat]] > 0 (5-4)

where PE[ ] indicates number of PEs being abandoned by S_ON_patb cells or S_OP_pat

cells. PE_on_Chip[ ] indicates the number of unused PEs of the same kind abandoned

by the S_OP_pat cell on the chip. Referring to all different kind of PEs in the chip,

"AND" operation is carried out among them.

In the normal matrix architecture shown in Figure 2.6, all the PE’s outputs are



- 123 -

hardwired to matrix rows. If a net contains the output port (node) of one kind of PE
and there are i such kinds of PE in the chip, then only i matrix rows can be assigned to
the net. All the other matrix rows should be given a special goodness value for this net
to inhibit the assignment. For the duplex matrix architecture shown in Figure 2.8, all
the matrix row can be assigned to any net. This is the difference in goodness function

for the two different matrices.

5.4. The Algorithm

The process of system customisation (i.e. implementing all the required intercon-
nections in the switch matrix) is carried out by mapping all the required PEs and their
nets, as specified by system configuration information, one-by-one on to the superchip.
If all the required PEs can be successfully mapped on to the superchip, then the custom-
isation is successful, otherwise it has failed. For convenience in expressing the algo--
rithm, the current PE being implemented is referred to as Cur(PE). The algorithm is

presented as follows; each step is given in detail.

INPUT:
1.  The size of the crossbar switch matrix (n, m).

2.  The fault pattern indicating all the faulty switch cells and PEs, including their fauit
conditions (S_ON or S_OP for switch cells) and physical location. The data here
are obtained directly from the test information for the switch matrix and the PEs

on the chip.

3. Chip composition information: i.e. all the PEs available on the chip. This usually
contains the locations of the different PEs, their names, the parameters for each
PE, and some physical data, useful to the customisation such as the number of

pins, their positions within the PE, their categories (input or cutput pin), etc.

4. System configuration information: i.e. the required interconnections for the sYs-

tem.
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OUTPUT:

Success. All the desired system interconnections have been successfully embedded
within the crossbar switch matrix and, therefore, the required system is cbrrcctly
linked up. A list of data indicating the locations of those switch cells which should

be turned on is given as an output.

Failed. At least onc of the desired interconnections can not be embedded in the
switch matrix. This may be caused by some faulty PEs damaged by processing
defects or abandoned by some faulty switch cells. This results in the fact that
there are not enough PEs to configure the system in this particular chip. This may
happen quite carly during the course of the routing (customisation). On the other
band, failure may result from the fact that there are too many faulty switch cells in
the switch matrix and, more importantly, the distribution of these faulty cells is
such that all the required interconnections for the system can nof bc made

correctly in the switch matrix.

Overview of the Algorithm:

START

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:

Read all the information and put it into the proper data structures.
Abandon the affected PEs.

Build a priority queue for each net.

Matrix row— net assignment. ‘

Get 8 PE for allocation.

Find the port-related matrix rows and columns of the PE,

Perform the mapping.

Step 8—10: Perform beuristic search for the best allocation of the PE.

END
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Details of the Algorithm:

START

1. Read All the Information and Put It Into the Proper Data Structures. An
integer array with the same size as the required crossbar switch matrix (n, m) is
dynamically allocated for storing the information. While reading the fault pattern
of the switch matrix, the information about the faulty switch cell is stored in this
@integer array according to location. The PE banks together with the informa.
tion about their location are put on to a queue with links between the PE banks of
the same type, so that these can easily be searched. Meanwhile, all the PEs speci-
fied in system configuration information together with their connection informa-

tion are placed on another queue, Q(PE), waiting for implementation.

2. Abandon the Affected PEs. This is the process whereby all the PEs on the chip
are checked through their I/O pins. If there is any short among the I/O pins within
a single PE by some switch failure in the matrix, for example, two neighbouring
switch cells on the same matrix row are both §_ON, then this PE has to be aban-
doned. The other awkward situation occurs when at least one I/O pin of a PE is
shorted to more than one matrix row. For example, more than one switch cell on
the same matrix column is S_ON. This is a complicated situation. Clearly, there
are two choices: abandon the PE, or abandon one or more shorted matrix rows.
To make such a decision requires global system level consideration. However, the
basic criterion should be based on the cost of such a decision. Such a cost depends
upon two main factors: complexity and the availability of redundant parts (PE or
matrix row). The availability of redundant parts usually has higher priority than
complexity in the consideration, because this is directly related to the success of
the whole routing (customisation) process. According to the redundancy selection
strategy presented in Chapter 3, the PE is usually abandoned first whenever the

redundancy availability is satisfied.

3. Baild a Priority Queue for Each Net. First of all, a net list is generated from
the information of the system configuration and interconnections. Then all the
faulty switch cells on each matrix row,. classified as S_ON_pat, S_ON_patb,
S_OP _pat, and §_OP_patb, are counted to evaluate the goodness value for each

net. If there are p nets and n matrix rows, there will be pX n such evaluations. All
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the goodness values for one net will be put into a queue. Therefore, each queue
will have n clements. To form a priority queue, all the goodness values in each
queue are sorted by taking goodness value as a key. Since the goodness values are

non-integer (i.c. reals), shell sort [131] is performed.

Matrix Row— Net Assignment. The assignment process tries to allocate a matrix
row to a net. It scans all the net priority queues and finds the best assignments for
all the nets by maximising the overall goodness value of the assignments. For a
particular system configuration and a particular fault pattern of switch matrix, the
overall goodness value is often spotted on a number of discrete values. It has been
found during the experiments that two or more nets may have the same assign-
ment to a particular matrix row, according to their goodness values in the priority
queues. This means that assigning any of these nets to the matrix row will have
the same overall goodness value. This introduces a conflict into the assignment of
these nets. When a conflict occurs during the process of assignment, the matrix
row will first arbitrarily be assigned to one of the conflicting nets. All the other
conflicting nets will be recorded in case these assignments do not result in a suc-
cessful configuration. Then other assignments with the same overall goodness

value can be tried, by swapping the conflicting nets.
Cur(PE) = the first clement of the Q(PE).

Find the Port-Related Matrix Rows and Columns. Once all the nets have
been allocated to the matrix rows, a physical path for each net can be created by
switching the correct switch cells on the matrix row, to which the net has been
assigned. The activated switch cells will electrically connect the required I/O ports
of the PEs togéther through the matrix columns. From the PE’s point of view, a
PE having i /O ports should now have relations to i matrix rows. These rows are
called port-related rows of the Cur(PE}. The exact physical location where the
switch cells should be activated must be determined by both the row number and
the column number. For a particular net, the matrix row has been determined.
However, finding the columns is more complicated, because the exact position of
the Cur(PE) has not been decided yet. The relationship between the Cur(PE) and
its physical image in the chip is not necessarily one-to-one. Instead, there may be
several unused PEs which are the same as Cur(PE}). To help map Cur(PE) on to

a particular PE of its own kind, all these so far unused PEs will be considered as
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possible candidates for the allocation. Thus each I/O port on the Cur(PE) may be
related to several IO ports (or matrix columns) on the superchip. The related
matrix columns are called port-related columns of the Cur(PE). The step here is
to establish the relationship between the Cur(PE) and all its possible candidates,

including the information on its port-related rows and columns.

7. Perform the Mapping. This is the actual process of mapping Cur(PE) on to the
superchip. Before mapping Cur(PE), every switch cell in the switch matrix and
every I/O port of all the PEs on the chip are given a status, representing various
states they might possibly have. For convenience in the mapping operation, each
status is represented by some integers, Table 5.3 summarises each status used in

the algorithm and its integer coding.

Table 5.3 Status Used in the Algorithm
Status Meanings
0 working, unoccupied't
1 working, occupied
2 S_ON, unoccupied, unused (only for switch cell)
3 S_ON, occupied, unused (only for switch cell)
4 S_op
5 not working (only for /O ports of PEs)
6 special attention status”

t Occupied (unoccupied) means this switch cell or PE has (not) been allocated to a
net to make a connection.

T+ When a matrix column bas been assigned to a port of the Cur(PE) during the
mapping, any remaining S_ON switch cell in the matrix row related to this PE port
(the matrix row assigned by the net of the PE port) is given this special attention
status. During every assignment of a PE port, the whole column of that port is
checked . If there is any "6" status in the column (except the point on the matrix row
where the net is assigned), it indicates that this S_ON switch cell will short the port
to some other net. To prevent this happening, the final mapping status should be a
"5", which inhibits this PE as a candidate for the Cur(PE).
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After establishing the status _for all the points related to Cur(PE), the map-
ping operation is performed. This is-achieved by first searching for any special
attention status on the IO port-relntﬁd columns, but not on the J/O port-related
rows, of the Cur(PE). Any such status will result in assigning a "5" status to all
the /O ports of the PE linked to the columns with the "6" status. Then, if the "6"
status is found on an I/O port-related column as well as on an VO port-related
row, then the PE connected to this port-related column will have the highest prior-
ity chosen for the Cur(PE). The operations are performed between the status of
all the port-related rows of the Cur(PE) and the status of the I/O ports of all the
candidate PEs for the Cur(PE). All these status of I/O ports are overwritten by
the mapping results. The next move is to choose which candidate should be allo-
cated to the Cur(PE). To make this decision, the mapping operation is performed
within the I/O ports of the each candidate, which results in k status values if there
are k candidates in the superchip: Each of these final status values represents one
of those candidates. The operaﬁoﬁai rules are given in Table 5.4. For the normal
matrix architecture shown in Figure 2.6, the mapping is always performed
amongst the matrix columas of all the input ports of the PEs, because all the out-

put ports have been hardwired to the matrix rows.

Table 5.4 Operation Rules

0 1 2 3 4 5
o o E' 2 E 5 s
1 || E E E 1 E 5§
2 |2 E 2 E E 5
3 | E 1 E E E 5§
4 |s E E E E 5
s s 5 5 §5 5 5
6 16 1 6 1 6 5

¥ "E" is an error status. It means that the two operands should not meet each other
during the mapping operation.
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if there is any "6" in the final status,
then choose this candidate and set some occupation information about
the chosen PE
goto 10
clse if there is any "2" in the final status,
then choose this candidate and set some occupation information about
the chosen PE
goto 10
else if there is any "0" in the final status,
then choose this candidate and set some occupation information about
the chosen PE
goto 10
else goto 9
endif
if there is at least one un-trialled conflict
in the record
then swap the conflicting nets,
set up a trialled status in the record (delete the record)
goto 5

else failed, stop.
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endif
10. if itis not the‘end of the Q(PE)
then Cur(PE) = next PE in the Q(PE)
goto 6
¢lse success, stop.
endif
end.

As the algorithm suggests, the search region for the best matrix row— net assign-
ment is defined by all the recorded conflicting nets. There is a reason why only the
conflicting nets are chosen to define this search region. Theoretically, if there exists a
solution for the specified customisation within a particular superchip, then this solution
can always be found by exhaustively searching all the possible combinations of matrix
row—net assignments in the superchip. However, such exhaustive searching algorithm
has been proved to be NP-CompleteT. Therefore, it is not practical to perform exhaus-
tive scarching. In fact, the solution coverage of the search region defined in the algo-
rithm is very high, I_S;cause it is justified by the overall goodness value of the assign-
ment. Such a go;:)dngés value is derived from the empirical consideration of all the glo-

bal information to which the assignment can obtain maximum benefit.

5.5. Implementation

The above algorithm, called rourer, has been implemented using the C program-
ming language in about 3,000 lines of code. To run this program, the user should pro-
vide four input' files: the system configuration file, the chip composition file, and the
files of the fault patterns of both the crossbar switch matrix and the PEs. Additionally,
the size of the switch matrix (n, m) should be specified to the router. A warning mes-
sage will be given if the given matrix size is too small to implement the required sys-

tem.

t The formal mathematical proof of NP-Completeness can be found in Appendix B.
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5.5.1. System Configuration File

Each statement in the system configuration file defines one PE required for the

system. The statement should follow the syntax:
PE_Name Parameters SigIn SigOut CtrlIn CtrlOut

There is no restriction for the PE name; it can be letters, numbers or the combination
of these two. The parameters introduced here are especially for bit-serial PEs, and con-
tain the latency information. The same kind of PE may be required to have different
latencies in different locations in a net. These are treated as different PEs by the pro-
gram. All the rest is interconnection information, defining the connection of all the /O
ports of the PEs to the nodes in the system. The number of parameters, the naumber of
signal input ports, signal output ports etc. are standard data and fixed for a particular
PE. For example, a bit-serial adder should have four parameters, three signal inputs,
two signal outputs, and one control input. This information is defined in a standard
library. The router will consult the library during reading of the system configuration
file, so that the router can correctly classify the data. The file should be named with

"spec_d" in the current working directory. Figure 5.1 gives an example of such file.

5.5.2. Chip Composition File

Each statcment in the chip composition file defines a group of PEs of the same
kind (with the same parameters when they are bit-serial PEs) adjacent each other in the

superchip. The syntax is

PE_Namc Parameters Start Column End Colums Up Low Pin Number

Pin_category

"Start_Columan”, "End_Column" and "Up_Low" define the actual position of the PE
bank in the superchip in which "Up_Low" refers to the position of being above or
below the switch matrix. "1" indicates it is above the switch matrix and "0" indicates the
other. "Pin_Number" gives the number of pins per each PE in the bank. Pin_category is
a list of integers which gives the meaning of the pins for each PE, from the first pin on
the left to the last pin on the right. To be consistent with the convention of the port
status used in the program, S, 9, 6, and 10 are chosen to represent Sigln, SigQut,

Ctrlln, and CtrlOut, respectively. For example,
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ABSOLUTE 140481240259

gives a PE bank called ABSOLUTE 14 0. It starts from the matrix column 48 and
ends at the column 124 with 2 VO ports for each element (that means there are 38 such
identical PEs in the bank). The first IO port is a signal input and the second one is a
signal output. The name of the composition file should be called “loc_d" in the current

working directory.

5.5.3. Fanlt Pattern Information

Fault patterns are formed from testing the superchip. There are actually two fault
pattern files: one for the switch matrix and one for PE banks. They are celled
“testsm_d" and “testp_d", respectively, in the current working directory. The syntax for

the switch matrix fault pattern is
Failure_Type Row_Number Column_Number

where "Failure Type" usually is an integer, "2" for S ON and "4" for S_OP.
"Row_Number” and "Column_Number" define the location of the fault in the switch
matrix. To be consistent with the convention in C language, "Row_Number” and
"Column_Number" start from 0 for the first matrix row or column. The syntax for the

fault pattern of the PE banks is
PE_Name Start_Column Pin_Number Up_Low

This defines the location of one faulty PE in the superchip. If there are two or more

faulty PEs in the same bank, they have to be listed with two or more such statements.

5.6. An Example’

In this section, the message routing for a DFT chip is taken as an example of
using the routing algorithm to customise a superchip. Figure 5.2 shows the organisa-
tion of the superchip for the DFT implementation without redundancy. The crossbar
switch matrix in the middle has a size of 31X 104. The data given in Figure 5.1 are the .

system configuration file. Figure 5.3 is the chip composition file. Several different fault

t The DFT architecture in this example is taken from a study given in [132].
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patterns were taken to see if the algorithm is efficient enough to avoid and/or make use
of the faulty switch cells, as much as possible. Figure 5.4 gives a fault pattern for the
switch matrix. There is no critical fault in the PE bank. Figure 5.5 shows the routing
output of the system under the fault pattern in the switch matrix. In the output diagram,
8_OP switch cell is indicated by a red box and S_ON switch cell is indicated by a green
box. Increasing the number of faults in the switch matrix as shown in Figure 5.6, the
routing result is changed and shown by Figure 5.7. Comparing Figure 5.5 and 5.7, the
results indicate that, because of its unique architecture, the crossbar switch matrix can

tolerate lots of faults in the matrix itself even without any redundancy.
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Figure 5.2 The system schematic for a DFT

When the number of faulty switch cells in the switch matrix is further increased,
the resulting large number of faults in the switch matrix may require several PEs to be
abandoned, depending on where the faults are. Figures 5.8 and 5.9 are two outputs of
denser fault patterns with two redundancies ADD[1 1 0 0} and SUBTRACT[1 1 0 0]
as listed at the bottom of Figure 5.3. Here, all the faults are artificially concentrated in
the switch matrix rather that having some in the PEs as a random distribution. The
purpose of introducing this example is to demonstrate the effectiveness of the routing
algorithm at tolerating faults within the switch matrix. This is more complicated than
tolerating faulty PEs. In fact, tolcrﬁting faulty PEs is very straightforward as far as the
algorithm is concerned. Figure 5.10 shows the actual output file from the router for the
output depicted in Figure 5.9. In part of "OUTPUT ROUTING DATA", the number of
brackets equals the number of matrix columns starting from the first column on the left

to the last column on the right. The number in the brackets shows that the switch cell
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ADD t 0 0 0 O 5 1 6 5 5 5 ¢ 9 ¢
AD 1 1 0 0 6 1M1 0 6 5 S 5 9 9 g
SBTRACT 1 0 0 0 12 17 1 6 5 5 5 o 9 ¢
SUBTRACT 1 1 0 O 18 23 0 6 5 5 9 9
RDD 1 0 0 0 24 29 1 6 5 5 5 ¢ g ¢
ADD 1 1 0 0 30 35 0 6 5 5 9 §
SUBTRACT 1 0 O O 36 41 1 6 5 5 5 9 6
SUBTRACT 1 1 O O 42 47 0 6 5 5 5 9 6
ADD 1 1 1 0 48 5 1 6 S S 5 ¢ 9 ¢
ADD 1 1 0 O 5 5 0 6 5 S 5 9 ¢ g
SUBTRACT 1 1 1 0O 60 65 1 6 5 & 9 9 6
SUBTRACT 1 1 0 O 66 71 0 6 5 5 5 9 6
ADD 1 1 1 0 72771 6 5 5 5 g g g
ADD 1 1 0 O 78 83 0 6 5 5 5 9 g ¢

SUBTRACT 1 1 1 O 84 8 1 6 5 %5 5 9 ¢ ¢
SUBTRACT 1 1 O O 9 95 0 6 5 5 5 9 9 ¢
CBITDELAY 1 9% 99 1 2 6 10
CBITDELAY 1 1001030 2 6 10

I the following two CEs are added with two redundancies for
{ Figure 9 and Figure 10.

ADD 1 1 0 O 1041091 6 5 5 5 ¢ ¢ ¢
SUBTRACT 1 1 O O 1101150 6 S S 5 4§ g g

Figure 5.3 The chip composition file for the DFT system
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2 30 4

2 6 13
2 10 51
2 30 82
2 18 63
4 10 2

4 22 51
4 20 20
4 18 7

4 24 101

Figure 5.4 A fault pattern for the switch matrix

2 30 4

2 6 13
2 10 51

2 30 82
2 18 63
4 10 2

4 22 51
4 20 20
4 18 7

4 24 101
4 21 63
2 13 56
2 0 24
2 20 96
4 9 20
4 4 27
4 23 61

Figure 5.6 A second fault pattern for the switch matrix with more faults
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Figure 5.5 Routing output with the fault pattern given in Figure 5.4




¥

Figure 5.7 Routing output with the fault pattern given in Figure 5.6




Figure 5.8 Output from routing (one redundancy is used).




Figure 5.9 Output from routing (two redundancies are used).
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Routing Output Data Generated by ROUT [Version 1.1)
at: 14:40:37, on Wed May 21 1986

READ-IN SWITCH MATRIX TEST DATA:

TSC 2, 30, 4;
TSC 2: 6, 13;
TSC 2 "10:51;
TSC 2, 30, 82;
TSC 2, 18, 63;
TSC 4, 10, 2;
TSC 4, 22, 51;
TSC 4, 20, 20;
TSC 4, 18, 7;:
TSC 4, 24, 101;
TSC 4; 21. 63;
TSC 2, 13, 56;
TSC 2, 0, 24;
TSC 2, 20, 96;
TSC 4, 9, 20;
TSC 4, 4, 27;
TSC 4, 23, 61;
TSC 2, 30, 33;
TSC 2, 10, 45;
TSC 4, 28, 14;
TSC 4, 1, 60;
TSC 4, 12, 98;
TSC 4, 30, 53;
TSC 2, 16, 90;
TSC 2, 2, 59;
TSC 2, 5, 29;
TSC 2, 8, 61;
TSC 4, 14, 113;
TsC 2, 7, 35;
READ-IN PRIMITIVE TEST DATA:

(Primitive Banks Perfect)
READ-IN PRIMITIVE POSITION DATA FOR THE CHIP:

PP ADD[1,0,0,0], O, 5, 6, 1;

PP ADD[1,1,0,0], 6, 11, 6, O;

PP SUBTRACT(1,0,0.0]., 12, 17, 6, 1;
PP SUBTRACT[1,1,0,0], 18, 23, 6, O;
PP ADD[1.,0,0.0], 24, 29, 6, 1;

PP ADD[1,1,0,0], 30, 35, 6, O;

PP SUBTRACT[1,0,0,0], 36, 41, 6, 1;
PP SUBTRACT[1,1,0,0], 42, 47, 6, O;
PP ADD[1,1,1,0], 48, 53, 6, 1;

PP ADD[1,1,0,0], 54, 59, 6, O;

PP SUBTM[LL‘LO]. 60, 65, 6, 1:
PP SUBTRACT[1,1,0,0], 66, 71, 6, O;
PP ADD[1,1,1,0], 72, 77, 6, 1;

PP ADD[1,1,0,0), 78, 83, 6, O;

PP SUBTRACT[1,1,1,0], 84, 89, 6, 1;
PP SUBTRACT[1,1,0,0], 90, 95, 6, O;
PP CBITDELAY[1], 96, 99, 2, 1;

PP CBITDELAY[1], 100, 103, 2, O;
PP ADD[1,1,0,0], 104, 109, 6, 1;

PP SUBTRACT(1,1,0,0], 110, 115, 6, 0;

DIFFERENT PRIMITIVES MET IN THE SPECIFICATION:

ADD[1,0,0,0]
SUBTRACT[1,0,0,0]
ADD[1,1,1,0]
SUBTRACT[1,1,1,0)
ADD[1,1,0,0]
SUBTRACT[1,1,0,0]
CBITDELAY[1]

NET-PRIMITIVE LIST:

(23] 'et1 TR
SUBTRACT[1,1,0,0],
SUBTRACT[1,1,0,0],
ADD[ 1,1,0,0],
ADD[1,1,0,0],
SUBTRACT[1,1.0,
SUBTRACT[1,1.0,
ADD[1,1,0,0],
ADD[1,1,0,0],
SUBTRACT([1,1,1,0],
SUBTRACT[1,1,1,0],
ADD[1,1,1,0],
ADD[1,1,1,0],
SUBTRACT([1,0,0,0],
SUBTRACT[1,0,0,0],
ADD[1,0,0,0]
ADD[1,0,0,0]

0],
0],

LR 3 letz ERER
SUBTRACT([1,1,0,0],
SUBTRACT([1,1,0,0],
ADD[1,1,0,0],
ADD[1,1,0,0],
SUBTRACT[1,1,0,0],
SUBTRACT[1,1,0,0],
ADD[1,1,0,0],
ADD[1,1,0,0],
SUBTRACT[1,1,1.0],
SUBTRM.T“'":‘:O]-
ADD[1,1,1,0],
ADD[1,1,1,0],
SUBTRACT[1,0,0,0],
SUBTRACT[1,0,0,0],
ADD[1,0,0,0],
ADD[1,0,0,0],

1982 Not{Q REa
SUBTRACT[1,0,0,0],
ADD[1,0,0,0],

2R3 Nop20 *HEr
SUBTRACT[1,1,1,0],
ADD[1,1,1,0],

arrs Notpq trtt
SUBTRACT([1,0,0,0],
ADD[1,0,0,0],

tres Rpt2] TR
SUBTRACT[1,1,1,0],
ADD[1,1,1,0],

$11: Rot23 RErt
SUBTRACT([1,0,0,0],
ADD[1,0,0,0],

1213 o4 Rt
SUBTRACT[1,1,1,0],
ADD[1,1,1,0],

1as Npt25 Rete
SUBTRACT[1,0,0,0],
ADD[1,0,0,0],

TERR "et?s TR
SUETRACT[1,1,1,0],
ADD[1,1,1,0],

Figure 5.10 The actual output file



TINE etD] tiee
ADD[1,1,0,0], -

Teus motdp Hakd
ADD[1,1,0,0],

¥AEE Rat2q tess
SUBTRACT(1,1.0,0),

trre Kotlp rees
SUBTRACT(1,1,0,0],

[ 12} Ret31 arts
" ADD[1,1,0.0],

‘EgR aetaz 13411
SUBTRACT{%,1,0,0],

shEE net33 TREREY
SUBTRACT(4,1,0.0].

Tere Fotld aree
ADD[1,14,0,0),

ta2z Rot35 At
SUBTRACT[1,1.,0,0],
ADD[1,1,0,0],
ADD[1,0,0,0],

232 Eaplg Eer
SUBTRACT(1.1,0,0],
ADD{1,1,0,0], .
SUBTRACT(1.0,0,0],

tree Qo] tres
SUBTRACT[1,1,0,0],
ADD{1,1,0,0],
ADD[1,1,1,0],

Trte poplf tRA%
SUBTRACT(1,1,0.0],
ADD[1,1,0,0],

SUBTRACT{1,1,1,0],

1211 Rat]g wene
SUBTRACT([1,1.0,0],
ADD[4,1,0,0],
ADD[1,0,0,0],

TARR netqo "RER
SUBTRACT{1.1.,0,0],
ADD[1|1n0r°]r
SUBTRACT(1.0.0,0],

KEEE ’et41 tEEY
SUBTRACT(1.1,0,0],
ADD[1,1,0,0],
ADD(1.1,1.0],

et Forg) st
SUBTRACT(1.1.0,01,
ADD[1,1,0,0],
SUBTRACT[1,1.1.0],

aets Rap4d vree
CBITDELAY[ 1],
CBITDELAY[1],
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txan "et‘s tiny
CBITDELAY[1],
CBITDELAY([1],
SOBTRACT{ +,0,0,0],
SUBTRACT(1,0.0.0],
ADD[4,0,0,0},
ADD{1,0,0,0],

(AR E] "etqs [ R 23]
CBITDELAY([1].
CBITDELAY{1],
SUBTRACT[1,1,1,0},
SUBTRACT([1,1,1,0],
ADD{%,1,1,0].
ADD[1,1,1,0],

L £ 3 81 Het47 3 £33
CBITDELAY{1],
SUBTRACT([1, 3,0,0],
SUBTRACT{1,1,0,0],
ADD{1,1,0,0],
ADD[1,1,0,0],

I3 R ¥4 Het4B tWNEkR
CBITDELAY[ 1],
SUBTRACT(1,1,0.0],
SUBTRACT{1,1,0,0],
ADD{%,1,0,0],
ADD{1,1,0,0],

SOME STATISTICS:

Number of Signal Nets:
Nunber of Control Rets:
Total Number of Nets:
Number of Primitives read:
Number of Signal Ports:
Number of Control Ports:
Total Number of Ports:
Nunber of Primitive Banks:
Number of S_ON cells:
Number of 5_0OP cells:
Number of Faulty Primitives

Runber of Used Special Atten. Cells
Number of s_on used for routing:

Rerouting times:
cpu time (User):
cpu time (System):

OUTPUT ROUTING DATA:

105

28.5 [sec]
6.6 [sec]

{14) (6) (13) (16) (30) (5) (11) (15) (13} (23) (30) (7) (14) (6)
{13} {11) (30} (5) (17) (3) (13) (26) (30) (2) (O) (24} {13) (17}
{30) (5) (RC) (NC) (RC) (NC) (NC) (NC) (O) {24) {13) {25} (30) (%)
(NC) (NC) (NC) [NC) (NC) (NC] (4) {8) (13) (10} (30} (29} (16} (10}
{13) (21) (30) (2} (4) (8} (13} (18) (30) (29) (11) (15} (13} (1)
€30) (7) {9) (22) {13) (3) (30) (29) (17) (3) (13) (28) (30} (2) (9)
(22) (13) (15) (30} {29) (16) (1Q) {13) {12) {30} {(2) (20} {5) (20}
{29) (5) (2) (29) {7) (29) (18) (13} {19) (30) (7) (25) (18} (13)

(27) (30} (N

route: The whole routing finished successfully!

Figure 5.10 The actual output file (continued)
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on that row of the column should be switched to the electrically conducting state. *NC*

means "no connection” for that column.

5.7. Discussion

As shown in the example above, the success of system routing does not only
depend upon the fault density of the chip (the number of faults), but also upon the
actval fault pattern (fault distribution) as well. However, the yield model developed
earlier in Chapter 3 was solely based on defect density (or fault density). The fault pat-
tern sensitivity of the algorithm shown in the experiments here suggests a vital need to
explain the yield model in predicting the superchip yield. Actually, there is no contrad-
iction between fault pattern sensitivity and the yield model, based solely on fault den-
sity. The yield model gives a statistical average success of message routing, for a given
fault level existing on the chip. A different distribution of thes_e faults may cause some

variation around the average figure.

The effect of critical defect clustering in the crossbar switch matrix has been stu-
died during the routing experiments. With larger defect clusters in the switch matrix, it
is more likely that one or two working PEs are abandoned. If there is PE redundancy,
the whole routing will consequently be quite similar to the routing with nearly perfect
elements on the chip (because more clustering at one place means less faulty elements
on the rest of the chip). Therefore, the possibility of getting successful routing becomes
greater. If there is not enough redundancy for the PE, this clustering could be disas-
trous to routing. Thus, going back to redundancy selection, it should be ensured that
enough redundency is available in the sense of tolerating fault clusters. This applies
particularly for PEs placed necar the edge of the wafer (in which case some additional

redundancy should be added).

5.8. Conclusion

An automatic routing algorithm for a partially defective crossbar switch matrix
and its system realisation have been described in this Chapter. Various experiments
have been carried out to test the performance of the algorithm. The problem is NP-
Complete. However, the heuristic searching derived from the goodness function seems
to be satisfactory. For a system with about 100 inter-PE connections, the router usually

takes about 25 seconds on a VAX-750 to search for a solution, in the case where there
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exist faults in the matrix. If the matrix is perfect, the searching time will be much less.

The algorithm is not necessarily restricted to bit-serial systems as in the example given.



CHAPTER 6
A COLUMN FFT ENGINE USING THE CROSSBAR

SWITCH MATRIX — A CASE STUDY

A case study of a flexible, high performance FFT engine, realised with the super-
chip architecture introduced carlier, is presented in this Chapter. This example has been
chosen to show how the superchip architecture can be tailored to carry out a specific

system computation.

6.1. FPast Fourier Transform

The computation of the Discrete Fourier Transform (DFT) is of considerable
importance in digital signal processing applications. In such applications, transformation
speed is one of the most important factors and has, hence, attracted much attention.
Rescarch has resulted in various algorithms for speedi;ag up the transformation, notably
the Fast Fourier Transform (FFT). This algorithm has long been one of the major
analytical tools in the digital signal processing field for system analysis and power spec-
trum analysis, etc. In the early stages of FFT development, the main research effort
was concentrated on the software realisation of the algorithm with the then available
general purpose computers. Thus the speed of such FFT transformation was largely
dependent upon the computer employed and the effectiveness of the mapping from the
algorithm to the actual software realisation. With the advent of VLSI, the processing
clements become ever cheaper, so that it is possible to realise the whole FFT in a spe-
cially designed hardware system, which can be much faster and more efficient than its
software equivalent, Furthermore, due to its architectural modularity, the FFT is very

suitable for VLSI implementation.

Certain single-chip Fourier transform processors have been published
{133,134,135] recently. However, these chips are designed for specific transform

lengths. The FFT engine discussed here is capable of carrying out Fourier transforms
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with various lepgths. Bit-serial architecture has also been adopted for the FFT engine
for its simple communications and coatrol, efficient computation, and better
areaXtimez performance. Figure 6.1 shows a 64 point, radix-4, FFT flow diagram
taken from [136]. Each black point in the diagram represents a sample datum and each
hole represents a radix-4 butterfly processor, with the usual 'twiddle’ factors being indi-
cated by arrows. Each radix-4 butterfly performs three complex mulﬁplications and
eight complex additions. The block diagram of 2 radix-4 butterfly processor is shown in
Figure 6.2. To transform 64 samples from the time to the frequency domain, these
samples have to be processed through three columns (stages) of the butterfly opera-
tions. According to the flow diagram, there are 16 butterfly processors in a column for
@ 64 point transform. The algorithm employed in Figure 6.1 is called the radix-4,
normal-order input, digit-reversed output, in-place algorithm. The concept of column
FFT processing involves trying to use repcatedly one column of the butterfly processors
to carry out the whole transform. For example, in the flow diagram of Figure 6.1, a
butterfly processor column is used to process the first column of the transform, then the
outputs are properly re-ordered and presented again to the butterfly processor column
to process the second column of the transform, and so forth. The so-called "Constant
Geometry Algoritbm” [136] has been identified in this research es being particularly
suited for the column FFT process. Unlike the algorithm represented in Figure 6.1,
where the topologies for transferring output data after each different column processing
are different, the constant geometry algorithm provides a constant topology for
transferring the output data after each column process. Consequently, a column of but-
terfly processors can be used repeatedly, without changing any of its structure during
the course of the whole transformation. The constant geometry algorithm is achieved by
including a 'perfect shuffle’t after each column. Figure 6.3 shows a 64-point, radix 4,
constant geometry FFT column with the perfect shuffle. The FFT algorithms shown in
both Figure 6.1 and 6.3 will be used as examples in the case study in this Chapter.

t The concept of the "perfect shuffle” and its precise definition can be found on pp.
210 in {137}, or [138].
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Figure 6.1 A 64-point, radix-4, DIF, FFT, normally ordered input, digital

reversed output.
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Figure 6.2 A radix-4 butterfly processor

6.2. A Monolithic 64 Point Column FFT System

6.2.1. System Organisation

The functional part of a 64-point column FFT system consists of 16 radix-4 but-
terfly processors. Each butterfly processor performs three complex multiplications and
cight complex additions. Each input and output of a butterfly processor goes through a

FIFO (First-In First-Out) register. They are called inpur FIFOs, and outpur FIFOs,
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Figure 6.3 A stage of a 64-point constant geometry algorithm

respectively, es shown in Figure 6.4. The length of the FIFOs can be programmed to
align the signals throughout the operation. This is particularly necessary for a bit-serial
processing system, in which the wordlength often grows after certain arithmetic opere-
tions like addition. Furthermore, the system can also be casily geared to vﬁrious
wordlengths in different applications. An efficient variable-length shift register design
[139] bas been proposed. This shift register structure is very suitable for our purpose
here, because the required change in delay is quite small, and the amount of delay does
not need to be set to several different values, as required by some other variable-length
shift registers [140]. A butterfly processor, and the eight associated FIFOs, form a
complete processing element referred to herc as the butterfly processing element, or
BPE for short.

Pursuing the superchip architecture, all the BPEs are placed sbove and below a
crossbar switch matrix as shown in Figure 6.5, in which the duplex matrix architecture
is used. Every FIFO is connected to a column of the crossbar switch matrix, so that
BPEs can only communicate with each other through its own FIFO, and the switch
matrix. The crossbar switch matrix itself contains control circuits for system message
routing. To be easily accessible from external signals, each matrix row is connected to a

bidirectional I/O device shown in Figure 6.6. This bidirectional I/O device consists of
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butterfly processing element (BPE)

[ e R e L S e e

rodix 4
butterfly

Figure 6.4 A radix-4 butterfly processing element

two, tri-state, non-inverting buffers. The "RCtr]” {(Row Control) signal can disconnect a

matrix row from externals.

BPE BPE | | BPE | - BPE
T 111 T IO R 40 . . 114t 1ilt
‘ [
111 11 T THH T 1
BeE || BPE || BPE | T BPE

Figure 6.5 A schematic of the column FFT organisation

To @ m‘gtrixA row PCir To outside
) -

Figure 6.6 Bidirectional I/O device
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For a 64-point transform length with complex data, the number of rows in the

switch matrix should be 128, the number of columns should be 256.

6.2.2. System Operation

Figure 6.5 shows only a schematic of the system with an indication of data flow.
Control in a bit-serial system involves control of the timing and the flow of events. The
convention [88] for describing control in bit-serial systems is adopted here; it bas
already been presented in Section 2.4.3 and depicted in Figure 2.18. In the FFT system
studied here, the control signals c0, cl1, and €2 are assumed to be automatically avail-

able from an off-chip clock generator.

Before performing the transformation, all the 64 samples are loaded into their
corresponding input FIFOs through the bidirectional I/O devices and the switch matrix.
Thereafter, the matrix rows are disconnected from externals by setting the "RCtrl" sig-
nals of the I/O devices. Then, the whole switch matrix is initialised by setting both row
and column decoders of the matrix to their "clearing state”. Immediately after initialisa-
tion, all the samples are fed into the butterfly processors in their own BPEs to start the
first columa computation. At the same time, message routing is carried out within the
matrix for transferring output data from the current column processing. For 64-point
column processing, there should be 16 BPEs for each column, each of which has been
defined in the chip during the generation of the routing message, discussed in Chapter
5. This corresponding relationship does not change during the column processing. To
have a correct transform result, message routing must finish before the output data for
transfer appear at the matrix. By disregarding output FIFOs, the time permitted to
complete message routing is the latency of the radix-4 butterfly processor. This latency
depends on the number of bits of the coefficients for the complex multiplication. If the
latency is less than the time that the message routing process requires, an extra amount
of delay for the output data from the butterfly processors must be introduced through
the output FIFOs to ensure that the output data appear after the message routing has
been finished. The condition that the whole message routing finishes BEFORE the out-
put data t‘romAgiltterfly processors appear is called a #iming condition. The butterfly
computations and the system message routing set-up are two parallel processes executed
at different parts of the superchip. The timing condition indicates that the time taken by

the message routing process must not be more than that for the computation process.



- 151 -

The employment of the input and output FIFOs in each BPE has made it possible to
keep an accurate timing control of these two parallel processes. Ultimately, the time
period of these two parallel processes should be adjusted to be "just” the same so that
the maximum throughput can be achieved. In other words, the time for the message
routing should be adjusted to be the same as that for the butterfly computation. The

condition for achieving this maximum throughput is called the ultimate timing condition.

When the routing time in the switch matrix is considerably longer than the letency
of a EPE, 8 considerable proportion of the time for processing one column will not be
spent on computation. Instead, it is spent waiting for the completion of the message
routing process. To speed up the message routing process in this case, a so-called
"parallel loading scheme” can be performed. Figure 6.7 shows parallel loading which is
capable of embedding two routes at a time. In this scheme, the switch matrix is divided
into two sections. There are two sets of addressing circuits which provide for these two
sections. Two different routing messages are fed to these two addressing circuits in
parallel. As a result, the message routing time is halved for a minor hardware overbead
(one column decoder). The message routing time can be further reduced by dividing the
switch matrix, and by adding more addressing circuits to address each small tegion of
the switch matrix in parallel, so that the ultimate timing condition is always assumed to

apply in the rest of the discussion.

oddressing

circvits
\ 1
| 1/2 switch motrix
| 1/2 switch maotrix
T == 1
addressing
tirzuits

Figure 6.7 Parallel loading establishing two routs at a time

In the constant geometry algorithm, the system message routing is only carried out

once during the processing of the first column. For the two remaining columps, the



- 152 -

topology of the data transformation does not éhange. The data can be sent directly into
the switch matrix without any delay through the output FIFOs. The amount of delay set
for the input FIFOs of the BPE of the next column, in this case, depends on the system
wordlength and the latency of the butterfly processor. If the latency is longer than the
system wordlength, then the delays of the input FIFOs can be set to zero. This follows
because when the data processed from a current column are ready to be fed back to the
next column, the whole word of fhe input data for the current column has already been
injected into its butterfly processor, so that the coming data will not corrupt the previ-
ous data at their destinations. If the system wordlength is longer than the latency, then
the delay of the input FIFOs are set to compcnsate:tge difference so that next column
processing starts after the whole word of all current column inputs has been injected
into the butterfly processor. In the former situation, the computation is not efficient
enough because part of each butterfly pi-ocessor is idle all the time. Suppose the but-
terfly processor works in a pipeline fashion m term of the bits of the data it processes.
Figure 6.8 (a), for example, shows the position of a word relating to a butterfly at the
very beginning, f,, when the first column is about to start. The length of the butterfly
processor in the diagram represents its latenéy, and the length of the data represents
wordlength. Figure 6.8 (b) shows the position after a time period of the butterfly pro-
cessor latency, #7 , which indicates thaTpart (front) of the processor is idle, After this
point, any bit output from the first column are fed back immediately to their
corresponding butterfly processors for the second column processing. Figure 6.8 (c)
illustrates the position after the time ¢, + #7, and Figuré 6.8 (d) shows the position
when the first column processing is completed, both of which indicate part of the but-
terfly processor is idle throughout the processing. The ideal situation is to choose the
number of bits for system wordlength such that the latency for the butterfly processor is
the same as the system wordlength, thus eliminating idle periods. This situation is
assumed in all remaining discussion unless otherwise stated. Figure 6.9 shows the tim-
ing control of these two overlapping processes. To distinguish from another column
operation discussed later, this columnp operation is called full column processing. In full
column processing, all output data have their own transferring path to their destinations
after every column computation, i.e. the whole transform length can be processed and
transferred concurrently, without any conflicting traffic. In Figure 6.9, the last message
routing in the switch matrix, parallel to the last column computation, is to re-order the

output into natural order.
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Figure 6.8 Relationship between latency and system wordlength (length of the
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6.2.3. Chip Complexity

A bit-serial multiplier is already under development by other researchers
[141,142], within the Department of Electrical Engineering, using 3pm CMOS technol-
ogy in gate matrix style. This design is taken here as an example for analysing the com-
plexity of the column FFT system. The result of this multiplier design suggests that the
transistor count for one slice of the multiplier (one such slice mainly performs one bit
multiplication for the coefficient) is around 200 and the silicon area for the slice is
around 180% 1560 p.mz. A radix-4 butterfly processor mainly consists of three complex

multipliers and some adders and subtractors. Suppose that the coefficient for the



- 154 -

multiplication is 12 bits in length. This will make a real multiplier use 12 slices and a
radix-4 butterfly processor will use 144 slices, with a transistor count of around 29,000.
Considering the cont-r(;l" circuitry, input and output FIFOs, and some adders and sub-
tractors required for the BPE, the total transistor count will be about 30,000. Each BPE
will have 16 1/O ports communicating through the switch matrix. If the BPEs are placed
both above and below the switch matrix, according to the width of the switch cell (132
pm), the pitch for ¢ach BPE will be about 4.2 mm. Therefore a BPE with 30,000
transistors will probably have a height of around 13mm. A switch matrix with 128 rows
and 256 columns will occupy a silicon area of 7.2X34 mmz. Also including some /O
pads (64 bidirectional I/O pads for data plus some control and power pads), the size of

the whole chip is around 35x 35 mmz. This information is summarized in Table 6.1.

Table 6.1 Summary of the complexity of different components
Componerts Transistor connt* | Estimated area (mmz)

One bit slice . 200 1.5x0.18

Real mulﬁplit;f 2,400 1.5x2.2
Complex multiplier 9,600 3.2x13.0

One BPE 30,000 , 4.2x13.0
switch matx'.i_x . 34,000 34%x7.2

64 point FFI' 520,000 35%35

6.2.4. Yicld Estimation

The yield model and the redundancy selection scheme has been developed in
Chapter 3. These are adopted here to assess the yield figures for the FFT superchip. It
has already been shown that the pure Poisson model usually leads to a more pessimistic
yield figure than is encountered in practice. The models derived by Seed and Stapper
are ’_"tl‘i better, fitting observed data reasonably well. By referring to the silicon size

of the BPE, Seed’s model is adopted here to calculate yield for the BPE. Seed’s model
has been given in equation (3-5):
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1
Y= — (3-5)
1+ DA

where D is defect density and A is total critical area on the chip. According to practical
experience in custom and semi-custom design, and the actusl data from the switch
matrix design presented in Section 3.3.2, the total critical area usually lies between 50%
and 60% of the total chip area. In the following analysis, the total critical area ‘is
assumed to be 50% of the total chip area. Also, the defect density is assumed to be two
defects per square centimetre, which is 8 commonly used figure for modern VLSI tech-
nology. With this defect density, the yicid of a single BPE is predicted to be 65%,.and
the probability of successfully making a single route in the matrix is 99.4%. Consider-
ing the dependence of all the routes related to one BPE, the probability of successfully
routing a single BPE within the switch matrix (16 routes) is predicted to be 91.6% The
yield value of the whole FFT superchip with a different number of BPE redundancy is
shown in Table 6.2. This shows that adding more than 9 redundant BPEs will not
improve the yield dramatically, but instead the cost increases and the figure of merit
decreases. However, the maximum yield value achievable by adding redundancy is
around 8%, which is two orders of magnitude improvement over the':?:dnndaht case
(0.08%). This is paid for by more than & 55% hardware overhead which is clearly
large. Although valuable yield improvement can be achieved in comparison to the
non-redundant value, the final yield is still low. The question now is: Is there any
potential in exploring the architecture which can further improve the yield, but with less
hardware overhead? In this regard a hierarchical redundancy scheme may offer a dis-
tinct edvantages.

6.2.5. Introducing Hicrarchical Redundancy

The reason why the yicld value can not be dramatically improved, even after a
considerable amount of redundancy is introduced into the chip, is that the yield of each
BPE is too low. Any single critical defect in 8 BPE will discard the complete BPE and
introduce a large burden on the higher system level's defect tolerance. The system is

forced to employ more redundant BPEs. However, after & certain point, the extra,
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Table 6.2 Yield Estimation Resultst

Redundancy(BPE) 0 1 2 3 4 5
Yield of matrix 80% 95% 97% 98% 98% 98%
Yield of BPEs 01% | 05% | 13% | 2.5% | 3.8% | 5%
Chip yield 0.08% 0.47% 1.26% 2.45% 3.7% 4.9%
Figure of Merit 1 5.6 14.1 26.1 37.6 47.6
Redundancy(BPE) 6 7 8 9 10 11

Yield of matrix | 98% | 98% | 98% | 98% | 98% | 98%

Yield of BPEs 6% 6.9% 7.4% 7.7% 7.9% 8.1%
Chip Yield 5.9% 6.8% 71.3% 1.6% 71.7% 7.9%
Figure of Merit 54.9 60.7 62.6 62.7 61.3 60.6

low-yield, redundant BPEs will not give any increase in the overall yield. Improvement
can bc achieved by lowering the level of the defect-tolerance down into the BPE to
increase the yield of each individual BPE. This can be achieved by incorporating a small
switch matrix into each BPE. For example, Figure 6.10 shows a schematic of such a
two-level redundancy organisation. Inside the BPE, the major yield loss comes from the
12 real multipliers, because they each occupy 80% of the total BPE area. If every real
multiplier is considered as an element along the small switch matrix, and all the adders
and subﬁactors are considered as one element along the matrix, then the size of the
small -I'nat-rix is estimated to be about 25 rows and 50 columns, giving a silicon area of
around 6.53 mmz. According to their sizes, each real multiplier will have a yield of

96% and the element of adders and subtractors will also have a yield of 96% (making a

t In this Table, the yield value for the switch matrix does not include the possible
yield loss due to critical defects in the control circuits in the matrix. Also, the figure
of merit taken is FM 4.
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total BPE yield be 65%). If a redundant real multiplier is put into the BPE, this will
produce about a 20% hardware overhead for the new BPE including the small switch
matrix (11.75 mm2 extra silicon area versus 54.6 min> for the original silicon size).
However, the new BPE yield goes up from 65% to around 90%. A similar table show-
ing the yield values based on this two levels of redundancy is given in Table 6.3. This
shows that by employing two levels of redundancy the yield rises dramatically. Even if
there is no higher level of redundancy, the chip yield is already 14%, with only a 15%
hardware overhead caused by the redundancy in BPE level. Compared to the results in
Table 6.2, the hierarchical redundancy scheme needs less overhead, but has higher
yield. When the overall yield reaches more than 80% with the higher level of redun-
dancy, the total overhead for both levels is about §5%. This is the same as the overhead
required for the highest possible yield in Table 6.2 (single level redundancy case).
However, the yield is further improved by an order of magnitude. With reference to
the criteria for hierarchical redundancy discussed in Section 3.5, this example lies well
inside the scope for which hierarchical redundancy should be applied for better yield
enhancement. The results also imply that by introducing an appropriate amount of
redundancy at a lower level, more benefit arises than that for the higher level, in terms

of overall hardware overhead.

Table 6.3 Yield Estimation Results for Two Levels of Redundancy*

Redundancy(BPE) 0 1 2 3 4 5

Yicld of matrix 80% 95% | 97% | 98% | 98% | 98%

Yield of BPEs 18% 47% | 70% | 83% | B9% | 91%
Chip yield 14.4% | 45% | 68% | 81% | B7% | 88%
Figure of Merit 1 3.5 4.2 4.8 4.9 4.7

+ In this Table, the redundancy in the BPE is fixed, so that the redundancy in the
Table refers to the redundancy at system level. Also, the yield valne for the switch
matrix does not include the possible yield loss due to critical defects in the control
circuits in the matrix.
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Figure 6.10 A schematic showing two levels of redundancy

6.2.6. Arca Reduction

For a 64-point, radix-4, column FFT the size of the switch matrix is 128 by 256 if
the inputs are complex signals. In operation, the fact is that both the real and the ima-
ginary part of a sample always go to the same destination. Thus, they can ectually share
one addressing line in both matrix column and row decoders. They can also share one
latching part of the switch cell which controls two transmission gates. By adopting this
epproach, the area of the switch matrix can be reduced by nearly 50%, as are the
matrix row and column decoders. Consequently, the total chip arca will be reduced by

nearly 10%.

6.3. Expandability of the FFT Superchip

Practically, the transform length for an FFT system is usually more than 64 points.
However, it is not practical or economic with current VLSI technology to integrate a
full column FFT system with long transform length (say, 256 points) on to one piece of
silicon. For FFT chips with rather shorter transform lengths, it is widely desired for
them to have expandability in order to easily and arbitrarily form a new FFT system
with a longer transform length. The 64-point, full column, FFT ptresented earlier has

such a capability, and can be regarded as a basic building block for constructing larger
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column FFT systems.

6.3.1. Forming FFT Systems with Larger Transform Lengths

Let us take an example of a 256-point column FFT system and examine how to
build such an FFT system using several 64-point column FFT chips. To perform a 256-
point column FFT, there should be 256 traffic lines after every column processing (512
traffic lines for complex input). Four, 64 point column FFT chips should be employed
to compose a column with 64, radix-4 butterfly processors. The full column FFT archi-
tecture (full column FFT as referred to earlier) requires another twelve, 128 by 256
crossbar switch matrices to implement all the signal traffic. Here, the system complexity
may incrcase dramatically with the increase of the transform length. It may be
unmanageable and uneconomic when the transform length becomes reasonsbly long
(say, 1024, where 240 such additional switch matrices are required). In this case, a cer-
tain amount of arca-time trade-off is necessary. One approach is to reduce the parallel-
ism by introducing parallel-serial column processing, which has slower complexity
growth against transform length. Figure 6.11 illustrates such an expanded column FFT
machine for 256-point FFT. This consists of four, 64-point column FFT chips and no
additional switch matrix is required. Remember that, in the 64-point column FFT, the
sfstcm can only communicate externally via the switch matrix and a set of bidirectional
I/O devices. In this expanded version, the 256 samples are loaded simultaneously into
all the 256 FIFOs tiuough an array of switches depicted as "loading switches” in Figure
6.11. These loading switches are very simple. Each slice of these switches takes care of
_two inputs from outside and two 1/O ports, one each from the two neighbonring chips.
Figure 6.12 shows the circuit of such a slice. During the loading phase, ® remains high
so that 256 samples can be loaded via the 256 separated switch matrix rows to the local
FIFOs. Afterwards, ¢ stays low disconnecting the matrix rows from external circuitry
and connecting the matrix rows together to form a 64x 256 switch matrix (128X 512 for

complex samples).

A 256-point, radix-4 FFT has four columns. If the physical position of each radix-
4 processor is fixed during the transform, and each chip is organised such that the first
16 butterflies are in the first chip, the second 16 are in the second chip, and so on, then
inter-chip communication can only be realised through the four linked switch matrices.

By studying carefully the Cooley-Tukey 256 point DIF FFT algorithm, shown



- 160 -

128 inputs 128 inputs
. - . — . F1  n 4 int
64 point 22 64 point — 64 point | 'g% — 64 poin
FFT 185 | FFT b FFT 8% | FFT

Figure 6.11 Composition diagfam of a 256-point column FFT

to somple inputs

/ )

s Ml

to o 64 point FFT
Sy,

—

Ik

to a 64 point FFT
-

-

A

Figure 6.12 One pair of loading switches

diagrammatically in Figure 6.1 for & 64-point transform, it can be found that only the
data transfer after the first column computation requires inter-chip (linked switch
matrices) communication. Thereafter, the data are only transferred within its own chip
(transferred among the 16 BPEs in the chip). By using the tri-state I/O devices on each
chip, the chips can be isolated from each other, so that all the 256 samples processed
from one column can be routed simultaneously. Looking further to a 1024 point
column FFT, this needs 16, 64-point column FFT chips. Only the first column needs
data transfer on the full span of the column (16 chips). Thus only 64 points out of 1024
points can be processed at a time for the first column. For the second column, the max-
imum required span for data transfer is four adjacent chips, so 256 routes can be imple-
mented at a time in the matrix. For the rest of the columns, all the 1024 points can be
processed simultaneously. Distinguished by the full cc;lumn FFT processing, this type
of column processing is called partial column processing. The Cooley-Tukey algorithm
is suitable for partial column processing, because it has localised data transfer while the

transform proceeds. Therefore, more parallelism can be achieved for a given size of
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switch matrix. If the constant geometry algorithm is used in the partial column process-
ing, then it will be less efficient, because there is no localised data transfer for any

column in the transform.

The whole partial column processing can be divided into a serial-parallel process-
ing section and a full parallel processing section. For a 256-point, partial column FFT,
all the matrix rows should be conpected togetber to route the traffic for the first
column, because the data transfer requires the full span of the column. This is the
serial-parallel section in which the computation of the first column is divided into four
sequential steps, each of which processes 64 samples in parallel. The results for one
group of data arc sent to their destinations for the next column processing through the
switch matrix. For this situation, it should be assured that data in the FIFOs of those
destinations should not be corrupted (overwritten) by incoming data for the next
column processing. All the four groups are processed serially in this way. The follow-
ing full parallel processing is performed for the rest of the three columns by isolating
from each oﬁer the four crossbar switch matrices in four chips, and routing the traffic
locally within each matrix. However, unlike the full column processing where message
routing is only performed once for the whole process, the partial column processing
requires message routing for all the column computation because the topology of data
transfer after each column is different. If we still assume that the system wordlength is
equal to the butterfly latency (i.e. the ultimate timing condition is satisfied), then in
order to allocate enough time for the message routing, all output data after one column
of processing is transferred through the switch matrix and then latched at its destina-
tion, instead of being fed into the butterfly processof immediately, as happens in full
column processing. After transferring the output data, the next part of the column (or
next column) is processed in the butterfly processors and, at the same time, the message
routing for this part of the data is carried out in the switch matrix. Figure §.13 indi-
cates the timing for a 256-point partial column FFT operation, in which the last routing
process also brings the final data into natural order. For convenience in later discus-
sion, the maximum number of transferable words of data in one cycle in partial column
processing is referred to as the "Base Transform Length”, written as Ng. For example,
the 256-point partial column FFT discussed above has the base transform length, Ng, of
64. If the time required for processing one sample in the BPE (this is the same as the
time required for processing a column in the full column processing) is considered as a

time unit, called a cycle, then the 256-point partial column FFT requires 14 cycles
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instead of the 4 cycles required by the full column FFT.

6.3.2. Performance Comparizon

As discussed above, full column processing is faster than partial column process-
ing, but costs more (for the same transform length). Let us examine the space-time-
energy measure to appreciate trade-offs between both organisations. For convenience
in following discussion, let the {silicon) area unit be defined as the average silicon area
required for processing one sample in the partial column processing (for instance, the
silicon area occupied by one BPE and sixteen matrix columns of the matrix, as required
for processing four samples). Suppose the system control is distributed amongst the
chips such that the ultimate timing condition is satisfied. For full column processing,

the time and area required for an FFT with transform length N is log,N time units and

[N +®N(N ——NB)] areca units, respectively. @ is the ratio of area unit to area of the

extra switch matrices required in the full column processing, which, in this case, is

3.4x 10—-4, and r is the radix number. For the same situation, partial column processing
c L ,
requires [2103,,1\’5 +2x I (=) Xx{—)}| time units't and N area uaits, where, ¢
n=0 4 Ng

N
= log,(—l-v—) ~ 1. Teking two extremes: Firstly, when N is small, the area and time
B

for full column processing are O(N) and O(log,N); the area and time for the partial
column processing is O(N) and O(log,Ng + %). Secondly, when N is large and also
B ‘ .
the condition N >> Np applies, the area and time for the full column processing are
O(Nz) and O{log,N); the area and time for the partial column processing are O(N) and
O(Nz). Figure 6.14 compares the area xrimez measure for a full column FFT and two
partial column FFTs for different Ng (in which both axes are in log scale). All the data
in the diagram have been' normalised to the data of a 64-point, full column FFT. The
results indicate that the full column processing organisation is generally better than the
partial column processing organisation as far as area xxime2 is concerned, particularly
when N is large and the condition N >> Np applies. This result is mainly due to the

rapid growth of the time taken by the partial column processing, when transform length

1 For the same wordlength and coefficient length, the time unit will be the same for
both full column and partial column processing.
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becomes large and Np is kept unchanged. The fact is that during the processing of the
first several columns as well as the latching period after processing each column (or
part of & column), a certain amount of butterfly processors are idle, while in full
column processing, all the butterfly processors are kept busy all the time. To improve

the performance for partial column processing when the transform length is large, it is

N
wise to keep —— a small constant (4 is probably the best). For instance, it is better to
Ng

have 256 rather than 64 as the base transform length in an FFT transform with 1024 or
4096 transform length.

s
—_

poartial column processing
bass tronzform length = G4

partial column processing
bass tronsformn isngth = 258

space—time—energy

full column processing
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=
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Figure 6.14 Comparison of area X n'mez between the full column and the partial
column FFT

The choice of whether to use full column or partial column processing depends
upon the hardware availability and the throughput constraint (requirement),
Throughput also depends upon the system clock rate, system wordlength and the coeffi-
cient length. Suppose that the coefficient for multiplication is 12 bits in Icngih, and the
system clock rate is 20 MHz. Then the butterfly latency will be 20 bits. We also
assume that the system wordlength is 20 bits as well. Under the nltimate timing condi-
tion, one cycle of a column computation is 1 ps. Using these assumptions, Tables 6.4
and 6.5 summarize the computatioﬁ time and the system complexity taken by both full
column and partial column FFT as a comparison, for various transform lengths. Also as
a comparison with the performance of several general purpose digital signal processor

chips [143], Table 6.6 illustrates their performance for various transform lengths.
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Table 6.4 Full Column Processing

transform length | computation time | transistor count

64 points 3 psec (3 cycles) | 520K
256 points 4 psec (4 cycles) | 1,408K (16 chips)
1024 points 5 psec (5 cycles) | 16,480K (256 chips)

4096 points 6 psec (6 cycles) | 170,368K (4096 chips)

Table 6.5 Partial Column Processing (Ng =64)

transform length

computation time

-transistor count

256 points

14 psec (14 cycles)

1,000K (4 chips)

1024 points

38 psec (38 cycles)

8,320K (16 chips)

4096 points

174 psec (174 cycles)

33,280K (64 chips)

Table 6.6 The FFI‘ Performance of Several DSP Chips
transform length | 7720(NEC) | 32020(TI) 56000(Motorola)t
64 points 1.6 msec 0.434 msec | 0.147 msec
256 points - 2.44 msec 0.713 msec
1024 points 77 msec 14.18 msec | 5 msec

T The Motorola DSP chip is one of the fastest general purpose single chip DSP with
efficient on-chip memory modules.
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6.3.3. Message Routing in Partial Column Processing

Extra control circuits are needed to perform message routing for the partial
column processing organisation discussed earlier. Note that for each 64-point column
FFT chip there is control circuitry for addressing its own switch matrix; this is mainly
decoding circuitry. Each set of decoding circuits in a switch matrix can decode
addresses from 0 to 255 columns by 8 addressing signals. For a 256-point FFT, there
should be 10 addressing signals to address the total number of 1024 columns. For-
tunately, the number of columns in each switch matrix is just an integer power of 2.
This means, if the 8 least-significant addressing signals out of the 10 addressing signals
for the 256-point FFT are taken and applied to a correct switch matrix, then the
addressed column should be the correct column which the whole system wants to
address. The question arises how to correctly lead these B least significant addressing
signals to one of the four switch matrices. The answer is that they should be controlled
by the remaining two (most significant) addressing signals. Figure 6.15 shows such a
control scheme. The two most significant addressing signals are applied to a 2-to-4 line
decoder. The four outputs from this decoder control 4 switch arrays. These switch
arrays are structurally very simple, and one of them is detailed in Figure 6.16. There
are 8 transistors sitting diagonally across the 8 inputs and 8 outputs to form correspond-
ing connections amongst them. They are all controlled by an output signal from the
decoder. When this signal is a logic 1, all these 8 switches are closed to lead the 8 least
significant addressing signals to this particular switch matrix, Otherwise, the output sig-
nal will cause the column decoder in the switch matrix to be in the disabled state, by
setting its "NAND" input low. The "set” input in the 2-to-4 line decoder is to set all the
outputs high at the same time. This operation is required when the message routing is
carried out for the last three columns, during which four traffic routes are implemented
in parallel within four switch matrices. The addressing signals to address matrix rows
are applied in parallel to all the addressing circuits to make the whole row across the

four matrices active.

The generation of the message routing message is the task of the router, treated in
Chapter 5. For the constant geometry algorithm, only one message routing is per-
formed. In the partial column processing, the traffic geometry in the switch matrix is
changed after each column computation. It has already been assumed that, during the

column processing, all the butterfly processors are physically fixed in the chips.
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Figure 6.16 A switch array for partial column FFT addressing

Therefore, the route scarching procedure in the routing algorithm for the second
column onwards should be modified somewhat. Originally, the searching is two dimen-
-sional because, for initial routing, the physical position of the processors has to be allo-
cated within the chip (in one dimension), and also the traffic route has to be assigned to
one of the matrix rows (in another dimension). Referring to the routing algorithm

given earlier, only step 7 (mapping) needs to be changed to be one dimensional search-

ing (fixed columh).
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6.4. Conclusion

A 64-point, radix-4 column FFT engine implemented with the superchip architec-
ture has been presented. The advantage of having sﬁch an FFT engine is that a satisfac-
tory area-time trade-off can be achieved, compared to the full FFT array architecture.
Such an advantageous trade-off makes it possible to process an FFT with a longer
transform length in parallel. This 64-point column FFT architecture is as flexible as the
pipelined FFT architecture, because it can be expanded to a larger FFT transform.
However, it is much faster than its pipelined counterpart. Such flexibility mainly results
from the use of the crossbar switch matrix. Although integrating the whole column
machine on to one piece of silicon makes the tota] chip area fairly big, employing the
switch matrix has also made it possible to introduce redundancy into the chip in such a
way as to bring such a design up to an economic level. The transform length of the
basic column FFT unit as building block does not have to be 64 points, nor in radix-4.

These should be adjusted according the technology and the application.

The column FFT system is only one example of superchip architecture. It was
chosen here, to evaluate the potential for defect-tolerance and system reconfigurability.
There are, of course, many other potential applications such as matrix manipulation,
image processing, and general purpose multiprocessing, etc, where a similar advantage

may be achievable.



CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER

RESEARCH

7.1. Summary

For future signal processing and scientific computational tasks, the superchip
architecture proposed in this thesis offers higher throughput, flexibility and lower cost
than conventional approaches. This is achieved by integrating a large crossbar switch
matrix which connects a large number of PEs onto a single piece of silicon. In such an
environment, the crossbar switch matrix as a communication network plays a key role.
The thesis has assessed the potential of such a structure in large integrated systems and
covers the defect/fault tolerant capability and the system reconfigurability, both at the

top level of the hardware design methodology and at a lower level of software support.

Two types of crossbar switching network were examined: a normal switch matrix
and a duplex switch mairix. The reasonﬁchoosing the crossbar network is provided by ‘
the analysis and comparison of the crossbar switching network approach with other
interconnection networks and techniques available for large, high performance ICs. In
the superchip, large numbers of PEs are fully connected to each other through a
crossbar switch matrix. By carefully allocating processing tasks among these PEs the
system throughput can be maximised, resulting in qfficicnt parallel processing. The
example of a 64-point column FFT machine, discussed in Chapter 6, indicated that such
system is capable of approximately 150 million arithmetic operations per second, and
only occupies an area of 35x35 mmz. More powerful systems can be achieved by
extending the approach to an entire silicon wafer using the same processing technology,

or increasing the density using smaller geometry processing technology.

Initial results for the prototype switch matrix design vindicate the functionality of

the switch matrix designed in this research. They also demonstrate the good
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performance characteristics of such a design. For example, the signal delay through the
switch matrix is expected to be around 30 to 50 nsec with little distortion (pulse width
variation). The superchip can easily be progremmed through a set of addressing cir-
cuits and, thus, the user will have more flexibility to change the configuration during
operation. Defect/fault tolerance is achieved by aveiding faulty switches or fauity PEs
during traffic routing. Such a tolerant capability becomes very efficient in the duplex
matrix architecture where there exist multiple paths between any two communicating
ports. The column FFF machine discussed as & case study is a good example of realising

dynamic reconfiguration and defect tolerance in the crossbar switch matrix.

Yield models and a routing algorithm have also been developed for the superchip
and have been presented in this thesis. Yield modelling is crucial for the superchip
approach because any system implemented using it is potentially a large area silicon
chip. The cost of a system reflects significantly the superchip yicld figure. More
importantly, the yield models lay the foundation for estimating optimal redundancy for
a system. In a large silicon chip, like the superchip, processing defects are inevitable.
Defect tolerance through hardware redundancy is necessary to improve yield and there-
fore reduce the cost of implementation. However, from a cost-effectiveness point of
view, the hardware overhead should be kept to a minimum, with respect to & required
yield. In other words, every redundant element introduced should be cost effective, or
worth paying for by such an area overhead, in return for the amount of yield improve-
ment. Such cost effectiveness is estimated by the introduction of a "figure of merit”,

which indicates the optimal amount of redundancy for a particular system.

The amount of redundancy is one factor which contributes to the cost-effectiveness
of the superchip implementation of a system. There are two other important factors
which also relate to yield and cost-effectiveness. One is system partitioning. For ﬁpar-
ticular system, there will be several different ways to map the system into the superchip
architecture, depending on how the system partitions into tlzﬁ}lf—";;;ft_ the superchip. Dif-
ferent partitioning results in differently sized PEs and so s’_o.'_;\overa.ll size of the super-
chip, resulting in different yield values. For a particular system, equation (3-41) quan-
tifies the benefit of using the superchip architecture for various system partitions
against its non-programmable implementation (without using the switch matrix). The

peak value indicates the most beneficial partition of the system. However, this measure

together with the figure of merit5: not in ‘ f—f;f?sefil%»\ﬁble to justify cost-effectiveness.
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This is because the benefits are obtained in comparison with either a non-redundant or
non-programmable system. The real potential benefit due to different redundancy has
not been fully explored and compared. This leads to the other important factor: the dis-
tribution of redundancy amongst different system levels. Primarily, the degree of sys-
tem partitioning can ensure that the partition (very likely from the natural hierarchy of
the design) falls inside the beneficial region (given in Figures 3.20 and 3.22). This also
determines the size of the matrix. Then the careful distribution of the amount of redun-
dancy for any particular size can be made to maximise the yield value, for which the
figure of merit for the amount of redundancy can be taken as an indicator of the cost-

effectiveness for each level.

The message routing algorithm introduced in this thesis was designed to construct
a desired system from a partially defective superchip. It classifies all the faulty ele-
ments and their fault conditions. Good PEs arc then connected through the switch
matrix in such a way that every route being searched gathers all the related local and
global advantages and disadvantages as to where to embed the route in orer to guaran-
tee the maximum possibility of success. This has been achieved through the definition
of a goodness function. As proved in Appendix B, the message routing problem in a
partially good switch matrix is NP-complete. To find a solution for this NP-complete
problem, the goodness function is not only used to define goodness values for each
route, but is also used to define a practical searching heuristic for the problem. the
goodness function defines a region where the greatest possibility of finding a solution
seems likely. Various tests on different fault densities and fault locations were carried

out for this approach. The results were satisfactory.

7.2. Recommended Further Research

Further research directions either related to or stemming from this thesis are dis-

cussed in the following five sub-sections.

7.2.1. Increasing Testability of the Switch Matrix Design

It has been shown that the current switch matrix prototype design can not get
100% coverage for functional test. The problem lies in the decoding circuits where
100% coverage of functional test can not be achieved. This is because the outputs of

these circuits can not be read directly. Incorporation of an observation pad at each
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output scems too expensive, Ic;.dli;g to an unaccepted pin count. The best way to solve
the problem is to introduce a shift register chain between the column decoder and the
switch matrix, as well as betweéﬁ the row decoder and the switch matrix. Figures 7.1
and 7.2 show such an implemenfatiém for the column decoder and the row decoder,
respectively. Two complementary outputs from the column decoding circuits (including
NAND and Tesc circuit) are switched by two multiplexers. During testing, these out-
puts arc fed into the shift registers chain. They ere then shifted out to be checked. Dur-
ing system operation, these outputs are fed back to the switch matrix. Similarly, for the
row decoder case, outputs from the decoder are switched to a shift register through a
multiplexer during testing, and fed back to the switch matrix during operation. By
introducing shift registers into the switch matrix, control circuit testing becomes possi-
ble for a low pin-count overhead. Furthermore, they can separate switch cell testing
from the decoding circuits so that ﬁere will be no confusion about fault location. Also,
address patterns can be shifted ﬁm the shift registers and applied to the switch cells
directly circumventing use of the decoding circuits. This can offer full observability

and controllability of the switch cells,

CDEC? CDECH CDEC2 CDEC2 CDEC3 CDECS COECHn CDECn
mox | x| | me | x| D mux || aux Mux | | Mux
shift in T shift out

switch motrix columns !

Figure 7.1 A schematic showing separation of the column decoder and the

switch matrix for test observability and controllability.



-173 .

RDEC1 ‘RDEC2 _ RDECY RDECm

MUX MUX MUX MUX

shift in | ohift out

SR S SR R mrmeman

—meee—ny

switch motrix rows i

Figure 7.2 A schematic showing separation of the row decoder and the switch

matrix for test observability and controllability.

7.2.2. More Efficient Use of the Switch Matrix

Two types of switch matrix, the normal matrix and the duplex matrix, have & com-
mon feature. There is only one nct allowed in each matrix row. Let the distance
between the left-most point and the right-most point of a net in a matrix row be called
the span of the net. If the span of a net implemented on a matrix row is very small, the
usage of the matrix row will be very low, Thus a large proportion of the matrix row
does not effectively carry signals. For a more efficient usc of the switch matrix, it is
desirable for each matrix row to carry more than one net, particularly when the span of
these nets is very small. This can result in a smaller switch matrix for the same system.
For example, Figure 7.3 shows a modified structure in which several switches are intro-
duced into each of the matrix rows. By turning off some of these switches, more than
one net can be embedded in & single matrix row. Each of these switches can be
addressed using an output line of the column decoder (shown by the dotted lines in Fig-
ure 7.3). The question is how 'many such switches are needed for a particnlar switch
matrix, what kind of relationship they should have and how to distribute these switches

inside the switch matrix.
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Figure 7.3 A modified switch matrix structure

7.2.3. Hierarchical Redundancy for the Switch Matrix

The results from Chapters 3 and 5 showed that hierarchical redundancy may be
much more effective than the simple one-level redundancy. More research is needed on
this subject. For éx;mplc, for a particular system to be implemented in the superchip
architecture, what amount of hierarchical redundancy is required and how should it be
distributed amongst various levels of the system in terms of system complerxity and par-

titioned PE comple.{x'ity?

7.2.4. Self-Testing

It has already _lbgen mentioned, at the beginning of the thesis, that a larger system
will suffer more tf:gnsient (soft) and permanent failures during field operation. This
gives rise to a vcr&is'erious question: how can a large system efficiently overcome this
potential rcliabilityi;roblcm? Efficient self-testing during ficld operations seems to be
the right way to tackle the problem. It is desirable that both the PEs and the switch cells
in the superchip have their own self-test circnits. Self-testing is performed periodically
| during the field opefation, so that the transient operational faults can be discovered and

any related faulty element can then be bypassed for the next computational cycle.

7.2.5. Superchip Array

An expanded column FFT system organised by connecting several superchips
together through the crossbar switch matrix has already been given as an example for
the superchip array. It uses the expandability of the interconnection network to form

larger arrays. It is reasonable to organise a system in this way, i.e. a full column FFT
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machine when fast, frequent, global communication among all the PEs is required.
However, such an organisation is generally expensive because the interconnection cost
grows faster than the PE cost. For some applications where instant-response communi-
cation is not of primary importance, or where there are several local communication
‘hot-spots’, in these cases such global, instant-response communication may not always
be suitable or cost-effective. It will be appropriate for some applications to have other
organisations with lower system complexity which achieves the required system perfor-
mance. Various organisations for connecting an array of superchips could be examined.
For example, it might be useful to introduce several direct inter-PE links inside a super-
chip, or among the superchips, to solve local hot-spot contentions of inter-PE communi-

cation.
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APPENDIX A

SOME MATHEMATICAL NOTATION USED IN THE THESIS

A.1. Definition of Big-OH [137)

The expression "f(n) has growth rate O(nz)", or "f(n) is 0(32)" means that the
growth rate of the function f(n) is no greater than that of n2. This does not imply that
f(n) is proportional to nz; it could be less, like nlogn or In. Formally, we say f(n) is
- O(g(n)) for £(n) = O(g(n))], if there exist positive constants c and n, such that for all
n = n,, f(n) = cg(n). Thus, f(n) may be very much greater than g(n) for small n, but
as o gets large and by the time it-rcnchcs B,, it settles down to be at most proportional

to g(n); the constant of proportionality is upper bounded by c.

A.2. Permutation

A permutation of n things taken all at a time is an ordered arrangement of all the
members of the set. If n is the number of members of the set, the total possible
numbers of such permutations is nl, for any one of the set can be put in the first place,
any one of the remaining n—1 things in the second place, etc., until all n places are

filled.

A permutation of n things taken r at a time is a permutation containing only r

members of the set. The number of such permutations is equal to

an —-D(r-2)---(rn+r—-1)

n!
or ———-—, for any one can be put first, any one of the remaining n—1 second, etc.,
{(n — r)!

until r places have been filled.



-191-

A.3. Combination

A coml:;ination of a set of objects is any selection without regard to the order of
clements. The number of combinations of n things, r at a time, is the number of dif-
ferent sets that can be made up from the n things, each set containing r different things
and no two sets containing exactly the same r things. This is equal to the number of
permutations of the n things, taken r at a time, divided by the number of permutations

of r things taken r at a time; that is

n!

(n — r)ir

r
which is denoted by C in the thesis.
n



APPENDIX B

PROOF OF NP-COMPLETENESS FOR THE ROUTING PROBLEM

The mathematical proof in this Appendix for the NP-completeness of the message rout-
ing problem in a faulty cross-bar switch matrix was contributed by Gordon Brebner of
Computer Science Department, University of Edinburgh. His permission has been given

to include this appendix in this thesis.

The problem of Message routing in a faulty cross bar switch matrix (MRFXB) can be
defined as follows. Suppose we are given a cross-bar switch matrix X with faults ran-
domly distributed in it. The fanlts are modelled as either "stuck-on" or "stuck-open”

faults'r

. A set of one-input, multiple-output nets N has to be implemented in such a
way that any matrix row accommodates at most one net. Inputs and outputs are located
at the top and bottom sides of the matrix, so signals can only enter and leave the matrix

via particular columns. In short, MRFXB can be described as follows:

INPUT: Fault pattern for matrix X and net set N.
QUESTION: Can N be implemented by X?

We prove that MRFXB is NP-complete by (a) showing that MRFXB is in the class of
NP and (b) that a known NP-complete problem can be reduced to MRFXB in polyno-
mial time, i.e. MRFXB is NP-hard.

Theorem: MRFXB is NP-complete.
Proof:

(a) MRFXB e NP.

t "stuck-on" ("stuck-open”) means that the input and output to a switch cell are
permanently switched (not switched), so that the on-off state can not be controlled.
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A ftrivial non-deterministic polynomial time algorithm for MRFXB proceeds as
follows: (1) Guess an assignment of the nets N to the rows and columns of X,

(2) For each net, check whether its input can be switched to the correct output(s).
{(b) MRFXB is NP-hard.

The problem SAT which, given a Boolean expression in conjunctive normal formT
as input, is to determine whether a variable assignment exists to make the expres-
sion true is a well-known NP-complete problem [144,145]. More formally, SAT

can be described as:
Input: Set of clauses cy, ..., ¢), over variables xq, ..., x,.

Output: Yes if and only if each x; can be assigned a true-false value such that

every c; is true.

Given an input for SAT, we transform it into a faulty matrix X and a net set N, as fol-

lows:

X: Input Columns C'y forlsi=m
V'j forl=sj=n
Rows C; forlsi=m

Vi l? forl=j=<n
Output Columns D; forl=sii'=m

X,'j,XTJ- forlsi=m,1sjsn

(see Figure Al) All switches are stuck-open except:

C'y - C; forl=i=<m
Ci -~ Dy forl=ii'=m
Ci ~ X;;(X;5) forlsism,x;(x)eg

A Boolean expression is said to be in conjunctive normal form (CNF) if it is the
"logical productﬂof a set of clauses which are logical sums of laterals, where a literal
?s either x; or xj. For example, (x1 + x3)(x7 + x1 + x3) is in CNF, but xjxg + x3
is not.
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V’j-ij,f’; forl<j=n
VJ(V__;) - XU(JE-}) forl<i<m,lsjsn

which ere functional.

N: m nets with m + 1 outputs,

and n nets with m outputs

We note that this transformation can be done in polynomial time. The idea behind
the construction is that the routability of the first m nets corresponds to the satisfiability
of the m clauses, and the routability of the second n nets corresponds to the n variables

baving consistent values in each clause.

‘More formally, we show that:

€1, ---» €y can be satisfied <=> N can be implemented by X.
=> N can be implemented as follows:

For 1 = i = m, sclect a term x; (x;) which makes ¢; true and route a net from

input C'; to C; to outputs X;; (JE) and Dy for1 i’ < m.

For 1= j = p, if xj is assigned falsc (true), route a net from input ViitoVy (f’})
to outputs X; (fi-;) forl<i=<m.

<= First note that each C; can be switched to more than m outputs and each V 2 !7;
can be switched to m output. Therefore, the two types of net in N must be realised

via the m C;'s and the 2n V J ;;'s respectively.

Farther, since each V ; and l_f; has only one common input V' j» cach of the n m-
output nets must use a different j for its column V jor V_j, i.e. either V jor !-/;is

used for every j.

Consider assigning false to x; if V is used, and true to x j if V_jis used. Then, for
each i, for some xj (ﬁ) in ¢;, the switch C; - X;; (X_‘-;) must be used, and so ﬂ

V ;) must be used, implying that x; (x;) is true and satisfies clause c;.
' B Jxj i
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3.6 FAULT-TOLERANT WAFER SCALE
ARCHITECTURES USING LARGE CROSSBAR
SWITCH ARRAYS :

W Chen, P B Denyer, J Mavor and D Renshaw

INTRODUCTION

The advent of VLS] and the consequent increases in complexity have
prompted exciting research problems concerning the reliability, fault
tolerance and reconfigurability of integrated systems. Wafer scale inte-
gration (ws1), which attempts to reach new levels of circuit integration,
offers an opportunity to explore faster computation and real-time signal
processing through these three important features. The attraction of w1 for
these tasks stems partly from performance advantages that can be achieved
by containing such systems within a single, integrated medium, and partly
from production economies.

The principal challenge to the attainment of this goal is the development
of successful fault-tolerant architectures. Recent research in this area
(Koren 1981, Fussell and Varman 1982) concentrated on introducing
redundancy into a system which contains faults. Fault-tolerant circuit design
using redundancy has made considerable progress in the area of memory
design. A few very large memory chips and their design techniques have
been announced. (Ueoka er al 1984, Kantz 1984, Taner 1984). These
achievements are attributable to the architectural regularity of memory
which gives itself a variety of efficient fault-tolerant design techniques. The
approach is to substitute redundant word or bit lines (address lines) for
defective ones during the testing of the chip. The main customisation
techniques comprise the use of: latches, laser customisation (Fitzgerald and
Thoma 1980, Kuhn 1975), electron beam customisation (Shaver 1984},
electrically programmable storage elements (Frohman-Bentchkowsky
1971) and electrically programmable links (Mano 1980).

Latches and other electrically alterable devices are electrically volatile
switches which can be reconfigured again during operation, when necessary.
Laser and electron beam customised devices are electrically non-volatile
switches. Laser customisation is completed by blowing the fuses to good
elements, and disconnecting the links to faulty elements. Floating-gate FETs

113
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(Frohman-Bentchkowsky 1974) are used as electron beam programmable
non-volatile switches.

Our approach towards a fault-tolerant architecture for wafer scale inte-
gration is to use a large crossbar switch matrix as a reconfigurable inter-
connect network for serial signals. This section reports research into such an
architecture. It is based on extension to work already performed in
Edinburgh on bit-serial architecture previously used for the FIRST silicon
compiler. In this section, we address in particular a reconfigurable switch
array and its potential for fault-tolerant constant-response-time
communications.

We will briefly review the FIRST silicon compiler and its architecture in the
following sub-section. The wafer scale reconfigurable architecture is
presented next. Finally, a summary is given.

FIRST SILICON COMPILER

Bit-serial architectures are distinguished by their communication strategy.
Digital signals are transmitted bit sequentially on single wires, as opposed to
the simultaneous transmission of words on parallel buses. This distinction is
the key to many inherent advantages for bit-serial as a VLS strategy. Most
significantly, bit-serial transmission leads to efficient communication within
and between VLSI chips. This is an outstanding advantage where communi-
cation issues dominate, as in many signal processing applications.

Within the scope of wafer scale integration or very large integrated
systems, fault-tolerant capability is one of the most crucial factors to system
performance and economic production. Bit-serial architectures offer good
chances of success over their bit-paralle] counterparts. Owing to the ease of
bit-serial communication relative to parallel, the architectural restriction of
‘nearest neighbour’ communication need not be imposed, leading to a much
greater architectural (and therefore algorithmic) flexibility. Additionally,
bit-serial primitives are generally smaller and therefore higher yielding than
their bit-parallel counterparts. We have discovered that fault coverage of
bit-serial circuits can be high, and may be determined without extensive
fault simulation. The cost in silicon, power, complexity and design difficulty
is low (Murray et al 1983). This leads to a better yieild of function per unit
silicon area and high fault coverage for the whole system.

Research into bit-serial approaches towards vLsi signal processing in
Edinburgh University have resulted in the creation of the FARST (for Fast
Implementation of Real-time Signal Transforms) silicon compiler which has
Jeen in use since 1982, The silicon compiler is a tool which takes a high-level
functional description as input but preduces, instead of machine code like a
conventional compiler, a detailed chip mask geometry. FIRST then is simply
an interpretation at one technology level of the bit-serial approach.

Proceedings of International Workshop on Wafer Scale Integration
Southampton, England, 10 - 12 July, 1985
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Pad ring |
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Figure 3.6.1 ARST floor-plan.
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Figure 3.6.2 A wiring channel section.

B e T

Figure 3.6.3 A FARST-compiled chip.
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Initially, FIRST-generated chips were targeted at 4-6 micron nMOS
technology. This restricted the floorplan style of the chip to that shown in
figure 3.6.1. It comprises a central communication channel, flanked by two
rows of bit-serial primitive modules. Signal routing is implemented through
the central channel only; there is no intimate connection between neigh-
bouring modules. Thus modules communicate by receiving and transmitting
data via the channel across the *waterfront’. Chip input and output signals
are routed to peripheral pads via the ends of the channel. A very simple
two-layer router is used, with metal lines running horizontally. and diffusion
lines running vertically. Figure 3.6.2 shows a section of a typical wiring
channel and figure 3.6.3 an actual design generated by FIRST.

WAFER SCALE RECONFIGURABLE ARCHITECTURE

Superchip strategy

A signal processing system created by FIRST is not reconfigurable; instead,
algorithms are hard-wired through a central routing channel. The designer
can only change the system configuration during compile-time; variations
are impossible at run-time. Furthermore, in line with the familiar yield
problem, fabrication faults are catastrophic to the entire chip. Finally, the
requirement for increasingly large, high-performance, low-cost signal
processing systems implies larger chip sizes. Process defect faults limit the
practical size of these devices and thus the attainable performance level for
one substrate.

The motivation of our research into wafer scale architecture stems from
the preceding work on bit-serial architectures for VLS signal processing, and
seeks to overcome the drawbacks of the previous FIRST architecture. The
research programme of superchip tries to maintain the flexibility to build
arbitrarily complex networks of bit-serial processors by concentrating on
wafer scale reconfiguration networks for large numbers of bit-serial pro-
cessors. This is in contrast to the more popular alteative nearest-
neighbour-only strategies for wafer scale communication.

Superchip architecture

The superchip is a large bar of silicon containing many independent bit-
serial primitives. Computational networks are built with the electrically
programmable switch matrix by the end user, who may thus configure this
‘standard part’ to implement a range of signal processing tasks.

Figure 3.6.4 is a schematic diagram of the superchip. Its architecture is an
extension of that used in the FIRST silicon compiler; bit-serial primitives are
placed in two rows, above and below a central routing channel. The major
difference between this foor-plan scheme and that of ARST is the substi-
tution of the fixed central routing channel by a large crossbar switch matrix.

Proceedings of International Workshop on Wafer Scale Integration
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Each primitive output drives one horizontal row of the matrix and every
primitive input is driven by a column of the switch matrix. Input and output
signals are also bit-serial, which enter and leave the superchip via the switch
matrix, like all primitive signals. Thus input pads are assigned one horizontal
channel in the matrix, and output pads each come from one switch column.
The crossbar switch matrix permits users to programme arbitrary functional
networks of serial computational elements in real-time.

== 1 Primitives
12wt oo d .. -
I
aoM - % Switch matrix
Connection ==
progrom ' !

Primitives

FIFD

1iP
Figure 3.6.4 Wafer scaie architecture.

Switch matrix architecture
The following criteria should be considered when a reconfiguration strategy
is applied:

{i} itshould aliow a system to perform its function correctly in the presence
of non-functioning modules, e.g. it should provide at least one alter-
native link between any of the modules in the system,

(ii) it should provide an environment in which the designer may arbitrarily
compose a system by using the switch network without fear of message
traffic blocking in the network,

(iii) it should provide fauli-tolerant capability for the switch network itself,
(iv) the time delay introduced by the network should be kept reasonably
low,

(v) because the control circuitry in switch network is usually vulnerable to
the defects, it should be as stmple as possible; and

(vi) the silicon area overhead should be kept as low as possible.

The size of the crossbar switch array, with its N* area dependence, is
initially unattractive. However, it exhibits several redeeming features, some
of which are better or more suitable in our proposed architecture than other
interconnection networks. These features can be summansed as:

(i) fullinterconnection capability (allowing any connection from one point
to any other point),
Proceedings of International Workshop on Wafer Scale Integration
Southampton, England, 10 - 12 July, 1985
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(i) non-blocking {compared with some others like banyan network).

(iif) the control circuitry for switching is quite simple; and

(iv) the regularity of the crossbar array allows efficient self-fault-tolerance
via redundancy. '

Switch matrix design

A key issue in the superchip architecture is the organisation of the switch
matrix and its effect on the performance of the whole system. We have
considered two different switch cell architectures. In the first of these, we
assign one row of the matrix exclusively to each primitive output. Networks
are routed in this system by programming connections to the primitive
inputs. The alternative switch matrix architecture allows programmable
assignment of the horizontal rows for more flexible routing strategies.
Figures 3.6.5 and 3.6.6 illustrate the architectures. Figure 3.6.7 shows the
circuit diagram of switch cell 1 (Swc-1). It comprises a latch, and a dynamic
switch controlled by the latch. When ‘column load’ is low, the latch is
isolated from other circuits. Otherwise the information from the row decoder
(‘row load’ signal) is written into the latch via the pass gate.

10 (2] 7]

Acting cell

Le e J eI ]

Figure 3.6.5 Dynamic matrix.

Figure 3.6.8 shows the circuit diagram of switch cell 2 (swc-2). Here the
dynamic switch is replaced by. a static CMOS transmission gate. Therefore,
the performance difference of these two switch cells is characterised by the
performance of the CMOS transmission gate against that of the dynamic
switch. Suppose that all the transistors in these two parts have the same
parameters and g, is the transconductance for a single transistor. The total
conductance of the dynamic switch in SWC-1 becomes gn/3; pre-charging is
taken to a whole column of the matrix. In swc-2, the total conductance of a
CMOS transmission gate is equal to 2g.; however, because a complete path
from a primitive output to a primitive input passes through two transmission
gates in series, so the total conductance of a path is equivalent to the
conductance of a single transistor. On the other hand, we observe that, in
SWC.1, the primitive outputs are not connected to the primitive inputs

Proceedings of International Workshop on Wafer Scale Integration
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directly. A primitive only needs to drive a long horizontal metal track of the
matrix {a row of the matrix). In SWC-2, a primitive output has to drive all its
horizontal and vertical metal tracks (a row and two columns of the matrix),
because the transmission gates connect primitive outputs directly to the
primitive inputs they drive.

P P P P P
A
. There gre
[  mony ways
to embed
a single
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Figure 3.6.6 Static matrix.
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Figure 3.6.7 Circuit diagram of swC-1.

A trial experiment

Our first test chips comprise a 32 X 32 matrix using SWC-1 and a 32 x 64
matrix using SWC-2 (these have the same interconnection capabilities). We
call the first matrix a ‘dynamic matrix’ and the second a ‘static matrix".
Figure 3.6.9 shows the organisation of these two matrices. They have been
designed for a 2.5 micron, double metal, CMOS process with a size of

Proceedings of International Workshop on Wafer Scale Integration
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5.2 x 3.1 mm? for the dynamic matrix (figure 3.6.10) and 7 x 2.7 mm? for
the static matrix (figure 3.6.11). Using the capacitance parameters of this
process, we evaluated that the time delay of a signal passing through both
matrices is roughly the same.
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Figure 3.6.8 Circuit diagram of SWC-2.
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Testing and programming
Switch matrix testing is easier than initially anticipated. A faulty switch cell,
observed as a switch, can behave in two ways: stuck-open and stuck-on. The
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Figure 3.6.11 Static matrix chip.

test set we apply to the matrix is a functional test, the goal of which is to
determine whether the switch cell being tested is stuck-open or stuck-on or
working normally. Via the signals TSET and CTR, we may set all the outputs
from column decoder to ‘high’ or ‘low’ at same time. Simultaneously, we
activate some row of the matrix; then change the switch cell input of this row
to see whether the outputs of the switch cells in this row follow the changes of
their inputs. As a result of the testing, every switch cell and primitive is given
an error signal e(i, j) as a test signature. An ‘initial’ signal resets the circuits
at the beginning of every test cycle. Suppose that the frequency of the master
clock is 20 MHz; it is expected that it will take 800 ns to test a row of the
matrix; thus testing a 32 x 32 matrix will need approximately 26 ms of total
testing time.

Proceedings of International Workshop on Wafer Scale Integration
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System synthesis within the superchip is invisible to the end user. The
whole procedure from the user’s system specification to the physical realis-
ation of the system can be divided into three phases as shown in figure 3.6.12.
We propose to adopt similar high-level system description language already
used in FIRST (Denyer and Renshaw 1985), using a suitable compiler to this
high-level language to generate an intermediate code form. According to
some criteria of fault tolerance and system performance requirement, the
router takes the intermediate form and the test signature of both primitives
and switch cells as inputs to produce the routing code for the switch matrix.
Using a matching rule for the error signals, the router searches for a possible
connection route. If the trial is not successful, the router will back-track to
choose another combination for embedding the connections until it finds a
complete solution for the system. This algosithm is shown in figure 3.6.13.
The last phase is system realisation, which is achieved by loading the routing
information into the switch matrix.

High-level system
description language

Compiler

Intermediate form

Signatures
—y

Router
Routing code
stored in o eprox
System
build-up
Customised
superchip

Figure 3.6.12 Superchip programming.

The state of the switch matrix is loaded on power-up, or in response to a
reset request from an external EPROM. Although the totzl state of the matrix
is large, the embedded information is much smaller. At most one switch in
any column may be active. Thus we need only store and load a row address
for the active switch point in each column. Row 0 is reserved for ‘no
connection’ and will be used by unused primitives to inhibit their clock
connection. Thus unused primitives need not be active.

This convention leads to the loading arrangement shown in
figure 3.6.14. A counter is used to address the external EPROM. Each address
is decoded to activate an associated column representing one primitive input
line. The active switch for that column is defined by the returned EPROM
data generated by the router, which is decoded to drive the relevant ‘row
load' line.
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Figure 3.6.13 Routing algorithm.
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Figure 3.6.14 Loading scheme.

SUMMARY

Modern electronic application areas demand low-cost, powerful, advanced
real-time signal processing. This paper presents an architecture for these
requirements. Initial indications show that the use of the crossbar switch
matrix makes it possible for the user to build a large integrated system
economically within a single silicon substrate and to change the configuration
easily.
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