
SERIAL-DATA COMPUTATION IN VLSI

by

Stewart G. Smith

A thesis submitted to the Faculty of Science,
University of Edinburgh, for the degree of

Doctor of Philosophy

Department of Electrical Engineering
1987

UNIVERSITY OF EDINBURGH
ABSTRACT OF THESIS (***-« 7.9)

ddress

Ph.D. n , 26th January 1987egree_.....7T.. Date-:......

. , fm Serial-Data Computation in VLSI
tf/eo/TTies/s£.....^

38,000
o. of words in the main text of Thesis

This thesis describes novel advances in serial-data architectures, which achieve
area-savings and performance improvements over conventional approaches. Com­
putational structures which exploit these advances are specified in terms of funda­
mental serial-data elements, or 'atoms'. Methods are detailed to specify these struc­
tures in technology-independent form, along with composition procedures for their
automatic assembly into powerful functional primitives. Initial progress on a full-
span structural silicon compiler is reported, which will provide area-efficient full-
custom realisations of functional primitives from technology-independent specifica­
tions. The resulting library of modules is functionally, technologically and opera­
tionally flexible, promising an effective route from structural intent into silicon.

A fundamental theory of serial-data computation is expounded, and a set of
methodical systems design techniques is identified. From these concepts a practical
framework is constructed for serial-data systems design, and a rigorous case study in
the form of a polyphase-network filterbank specified by the European Space
Agency illustrates many of these ideas in practice. The knowledge gained from this
and previous studies reveals the need for advances in serial-data architectures at the
functional component level.

Reported architectural novelty at this level falls into two main areas: tech­
niques for area-savings, and techniques for performance enhancement. The former
category is based around an architectural synthesis method for matrix-vector compu­
tational modules such as complex multipliers. Two's complement serial/parallel
carry-save accumulation provides performance, while the use of symmetric-coded
distributed arithmetic eliminates redundant computation to effect area-savings. The
latter category comprises three architectural techniques which accelerate bit-serial
computation without compromising its favourable advantages. In essence they rely
on multi-wire representations of serial data - a step towards bit-parallelism. Inter­
facing techniques are developed to support the existence of domains of different
throughput within a system, thereby enhancing the range of bandwidth-matching
techniques available to the systems designer, and realising the potential to mix pro­
cessing wordlengths within a serial-data system. These innovations address the most
common criticisms of the bit-serial approach.

The novel architectural techniques described in this thesis may be used to
enhance the function libraries of design automation tools such as the silicon com­
piler, providing systems designers with a flexible set of serial-data computational
components with which to realise efficient solutions to digital signal processing
problems.

-n-

Declaration of Originality

The material contained herein, except where stated below, was researched and com­
posed entirely by myself in the Department of Electrical Engineering at the Univer­
sity of Edinburgh, between January 1983 and January 1987. The exception to this
statement is the work on software tool development and manual layout reported in
Chapter 8, which is the product of a significant team effort to which the author has
contributed at the level of architectural specification.

Acknowledgements

I wish to acknowledge the inspiration and guidance of my supervisor Prof. Peter
Denyer, the creator of the FIRST silicon compiler and the prime mover of the VLSI
group here, I wish to thank Profs. Jeff Collins and John Mavor, who as successive
Heads of Department have done so much to create the infrastructure which I take
for granted, my current colleagues David Renshaw and Alan Murray, who have
helped make FIRST what it is, also Mike McGregor for the twin-pipe concept and
multiplier layout effort, my erstwhile colleagues Neil Bergmann, Jim Nash, Dave
Fletcher and Steve Belcher for software support, and Prof. Kunihiro Asada for
MOSYN. Next I wish to thank those friendly residents of California who gave me
so much of their valuable time in one-way technical discussions as well as hospitality
above and beyond the call of duty - these include Milos Ercegovac (UCLA), Dick
Lyon (Schlumberger SPAR), Carver Mead (Caltech), Greg Nash (Hughes), Earl
Swartzlander (TRW) and Stan White (Rockwell). Their words and deeds have
greatly influenced my technical direction. Thanks also to Bob Mhar and Harry
Paul, who as M.Sc. students produced multiplier layout to my specification. Finally
I wish to thank my wife Lesley for her patience as I prepared this thesis.

Signed

Stewart Gresty Smith

-m

Index of abbreviations

In the interests of brevity, some acronyms and abbreviations peculiar to this thesis
are coined and subsequently cited. These are listed below:

CSA Carry-save adder PIP
CSAS Carry-save add-shift PIPO
DA Distributed arithmetic PISO
IP Inner-product PP
JKM Jackson, Kaiser & McDonald PPP
LS Least-significant PPS
LSB Least-significant bit SIPO
MB Modified-Booth SISO
MS Most-significant SPP
MSB Most-significant bit S/P
OB Offset-binary 2C

Partial inner-product
Parallel-in-parallel-out
Parallel-in-serial-out
Partial product
Parallel partial product
Partial product sum
Serial-in-parallel-out
Serial-in-serial-out
Serial partial product
Serial/parallel
Two's complement

-IV-

Contents

Abstract .. I

Declaration of originality .. n

Acknowledgements ... n

Index of abbreviations .. HI

Contents ... IV

Preamble ... 1

Chapter 1: Introduction to serial-data computation in VLSI 2

The case for serial-data techniques .. 2

The case against serial-data techniques .. 4

Historical overview of bit-serial techniques 4

Programmable serial machines .. 5

Fixed-function serial machines: the 'approach' 6

Final comments .. 7

Chapter 2: Rudiments of serial-data computation 8

Issues of space and time ... 8

Control ... 9

Two's complement integer coding ... 9

Fundamental building blocks - the atoms 11

Latches ... 11

Logic .. 15

Numerical principles of serial-data additive operations 20

Partitioning issues ... 24

Chapter 3: Two's complement serial-data multiplication 26

Derivation from bit-parallel architectures 27

Scrutiny of two serial-data multiplication architectures 28

Bit-serial derivation of the architectures 29

Bit-parallel derivation of the S/P architecture 37

The serial/parallel flush multiplier ... 38

Word-level equivalent architectures ... 39

Comparison of the S/P and Lyon multipliers 40

Serial/parallel multiplier environments ... 43

-V-

Other approaches .. 43

Quasi-serial multiplication ... 44

Incremental multiplication ... 44

Storage sharing ... 47

Chapter 4: The Edinburgh Tools .. 48

Background ... 48

FIRST ... 49

The FIRST primitive set .. 51

Case studies .. 52

MOSYN .. 52

The promise of full-span structural silicon compilation 54

Chapter 5: Bit-serial systems design: methodology and case study 55

Bit-serial systems design ... 55

Functional design - the soft model 56

Physical design - the hard model ... 58

Postscript ... 60

Case study system description .. 60

FFT subsystem design .. 61

FFT overview ... f ... 61

Vector rotation ... 62

The pipeline FFT .. 63

Filterbank subsystem design .. 63

System specifications .. 64

Initial design issues and decisions ... 64

Resolving the issues .. 66

Additional specifications ... 67

Functional design - the soft model .. 69

The FIR section .. 70

The FFT section .. 72

The polyphase-network filterbank .. 74

Physical design - the hard model .. 74

The FIR section .. 76

The FFT section .. 78

Test strategy and confidence levels .. 80

-VI-

A critical appraisal of FIRST ... 82

Chapter 6: Special serial-data techniques for area reduction 84

Overview of vector computation ... 84

Some carry-save approaches to vector computation 85

Serial/parallel symmetric-coded distributed arithmetic 86

The symmetric-coded serial/parallel multiplier 86

The serial/parallel inner-product computer 89

Architectural case studies .. 92

Architectural synthesis .. 97

Comparison with conventional approaches 97

Distributed arithmetic in context ... 98

Cascading .. 99

Incremental computation of squares and sums of squares 100

Incremental squaring .. 101

Incremental sums-of-squares computation 104

Bidirectional incremental multiplication 105

Application to the on-line algorithms 106

Final comments .. 109

Chapter 7: Special serial-data techniques for throughput enhancement 110
Twin-pipe ... 110

Twin-pipe building blocks .. Ill

Architectural implications of twin-pipe techniques 116

Radix-4 .. 117

Radix-4 building blocks .. 118

Architectural implications of radix-4 techniques 125

Multi-precision ... 125

Multi-precision building blocks ... 126

Architectural implications of multi-precision techniques 128

Interfacing between operational domains .. 128

Stripping down the CSAS computer - the automultiplier 131

Automultiplier summary ... 134

Final comments .. 135

- vn-

Chapter 8: Full-span structural compilation of serial-data hardware 137

FIRST in perspective .. 138

Synthesis of Elementary Circuits ON Demand 139

Functional components of SECOND .. 141

PRIMITIVE specification (design capture) 142

PRIMITIVE verification (behavioural simulation) 145

PRIMITIVE implementation (physical assembly) 146

Example PRIMITIVE design - the serial/parallel multiplier 147

Other approaches .. 153

Final comments .. 154

Chapter 9: Concluding remarks .. 156

References .. 158

Appendix A - FIRST description of the soft model 171

Appendix B - FIRST description of the hard model 180

Appendix C - RNL description of the twin-pipe complex multiplier 189

Appendix D - Author's publications .. 202

Appendix E - Included publications .. 204

Preamble

This thesis is concerned with advances in serial-data computational architec­

tures. The fundamental operational principles behind bit-serial computation are

detailed, and the bit-serial field reviewed, in Chapters 1 to 3. Chapter 4 introduces

FIRST and MOSYN, two design automation software packages developed at the

University of Edinburgh. A design methodology for bit-serial systems is outlined,

and FIRST is evaluated in a rigorous systems case study of a satellite communica­

tions signal processor which follows in Chapter 5. Chapters 6 and 7 are devoted to

novel techniques for enhancing efficiency of bit-serial architectures, and finally in

Chapter 8 a programme for automation of primitive design is outlined, including as

an example the design and test of a serial/parallel multiplier chip which embodies

many of the techniques of Chapters 6 and 7. Chapter 9 consists of concluding

remarks.

Appendices A and B are FIRST codings of functional and physical models of

the system specified in Chapter 5, and Appendix C summarises a primitive design

example, the twin-pipe complex multiplier. This device exhibits many of the archi­

tectural innovations of Chapters 6 and 7, and illustrates the design capture concepts

of Chapter 8. Appendix D lists the author's publications, and finally Appendix E

reproduces some earlier, published case studies of FIRST. At key points throughout

the thesis, author's publications are marked with the dagger symbol and footnote.

-2-

Chapter 1

Introduction to serial-data computation in VLSI

The term 'serial-data' is used to describe the computational style presented in

this thesis. We differentiate between this, and the expressions 'bit-serial' or 'bit-

sequential', because, while many of the concepts follow directly from traditional

bit-serial techniques, several forms of bit-parallelism are exploited in the proposed

serial-data architectures. Serial-data techniques thus may be viewed as a superset of

bit-serial techniques.

1.1. The case for serial-data techniques

The demands of modern high-performance numerical applications are such

that they must be met in principle by special-purpose computational architectures

[1,2]. Computational styles fall into two broad areas - serial-data and parallel-data
•

(bit-parallel). In the applications area addressed by this thesis, namely fixed-

function, real-time computation, serial-data machines exhibit many advantages over

equivalent bit-parallel machines. Some of these advantages are listed below.

Performance and efficiency

Serial-data hardware consists of pipelines of small, combinatorial logic ele­

ments followed by latches. These elements are heavily exercised, and may be

clocked at high rates. Numerical addition is performed in carry-save form - this

moves carry-propagation into the time-domain, bringing the full performance bene­

fits of pipelining. As multipliers consist mainly of arrays of adders, it follows that

serial-data multipliers are also fast and hardware-efficient.

Functional parallelism

Functional parallelism, i.e. the use of parallel arrays of high density, low-cost,

lower performance devices to obtain a high performance function [3], is a natural

way to exploit the concurrency inherent in many real-time computational problems.

More functional parallelism means less control overhead - in the limit, an

-3-

'isomorphic' hardware flowgraph has no control overhead at all [4]. The lower

computational 'grain-size' of serial-data elements makes them better suited to mass

instantiation than their bit-parallel functional equivalents.

Physical partitioning

A further consequence of small grain-size is ease of physical partitioning.

Furthermore, single-wire communication (as opposed to buses) eases pin-out prob­

lems in arbitrarily partioned systems of chips. A similar advantage may be meas­

ured on-chip, where serial communication does not dominate chip area as do paral­

lel buses. Fine-grain implementations usually result in smaller collections of wires

running for smaller distances.

Testability

Serial-data elements are amenable to testing by random patterns, a testing

technique which is most appropriate when logical fan-in and combinatorial depth

are low [5]. Test costs in serial-data hardware are a simple pseudo-random binary

sequence generator beside each data input pad, and data-compression register

beside each output. Entire systems may be tested in this manner, without including

testability hardware within processors, which adversely affects performance and

area-efficiency. Fault coverage is achieved by brute force, obviating the need for

expensive fault simulation and automatic test pattern generation [6].

Yield and fault-tolerance

A final consequence of low grain-size is the potential for fault-tolerance

through redundancy. Serial elements are exponentially better yielding than their

parallel counterparts, and the lower cost of providing redundant serial elements is

proportional to the product of area and yield - a sharply exponential function which

weighs against the parallel case [4]. Moreover, the cost in switching and bussing of

routing round faulty elements is considerably less in the serial case.

-4-

1.2. The case against serial-data techniques

Serial-data techniques are not proposed as the solution to all computational

problems. There are applications at many levels which are better suited to bit-

parallel realisation. A list of serial-data disadvantages follows.

Fixed word length

A fundamental parameter in serial-data design is the system wordlength. Data

must be represented in words of this length throughout the system (other than in

word-organised memories [7]), regardless of local needs. This is in contrast to bit-

parallel realisations, where wordlength may be tailored to local requirements [8].

Data-independent operation

Many computational algorithms contain data-dependent operations, whether at

system level (e.g. conditional branching), or at the 'advanced' level of arithmetic

operation (e.g. division, square-root extraction). In both cases comparison of 2

operands is required, a function which cannot be pipelined in serial manner.

Data-dependent operations must be implemented in bit-parallel fashion, and such

operators with serial interfaces come at a heavy cost in area and time [7].

The advanced arithmetic operations are best suited to bit-parallel operation,

although an interesting serial-data approach is apparent in the 'on-line' algorithms

[9,10]. Here computation proceeds MSB-first, in the same direction as the natural

flow of the algorithm. Redundant data representations permit fast, carry-free paral­

lel addition [11] internally, and computational latency is low.

1.3. Historical overview of bit-serial techniques.

Bit-serial computation and communication have traditionally been employed

for the most part in dedicated real-time systems. The tools and architectures pro­

posed in this thesis address this applications area. However there exists another

class of bit-serial machines, aimed at general parallel processing, built around arrays

of single-bit processing elements (PEs) as proposed by Unger in 1958 [12] for pat­

tern recognition problems. We briefly review this class of machine.

-5-

1.3.1. Programmable serial machines

Programmable serial machines process arrays of data concurrently, one bit at a

time, thus achieving considerable speed up over bit-parallel, sequential von-

Neumann machines for large arrays. Such machines can exhibit greater storage and

processing efficiency than their bit-parallel counterparts. They can handle data ele­

ments of any length, operating on reduced word-segments when necessary (e.g.

single-cycle sign-testing on data elements).

Much of the groundwork for such machines was performed at Goodyear

Aerospace, whose original STARAN project led to the development of the airborne

associative processor (2000 PEs) for advanced radar systems, and the Massively

Parallel Processor (16384 PEs) for satellite image processing [13,14]. The Connec­

tion Machine [15] is based on the concept of cellular automata, and is aimed at

supercomputing and AI applications. It contains some 64000 fine-grain processing

elements connected in a hypercube arrangement. In the UK, ICL developed the

distributed array processor (DAP) [16]. Current versions operate with a 32 x 32

array of bit-serial full adders.

With the advent of VLSI, we are seeing the integration* of arrays of single-bit

PEs on a single piece of silicon, based on the Single-Instruction Multiple-Data

(SIMD) concept [17]. Many of these are optimised for image-processing tasks, e.g.

Brunei University's SCAPE [18], University College's CLIP machines [19], GEC's

GRID [20] and NTT's adaptive array processor [21], These devices contain square

arrays of PEs (a fairly comprehensive review of such architectures appears in [19]).

More recent machines include the ITT cellular array processor (CAP) and

NCR's geometric array parallel processor (GAPP). The CAP [22] is an expandable

array processor (up to 16384 PEs), while the GAPP [23] is an integrated circuit
•

containing 72 PEs. A new company, AMT, is developing a VLSI DAP-3. Reeves

& Bruner proposed a logic synthesis methodology for machines such as these [24],

where complex functions are decomposed in heuristic manner for direct execution

as a sequence of 2-input operations.

In marked contrast to these minimal grain-size machines, Lyon has demon­

strated MSSP, a programmable bit-serial speech processor [25]. MSSP represents a

-6-

'reconfigurable flowgraph', using multi-port RAM simultaneously as a storage and a

switching medium in concert with a limited set of serial operators which includes

larger elements (such as multipliers and limiters) along with adders and an ALU.

1.3.2. Fixed-function serial machines: the 'approach'

The first realisation of the bit-serial approach to implementation of fixed-

function machines was reported by Jackson, Kaiser and McDonald (JKM) in 1968

[26]. They described a set of 'building-blocks' which could be configured as a

second-order filter section [27]. This in turn could be multiplexed with signal state

memory to realise cascades of second-order sections for speech-bandwidth process­

ing. More recently, several examples of this architecture have been implemented in

LSI [28,29,30].

Around 1980 Powell proposed a technique known as functional design [31],

where systems are constructed entirely from bit-serial functional operators of a com­

mon generic type. At the same time Lyon was extending the building-block con­

cept by introducing standard interfacing conventions, and structured design

management (nesting building blocks) [32]. The FIRST silicon compiler [7] was a

logical extension to Powell and Lyon's approach, automating the design of bit-serial

signal processors. By combining a language compiler, simulator, physical cell-library

and floorplanner, entire systems of bit-serial chips could be rapidly specified and

accurately realised.

Fault-tolerant architectures

For reasons listed earlier, bit-serial elements exhibit great potential for fault

tolerance. The 'superchip' architecture developed at the University of Edinburgh

uses a large crossbar switch-matrix [33] to route traffic in a reconfigurable array of

bit-serial processors. The RVSLI (restructurable VLSI) project at MIT uses lasers to

make and break links around faulty processors on a wafer, and has seen success in

diverse applications such as radar signal processing and speech processing [34,35].

-7 -

Floating-point

To date, most bit-serial hardware has used fixed-point, or integer arithmetic.

The CUSP project at Cornell University employed a block floating-point number

format [36] - this technique has since been extended to embrace genuine floating­

point operation [37],

1.4. Final comments

Despite the criticisms levelled above, the case for using serial-data techniques

in fixed-function architectures is a strong one. Later in this thesis, techniques are

described which go some way towards answering these criticisms. In the next

Chapter, we proceed to examine the fundamental principles behind serial-data

architectures.

-8-

Chapter 2

Rudiments of serial-data computation

This chapter introduces the basic theory of serial-data computation, and the

fundamental building blocks, or 'atoms', required for its execution.

2.1. Issues of Space and Time

A binary-coded, single-source digital signal may be viewed as a 2-dimensional

array of bits. When the signal is represented in bit-parallel form, one dimension is

space (spanned by the finite bit-index), and one is time (spanned by the potentially

infinite sample-index). When the same digital signal is represented in bit-serial

form, both dimensions are temporal, and some means must be found of marking

the boundaries of samples (also known as words).

Each bit of a binary-coded signal has a weight associated with it, i.e. the bit-

index is linked to a power of 2. In bit-parallel signal representations, index is impli­

cit in the spatial distribution of bits - similarly, in bit-serial representations index is

implicit in the temporal distribution of bits. A corollary of this is that any bit of a

bit-parallel signal has equal weight to its temporal neighbours (where a temporal

neighbour is defined as a bit existing at the same point in space at a different point

in time). Similarly any bit of a bit-serial signal has equal weight to its spatial neigh­

bours (where a spatial neighbour is defined as a bit existing at the same point in

time at a different point in space). Should it be desired to introduce relative ine­

qualities in weight, explicit arithmetic shifting hardware must be provided. This has

important consequences in the design of serial-data computational elements, as will

shortly be demonstrated.

Finally in the bit-serial case, there are two distribution options for the bits of a

data word. The word may be transmitted and processed either LSB-first, or MSB-

first [39]. For now we assume the former scheme to be adopted, as practised in the

'approach' [26,33,7].

-9-

2.2. Control

As just described, serial data computation and communication requires the

representation of a two-dimensional entity (the signal bit-pattern) in one-dimension

(time). The distinction between data words is not clear in a single bit-stream. A

common solution to this problem [33,7] is to provide a separate control pulse which

coincides with the end (or more usually the beginning) of a signal sample.

Thus a bit-serial signal requires 2 wires for meaningful interpretation - one for

data, and one for control. The information content of the latter does not extend

beyond delineation of words. It controls the loading and unloading of registers,

and instigates operation of the single-bit arithmetic shifters crucial to bit-serial com­

putational elements. A fundamental task in bit-serial design is to ensure, by use of

delay elements and arithmetic shifters, that all spatial neighbours are in synchronism

with their associated control signal, and hence with each other.

LSB-control may be derived by counting the clock, generating a pulse on

overflow/reset. Serial-data control at system level may be derived from a hierarchy

of counters [7]. Arbitrary levels of control may be obtained by counting the previ­

ous level control signal (the clock acts as 'level 0').

2.3. Two's complement integer coding

The hardware employed in any computational system is closely related to the

number system employed. Following the convention of FIRST, we employ two's

complement (2C) number coding as an interfacing convention, although we may

depart from this convention internal to computational structures if it is expedient to

do so.

An w-bit 2C number is represented by a pattern of bits distributed spatially (if

bit-parallel) or temporally (if bit-serial). An /i-bit 2C number A may be expressed

as follows:

A = -a ft + -Vfl/2-1', (a, 6 0,1), 2.1

-10-

The MSB a 0 is given negative weight, allowing representation of negative numbers

when MSB is 1. Note the inclusion of a binary point in eqn. 2.1.

Binary point

For an integer representation to have any relative meaning, the position of the
binary point must be fixed. In the above example, the binary point is situated to
the right of the MSB, as we read from left to right with decreasing bit-significance.
Thus:

1 - 21 "1 < A s -1

An n-bit 2C number A may be expanded in either direction by arbitrary
amounts, by padding zeroes to the right (in the direction of decreasing significance)
and by padding sign-repetitions to the left (in the direction of increasing signifi­
cance). To see this, inspect the expression

A = -a 0 -2y
y-l

»=0

n—1 x+n
2 - 2

for equivalence with eqn. 2.1, where we include y sign-repetitions and x trailing
zeroes, x and y arbitrary.

Arithmetic shifting

Arithmetic shifting may be employed tq effect multiplication and truncating
division by powers of 2, i.e. to alter the weight associated with the bits of an input
operand. If we imagine an n-bit window on the extended bit-field described by
eqn. 2.2, then moving the bit-field in one direction while the window and the
binary point remain stationary effects an arithmetic shift in that direction. While
the effect of right-shifting is a gradual loss of accuracy and precision, left-shifting
beyond existing sign-repetitions or 'guard-bits' causes numerical overflow, a catas­
trophic situation which must either be accommodated by numerical limiting, or
avoided altogether.

-11-

2.4. Fundamental building blocks - the atoms

As stated earlier, a wide range of functional architectures may be composed

from a small set of serial-data building blocks. These building blocks are them­

selves composed of an even smaller set of elements, or 'atoms'. The elements fall

into two categories, logic (for evaluation of Boolean functions), and latches (for

stable storage of results). We address the latter category first.

2.4.1. Latches

The successful design of VLSI systems requires careful management not only

of the 2-D silicon area but also of the operation of the system in the time dimension

[40]. The use of latches (clocked storage elements) is key to the management of

signal timing in serial-data systems. The main goal of clock scheme and latch

design is to control the propagation of signals in synchronous systems. This thesis is

not primarily concerned with circuit engineering issues, and latches are abstracted

to simple behavioural models.

Serial-data hardware consists of small pieces of random logic with latched out­

puts, connected in cascade. Performance comes from the intrinsic pipelining of

these structures. Logic blocks evaluate while their inputs are latched, and in turn

pass their outputs to be latched on the next clock cycle. The maximum operating

clock rate for any serial-data element is then the sum of the settling times of a latch

plus that of the slowest constituent logic block. A secondary limiting factor on

clock rate at system level is the propagation delay of communication channels - such

propagation may itself be pipelined to maintain performance [7].

Latch operation

Latch operation, clocking schemes, and the type of logic (static or dynamic)

employed are determined by considerations of circuit and processing engineering.

A wide variety of combinations are used in practice. Mead and Con way [41] advo­

cated a simple two-phase non-overlapping clock scheme for nMOS technology (this

was adopted in FIRST). A pseudo 2-phase scheme may be adopted for CMOS,

where inverses to the two clock signals are generated locally [42]). 4- and even 6-

phase schemes have been proposed [42].

-12-

Recent work at the University of Edinburgh has resulted in a novel single-

phase clocking technique and half-latch pair construct [43]. The devices fabricated

to verify the architectural ideas of later chapters employ this clocking style (see

Chapter 8), and throughout this thesis any references to clock or latches pertain

to the above.

The concept of single-phase clocking is simple. Conventional 2-phase systems

use (say) 0j as load signal for an input register, and 02 as load signal for an output

register (Figure 2.1(a)). These registers may be viewed as identical half-latches,

and the structure of Figure 2.1 (a) without combinational logic forms a full-latch.

Single phase systems (Figure 2.1(b)) use 0 as load signal to both half-latches, neces­

sitating two complementary half-latch types.

The clock signal 0 is considered to be a square wave at the clocking fre­

quency. When high the clock is said to be in the 0 phase, and when low it is in

the 0 phase [43]. A half-latch is associated with each phase. A ir-latch is so called

because it holds data stable during 0, and a |x-latch because it holds data stable

during 0. The half-latches are illustrated in Figure 2.2. Greek letters IT and JJL

symbolise the holding phases of the two half-latches [43]. A signal emanating from

a ir-latch is said to be ir-timed (similarly |x). A fx-timed full-latch may then be

realised by connecting a ir-latch and a |JL-latch in cascade (vice-versa for ir-timing).

The benefits of single-phase clocking are fourfold [43]:

1) Only a single global 0 need be generated and distributed.

2) Neither generation or distribution of 0 is likely to be a limiting, factor on max­

imum sustainable clock frequency.

3) 0 may be generated off-chip, with attendant savings in chip area and power

consumption.

4) 0 cannot easily be skewed with respect to itself.

-13-

phi . phi 0
*

TH

c.
a
4J
0)
•H
01
(Uo:

*

Combinational

Logic

CXJ

c.
a
4->
V)
•H
O)
(Ucr

phi

c.
<U

en
OJor

phi
0

Combinational

Logic

(XI

C-
OJ

w
CO
OJcc

(b)

Figure 2.1: (a) conventional 2-phase (b) single-phase clocking

Holding latches

Some enhancements to the basic latch may improve efficiency of designs. In

some cases we may wish to hold data steady for arbitrary periods longer than one

clock cycle. A holding latch features a second control input signal (ENABLE in

Figure 2.3). The holding operation is disabled (i.e. the register is loaded) only on

certain combinations of clock and control signal. Figures 2.3(a) and (b) show

fully-static TT- and ^.-latches, and Figures 2.3(c) and (d) their dynamic equivalents.

Latches may even contain built-in function, e.g. set, load and clear.

- 14

A

(a) Fully Static mu Latch
phi

(b) Fully Static pi Latch

Figure 2.2: fully-static half-latches

Registers

Connection of latches in cascade forms a register - a common structure in

serial-data architectures, as serial-data computation is performed in pipelined regis­

ters which contain combinatorial function. An «-bit register contains n latches, and

accordingly stores n bits of data. These registers may have parallel or serial inputs

and outputs, in all combinations. In the following register acronyms, we use the

letter P for parallel, S for serial, I for in and O for out. Four fundamental com­

ponents are the PISO, PIPO, SISO (sometimes known as synchronous FIFO - first-

in-first-out register) and SIPO. These structures are illustrated in Figure 2.4. In all

but the logic-free case (the SISO - Figure 2.4(c)), the combinatorial element is a

multiplexer (described shortly), which is used to load the register.

Note that each stage of the PO structures recirculates a local bit, while in the

-15-

ENABLE

ENABLE

ENABLE

Figure 2.3: static and dynamic holding latches

SO structures it is passed "to the neighbour. The difference between a SISO and a

SIPO is in the holding action of the latter. A SISO may pass its contents in bit-

parallel 'snapshot' form to a PI structure, if the PI structure only requires to read

the SISO contents once every word cycle.

2.4.2. Logic

Having described elements for storage and delay, it remains to introduce the

three fundamental structural 'atoms' which comprise a serial-data cell-library.

Multiplexers

A multiplexer (see symbol in Figure 2.4) is a simple switching primitive which

selects one of its two data inputs as directed by a third, control input. When its

output is latched, it forms a 1-bit PISO. As a stand-alone serial-data computational

element, the multiplexer is employed at word-level, so the control signal may only

change state between discrete serial-data input words. The higher levels of control

described earlier are used here. However isolated instantiations of multiplexers

(with or without latch) frequently find use at bit-level in the composition of other

16-

- MUX

load

(a) PISO

load

(b)pipo ::

(c) SISO

load

(d)SIPO

- full latch

functional primitives.

Figure 2.4: register components

Arithmetic shifters

Arithmetic shifting is required whenever the weight of a word is to be altered
with respect to its spatial neighbours. It is not possible to effect this shift merely by
delaying some words with respect to others, as this causes a synchronisation error.
Hardware must mimic the effect of moving the 'window' described earlier, intro­
ducing either sign-repetitions or trailing zeroes depending on shift direction. As
they alter the weight associated with individual bits, arithmetic shifters serve as

boundaries between 'neighbourhoods'.

- 17-

2C arithmetic shifting is implemented by a 1-bit PISO, whose control signal

decides the shift distance. The parallel input is either grounded for left-shift, or

connected to the output for right-shift (the latter structure is in effect a 1-bit PIPO).

We illustrate the operation of arithmetic shifting on a stream of 4-bit words

aibiCidi, where a{ is MSB and dt is LSB. Operational latencies are represented by

the difference in boundary position between words at input and output. Two cases

exist:

Right-shift

An arithmetic right-shift of 1 bit implements truncating division by 2. A

1-bit PIPO is used (Figure 2.5('a)). The bits of the input operand are left

untouched, except for the LSB, which is replaced by the (sign-extended) MSB

of the previous word. The weight of each bit at the output is halved in com­

parison with that at the input. Functional latency of this operation is 1 clock

cycle.

input

output

d, 03 £3 ^3 ^3

#3 03 b 3 C 3

a 2 b 2 c 2 d2

a 2 a 2 b 2 c 2

a 1 b 1 c 1 d l

a 1 a^ b 1 c\ GO

Arithmetic right-shifting action

Left-shift

An arithmetic left-shift of 1 bit implements multiplication by 2. A 1-bit

PISO is used, with grounded parallel input (Figure 2.5(b)). The bits of the

input operand are left untouched, except for the MSB, which is replaced by

logical 0 (selection of logical 0 may possibly be more efficiently realised by a

2-input gate than by a dedicated multiplexer). The weight of each bit at the

output is doubled in comparison with that at the input. Functional latency of

this operation is -1 clock cycles. This operation can cause overflow.

-18-

input

output

d* #3 ^3 ^3 d$

d4 0

a 2 b 2 c2 d2

&3 C 3 ^3 0

a l b l c l d l

b 2 c 2 d2 0 b l c 1 d 1

Arithmetic left-shifting action

In general, to implement an ;c-bit shift the multiplexer selects its top input for x

clock cycles, starting at the beginning (LSB) of the input word.

T
Ctrl

'0'

UI

T
Ctrl

(a) right-shift (b) left-shift

Figure 2.5: bit-serial arithmetic shifters

In the case of the right-shifter, 1 bit of state memory (i.e. a latch) is essential to

recirculate the output bit - however this latch need not be situated in the through

path. Inclusion of the latch is optional in the case of the left-shifter. Note that the

shifters shown in Figure 2.5 have latched outputs - this adds 1 clock cycle to the

functional latencies described above.

Adders

So far we have described simple 1-bit registers, and their adoption in the reali­

sation of multiplexing and shifting elements. We now proceed to build in combina­

torial logic to the 1-bit registers for the fundamental computational operation of

addition.

The task of a bit-serial adder is to assimilate two equally weighted input sig­

nals, and produce their sum as output. At bit-level, the sum function is not closed,

-19-

i.e. the output may take a numeric value outside the (binary) set of values associ­

ated with its input. This requires provision of a second output, the carry, which is

given twice the weight of the sum signal. The two outputs (sum and carry) are spa­

tial neighbours, thus the carry must be explicitly left-shifted (as described above) to

impart the correct weight. The LSB-control signal instigates this operation. As the

weight of incoming data bits in the following iteration is, by earlier definition, dou­

ble that of their predecessors in an LSB-first computational scheme, the left-shifted

carry signal is correctly weighted with respect to its spatial neighbours (the incoming

data bits), and may be summed together with them. Provision of the carry output

and input stabilises the operation of the bit-serial adder, in that it is now capable of

correctly summing all combinations of its 2 external inputs and fed-back carry.

Bit-serial addition hardware consists of a 1-bit PISO and a 1-bit PIPO, with

sum-function and carry-function logic respectively built-in. The sum signal is out­

put in SO fashion, while the carry signal recirculates in PO fashion. The sum out­

put is the exclusive-OR of the 3 input operands, and the carry output is their

'majority' function (Table 2.1).

Table 2.1: Truth table for bit-serial adder

A

0

0

0

0

1
1
1
1

Inputs

B

0

0

1

1

0

0

1
1

c

0

1
0

1
0

1
0

1

sum

0

1

1

0

1
0

0

1

Outputs

carry

0

0

0

1

0

1

1

1

The 'carry-save' computational style is key to the high performance/area ratio of

bit-serial hardware - carry-propagation is temporal (not spatial as in the parallel

case), and is naturally pipelined. Figure 2.6(a) shows the bit-serial adder in symbol

-20-

fonn (as used in later examples), and Figure 2.6(b) is expanded to include the left-

shifter in the carry path.

B

4-
sum

carry

(a) symbol

B
ctrl

i

shift bit
4-

sum

carry

(b) full detail'

Figure 2.6: bit-serial adder

The 'shift-bit' of Figure 2.6(b) is included for generality - in multi-precision use of

the bit-serial adder, the MS-carry out is passed from the neighbouring adder, while

in the LS-multi-precision or single-precision case, this bit is logical zero and the

multiplexer may be replaced by a simple gate as described above. The more usual

single-precision case appears frequently throughout this thesis - multi-precision com­

putation is covered in Chapter 7.

The bit-serial subtracter is very closely related to the adder. In the following

section we discuss in greater depth the arithmetic principles behind 2C addition,

negation and subtraction.

2.5. Numerical principles of serial-data additive operations

This section details the basic principles of high-performance integer arithmetic

which lie behind the design of function libraries for real-time applications. The

bit-serial adder has already been introduced, and its bit-level operation described -

here the wider, word-level issues of addition, negation and subtraction are

addressed.

21-

2's complement addition

Bit-serial architectures employ carry-save adders [44,45] for performance. As

described earlier, a carry-save adder cell has 2 data inputs, one carry input, one

sum output and one carry output, where the carry output is given twice the weight

of the other signals.

Carry-save adders allow high clocking rates by avoiding the carry-propagation

problems which plague conventional bit-parallel adders. In the bit-serial case,

carry-propagation reduces to a local recirculation of the carry, with unit delay (a

latch) and a shifter in the path. Bit-serial cany propagation is temporal (instead of

spatial). Note that word growth of 1 bit is possible under the addition operation.

If overflow is to be avoided, addend and augend words should contain one guard-

bit (sign-repetition).

2C coding has many advantages, not least of which is the fact that a carry-save

adder cell is small and fast. However the MSB of a 2's complement word has oppo­

site weight to the others. This is not a problem in 2C addition (assuming no over­

flow), as 2C" addition is performed as if the two input operands were unsigned

numbers [46] - no correction is required for MSB weighting. The MS-carry

(overwritten in the left-shifting process) is simply discarded.

2's complement negation

Negation in 2C may be performed by bit-inversion (1's complementing), and

adding logical 1 at the LSB position (incrementing) [47]. To see this, consider eqn.

2.1 with inverted bits:

= -(I -

n -1

= -A - 2 1 "1

22-

i.e.

-A = A + 21 -"

Now consider the case where the bottom z bits of input operand A are zero.

A~= -(1 -

By change of variable from n to m — n - z, the above derivation may be applied

once again, implying that negation may be accomplished by passing trailing zeroes

then inverting all remaining bits, with the increment applied along with the first

non-zero input bit. Furthermore, incrementing the (inverted) non-zero bit results

in a non-zero output - thus the algorithm may be further modified to pass all trail­

ing zeroes and the first non-zero bit, then invert all remaining bits. JKM proposed

just such a building block [26], where the input stream is used to set a flip-flop,

which in turn controls a switch which selects either inverted or non-inverted input

bits as output.

Another method of achieving negation is the modified bit-serial adder of Fig­

ure 2.7, where the sum bit recirculates as well as the carry.

hot(A)

Figure 2.7: bit-serial negator as adder with fed-back sum

In this structure, recirculating bits are zero until the first non-zero input bit arrives.

This bit produces a non-zero sum, which is output and recirculated. Subsequent

input bits if zero will produce a recirculating non-zero sum-bit, or if non-zero will

produce a non-zero recirculating carry-bit, but never both. The effect of one (and

-23

only one) recalculating non-zero bit is to invert the input stream, via the sum func­

tion. Thus this structure mimics the JKM negator. Note that in Figure 2.7 a left-

shifter is implicit in the sum path as well as the carry path.

2's complement subtraction

The operation of subtraction is so similar to that of addition that it may be

regarded as a 'twin' to the adder building-block. From the operation of 2C nega­

tion initially described above, it follows that 2C subtraction (the operation B - A in

Figure 2.8) may be performed by negating the subtrahend, then adding. This tech­

nique is referred to as implicit subtraction [48] , as the structure is really a modi­

fied adder (Figure 2.8(a)). The recirculated carry signal still has positive weight.

ctr!

'1'

sum

carry

(a) implicit

B
Ctrl

•0'

diff

•> borrow

(b) explicit

Figure 2.8: (a) implicit, and (b) explicit subtracters

To implement a true, or explicit subtracter [48], the augend (minuend) and

sum (difference) signals in the standard carry-save adder must be inverted (Figure

2.8(b)). Incrementing is not necessary, as the incorrect internal representation

caused by the first inversion operation is cancelled by the second. Here the recircu­

lated carry (i.e. borrow) signal has negative weight. Should sum and carry signals

be generated by separate logic networks, the conversion from an adder to an

^ published work by the author.

-24-

explicit subtracter is accomplished by inverting the augend input to the carry net­

work. Sum and difference functions are identical.

It is important to differentiate between the two subtracter types, as the weight

of recirculating carry/borrow signal can be crucial in certain cases. Carry/borrow

conflicts must be avoided when passing carries to other logic blocks, as standard

carry-save adder/subtracters can only handle binary carries.

Addition with 3 or more inputs

Sometimes it may seem desirable to perform addition on more than two input

variables. The bit-serial adder described above, with 3 inputs and 2 outputs

(including carry signals) cannot absorb a further input operand, as an input pattern

of all ones would cause overflow. This problem is solved by introducing a second

carry output, with a relative weight of twice the original carry out, and four times

the sum out. This new output demands the incorporation of an extra input, as two

carry signals are now associated with each stage. The result is a 5-input, 3-output

adder, sometimes known as a (5,3) counter. This structure can be extended to

accept up to 7 inputs - in general a counter with Iog2/i outputs may handle up to

2" 1 inputs. Swartzlander [49] and Meo [50] have formalised the theory of

counter network synthesis, which has important consequences in the design of bit-

parallel multipliers.

In the highly-pipelined operational environment of a serial-data architecture,

the increased complexity of these structures gives cause for concern, as it is unlikely

that they can sustain as high a clock rate as the (3,2) counter.

2.6. Partitioning issues

Along with latches, the three atomic logic blocks (multiplexer, shifter and

adder) described earlier are sufficient to realise a comprehensive bit-serial arith­

metic cell-library. However if chips are to be assembled automatically, conveniently

and efficiently from cell-library elements, some pre-packaging should be performed

as a one-off exercise by a logic designer. In addition to efficient functional parti­

tioning, the identification and provision of higher-level functional primitives as

system-level building-blocks leads to efficient physical partitioning, through the

-25-

deployment of appropriate local assembly procedures in each case. Physical parti­

tioning strongly affects performance and area-efficiency.

-26-

Chapter 3

Two's complement serial-data multiplication

Germane to the realisation of fixed-function, real-time computational systems
is the operation of multiplication. Reflecting its importance in the context of this

thesis, this chapter addresses the historical and theoretical background to serial-data
multiplication. A short (and by no means comprehensive) overview of bit-parallel
multiplication is included for contextual reasons. More detailed treatment of the

subject may be found in [47,51,52,46,53].

A multiplication is an unconstrained two-dimensional sum of weighted cross-

products of the constituent bits of two input operands (often known as data and
coefficient words). Figure 3.1 shows the matrix of bit-product formation values in

the multiplication of two 4-bit binary integers a Qa la 2a 3 and b 0b 1b 2bi, where a 0 and

b Q are MSB, after eqn. 2.1.

"

ab32

a 2b

a 2b 2

a 2b a lb

a 0b

Figure 3.1: matrix of bit-product values (4 X 4-bit example)

If a partial product (PP) is defined as the product of one input word with a single
bit from the other, then a multiplication is an unconstrained one-dimensional sum
of weighted PPs. Note that two classes of PP may be defined, as the multiplier bit
may derive from either data or coefficient. These correspond to rows and columns

of the bit-product matrix (Figure 3.1).

-27-

3.1. Derivation from bit-parallel architectures

Bit-parallel multiplication may be executed on n x m rectangular arrays of

gated adders, each row forming a PP, adding it to the partial product sum (PPS)

passed to it from the previous row, and passing the new PPS to the next row. In

general, one processor exists for each matrix element in Figure 3.1, the task of

which is to form the designated bit-product, and sum with the PPS bit of equivalent

weight from the previous row. This function may be achieved using a gated full-

adder cell.

Carry-save adders may be employed to speed up PP computation in rows [54].

Here carry outputs connect forward to carry inputs of higher-significance cells in

the next row, while sums are passed as before - this avoids carry propagation in

rows. However after the last row, recombination of sums and carries inevitably

involves carry propagation in a bit-parallel adder.

Certain means may be employed to further speed the operation of bit-parallel

multiplication. Various levels of pipelining [55,56] may be utilised - resulting in

impressive throughputs in the extreme [57], PPs may be reduced in number by

modified-Booth recoding [58,59], or further-modified Booth receding [60] the coef­

ficient. Alternatively, concurrency of PP summation may be increased by the use

of (5,3) adders [61], or by merging in tree-structures. The Wallace tree [62] merges

3 PPs into 2 using carry-save techniques, while 2 PPs may be merged into one using

redundant-data addition, e.g. signed-digit [63] or twin-carry [64].

Each of these implementations must face the carry-propagation problem in

some form before eventual product formation. Even in combinatorial array multi­

pliers [65] this overhead is considerable, but in pipelined implementations the

carry-propagation problem is acute, demanding area-expensive fast adders to main­

tain performance. In the case of fully-pipelined 'bit-systolic' architectures [66], the

hardware overhead for carry-propagation is around 50%. Triangular array architec­

tures have been proposed, which pipeline carry-propagation in the product [67,68].

However the added complexity of cells throughout the array cancels the advantage

of pipelined carry-propagation in triangular arrays.

In the simplest sense, serial-data multiplication architectures are a mapping of

-28-

the two-dimensional bit-parallel multiplier into a linear (one-dimensional) array.

The second dimension becomes that of time. Only the well-structured bit-parallel

architectures undergo such a mapping with any elegance - the standard rectangular

array of carry-save adders is an ideal candidate, although the modified-Booth algo­

rithm has been employed in serial-data multipliers to effect savings in both time [69]

and area/latency [44,7].

3.2. Scrutiny of two serial-data multiplication architectures

A set of serial-data multiplication architectures, based on the linear carry-save

add-shift (CSAS) arrays described above, has received greatest attention from the

hardware design community. This set was formally catalogued by Danielsson [70].

From it, two main architectures have emerged to dominate 2C applications - these

are the serial-pipeline (Lyon) multiplier [44], and the serial/parallel (S/P) multiplier

[71]. We describe the operation of these two architectures, highlighting their

respective merits.

In the simplest sense, the function of each multiplier is to load the coefficient

word (1 bit per hardware stage), broadcast the data word in LSB-first serial form,

form partial products (PP) by gating with the resident coefficient bit in each stage,

and shift-accumulate the PPs in carry-save form to compute the product. However

the methods employed to achieve this end differ greatly between the two architec­

tures. We begin by tabulating the operational similarities, assuming for now that

coefficient bits are resident in their respective locations.

Similarities

In each case, the computational hardware consists of a linear array of CSA

cells, with each sum output connected through an arithmetic shifter to one input of

its downstream neighbour. In each case, the carry signal recirculates locally. In

each case, the coefficient word is distributed in ordered fashion throughout the

array, one bit per stage. In each case, a PP-brt is formed in every clock cycle by

the AND function of the passing data bit and the resident coefficient bit. Finally in

each case the cell at the end of the array in which the coefficient MSB is stored

contains hardware to account for the negative weight of the 2C coefficient MSB.

-29-

Differences

In many respects the multipliers exhibit behavioural duality - this allows con­

trasts to be succinctly highlighted. In the following discussion, a concise notation is

employed to highlight differences between S/P and Lyon multipliers. Following the

notation of [72], references to the Lyon multiplier are enclosed in curly brackets

immediately following references to the S/P.

The fundamental difference between the two multiplier types may now be

revealed. In the S/P {Lyon} multiplier, the coefficient word is latched in the same

{opposite} sense as the PPS signals in the array. Here 'sense' means 'order of

decreasing bit-significance' - if PPS flow is left-to-right then the S/P {Lyon} latches

the coefficient with LSB to the right {left}. Arithmetic shifting hardware gives each

cell (and hence each coefficient bit) an associated 'static' weight - in the S/P {Lyon}

multiplier this weight decreases {increases} in the direction of PPS flow. The shift­

ing hardware is essential to impart weight to the coefficient bits, which would other­

wise be spatial neighbours.

3.2.1. Bit-serial derivation of the architectures

The operational aspects of the two multiplier types are by no means trivial -

their clarification requires detailed architectural analysis. The derivation is in terms

of 'serial partial products' (SPP), where an SPP is defined as a bit-serial word which

represents the product of a coefficient bit with a bit-serial data word. Given that

carry signals recirculate locally and are correctly weighted as demonstrated earlier,

they may be ignored for the time being.

The task of each spatial unit (computational stage) is in this case to add two

words (one is the SPP, one is the PPS). Each cell consists mostly of a stand-alone

bit-serial adder, which produces the sum of its two input words (local PP and

'upstream' PPS) to be passed as 'downstream' PPS to the next stage in the array. A

fundamental serial-data requirement is that input operands to any computational

element be correctly synchronised - this restriction reduces the distribution options

(in time and space) of coefficient and data bits.

-30-

Shift-accumulation

In order to accomplish correct shifting accumulation, it is not enough merely
to offset one adder input operand by one bit with respect to the other. Such an
action causes the LSB of one word to be added to the MSB of the other. Synchron­
ism at word-level is violated. For correct operation, arithmetic shifting hardware
(as described in Chapter 2) must be provided between stages. The desired sense of
coefficient storage decides which type of shifter should be inserted.

In the S/P {Lyon}, bit-significance decreases {increases} in the direction of PPS
flow, therefore the PPS input to each adder should be of greater {lesser} significance
than the PP input, and must be left- {right-}shifted accordingly. The functional
delay through these elements - known to be -1 {1} bits in the S/P {Lyon} - affects
the synchronism of downstream hardware. In the S/P {Lyon} multiplier, the func­
tional delay of the shifter cancels {doubles} the delay through the previous adder.
The synchronism of adder inputs may then be maintained by broadcasting data bits
to the array with 0 {2} bits of delay per stage in the data path. Figures 3.2 show the
matrices of bit-product formation times of S/P and Lyon multipliers, and Figure 3.3
the computational element at each stage.

b,

b 2

b,

bo

"3

I

2

3

4

02

1

2

3

4

*i

1

2

3

4

flo

1

2

3

4

Figure 3.2(a): matrix of bit-product formation-times, SIP multiplier

Overflow handling

Together with the use of 2C adders in each stage comes the possibility of
numerical overflow. Separate strategies are employed in each multiplier to avoid
overflows. Recall that the Lyon multiplier right-shifts the PPS word in each stage,

-31 -

b,

b 2

b,

b Q

03

1

2

3

4

02

3

4

5

6

0i

5

6

7

8

0o

7

8

9

10

Figure 3.2(b): matrix of bit-product formation-times, Lyon multiplier

MSB ctrl
coeff

L5B ctrl

data

free in
PPS in

coeff

L5B ctrl

data

PP5
PPS in

_r
carry
Ctrl

PPS

residues

(a) serial/parallel (b) Lyon

Figure 3.3: (a) SIP CSAS cell (b) Lyon CSAS cell

thereby ensuring that the PPS contains a guard-bit (sign-extension) on entry to the

downstream adder cell. By imposing the constraint that the data word - and as a

result the SPP - also contain one guard bit, it is ensured that normal 2C addition

rules are obeyed at each adder in the array. Overflow conditions cannot arise, and

the MS-carry may be discarded at each stage in the standard fashion of 2C addi­

tion. To circumvent the data guard-bit constraint, expensive overflow detection and

correction circuitry must be employed [73].

The S/P multiplier left-shifts the PPS word in each stage, thereby inviting the

possibility of overflow even before the addition operation. To counteract this

-32-

possibility, an extra addition operator is provided to process the PPS MSB (which is

lost to the adder through the left-shifting process). Thus the bit-serial adder con­

tained in each stage does not complete the calculation - it passes its final carry (the

effective MS-carry-w of the full SPP-PPS sum calculation) to the extra addition

stage. To complete the computation of the SPP, this carry signal is combined in the

extra 'residue' adder with the final sum output from the upstream stage adder.

Depending on the operational environment (shortly to be discussed) the residue

adder may be a stand-alone serial-data adder (fed by a PISO), or a parallel carry-

propagate adder (fed by a PIPO). Indeed should enough data guard-bits be pro­

vided, the overflow problem and the requirement for residue addition circuitry may

be obviated [74].

MSB treatment

As detailed above, the MSB of a 2C word has negative weight, in contrast to

the other bits. A property of 2C addition is that the MS-carry may be discarded,

allowing the MSB to be treated in identical manner to the others. Multipliers may

not always enjoy this favourable property, however.

The negative weight of the coefficient MSB may be handled simply by using a

subtracter to derive the SPP associated with this bit. The data MSB, however, is

more problematic. Booth's algorithm was proposed as a method of circumventing

the data MSB-weight problem - by receding data in ternary, symmetrical form (i.e.

data bits may take the value 0, ±1), the MSB can be processed in the same manner

as the others [75]. Modified-Booth (MB) coding (data bit-pairs are recoded into

5-level, symmetrical form 0, ±1, ±2 [58]), and offset binary (OB) coding (bits take

value ± 1 [76]) also bring this advantage. Without resorting to recoding techniques,

the Lyon multiplier handles the data-MSB with ease - as each adder computes the

complete sum of the local SPP and the right-shifted upstream PPS, the MS-carry

may be discarded in the standard fashion at each stage.

In the S/P multiplier, however, each adder computes the incomplete sum of the

local SPP and the left-shifted upstream PPS. The final iteration is passed in the form

of sum and carry residues to the residue adder described above - as the final carry

from the stage adder is retained it must therefore be correctly weighted. To

-33-

accomplish correct weighting, genuine unsigned integer arithmetic must be per­

formed throughout, which is hampered by inconsistently erroneous interpretation of

the 2C-coded SPP MSB in the stage adders. This problem may be eased by inver­

sion of the MSB, fixing the MSB error in the SPP at a constant one bit, indepen­

dent of the value of the MSB. Computation may now proceed as if the adder

inputs were unsigned. All carry signals generated are recombined with

equivalently-weighted sum signals in the residue adder, except for that generated by

the MS-SPP calculation, which may be discarded in the standard 2C fashion.

The effect of introducing a constant single-bit error throughout the array is to

introduce a constant error in the product. This error may be viewed as a bit-

parallel, 2C word consisting of all one's. As negation is achieved by bit-inversion

plus increment, the additive inverse of the bit-parallel error is all zeroes, except the

LSB which is one. Accordingly, cancellation of the error word is easily accom­

plished by incrementing the residue sum, i.e. by setting the LS-carry-in of the resi­

due adder.

Control

The shifters contained in each multiplier require control, as described in

Chapter 2. The control signal is broadcast to the array in along with the LSB data

word, i.e. the control path is identical to the data path. The control signal is also

used in data loading and unloading operations.

In the S/P multiplier, the MSB-inversion process requires a second control sig­

nal, in synchronism with the data-MSB (Figure 3.3(a)). If this signal is supplied

externally, the LSB-control may be derived internally from it by simple bit-delay.

Output format

Each multiplier is capable of producing a full-precision product from m-bit

coefficient and n-bit data (in general m ^ n). The full product is n + m — 1 bits

long, i.e. word-growth by m - 1 bits is possible in the multiplier. In the S/P

{Lyon} multiplier, the top {bottom} m bits of the product appear in parallel form

throughout the array at the end {beginning} of each stage sum calculation (these are

the bits which are overwritten in the arithmetic shifters). The bottom {top} n - 1

-34-

bits are output serially from the end of the array.

In many applications full-precision products are required - this may be
achieved by formatting the product output as a double-precision fractional word,

following bit-serial conventions for multi-precision word formatting [7] where
multi-precision words are arranged in staggered form on multiple wires. Low-order
bits are naturally output in serial form from the S/P multiplier, while in the Lyon
those low-order bits lost in the shifters must be stored and shifted out in serial form
- extra hardware must be included for this purpose [73,77]. In both cases, steering
logic and associated control must be provided.

In a single-precision fractional bit-serial environment, only the top n bits of the

product are of interest - the product format is the same as that of the input data.

The simplest way to achieve this is by truncation, i.e. discarding the bottom m — 1
bits of the product. The multipliers described above operate in this manner. As

they introduce negative bias into representational errors in products, single-precision

truncating multipliers have limited application in the real world.

More usual is the single-precision rounding mode (whose attendant representa­

tional error is almost exactly zero-mean). Rounding may be achieved by adding

one half-LSB into the single-precision product. In the S/P multiplier, rounding may

be achieved by setting (rather than clearing) the PPS input to the 2nd-MS stage at

LSB-time (i.e. incrementing the left-shifted PPS output word from the topmost

stage). This operation is independent of coefficient length.

At first sight, the Lyon cannot so easily assimilate the rounding bit, requiring

hardware (in the form of a delay line driven by the LSB-control signal) at the front

of the array to insert this bit, appropriately timed, at the free sum input to the array

[78]. Although it has no free sum input at the half-LSB position, the Lyon multi­

plier does have a free carry input (normally cleared at LSB-time). This bit may be

set to accomplish rounding operation.

-35-

Computational latencies

In some DSP applications, for instance those which involve short, high-speed
computational loops, the computational latency (i.e. the time lapse between arrival
of the input LSB and the appearance of the output LSB) of multipliers may be cru­
cial. Examples include recursive [79] and wave digital [80] filters. It is important
to point out the different uses of data and coefficients in DSP, as data and coeffi­
cient latencies are not necessarily identical. Firstly, the coefficient is often known a
priori (unlike data which either arrive from external sources or are freshly-derived
from previous computations). Secondly, the precision of representation may differ
(the coefficient is often represented by fewer bits).

In nearly all cases the critical latency parameter is data latency. Assuming
fractional operation, the overall data latency (i.e. the time lapse between arrival of
data LSB and appearance of fractional product LSB) of each multiplier is approxi­
mately the sum of the latency in the PPS path (0 {2m} bits for the S/P {Lyon})and
the distance of the MS-stage from the input end of the array (m {0} bits for the S/P
{Lyon}). These quantities are approximate in that they neglect unit hardware costs,
e.g. pipelining latches, output buffers etc.

The quantity of coefficient latency, which is deemed less critical, is in fact
identical at 2m bits for both multipliers, given the above approximations. The rea­
son for the discrepancy in S/P data and coefficient latencies is that, while the Lyon
multiplier accepts data and coefficient simultaneously, the S/P requires advance
loading of the coefficient, adding m bits to the coefficient latency figure.

Free inputs

It is well known that use may be made of free inputs to multiplication
hardware, to achieve accumulation 'on the fly' [45,81]. The use of free inputs to
achieve rounding operation was described earlier. However if rounding is foregone
or postponed, n-bit serial words and/or m-bit parallel words may be accommodated.

Both multipliers clear their carry-loops at LSB-time. The carry-loops offer the

' published work by the author.

-36-

potential for a free input if, instead of clearing, these loops load the bits of some
parallel input operand. The Lyon multiplier has one free serial input, whose weight
corresponds to the bottom n bits of the full-precision product. As n and m differ in
general, this input is of limited use. In contrast the equivalent free serial input to
the S/P multiplier carries a weight which corresponds to the top n bits of the full-
precision product, in other words an external fractional serial operand may be
directly absorbed in a multiply-accumulate operation. The S/P multiplier has the
added advantage of a second free parallel input (Figure 3.3(a)), as the left-shifters
in the sum-path clear at LSB-time under normal circumstances, in identical manner
to the carry-loops. This opens the possibility of performing multiplication on
multi-precision data words, by passing intermediate results between multipliers in
carry-save form.

Regularity and locality

These properties are generally accepted as desirable in the context of VLSI cir­
cuits [41]. Both multipliers may be constructed by cascading (almost) identical
hardware stages. Each must contain a subtracter to account for the weight of the
2C coefficient MSB. However, at the cost of the free serial input, the S/P multi­
plier may in fact be constructed from identical hardware stages, the only difference
being that the sum output from the MS-stage is fed back to its input to form a nega­
tor, as described in Chapter 2. The Lyon multiplier must contain a subtracter
(explicit or implicit) in its MS-stage.

The Lyon multiplier is however truly local, as all signals are distributed locally
in time-skewed manner. Lyon multipliers of arbitrary length may be composed by
simple abutment of the repeated main stage - only the clock and power supplies are
global. The S/P multiplier broadcasts data and control signals, and 'real-world' phy­
sical effects such as the rise time associated with charging/discharging long metal
lines [82] may limit the size and performance of S/P multiplier realisations in prac­
tice. Pipelined buffers must be provided to drive these long lines, adding to the
size, power consumption and latency of S/P multipliers. These also destroy regular­
ity (another irregularity in the S/P case is the residue adder).

-37-

Serial-data loading operations

In the S/P multiplier, the coefficient word drops into the coefficient register in

parallel fashion at data LSB-time (similarly the high order product bits drop out at

MSB-time). Thus the entire coefficient must be available in bit-parallel form at

data LSB-time. In a serial-data environment, the coefficient must be clocked into

place during the preceding calculation, i.e. it must be known in advance of the

associated data word.

The Lyon multiplier on the other hand is able to accept the coefficient in

alignment with the data - it is a truly serial multiplier. By inserting one bit of delay

in the coefficient path, and two bits in the control path, the coefficient stream is

effectively reversed, dropping into place in a time-skewed manner as the control

pulse moves through the array. Thus, in the Lyon multiplier, more than one com­

putation may be in process at one time.

Serial-data unloading operations

Whether in single- or double-precision mode, the fractional S/P multiplier

requires twin PISOs to clock the sum and carry residues through the residue adder.

These PISOs are loaded at LSB-time in the following product calculation - the same

LSB-control signal may be used to load the PISOs.

The Lyon multiplier only requires unloading hardware in double-precision

mode. Here the low-order bits are unloaded in similar fashion to the loading of the

coefficient bits - a PISO is provided which is loaded by the LSB-control in time-

skewed manner, the result of which is correct ordering of the low-order product bits

at the exit of the PISO.

3.2.2. Bit-parallel derivation of the S/P architecture

As references to bit-parallel entities have cropped up in recent paragraphs with

increasing frequency, it is prudent to look at the S/P architecture from a different

viewpoint - that of parallel partial products (PPP).

A PPP is defined as a bit-parallel word, representing the product of a data-bit

-38-

with a bit-parallel coefficient word. The operation of the S/P multiplier, along with

the reason for its name, now becomes clear. The computational engine consists of a

linear array of carry save adders, which acts as a bit-parallel right-shifting accumu­

lator or CSAS computer. Shifting is accomplished by simple abutment of cells, in

accordance with the implicit spatial weighting of bits in a bit-parallel word, as

described in Chapter 2. This accumulator is cleared at LSB-time, and gates are

provide for this purpose in both sum and carry paths, activated by the LSB-control

signal. The data-word is broadcast to the array in LSB-first serial fashion, and bit-

parallel PPs are formed and accumulated. The last PPP has negative weight, and

accordingly is implicitly subtracted from the PPS (instead of being added). Implicit

subtraction requires bit-inversion of the parallel word, as directed by the MSB-

control signal. Finally (as in the bit-parallel case) the sum and carry residues must

be combined - in this case by clocking through a bit-serial adder. Correct implicit

subtraction is ensured by setting the carry-loop of this adder.

Although this description of the S/P multiplier is in a sense more natural and

intuitive than the SPP description (particularly with regard to data-MSB treatment),

it was instructive to compare the operation of the two seemingly disparate multiplier

architectures, highlighting their construction and behaviour in a unified theoretical

framework. Unfortunately the Lyon multiplier defies description in terms of PPPs.

When it comes to developing more advanced computational architectures in later

chapters, we shall use abstractions of the PPP model and CSAS computer.

3.3. The serial/parallel flush multiplier

A full-precision variation of the S/P multiplier [74] dispenses with a consider­

able portion of the hardware contained in the fractional model. No such variation

exists in the Lyon. This multiplier - dubbed the S/P 'flush' multiplier and depicted

in Figure 3.4 - allows word growth by m - I bits in the product, accordingly

m — 1 guard bits must be provided in the input data. In applications where the

loss of throughput resulting from unnecessary processing of guard-bits may be

tolerated, hardware savings are considerable.

First of all, the twin PISOs and residue adder are no longer required, as the

full-precision product appears in serial form at the end of the array. Furthermore,

-39-

data

L5B ctrl

free in n-
PP5 in

coeff

PPS

Figure 3.4: SIP flush multiplier CSAS cell

the MSB-control signal is also no longer required, as unsigned integer arithmetic is

protected from incorrect interpretation of the data-MSB (the harmful effect of the

data-MSB cannot propagate to the serial output of the array). The result of the

latter improvement is that the computational elements in each stage, having less

inputs and simplified internal function, might be expected to sustain higher clocking

rates than the equivalent in the fractional S/P multiplier, recovering at least some of

the throughput lost.

3.4. Word-level equivalent architectures

Systolic array architectures have received considerable attention in recent

years. They too exhibit regularity, modularity and locality, in accepted VLSI prac­

tice. H. T. Kung, a major proponent of the systolic array concept, has outlined

linear systolic array architectures for convolution and Fourier transformation, whose

word-level operation is remarkably similar to the bit-level operation of the S/P and

Lyon multipliers. An architecture for computation of the DFT by Homer's method

[83], or more accurately its modification by Alien for continuous operation [84], is

directly analogous to Lyon's multiplier. Meanwhile the systolic FIR-filter [85] (the

erstwhile 'iterative computational network' [86]) with broadcast data vector, moving

output vector and static coefficient vector, exactly parallels the operation of the S/P

multiplier. The only fundamental difference is in the implicit weighting of input

operands - in the bit-level case this weight increases in factors of 2, requiring

-40

arithmetic shifters at each stage for correct operation.

3.5. Comparison of the S/P and Lyon multipliers

There are advantages and disadvantages associated with the use of both multi­

pliers, and a comparison is in order. The comparison is complicated by the

existence of two greatly contrasting S/P multiplier types (fractional and flush).

Area

Inspection of Figures 3.3 and 3.4 reveals the 'computation' latches, required

for correct internal operation of the CSAS computers. Not shown are the 'com­

munication' latches - these comprise (in all cases) 2 in the coefficient SIPO, and

(in the fractional S/P case only) 2 more in the residue PISOs.

The Lyon multiplier is the most area-expensive - this is due mostly to the 2-bit

delays in the data and control paths in every stage. A latch count in each stage

reveals that the Lyon requires 9 latches, and the S/P 6. The S/P stage adder

(requiring MSB-treatment) is slightly more complex than the Lyon, requiring more

transistors for realisation. Furthermore, the S/P exhibits 'one-off costs such as the

residue adder and the data and control signal broadcast buffers. The clear winner

in area is the S/P flush multiplier, whose stage adder is similar to the Lyon and

whose latch requirement is only 4.

Throughput

The Lyon multiplier might be expected to exhibit better throughput, for two

reasons. Firstly, as it handles data MSB in similar fashion to other data bits, it does

not require circuitry for MSB processing. Computational circuits are correspond­

ingly smaller, and therefore faster. Secondly, all communication is local - no rise

times due to long wires hamper performance. The S/P flush multiplier shares the

former advantage.

-41 -

Dynamic range

Due to its use of the extra residue adder, the S/P multiplier is capable of han­

dling full-range data. The Lyon on the other hand requires 1 guard-bit, or must

suffer the time and area costs of overflow detection and correction. The S/P flush

multiplier appears to come a poor third here, demanding m guard-bits for correct

operation. However it could be argued that, by presenting the full product, the S/P

flush multiplier in fact exhibits superior dynamic range (and inferior throughput) to

the fractional multipliers. It must be concluded that the parameters of throughput

and dynamic range are strongly linked.

Data latency

The S/P multiplier is considerably less latent than the Lyon, although the latter

latency may be shortened via the modified-Booth algorithm. Use of the MB algo­

rithm does not affect the S/P latency. It should be noted that the Lyon latency fig­

ure as presented above is more accurate than that attributed to the S/P, as the Lyon

multiplier features local signalling and direct output from the array. A more accu­

rate figure for the S/P latency is m + 3 bits - here we account for pipeline-buffered

data broadcast and residue addition. Thus latency differences are less dramatic at

low m.

Regularity

The Lyon multiplier requires a subtracter cell to handle 2C coefficient MSB

weight. The S/P only requires the equivalent subtracter when supporting multiply-

addition (otherwise it uses the negator circuit, which consists of a standard adder

with fed-back sum). However the one-off circuits (e.g. residue adder) in the S/P

multiplier conspire against regularity. The S/P flush multiplier without addend

input is perhaps the most regular of all.

Locality

Clear winner in this case is the Lyon, exhibiting genuinely local communica­

tion throughout. The S/P multipliers suffer from the requirement to broadcast data

and control signals (the 'through-wires' in Figures 3.3(a) and 3.4).

-42-

Free inputs

Clear loser in this case is the Lyon, with one free parallel input and one free

serial, both at low significance. The S/P multiplier has two free parallel inputs, and

one free serial at fractional significance. Multi-precision operation and multiply-

addition are practicable in the fractional S/P case.

Rounding operation

Rounding is easily accomplished in either architecture, by incrementing in the

second top stage. The cost of rounding is a slight decrease in regularity, and

compromise of a free parallel input.

Double-precision operation

The fractional S/P multiplier is best suited to conversion to double-precision

operation, as the PISOs required for clocking out parallel residues are already in

place. All th'at is required is a final multiplexer for selecting high and low-order

output streams. The m — 1 low-order bits, normally rejected in fractional opera­

tion, are available free of charge at the array output. These signals form the paral­

lel residue in the Lyon multiplier - an extra PISO must be included if they are to be

made available externally [73,77].

Summary of the comparison

It seems from the above arguments that the S/P multiplier (with its choice of

forms, lower latency, lower latch count and free inputs) is slightly more desirable

than the Lyon. However that is not to say there is no place for the Lyon multiplier

- its properties of locality and logical simplicity make it the choice for many applica­

tions, particularly those involving high performance multiplication by long coeffi­

cients. For the remaining chapters the S/P multiplier (and its CSAS computer) will

act as basic multiplicative building-block, however most of the concepts to be intro­

duced are equally applicable to the Lyon.

-43-

3.6. Serial/parallel multiplier environments

S/P structures find application in both serial-data and parallel-data architec­

tures. We have studied in detail the former environment (Figure 3.5(b)) - now it is

instructive to examine the latter.

coeff

data

S/P multiplier
data

coeff

multiplier
product

product

a) parallel data/serial coefficient b) serial data/parallel coefficient

Figure 3.5: serial/ parallel multiplier environments

In the bit-parallel, datapath environment (Figure 3.5(a)), one of the input

operands enters a PISO to be broadcast to the array. When computation is com­

pleted, the carry-save product residue loads a parallel adder to be merged into a sin­

gle word (this may be overlapped with the next product calculation). However the

final (MS) PP must be subtracted to account for 2C MSB-weighting in the data - a

control signal and some extra circuitry must somehow be provided for this purpose.

Examples of this architecture appear in [87, 88] and (using modified-Booth coding

to double throughput) [89,69].

3.7. Other approaches

Before discussion of more advanced serial-data computation, a review of some

other approaches to serial-data multiplication is appropriate. Serial-data multiplica­

tion has a rich history, dating back to the iterative, discrete-state automata of Atru-

bin and Knuth [90,91]. These machines remained in the realms of theory, due

mostly to the complexity of the automata (each had 11 inputs).

In 1968 JKM proposed a forerunner to the Lyon multiplier [26] - at the same

time multiplier designs based on the shift-add principle began to appear [71]. By

the mid-seventies, silicon realisations of these architectures were becoming familiar

-44-

[92,93,94,95], and a standard-part S/P multiplier soon arrived in the marketplace

[89].

3.7.1. Quasi-serial multiplication

In 1973 Swartzlander published an unusual serial-data multiplication architec­

ture, based on the use of analog techniques for fast counting of ones in the columns

of the bit-product matrix [96]. This architecture was subsequently modified by

McDaneld and Guha to handle 2C operands [97], using an adaptation of the

Baugh-Wooley algorithm for 2C bit-parallel multiplication [98]. Although the

quasi-serial multiplier exhibits limited performance in comparison to fully-pipelined

serial-data multipliers, it offered a low-cost alternative to the ripple-carry add-shift

implementations prevalent at that time.

3.7.2. Incremental multiplication

In 1979, a different class of pipelined serial-data multiplier, for full-precision

unsigned operation, was proposed by Chen & Willoner [99]. This multiplier archi­

tecture operates in a markedly different manner to the Lyon & S/P architectures -

the S/P flush multiplier is only slightly more closely related. Instead of dedicating

one processor to the computation of each SPP, the Chen & Willoner (C&W) multi­

plier dedicates one processor (in this case a (5,3) counter) to the computation of

each product bit. This gives the C&W multiplier the LSB-first 'on-line' property -

at each iteration, one bit from both data and coefficient is input, and one product

bit is output. However this facility carries considerable penalties in area and time -

an n x m product calculation requires n + m (5,3) counters and n + m clock

cycles for completion.

Chen and Willoner neglected many implementation details, and in many

respects left great scope for improvements to their algorithm. Shortly afterwards,

Sips identified one such improvement [100]. By introducing a shifting action on

sum bits, the number of computational cells could be reduced from n + m to n,

increasing the usage-efficiency of the (5,3) adders. The resulting structure in many

ways resembles a serialisation of the triangular Guild array multiplier [67].

Independently, Strader & Rhyne made the same discovery [101], naming the

-45-

improved structure the canonical bit-sequential (CBS) multiplier. The operation of

this multiplier is covered in Chapter 6.

Gnanasekaran was the third author to point out this improvement, however he

was the first to modify the structure for 2C operation, by including MSB-inversion

logic [103]. A recent further modification to the CBS multiplier uses Booth's algo­

rithm [75] to achieve 2C multiplication [102]. Buric & Mead published a full-

precision incremental multiplier tailored as an inner-product step processor [104],

which includes two (3,2) adders per stage instead of the single (5,3) adder of the

CBS multiplier. The resulting two partial-product streams are combined into one in

a final adder.

Apart from improved coefficient latency (and data latency in the case of the

Lyon), these structures do not seem to offer any advantage over the Lyon and S/P

multipliers, in which all stage adders achieve 100% hardware utilisation. Recently

Scanlon & Fuchs proposed a modification to the CBS multiplier [77], which

achieves full module utilisation by introducing bidirectional operation to the array,

with attendant control overhead (see Chapter 6). They compare this architecture to

a double-precision realisation of the Lyon multiplier, concluding that the area cost

of the bidirectional CBS multiplier is approximately twice that of Lyon's. However

another more interesting comparison might have been between the CBS multiplier

and the S/P flush multiplier, whose latch count is considerably less than that of

Lyon's.

The S/P flush multiplier, at considerably more hardware efficiency, also forms

a 2w-bit product in 2n clock cycles, using n hardware stages. The one visible advan­

tage of incremental multipliers over the flush multiplier is that they are 'on-line'

with respect to both data and coefficient, whereas the flush multiplier is on-line only

with respect to data. It is unusual (but not impossible) to find instances of coeffi-
»

cients in real-time computational networks resulting from immediately preceding

computation (or external input), although this is often the case where data are con­

cerned. Normally the coefficient is known a priori (even if only by n clock cycles -

enough time to load the flush multiplier). This makes the advantage a tenuous one

indeed.

-46-

One benefit of on-line arithmetic comes from the low latency, and conse­

quently high overlapping potential, of chained computations on sequential networks

of processors [10]. In this case, fractional operation (single- or multi-precision) is

essential, as the word growth resulting from full-precision operations cannot be

accommodated indefinitely. The FFT [27] is a good example of such a network -

here additive and multiplicative operations are alternately chained. Bit-serial reali­

sations may leave computational headroom for single-bit growth in adders (or

round/truncate the results of these additions during the transform) but tolerate no

word growth in multipliers [72]. However the on-line property and word-growth

are inseparable in LSB-first schemes, where the 'early bits' output form the least-

significant part of the product, which is discarded in fractional operation. Thus any

latency advantages associated with LSB-first on-line hardware fade rapidly when

confronted with networks of chained computational elements, such as the FFT.

Sips arrived at similar conclusions about LSB-first on-line architectures [105],

and has more recently turned his attention to MSB-first on-line schemes. Incremen­

tal multiplication is operationally compatible with the advanced arithmetic opera­

tions possible in an MSB-first on-line computational environment [10]. Here frac­

tional computation is performed on redundant-coded data to permit operations such

as division and square-root extraction. The early extraction of fractional outputs is

both feasible and desirable in this case, as the early bits are those of interest in frac­

tional computation, i.e. the most-significant part of the product. Thus MSB-first

on-line operations may be chained without the problem of word-growth. MSB-first

on-line multiplication is performed in exactly analogous manner to the CBS algo­

rithm (on redundant-coded digits).

According to Trivedi and Ercegovac, who proposed on-line architectures for

multiplication and division in 1977 [10], incremental multiplication techniques were

"well known" at that time, and were in use as far back as 1962 [106]. Chen and

Willoner have not added to their original work - meanwhile Gnanasekaran has pub­

lished a fast, modular serial/parallel multiplier design, using (3,2) counters [88].

From this comparison it is concluded that incremental multipliers find use only in

the limited subset of applications which demand full-precision products to be output

at minimal coefficient latency - other applications are better served by variations of

Lyon or S/P multipliers [107].

-47-

A symmetry property of incremental multipliers may be exploited to achieve

area-savings in the computation of squares and sums of squares [108]. The Lyon

and S/P multipliers cannot put this property to use. The technique is described in

Chapter 6.

3.7.3. Storage sharing

In DSP applications, few multiplication operations are performed in isolation.

In many cases, identically formatted products are summed immediately after forma­

tion, or one datum is multiplied simultaneously by two coefficients (or vice-versa).

Cheng modified JKM's second-order section to exploit this saving [78]. Murray &

Denyer report a complex multiplier which shares data, coefficient and control

among four double-precision Lyon multipliers [73], while CUSP, a radix-4 FFT pro­

cessor, effects the same saving on four groups of four S/P flush multipliers [37].

Wawrzynek & Mead have implemented a bit-serial 'universal processing ele­

ment' (UPE) for music synthesis, capable of interpolating multiplication calculations

of the form A + BxM + Dx(l - M) [109].This consists of a modification to a
32-bit Lyon multiplier, and uses the approximation M = 1 - M . As the bits of M
and M always differ, the pair of AND functions normally required to form two
bit-products may be replaced by a single multiplexer, and the normal (3,2) adder of
the Lyon multiplier may be employed for effective pairwise PP-summation. This is
a good example of identifying redundant operations, and reducing hardware com­

plexity by simplifying computational procedures. In Chapter 6, more such examples
will be discussed.

-48-

Chapter 4

The Edinburgh tools

Novel contributions in the field of bit-serial systems architecture will be

included in Chapter 5. Extensive use will be made of FIRST, a silicon compiler for

bit-serial signal processors developed at the University of Edinburgh. Furthermore,

Chapter 8 describes SECOND, a new 'full-span' structural silicon compiler, which

uses the logic synthesiser MOSYN (also developed at the University of Edinburgh)

to extend the range of FIRST. Through the exercise of these tools, the author has

also made contributions to their development. As constant references are made to

FIRST and MOSYN throughout the remainder of this thesis, they need to be intro­

duced at this stage.

4.1. Background

Major advances in technology for the fabrication of VLSI integrated circuits

have resulted in the potential to realise complex real-time computational algorithms

which were previously of only theoretical interest [7], With the integration of hun­

dreds of thousands of devices on a single silicon surface arises the considerable likel­

ihood of implementation errors - a 'complexity crisis' confronts VLSI designers

[110]. To combat complexity, structured design styles and software tools [41] have

emerged, culminating in the structural silicon compiler [111,7,112]. Structural sili­

con compilers guarantee working parts from high-level structural descriptions,

through automatic assembly of known-good modules by known-good techniques.

Low-level design errors are avoided by forcing the designer to follow this route.

Structural silicon compilers are not yet complete system synthesisers, as their

power to implement function is limited by the flexibility of their underlying cell

libraries. The inclusion of logic circuit synthesisers will allow the designer to carry

his functional. intent right down to the realisation in silicon, with no software-

imposed architectural barriers. Accordingly, silicon compilers based on fixed cell

libraries may be expected to give way to a new, more flexible generation of com­

pilers, with the ability to translate the designer's intent efficiently at all levels of the

-49-

design process and the ability to incorporate new processes with minimal effort.

The University of Edinburgh has been active in the area of silicon compilation

and design automation for some time. Two tools in particular are germane to this

thesis: the FIRST silicon compiler [7] and MOSYN [113], a logic circuit synthesiser.

A new tool, known as SECOND [114], is under development, drawing from the

other two to realise a full-span structural silicon compiler. SECOND is introduced

in Chapter 8, meanwhile this chapter gives a brief overview of FIRST and MOSYN.

4.2. FIRST

Building on the architectural methodology proposed by Lyon [33], and

Buchanan's ideas on hardware description languages [115], FIRST [7,116,117]

emerged as a joint project between the Departments of EE and CS at Edinburgh in

1982. Restricting its application to a specific class of problems (signal processing),

and using bit-serial computation and communication, the designers of FIRST were

able to come up with a very efficient layout strategy. Although potentially

technology-independent, FIRST has been built around a 5-jxm nMOS cell library,

and a two-phase non-overlapping clock scheme. Several functional primitives were

also developed in 2.5-jim double-metal CMOS [73].

The user is offered a single, high-level interface to FIRST in the form of a net­

work description language. FIRST has (unseen by the user) a library of hand-

designed 'leaf-cells', and software procedures for their assembly into parameterised

'primitives' (multiply, add etc.). Primitives form the lowest level of hierarchy avail­

able to the user, and may be used to construct flow-graphs of higher level objects

(operators, chips, subsystems and finally systems) to solve specific DSP problems.

An analogy to software programming languages would cast primitives in the role of

'instructions', while the other hierarchical levels correspond to user:defined 'subrou­

tines'.

Chips are assembled according to a simple layout procedure, where two ranks

of bit-serial processors communicate via a central channel. Pads are sited in an

external rectangular 'ring', with space for optional linear feedback shift registers and

control circuitry for purposes of self-test [5]. Serial communication allows most of

the chip area to be devoted to computation, and routing of the central channel is a

-50-

relatively simple problem.

Figure 4.1 shows a bit-serial flowgraph, and Figure 4.2 shows the resulting

FIRST chip, which performs the radix-2 FFT butterfly function [72]. The complex

multiplication function is realised by 4 real multipliers and 2 real adders. A further

4 real adders complete the butterfly function.

w. y,

y.

Figure 4.1: bit-serial flowgraph for FFT butterfly processor

No silicon compiler should allow the specification of low-level design errors

(e.g. timing, race-conditions, design-rule violation, etc.). FIRST has the facility to

warn the user when he strays from the path of design integrity in an obvious

manner (e.g. nodes overdriven or left floating, word-synchronisation errors etc.).

However high-level errors may creep in, which cannot be flagged by either language

compiler or placement software (e.g. inputs to a subtracter reversed). Each primi­

tive has a behavioural model which is exercised by a word-level, event-driven simu­

lator for functional verification throughout the design process. It is crucial that

behavioural duality is maintained between hardware and software models - this is

ensured from the user's point of view by driving the simulator and layout software

from the same source file.

-51-

Figure 4.2: FIRST-compiled FFT butterfly processor chip

FIRST guarantees not only functional correctness but also performance, due to

the low pin/buffer count benefits of serial communication. Each cell in the library

is designed to work at a fixed, process-dependent clock-rate. The floorplan guaran­

tees data transfers both between primitives and between chips at this rate. A recent

comparison study [118] between FIRST and commodity 'micro-DSP' implementa­

tions of a large signal processor showed impressive savings in design time, board

size, power consumption, chip and pin count.

4.2.1. The FIRST primitive set

FIRST offers the user around 20 functional elements, or 'primitives', with

which to construct bit-serial signal processors. The flexibility of each primitive is

greatly enhanced by parameterisation, where the name identifies a family of related

functional elements rather than a single instance (each individual is identified by

unique parameters). Primitives fall into 5 main categories - arithmetic, storage,

control, format and pads [7].

-52-

Arithmetic: everyday arithmetic elements such as adders, subtracters and mul­

tipliers (single and double precision) are supplied, along with arithmetic

shifters. Data-dependent operations such as absolute (modulus of a number)

and order (sort two inputs by value) are supported, along with multiplex (1-

from-2 data select) and a single-word ROM.

Storage: FIFO memories are provided for storage of both data and control sig­

nals. Simple shift registers serve for bit-level storage. Word-level memories

may take advantage of the periodicity of control signals to save area, while

data words may be stored in RAM structures with sign-repetitions removed.

Control: as well as the control memories, a source of control waveforms is

provided.

Format: multi-precision representation of data is supported, and formatting

blocks translate between representations. Numerical limiting is part of this

process, and is also provided as a stand-alone operation.

Pads: clocked input and output pads are provided.

4.2.2. Case studies

Chapter 5 describes a detailed case study of FIRST. Appendices A and B con­

tain the FIRST language codings related to this study, and Appendix E reproduces

some earlier, more didactic case studies.

4.3. MOSYN

A logic circuit synthesis package known as MOSYN [113] has been developed

at Edinburgh by a visiting professor from Tokyo. MOSYN produces a set of MOS

circuit topologies (and terminal orderings) for realisation of input specifications,

using a 3-way decomposition and reduction procedure recursively. Logic functions

are manipulated using a 7-valued logic system. Target technology is static or

dynamic CMOS or nMOS, as well as cascode voltage switch logic [119].

MOSYN allows the user to describe his desired function in 3 different ways: in

truth table notation, in cube notation (both allowing specification of 'don't cares')

-53-

and in a concise logic description language. MOSYN produces in response a set of

complex gates (e.g. nMOS pull-down trees) with comprehensive statistics, from

which the designer may select the best candidate. MOSYN-2 has the added capabil­

ity to produce gate-matrix layout [120,42] of the selected tree, thus freeing the

designer from the layout task at the logic level. Multiple-output functions may be

generated, by synthesising individual circuits then merging and eliminating redun­

dant portions.

MOSYN employs two distinct types of logic function to synthesise MOS transis­

tor networks. The 'request' function specifies what is to be synthesised, while the

'realised' function represents one of the possible realisations. Both functions are 7-

valued.

An algebra is included for the manipulation of these logic values. The opera­

tions of addition, subtraction and multiplication are supported. Addition has a

direct physical representation (wired-or), while subtraction is the conceptual inverse

of this. Multiplication operators are required to model pMOS and nMOS FETs,

and different operators manipulate request and realised functions. Multiplication

operators have a 'gate function' as first operand (MOSYN uses only 'hard' binary

gate functions valued {0,1}). Thus the filtering action of a FET on a

request/realised function is modelled by the multiplication operator. The request

function is initially decomposed into three functions: a gate function, a terminal

function and a wired function. By hierarchical repetition of this process, a tree-like

circuit is finally obtained. Twin stack structures are used, one for processed FETs

and one for pending FETs (a FET being represented by a data structure containing

information such as FET type, request and realised functions, status and linkage

information etc.). Decomposition is terminated when the function is empty, or

realised by either a constant (0 or 1), an input variable or an already synthesised

node.

Unlike other logic synthesisers, which use heuristics to arrive at near-optimal

solutions [121,122], MOSYN employs a certain amount of brute force in permuting

input variables, although equivalences are detected before this process. The brute

force approach is particularly appropriate in a bit-serial environment, where logical

fan-in is low, limiting the dimension of search spaces.

-54-

4.4. The promise of full-span structural silicon compilation

The pairing of a 'half-span' silicon compiler such as FIRST, and a logic circuit

synthesiser such as MOSYN promises powerful advantages to systems designers.

Although FIRST supports an expandable cell-library, the task of designing and

including new 'primitives' requires circuit design skills. Currently the system

designer who lacks access to these skills must realise functional intent with the avail­

able primitive set.

With the availability of MOSYN, the systems designer may commission the

design of his own FIRST primitives (on the understanding that they obey FIRST'S
signalling and interfacing conventions). Not only may the existing library be

extended - entire new libraries may be specified, using a different set of interfacing

conventions if desired.

The primitive design task is reduced to that of specifying the primitive in

terms of logic and latches, running the logic through MOSYN, and writing simple

physical assembly and behavioural procedures for FIRST to call. These procedures

are unified and automated in SECOND, using the user's 'typed' physical hierarchy

to direct automatic assembly.

Although the gate-matrix layout produced by MOSYN may not be as dense as

the hand-designed layout of the existing cell library, the functional power provided

by tailored primitives more than compensates for this. Moreover, a cell-library may

be described in MOSYN input specification form, greatly increasing its portability

between processes and even technologies. Primitive assembly procedures may easily

be specified in technology-free manner, and formalised for the general case.

The automation of primitive generation from user-specifications is the last

major barrier to full-span structural silicon compilation. To this end, the SECOND
project is described in Chapter 8. By Synthesis of Elementary Circuits ON Demand

[114], the three forms of flexibility outlined in Chapter 1 should be realised.

The next chapter presents new material in serial-data systems design, exercis­

ing FIRST in the systems arena. The experiences gained suggest new architectural

techniques, and also serve as a precursor to next-generation tool development.

-55-

Chapter 5

Bit-serial systems design: methodology and case study

This chapter describes a methodical approach to bit-serial systems design,

which is illustrated through implementation in FIRST of a computationally-intensive

digital signal processor. Potential improvements to FIRST are identified in the

course of this study. The system to be designed is a polyphase-network filterbank

for use as a satellite communications transmultiplexer, as specified by the European

Space Agency (ESA) for evaluation of FIRST. Use is made of experiences from

previous investigations in the architectural areas of Fourier transform machines [72]

and transversal filters [123] - the former study is reproduced in Appendix E. A

target architecture is identified, and the system is initially described in a functional

manner, then verified via high-level simulation. Partitioning issues are then

addressed to produce an optimal chip set. Testing strategies are outlined, and some

weaknesses of FIRST exposed by this study discussed.

We begin by briefly outlining the author's personal approach to bit-serial sys­

tems design, which was developed during previous case studies including those of

Appendix E.

5.1. Bit-serial systems design

The favoured approach to bit-serial systems design is the popular method of

structured design, using top-down specification and bottom-up implementation

[41,7]. It is important that tools used for specification support hierarchical descrip­

tions - FIRST adequately satisfies this requirement, supporting physical as well as

functional hierarchy through 'typing' of hierarchical levels. Figure 5.1 illustrates

FIRSTs typed hierarchy - arrows indicate the legal call structure.

Systems implementation proceeds in two main stages - description and verifica­

tion of a functional model of the system, then translation of this functional model

into a sensibly-partitioned physical model. We refer to these two models as the soft
published work by the author.

-56-

SYSTEM
/ v

PRIMITIVES

Figure 5.1: FIRST'S typed hierarchy

model and the hard model respectively.

5.1.1. Functional design - the soft model

The soft model makes full use of the facility of primitive parameterisation

through arithmetic expressions supported by FIRST, allowing key systems parame­

ters (such as system wordlength, multiplier resolution etc.) to be varied at will. The

FIRST behavioural simulator is used to decide on optimal values of these parame­

ters. No attention is paid to physical issues at this stage, leading to such physical

absurdities as unpartitioned BITDELAY primitives of many hundred stages in

length. However the length parameter may be a complicated function of many

other parameters, which change frequently as a soft design evolves. Arithmetic

expressions for parameters, once fixed, allow the designer to make such changes

without concern for their effect on unrelated areas of the design.

Multiplexing

It is seldom the case that computational bandwidth (a function of the technol­

ogy) and signal bandwidth (a function of the application) are the same. A set of

techniques has been developed whereby a single physical processor services the role

of n virtual processors (where n ^ the ratio of computational to signal bandwidth

[7]) - this is known as (time-division) multiplexing. By multiplexing, the two

bandwidth quantities identified above may be matched.

The choice of multiplexing scheme must be decided at an early stage in

design, however its implementation may be postponed until the design of the hard

-57-

model. The size of multiplexing state memories depends not only on system param­

eters such as system wordlength and multiplexing level, but also on the task of the

memory (whether samples recirculate indefinitely or not). Data and coefficient

state memories in transversal filter design provide an example of this [123] - while

coefficients remain static in relation to their associated virtual processor, data sam­

ples step through the virtual processors, one per sample period. The state memory

requirements differ in each case. The design of these memories is complicated by

the fact that loops may have multiple exits, forcing particular partitions even in the

soft model.

Processor design

Another early task is to identify the processing elements required by the appli­

cation. FIRST provides single-operation primitives (multipliers, adders etc.) - it is

the task of the designer to bundle these primitives into custom arithmetic engines

(e.g. inner-product step processors, FFT butterflies etc.) which may tackle identifi­

able sub-tasks of the application.

Time-aligning

FIRST primitives are supplied with 'time-aligned' inputs and outputs where

possible - this encourages their use as functional 'black boxes' by the designer. He

only needs to remember what a primitive does (its function), and how long it takes

to do it (its latency). It is useful to extend this concept to the design of custom

arithmetic operators, arranging for all operator inputs (and indeed outputs) to be

mutually synchronous. Once again, the designer may treat operators as 'black

boxes' with function and a single latency parameter.

Time-tagging

The practice of time-tagging (latency accounting) reduces the possibility of

synchronisation errors as network branches are combined or loops closed. This aids

the management of data-distribution, both globally (at system level) and locally

(within processors or subsystems). Compensating delays may be specified in terms

of differential time-tags. Time-tagging is useful in both soft and hard models - tags

-58-

may be arithmetic expressions or integers. Figure 5.2(a) shows a soft, open critical

path (matched filter example), and Figure 5.2(b) shows a hard, closed critical path

(adaptive filter example).

CDelt
StotaUem

I

TpUac
DpMuK

s+r+2

TpAcc
Ace

s+r+3

2s+1-f
2s+1 53+2

Figure 5,2(a): 'soft' critical path

5.1.2. Physical design • the hard model

When the optimal values of all parameters have been fixed and the

behavioural model of the system meets specifications, the designer may address phy­

sical partitioning issues.

Physical partitioning

Partitioning involves dividing up the system and inserting chip boundaries to

produce the final chip set. Intelligent use of parameters in the soft model can

greatly simplify this task. Arithmetic expressions are replaced where possible with

integer values. Time-aligned operators may have this restriction (carefully) relaxed

thereby eliminating unnecessary delays. Large memories may be partitioned to

-59-

129 - 7 • IB + 3

Figure 5.2(b): 'hard' critical path

minimise chip area - often several iterations of the layout route (a matter of a few

CPU seconds in FIRST) are necessary to this end.

Control network synthesis

The task here is to minimise, in terms of wires, pins and active silicon area,

the cost of providing control to bit-serial operators. As memories for higher-level

control tend to be larger than for lower level control, it is prudent to minimise

these'.' A space/time 'reference-point' is chosen (usually the control generator at

time zero), and high level control chains implemented. In the soft model, the con­

trol path may be a simple copy of the data path, containing delay elements which

correspond to the differential tags at each operator input. Advantage may be taken

of the fact that control signals are periodic. Thus any local control network may be

realised by reducing all time-tags (relative to the reference point) modulo the system

wordlength, sorting the resulting list, implementing a reduced delay-line according

to the results of the sort, and connecting to the operators [123].

60-

5.1.3. Postscript

The above discussion may give the impression that systems design is a sequen­

tial process, which little or no interaction between stages. This is not really the

case, as mixtures of top-down and bottom-up techniques are usually employed, and

soft models are seldom created with no regard to physical considerations. The

designer may estimate partitioning requirements from the outset - the 'hardening'

process is a gradual one.

The following case study illustrates the use of the soft model for functional

verification, and the subsequent process of hardening.

5.2. Case study system description

The polyphase network (PPN) filterbank has applications as a transmultiplexer

for satellite communications. The PPN [124,125] performs efficient sample-rate

reduction on high-frequency signals. It consists mainly of a set of small filters into

which the input data stream is 'corner-turned' in blocks. When a PPN is used in

conjunction with a DFT back-end (Figure 5.1), short-term spectral analysis is possi­

ble at reduced computational bandwidth. The Fast Fourier Transform (FFT) is

commonly used to realise the DFT in practice. The PPN design stems from decima­

tion of a prototype lowpass filter response which, in combination with the rotations

inherent to the DFT, results in a set of frequency-shifted basic filter equivalents

spanning the spectrum, i.e. a uniform filter bank [126].

Bit-serial techniques have been used in transmultiplexer design before now.

Freeny et al. implemented a transmultiplexer in 1971 [127] built from bit-serial

modules in discrete ECL, very much in the spirit of JKM's approach [26]. More

recently, Jain et al. [128] chose a similar transmultiplexer to demonstrate the use of

a silicon compiler in systems design. Neither uses PPN techniques. The ESA

specification considerably exceeds the computational demands of these systems,

mostly due to its greater operational signal bandwidth and channel count.

-61-

5.3. FFT subsystem design

FFT architectures are dominated by multipliers, adders, switches and delays,

and fixed-point realisations contain no data-dependent operations. They are thus

ideal candidates for bit-serial implementation. Some experience of FFT systems was

gained in early case studies of FIRST [72] - see Appendix E. A full array architec­

ture was studied, then row and column multiplexing schemes were introduced.

5.3.1. FFT overview

The Discrete Fourier Transform (DFT) plays a significant role in the field of

spectral analysis, and is a common tool for mapping between time and frequency

domains in digital signal processing [27, 129]. The DFT transforms an Af-point sam­

pled time series into an equivalent Af-point frequency series. In equation form, the

value of the transform X at the k'h frequency point, or 'bin', is given by:

5.1
«=o

where both X(k) and x(n) are assumed periodic with period N, and k ranges from 0

to N—l. The factor 2rc/N normalises the argument of the complex exponential,

allowing k to span (at discrete intervals) the frequency range from zero up to, but

not including, the sampling frequency. The variable n represents time, and so the

quantity nk represents normalised angular displacement. As angles can be reduced

modulo 2ir, so can normalised angles be reduced modulo N. The ability to reduce

angles modulo some sequence length is a cornerstone of the Fast Fourier Transform

(FFT) algorithm [130, 131]. The FFT takes advantage of the properties of sym­

metry and periodicity of the DFT weights to reduce the computational complexity

of the DFT to order(A7 log A7). Eqn. 5.1 implies that the FFT can be computed

using only the plane-vector operations of addition (i.e. real addition of vector com­

ponents) and rotation.

-62-

5.3.2. Vector rotation

Fourier Transform machines require the operation of vector rotation, often

(but not always) performed by complex multiplication. Dedicated complex multi­

pliers are relatively rare, and usually evaluate the complex product using four real
multipliers, minimising communication and sharing storage of operands in parallel
[132,133] or serial [134,37,73] 2C architectures. Just as the FFT uses the com­
monality of coefficients to make computational savings over the DFT by combining
before rotating, so it is possible to perform addition before multiplication to reduce
the number of real multiplies in the complex multiplier. The 3-multiplier solutions
of Golub and Buneman [135,136] reduce computation - however these approaches
increase storage costs and adversely affect dynamic range in bit-serial realisations
[72].

The four carry-propagate adders required by the conventional bit-parallel
approach may be reduced to two using 'merged* arithmetic [137]. Alternatively, a
reduced form of binomial expansion may approximate the trigonometric functions
[138], reducing the number of required shifts and adds to effect the transformation.
However none of these approaches make full use of the cross-symmetry of operands
to simplify calculation of the complex product.

CORDIC processors [139,135] have been suggested as an alternative to com­
plex multipliers as a vector rotation medium - however (like 2's complement divid­
ers) they contain 'conditional' operations which hamper performance. Limited suc­
cess has been achieved in pipelining CORDIC processors [140] - nevertheless
CORDIC offers the flexibility to tackle computational areas such as advanced func­
tion generation and transformation [141,142].

In the more down-to-earth problem of vector plane rotation, the most common
*

solution is the complex multiplier with unity-modulus coefficient. White [143] sug­
gested an area-efficient symmetric-coded distributed arithmetic solution to the com­
plex multiplication problem - this has since reappeared in bit-parallel [144] and
serial-pipeline [48] form. In Chapter 6 White's model will be encompassed with a
theoretical framework for synthesis of small matrix-vector computers.

^ published work by the author.

-63-

5.3.3. The pipeline FFT

The FFT can be implemented in a fully word-parallel manner, using a large

number - N/R io^N - of butterfly processors, where N is the transform length and

R is the radix. It follows that the hardware cost is of order N/R \ogR N (there are

l°g*Af columns, each containing N/R processors). The full array structure is capa­

ble of block transforms in unit word time. The area-time product is therefore also
of order NIR \ogR N.

Area may be traded against time by a factor of logR N to realise the column

machine, which features N/R processors [72]. When N is large, this scheme still

leads to fast but hardware-intensive systems. A more common area-time tradeoff is

to divide area, and multiply time, by NIR, i.e. to employ a multiplexing level of

NIR. The same transform may then be performed in a word time of N/R, using

only logflTV processors. This is in effect implementing just one row, and multiplex­

ing down the columns. The resulting row machine is a pipeline FFT [145], and the

most advanced FFT machine known to the author employs this architecture (with

radix R = 4) to realise 4096-point transforms on 40MHz data [146].

The area-time tradeoff mentioned above is a little more complicated in reality.

The variable network topology required to 'perfect shuffle' data blocks in the FFT

[147,72] must be implemented through an arrangement of memories and switching

elements [145,72,146]. The area cost of these elements must be taken into

account. Appendix E contains details of a pipeline FFT realisation in FIRST.

5.4. Filterbank subsystem design

A filterbank is usually composed of several identical transversal filter com­

ponents. Row and column multiplexing schemes may also be employed in filter-

bank design. Array topology is more regular than in the FFT, hence there is more

scope for efficient multiplexing schemes. As the FFT is the more difficult to

design, the multiplexing scheme appropriate to the FFT may also be used in the fil­

terbank.

64

5.5. System specifications

The specifications of the system were as shown in Table 5.1.

Table 5.1: Initial specifications

sampling frequency

input signal resolution

number of channels

channel bandwidth

transition bandwidth

passband ripple

stopband attenuation

channel separation

prototype lowpass filter length

subsampling ratio

- 1.28 MHz

= 8 bits (real)

= 32
= 10

- 5kHz

= 0.5 dB

= 30 dB

= 20kHz

= 64 x 6 = 384 points
= 32

It was agreed with ESA that the process bandwidth restriction of the available 5 jim

nMOS function library (maximum 8 MHz clock rate) could be relaxed within rea­

son for the purposes of this study. The overall latency of the implementation is not

of concern, which allows some extra design freedom. System outputs are in rec­

tangular (real/imaginary) form.

5.6. Initial design issues and decisions

The PPN filterbank consists mainly of a bank of short transversal filters whose

outputs form the inputs to an FFT subsystem. In this case there are 64 finite

impulse-response (FIR) sections of length 6 points. This immediately suggests a dis­

tinct functional partitioning of the PPN filter into an FIR section and an FFT sec­

tion.

-65-

One FIRST system or two

The input signal is in 8-bit form, and this might be expected to grow to 10 or

11 bits in the FIR filters (a 6-point filter with full-scale coefficients can cause

growth of Iog2 6 bits - in practice this would be less). The 64-point FFT section

would take this extended wordlength as input, producing a further maximum 6 bits

0°g2 64) of growth. Thus it is apparent that the necessary serial wordlength for the

FFT section is larger than that for the FIR, and the first design issue arises, namely:

1 To design two separate FIRST systems, of differing wordlengths, with some

buffer interface between them, or (more simply) implement as one unified sys­

tem, with some wasted wordlength in the FIR section? The tradeoff here is

extra FIRST FIR chip count against the cost in design time and board space of

the interface and additional control requirement.

Efficiency and modularity of FFT computation

As the FFT input is real, a full complex implementation results in unnecessary

computation [131]. Another design option is to use a full complex FFT processor

to perform the FFTs of 2 real sequences concurrently [129], with a final bank of

adders and subtracters to unravel the 2 output sequences. The next design issue

arises, namely:

2 To employ a modular FFT to transform single real sequences, accepting a 50%

inefficiency in hardware use, or to transform double sequences? The tradeoff

here is the improvement from 50% to 100% utilisation of modular hardware,

against the extra cost in design time and board space of the buffers which

interleave FFT input sequences and de-interleave FFT output sequences, plus

the extra computation for output recovery.

Multiplexing scheme

The word-rate supported by the FIRST bit-serial system can be found by divid­

ing the process clocking rate by the system wordlength. This figure can be expected

to lie between 200 kHz and 1 MHz. As the word-rate at the inputs to the FIR sec­

tion is only 40kHz, it is apparent that a degree of hardware time-sharing

-66-

(multiplexing) may be employed, at a level Af of between 5 and 25 from the above

figures.

The specification calls for 64 6-point filters, and a 64-point FFT. Computa­

tion in the FIR section may be multiplexed 'column-wise' (each FIR filter using one

physical filter point), or 'row-wise' (realising a virtual filter-bank by multiplexing

one physical filter). Similarly computation in the FFT section may be multiplexed

column-wise (implementing one column of a constant-geometry FFT processer [27])

or row-wise (implementing one row of a standard FFT and effecting network topol­

ogy by storage and switching - a pipeline FFT [145]).

It is interesting to note that a 64-point radix-2 FFT has Iog2 64 = 6 stages -

the same as the number of FIR filter points. Both FFT implementations require

complicated switching and memory wedges - external to the column machine and

internal to the pipeline [7]. However the column machine requires considerably

more storage than the pipeline machine. A third issue has now been identified:

3 To use a column multiplexing scheme, with M = 6 or 12, or a row scheme,

with M = 8 or 16? One goal here is to find a value of M which allows circuit

clocking at optimal frequency. Also the ease of communication between FIR

and FFT sections must be considered.

5.6.1. Resolving the issues

On the basis that interfacing memory between FIR and FFT is expensive, we

start by admitting some bias towards a solution which avoids the use of such

memory. In the case of issue 1, we choose the unified system, whose wordlength

was 16 bits, and for issue 2, we choose the 50% efficient FFT.

If we choose M = 12 (the column scheme) we must use a serial clock at 40 *

16 * 12 = 7.68 MHz. The row scheme with M = 16 gives a clocking rate of 10.24

MHz, which is better, and still within specification. If M = 16, the FFT machine

radix is 64/16 = 4, which is said to be the optimal radix for a pipeline machine

[27,145].

The row scheme is thus initially more attractive, but when we consider the

-67

communication between FIR and FFT sections with M = 16, it appears more

attractive still. If the system input interface is arranged to translate a single 1280

kHz wordstream into two 640 kHz wordstreams as depicted in Figure 5.3, the FIR

section may be realised as two physical 6-point filter pairs (each pair sharing

storage), the FIR signal storage may be completely merged with its multiplexing

state memory, and no interfacing memory is required between FIR and FFT sec­

tions.

1280 kHzJ1 2 1 0 ———— >

\7
15

31

2

1 R
I O

1

17

0

1 C
I D

————— *

————— >

Figure 5.3: input interface memory

640kHz

5.6.2. Additional specifications

We may now add to the system specifications (Table 5.2).

Table 5.2: Additional specifications

system wordlength =16

multiplexing level =16

These quantities may remain as 'soft' FIRST parameters in subsequent descriptions.

-68-

Input interface

The input interface mentioned above should be built from standard parts. Its

design therefore falls outside the scope of this study, although we note that it might

consist of a 32 x 8-bit RAM, with a linear address counter for writing data, and a

'perfect shuffle' counter for reading data. The read pairs should be aligned, and

sign extensions packed on before being presented in an LSB-first serial manner to

the FIRST system.

The RAM must undergo one read and one write at a rate of 1.28 MHz,

pointing to a cycle time of around 390 ns, well within the limits of current static

RAM technology.

Coefficients

Coefficients are required in both FIR and FFT sections, although their use is

somewhat different. In the former case, we may wish the prototype impulse

response to be programmable (potentially at run-time), and accordingly provide the

facility to read this impulse response externally on power-up or reset, thereafter

storing the coefficients in a loop of state memory local to each multiplier. The

coefficient vector should undergo the same block transformation as the signal does

in the input interface, namely each 32-word block is transformed into 2 concurrent

16-word blocks.

FFT coefficients (twiddle factors) on the other hand are not usually 'variables'

- we would supply them in the form of an on-board ROM which continually out­

puts the current coefficient bit-pattern, obviating any FIRST storage of twiddle fac­

tors. For purposes of simulation however, we create a notional FIRST chip which

generates twiddle factors.

A similar strategy could of course be used in the FIR section, using RAM

instead of ROM. The decision whether to use FIRST memory elements or commer­

cial RAMs is a difficult one, and cannot be properly resolved until modularity and

partitioning issues are addressed later in the design process.

-69-

5.7. Functional design - the soft model

We may now commence the functional design, starting with a top-down

specification. As the two sections so far identified are fairly complex in themselves,

we choose to design and simulate each one separately, confident in the simple tech­

nique outlined earlier for their ultimate interconnection. We have the opportunity

to carry out some design exploration at this stage, and so we leave many system

parameters (e.g. FIR coefficient resolution) 'soft' for the time being. We pay little

attention to physical issues at this stage.

The system is partitioned into the FIR section and the FFT section (Figure

5.4). The FIR section forms one notional 'CHIP', whilst the FFT section is in the

form of a 2-'CHIP' SUBSYSTEM: one CHIP generates and distributes twiddle fac­

tors and the other performs the FFT computation. The FIRST description of the

soft model is listed in Appendix A, and should be referred to as an aid to under­

standing the following sections.

data

cof FIR

/\

FftCofs

FFT

reset
Controller

Figure 5.4: high level system plan

-70-

5.7.1. The FIR section

As stated above, the FIR section consists of 2 pairs of 6-point filters, each

filter point having the facility to capture M coefficients, and having local data

storage for M signal words. We say 2 pairs (rather than 4) because we may take

advantage of the fact that samples are 'bounced' between filter pairs (the subsam-

pling ratio is 32 and there are 64 filters), and storage may be shared. Figure 5.5

illustrates this.

Figure 5.5: sample-bouncing filter pair

The signal memory is simple first-in-first-out (FIFO), but the coefficient

memory must include the ability to recirculate M samples once they have been read.

It therefore consists of a memory loop containing a multiplexer under control of an

event pulse of length M words.

The basic component of the FIR stage - a filter-multiplier with its associated

memory, may now be described as an OPERATOR in the FIRST language. The

OPERATOR FilterSection takes 4 parameters: these are system wordlength swl,
coefficient resolution cofres, input signal significance signif and multiplexing level

muxlevel. We use the 1-bit predelay option on the signal input to the multiplier, to

compensate for the 1 bit delay incurred on passing through the coefficient

-71

multiplexer. We must delay control input to the multiplier accordingly. The

OPERATOR is 'time-aligned', i.e. all its inputs are synchronous [7].

The next task is to construct a pair of physical 6-point filters, with signal and

event delays cascaded through. To do this, we need 12 filter-multipliers, and two

6-input adder trees. We design the adder tree Adder using 5 adders with 'fanned-

in' sums. The parameter del will be used to balance latencies later in the design

process. Again we have used the predelay option for latency compensation.

We may next describe the filter pair FilterCascade, which consists of a regular,

cascaded connection of OPERATORS. FIRST has a useful shorthand syntax for

describing such repetitions. We finally produce a notional CHIP FilterOut contain­

ing the entire FIR section. At this stage we assign values to parameters via the

CONSTANT statement.

Simulation

We may check the functionality of the FIR section by applying a 16-word

block of dc to the input of each filter-pair. This is equivalent to applying a 32-word

dc block (effectively an impulse at the sub-sampling frequency) to the input inter­

face memory.

The response to this should show contiguous 32-word segments of the proto­

type lowpass filter response in the form of parallel pairs of 16-word blocks. Figure

5.6 illustrates the FIRST simulator output.

/
\

N

Figure 5.6: segmented block impulse response

-72-

5.7.2. The FFT section

The FFT computation is performed on a radix-4 64-point DIT pipeline
machine. This has log, 64 = 3 arithmetic stages, with perfect-shuffle networks
between stages. The shuffles are performed by a wedge-commutator-wedge
arrangement (a commutator being a complex 4-pole switch).

The arithmetic at each stage is in the form of a 4-point FFT, which can be
performed by adders and subtracters. All but the first stage are preceded by a twid­
dling (vector rotation) block. Figure 5.7 shows the FFT structure.

! c4. c5 control j c2. c3 control

Figure 5.7: 64-point radix-4 DIT pipeline FFT

In order to facilitate the merging of FIR and FFT sections, a dummy chip contain­
ing 2 words of delay is inserted at the front of the FFT pipeline. This allows timing
strategies to be developed for the FFT pipeline which do not require subsequent
alteration on implementation of the full PPN filter bank. We may now proceed
with a bottom up implementation, starting with the vector rotation.

Vector rotation

Vector rotation may be carried out using a complex multiplier. However
FIRST does not currently provide a complex multiplier primitive. We must there­
fore construct an OPERATOR CmplxMul using real arithmetic elements - 4

-73-

multipliers, an adder and a subtracter. We use the latency parameters in the adder

and subtracter to set the complex multiplier latency to two words, whilst controlling

multiplier resolution via the parameter co.

The twiddling block in a radix-/? FFT contains R-l complex multipliers [27].

Here R = 4, so we must provide 3 complex multipliers and a complex unit word

compensating delay for the twiddle free leg of OPERATOR Twiddle.

Radix-4 FFT

A radix-4 FFT may be constructed from 4 radix-2 DFTs. Although it requires

an internal multiplication by j, this can be accomplished by modifying the routing

around one of the radix-2 DFTs. OPERATOR Dft4 contains 4 instances of

OPERATOR Dft2, which consists of a complex adder and subtracter. Adder

latency parameters are used to set the OPERATOR latency to one word.

Perfect shuffler

The pipeline machine effects topological changes dynamically, using an

arrangement of memory wedges separated by a commutator switch. The size of the

wedges is proportional to the period of the commutator switching pattern, and we

use the parameter / to vary this at different stages in the machine. OPERATOR

LineDel is a basic parameterised complex wedge.

OPERATOR Commutator consists of 2 instances of OPERATOR ComReal,
the 4-pole switch. This is in turn constructed from 8 MULTIPLEX primitives,

under control of a 2-wire code. In a manner similar to Dft4, latency parameters are

used to set the OPERATOR latency to one word.

Pipeline FFT

The pipeline FFT is encapsulated in CHIP Pipe, and consists of a cascade of

previously declared word-synchronous OPERATORS, following Figure 5.7. The

remaining tasks are to provide a correct control network, and ensure that the twid­

dle factors are distributed correctly in both time and space.

-74-

Simulation

We may save later design effort by arranging the FFT timing to be appropriate

for the entire PPN system, and to this end we insert a dummy CHIP with a latency

of 2 words to mimic the FIR section. This chip can subsequently be replaced by

the FIR section to implement the entire PPN system without disturbing the FFT

timing.

We split the FFT verification into 2 parts: first of all the timing of the commu­

tator switching, then the correctness of the vector rotation. We may effect the

former by applying dc at the 4 real inputs of the FFT. We should observe accumu­

lation of energy at the initial (dc) output of each radix-4 DFT in the pipeline. The

height of each block should increase, and its duration decrease (by a factor of 4) as

we move through the transform, until all energy has been gathered in the dc output

bin.

Having verified topology, we may now verify the computational scheme by

applying a pure tone at the fundamental frequency (found by dividing sampling fre­

quency by transform length), and observing energy accumulation in bins 1 and 63

(63 being the alias of 1).

5.7.3. The polyphase-network filterbank

With two working subsections, we are now in a position to implement the

entire FIRST system. We simulate the response to a chirp signal which spans the

frequency range from dc to nyquist. As the FIRST output comes 4 real/imaginary

pairs at a time, in blocks of 16 and with digit-reversed frequency index, a software

package was written to display magnitude, log-magnitude and phase responses as a

function of time and frequency. Figure 5.8 shows the magnitude response of the

PPN system to the chirp input.

5.8. Physical design - the hard model

Having produced a functionally correct description of the PPN filter, we now

turn our attention to partitioning issues. Appendix B is the FIRST description of

the hard model, and should be referred to throughout this section.

-75

Figure 5.8: spectral evolution of chirp signal

System optimisation criteria

Attempts to optimise both parts count (number of chips in the system) and

device count (number of different FIRST chip designs) may sometimes lead to con­

flicts. In a low-volume application such as that of the case study, production

economies tend to favour a single multi-design wafer approach, rather than multiple

single-design wafers. Therefore we are not so greatly concerned with minimising

the device count, although we must bear in mind that test costs are related to device

count.

The main optimisation criterion for this study is the number of pins in the sys­

tem, as it is usually interconnect which provides problems of reliability in the field

[148]. We should still pay some attention to parts count (which affects board space)

and device count. Transistor count and physical sizes of chips should be restricted

to maintain favourable manufacturing yields.

-76-

Chip optimisation criteria

A large part of our task here is to implement memory using more efficient

WORDDELAY and CWORDDELAY primitives (where prudent) in place of the

BITDELAY and CBITDELAY used throughout the soft model. WORDDELAY

is a parallel store which discards input sign-extensions according to its parameters,

and packs them on again on exit. CWORDDELAY uses the deterministic nature

of control signals to synthesise a delayed version of its input.

Another issue is fan-out - the number of inputs driven by any particular out­

put. In designs with word-synchronous control, for instance, we may find instances

of the cl control driving more than the 6 inputs supported by the FIRST floorplan.

Finally, having settled on coefficient resolutions in FIR and FFT sections, we

may relax the word-synchronous OPERATOR style used, re-implementing Dft4 in

minimal-latency form with its own dedicated cl line. This reduces transistor count

by removing compensating delays, reduces system latency by 3 words to 23 words,

and only increases pin count by 1 (on CGeri).

5.8.1. The FIR section

The FIR section consists of 2 pairs of 6-point filter-multipliers (with associated

state memory), and four 6-input adder trees. The data and event memory is shared

between filter points in a pair, and so we couple one filter stage with its equivalent

in the other filter in the pair. This allows us to minimise the number of pins in the

data and event paths. We introduce a further parameter, bound, to allow OPERA­

TOR FilterSection to contain optional pad delay compensation. All FIFO memory

is re-implemented with word-oriented primitives for area efficiency, and further sav­

ings are realised by using the multiplier's facility to deliver its input data delayed by

its latency. The CWORDDELAYs were partitioned to reduce their height to that

of the multipliers.

Adder trees are small in terms of arithmetic hardware, but are large in terms

of data transfers, having 6 inputs and one output. We could reduce the number of

transfers by partitioning the FIR sections differently - if 2 contiguous filter points

were together on a chip, then their products could be summed locally, and adder

-77-

trees would then have only 3 inputs. Unfortunately this compromises our data and
event path, which must now enter and exit each chip twice, and in fact raises
overall pin count. We choose the former scheme, which results in CHIP Section

(Figure 5.9(a)).

Figure 5.9(a): CHIP Section - size 6.40 x 3.63mm

The 4 adder trees could easily fit on one chip, but in this instance the pad
count of 24 inputs and 4 outputs, with provision for associated linear-feedback
shift-registers (LFSR) for self-test [7], is large enough to warrant partitioning of the
trees into 2 CHIPs (AddTree - Figure 5.9(b)>, each with 12 inputs and 2 outputs.

Figure 5.9(b): CHIP AddTree - size 3.07 x 2.65mm

-78-

This device exposes some of the drawbacks in using a simple floorplan such as that

in FIRST.

5.8.2. The FFT section

The components of the FFT are complex multipliers, radix-4 DFTs, commuta­

tors and delays of various sizes.

The radix-4 Dft, like the adder tree, is small but pin-intensive. We produce
the CHIP Dft4 (Figure 5.9(c)) which contains a full complex radix-4 DFT, and for
modularity reasons we choose to use it in the first stage even though inputs here are
real. The latency is minimal at 4 bits (some control buffering was employed, and
parameterised predelay pairs were passed to the component Dft2 OPERATORS to
maintain synchronism).

r - .

3 -HI
_H

Figure 5.9(c): CHIP Dft4 - size 3.95 x 2.61mm

One complex multiplier is chip-sized (CHIP CmplxMul - Figure 5.9(d)). By

parameterising the latency of the ADD and SUBTRACT primitives on CmplxMul,
we force the combined latency of CmplxMul and Dft4 to be 2 words. Three

instances of CmplxMul form the SUBSYSTEM Twiddle.

This leaves the question of how to partition the remainder of the system,

which is mostly memory. Until now we have partitioned the pipeline into modular

sections - however the shuffle networks are physically different at different stages

(the pipes are different sizes). Where they exhibit symmetry is between real and

imaginary data paths - these are identical. We therefore partition the shuffling

-79-

Figure 5.9(d): CHIP CmplxMul - size 4.26 x 4.85mm

(which also contains the twiddle compensation omitted from SUBSYSTEM Twid­
dle} in this manner, producing the CHIP Commute (Figure 5.9(e)). In this case we
use sensibly partitioned BITDELAY primitives to implement FIFO memory, as use
of WORDDELAY was seen to increase chip area and pin count.

Finally CHIP Cgen (Figure 5.9(f)) contains the CONTROLGENERATOR
primitive which is the source of control waveforms in the system, along with delay
elements which allow correct distribution of switching waveforms in the pipeline
FFT. Levels 3 and 5 of control are required in a duplicate form, delayed by one
quarter-period, by the FFT commutators. We implement this delay on CHIP Com­
mute (thereby saving 4 pins at the cost of a little duplicated control delay).

The hard model was simulated in the same manner as the soft model, and
behaved as expected.

-80-

Figure 5.9(e): CHIP Commute - size 5.98 x 4.31mm

Figure 5.9(f): CHIP Cgen - size 1.90 x 4.06mm

5.9. Test strategy and confidence levels

Bit-serial computational elements are, by their nature, highly testable and

straightforward to initialise (set to a known state) [5]. Pseudorandom test vector

sets are therefore eminently suitable for testing bit-serial chips, provided:

-81-

1 All recursive loops in the data path are broken.

2 All bit-serial primitives in the system to be tested propagate random patterns.

The chip set has been designed and partitioned with these constraints in mind.

The only loops in the system (coefficient loops in chip Section) can be broken by

setting pin pev high. Furthermore, the system has been partitioned to maximise the

access to internal points and primitives, thus increasing the diagnostic accuracy (at

chip level) of a test program. All of the FIRST primitives used propagate random

patterns, so the second testability requirement is met.

Test length

Figure 5.10 (taken from [5]) shows a series of testability curves for the single

most random pattern resistant primitive in the chip set, the bit-serial multiplier. It

can be seen that these curves are quite insensitive to multiplier coefficient length.

In fact, for any length of multiplier (within reason), a 500-bit pseudorandom pat­

tern test will result in a test confidence level in excess of 99% for the multiplier. As

the other primitives will all be tested to an even higher degree, the overall test cov­

erage may be regarded, in a probabilistic sense, to be 100%. Such a probabilistic

measure is inherent in FIRSTs test strategy [5], as it avoids the crippling exercise of

full fault simulation.

It is envisaged that this system will be subjected to an off-line test, to avoid the

system control overhead implied by the scheduling of totally autonomous test. As

mentioned above, the propagative randomness property of bit-serial systems obviates

the need for automatic test-pattern generation. The FIRST simulator model may be

driven with orthogonal pseudorandom sequences, and the activity on all output pins

monitored. When testing hardware, the same stimuli will produce identical results

to the simulator model unless a fault is present.

Inclusion of full self-test capability to FIRST systems has been investigated [5],

and may be included in a manner transparent to the FIRST user. In this case

pseudo-random sequences are generated local to each data input pin, and data

compression registers at the data output pins record the test results. The system

under study was partitioned with a view to supporting the eventual inclusion of

-82-

o
O

CO
LxJ

0

50 L

0

50

O
,\- 0

50

0
0

10 BIT MULTIPLIER

8 BIT MULTIPLIER

4 BIT MULTIPLIER

2 BIT MULTIPLIER

100Z

100X

100X

100Z

100 200 300

CLOCK CXCLE
400

Figure 5.10: multiplier testability curves for various coefficient lengths

autonomous test.

5.10. A critical appraisal of FIRST

While the existing set of FIRST primitives is able to provide adequate architec­

tural components for the PPN, there is a strong case for the development of further
application-specific primitives. In this case custom complex multipliers and adders,

or even full butterfly stages, may be merited. Some more sophisticated data

83-

switching elements would also be advantageous here, as would be adders with built

in truncation (i.e. 'averagers') to avoid word growth and improve dynamic range.

Filterbanks might benefit from custom inner-product step processors. Although the

FIRST function library is capable of providing the computational elements necessary

to realise the PPN filterbank, the functional inflexibility of FIRST stands in the way

of more efficient realisations. Chapters 6 and 7 describe advances in serial-data

architecture which might lead to more efficient implementations of function.

The chip count of the PPN filterbank stands at around 25. It is estimated that

a realisation in a more modern technology, 2-^m double-metal CMOS, would con­

sist of only 3 chips [118] . However current FIRST users are obliged to partition

systems as dictated by the yield and integration levels of 5-(xm nMOS. The techno­
logical inflexibility of FIRST prevents advances in integration.

Although the best available mixture of FIR and FIT architectures was chosen

(obviating memory interfaces), some inefficiency had to be accepted in the FIR fil­

terbank. This subsystem could have been implemented in 8-bit arithmetic, however

the FFT demanded 16-bit precision. Thus the filterbank was required to idle on

sign-extensions for 50% of the time, compromising the elegance of the overall sys­

tem architecture. Were variable-throughput elements available, the FFT could pro­

cess 16-bit data at the rate at which the filterbank output 8-bit data. The filterbank

could then be halved in size. Although individual computational elements such as

complex multipliers and adders might increase in size, the FFT could in turn be

converted from a radix-4 pipeline to a smaller radix-2 pipeline [145,72] (here

'radix' refers to transform radix [130], not number radix), resulting in net area sav­

ings. The operational inflexibility of FIRST prevents architectural refinements of

this nature.

This chapter has demonstrated advances in serial-data architectural knowledge,

and the power of FIRST to realise efficient solutions to DSP problems despite the

three limitations identified above. The remainder of this thesis addresses means to

overcome the three inflexibilities of FIRST.

T published work by the author.

-84-

Chapter 6

Special serial-data techniques for area reduction

In the previous chapter, FIRST has been shown to be functionally, technologi­
cally and operationally inflexible. The first and third inflexibilities are addressed in

this and the next chapter respectively. The concepts behind an advanced serial-data

cell-library for DSP applications, based on the S/P multipliers introduced in Chapter

3, are outlined. A proposed solution to the technological inflexibility is the subject

of Chapter 8.

This chapter presents novel, area-efficient adaptations of the serial-data multi­

plier form. Firstly an alternative functional partitioning of matrix and vector pro­

cessing architectures is proposed, based on symmetric-coded distributed arithmetic.

This technique offers area-savings at no loss in throughput [149,150] . It is shown

how such architectures may be cascaded. Finally a novel form of incremental mul­

tiplier is suggested, which is optimised for computation of squares and sums-of-

squares [108].

6.1. Overview of vector computation

A multiplication is an unconstrained 1-D sum of (weighted) PPs. The dimen­

sion represents one of the two input operands - the weight of whose bits is a func­

tion of dimension index. We refer to the input operands as data and coefficient
respectively, and note two common differences of usage in DSP applications.

Firstly, the coefficient is often known a priori (unlike data which either arrive from

external sources or are freshly-derived from previous computations). Secondly, the

precision of representation may differ (the coefficient is often represented by fewer

bits). In S/P architectures, one computational dimension (usually the data-bit

index) lies along the time axis.

A fundamental form of vector product is the dot, or inner product (IP) [151].

The IP of two vectors is formed by summing the pairwise products of the vector

"published work by the author.

-85-

elements. An IP is then an unconstrained two-dimensional sum of PPs (the 2nd

dimension being vector length). Once again, we note the difference of usage

between data and coefficient (in this case vectors). By permuting and/or factoring

summation indices, several different approaches are made possible. Classical

multiply-accumulate techniques [27] put the vector index outermost, while DA

[152,153] has the data-bit index outermost. By factoring the index of vector

length, architectures may be realised which yield an optimal mixture of these two

techniques.

Matrix-vector multiplication extends the list of favourable properties associated

with coefficients, in that there are often further properties of symmetry in the coef­

ficient matrix to be exploited. We shall demonstrate these advantageous properties

in later examples.

6.1.1. Some carry-save approaches to vector computation

The properties of carry-save arithmetic seem particularly well suited to the

computation of vector products, i.e. the unconstrained summation of single-bit pro­

ducts in three dimensions. Bit-level systolic arrays [154,66,155] are an efficient

means of implementing such architectures. These architectures are characterised by

minimal control and communication overheads, and potential clocking rates are

limited only by the logical complexity of processing elements. A single-chip proces­

sor [156] has recently appeared, based on these principles.

Denyer and Myers [45] proposed arrays of carry-save adders which accumu­

lated inner-products across each bit plane in bit-parallel carry-save fashion (MS-

plane first), using the free inputs of the next-plane computer for accumulation.

Cappello & Steiglitz [81] formalised this concept. Danielsson noted that families of

convolvers could correspond to S/P multipliers, as convolution has the same struc­

ture at word-level as multiplication has at bit-level [70].

These architectures follow good VLSI practice, and result in area-efficient

realisations of vector computers. All feature a high degree of modularity and regu­

larity. However they exploit neither symmetries and redundancies in computation,

nor preknowledge of coefficients, as do distributed arithmetic architectures.

Although a combination of techniques might yield interesting results, we are more

-86-

concerned with implementing a set of serial-data modules which can be configured

to realise arbitrary fixed-function computational networks. For this reason we

eschew the systolic architectures, in deference to the 'approach'.

6.2. Serial/parallel symmetric-coded distributed arithmetic

This section presents a methodology for synthesis of area-efficient, high-

performance VLSI architectures for vector and matrix multiplication. Use is made

of distributed arithmetic techniques [152,153]. Three fundamental computational

elements are employed in the composition of these architectures: memory register,

multiplexer, and carry-save add-shift (CSAS) computer. 2C S/P carry-save accumu­

lation provides performance, while the use of symmetric-coded DA in CSAS com­

puters eliminates redundant computation to effect area-savings.

DA provides the facility to compute the sum of several products concurrently,

in architectures which exhibit the same structure, regularity and modularity as do

scalar multipliers. In fact a scalar multiplier is a trivial case of a DA architecture.

6.2.1. The symmetric-coded serial/parallel multiplier

Orthodox S/P multipliers, as described in Chapter 3, use 2C coding

throughout. As we know of no better data-coding for the addition (accumulation)

operation, this results in minimal hardware and maximal throughput. Figure 6.1

shows the 2C coded S/P flush multiplier (the following conversion process is equally

applicable to fractional S/P and Lyon multipliers).

To assist in the development of matrix-vector architectures, we choose to code

the data word in symmetric, offset-binary (OB) form, where logical 0 is interpreted

as -1 [76]. This alters the role of data bits in the computation - logical 0 now

effects the subtraction of the coefficient from the PPS, instead of the addition of

zero.

Data conversion to OB is easily accomplished by MSB inversion. 2C data

word A consisting of bits a, converts to OB coded word A ' as shown:

A = -a 0 + "iX2-', a, {0,1} ,

-87-

data

coefficient storage register

roduct

| - latch

Figure 6.1: 2C coded SIP flush multiplier (4-bit coefficient)

A' = "2 S.-2"-1 ,
i=0

a, {-1,1}

Error compensation by parallel load of the coefficient

It can be seen that

A' = A + 2-" 6.1

i.e. a small representational error results from the change of code to OB.

Consider the product P of 2C-coded data word A with coefficient C, and pro­

duct P ' of OB-coded data word A ' with coefficient C.

P = AC, P' = A'C

= AC + 2-*C

= P + 2~"C

We see that the change of code from 2C to OB results in a representational error of

2~"C, which may be removed by subtracting the coefficient word at LSB-time (on

commencement of product computation). As the CSAS computer is incapable of

explicit subtraction, this may be accomplished by adding the 2's complemented

coefficient, i.e. by bit-inversion and incrementing (implicit subtraction). To this

end, the inverted bits of the coefficient are used to load the free carry-loops in the

main array at LSB-time (cf. clearing in the 2C version). The PPS input to the stage

occupied by the coefficient LSB (i.e. the last stage) must be set at LSB-time to per­

form the necessary increment (all others are cleared).

As data is OB-coded, the coefficient word is either added to or subtracted

from the PPS, depending on the broadcast data bit. Again, coefficient subtraction

is performed implicitly (the incrementing bit is simply delayed, inverted data).

Thus the OB S/P multiplier contains.an XNOR-gate for bit-product formation

(instead of the AND gates of the 2C version), and an extra CSAS cell at the end of

the array for incrementing. This incrementing adder combines with the residue

assimilation adder to form a double-precision adder from whose two output wires

various product formats may be selected. Figure 6.2 shows the OB S/P multiplier.

data

-coefficient storage register

product

Figure 6.2: OB coded SIP flush multiplier (4-bit coefficient)

Note that the weight of data-bits is different between 2C and OB (the former

is twice the latter). Care should be taken in aligning the addend input, and inter­

preting the weight of the coefficient and the output product.

-89-

Error compensation by left-shift and decrement

The above scheme necessitates loading of the coefficient into the carry loops at

LSD-time. This causes a considerable increase of logical complexity in the basic

computational cell, with corresponding area and performance costs. A second

method of coding-error compensation cancels the data error directly, by pre­

processing data bits before broadcast. Manipulation of eqn 6.1 produces the expres­

sion:

A = A' - 2-"

i.e. 2A = 2A' - 2"

Thus preprocessing takes the form of a left-shift and decrement operation. Output

data must be right-shifted for subsequent correct interpretation of the product.

This technique increases the latency of the OB multiplier, requires a guard-bit

on input data thereby reducing dynamic range, and affects modularity in adverse

manner. These points make it a less likely candidate for implementation. Pipelin­

ing of bit-product formation in the former scheme can be used to reduce cell com­

plexity, leading to a more compact, modular architecture.

6.2.2. The serial/parallel inner-product computer

So far we have described a modification to the 2C S/P multiplier, allowing it

to handle OB-coded data inputs. The price paid for this is the extra low-precision

adder on the output of the main array, and increased cell complexity. However the

S/P multiplier is now in the form where, with a little further modification [157], it

can compute inner products directly, using DA.
*

DA [153] replaces the multiplications involved in an IP computation with a

series of memory look-ups. A set of 'partial inner products' (PIPs) made by con­

volving the coefficient vector with all possible bit-patterns from the data vector is

precomputed and stored in memory. The PIPs are accessed (addressed) by the

T published work by the author.

-90-

actual bit-pattern across each bit-plane of the data vector, and accumulated (with

the correct binary weight) to form the IP.

If data are coded in OB, the full PIP-set exhibits negative symmetry [76]. To

exploit this property, we designate an arbitrary coefficient word as 'master', also

referring to the data word associated with this coefficient in the IP computation as

master. The master data-bit may then be removed from the address word and the

memory-size halved. This bit instead serves as an 'add/subtract' instruction to the

accumulator. Viewed in this light, the OB S/P multiplier contains a single-word

'memory', accessed by a 'zero-bit address word', i.e. look-up is trivial.

We now describe the conversion of the OB S/P multiplier into a 2-point IP

computer. Instead of storing one coefficient word C, we introduce a second coeffi­

cient word D, and store the 2 PIPs K and K' , where

+ D „> - c ~ D———— , A r

The factor of 2 prevents word-growth in PIPs, and compensates for the factor of 2

weight difference between OB and 2C data codes. We take 2 serial data words A

and B as input, choosing (say) A as master. A is then broadcast as data to the

CSAS array, and (A XNOR B) is used to select either K or A". If the bits of A

and B are equal in any bit-plane, the 'sum-PIP' K is selected - if unequal, the

'difference-PIP' K' is selected. If the 'master' bit is 1, the PIP is added, if not it is

subtracted. Thus the modified S/P multiplier is capable of computing the inner-

product step AB + CD + E (where E is the addend), at little extra hardware cost.

Through a simple, recursive procedure, this principle can be extended to com­

pute longer IPs:

For each additional data-coefficient pair:

Replace each register with a multiplexer and register-pair,

Load the register-pair with the old PIP ± the new coefficient,

Select multiplexer output by XNOR of master data-bit and new data-bit.

-91-

Error compensation

Consider the IP J£PX of 2C-coded data vector Ax with coefficient vector Cx ,

and product ^P ' x of OB-coded data vector A 'x with Cx .

2- CJ

Thus the 'sum-PIP' ^Cx /2 loads the cany-loop on commencement to compen­

sate for OB data-coding.

Figure 6.3 summarises the evolution of this class of DA architectures via the

recursive composition procedure, starting from the S/P multiplier.

o
V
D

AD

(a)

register
multiplexer
CSA computer

ON

R 9o _ X/
O A^A-f-»y

(b) (c)

Figure 6.3: real IP computer evolution

Some abstraction is necessary to contain detail - for instance we are not concerned

-92-

with loading/unloading operations, carry-setting and cascadability (these are the

same in all cases). We restrict ourselves to 3 architectural elements: registers, multi­

plexers and CSAS computers. The architectures are viewed 'end on', i.e. data flow

is out of the page. Master bits are shown beside computers, while selection func­

tions point at selecters.

Figure 6.3(a) is the abstracted version of the S/P multiplier of Figure 6.2, with

a single register to hold coefficient word C and a single CSAS computer to form the

product from data word A.

Figure 6.3(b) shows the modification of the S/P multiplier to form a 2-point IP

A 1A 1 + A 2C 2 . We replace the coefficient register with a multiplexer and register-

pair. Here A is master, and the function A 1 XNOR B l drives the multiplexer,

which selects one of the PIPs (these are represented as Cj + C 2 and C± — C 2 ,

although PIPs are actually stored as half these values).

Figure 6.3(c) shows the extension of this technique to form the 3-point IP

A iA 1 + A 2C 2 + A 3C 3 . Here A l is master and A 2 and A 3 are used for data selec­

tion, by XNOR with A j.

It should be noted however, that while savings in CSAS elements are linear,

PIP storage costs grow exponentially. Depending on the technological implications

of adding storage, a point will soon be reached where the DA approach is less

attractive than the conventional [158]. For this reason, we propose a mixture of

DA and conventional techniques for longer IP computations - this is effected by fac­

toring the vector length index as described earlier.

6.2.3. Architectural case studies

Armed with the knowledge of how to construct IP computers, we may now

review some of the matrix and vector architectures which can be synthesised with

these techniques. Here we treat coefficients as known matrices operating on vectors

of incoming data, exploiting where possible the properties of symmetry exhibited by

these matrices.

-93-

Matrix-vector multiplication

The 2-point IP computation described above may be expressed in matrix nota­

tion as shown.

While general matrix-vector computation of the form:

-is
may be executed on a pair of unrelated 2-point IP computers, the centrosymmetric

matrix computation:

may be performed on a simple variation of the architecture of Figure 6.3(b) (the

addition of a second CSAS computer). Figure 6.4(a) depicts this architecture.

X = commutator

ROW 1 REAL IMAG

(a) (b)
Figure 6.4: matrix-vector computer evolution

Due to centrosymmetry, PIP-selection is mutually inclusive, i.e. the selected PIP is

-94-

used in both computers. Note that B is master in the second computer, as B is

associated with the master coefficient in the implicit IP computation which produces

output F. While this structure finds limited application in DSP (hyperbolic rotation

is. one example of its use [141]), a further slight modification transforms it into a

form of matrix-vector computer which is very common indeed.

Complex multiplication

The operation of complex multiplication (plane rotate and/or scale) occurs fre­

quently in digital signal processing, for example in Fourier transformation [27],

orthogonal filtering [159], and waveform generation [160]. Chapter 5 reviewed

some of the many approaches to this computational problem.

If we designate data word-pair A,B and coefficient word-pair C,D as real and

imaginary components of a complex numbers A and C respectively, a further slight

modification to the architecture of Figure 6.4(a) may perform complex multiplica­

tion [161]. The complex product E = CA , where E = E + jF may be evaluated by

the matrix computation:

Although the centrosymmetric property no longer holds, the coefficient matrix now

displays the equally useful property of mutually exclusive PIP-selection. Here the

sum-PIP in the implied imaginary IP computation equals the difference-PIP in the

implied real computation (and vice-versa). Instead of selecting one PEP via a multi­

plexer for use in both computers, we steer both PIPs through a commutator (2-

from-2 data selecter). This architecture (Figure 6.4(b)) is similar to the complex

multiplier embedded by White in an FFT processor [143]. This architecture has

recently re-appeared in fully-parallel [144] and serial-pipeline [48] forms, this last

example being a direct modification of the Lyon multiplier.

' published work by the author.

-95-

Complex inner-product

We may express the previous computation in complex notation:

E = CA

and extend the above concept to the complex inner-product computation:

In similar fashion to the real arithmetic case, we form an IP computer by removing

the register of a multiplier, and replacing it with a register-pair and multiplexer.

Here registers are complex, i.e. they contain pairs of numbers. Thus a 'register-

pair' in this case comprises 4 real registers, while a 'multiplexer' is a l-from-4 data

selecter.

Extending the selection methods of the complex multiplier, the PEP-set may be

split into a 'sum-set' and a 'difference-set', with mutually exclusive selection. How­

ever selection functions within these sets are complicated by the fact that selection

within sets depends on the target computer. This follows from the asymmetry of the

scalar coefficient matrix:

di

By judicious arrangement of PIP storage, we may at least ensure that selection

functions are shared between PIP-sets. These functions are 'quasi-exclusive', so-

called because, like the exclusive-OR and -NOR functions, they form diagonals in

the Karnaugh map (Figure 6.5). While exclusive functions form alternate diago­

nals, quasi-exclusive functions divide the map into two diagonal regions. Figure 6.6

shows the 2-point complex IP computer, with selection functions appropriate to the

PIP arrangement.

-96-

NOR OR
exclusive

F1 F2
quasi—exclusive

Figure 6.5: Karnaugh maps of exclusive and quasi-exclusive functions

/- /- r- >-^- f- f~
N ON ON ON ON ON ON ON

REAL IMAG

Figure 6.6: complex IP computer

A 3-point complex computer may be formed by replacing each register with a

4-register-3-multiplexer combination, and so on. However register count and multi­

plexing depth begin to dominate beyond the 2-point complex IP, as does the fan-in

(hence area cost) of selection functions.

-97-

6.2.4. Architectural synthesis

We have seen how 3 simple elements may be combined in different ways to

form various architectures for matrix and vector computation. Building on a single

CSAS array, the construction rules for IP computers are procedural and recursive.

Matrix computation follows easily, by addition of further CSAS computers and

association of master data and coefficient in each implicit IP computation.

Procedural construction lends itself readily to computer automation in a silicon

compilation environment [7]. With construction rules encapsulated in composition

procedures, we envisage assembly of DA architectures in response to a single-line

call in high-level language, rather than explicit calls to component modules.

6.2.5. Comparison with conventional approaches

To illustrate the area savings afforded by the DA approach, we compare the

example architectures with the standard approach (SA), where storage is shared

whenever possible (Table 6.1). S/P hardware costs are O(m), where m is

coefficient/PIP wordlength. We neglect O(l) costs.

Table 6.1: Comparison of standard approach and DA

function

2 -point IP

3 -point IP

2-pt. matrix -vector

complex multiply

2-pt. complex IP

register

SA

2

3

2

2

4

DA

2

4

2

2

8

mux

SA

-

-

-

-

DA

1

3

1

1

7

CSAS

SA

2

3

4

4

8

DA

1

1

2

2

2

The DA solution uses multiplexers and sometimes extra storage, but always

less CSAS computers. The hardware costs of these elements vary with technology,

nonetheless we suggest that the reduction in CSAS hardware afforded by the DA

approach outweighs the increase in storage/selection costs over conventional

-98-

approaches.

Although area-efficient, DA appears to be 'storage heavy'. However if bit-

serial throughput enhancement techniques [162] are employed, then the ratio of

active logic to storage increases, accentuating the area savings of the DA approach.

DA requires the generation of some logic functions of input data bit-planes,

and extra wires for their broadcast. Word-growth may occur in PIPs, necessitating

perhaps one or two extra stages to maintain the accuracy of conventional realisa­

tions. Also it should be noted that the DA approach requires 'precomputed' PIPs

to be available. If coefficients can only be provided in standard form, then a net­

work of bit-serial adders and subtracters must be provided for PIP calculation, with

attendant time and area penalties.

6.2.6. Distributed arithmetic in context

DA was proposed as a method for avoiding the use of standard-part multi­

pliers in FIR/IIR filtering [153,163]. From the outset the two approaches were

classed as diametrically opposite - they have been directly compared on several

occasions, e.g. [164,165]. This has led to a general perception of DA as a 'ROM-

accumulator' technique, involving memory technology in VLSI realisations with the

area overhead of control and addressing logic.

We have demonstrated that 'memory addressing' (at least for small problem

sizes) in VLSI is merely a data-steering operation, governed by simple logical func­

tions on the incoming data bit-planes. Computation is performed on CSAS arrays,

exactly as done in multipliers. Thus DA is more a modification than a replacement
of multiplier technology.

Complexity of DSP algorithms is often expressed in terms of 'multiplier count'.

We suggest that hardware partitioning into registers and CSAS computers (rather

than multipliers) coupled with the use of DA in synthesis might result in improved

complexity analysis techniques.

-99-

6.2.7. Cascading

The concept of DA has been introduced, and its usefulness in the computation

of short vector and matrix products demonstrated. In many cases, these structures

will be used in long cascades, e.g. in the computation of vector inner products

[151]. Cascading issues relate closely to those of the conventional approach, as we

propose to sum globally over the index of vector length. The only difference is that

we have factored this index and nested one of those factors inside the bit-index -

the other is outermost as usual.

Recall that these structures have one free input in the serial (temporal) dimen­

sion, and two potentially free inputs in the parallel (spatial) dimension, all of which

can find use in cascading. The carry-loop could be freed up in all but the initial

DA processor of the cascade, by lumping all the sum-PIPs local to each DA calcula­

tion into one global sum-PIP which represents the entire IP calculation. However

there is only one free serial input, and as the addend word invariably extends up

into the 'fractional' part of the addend, there is no obvious way to exploit the free

carry-input. Thus local sum-PIPs will be loaded as before.

When cascading the flush IP computer, no free inputs may be exploited as the

format of the output product is different from the input addend. That is not to say

that the flush IP computer cannot be cascaded for computation of inner-products -

on the contrary, it is best suited to such computation, if target data rates permit the

computational inefficiencies resulting from the guard-bit requirement. Accumula­

tion must be carried out on dedicated adders in this case.

«
Word growth can occur in long IP calculations - this may be accommodated in

higher-order bit-serial accumulators [123]. Several architectural possibilities exist

for inner-product calculations [86,85], which have direct relevance to serial-data

realisations. Often the choice is decided by the allowable transform latency - two

FIR filtering case studies in FIRST (matched filtering [166] and adaptive filtering

[167]) yielded markedly different multiplexed architectural solutions. The former

architecture was a pipelined, forward flowing cascade, whilst the latter, minimal-

latency architecture fanned-in sums through a binary addition tree [123].

-100-

Formal mechanisms for specifying cascaded inner-product architectures are

presented in [7]. Systems designers must take many factors into account when mak­

ing these specifications - these include tolerable transform latency, signal statistics,

signal bandwidth (hence multiplexing scheme), accuracy requirements, etc. How­

ever a formal mechanism is also required for implementing cascaded inner-product

architectures. We present two such mechanisms, one which exploits the free input

and one which does not.

Free accumulation

We envisage a cascade of IP computers, with the double-precision product out­

put from each connecting to the addend input of the subsequent. The low-order m
bits of this word are accommodated in bit-parallel form, and the remaining qn — m
bits in multi-precision serial form. One extra SIPO is required to convert the low-

order bits into parallel form for loading at the free parallel input. The operation of

this SEPO is identical to the SIPO used for coefficient loading, except that in this

case no holding register is required. Word-growth beyond the range of double-

precision may be accommodated in higher-order serial-data adders.

Adder-based accumulation

Here we make no use of the free input - double-precision outputs are fed

directly to a multi-precision accumulator. The action of this accumulator beyond

the double-precision range is identical to its action in the free-accumulation struc­

ture. The flush IP computer finds application in this cascading environment.

6.3. Incremental computation of squares and sums of squares

Here we present a final complexity-reduction technique, based on the incre­

mental multipliers encountered in Chapter 3. Although it represents original work

by the author [108], there is no immediate plan to adopt these architectures. The

material serves mostly to illustrate another example of symmetrical computation.

This incremental algorithm is proposed for computation of squares or sums of

squares, suitable for both MSB-first and LSB-first bit-sequential operation. The

symmetry of the bit-product matrix associated with a squaring computation is key to

-101-

the operation of the algorithm. By permitting the elimination of redundant compu­
tation, existing hardware modules may be either reduced in size, or assigned to the
evaluation of a second squaring computation. The corresponding hardware archi­
tectures may be derived from a simple conversion of existing incremental scalar

multipliers.

Chapter 3 introduced the incremental multiplication technique, and concluded
that it was area-expensive and of limited value. However incremental multipliers
have one property which is not shared by the more conventional S/P and Lyon mul-
tipiers - they are 'on-line' with respect to both input operands. At each iteration,
one bit from both operands can be input, and one product bit output. The case for
their adoption is strengthened in applications which require 'data-data' type multi­
plications, instead of the more common 'coefficient-data' scheme. Squaring is one

such application.

6.3.1. Incremental squaring

Figure 6.7 shows the matrix of bit-product formation values in the multiplica­
tion of 2 4-bit binary integers a Qa la 2a^ and b 0b lb 2b 3 , where a 0 and b 0 are MSB, as
dictated by eqn. 2.1. In the case of squaring (where a, = &,), this matrix is sym­
metrical. Figures 6.8(a-c) show the matrices of bit-product formation times of
several multipliers. Only in the incremental case is this matrix also symmetrical.

a

bi

a 2b

ab22

a 0b 3

Figure 6.7: matrix of bit-product values (4 x 4-bit example)

This dual-symmetry allows a reduction of hardware. When the values and
times of off-diagonal bit-products are identical to those of their reflection in the

-102-

*3

*2

*i

bo

03

1

2

3

4

02

1

2

3

4

0i

1

2

3

4

0o

1

2

3

4

Figure 6.8(a): matrix of bit-product formation-times, SIP multiplier

b,

b 2

b,

bo

03

1

2

3

4

02

3

4

5

6

0!

5

6

7

8

0o

7

8

9

10

Figure 6.8(b): matrix of bit-product formation-times, Lyon multiplier

b,

b^

b,

b 0

03

1

2

3

4

02

2

2

3

4

0i

3

3

3

4

0o

4

4

4

4

Figure 6.8(c): matrix of bit-product formation-times, incremental multiplier

main diagonal of the matrix, their individual evaluation and accumulation is

unnecessary. They may instead be merged pairwise into one evaluation and accu­

mulation (at twice the weight, i.e. delayed by one clock cycle). On-diagonal ele­

ments must be treated as before, which slightly complicates matters of operand

-103 -

distribution.

Figure 6.9(a) is an expanded version of Figure 6.8(c), showing the hardware

activity in the 4 processors of the incremental multiplier. Each processor is capable

of accumulating two bit-products, as shown. The 'z' symbol signifies processor

inactivity, and the arrow symbol signifies passing of sums and assimilation of carries

(the arrow is implied where accumulation of bit-products is performed). Figure

6.9(b) shows the same activity in the case of squaring, and Figure 6.9(c) the pro­

posed modification to the algorithm. As each processor has only one bit-product to

accumulate in this case, the (5,3) adders may be replaced by (3,2) adders.

time

1

2

3

4

5

6

7

8

Proc. 1

a 3b 3 + 0

a 3b 2 + #2^3

a 3bt + a^ 3

a 3b Q + a Qb 3

*s
s
S
S

Proc. 2

z

a 2b 2 + 0

a 2bi + a \b 2

a 2b Q + a Qb 2

S

s
s
z

Proc. 3

z

z

a lb l + 0
*

a^Q + a Qbi

S

S

z

z

Proc. 4

z

z

z

a Qb Q + 0

z

z

z

z

Figure 6.9(a): incremental multiplication

Note that the, carry signal cannot be non-zero as a result of an on-diagonal cal­

culation, and that in general no more than n - 1 processors are active at any time.

Although this promises a reduction in the length of the array, the additional

hardware cost for control and data routing would in all probability outweigh any

saving.

-104-

time Proc. 1

0

Proc. 2 Proc. 3 Proc. 4

a 3^2

j + 0

a Qa 2 0

8

Figure 6.9(b): incremental squaring aj a multiplication on equal data words

time Proc. 1 Proc. 2 Proc. 3 Proc. 4

8

Figure 6.9(c): incremental squaring, exploiting symmetry of bit-product matrix

6.3.2. Incremental sums-of-squares computation

-105-

A second modification to the incremental multiplier allows computation of

sums of squares. Figure 6.9(d) shows the introduction of a second 4-bit input

operand b Qb lb 2b^ We revert to use of (5,3) adders, and compute the sum of

squares as shown.

time

8

Proc. 1 Proc. 2

a 2a 2 + b 2b 2

a 2a 0 + b 2b Q

Proc. 3

+

Figure 6.9(d): incremental sum-of-squaring

Proc. 4

6.3.3. Bidirectional incremental multiplication

In all the above cases, the last part of the computational cycle is spent assimi­

lating carries and clocking out results. The further a processor is from the output

end of the array, the more time it spends idling. Scanlon & Fuchs made this obser­

vation [77], and proposed a further modification to the incremental multiplier archi­

tecture. By introducing bidirectional shifting to the array, they increased hardware

usage to the point where a 2/i-bit product could be produced every n + 1 clock

cycles.

This structure is equally amenable to the proposed conversion process. Figure

6.10(a) shows the operation of the bidirectional multiplier, and Figures 6.10(b,c) its

equivalent modification for computation of squares and sums of squares respec­

tively.

-106-

time

8

10

11

12

13

Proc. 1

0

a Qb 2 + a 2b Q

0

Proc. 2

a lb l + 0

0

Proc. 3

+

Proc. 4

0

Figure 6.10(a): bidirectional incremental multiplication

These structures as presented operate on unsigned integers. Two's comple­

ment operation is attainable by including hardware for either MSB-treatment

[104,103] or receding [102].

6.3.4. Application to the on-line algorithms

Incremental techniques have been proposed as a method of implementing

advanced arithmetic operations, such as division [10] and square-rooting [168,169].

These algorithms exploit the fast, carry-free addition made possible by the use of

redundant-coded data, processing operands and producing results on a digit-by-digit

basis, most-significant digit first.

time

8

10

11

12

13

-107-

Proc. 1

a 3^2

Proc. 2

a 2a 2

M

M

Proc. 3 Proc. 4

Mi

Figure 6.10(b): bidirectional incremental squaring

In the simplest sense, such algorithms rely on producing an output estimate E,
and maintaining an internal 'scaled partial remainder'. This remainder is the result

of an incremental multiply-subtract 'check computation' involving the input

operand (s) and the output estimate. If the subtracter is prevented from overflow­

ing, the output estimate converges towards the correct result. Overflow prevention

is problematic where redundant coded data are concerned a complicated digit-

selection process must be performed during each iteration to prevent overflow.

A Multiplication (E = A x B) is characterised by the expression:

E -A xB -0

-108 -

time

8

10

11

12

13

Proc. 1

bb32

a 3a Q

C QC Q + d0d Q

Proc. 2

a 2a 2 + b 2b 2

b 2b l

a 2a Q

c lc l

+

Proc. 3

a\a\ + bib

C 2C 2

c 2c Q + d 2d

Proc. 4

dd33

c 3c 2 + d 3d2

c 3c l

c 3c 0

Figure 6.10(c): bidirectional incremental sum-of-squaring

i.e. the product and the estimate are finally one and the same. No feedback

of E is employed.

B Division (E = A / B) is characterised by the expression:

A -E x B -0

i.e. E is internally multiplied with B as check computation.

- 109-

C Square-rooting (E - VA) is characterised by the expression:

A -E2 -0

i.e. E is internally squared as check computation.

The conversion from multiplier to squarer adds little to the work already pub­
lished by Ercegovac and colleagues [168,169]. However the conversion from multi­
plier to sum-of-squarer gives rise to the possibility of computing functions such as
root-of-sum-of-squares, e.g. magnitude of a plane vector or complex number, in a
single on-line structure. This points to a new on-line algorithm:

"7 t

D Magnitude extraction, where E - V(A + B), characterised by the expres­
sion:

A 2 + B 2 -E2 -0

Here efficiencies of squaring and sum-of-squaring may be exploited to effect a
considerable reduction in hardware cost, leading to a structure only slightly
larger than the single-operation processors.

6.4. Final comments

This chapter has introduced some novel serial-data computational elements.

The simpler distributed arithmetic elements have been proved in simulation, first at

high-level in purpose-built C language [170] codings, then in transistor-level RNL
[171] descriptions (see Appendix C). Incorporation of these elements into a func­

tion library such as that of FIRST might well increase its functional flexibility.

Operational flexibility, i.e. flexibility of throughput and/or dynamic range exhibited

by computational elements, is the subject of the next chapter.

- 110-

Chapter 7

Special serial-data techniques for throughput enhancement

Although bit-serial architectures exhibit excellent properties for VLSI imple­

mentation of fixed-function DSP machines, two criticisms which are often levelled

concern the high cost of operand storage, whether in memories, registers or pipelin­

ing latches, and the low processing throughput in relation to bit-parallel functional

equivalents. For instance a bit-serial multiplier must firstly load then store the coef­

ficient word in a static register for the duration of a product calculation. Storage

cost, internal latching, computational hardware and computational time are all

O(n). A pipelined parallel multiplier in contrast uses O(n 2) internal latching and

computational hardware, but still only O(n) operand storage, while computing in

O (1) time. Thus operand storage is less dominant in the parallel case than in the

serial.

In this chapter we describe techniques to increase the throughput of bit-serial

computational networks, while retaining the many advantages associated with this

architectural approach. In essence these techniques rely on multi-wire representa­

tions of serial data - a step towards bit-parallelism. As the cost of data storage asso­

ciated with bit-serial architectures is not increased by these techniques, it has a

favourable effect on overall area-time product. Procedures and interfacing conven­

tions are outlined, which allow the synthesis of serial-data library elements using

these techniques. By offering a range of performance/area options, we may bring

the operational flexibility defined earlier. The proposed data formats are summar­

ised in Figure 7.1.

7.1. Twin-pipe

Compatible with any double-phase clocking technique is a novel serial-data

architectural technique which achieves double the throughput of conventional bit-

serial architectures, without suffering a proportional increase in circuit area

[172,162] . This technique features a two-wire representation of serial data.

T published work by the author.

-111-

time
clock

(a) 1 — pipe "OX 1X2X3X4

f N - %(b) 2-pipe

/ N(c) r-4 1X3X5 x:

(d) double
X3X4X3

Figure 7.1: serial-data formats

Figures 7.1 (a) and 7.1(b) illustrate single-pipe and twin-pipe data formats. Twin-

pipe operation requires that the serial-data wordlength is an even number. Even

numbered data bits are processed on different clock phases and in different circuits

from odd-numbered bits, and logical function is included only where necessary.

As a full-latch is equivalent to two half-latches, storage costs remain constant.

Thus area-time product is improved by this technique. We propose to implement

twin-pipe architectures using the single-phase clocking technique described in

Chapter 2 [43].

7.1.1. Twin-pipe building blocks

In order to map the serial-data cell library into twin-pipe, we repeat the pro­

cess of defining registers and computational 'atoms'. Once these object are defined,

the construction of higher-level functional elements such as multipliers may proceed

in the same manner as before. We begin with registers.

-112-

Registers

In Chapter 2 we encountered the single-phase clocking technique, and the IT

and JJL latches. The IT and JJL latches have direct physical significance - the former

latches data when the clock is high, the latter when it is low. In the following dis­

cussion, the data bit-types even and odd are used, and a computational pipe is asso­

ciated with each. Throughout this chapter LSB is associated with the even pipe,

and MSB with the odd. Even- and odd-pipe latches may take either TT or jx form,

as long as they are different.

A simplistic view of the mapping of single-pipe architectures into twin-pipe

indicates that the area cost of combinatorial logic should double under such a map­

ping. This view is somewhat pessimistic. In most cases the asymmetry inherent in

2C computation demands that different logic functions operate on even and odd

data bits. While the single-pipe realisation must merge the two functions, resulting

in one large logic block, the twin-pipe equivalent may separate the functions, yield­

ing two different logic blocks each of which may exhibit lower fan-in and combina­

torial complexity than the single-pipe block.

Figure 7.2 shows the twin-pipe equivalents of the 4 basic registers. As the

loading action is only required in one pipe, no increase in circuit area is apparent

(we neglect the area cost of wires). The separation of logic function into even and

odd-pipe components in this manner may be exploited in many cases to reduce the

complexity of twin-pipe hardware.

Multiplexer

As data-selection imposes the same logic function on all data bits, the twin-

pipe multiplexer is one element which cannot exploit computatonal asymmetry.

Thus the twin-pipe multiplexer (Figure 7.3) consists of two multiplexing blocks and

two half-latches. Odd-pipe control may be generated locally from even-pipe control

(as shown),.or brought in on a second control wire.

-113-

load

(a)PISO

load

(b)PIPO

(c) SISO

load

(d)SIPO

I = half latch

Figure 7.2: twin-pipe forms of the 4 basic registers

Arithmetic Shifters

Four cases of arithmetic shifting exist in the twin-pipe case, as left- and right-

shifting may be performed over even and odd bit-distances, requiring different

- 114-

«ven—pipe

ctri

Figure 7.3: twin-pipe multiplexer

hardware structures in each case. Odd bit-distances require a crossover of pipes,

while even distances do not. In the case of a 1-bit shift, no multiplexing logic is

required on the odd-indexed pipe (accordingly, no odd-pipe control signal is

required). As will shortly be demonstrated, this has important consequences in

twin-pipe multiplier design. Figure 7.4 shows the 4 twin-pipe shifters.

Adder

The twin-pipe adder is another example of a structure which exploits computa­

tional asymmetry. The function of the adder is to produce sum and carry functions

from all operand bits, with a left-shift at the carry-input (active only at LSB-time,

on the even pipe). Accordingly, the shifter is included only on the even pipe - the

odd-pipe logic block merely performs the raw sum and carry functions. Figure 7.5

shows the twin-pipe adder. Note the crossed over carry configuration, reminiscent

of the 1-bit PIPO.

CSAS computer

The CSAS computer is a linear array of bit-serial adders, with left-shifters in

the sum path as well as in the carry path. Thus we see a crossover of pipes in the

sum path. Once again, left-shifting (LSB treatment) is an even-pipe function.

Meanwhile the odd pipe must handle MSB-inversion. Here the disjoint functions

for LSB- and MSB-treatment -may be separated, resulting in logic blocks with 4

inputs in both pipes (the equivalent single-pipe block has 5). If the bit-product for­

mation function (necessary in both pipes) is included in the logic blocks, these

-115-

ctri

right-shift

,/*

left-shift

•0'

ctri

(a) even-distance shifters

(b) odd—distance shifters

Figure 7.4: twin-pipe shifters

carry
ftdd—pipe

sum

Figure 7.5: twin-pipe adder

figures rise to 5 and 6 respectively. Figure 7.6(a) shows the single-pipe CSAS com­
puter, and Figure 7.6(b) the equivalent twin-pipe CSAS computer.

mgb

- 116-

- latch

Figure 7.6(a): single-pipe CSAS computer

prod.

msb

Figure 7.6(b): twin-pipe CSAS computer

7.1.2. Architectural implications of twin-pipe techniques

Together with the single-phase circuit techniques outlined earlier, twin-pipe
represents an efficient method of doubling the throughput of bit-serial architectures.
Storage costs, in both registers and latches, are no greater than those of conven­
tional single-pipe realisations, while the costs of logic function are usually consider­
ably less than double. The effect on area-time product is beneficial.

-117-

In most cases, a twin-pipe solution offers an area-efficient solution to a compu­

tational problem. However that is not to say that single-pipe techniques should be

discarded - many situations will arise which do not require the throughput of twin-

pipe. In addition, a mixture of the two techniques may prove beneficial.

7.2. Radix-4

A second throughput enhancement technique [173,162] relies on higher-level

architectural advances, involving techniques emanating more from the field of com­

puter arithmetic than from circuit engineering. This technique is compatible with

twin-pipe, and if used in concert with twin-pipe results in a factor of 4 speed

increase. Here we use single-pipe structures to illustrate radix-4 computation.

In radix-4 structures data are processed and transmitted in contiguous pairs,

even bits on one wire and odd bits on the other. However the pairs are transmitted

and processed concurrently, not on opposite clock phases as is the case in twin-pipe.

Computational elements have two logical inputs per input operand, and an «-bit

(i.e. «/2-digit) data word is processed in n/2 clock cycles. The pairwise linking of

data bits in this manner implies that the basic 'bundle' of information is no longer a

bit - rather it is a radix-4 digit. By performing all computation and communication

in radix-4, we are once again able to decrease the unfavourable ratio of storage to

logic, doubling throughput for no increase in operand storage. However, unlike

twin-pipe, the cost of data latching doubles in radix-4.

Figure 7.1(c) illustrates the radix-4 data format. Data are transmitted LSB-

first. It should be noted that numbers are still represented in standard, two's com­

plement form, and that only the distribution of bits in space and time is altered.

We use the term 'radix-4' mostly to convey the concept of pairwise transmission and

processing of data bits. Radix-4 data are transmitted LS-digit-first, and the data

wordlength in digits is fixed and constant in each system. Only the stand-alone

adder is in reality a radix-4 structure, as use of the modified-Booth (M-Booth) mul­

tiplier receding technique [59] allows a radix-2 structure to perform multiplication,

resulting in further area savings.

published work by the author.

-118-

7.2.1. Radix-4 building blocks

We repeat the mapping of the serial-data atoms, this time into radix-4, starting

again with the registers. Unfortunately, as will be shown, separation of logic func­

tion into even and odd-pipe components cannot be exploited to reduce the complex­

ity of radix-4 hardware. This is because even and odd pipe components are pro­

cessed concurrently in the same logic block, and not sequentially in different logic

blocks as is the case in twin-pipe schemes.

Registers

Figure 7.7(a-d) shows the radix-4 equivalents of the 4 basic registers. Here

the loading action is distributed between pipes, and once again no increase in cir­

cuit area is apparent, neglecting the area cost of wires.

Multiplexer

Like the twin-pipe multiplexer, the radix-4 multiplexer consists of two multi­

plexing blocks and two latches (full latches here).

Arithmetic Shifters

Again, radix-4 shifters are similar to twin-pipe shifters, in that hardware reali­

sations differ for even and odd shift distances. An even-distance shift may be per­

formed by a pair of radix-2 shifters, sharing control. However an odd-distance shift

requires separate control signals on each multiplexer, and crossover of the output

wires for correct subsequent interpretation. Figure 7.8 shows the 4 radix-4 shifters.

Adder

A radix-4 adder [173] may be constructed by cascading two radix-2 adders

(included for comparison in Figure 7.9(a)), removing the latching from the low-

order carry output (Figure 7.9(b)). Alternatively, the low-order inputs may be used

directly in combinatorial odd-index sum and carry generation circuits (Figure

7.9(c)). However neither of these arrangements will match the radix-2 adder for

performance - the former because it is cascaded but not pipelined, and the latter

-119-

(a)PlSO — -
n

L_»
_

••mm •H

^l

*"

ul.

(b) PIPO — exactly as single—pipe

(c) SISO' ft ft

load

(d)5jPO 00-1

Figure 7.7: radix-4 register types

due to the excessive size (5 inputs), and hence evaluation time, of the odd-index
sum and carry logic networks. The more complex architecture of Figure 7.9(d)
pipelines the recombination of the carry, limiting the number of inputs to an accept­
able 4 in each logic block.

The three radix-4 adders of Figure 7.9(b-d) offer different performance-area
options. We shall proceed with the largest and fastest, Figure 7.9(d). We note that
the radix-4 adder is somewhat more than twice the size of a radix-2 adder. This
architecture finds use as a stand-alone adder, where the increased latency resulting
from the extra pipelining is of little concern. However adders find frequent use as
constituent parts of the multipliers which tend to dominate DSP applications. Here
adders are used in linear carry-save arrays, and their size and latency directly affects

- 120-

right— shifters

ctri . r

left— shifters

'O 1

A A

ctri 1
(a) radix—4 (even)

'0'

ctril ctril

(b) radix-4 (odd)

Figure 7.8: radix-4 shifters

the size and latency of the multiplier. Fortunately, as is about to be revealed,

radix-4 multipliers may be constructed from radix-2 adders, obviating this problem.

CSAS computer

The CSAS computer could be built from a linear array of bit-serial adders, as
before. However we choose not to implement the radix-4 CSAS computer, turning
instead to a well-known complexity reduction technique, the modified Booth recod-

ing algorithm [58,59]. Radix-2 bit-multiplication has the beneficial effect of clo­
sure, i.e. the product of two bits may itself be expressed as a bit. As radix-4 digit-

multiplication is not closed, a radix-4 multiplier would require a twin array of
carry-save cells, were it not for M-Booth receding.

-121-

B

L
SUM

CARRY

i

CARRY

SUM.

SUM.

(a) (b)

i?
H- }

CARRY

->5UM,

SUMo

I-
1

1
1

1°
0

1
2

— »

— »

— »

— »

]-

h

Ih
CARRY

SUM,

SUM.

(c) (d)

Figure 7.9: radix-4 adders

The radix-4 modified-Booth multiplier

The M-Booth algorithm [59] uses a 5-level receding scheme (Table 7.1) to

effect savings in area or time. The former scheme relies on receding coefficient

bits, thereby halving the number of cells in the multiplier array [44,7]. The latter

processes data bits in concurrent pairs, thereby performing multiplication in half the

time [69]. This relates closely to our radix-4 computational format.

Data are receded in overlapping triplets, each pair sharing with the MS

member of the next-MS pair (the LS pair uses logical 0 as third input). As receded

data are in the form 0, ±1 or ±2, they form a radix-4 PP directly from a radix-2

122-

coefficient by gating and/or shifting.

Table 7.1: Modified Booth receding

i2

0

0

0

0

1

1

1

1

il

0

0

1

1

0

0

1
1

iO

0

1

0

1
0

1
0

1

output

0

+ 1

+ 1

+ 2
-2

-1

-1

0

As the quantity zero may take either positive or negative sign, data bit i2 may
be used directly as a sign-bit. We generate the functions zero and shift and broad­
cast these functions along the multiplier array, along with data bit 12 (functions z, s
and m in Figure 7.10). To simplify the function shift, we generate the 'zero PP' in
shifted form. As the purpose of /2 is to invert the selected PP, the other functions

must precede it for correct PP generation.

z.3,m
data Rec

L
Partial Product Formation

Figure 7.10: radix-4 CSAS computer

-123-

Internal operation of the radix-4 CSAS computer (Figure 7.10) is similar to

that of [69]. However that radix-4 multiplier is intended for a datapath (parallel-

data) environment, where low order product bits are discarded (including the least-

significant carry), and high-order bits are subsequently merged in a carry-propagate

adder.

As we saw, the serial-data multiplier must also assimilate residual carries. In

the radix-4 case carry residues appear in serial (low-order) and in parallel (high-

order) formats. Provision of an extra, double-precision radix-4 adder on the output

of the array ensures correct product formation. All inputs of this structure are

used. In the low-order adder, one addend is the radix-4 sum output, the other is

made up from the serial carry output (the high order bit) and a correction bit for

true two's complementing of the negated PPs (the low-order bit). This last bit is

simply i2 delayed by one clock cycle. A similar extra adder cell is used for true

two's complementing in the symmetric coded distributed arithmetic architectures of

Chapter 6. Figure 7.11 shows the fractional radix-4 multiplier architecture, includ­

ing residue adder (gating internal to the CSAS computer is suppressed in Figure

7.11, and the serial addend input is included in contrast to Figure 7.10).

The computational engine of the radix-4 multiplier is, once again, a

logic/shift-register arrangement which computes partial sums. However there is an

important operational difference between this structure and the radix-2 CSAS com­

puter. The radix-4 (M-Booth) multiplication algorithm achieves its computational

speed increase by halving the number of PPs to be shift-accumulated in the product

calculation. Each PP carries 4 times the weight of its predecessor, as opposed to 2

in the radix-2 case. Thus the bit-stream entering each full-adder is in a hybrid-

radix form, in that it consists of a series of radix-4 digits represented by bits. The

sum-bits must accordingly be left-shifted by 2 bits in a radix-4 PISO structure, while

the carry-bits are still only left-shifted by one bit.

The topological similarity to the even-distance radix-4 shifter is apparent in the

sum-path. However the carry-path (including odd-distance shifter) must account

for the hybrid radix addition modules, in which carry signals cannot recirculate.

Thus each carry-output connects to the input of the next-MS hybrid adder.

-124-

data
odd

•8
Coefficient register

Partial product formation

ddd«nd

Radix-4 PISO
i—order

Figure 7.11: radix-4 fractional SIP multiplier

PPs are formed in 3 conceptual stages, one for each of the recoded-data func­
tions specified earlier. Function shift drives an array of multiplexers, zero an array
of AND-gates, and i2 an array of exclusive-ORs (this has the effect of inverting the
PP bits - recall the 2's complement correction bit on the output adder). These
operations may be merged orpipelined to arbitrary depth.

Choice of the M-Booth algorithm for multiplicative operations throws up the
first incompatibility issue in the architectural developments of this and the preceding
chapter. The DA algorithm and the M-Booth algorithm, relying on different tech­
niques for exploitation of coding symmetry, cannot be used together. In a v-point
vector computation, there are 2V possible patterns in radix-2, 4V in radix-4 and 5V
where M-Booth is used. In radix-4, either storage and selection costs become prohi­
bitively high, or a twin array must be used (negating the original area-savings).
Because of this, IP architectures in radix-4 are constructed in the traditional

manner, using multipliers and adders.

-125-

7.2.2. Architectural implications of radix-4 techniques

We have seen how a radix-4 cell library for DSP applications may be rapidly

specified, given knowledge of standard bit-serial techniques. One-to-one mappings

exist between radix-2 elements and their radix-4 counterparts. Active logic parts

are in many cases twin instances of the radix-2 part - only the adder is significantly

different.

Use may be made of the radix-4 receding properties of the M-Booth multiplier

to realise an area-efficient multiplication part, although one unfortunate drawback

of the M-Booth algorithm is a fundamental incompatibility with DA architectures

for IP computations.

Although it improves area-time product, we propose radix-4 hardware as an

alternative to, not a replacement for, radix-2. Radix-4 techniques offer higher

throughput at the expense of increased circuit area, but this increase is considerably

greater than twin-pipe. Having a wide range of throughputs at their disposal should

give systems designers greater flexibility when it comes to matching signal and com­

putational bandwidths in particular applications, complementing the range of archi­

tectural techniques detailed in [7], and answering the operational inflexibility charge

against serial-data computation.

7.3. Multi-precision

The final throughput enhancement technique allows speed increases by arbi­

trary factors. This is a direct step towards bit parallelism - a factor of jc speed

increase causes a factor of x growth in area. This technique may be combined with

twin-pipe and radix-4, together or separately.

FIRST uses a multi-precision format [7], as detailed in Figure 7.1(d). Here

data are transmitted and processed on multiple wires, in word-staggered fashion.

FIRST allows multiplexing addition and formatting operations to be performed on

multi-precision data, but not multiplication. We show how multiplication may be

performed on multi-precision data. Advantage is taken of the free parallel inputs to

the CSAS array, and of the fact that coefficients may be treated differently from

data.

-126-

7.3.1. Multi-precision building blocks

Before this, and for the last time, we specify the basic building blocks in

multi-precision.

Registers

Registers are easily realised by multiple instantiations of single-precision regis­

ters.

Multiplexer

The multi-precision multiplexer consists of x instantiations of the single-

precision multiplexer. For correct operation, the control waveform must be stag­

gered in the same fashion as the data.

Arithmetic Shifters

Multi-precision shifters are similar to their single-precision counterpart, except

that only the MS-shifter operates on 2C-coded data (the others process unsigned

data). Unsigned right-shifters propagate the rejected bit from their higher-

significance neighbour. Only the MS-shifter generates sign repetitions. Similarly

left-shifters propagate the rejected bit from their lower-significance neighbour.

Only the LS-shifter generates trailing zeroes.

Adder

The multi-precision adder consists of x full-adders. The left-shift of the carry

function extends for the full, multi-precision length of the word, thus the trailing

zero is generated only in the LS-adder. Elsewhere the carry-loops are loaded with

the MS-carry-out from the lower-significance neighbour.

• 127-

CSAS computer

The multi-precision CSAS computer consists of x linear arrays of bit-serial
adders, with left-shifters in the sum path as well as in the carry path. Once again,
left-shifting extends over the full length of the word. Multiplication of multi-
precision data by a single-precision coefficient may be performed by passing the
coefficient from LS-multiplier upwards at LSB-time, at the same time using the free
parallel inputs to load the PPS in carry-save form from one multiplier to the next
(the PPS in carry-save form consists of the reject bits from the left-shifters
throughout the array). Figure 7.12 shows the general case multi-precision CSAS
computer.

data

Figure 7.12: multi-precision CSAS computer, general case

Multiplication of multi-precision data by a multi-precision coefficient may be
performed simply by concatenating the coefficient into one long parallel word.
However this exposes the major weakness of the S/P architecture - the broadcasting
of data and control signals. For a large CSAS array, the RC load resulting from
the long physical wire and the large number of gates driven becomes unacceptably
high. Jt is necessary to pipeline this broadcast, by including buffers after every m
stages of the array. Performance may be maintained in a 2-dimensional array of
m-bit CSAS computers, using the free serial input to those CSAS computers which
are not in the MS-column. The MS carry from each computer is used by the
equivalent in the higher-significance row and column - this signal must be delayed
to balance the pipelining delay of the broadcast signals.

-128-

7.3.2. Architectural implications of multi-precision techniques

Multi-precision is a sheer brute-force throughput enhancement technique,

spanning the spectrum of architectures between bit-serial and bit-parallel. This

opens up the possibility of performing large integer multiplications in S/P architec­

tures to address applications such as RSA encryption [174].

In the limit, at a serial wordlength of 1 bit, the multi-precision data, single-

precision coefficient serial multiplication architecture is equivalent to a pipelined

bit-parallel architecture [53]. In this case, carries are not recirculated and sums are

not down-shifted, thus full-adder realisations need not include extra gating. Such

structures may exhibit formidable throughputs [57]. Bit-parallel pipelined architec­

tures employ wedging memories on at least data, if not on coefficient as well. The

product is re-aligned by passing through another wedging memory. Wedging has

the effect of imposing the staggered transmission format in data - in serial-data real­

isations such a format may be maintained in networks of processors, eliminating the

need for wedging other than at system interfaces.

7.4. Interfacing between operational domains

A feature of the bit-serial approach is that interfacing between computational

elements may be facilitated by insisting that each element obeys rigid communica­

tion protocols [33,7]. In contrast, the techniques outlined above lead to realisations

which feature strikingly different protocols for computation and communication. It

may be expedient to mix techniques in a serial-data system, producing 'operational

domains' within a system which are incompatible without special interfacing circui­

try. There are two distinct reasons for doing this. The first is to realise different

throughputs (i.e. word rates) within the same system, and the second is to realise

different dynamic ranges (i.e. word sizes) within the same system. An example of

the latter requirement arose during the FIRST satellite transmultiplexer case study of

Chapter 5.

Even if multi-precision structures are generalised from the double-precision

case, three distinct architectural styles have been identified above, on top of the

conventional (single-precision, single-pipe) bit-serial architecture. As each-way

interfaces are required for all pairwise combinations, a substantial number of

- 129-

interface structures require to be defined. We seek to demonstrate methods of

assembling interfaces, instead of producing an ad hoc structure for each. In the fol­

lowing discussion, we refer to fast and slow structures, and describe methods of

interfacing between the two. The example given is the single-to-twin-pipe conver­

sion, and its inverse.

Increasing dynamic range

The structure of Figure 7.13(a) performs slow-to-fast conversion. It consists of a

slow SISO whose contents load a fast PISO. The fast PISO contains an extra con­

nection to perform sign-repetition. One slow word is input, and one fast word of

doubled size is output every word cycle. The low-order bits of the fast word consist

of the bits of the slow word, and the high-order bits are sign-repetitions. The tech­

nique could easily be adjusted to provide trailing zeroes instead of sign repetitions,

or even a mixture of the two.

Figure 7.J3(a): increasing dynamic range

Decreasing dynamic range

This structure (Figure 7.13(b)) performs the inverse operation of the previous.

Here a fast SISO loads a slow PISO, and the top half of the fast word is discarded.

The technique could easily be adjusted to discard trailing zeroes instead of sign

repetitions, or even a mixture of the two.

-130-

Figure 7.13(b): decreasing dynamic range

Increasing throughput

The above techniques have no effect on word-rate. This technique does - here two

slow words are input in half-staggered form, and are output consecutively in a sin­

gle fast stream. To achieve this, we use separately-controlled multiplexers (requir­

ing twin control inputs) in the fast PISO, to allow alternate loading of the two slow

words. Figure 7.13(c) shows this structure.

Figure 7.13(c): increasing throughput

-131-

Decreasing throughput

This structure (Figure 7.13(d)) performs the inverse operation of the previous.

Here a fast SISO loads two slow PISOs, which output two slow words in the same

half-staggered form as before.

Figure 7.13(d): decreasing throughput

It should be noted that the area costs of these interfacing elements are consid­

erable, and their use must be justified in terms of overall system costs.

7.5. Stripping down the CSAS computer - the automultiplier

Chapter 3 introduced the S/P flush multiplier, a variation of the S/P multiplier

architecture which produces full-precision serial output at low area cost. However

logic gates included to form PPs and clear the accumulator between product calcula­

tions contribute to hardware complexity, and impair performance. A novel multi­

plication architecture - the 'automultiplier' [175] - pipelines the formation of PPs

and dispenses with gating in the critical sum and carry paths internal to the array,

reducing the computational element to the minimum full-adder at each stage. The

automultiplier is so-called because its accumulator is automatically reset in the final

cycles of a product calculation, and thus requires no internal hardware for initialisa­

tion. The resulting low-complexity multiplier array may sustain maximally high

-132-

clocking rates.

Automultiplier architecture

Figure 7.14 shows the flush multiplier - it can be seen that each computational
element has 5 inputs.

Coefficient Storage

data

1 product

LSB-ctr!

Figure 7.14: the SIP flush multiplier

By pipelining PP-formation, we may reduce this figure to 4, at the cost of a latch
per stage and one clock cycle of latency. As evaluation-time of a logic block is
related to fan-in and logical complexity, this simple step has a beneficial effect on
potential maximum clock rate.

Conventional wisdom dictates that the accumulator in a S/P multiplier should
be cleared between product calculations. As the accumulator contents are in carry-
save form, this does not necessarily mean that all signals should be forced to logical
zero. The requirement is actually that the residue sum and carry words be additive
inverses. The S/P flush multiplier has the beneficial property that, if the final PP is
correctly interpreted (i.e. subtracted), the carry-save residue consists of product
sign-repetitions. The residue will be (effectively) all zeroes in the case of positive
product, and (effectively) all ones in the case of negative product. The residue may
be easily cancelled, by insertion of an incrementing 'cancel-bit' which is conditional
on product sign, i.e. the exclusive-OR of data and coefficient MSBs.

Three hardware conversions must be performed on the structure of Fig. 7.14 -

- 133-

a) re-introduction of final-PP subtraction logic, b) generation of the cancel-bit, and

c) pipelining of PP formation. The subtraction may occur at any time during

broadcast of data sign-repetitions, providing all subsequent PPs are zero. We

choose to subtract the final PP at time n+1, forcing all subsequent PPs to zero by

clearing the coefficient store (the storage latches must have 'clear' facility - however

these latches are not in a critical-timing path). Figure 7.15 shows the automulti­

plier.

MSB-ctrl

data

Coefficient Storage

L-

fr

——

—
1 ——

h
j

i —

• —— i

+
VJ
>

J:+
r-l
1 !

j j
1

1 i h producti _______ i —— : ——
L + H
"U .-4 IU
-H i L_r !

i i

Figure 7.15: the SIP automultiplier

Cell complexity in the main array is now at a minimum, as there is no gating on

any input of the full-adder. This structure may sustain clock rates comparable to

fully-pipelined parallel multipliers, e.g. bit-systolic arrays [66].

Control

In steady-state operation, two control signals are required. These we name

INC and MSB - each is a normally-low signal which goes high for one clock cycle

per multiplication (i.e. one may be generated locally by delaying the other). The

difference between the automultiplier and other bit-serial multipliers is that control

signals are not required in the critical logic blocks (which cannot be pipelined)

internal to the accumulator. Thus the critical logic blocks, which compute sum and

carry signals, exhibit minimum size and delay, while minimal latches may be used

throughout. Conventional bit-serial multipliers must pay for accumulator control in

-134-

either logic or latch complexity.

Control is required for 4 purposes - to invert the bits of the final PP (MSB), to
clear the coefficient store (MSB), to increment the PPS for true subtraction of the
final PP (INC), and to cancel residual sign-repetitions if the product is negative
(MSB). The additional logic at the front of the array performs the latter two
actions. The effect of MSB must appear at the leading end of the CSAS array n+1
clock cycles after commencement of a product calculation, and that of INC m clock
cycles in advance of this.

Initialisation

Correct functioning of the automultiplier depends on the ability to force a
numerical zero (in carry-save form) into the accumulator, while the last m—l pro­
duct bits are clocked out. There is the possibility that spurious states may form in
the accumulator on power-up. These may be 'flushed out' by performing the calcu­
lation 0x0, with MSB (but not INC) inhibited. Only one pathological state may
arise - if a logical one should form in the borrow-path of the initial subtracter, the
action of the subtracter (with zeroes on other inputs) is to sustain it. Should such a
state exist, provision of INC will cancel it - otherwise INC will propagate down the
array and disappear off the end, as do other spurious states.

7.5.1. Automultiplier summary

A novel serial/parallel multiplication architecture has been described, of simi­
lar hardware complexity to existing full-precision serial/parallel multipliers, but
featuring a balanced distribution of logical complexity, so that no logic block has
more than three inputs, and minimal latches may be employed. No control func­
tions are performed inside the carry-save add-shift array. As a result, this architec­
ture is capable of sustaining clock rates comparable to fully-pipelined parallel multi­
pliers.

In the context of a serial-data function library, enhanced clock rate offers no
advantage if other library elements cannot keep pace. Thus the automultiplier
departs from the serial-data conventions established throughout this thesis, forming
an evolutionary branch away from the mainstream. This is not to imply imminent

-135-

extinction - it might find application in reduced, high-performance serial-data func­

tion libraries.

7.6. Final comments

Elementary constituents of a bit-serial cell-library for digital signal processing

have been specified, using several formats for computation and communication.

The automultiplier represents a novel departure from conventional multiplier

design, centred on a control-free accumulator which promises high clocking poten­

tial at low area cost. However the bulk of the novelty in this chapter stems from

the throughput enhancement techniques, and the operational choices which arise

from their use.

Three such techniques have been proposed. Twin-pipe and radix-4 realisa­

tions dramatically improve area-time product. Static operand storage costs are the

same as those associated with conventional bit-serial architectures - only active logic

increases in area. Multi-precision techniques, while offering no improvement in

area-time product, allow arbitrary tradeoffs in these two dimensions.

Figure 7.16 shows an area-time plane, over which a designer may roam in

search of the optimal mix of techniques for his application. Diagonal lines depict

constant area-time product. The twin-pipe architecture serves as a starting-point, or

'default' option, from which to select architectures. Note the incompatibility of DA

and radix-4 techniques.

Using the techniques outlined in this chapter, a function library may contain

several versions of the same functional element, tailored to different performance
\

requirements. Access to such operationally flexible library elements increases the

architectural options available to systems designers, leading to potentially more effi­

cient systems implementations. Arbitrary tradeoffs between area and time are possi­

ble, even within the same serial-data system.

-136-

log(area)

radix—4 a
.distributed/
' arithmetic

quad—precision

double—precision

twin—pipe

a
single—pipe

(incompatible) log(time)

Figure 7.16: designer options on the area-time plane

-137-

Chapter 8

Full-span structural compilation of serial-data hardware

Throughout this thesis it has been stated that the FIRST function library suffers

from three instances of inflexibility - functional, technological and operational. Pro­

vision of flexibility in these three areas should greatly enhance the ability of users to

realise efficient solutions to real-time computational problems. Architectural tech­

niques which promise flexibility in the first and third areas have been outlined in

the previous two chapters - however the means of incorporating these suggestions

into a unified design environment have not yet been disclosed. Provision of flexibil­

ity should not re-impose the burden of complexity on the designer. Software tools

must manage the increased flexibility, leaving the designer free to reap its benefits.

The development of design automation software to overcome the three inflexi­

bilities [114] is underway. The software, known as 'SECOND' (Synthesis of Ele­

mentary Circuits ON Demand), allows a library of 'leaf-cells' to be specified in

technology-free form (i.e. as small blocks of logic function plus latches), along with

composition procedures for automatic assembly of functional primitives. SECOND
provides the user with the facility not only to call on previously defined functional

primitives, but also to specify his own, in both cases with technology-independence -

the resulting library will be functionally, technologically and operationally flexible.

It is intended to support single-pipe and twin-pipe representations of each primitive

from the outset.

A serial/parallel multiplier has been used as a trial primitive for the new design

route. It was successfully fabricated and tested. This device illustrates many of the

concepts of this and the previous two chapters.

published work by the author.

-138-

8.1. FIRST in perspective

Underneath the FIRST user-interface is a fixed library of around twenty

parameterisable bit-serial function blocks, or 'primitives'. These in turn are com­

posed of configurations of hand-crafted 'leaf-cells', bound to a fixed technology and

maximum clocking rate. Computational and signal bandwidths may be matched

through a variety of multiplexing techniques, but the throughput of each primitive

element is fixed.

FIRST has a 'typed' hierarchy, as shown in Figure 8.1 (the legal call structure

was illustrated in Figure 5.1). Here upper-case letters represent levels with physical

significance.

FIRST

SYSTEM

subsystem

CHIP

operator

PRIMITIVE

SECOND

PRIMITIVE

subprimitive

SLICE

subslice

BLOCK

subblock

DEVICE

Figure 8.1: typed hierarchies in FIRST and SECOND

Lower-case levels are notional, used for design management only. The construction

rules are simple:

-139-

1 Physical objects can only contain objects at lower levels, no lower than the

next physical level.

2 Notional objects can contain objects at equal or lower levels, no lower than

the next physical level.

Each physical level in the hierarchy has an associated assembly methodology.
Assembly in FIRST is 'blind', i.e. assembly procedures at different physical levels of
hierarchy are unconnected. In FIRST, SYSTEM assembly was never implemented,
as commercial board layout packages abound. However, CHIP interfaces are
arranged to guarantee communication at the function library clock rate, up to a
predefined fan-out limit.

CHIPs are assembled by place-and-route software, using a simple floorplanner
driven by a flattened netlist of PRIMITIVES resulting from language compilation.
The FIRST floorplanner treats PRIMITIVES merely as rectangles whose behaviour
at the interfaces is well-defined. PRIMITIVE interfaces are also arranged to
guarantee communication at the function library clock rate, up to a predefined fan-
out limit.

PRIMITIVES are functional elements such as multipliers, serial memories etc.,
whose flexibility is greatly increased by parameterising many features. Each PRIM­
ITIVE instance is assembled, according to its parameters, using ad hoc composition
procedures and hand-crafted layout cells, details of which are hidden from the
FIRST user. The production of both layout cells and composition procedures is
time-consuming. In a sense, yesterday's chip-level problems have become today's
cell-level problems. Through automation of cell synthesis and primitive composi­
tion, the same benefits may be brought to function library design as are currently
brought by silicon compilers to chip design.

8.2. Synthesis of Elementary Circuits ON Demand

A typed hierarchy like that of FIRST is useful, both for the designer's manage­

ment of information, and for capturing physical partitioning information. To

implement full-span structural compilation, we extend this concept down to the dev­

ice level (Figure 8.1). A secondary software architecture underneath FIRST, as

- 140-

shown in Figure 8.2, gives the sophisticated user increased power by allowing him

direct access to the function library.

specification
system

(primitive

verification

system behaviour

custom layout

semi—custom netlist

Figure 8.2: software architecture

SECOND allows the designer to specify custom primitives, as a hierarchical list of

logic blocks and latches. Each physical level of hierarchy has its own assembler

(floorplanner), but only at DEVICE level are ad hoc techniques employed. Logic

function is only captured at BLOCK level - above BLOCK level we are only con­

cerned with 'boxes and wires'. Logic BLOCKs (or subblocks) are described in

terms of functional 'atoms' (AND, NOR etc.), or as binary cubes identifying the

on-set, off-set and don't cares of the required function [121,113].

As well as customised logic blocks, the designer may call on either previously

used blocks or pieces of hand-crafted layout. The former facility is analogous to

software programmers using libraries of known-good high-level coded subroutines to

improve productivity, while the latter facility is analogous to software programmers

calling known-good machine-code subroutines to improve performance. Underlin­

ing the analogy, the latter comes with a loss of design portability. Latches may be

-141 -

treated as special BLOCKs themselves, rather than being incorporated in BLOCKs.

Frequently-used objects such as these may benefit from inclusion in the microcell-

library, at the small investment of an expert's time to hand-pack layout in the target

technology. Failing this, they may be specified in identical manner to logic blocks.

In order to maintain performance, we forbid the cascading of BLOCKs, i.e.

BLOCK outputs connect to latches only.

The user of FIRST requires expertise in architectures, certainly at the systems

level. Should his expertise extend down to the logic gate level, SECOND will allow

extensions of the basic library in a manner analogous to the production and mainte­

nance of the subroutine libraries produced by software programmers. If not, he will

still have the original function library at his disposal, but with the important differ­

ence that he will be able to take advantage of improved silicon processing when the

opportunity arises.

SECOND promises an effective route from structural intent into silicon. The

route from behavioural intent into silicon - the 'holy grail' of systems designers [176]

- is ourwith the immediate scope of this project, however future behaviour-to-

structure compiler developments will be able to call on the techniques proposed.

It is our wish that SECOND support not only custom, but semi-custom realisa­

tions of user-defined function. MOSYN is useful only in the former context. A tool

is under development which produces optimised netlists from BLOCK specifica­

tions, targetted at semi-custom implementation media such as libraries of standard

cells. GATESYN is to be compatible with MOSYN at the user interface.

8.3. Functional components of SECOND

The purpose of SECOND is to allow the specification of PRIMITIVES, their

functional verification, and their implementation in custom or semi-custom form in

arbitrary technologies. To this end, a software architecture similar to that of FIRST
is required (Figure 8.2), but with some important differences.

-142-

8.3.1. PRIMITIVE specification (design capture)

Design capture in FIRST is via a single, high-level language interface. The

FIRST user specifies systems as hierarchical lists of functional objects ('boxes and

wires'), with PRIMITIVES at the lowest level of hierarchy. The SECOND user, on

the other hand, is involved in implementation details somewhat closer to technologi­

cal interfaces. In particular, he has to support multiple representations of PRIMI­

TIVES. As PRIMITIVE specification above BLOCK level is still a matter of 'boxes

and wires', a FIRST-like interface may be extended part of the way down the

SECOND hierarchy. VX is a graphical design tool under development for just such

a purpose (a similar tool was developed for FIRST [177] but not adopted).

A representational dichotomy occurs at BLOCK level, not just between cus­

tom and semi-custom forms, but between operational forms as well. While the cus­

tom circuit techniques used in SECOND rely on conductance of transistor networks

[43], semi-custom versions of logical operators are implemented as collections of

logic gates or standard cells. Moreover, 3 representations of a BLOCK must be

maintained if SECOND is to support both single-pipe and twin-pipe operational

modes. These are the single-pipe version, and TT- and fi-timed pairs of (reduced)

twin-pipe functions.

To illustrate the use of PRESYN, MOSYN and GATESYN, we pursue the design

capture of the CSAS computational element (gated full-adder) from the 2C frac­

tional S/P multiplier discussed in Chapters 3 and 6. Only twin-pipe realisations are

shown (single-pipe realisations follow more directly from the specification). As

semi-custom implementations cannot support the performance of custom, we choose

to relax the restriction on cascading BLOCKs in semi-custom assembly, thus avoid­

ing the duplication of logic function necessary in the custom case. Such duplication

exists at several levels in the cited example.

The software architecture of Figure 8.2 presents a single interface to the

SECOND user for BLOCK specification. PRESYN takes as input the specification

of a BLOCK in single-pipe form, but with identification of even-pipe and odd-pipe

control signals. PRESYN produces MOSYN language listings of the various BLOCK

* published work by the author.

-143-

representations, which drive MOSYN or GATESYN to produce custom and semi-

custom representations respectively.

The user might specify as follows:

EVEN: Isb
ODD: msb
MATE: sum
FUNCTION: xor(and(xor(msb,cof),dat),and(pps,Isb),and(c i n,Isb))
NAME: carry
FUNCTION: majar(and(xor(msb,cof),dat),and(pps,Isb),and(cin,Isb))

PRESYN separates even- and odd-pipe control, producing MOSYN language

listings of even- and odd-pipe functions:

#function sum_ev
Cl: xor(and(cof,dat),and(pps,Isb),and(c i n, Isb))
else C8;
#function carry_ev
Cl: major(and(cof,dat),and(pps,Isb),and(cin, Isb))
else C0;

#function sumjod
Cl: xor(and(xor(msb,cof),dat),pps,cin)
else C0;
#function carryjad
Cl: major(and(xor(msb,cof),dat),pps, cin)
else C0;

These listings drive MOSYN and GATESYN. MOSYN produces four full-custom

transistor networks, each of which is dedicated to the evaluation of one logic vari­

able. GATESYN on the other hand produces only two semi-custom netlists (one per

pipe), and gates are shared where possible to minimise area. Figure 8.3 illustrates

possible full-custom and semi-custom realisations of the even-pipe functional blocks.

In the custom (high-performance) implementation (Figure 8.3(a)), three AND-gates

are functionally duplicated in SUBBLOCKs for both sum and carry formation - in

semi-custom, they could be shared (as indeed could some gates in sum and carry

SUBBLOCKs). Figure 8.3(b) shows a potential semi-custom gate-level implementa­

tion, minimised and optimised for 2-input NOR/NAND usage. Ideally GATESYN

should minimise gate count in this manner, without user-intervention.

144-

ccf

custom semi —custom
cof
dot

PP3

bb

cin

sum

carry

(a) minimum delay (b) minimum gate count

Figure 83: a) custom, and b) semi-custom gated full-adder realisations

Parameterisation

As in FIRST, the function library may be made more flexible by including

families of functionally 'soft' (i.e. programmable at compile-time) PRIMITIVES

such as multipliers and memories, instead of fixed instances of each. The family is

identified by name and the individual by parameters.

Chapter 7 emphasised that bit-serial hardware consists mainly of shift-register

structures with built-in function. These can be single-stage structures (e.g. adder),

linear arrays (e.g. multiplier) or even two-dimensional arrays (e.g. word-size

memory [7]). In the multiple-stage cases a PRIMITIVE consists of repetitions or

cascades of arbitrary instances of hardware SLICEs whose internal content and

external connectivity are mostly identical. Parameterisation of these aspects of

SLICEs greatly increases the descriptive power of the design capture medium,

allowing one SLICE description to service the entire PRIMITIVE family, thereby

maximising designer efficiency. Two high-level programming constructs are useful

here. The provision of repeat statements is mandatory, allowing variable-length

arrays of SLICEs to be specified. The provision of conditional statements is also

-145-

desirable, allowing minor differences between SLICE instantiations to be specified.

Unification

We anticipate the eventual unification of FIRST and SECOND into a single

user interface. Although design capture would then be uniform across the full span

of systems design, the less sophisticated user need not deploy SECOND, instead

using FIRST with an existing function library. Once again, we compare this with

the novice software programmer who calls standard library subroutines, and the

expert who writes his own. Each uses the same design medium, and both benefit

from an efficient compilation environment.

8.3.2. PRIMITIVE verification (behavioural simulation)

An important difference arises when we compare tools required for verifica­

tion in FIRST and SECOND. FIRST revolves round a floorplanner and function

library which guarantees performance of CHIPs and SYSTEMS. Responsibility for

this guarantee rests in the first case with the creator of the floorplanning strategy,

and in the second with the individual designer of each PRIMITIVE. The user is

only responsible for the functional correctness of his design - to this end he is pro­

vided with a word-level, event driven simulator. The domain of the simulator is

sufficiently abstract (and run-times short) to allow algorithmic exploration and verif­

ication.

SECOND lets the user don the mantle of responsibility not only for functional

correctness of PRIMITIVES, but also for their performance. Thus circuit simulation

must be employed at the BLOCK level to ensure that the logical depth between

latches never exceeds the target for the particular function library in question.

However this is only required in marginal cases, which are highlighted by MOSYN's
statistical information output.

Behavioural simulation now spans the full design space. In FIRST, a further

responsibility of the PRIMITIVE designer is to provide a high-level language coding

of the primitive's word-level behaviour. This responsibility passes to the SECOND
user, as does the responsibility at the lower level of describing logical behaviour of

BLOCKs. The latter task is made simple by the fact that BLOCKs are necessarily

-146-

small objects - logical simulators at higher levels may 'look-up' the verificational

truth-tables generated by MOSYN. However at present the abstraction of PRIMI­

TIVE behaviour to word-level remains a manual task, and is correspondingly a

potential source of errors.

8.3.3. PRIMITIVE implementation (physical assembly)

At this stage the differences between custom and semi-custom implementations

become clearly defined. While three physical hierarchical 'types' are provided for

PRIMITIVE specification, these types are only significant in the custom case.

Semi-custom

Semi-custom design descriptions have no need for typed physical levels of

hierarchy [178], although hierarchy still has an important part to play in efficient

assembly of semi-custom chips. Here the responsibility of SECOND is to produce

functionally correct netlists for manufacture - assembly is the responsibility of

whichever semi-custom 1C fabrication house is employed.

Custom

In the custom case, hierarchical typing allows the designer to dictate how the

primitive is logically partitioned and physically assembled. In this way he is able to

control the floorplanning of the primitive. At the lowest user level, logical

BLOCKs are specified in MOSYN language, and MOSYN returns layout with no

regard to external connectivity. Figure 8.4(a) shows symbolic gate-matrix layout of

the even-pipe gated carry-block example produced by MOSLAY (the physical netlist

assembler of MOSYN), and Figure 8.4(b) this layout fleshed out for particular

design rules (in this case the 3-p.m, double-level metal CMOS supported by the

MCE brokerage service).

SLICEs are assembled by placing blocks, and PRIMITIVES by stacking slices.

If genuine full-span compilation is to be achieved, it is imperative that these tasks

be automated. While the latter task is mostly the fairly straightforward abutment of

rectangles, we perceive the former as the single most difficult barrier between half-

span and full-span structural compilation. Figure 8.'5 shows the effect of simple

-147-

Isb

Gnd =

x=
M
M
N

=M=
N
N
M

=M=
M
X*

*
= N

*
t
*

= N
*

X*
N

=M=
M
M
M

=X=

= =

= s

= =

*
*

= N
*

X*
M

=M=
M
M
M

=M=
N
N
M

=X=

=X=
M
X*

*
= N

*
X*
N

=M=
M

X
N

=M=
M
X*

*
= N

*
X*
M

=M=
M
H
N

=X=

=X=
M
M
M

=M=
N

M
M*

=MN
M*
X*
N

=M=
M
N
M

=M=
N
X*

*
= N

*
X*
M

=X=

=X=
M
N
N

=M=
M
M
M

_ _» _

M
X*

*
= P

=

= =

=X=
N
X*

*
= P

*
*

= =

*
*

= P
*

X*
M

=M=
M

X
*

= P
*

X*
M
X=

_ _ _

* *
*

= P
*

x
N
M
M
X*

*
= P

*
* *

= =

k cof =H= =

*dat =

*b

1 1

D

D

D

1 1

D

a

G

a

a

1 1

D

a

a

1 1

a

1 1
a

.1

"a"

u

D

i
a

a

i

Figure 8.4: a) symbolic, and b) fleshed-out gate matrix layout

partitioning - in Figure 8.5(a) MOSLAY has been allowed to lay out an entire

subslice, whereas in Figure 8.5(b) the subslice has been reduced to constituent

BLOCKS and latches, these elements laid out by MOSLAY, and the results hand-

assembled. It is intended that SLICE assembly in SECOND produce layout

automatically.

SLICE assembly entails optimal placement and routing (in metal 2) of

BLOCKs. BLOCKs and latches may share wells and supplies in a 'back-to-back'

manner. Efficient SLICE assembly may require that BLOCK assembly use external

connectivity information, compromising the elegance of 'blind' typed assembly.

8.4. Example PRIMITIVE design - the serial/parallel multiplier

To illustrate some proposed concepts and anticipated problems concerning

SECOND, we report two exercises in the design of a 6-bit serial/parallel (S/P) multi­

plier for use in a datapath environment. The multiplication architecture was

- 148-

Figure 8.5: a) unpartitioned, and b) partitioned subslice

defined by the author, using the twin-pipe technique described in Chapter 7. The
first multiplier, Ml, was assembled manually by two M.Sc. students (J. I. Mhar
and H. Paul), as part of their course project work. The second, M2, was assembled
by M. S. McGregor, with some help from the author. M2 returned from fabrica-

-149-

tion just as the finishing touches were being put to this thesis. At the time of writ­

ing, only Ml has been tested.

Figure 8.6(a) shows multiplier Ml, and 8.6(b) the freshly-delivered multiplier

M2. It must be stressed that in neither case was SECOND used to assemble

SLICEs. However in both cases MOSYN was used to generate logic trees from

input BLOCK specifications.

Layout styles

The operation of the multiplier subject is similar to the fractional S/P multi­

plier described in Chapter 3, except that interfaces are bit-parallel. A parallel

ripple-carry adder is used to form the product (similar to the complex multiplier of

Appendix C). Twin-pipe architecture is implemented in the case of Ml using static

logic trees and dynamic latches, and in the case of M2 using dynamic logic trees

and static latches. Ml occupies an area of 1.85 mm 2 in 3-|xm double-level metal

CMOS, and transistor count is 1200. M2 occupies an area of 3.45 mm 2 , and

transistor count is 1500. Thus the cost of fully static latches outweighs the savings

in using dynamic logic.

Ml was laid out manually, using the same gate-matrix style as is envisaged for

SECOND (the layout of Figure 8.5(b), corresponding to about half of a SLICE, was

produced by J. I. Mhar in similar fashion). M2 was laid out in a simple 'tiled' lay­

out style, where transistors are pre-deposited in columns of 4 (P-N-N-P). Custom

logic is realised by routing, or 'personalising' these tiles, using as few columns as

possible, in a manner similar to gate array personalisation (except that polysilicon

and diffusion as well as metal may be used as conducting media). This ease of lay­

out comes at the cost of wasted silicon area, as can be seen from Figure 8.6. Ml
features 650 transistors/mm 2 , M2 only 435.

Test results of Ml

Out of 20 fabricated parts, 6 were found to be functional. These were found

to have an operating range (in terms of clock rate) of 1 Hz to 12 MHz. Functional

testing was performed on a Tektronix Digital Analysis System (DAS 9100), up to a

clocking rate of 10 MHz. Devices which passed this test were then monitored on

-150-

Figure 8.6(a): multiplier Ml

-151-

1 1; x=s_i j: i ir- : • II . X

IIIII 4'iii II I" rrr"l|ill " rrrl ilili ' • rrr >l i II '». .
i .1 .'I III I li .1 ,•• III i I i ,1,'J III |lt ,11,'| l II J I i ,1 i ~ -

--:rr3-*llin r-T
Ml''".iU'lII III 'i'.

n -;-;i-r3-i| ill vrrj-llin r-rrrllinn Mr't.if,'! in iirV.i ,«| in Mr'i'.ll/l in,i M;.ai1}ili"i,i. H.'-ill !!•"•'• I i.'.-filMfc*"'.!
• .«.'• -«.. ~,~-f» m • ».»- • I——. .-*• • • «~.'» l~~±4r~t» m • .|«-TT'»I ••-"-• |»«TT *-f ••-"-• r'-TT -fl -•'."'-• «4- • i^.,;.-^«'/^:i ii. ;• ';^;i i . : - -•. i-i in. • ; •. - u. ; .'^E n. : '^: n:. ;
. *MW . | f •. ••••» . . ' *' <| • *- •••• - • § *• • ••——— • • " « | —— • *-«• • - - , § . . ^-** - ' . |

:...Vr"irl :iV.'.'r-irl :;...'. 'r-jp I i :...'. 'r-jr I :...'.' r-3j- 1 :...Vr-3r|
|||..L-.£i, I W,.L_±, i I IU..L™- , I I IU,.L_S, n I |H,.L_-|i I HU.L.-.-I, Ii^r.-iwf i^rynii- IT.T 1 1 t,r i i^r . •« U- rsrliu- i^r;-iur

Figure 8.6(b): multiplier M2

-152-

an oscilloscope, and the clocking rate increased until failure was observed.

Figure 8.7 shows RNL waveforms which were produced by circuit-cx&actmg
from the layout (the glitches on the output lines are apparent while the rippte-acWer
is settling).

RNL RESULTS PLOT

cloc

Is

UiS

loci

•50 b -a

sib. a

s4ba

_T

8.9 1600.0 3200.0 4808.0 6409.0

Figure 8.7: RNL simulation waveforms, multiplier Ml

Figure 8.8 shows DAS waveforms produced by the device under test, using the same
stimuli as the RNL simulations. The region marked in Figure 8.8 corresponds to
the time interval spanned by Figure 8.7.

Some identifiable inefficiencies in circuit engineering limited Mi's maximum
clocking rate - these included failure to buffer the broadcast data and control bits
(thus incurring long rise time* on global wires), long runs of polysilicon in the dock
path (causing clock skew), and cascading of BLOCKs (instead of unique BLOCKs
connected to latches only). We anticipate around a twofold performance increase
in M2, which uses dynamic logic trees, metallised clock path, pipelined buffering of
broadcast signals and no BLOCK cascading.

-153-

TIKIHG

SRCH =
HA* CURSOR SEQ: -14

DELTA THC*

POOCH JgHE

1A5 LSB
1A6 USB
1A4 LOAD

1A2 S8BAR
1A 1 S1BAR
1A8 S2BAR
IB 4

iJiruinjinjiJTJU^^
0
8

J8

183 S4BAR
IB 2 S5BAR

tA3 CLKBAR iirinjiruinjiJirirLr^^
IB 8 PISUM
1A7 MUSUil
IBS

1
^^^^^^1 1 —— ...J 1...... ..!_,,..__.. —— |

„,; »
if)

i i i i
1 1 A

* . PLM/ ^

Figure 8.8: DAS test waveforms, multiplier Ml

8.5. Other approaches

The implementation of full-span structural silicon compilation is in progress,
and the researchers who are undertaking it (including the author) have much to
learn about the tools and techniques of design automation at cell level. Good work
on interactive module generation is under way at IMEC in Belgium [179], drawing
on the resources of the CATHEDRAL project [128]. CATHEDRAL is a bit-serial sili­
con compiler which uses more sophisticated floorplanning than FIRST, and higher-
level methods of design specification, but is targetted at a narrower applications
area - digital filtering. Filters may be synthesised using 8 small, hand-crafted cells
of common height. Collaboration between IMEC and UC Berkeley has resulted in

- 154 -

an impressive cross-fertilisation of ideas in DSP architectural synthesis, e.g.
[180,

Another bit-serial compiler project, BSSC, is in progress at General Electric in
the USA [182]. Here systems are specified as algorithms in a high-level language
closely related to C [170]. Control paths and synchronising delay networks (manu­
ally specified by FIRST users) are synthesised automatically. Like CATHEDRAL,
BSSC uses a linearised, folded layout style similar to standard-cell placement sys­
tems.

Clearly the problem of module generation or cell synthesis is not peculiar to
bit-serial architectures. Much work has been targetted at module generation in its
own right, e.g. [183, 184, 185], and many of the ideas proposed may prove useful in
the SECOND project. The incorporation and extension of these ideas is however
outside the realm of this thesis and the current state of layout synthesis at Edin­
burgh University.

8.6. Final Comments

Silicon compilers have been proposed as the answer to the custom 1C design
'bottleneck', by giving systems designers access to the skills of circuit and layout
experts. However compilers based on function libraries merely move the bottleneck
from chip level to cell level. Full-span compilation moves the bottleneck down to
the device level. Circuit and layout expertise is only required in the creation of tiny
'microcells' such as transistors and contacts. In the semi-custom implementation
route, such details are of no concern.

SECOND (Synthesis of Elementary Circuits ON Demand) is a design capture,
simulation and layout package which will extend FIRST s typed hierarchy down to
the device level. Instead of the current assembly of FIRST primitives using ad hoc
composition procedures and hand-crafted cells, SECOND supports the logic-level
capture of cells and their automatic synthesis and (eventually) placement. The user
controls hardware partitioning through hierarchical 'typing' - each hierarchical type
corresponds to a physical level with associated assembler/floorplanner. Only at the
device level are process-dependent, ad hoc techniques employed.

155-

While the area-cost of chip designs produced by full-span compilation may at
times exceed that of manual layout, the reduction in design effort afforded more
than compensates for this. In custom realisations, area-efficiency may be improved
by identifying distinct levels of hardware hierarchy, and invoking appropriate
assembly procedures for each. Semi-custom place and route software may also
exploit intelligent partitioning. A sub-optimal design realisation in today's technol­
ogy may then compare favourably with an efficient realisation in yesterday's, at a
fraction of the cost.

-156-

Chapter 9

Concluding remarks

The combination of design automation (via full-span structural silicon compi­
lation) and the elegance and simplicity of serial-data computation promises
designers rapid access to powerful systems solutions in the field of real-time, fixed-
function numerical computation, e.g. digital signal processing. This thesis builds on
work previously carried out at the University of Edinburgh in design automation
using bit-serial architectures. The subject matter spans the complete design space
from systems down to silicon, as well as issues of software for automation of the
design process. As a result of this, some of the treatment (particularly at the silicon
end) is necessarily shallow. On the other hand, the areas of serial-data arithmetic
theory and architecture are covered in some depth.

A balanced examination of the pros and cons of the serial-data approach con­
cluded that there are many advantages to be found in the serial-data execution of
algorithms which exhibit no data-dependence. It was shown that serial-data archi­
tectures may be constructed from a small set of computational 'atoms' (latches, mul­
tiplexers, shifters and adders), although for efficiency it is prudent to bundle func­
tion into a larger set of larger elements (e.g. complex multipliers). The view of
serial-data elements as shift-registers containing logic function succeeded in simplify­
ing the specification of these larger elements. The fundamental operation of multi­
plication was examined in some detail, the field reviewed, and an optimal candidate
(the serial/parallel multiplier in flush and fractional forms) selected for development
of more advanced architectures.

The FIRST silicon compiler was discussed, and the basic concepts of a serial-
data systems design methodology outlined. Compiler and methodology were then
thoroughly examined in a case study of a satellite communications transmultiplexor,
commissioned by the European Space Agency. This study represents a major sys­
tems design exercise, and makes a significant contribution to bit-serial architectural
knowledge. It was concluded that FIRST might be improved by overcoming three
types of inflexibility - functional, technological and operational. The remainder of

-157-

the thesis was devoted to providing flexibility in these three areas.

Novel complexity reduction techniques were demonstrated in the specification
of architectures aimed at computational problems such as matrix-vector multiplica­
tion, which exploit several symmetry properties to effect savings in silicon area. A
simple synthesis procedure was demonstrated for these architectures. Next a variety
of techniques were shown, which bring performance increases over conventional
serial architectures, using multi-wire computation and communication in a step
towards bit-parallelism which loses none of the advantages associated with bit-serial
architectures. The latter range of techniques make possible mixtures of operational
domains (marked by throughput and/or dynamic range) within a single system,
bringing operational flexibility to serial-data architectures, and answering two of the
more common charges against bit-serial architectures - namely slower throughput in
relation to bit-parallel realisations, and fixed system wordlength.

Further novelty was demonstrated in area-efficient incremental multiplication
architecture which computes squares and sums-of-squares, and the 'automultiplier',
a potentially high-performance serial/parallel multiplier based on a control-free
accumulator.

Finally, functional and technological inflexibility were addressed by SECOND,
a design automation route from systems specification into silicon, whose initial pro­
gress and goals were outlined. Methods were proposed which allow the design cap­
ture of computational primitives, in the form of logic and latches (i.e. in technologi­
cally independent form), physical assembly being directed by the designer's
hierarchical 'typing'. A library of such elements may not only be moved between
processes or technologies, but also expanded to include new elements with ease.
The design, fabrication and test of a serial/parallel multiplier were reported, verify­
ing some of the proposed serial-data architectures and exemplifying the approach of
SECOND.

It is hoped that the ideas and techniques contained in this thesis may point the
way ahead for researchers wishing to put the favourable properties of serial-data
computation to use.

-158-

References

1. J. Alien, "Computer Architecture for Digital Signal Processing," Proc. IEEE
73 pp. 852 - 873 (May 1985).

2. K. Bromley and H. J. Whitehouse, "Signal Processing Technology Overview,"
Proc. SPIE 298 - Real Time Signal Processing IV pp. 102 - 106 (1981).

3. N. R. Powell and J. M. Irwin, "Signal Processing with Bit-Serial Word-Parallel
Architectures," Proc. SPIE 154 - Real Time Signal Processing pp. 98 - 104
(1978).

4. P. B. Denyer and S. G. Smith, "Bit-Serial Architectures for Parallel Arrays,"
Proc. SPIE 614, Highly Parallel Signal Processing Architectures pp. 66 - 73
(Los Angeles, January 1986).

5. A. F. Murray, 'Testing and Self-Testing," pp. 120 - 144 in P. B. Denyer & D.
Renshaw, "VLSI Signal Processing - A Bit-Serial Approach", Addison-Wesley
(1985).

6. R. G. Bennetts, Design of Testable Logic circuits, Addison-Wesley (1984).

7. P. B. Denyer and D. Renshaw, VLSI Signal Processing - A Bit-Serial
Approach, Addison-Wesley (1985).

8. S. P. Pope and R. W. Brodersen, "Macrocell Design for Concurrent Signal
Processing," pp. 395 - 411 in 3rd Caltech Conf. on VLSI, ed. R. Bryant, Com­
puter Science Press (1983).

9. M. D. Ercegovac, "On-Line Arithmetic: an Overview," Proc. SPIE 495 - Real
Time Signal Processing VII pp. 86 - 93 (1984).

10. K. S. Trivedi and M. D. Ercegovac, "On-Line Algorithms for Division and
Multiplication," Trans. IEEE C-26 pp. 681 - 687 (July 1977).

11. A. Avizienis, "Signed-Digit Number Representations for Fast Parallel Arith­
metic," Trans. IRE EC-10 pp. 389 - 400 (September 1961).

12. S. H. Unger, "A Computer Orientated Towards Spatial Problems," Proc. IRE
46 pp. 1744 - 1750 (1958).

13. K. E. Batcher, "Design of a Massively Parallel Processor," Trans. IEEE C-
29 pp. 836 - 840 (September 1980).

14. J. L. Potter, The Massively Parallel Processor, MIT Press (1985).

-159-

15. W. D. Hillis, The Connection Machine, MIT Press (1985).

16. P. M. Flanders et al., "Efficient High Speed Computing with the Distributed
Array Processor," pp. 113 - 128 in High Speed Computer and Algorithm Organ­
isation, ed. D. J. Kuck et al., Academic Press (1977).

17. M. J. Flynn, "Very High-Speed Computing Systems," Proc. IEEE 54 pp. 1901
- 1909 (December 1966).

18. R. M. Lea, "SCAPE: A Single-Chip Array Processing Element for Image
Analysis," Proc. VLSI '83, pp. 285 - 294 (Trondheim, August 1983).

19. T. J. Fountain, "A Survey of Bit-Serial Array Processor Circuits," pp. 1 - 14 in
Computing Structures for Image Processing, ed. M. J. B. Duff, Academic Press
(1983).

20. D. K. Arvind, I. N. Robinson, and I. N. Parker, "A VLSI Chip for Real-
Time Image Processing," Proc. ISCS?83, pp. 405 - 408 (Newport Beach, CA,
May 1983).

21. T. Kondo et al., "An LSI Adaptive Array Processor," /. IEEE SC-18 pp. 147 -
,156 (April 1983).

22. J. M. Cotton and G. E. Masterson, "Computation of the Discrete Fourier
Transform on the Cellular Array Processor," Electrical Communication 59 pp.
306 - 311 (June 1985).

23. R. Davis and D. Thomas, "Systolic Array Chip Matches the Pace of High­
speed Processing," Electronic Design, (October 31, 1984).

24. A. P. Reeves and J. D. Bruner, "Efficient Function Implementation for Bit-
Serial Parallel Processors," Trans. IEEE C-29 pp. 841 - 844 (September 1980).

25. R. F. Lyon, "MSSP: A Bit-Serial Multiprocessor for Signal Processing," pp.
263 - 276 in P. B. Denyer & D. Renshaw, "VLSI Signal Processing - A Bit-
Serial Approach", Addison-Wesley (1985).

26. L. B. Jackson, J. F. Kaiser, and H. S. McDonald, "An Approach to the
Implementation of Digital Filters," Trans. IEEE AU-16 pp. 413 - 421 (Sep­
tember 1968).

27. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Process­
ing, Prentice-Hall (1975).

28. P. F. Adams, J. R. Harbridge, and R. H. MacMillan, "An nMOS Integrated
Circuit for Digital Filtering and Level Detection," /. IEEE SC-16 pp. 183 -
190 (1981).

29. G. P. Edwards, P. J. Jennings, and T. Preston, "A MOS LSI Double Second
Order Digital Filter Circuit," Proc. IEEE ISSCC '75, pp. 20 - 21 (February,
1975).

-160-

30. R. F. Lyon, "Filters: An Integrated Digital Filter Subsystem," pp. 253 - 262 in
P. B. Denyer & D. Renshaw, "VLSI Signal Processing - A Bit-Serial Approach",
Addison-Wesley (1985).

31. D. J. Myers and P. A. Ivey, "STAR - A VLSI Architecture for Signal Process­
ing," Proc. MIT Conf. on Adv. Res. in VLSI, pp. 179 - 183 (Cambridge, MA,
January 1984).

32. N. R. Powell, "Functional Parallelism in VLSI Systems and Computations,"
pp. 41 - 49 in VLSI Systems and Computations, ed. H. T. Kung, R. F. Sproull
& G. Steele Jr., Springer-Verlag (1981).

33. R. F. Lyon, "A Bit-Serial VLSI Architectural Methodology for Signal Process­
ing," pp. 131 - 140 in VLSI 81, ed. J. P. Gray, Academic Press (1981).

34. W. Chen et al., "Fault-Tolerant Wafer Scale Architectures Using Large
Crossbar Switch Arrays," pp. 113 - 124 in Wafer Scale Integration, ed. C. R.
Jesshope & W. R. Moore, Adam Hilger (1986).

35. S. L. Garverick and E. A. Pierce, "A Single Wafer 16-Point 16-MHz FFT
Processor," Proc. 1983 CICC , (Rochester, NY, May 1983).

36. F. M. Rhodes, "Applications of RVLSI to Signal Processing," pp. 223 - 235 in
Wafer Scale Integration, ed. C. R. Jesshope & W. R. Moore, Adam Hilger
(1986).

37. R. W. Linderman et al., "CUSP: a 2-|xm CMOS Digital Signal Processor," /.
IEEE SC-20 pp. 761 - 769 (June 1985).

%

38. P. M. Chau and W. H. Ku, "A VLSI Floating-Point Signal Processor," pp.
293 - 305 in VLSI Signal Processing, II, ed. S. Y. Kung, R. E. Owen and J.
G. Nash, IEEE Press (1986).

39. D. Cohen, "On Holy Wars and a Plea for Peace," Computer 14 pp. 49 - 54
(October 1981).

40. C. L. Seitz, "System Timing," pp. 218 - 262 in Mead & Conway, "Introduction
to VLSI Systems", Addison-Wesley (1980).

41. C. A. Mead and L. A. Conway, Introduction to VLSI Systems, Addison-
Wesley (1980).

42. N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design,
Addison-Wesley (1985).

43. M. S. McGregor, P. B. Denyer, and A. F. Murray, "A Single-Phase Clocking
Scheme for CMOS VLSI," Proc. 1987 VLSI Research Conf., (Palo Alto, CA,
March 1987).

-161-

44. R. F. Lyon, 'Two's Complement Pipeline Multipliers," Trans. IEEE COM-
24 pp. 418 - 425 (April 1976).

45. P. B. Denyer and D. J. Myers, "Carry-Save Adders for VLSI Signal Process­
ing," pp. 151 - 160 in VLSI '81, ed. J. P. Gray, Academic Press (1981).

46. S. Waser and M. J. Flynn, Introduction to Arithmetic for Digital Systems
Designers, Holt, Rinehart and Winston (1982).

47. K. Hwang, Computer Arithmetic Principles, Architecture, and Design, Wiley
(1979).

48. S. G. Smith and P. B. Denyer, "Efficient Bit-Serial Complex Multiplication
and Sum-of-Products Computation Using Distributed Arithmetic," Proc.
IEEE-IECEJ-ASJ ICASSP'86, pp. 2203 - 2206 (Tokyo, April 1986).

49. E. E. Swartzlander Jr., 'Parallel Counters," Trans. IEEE C-22 pp. 1021 - 1024
(December 1973).

50. A. R. Meo, "Arithmetic Networks and Their Minimisation Using a New Line
of Elementary Units," Trans. IEEE C-24 pp. 258 - 280 (March 1975).

51. O. Spaniol, Computer Arithmetic, Wiley (1981).

52. E. E. Swartzlander Jr. (ed.), Computer Arithmetic, Dowden, Hutchinson &
Ross (1980).

53. S. Waser, "High-Speed Monolithic Multipliers for Real-Time Digital Signal
Processing," Computer 11 pp. 19 - 29 (October 1978).

54. A. Habibi and P. A. Wintz, "Fast Multipliers," Trans. IEEE C-19 pp. 153 -
157 (February 1970).

55. T. G. Hallin and M. J. Flynn, "Pipelining of Arithmetic Functions," Trans.
IEEE C-21 pp. 880 - 886 (August 1972).

56. J. R. Jump and S. R. Ahuja, "Effective Pipelining of Digital Systems," Trans.
IEEE C-21 pp. 855 - 865 (September 1978).

57. T. G. Noll et al., "A Pipelined 330 MHz Multiplier," J. IEEE SC-21 pp. 411 -
416 (June 1986).

58. S. F. Anderson et al., 'The IBM System/360 Model 91: Floating-Point Execu­
tion Unit," IBM J. Res. Develop. 11 pp. 34-53 (January 1967).

59. L. P. Rubinfield, "A Proof of the Modified Booth's Algorithm for Multiplica­
tions," Trans. IEEE C-24 pp. 1014 - 1015 (October 1975).

60. L. De Vos et al., "A Fast Adder-Based Multiplication Unit for Customised
Digital Signal Processors," Proc. IEEE-IECEJ-ASJ ICASSP'86, pp. 2163 - 2166
(Tokyo, April 1986).

-162-

61. L. Dadda, "Some Schemes for Parallel Multipliers," Aha Frequenza 34 pp. 349
- 356 (May 1965).

62. C. S. Wallace, "A Suggestion for a Fast Multiplier," Trans. IEEE EC-13 pp. 14
- 17 (February 1964).

63. N. Takagi, H. Yasuura, and S. Yajima, "High-Speed VLSI Multiplication
Algorithm with a Redundant Binary Addition Tree," Trans. IEEE C-34 pp.
789 - 796 (September 1985).

64. J. E. Vuillemin, "A Very Fast Multiplication Algorithm for VLSI Implementa­
tion," Integration I pp. 39 - 52 (April 1983).

65. S. D. Pezaris, "A 40-ns 17-Bit by 17-Bit Array Multiplier," Trans. IEEE C-
20 pp. 442 - 447 (April 1971).

66. J. V. McCanny and J. G. McWhirter, "Implementation of Signal Processing
Functions Using 1-Bit Systolic Arrays," Electronics Letters 18 pp. 241 - 242
(March 18, 1982).

67. H. H. Guild, "Fully Iterative Fast Array for Binary Multiplication," Electron­
ics Letters S p. 263 (June 12, 1969).

68. J. Deverell, "Pipeline Iterative Arithmetic Arrays," Trans. IEEE C-24 pp. 317 -
322 (March 1975).

69. M. D. Ercegovac and J. G. Nash, "An Area-Time Efficient VLSI Design of a
Radix-4 Multiplier," Proc. IEEE ICCD '83, pp. 684 - 687 (Port Chester, NY,
1983).

70. P. E. Danielsson, "Serial/Parallel Convolvers," Trans. IEEE C-33 pp. 652 - 667
(July 1984).

71. S. A. White and T. Mitsutomi, 'The 1C Digital Filter: a New Low-Cost Signal
Processing Tool," Control Eng. 43 pp. 58 - 68 (June 1970).

72. S. G. Smith, "Fourier Transform Machines," pp. 147 - 199, Chapter 8 in P. B.
Denyer & D. Renshaw, "VLSI Signal Processing - A Bit-Serial Approach",
Addison-Wesley (1985).

73. A. F. Murray and P. B. Denyer, "A CMOS Design Strategy for Bit-Serial Sig­
nal Processing,"/. IEEE SC-20 pp. 746-753. (June 1985).

74. D. J. Myers and P. A. Ivey, "Circuit Elements for VLSI Signal Processing,"
Br. Telecom Technol. J. 2 pp. 67 - 77 (July 1984).

75. A. D. Booth, "A Signed Binary Multiplication Technique," Q. J. Mech. Appl.
Math. 4 pp. 236 - 240 (1951).

-163-

76. C. F. N. Cowan, S. G. Smith, and J. H. Elliott, "A Digital Adaptive Filter
using a Memory-Accumulator Architecture: Theory and Realisation," Trans.
IEEE ASSP-31 pp. 541 - 549 (June 1983).

77. J. T. Scanlon and W. K. Fuchs, "High-Performance Bit-Serial Multiplication,"
Proc. IEEE ICCD'86, (Rye Brook, NY, October 1986).

78. E. K. Cheng and C. A. Mead, "A Two's Complement Pipeline Multiplier,"
Proc. IEEE ICASSP '76, pp. 647 - 650 (Philadelphia, April 1976).

79. L. E. Turner, P. B. Denver, and D. Renshaw, "A Bit Serial LDI Recursive
Digital Filter," Proc. IEEE ICASSP'84, pp. 41A.3.1 - 41A.3.4 (San Diego,
March 1984).

80. N. Petrie, J. Mavor, and S. G. Smith, "General-Purpose Adaptor Structure for
Wave-Digital-Filter Realisation," Electronics Letters 19 pp. 1038 - 1039
(November 24, 1983).

81. P. R. Cappello and K. Steiglitz, "A Note on Tree Accumulation' in VLSI
Filter Architectures," Trans. IEEE CAS-32 pp. 291 - 296 (March 1985).

82. C. A. Mead and M. Rem, "Minimum Propagation Delays in VLSI," /. IEEE
SC-17 pp. 773 - 775 (August 1982).

83. H. T. Kung, "Special-Purpose Devices for Signal and Image Processing: an
Opportunity in Very Large Scale Integration (VLSI)," SPIE Real-Time Signal
Processing III 241 pp. 76 - 84 (1980).

84. G. H. Alien, P. B. Denyer, and D. Renshaw, "A Bit-Serial Linear Array
DFT," Proc. IEEE ICASSP'84, pp. 41A.1.1 - 41A.1.4 (San Diego, March
1984).

85. H. T. Kung, "Why Systolic Architectures?," Computer 15 pp. 37 - 46 (January
1982).

86. D. Cohen, "Mathematical Approach to Iterative Computational Networks,"
Proc. 4th IEEE Symp. on Computer Arith., pp. 226 - 238 (Santa Monica, CA,
October 1978).

87. R. V. Donthi, M. Saleem, and H. Singh, "On Bit-Sequential Multipliers,"
Proc. 6th IEEE Symp. on Computer Arith., pp. 104 - 108 (1983).

88. R. Gnanasekaran, "A Fast Serial-Parallel Multiplier," Trans. IEEE C-34 pp.
741 - 745 (August 1985).

89. J. Mick, J. Springer, and C. Ghest, "A High-Speed Serial/Parallel Multiplier:
the Am25LS14," pp. 2-15 - 2-23 in Bipolar Microprocessor and Logic Interface
Data Book, Advanced Micro Devices (1982).

- 164-

90. A. J. Atrubin, "A One-Dimensional Real-Time Iterative Multiplier," Trans.
IEEE EC-14 pp. 394 - 399 (June 1965).

91. D. E. Knuth, The Art of Computer Programming Vol. 2 I Seminumerical Algo­
rithms, Section 4.3.3.E, Addison-Wesley (1969).

92. G. L. Baldwin et al., "A Modular High-Speed Serial Pipeline Multiplier for
Digital Signal Processing," /. IEEE SC-13 pp. 400 - 408 (June 1978).

93. D. Hampel, K. E. McGuire, and K. J. Prost, "CMOS/SOS Serial-Parallel
Multiplier," /. IEEE SC-10 pp. 307 - 314 (October 1975).

94. J. Kane, "A Low-Power, Bipolar, Two's Complement Serial Pipeline Multi­
plier Chip," J. IEEE SC-11 pp. 669 - 678 (October 1976).

95. J. R. Verjans, "A Serial-Parallel Multiplier Using the NENDEP Technology,"
J. IEEE SC-12 pp. 323 - 325 (June 1977).

96. E. E. Swartzlander Jr., "The Quasi-Serial Multiplier," Trans. IEEE C-22 pp.
317 - 321 (April 1973).

97. T. G. McDaneld and R. K. Guha, "The Two's Complement Quasi-Serial Mul­
tiplier," Trans. IEEE C-24 pp. 1233 - 1235 (December 1975).

98. C. R. Baugh and B. A. Wooley, "A Two's Complement Parallel Array Multi­
plication Algorithm," Trans. IEEE C-22 pp. 1045 - 1047 (December 1973).

99. I.-N. Chen and R. Willoner, "An O(n) Parallel Multiplier with Bit-Sequential
Input and Output," Trans. IEEE C-28 pp. 721 - 727 (October 1979).

100. H. J. Sips, "Comments on 'An O(n) Parallel Multiplier with Bit-Sequential
Input and Output'," Trans. IEEE C-31 pp. 325 - 327 (April 1982).

101. N. R. Strader and V. T. Rhyne, "A Canonical Bit-Sequential Multiplier,"
Trans. IEEE C-31 pp. 791 - 795 (August 1982).

102. T. Rhyne and N. R. Strader, "A Signed Bit-Sequential Multiplier," Trans.
IEEE C-35 pp. 896 - 901 (October 1986).

103. R. Gnanasekaran, "On a Bit-Serial Input and Bit-Serial Output Multiplier,"
Trans. IEEE C-32 pp. 878 - 880 (September 1983).

104. M. R. Buric and C. A. Mead, "Bit-Serial Inner Product Processors in VLSI,"
Proc. 2nd Caltech Conf. on VLSI, pp. 155 - 164 (1981).

105. H. J. Sips, "Bit-Sequential Arithmetic for Parallel Processors," Trans. IEEE C-
33 pp. 7 - 21 (January 1984).

106. E. L. Braun, Digital Computer Design, McGraw-Hill (1962).

-165-

107. S. G. Smith, "Comments on 'A Signed Bit-Sequential Multiplier'," submitted to
IEEE Trans. Comput., (November 1986).

108. S. G. Smith, "Incremental Computation of Squares and Sums of Squares," sub­
mitted to IEEE Trans. Comput., (November 1986).

109. J. Wawrzynek and C. A. Mead, "A Bit-Serial Architecture for Sound Syn­
thesis," pp. 277 - 297 in P. B. Denyer & D. Renshaw, "VLSI Signal Processing -
A Bit-Serial Approach", Addison-Wesley (1985).

110. G. E. Moore, "VLSI: Some Fundamental Challenges," IEEE Spectrum 16 pp.
30 - 37 (April 1979).

111. R. F. Ayers, VLSI Silicon Compilation and the Art of Automatic Chip Design,
Prentice-Hall (1983).

112. S. G. Smith, "Silicon Compilers - Design Synthesis Beyond CAD," pp. 135 -
147, Chapter 11 in Computer-Aided Tools for VLSI Systems Design, ed. G.
Russell, Peter Peregrinus (1987).

113. K. Asada and J. Mavor, "Area Optimised MOS Circuit Generation Using the
Circuit Synthesis Program MOSYN-2," Proc. ESSCIRC '86, pp. 71 - 73
(Delft, September 1986).

114. S. G. Smith et al., "Full-Span Silicon Compilation of Digital Signal Proces­
sors," Proc. IEEE ICASSP'87, (Dallas, TX, April 1987).

115. I. Buchanan, Modelling and Verification in Structured Integrated Circuit
Design, Ph.D. Thesis, University of Edinburgh (1980).

116. N. W. Bergmann, "A Case Study of the FIRST Silicon Compiler," pp. 413 -
430 in 3rd Caltech Conference on VLSI, ed. R. Bryant, Computer Science
Press (1983).

117. P. B. Denyer, D. Renshaw, and N. Bergmann, "A Silicon Compiler for VLSI
Signal Processors," Proc. ESSCIRC'82, pp. 215 - 218 (Brussel, September
1982).

118. S. G. Smith et al., "A Comparison of Micro-DSP and Silicon Compiler Imple­
mentations of a Polyphase-Network Filter Bank," Proc. IEEE-IECEJ-ASJ
ICASSP'86, pp. 2207 - 2210 (Tokyo, April 1986).

119. R. K. Brayton et al., "The YORKTOWN Silicon Compiler," Proc. ISCAS '85,
pp. 391 - 394 (Kyoto, June 1985).

120. A. D. Lopez and H.-F. S. Law, "A Dense Gate-Matrix Layout Method for
MOS VLSI," Trans. IEEE ED-27 pp. 1671 - 1675 (August 1980).

•

121. R. K. Brayton et al., Logic Minimization Algorithms for VLSI Synthesis,
Kluwer Academic Publishers (1984).

-166-

122. A. R. Newton and A. L. Sangiovanni-Vincentelli, "Computer-Aided Design
for VLSI Circuits," Computer 19 pp. 38 - 60 (April 1986).

123. S. G. Smith, 'Transversal Filters," pp. 200 - 235, Chapter 9 in P. B. Denyer &
D. Renshaw, 'VLSI Signal Processing - A Bit-Serial Approach", Addison-Wesley
(1985).

124. M. G. Bellanger, G. Bonnerot, and M. Coudreuse, "Digital Filtering by
Polyphase Network: Application to Sample-Rate Alteration and Filter Banks,"
Trans. IEEE ASSP-24 pp. 109 - 114 (April 1976).

125. U. Heute and P. Vary, "A Digital Filter Bank with Polyphase Network and
FFT Hardware: Measurements and Applications," Signal Processing 3 pp. 307
- 319 (October 1981).

126. R. W. Schafer and L. R. Rabiner, "Design of Digital Filter Banks for Speech
Analysis," Bell Syst. Tech. J. 50 pp. 3097 - 3115 (December 1971).

127. S. L. Freeny et al., "Design of Digital Filters for an All Digital Frequency
Division Multiplex-Time Division Multiplex Translator," Trans. IEEE CT-
18 pp. 702 - 711 (November 1971).

128. R. Jain et al., "Custom Design of a VLSI PCM-FDM Transmultiplexer from
System Specifications to Circuit Layout Using a Computer-Aided Design Sys­
tem," J. IEEE SC-21 pp. 73 - 85 (February 1986).

129. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall
(1975).

130. J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Calculation
of Complex Fourier Series," Math. Comp. 19 pp. 297 - 301 (April 1965).

131. E. O. Brigham, The Fast Fourier Transform, Prentice-Hall (1974).

132. J. Deverell, "Multiplication of Complex Numbers Using Iterative Arrays,"
Electronics Letters 7 pp. 205 - 207 (6th May, 1971).

133. J. Fox et al., "A Self Testing 2 Micron CMOS Chip Set for FFT Applica­
tions," Proc. ESSCIRC '85, pp. 13 - 24 (Toulouse, September 1985).

134. A. Greiner et al., "A Flexible High Performance Serial Radix-2 FFT Butterfly
Unit," Proc ESSCIRC '85, pp. 25 - 28 (Toulouse, September 1985).

135. A. M. Despain, "Fourier Transform Computers using CORDIC Iterations,"
Trans. IEEE C-23 pp. 993 - 1001 (October 1974).

136. P. S. Moharir, "Extending the Scope of Golub's Method Beyond Complex
Multiplication," Trans. IEEE C-34 pp. 484 - 487 (May 1985).

-167-

137. E. E. Swartzlander Jr., "Merged Arithmetic," Trans. IEEE C-29 pp. 946 - 950
(October 1980).

138. R. F. Eschenbach and B. M. Oliver, "An Efficient Coordinate Rotation Algo­
rithm," Trans. IEEE C-27 pp. 1178 - 1180 (December 1978).

139. J. E. Voider, "The CORDIC Trigonometric Computing Technique," Trans.
IRE EC-8 pp. 330 - 334 (August 1959).

140. E. D. Deprettere, P. Dewilde, and R. Udo, "Pipelined Cordic Architectures
for Fast VLSI Filtering and Array Processing," Proc. IEEE ICASSP'84, pp.
41A.6.1 - 41A.6.4 (San Diego, March 1984).

141. H. M. Ahmed, J. -M. Delosme, and M. Morf, "Highly Concurrent Comput­
ing Structures for Matrix Arithmetic and Signal Processing," Computer 15 pp.
65 - 82 (January 1982).

142. D. T. L. Lee and M. Morf, "Generalised CORDIC for Digital Signal Process­
ing," Proc. IEEE ICASSP'82, pp. 1748 - 1751 (Paris, May 1982).

143. S. A. White, "A Simple FFT Butterfly Arithmetic Unit," Trans. IEEE CAS-
28 pp. 352 - 355 (April 1981).

144. I. R. Mactaggart and M. A. Jack, "A Single Chip Radix-2 FFT Butterfly
Architecture Using Parallel Data Distributed Arithmetic," J. IEEE SC-19 pp.
368 - 373 (June 1984).

145. J. H. McClellan and R. J. Purdy, "Applications of Digital Signal Processing to
Radar," pp. 239 - 329 in Applications of Digital Signal Processing, ed. A. V.
Oppenheim, Prentice-Hall (1978).

146. E. E. Swartzlander Jr. and G. Hallnor, "Fast Transform Processor Implemen­
tation," Proc. IEEE ICASSP'84, pp. 25A.5.1 - 25A.5.4 (San Diego, March
1984).

147. H. S. Stone, "Parallel Processing with the Perfect Shuffle," Trans. IEEE C-
20 pp. 153 - 161 (February 1971).

148. H. C. Rickers and P. F. Manno, "Microprocessor and LSI Microcircuit
Reliability-Prediction Model," Trans. IEEE R-29 pp. 196 - 202 (August 1980).

149. S. G. Smith and P. B. Denver, "Serial/Parallel Architectures for Area-Efficient
Vector Multiplication," Proc. IEEE ICASSP'87, (Dallas, TX, April 1987).

150. S. G. Smith and P. B. Denyer, "Synthesis of Area-Efficient VLSI Architec­
tures for Vector and Matrix Multiplication," Proc. 8th IEEE Symp. on Com­
puter Arith., (Como, Italy, May 1987).

151. E. E. Swartzlander Jr., B. K. Gilbert, and I. S. Reed, "Inner Product Com­
puters," Trans. IEEE C-27 pp. 21 - 31 (January 1978).

-168-

152. A. Croisier et al., Digital Filter for PCM Encoded Signals, U.S. Patent
3 777 130 (December 4, 1973).

153. A. Peled and B. Liu, "A New Hardware Realisation of Digital Filters," Trans.
IEEE ASSP-22 pp. 456 - 462 (December 1974).

154. P. R. Cappello and K. Steiglitz, "Digital Signal Processing Applications of Sys­
tolic Algorithms," pp. 245 - 254 in VLSI Systems and Computations, ed. H. T.
Kung, R. F. Sproull & G. Steele Jr., Springer-Verlag (1981).

155. J. G. McWhirter, J. V. McCanny, and K. W. Wood, "Novel Multibit
Convolver/Correlator Chip based on Systolic Array Principles," SPIE Real-Time
Signal Processing V 341 pp. 66 - 73 (1982).

156. J. C. White et al., "A High-Speed CMOS/SOS Implementation of a Bit Level
Systolic Correlator," Proc. IEEE-IECEJ-ASJ ICASSP'86, pp. 1161 - 1164
(Tokyo, April 1986).

157. S. G. Smith, "Efficient Serial/Parallel Inner-Product Computation," Electronics
Letters 22 pp. 750 - 752 (July 3, 1986).

158. S. A. White, "On Mechanization of Vector Multiplication," Proc. IEEE 63 pp.
730 - 731 (April 1975).

159. S. K. Rao and T. Kailath, "Orthogonal Digital Filters for VLSI Implementa­
tion," Trans. IEEE CAS-31 pp. 933 - 945 (November 1984).

160. S. G. Smith, "Modelling Musical Instruments in the Digital Domain," Proc.
IEEE ICASSP'84, pp. 19.7.1 - 19.7.4 (San Diego, March 1984).

161. S. G. Smith, "Serial/Parallel Modules for Complex Arithmetic," Electronics
Letters 22 pp. 1256 - 1257 (November 6, 1986).

162. S. G. Smith, M. S. McGregor, and P. B. Denyer, 'Techniques to Increase the
Computational Throughput of Bit-Serial Architectures," Proc. IEEE
ICASSP'87, (Dallas, TX, April 1987).

163. C. S. Burrus, "Digital Filter Structures Described by Distributed Arithmetic,"
Trans. IEEE CAS-24 pp. 674 - 680 (December 1977).

164. T. A. C. M. Claasen, W. F. G. Mecklenbrauker, and J. B. H. Peek, "Some
Considerations on the Implementation of Digital Systems for Signal Process­
ing," Philips Res. Repts. 30 pp. 73 - 84 (1975).

165. H. J. De Man, C. J. Vandenbulcke, and M. M. Van Cappellen, "High-Speed
NMOS Circuits for ROM-Accumulator and Multiplier Type Digital Filters," J.
IEEE SC-13 pp. 565 - 572 (October 1978).

166. G. L. Turin, "An Introduction to Digital Matched Filters," Proc. IEEE 64 pp.
1092 - 1112 (July 1976).

-169-

167. C. F. N. Cowan and P. M. Grant, Adaptive Filters, Prentice Hall (1985).

168. M. D. Ercegovac, "An On-Line Square Rooting Algorithm," Proc. 4th IEEE
. Symp. on Computer Arith., pp. 183 - 189 (Santa Monica, CA, October 1978).

169. V. G. Oklobdzija and M. D. Ercegovac, "An On-line Square Root Algo­
rithm," Trans. IEEE C-31 pp. 70 - 75 (January 1982).

170. B. W. Kernighan and D. M. Ritchie, The C Programming Language,
Prentice-Hall (1978).

171. C. Terman, Logic Level Simulation for VLSI Circuits, Kluwer Academic Pub­
lishers (to appear).

172. M. S. McGregor, S. G. Smith, P. B. Denyer, and A. F. Murray, "Serial-Data
Computation on Twin Pipelines," submitted to Electronics Letters, (December
1986).

173. S. G. Smith and P. B. Denyer, "Radix-4 Modules for High-Performance Bit-
Serial Computation," submitted to Proc. IEE Part E, (October 1986).

174. R. L. Rivest, A. Shamir, and L. Adleman, "A Method for Obtaining Digital
Signatures and Public-Key Crypto-Systems," C. ACM 21 pp. 121 - 126 (Febru­
ary 1978).

175. S. G. Smith, 'The Serial/Parallel Automultiplier," submitted to Electronics
Letters, (January 1987).

176. P. B. Denyer, "System Compilation," pp. 3 - 13 in VLSI Signal Processing, II,
ed. S. Y. Kung, R. E. Owen and J. G. Nash, IEEE Press (1986).

177. J. H. Nash and S. G. Smith, "A Front End Graphic Interface to the FIRST
Silicon Compiler," Proc. IEE Electronic Design Automation (EDA84), pp. 120 -
124 (Warwick, UK, March 1984).

178. J. P. Gray, I. Buchanan, and P. S. Robertson, "Designing Gate Arrays Using
a Silicon Compiler," Proc. 19th DA Conf., pp. 377 - 383 (Las Vegas, 1982).

179. P. Six, I. Vandeweerd, and H. De Man, "An Interactive Environment for
Creating Module Generators," Proc. ESSCIRC'86, pp. 65 - 67 (Delft, Sep­
tember 1986).

180. J. Rabaey, S. P. Pope, and R. W. Brodersen, "An Integrated Automatic Lay­
out Generation System for DSP Circuits," Trans. IEEE CAD-4 pp. 285 - 296
(July 1985).

181. R. Jain, P. A. Ruetz, and R. W. Brodersen, "Architectural Strategies for
Digital Signal Processing Circuits," pp. 361 - 372 in VLSI Signal Processing, 77,
ed. S. Y. Kung, R. E. Owen and J. G. Nash, IEEE Press (1986)."

-170-

182. J. R. Jasica, S. Noujaim, and R. Hartley, "A Bit-Serial Silicon Compiler,"
Proc. ICCAD'85, pp. 91 - 93 (Santa Clara, November 1985).

183. M. R. Buric and T. G. Matheson, "Silicon Compilation Environments," Proc.
IEEE CICC, pp. 208 - 212 (Portland, OR, May 1985).

184. C. Piguet, E. Dijkstra, and G. Berweiler, "Automatic Generation of CMOS
Layout Cells under Topological Constraints," Proc. ESSCIRC'86, pp. 68 - 70
(Delft, September 1986).

185. P. W. Kollarisch and N. H. E. Weste, "TOPOLOGIZER: An Expert System
Translator of Transistor Connectivity to Symbolic Cell Layout," /. IEEE SC-
20 pp. 799 - 804 (June 1985).

-171-

Appendix A

FIRST Description of the Soft Model

! FIR section for PPN fiI ten
i
OPERATOR FiIterSection [swl,cofres,muxlevel] (cl, ev -> clout, evout) -

datain, cof -> dataout, multout

SIGNAL datadel, cofsel, cofdel ay
CONTROL ell

CONSTANT multdel = ((3 * cofres) / 2) + 2

MULTIPLY El,cofres,1,0] (ell -> clout) datain, cofsel -> multout, datadel
BITDELAY [(swl*muxlevel)-(multdel+l)] datadel -> dataout
MULTIPLEX [1,0,8] (ev) cofdelay, cof -> cofsel
BITEELAY [(swl*muxlevel)-l] cofsel -> cofdelay

CBI7DELAY [1] (cl -> ell)
CBI7EELAY [swl*muxlevel] (ev -> evout)

OPERATOR F i I terCascade [suil,cofres,muxlevel] (cl, ev -> clout) datain,
cof -> proda0 THROUGH B, prodb0 THROUGH 5

SIGNAL multout, dataout
CONTROL cldummy, evout

Fi IterSection [swl,cofres,muxlevel] (cl, ev -> cldummy, evout) -
datain, cof -> dataout, multout TlfES 12 UI7H -
(evout -> ev) dataout -> datain
multout = proda0, prodb0, prodal, prodbl, proda2, prodb2,

proda3, prodb3, proda4, prodb4, prodaB, prodbS
cldummy = clout, NC, NC, NC, NC, NC, NC, NC, NC, NC, NC, NC

OPERATOR Adder [del] (cl) in0 THROUGH 5 -> out

SIGNAL s0 THROUGH 3
CONTROL ell, c!2

ADD [1,0,0,0] (cl) in0, inl, GND -> s0, NC
ADD [1,0,0,0] (cl) in2, in3, GND -> si, NC

-172-

ADD [1,8,8,83 (cl) in4, in5, GND -> s2, NC
ACD [1,8,8,81 (ell) s8, si, GND -> s3, NC
ADD [del-2,8,1,8] (c!2) s3, s2, GND -> out, NC

CBITDELAY [1] (cl -> ell)
CBITOELAY Cl] (ell -> c!2)

OPERATOR Fi I terAdd Csw I, cof res, muxlevel, del] (cl, ev) data in, cof ->
out8, outl

SIGNAL proda8 THOUGH 5, prodb8 THROUGH 5
CONTROL clout

Fi IterCascade [swI,cofres,muxlevel] (cl, ev -> clout) datain,
cof -> proda8 THROUGH 5, prodb8 THROUGH 5

Adder [del] (clout) proda8 THROUGH 5 -> out8
Adder [del] (clout) prodb8 THROUGH 5 -> outl

CHIP FilterOut (pel, pev) pdat8, pdatl, pcof8, pcofl -> pout8 THROUGH 3

SIGNAL dat8, datl, cof8, cofl, out8 THROUGH 3
CONTROL cl, ev

PADIN (pel, pev -> cl, ev)
PADIN pdat8, pdatl, pcof8, pcofl -> dat8, datl, cof8, cofl
PADOUT out8 THROUGH 3 -> pout8 THROUGH 3
PADORDER VDD, pel, pev, pdat8, pdatl, pcof8, pcofl,

pout8 THROUGH 3, GND, CLOCK
CONSTANT sul = 16, cof res = 8, muxlevel =16
CONSTANT multdel = ((3 * cof res) / 2) + 2
CONSTANT del = (2 * swl) - (multdel + 2)

FiIterAdd [swI,cofres,muxlevel,del] (cl, ev) dat8, cof8 -> -
out8, outl

FilterAdd [swI,cofres,muxlevel,del] (cl, ev) datl, cofl -> -
out2, out3

OPERATOR Dft2 [del] (cl) rin8,rinl,iin8,iinl -> rout8,routl,
iout8,ioutl

ADD [del,8,8,0] (cl) rin8,rinl,GND -> rout8,NC
SUBTRACT [del,8,8,8] (cl) rin8,rinl,GND -> routl,NC
ADD [del,8,8,8] (cl) i in8, i inl,GND -> iout8,NC

-173-

SUBTRACT [del,0,0,03 (cl) iin0,iinl,GND -> ioutl,NC

i
i
• ^"^^•••••^•^•^^^"^"^•*"»««»^™^«^»««^™^™^«»^w^™^™"rtS*»^™"»«»

^««»««»^«^»«»»™«^»««««.«»^B^«^»(B«^»««B««B»«^»«^««««ii«.^»™«™^^—^—

OPERATOR Dft4 Cswl] (cl) riiT0,rinl,rin2,rin3, i in0, i inl, i in2, i in3 ->
rout0t routl,rout2,rout3, iout0, ioutl, iout2, iout3

SIGNAL r0,rl,r2,r3,18.11,12,13
CONTROL ell

Dft2 Cswl/2] (cl) rin0,rin2,iin0,iin2 -> r0,rl,10,il
Dft2 Cswl/2] (cl) rinl,rin3,iinl,iin3 -> r2,r3,12,13
Dft2 Cswl-(swl/2)] (ell) r0,r2,10,12 -> rout0,rout2,iout0,iout2
Dft2 Cswl-(sul/2)] (ell) rl,13,11,r3 -> routl,rout3,iout3,ioutl

CBITDELAY Csul/23 (cl -> ell)

OPERATOR CmplxMul [swl,co] (cl) rin, i in,rcof, icof -> rout, i out

SIGNAL S0,sl,s2,s3
CONTROL ell

CONSTANT multdel = ((3 * co) / 2) +2

MULTIPLY [1, co, 0,0] (cl -> ell) rin,rcof -> s0,NC
MULTIPLY Cl,co,0,0] (cl -> NC) i in, icof -> sl.NC
MULTIPLY Cl,co,0,0] (cl -> NC) rin, icof -> s2,NC
MULTIPLY [l,co,0,0] (cl -> NC) iin,rcof -> s3,NC
SUBTRACT C(2*swl)-multdel,0,0,0] (ell) s0,sl,GND -> rout,NC
ADD C(2#swl)Hnultdel,0,0,0] (ell) s2,s3,GND -> iout,NC

OPERATOR Twiddle [swl,co] (cl) rin0,rinl,rin2,rin3,iin0,iinl,iin2,iin3,
rcofl,rcof2,rcof3,icofl,icof2,icof3 -> rout0,routl,rout2,rout3,
iout0,ioutl,iout2,iout3

BITEELAY [2*swl] rin0 -> rout0
BITEELAY [2*swl] iin0-> iout0
CmplxMul Csuil,co] (cl) rinl, i inl,rcofl, icofl -> routl, ioutl
CmplxMul Cswl.co] (cl) rin2,iin2,rcof2,icof2 -> rout2,iout2
CmplxMul Cswl,co] (cl) rin3,iin3,rcof3,icof3 -> rout3,iout3

-174-

OPERATDR ComReal [swl] (en,cnplusl,cnplusldel) in0, inl, in2, in3 ->
out8,outl,out2,out3

SIGNAL r8,rl,r2,r3

MULTIPLEX [swl/2,8,8] (cnplusl) in2, in8->r0
MULTIPLEX [swl72,0,8] (cnplusldel) in3,inl -> rl
MULTIPLEX [swl72,0,0] (cnplusl) in0,in2 -> r2
MULTIPLEX [swl/2,0,0] (cnplusldel) inl,in3 -> r3
MULTIPLEX [swl-(swl/2),8,8] (en) rl,r0 -> out0
MULTIPLEX [swl-(swl/2),0,0] (en) r8,rl -> outl
MULTIPLEX [swl-(swl/2),8,8] (en) r3,r2 -> out2
MULTIPLEX [swl-(swl/2),8,0] (en) r2,r3 -> out3

OPERATOR Commutator [swl] (en,cnplusl,cnplusldel) rin0,rinl,rin2,rin3,
i in8, i inl, i in2,i in3 -> rout8,routl,rout2,rout3,iout8, ioutl,iout2,iout3

ComReal [swl] (en,cnplusl,cnplusldel) rin8,rinl,rin2,rin3 -> -
rout8,routl,rout2,rout3

ComReal [swl] (en,cnplusl,cnplusldel) iin8,iinl,iin2,iin3 -> -
i out8,i outl,i out2,i out3

OPERATOR LineDeI [swl,len] rinl,rin2,rin3, i inl, i in2, i in3 ->
routl,rout2,rout3,ioutl,iout2,iout3

BI7DELAY [swl*len] rinl -> routl
BITDELAY [2*swl*len] rin2 -> rout2
BITDELAY [3*swl*len] rin3 -> rout3
BITEELAY [swl*len] iinl -> ioutl
BITDELAY [2*swl*len] i in2 -> iout2
BITDELAY C3*swl*len] iin3-> iout3

CHIP Pipe (pcl,pc2,pc3,pc4,pcE) prin0,prinl,prin2,prin3,
prcof1,prcof2,prcof3,p i cof1,p i cof2,p i cof3,prcof11,prcof12,prcof13,
p i cof11,p i cof12,p i cof13 -> prout0,proutl,prout2,prout3,p i out0, p i outl,p i out2, p i out3

SIGNAL rin0,rinl,rin2,rin3,rout0,routl,rout2,rout3, iout0, ioutl, iout2, iout3
SIGNAL rcofl,rcof2,rcof3,icofl,icof2,icof3,rcofll,rcofl2,rcofl3,

icof11,icof12,icof13
SIGNAL r0,rl,r2,r3,i0,il,i2, i3
SIGNAL rl0,rll.rl2,rl3,i!0,ill, i!2, i!3
SIGNAL r28,r21,r22,r23,i20,i21,i22,i23
SIGNAL r30,r31,r32,r33,i30,i31,532,i33
SIGNAL r48,r41,r42,r43,i48,i41,i42,i43
SIGNAL r58,r51,r52,r53,iS0,151,iS2,i53

-175-

SIGNAL r68,r61,r62,r63,i68,161,i62,163
SIGNAL r78,r71,r72,r73,178,171,172,173
SIGNAL r80,r81,r82,r83,188,181,182,183
SIGNAL r98,r31,r92,r93,138,131,132,133
CONTROL cl,c2,c3,c4,c5,c3del,c5del, c2a, c3a, c4a, c5a

PADIN (pcl,pc2,pc3,pc4,pc5 -> cl,c2,c3,c4,cS)
PADIN prin8,prinl,prin2,prln3 -> rin8,rinl,rin2,rin3
PADIN proof1,proof2,prcof3,pi cof1,p1cof2,p1cof3,prcof11,prcof12,prcof13,
picofll,picofl2,picofl3 -> rcofl,rcof2,rcof3,icofl,icof2,icof3,
rcofll,rcofl2,rcofl3,1cof11,1cof12,1cof13
PADOUT rout8,routl,rout2,rout3,iout8,ioutl,iout2,iout3 -> prout8,prautl,prout2,pro
p1out8,p i outl,p1out2,p1out3
PADORDER VDD, pc5, pel, pc2, pc3, pc4, pr i n8, pr i nl, pr i n2, pr i n3,
GND, CLOCK, prout8, proutl, prout2, prout3, p i out8, p i autl, p i out2, p i out3,

prcof1,prcof2,prcof3,p i cof1,p1cof2,p i caf3,prcof11,prcof12,prcaf13,
picof11,picof12,picof13

CONSTANT swl - 16,co - 12

Dft4 [swl] (cl) rin8,rinl,rin2,rin3,GND, GND, GND, GND -> -
r8,rl,r2,r3,18,11,12,i3

LineDel [swl,4] rl,r2,r3,11,12,13 -> -
rll,r!2,rl3,ill,i!2,i!3

Commutator Cswl] (c4a,c5a,c5deI) r8,rll,r!2,rl3,i8,
ill, 112,113.-> r28,r21,r22,r23,i28,121, 122, 123

LineDel [swl,4] p22,r21,r28,122,121,i28 -> -
r32,r31,r38,132,131,138

Twiddle [swl,co] (cl) r38,r31,r32,r23,138,131,132,123,
rcofl,rcof2,rcof3,icofl,icof2,icof3 -> r48,r41,r42,r43,
148,141,142,143

Dft4 [swl] (cl) r48,r41,r42,r43,148,141,142,143 ->-
r58,r51,r52,rS3,iB8,151,152,i53

LineDel [swl.l] r51,rS2,r53,151,152,153 -> -
r61,r62,r63,161,162,163

Commutator [swl] (c2a,c3a,c3deI) r58,r61,r62,r63,158,
161,i62,i63 -> r78,r71,r72,r73,178,171,172,173

LineDel Cswl,13 r72,r71,r78,172,171,178 -> -
r82,r81,r88,i82,181,188

Twiddle [swl,co] (cl) r88,r81,r82,r73,188,i81,182,173,
rcofll,rcofl2,rcofl3,icof11,icof12,icof!3 -> r98,r31,r32,r33,
138,131,132,133

Dft4 [swl] (cl) r38,r31,r32,r33,138,131,132,i33 -> -
rout8, routl,rout2,rout3,iout8,ioutl,iout2,iout3

CBITDELAY [swl+(swl/2H (c2 -> c2a)
CBITDELAY [3*swl] (c3 -> c3a)
CBITDELAY [swl] (c3a -> c3del)
CBITEELAY [3*swl-«-(swl/2)] (c4 -> c4a)
CBITDELAY [3*swl] (c5 -> c5a)
CBITDELAY [4*swl] (c5a -> cSdel)

-176-

OPERATOR CofSource [n,swl] (cl, e2) in-> out
! basic component of circular ROM, with associated read-only register
! latency is sul

SIGNAL const

CONSTGEN Cswl,n] (cl) -> const
MULTIPLEX [swl-1,1,9] (e2) in, const -> out

OPERATOR MuxCofs C a0 THROUGH 15, swl] (cl, e2 ->) -> soutl, sout2
! circular ROM with outputs arranged for the 2 stages of a 64-pt FFT

SIGNAL s0 TTOUGH 15

CofSource Ca0,swl] (cl, e2) si -> s8
Cof Source Cal,swl] (cl, e2) s2 -> si
Cof Source Ca2,swl] (cl, e2) s3 -> s2
CofSource Ca3,swl] (cl, e2) s4 -> s3
CofSource Ca4,swl] (cl, e2) s5 -> s4
Cof Source [a5,swl] (cl, e2) s6 -> s5
CofSource CaG.swl] (cl, e2) s7 -> s6
Cof Source Ca7,swl] (cl, e2) s8 -> s7
CofSource Ca8,swl] (cl, e2) s9 -> s8
CofSource [a9,swl] (cl, e2) s!8 -> s9
CofSource Cal8,swl] (cl, e2) sll -> s!0
CofSource Call,swl] (cl, e2) s!2 -> sll
CofSource [a!2,swl] (cl, e2) s!3 -> s!2
CofSource Cal3,swl] (cl, e2) s!4 -> s!3
Cof Source [a!4,swl] (cl, e2) s!5 -> s!4
CofSource [a!5,swl] (cl, e2) s0 -> s!5

! tap out at correct points to line up coeffs with RP at start of transform
! BITOELAY [swl-1] s!4 -> soutl
! BITDELAY [swl-1] s!0 -> sout2

BITDELAY [swl-1] s2 -> soutl
BITDELAY [swl-1] sll -> sout2

CHIP FftCofs (pel, pe2) -> psltlr, psltli, pslt2r, pslt2i,
pslt3r, pslt3i, ps2tlr, ps2tli, ps2t2r, ps2t2i, ps2t3r, ps2t3i

SIGNAL sltlr, sltli, slt2r, slt2i, slt3r, slt3i, s2tlr, s2tli,
s2t2r, s2t2i, s2t3r, s2t3i

CONTROL cl, e2, e2a

- 177-

PADIN (pel, pe2 -> cl, e2)
PADOUT sltlr, sltli, slt2r, slt2i, slt3r, slt3i, s2tlr, s2tli,

s2t2r, s2t2i, s2t3r, s2t3i -> psltlr, psltli, pslt2r, pslt2i,
pslt3r, pslt3i, ps2tlr, ps2tli, ps2t2r, ps2t2i, ps2t3r, ps2t3i

PADORDER VDD, pel, pe2, GND, CLOCK, psltlr, psltli, pslt2r, pslt2i,
pslt3r, pslt3i, ps2tlr, ps2tli, ps2t2r, ps2t2i, ps2t3r, ps2t3i

CONSTANT swl = 16
CONSTANT r0 = 2047, i0 = 0
CONSTANT rl = 2038, il = 65335
CONSTANT r2 = 2009, i2 = 65136
CONSTANT r3 = I960, i3 = 64941
CONSTANT r4 = 1892, 14 = 64752
CONSTANT r5 = 1806, i5 = 64571
CONSTANT r6 = 1703, i6 = 64398
CONSTANT rl = 1583, i7 = 64237
CONSTANT r8 = 1448, i8 = 64088
CONSTANT r3 = 1299, 19 = 63953
CONSTANT r!0 = 1138, i!0 = 63833
CONSTANT rll =965, i 11 = 63730
CONSTANT r!2 = 784, i!2 = 63644
CONSTANT r!3 = 595, i 13 = 63576
CONSTANT r!4 = 400, i14 = 63527
CONSTANT r!5 = 201, i!5 = 63498
CONSTANT r!6 = 0, i 16 = 63488
CONSTANT r!8 = 65136, i!8 = 63527
CONSTANT r20 = 64752, i20 = 63644
CONSTANT r21 = 64571, i21 = 63730
CONSTANT r22 = 64398, i22 = 63833
CONSTANT r24 = 64088, i24 = 64088
CONSTANT r26 = 63833, i26 = 64338
CONSTANT r27 = 63730, i27 = 64571
CONSTANT r28 = 63644, i28 = 64752
CONSTANT r30 = 63527, i30 = 65136
CONSTANT r33 = 63498, i33 = 201
CONSTANT r36 = 63644, i36 = 784
CONSTANT r33 = 63953, i39 = 1299
CONSTANT r42 = 64398, i42 = 1703
CONSTANT r45 = 64941, i45 = I960

! stage 1 twiddles
MuxCofs Cr0,r0,r0,r0,r4,r4,r4,r4,r8,r8,r8,r8,r!2,r!2,r!2,r!2,

swl] (cl, e2a) -> sltlr, NC
MuxCofs [i0,i0,i0,i0,i4,14,i4,i4,i8,i8,i8, i8,i!2,i!2,i!2,i!2,

swl] (cl, e2a) -> sltli, NC
MuxCofs Cr0,r0,r0,r0,r8,r8,r8,r8,r!6,r!6,r!6,r!6,r24,r24,r24,r24,

swl] (cl, e2a) -> slt2r, NC
MuxCofs Ci0,i0,i0,i0,i8,i8,i8,i8,i!6,i!6,i!6,i!6,i24,124,124,124,

swl] (cl, e2a) -> slt2i, NC
MuxCofs Er0,r0,r0,r0,r!2,r!2,r!2,r!2,r24,r24,r24,r24,r36,r36,r36,r36,

swl] (cl, e2a) -> slt3r, NC

-178-

MuxCofs [18,18,18,18,112,112,112,112,124,124,124,124,136,136, IX, 136,
swl] (cl, e2a) -> slt3i, NC

! stage 2 twiddles
MuxCofs Cr8,r4,r8,r!2,rl,r5,r9,r!3,r2,r6,r!8,r!4,r3,r7,rll,r!5,

swl] (cl, e2a) -> NC, s2tlr
MuxCofs [18,14,18,112,11,15,13,113,12,16,118,114,13,17,ill,i!5,

swl] (cl, e2a) -> NC, s2tli
MuxCofs [r8,r8,r!6,r24,r2,r!8,r!8,r26,r4,r!2,r28,r28,r6,r!4,r22,r38,

swl] (cl, e2a) -> NC, s2t2r
MuxCofs [18,18,116,124,12,118,118,126,14,112,128,128,16,114,122,138,

swl] (cl, e2a) -> NC, s2t2i
MuxCofs [r8,r!2,r24,r36,r3,r!5,r27,r39,r6,r!8,r38,r42,r3,r21,r33,r45,

swl] (cl, e2a) -> NC, s2t3r
MuxCofs [18,112,124,136,13,115,127,139,16,118,138,142,13,121,133,145,

swl] (cl, e2a) -> NC, s2t3i
CBI7DELAY [1] (e2 -> e2a)

CHIP CGen (-> pel, pc2, pc3, pc4, pc5)

CONTROL cl, c2, c3, c4, c5

PADOUT (cl, c2, c3, c4, c5 -> pel, pc2, pc3, pc4, pc5)
PADORDER VDD, pel, pc2, pc3, pc4, pcS, GND, CLOCK

CON7ROLGENERATOR (-> NC, cl, c2, c3, c4, cS)
CYCLE [16]
CYCLE [2]
CYCLE [2]
CYCLE [2]
CYCLE [2]

ENDCONTROLGENERATOR

CHIP FirDummy ps8, psl, ps2, ps3 -> pso8, psol, pso2, pso3

SIGNAL s8, si, s2, s3, so8, sol, so2, so3
PADIN ps8, psl, ps2, ps3 -> s8, si, s2, s3
PADOUT so8, sol, so2, so3 -> pso8, psol, pso2, pso3
PADORDER VDD, ps8, psl, ps2, ps3, GND, CLOCK, pso8, psol, pso2, pso3
CONSTANT swl =16

BI7DELAY [(2*swl)-l] s8 -> so8
BI7EELAY [(2*swl)-l] si -> sol
BI7DELAY [(2#swl)-l] s2 -> so2
BITDELAY [(2*swl)-l] s3 -> so3

-179 -

SYSTEM x (cl, ev2, ev6) date, datl, cof8, cofl -> route THROUGH 3,
ioute THROUGH 3

SIGNAL rcofl, icofl, rcof2, icof2, rcof3, icof3,
rcofll, icofll, .rcof!2, icof!2, rcof!3, icof!3

SIGNAL re THROUGH 3
CONTROL c2, c3, c4, c5

! note o/p Mires 1 & 2 crossed
Filter-Out (cl, evS) date, datl, cofB, cofl -> re, r2, rl, r3
Pipe (cl, c2, c3, c4, c5) re THROUGH 3, rcofl, rcof2,

rcof3, icofl, icof2, icof3, rcofll, rcof!2, rcof!3, icofll, icof!2,
icof!3 -> route, routl, rout2, rout3, ioute, ioutl, iout2, iout3

FftCofs (cl, ev2) -> rcofl, icofl, rcof2, icof2, rcof3, icof3,
rcofll, icofll, rcof!2, icof!2, rcof!3, icof!3

CGen (-> cl, c2, c3, c4, c5)

endofprogram

- 180-

Appendix B

FIRST Description of the Hard Model

! FIR section for PPN filter
! NB - notional CHIP FftCofs not included (see soft model)
j
OPERATOR F i IterSect i on [swI,cofres,muxI eve I,s i gn i f,bound] (cl,

ell, ev -> clout, evout) datain, cof -> dataout, multout

SIGNAL datadel, datade!2, cofsel, cofseI del, cofdelay
CONTROL evl, ev2, ev3

CONSTANT multdel = ((3 * cof res) / 2) + 2

MULTIPLY [1,cofres,1,0] (ell -> clout) datain, cofsel -> multout, datadel
UDRDDELAY Cmuxlevel-2,signif,0] (clout) datadel -> datadel2
BITDELAY [(2*swI)-(muItde14faound+2)] datadel2 -> dataout
MULTIPLEX [1,0,0] (ev) cofdelay, cof -> cofsel
UORDDELAY [muxlevel-l,cofres,0] (ell) cofsel -> cofseldel
BITDELAY [swl-2] cofseldel -> cofdelay

CUORDOELAY [7,0] (cl, ev -> evl)
CBITEELAY [swl-7] (evl -> ev2)
CUORDDELAY [7,0] (cl, ev2 -> ev3)
CBITDELAY [sw I - (7-toound)] (ev3 -> evout)

CHIP Section (pel, pev -> pclout, pevout) pdatain, pcof -> -
pmult0, pmultl, pdataout

SIGNAL datain, cof, mult0, multl, dataout, dataint
CONTROL cl, ell, clout, ev, evout, evint

PADIN (pel, pev -> cl, ev) pdatain, pcof -> datain, cof
PADOUT (clout, evout -> pclout, pevout) mult0, multl,

dataout -> pmult0, pmultl, pdataout
PADORDER VDD, pel, pev, pclout, pevout, pdatain, pcof, GND, CLOCK,

pmult0, pmultl, pdataout

CONSTANT sul = 16, cofres = 8, muxlevel = 16, signif = 8

Fi IterSection [swl,cofres,muxlevel,signif,0] (cl,
ell, ev -> clout, evint) datain, cof -> dataint, mult0

-181-

FiIterSection [swl,cofres,muxlevel,signif,l] (cl,
ell, evint -> NC, evout) dataint, cof -> dataout, multl

CBITEELAY Cl] (cl -> ell)

SUBSYSTEM FiIterCascade (cl, ev -> clout) datain,
cof -> prodaG THROUGH 5, prodbB THROUGH 5

SIGNAL mult0, multl, dataout
CONTROL cldummy, evout

Section (cl, ev -> cldummy, evout) -
datain, cof -> mult0, multl, dataout TIMES 6 UITH
(evout -> ev) dataout -> datain
mult8 = proda0 THROUGH 5
multl - prodb8 THROUGH 5
cldummy = clout, NC, NC, NC, NC, NC

OPERATOR Adder [del] (cl, ell, c!2) in0 THROUGH 5 -> out

SIGNAL s0 THROUGH 3

ADD [1,1,1,0] (cl) in0, inl, GND -> s0, NC
ADD [1,1,1,0] (cl) in2, in3, GND -> si, NC
ADD [1,1,1,0] (cl) in4, in5, GND -> s2, NC
ADD [1,0,0,0] (ell) s0, si, GND -> s3, NC
ADD [del-3,0,1,0] (c!2) s3, s2, GND -> out, NC

CHIP AddTree (pel) pina0 THROUGH 5, pinb0 THROUGH 5 -> psum0, psuml

SIGNAL ina0 TTOUGH 5, inb0 THROUGH 5, sum0, suml
CONTROL cl, ell, c!2, cla, clb

PADIN (pel -> cl) pina0 THROUGH 5, pinb0 THROUGH 5 -> -
ina0 THROUGH 5, inb0 THROUGH 5

PADOUT sum0, suml -> psum0, psuml
PADORDER VDD, pel, pina0 THROUGH 5, GND, psum0, psuml,

CLOCK, ,pinb0 THROUGH 5

CONSTANT swl = 16, cofres = 8
CONSTANT multdel = ((3 * cof res) / 2) + 2
CONSTANT del = (2 * swl) - (multdel + 7)

-182-

Adder [del] (cla, ell, c!2) ina8 TVROUGH 5 -> sum0
Adder [del] (clb, ell, c!2) inb0 THROUGH 5 -> suml
CBITEELAY [1] (cl -> da)
CBITTHJW [1] (cl -> clb)
CBITCELAY [1] (cla -> ell)
CBITDELAY [1] (ell -> c!2)

SUBSYSTEM Fir (cl, ev) dat0, datl, cof9, cofl -> out0 THROUGH 3

SIGNAL 30 TT-ROUGH 5, b0 THROUGH 5, z0 THROUGH 5, d0 THROUGH 5
CONTROL clout

FiIterCascade (cl, ev -> clout) dat0,
cof0 -> a0 THROUGH 5, b0 THROUGH 5

FiIterCascade (cl, ev -> NC) datl,
cofl -> z0 THROUGH 5, d0 THROUGH 5

! outputs 1 & 2 crossed over
AddTree (clout) 30 THROUGH 5, b0 THROUGH 5 -> out0, out2
AddTree (clout) z0 THROUGH 5, d0 THROUGH 5 -> outl, out3

! Rad i x-4 64-po i nt p i peIi ne FFT
! Dft4 is minimsl-lstency
j
OPERATOR Dft2 [pre0,prel] (cl) rin0,rinl,iin0,iinl -> route,routl,
iout0,ioutl

ADD [I,pre0,prel,0] (cl) rin0,rinl,GND -> rout0,NC
SUBTRACT [I,pre0,prel,0] (cl) rin0,rinl,GND -> routl.NC
ADD [I,pre0,prel,0] (cl) i in0, i inl,GND -> iout0,NC
SUBTRACT [I,pre0,prel,0] (cl) i in0, i inl.GND -> ioutl,NC

CHIP Dft4 (pel) prin0 TVftOUGH 3, pi in0 THROUGH 3 -> -
prout0 THROUGH 3, piout0 THROUGH 3

SIGNAL rin0 THROUGH 3, i in0 THROUGH 3,
rout0 THROUGH 3, iout0 THROUGH 3

SIGNAL r0,rl,r2,r3,i0,II,i2,13
CONTROL cl, ell, c!2a, c!2b
PADIN (pel -> cl) prin0 THROUGH 3, pi in0 THROUGH 3 ->

Hn0 THROUGH 3, i in0 THROUGH 3
PADOUT rout0 THROUGH 3, iout0 THROUGH 3 -> -

prout0 TmOUGH 3, piout0 THROUGH 3
PADORDER VDD, prin0 THROUGH 3, pi in0 THROUGH 3, GND,

-183-

pcl, CLOCK, prout0 THROUGH 3, piout0 THROUGH 3

CONSTANT sul « 16

Dft2 [0,0] (cl) Hn0,rin2,5in0, iin2 -> r0,rl, i0, il
Dft2 Cl.l] (ell) rinl,rih3,iinl,iin3 -> r2,r3,i2,i3
Dft2 Cl,0] (c!2a) r0,r2,i0,12 -> rout0,rout2,iout0,iout2
Dft2 [1,0] (c!2b) rl,J3,il,r3 -> routl,rout3,iout3,ioutl

CBITEELAY [1] (cl -> ell)
CBITTHJW [1] (ell -> c!2a)
CBITTEJW [1] (ell -> c!2b)

CHIP CmplxMul (pel) prin,piin,prcof,picof -> prout,piout

SIGNAL rin,i in,rcof,icof.rout,iout
SIGNAL s0,sl,s2,s3
CONTROL cl, ell

PADIN (pel -> cl) prin,piin,prcof,picof -> rin,iin,rcof,icof
PADOUT rout, iout -> prout, pi out
PADORDER VDD, pel, prin,piin,prcof,picof,GND,CLOCK, prout,pi out

CONSTANT swl = IB, co = 12
CONSTANT multdel = ((3 * co) / 2) +2

MULTIPLY Cl,co,0,0] (cl -> ell) rin,rcof -> s0f NC
MULTIPLY [l,co,0,0] (cl -> NC) i in, icof -> sl,NC
MULTIPLY Cl,co,0,0] (cl -> NC) rin, icof -> s2,NC
MULTIPLY [l,co,0,0] (cl -> NC) iin,rcof -> s3,NC
SUBTRACT [(2*swl)-(multdel-fS),0,0,0] (ell) s0,sl,GND-> rout.NC
ADD [(2*swl)-(multdel45),0,0,0] (ell) s2,s3,GND-> iout,NC

SUBSYSTEM Twiddle (cl) rinl THROUGH 3, iinl THROUGH 3,
rcofl,rcof2,rcof3,icofl,icof2,icof3 -> routl THROUGH 3,
ioutl THROUGH 3

CmplxMul (cl) rinl,iinl,rcofl, icofl -> routl,ioutl
CmplxMul (cl) rin2,iin2,rcof2,icof2 -> rout2,iout2
CmpIxMuI (cl) ri n3,i i n3,rcof3,i cof3 -> rout3,i out3

OPERATOR ComReal [sul] (cn,cnplusl,cnplusldel) in0 THROUGH 3 -> -

-184-

out0 THROUGH 3

SIGNAL r0,rl,r2,r3

MULTIPLEX
MULTIPLEX
MULTIPLEX
MULTIPLEX
MULTIPLEX
MULTIPLEX
MULTIPLEX
MULTIPLEX

Cswl/2,0,0] (cnplusl) in2, in0->r0
Cswl/2,0,0] (cnplusldel) in3, inl -> rl
Cswl/2,0,0] (cnplusl) in0, in2 -> r2
Cswl/2,0,0] (cnplusldel) inl, in3 -> r3
Cswl-((swl/2)+l),0,0] (en) rl,r0 -
Cswl-((swl/2)+l),0,0] (en)
Cswl-((swl/2)+l),0,0] (en)
Cswl-((swl/2)+l),0,0] (en)

out0
r0,rl -> autl
r3,r2 -
r2,r3 -

out2
out3

OPERATOR Dell2 Cswl] in -> out

SIGNAL s0 THROUGH 4

BITOELAY C2*swl] in -> s0
BITOELAY C2*swl] s0 -> si
BITCELAY C2*swl] si -> s2
BITDELAY C2*swl] s2 -> s3
BI7T3ELAY C2*swl] s3 -> s4
BITDELAY C2*swl] s4 -> out

j -
OPERATOR DelS Cswl] in -> out

SIGNAL s0 THROUGH 2

BITDELAY C2*swl] in -> s0
BITDELAY C2*swl] s0 -> si
BITEELAY C2*swl] si -> s2
BITDELAY C2*swl] s2 -> out

OPERATOR Del4 Cswl] in -> out

SIGNAL s0

BITDELAY C2*swl] in -> s0
BITDELAY C2*swl] s0 -> out

185-

OPERATOR Del3 [swl] in -> out

SIGNAL s0

BITEELAY [2*swl] in -> s0
BITDELAY [swl] s8 -> out

OPERATOR Del2 [swl] in -> out

BITDELAY [2*swl] in -> out

OPERATOR Dell [sull in -> out

SIGNAL s0, si

BITDELAY CsMl/3] in -> s0
BITDELAY Csul/3] s0 -> si
BITDELAY [swl-(2*(swl/3))] si -> out

OPERATOR Shuff Ie4 [swl] (c4, c5, cSdel) in0 THROUGH 3 ->
out0 THROUGH 3

SIGNAL al THROUGH 3, b0 THROUGH 2

Del4 [swl] inl -> al
Del8 [swl] in2 -> a2
Dell2 [swl] 5n3 -> a3
ComReal [swl] (c4 f c5,c5del) 5n0, al THROUGH 3 -> -

b0 THROUGH 2, out3
Del12 [swl] b0 -> out0
Del8 [swl] bl -> outl
Del4 [swl] b2 -> out2

OPERATOR Shuff lei [swl] (c2, c3, c3del) in0 THROUGH 3 ->
out0 THROUGH 3

SIGNAL al THROUGH 3, b0 THROUGH 2

Dell [swl] inl -> al

-186-

Del2 [swl] in2 -> a2
Del3 [swl] in3 -> a3
Confleal [swl] (c2, c3, c3de I) inB, al THROUGH 3 -> -

b0 THROUGH 2, out3-
Oel3 [swl] b0 -> outO
Del2 [swl] bl -> outl
Dell [swl] b2 -> out2

CHIP Commute (pc2, pc3, pc4, pc5) pina8 THROUGH 3,
pinbB THROUGH 3 -> poutaB THROUGH 3, poutb0 THROUGH 3

SIGNAL ina8 THROUGH 3, inb0 THROUGH 3,
outaB THROUGH 3, outbB THROUGH 3, aB, bB

CONTROL c2, c3, c4, c5, c31, c32, c3del, c51, cBdel

PADIN (pc2, pc3, pc4f pcS -> c2, c3f c4 ? c5)
PADIN pina8 THROUGH 3, pinb8 THROUGH 3 -> -

ina0 THROUGH 3, inb8 THROUGH 3
PADOUT outaB THROUGH 3, outbB THROUGH 3 -> -

poutaB THROUGH 3, poutbB THROUGH 3
PADORCER VDD, pc2, pina9 THROUGH 3, pinbB THROUGH 3, GND,

pc3, pc4, pc5, CLOCK, poutaB THROUGH 3, poutbB THROUGH 3

CONSTANT swl =16

ShuffIe4 [swl] (c4, c5, cBdel) inaB THROUGH 3 -> -
a8, outal THROUGH 3

Shufflei Csul] (c2, c3, c3del) inbB THROUGH 3 -> -
bB, outbl THROUGH 3

! tw i ddIe compensat i on for Ii ne 8
BITDELAY C(2*swl)-4] aB -> outaB
BITEELAY [(2*swl)-4] bB -> outbB

! CBITDELAY [swl] (c3 -> c3del)
CBITDELAY [swl/3] (c3 -> c31)
CBITDELAY Cswl/33 (c31 -> c32)
CBITDELAY [swl-(2*(swl/3))] (c32 -> c3del)
CBITDELAY [2*swl] (c5 -> c51)
CBITDELAY [2*swl] (c51 -> cBdel)

CHIP Dummy (pel) -> pout
SIGNAL out
CONTROL cl
PADIN (pel -> cl)
PADOUT out -> pout
PADORDER VDD, GND, CLOCK, pel, pout

- 187-

ADD [15-4,8,0,0] (cl) GND, GND, GND -> out, NC

SUBSYSTEM Pipe (cl,cld,c2,c3,c4,c5) rin0 THROUGH 3, rcofl,rcaf2,rcaf3,
icofl,icof2,icof3,rcofll,rcofl2,rcofl3,icofll,icof!2,
icof!3 -> rout0 THROUGH 3, iout0 TT-FOUGH 3

SIGNAL r0,rl,r2,r3,i0,il,i2,i3
SIGNAL r!0,rll,rl2,rl3,i!0,ill,i12,i13
SIGNAL r21,r22,r23,121,i22,523
SIGNAL r30,r31,r32,r33,530,531,532,533
SIGNAL r40,r41,r42,r43,i40,541,542,543
SIGNAL r51,r5Z,r53,551,552,553
SIGNAL dumgnd

Dummy (cl) -> dumgnd
Dft4 (eld) rin0 THROUGH 3, dumgnd, dumgnd, dumgnd, dumgnd -> -

r0 THROUGH 3, 50 THROUGH 3
Commute (c2, c3, c4, c5) r0 THROUGH 3,

r30 THROUGH 33 -> r!0 THROUGH 13, r40 THROUGH 43
Commute (c2, c3, c4, c5) 50 THROUGH 3,

530 TVFOJGH 33 -> 510 THROUGH 13, 540 THROUGH 43
Twiddle (cl) rll THROUGH 13, ill THROUGH 13,

rcofl,rcof2,rcof3,icofl,5cof2,5cof3 -> r21 THROUGH 23,
521 THROUGH 23

Dft4 (eld) r!0, r21 THROUGH 23, 510, 521 THROUGH 23 -> -
r30 THROUGH 33, 530 THROUGH 33

Twiddle (cl) r41 THROUGH 43, i41 THROUGH 43,
rcofll,rcofl2,rcof!3,icofll,icof12,5cofl3 -> r51 THROUGH 53,
551 THROUGH 53

Dft4 (eld) r40, r51 THROUGH 53, 540, 551 THROUGH 53 -> -
rout0 THROUGH 3, 5out0 THROUGH 3

CHIP CGen (-> pel, pcld, pc2, pc3, pc4, pc5)

CONTROL cl, eld, c2, c3, c4, c5, c41, c51, c2i, c3i, c4i, c5i

PADOUT (cl, eld, c2, c3, c4, c5 -> pel, pcld, pc2, pc3, pc4, pc5)
PADORDER VDD, pel, pcld, pc2, pc3, pc4, pc5, GND, CLOCK

CONSTANT swl =16

CONTOLGENERATOR (-> NC, cl, c2i, c3i, c4i, c5i)
CYCLE [swl]
CYCLE [2]
CYCLE [2]
CYCLE [2]

-188-

CYCLE CZI
ENDCONTTOLGENERA7DR

! special cl line for Dft4 chips
CBITDELAY [swl-4] (cl -> eld)

! c2 delayed by 1.5 words
CBITDELAY Cswl+(swl/2)] (c2i -> c2)

! c3 delayed by 1 words
CBITDELAY [swl] (c3i -> c3)

! c4 delayed by 2.5 words
CBITDELAY Cswl] (c4i -> c41)
CBITDELAY [swl+(swl/2)] (c41 -> c4)

! c5 delayed by 2 words
CBITDELAY [swl] (c5i -> c51)
CBITDELAY [swl] (c51 -> c5)

SYSTEM x (cl, ev2, ev6) dat0, datl, cof8, cofl -> -
route THOJGH 3, iout0 THROUGH 3

SIGNAL rcofl, icofl, rcof2, icof2, rcof3, icof3,
rcofll, icofll, rcof!2, icof!2, rcof!3, icof!3

SIGNAL r0 THROUGH 3
CONTROL eld, c2, c3, c4, c5

Fir (cl, ev6) dat0, datl, cof0, cofl -> r0 THROUGH 3
• Pipe (cl, eld, c2, c3, c4, c5) r0 THROUGH 3, rcofl, rcof2,

rcof3, icofl, icof2, icof3, rcofll, rcof!2, rcof!3, icofll, icof!2,
icoflS -> rout0, routl, rout2, rout3, iout0, ioutl, iout2, iout3

FftCofs (cl, ev2) -> rcofl, icofl, rcof2, icof2, rcof3, icof3,
rcofll, icofll, rcof!2, icof!2, rcof!3, icof!3

CGen (-> cl, eld, c2, c3, c4, c5)

endofprogram

-189-

Appendix C

RNL description of the twin-pipe complex multiplier

The following functional description of a complex multiplier primitive reflects
many of the concepts contained in this thesis. This architecture uses distributed
arithmetic for savings in transistor count, and twin-pipe operation for increased
throughput. Interfaces in this case are bit-parallel. Many of the design capture
techniques proposed for SECOND are illustrated by this example.

The design contains 4 levels of functional hierarchy. Each level starts with a
call to a 'library' at the next lower level, and a declaration of internal nodes.

At the top level (LEVEL 0), such nodes are abstract - they contain no infor­
mation about the number of bits in the signal, or whether it is single-pipe, twin-pipe
etc. Thus at this level the design is captured not only in technologically-
independent form, but also in operationally-independent form. The parameter n is
passed to each constituent element (here value assignment to n is accomplished via
the 'setq' statement, although in actuality a higher level of hierarchy would pass this
parameter down). The RNL code relates closely to Figure 6.3(b) (with the addition
of PISOs for data distribution). This is an appropriate level of abstraction for mani­
pulation of matrix-vector architectures - for instance this complex multiplier descrip­
tion was derived from a 2-point inner-product computer description by simply
instantiating a second CSAS computer (one line of RNL code). Only functional
binding is performed at this level.

The next level down (LEVEL 1) reveals the contents of the high-level compu­
tational elements, and it is here that operational binding (to the twin-pipe architec­
ture) occurs. The parameter n is used as final value for a loop construct, with / as
the variable. The abstract nodes may take two extensions - the first denotes JJL and
TT-timing (0 and 1 respectively), and the second corresponds to some function of the
current value of i.

The next level (LEVEL 2) reveals the logic blocks (as mixed transistor trees),
and the half-latch associated with each block. An exception is the ripple-carry

-190-

adder, which is asynchronous and fully static. The final hierarchical level (LEVEL
3) is the latch library.

Note that this hierarchy relates to the functional manipulation of logic ele­
ments. Physical manipulation requires a different hierarchy, as described in
Chapter 8. User-inserted 'type' parameters in the functional hierarchy may be used
by physical assembly routines for efficient primitive composition. However this
facility has not yet been implemented.

; LEVEL 8
(load "xmultlib.net")
(node died clod hold Isb msb rd re id ic gdatl gdat2 datl dat2
pipl pip2 sell se!2 rp rlop ip ilop elk)
(setq n 6)
(piso n gdatl rd dlod elk)
(piso n gdat2 id dlod elk)
(pipo n pipl re clod elk)
(pipe n pip2 ic clod elk)
(select n sell se!2 datl dat2 gdatl gdatZ pipl pip2)
(csas n rp rlop datl sell pipl Isb msb hold elk)
(csas n ip i lop dat2 se!2 pip2 Isb msb hold elk)

; LEVEL 1
(Ioad "/i sg/sgs/rnI/1og i c/1og i cIi b. net")
(macro pi so (n out pi par load elk)
(local dat)

(repeat i 1 n
; PISO stage

(muxjnu dat.8.i pipar.i load dat.l.(- i 1) elk)
(pisolo dat.l.i dat.8.(- i 1) elk)

)
; broadcast buffers

(musolo out.O dat.l.n elk)
(pisolo out.l dat.B.n elk)

; s i gn-repet i t i on connect i ons
(connect dat.1.8 dat.1.1)
(connect dat.8.8 dat.8.1)

)
(macro pipo (n out pipar load elk)

(repeat i 1 n
; PIPO stage

(muxjnu out.8. i pipar. i load out.l.i elk)
(pisolo out.l. i out.8. i elk)

191 -

(macro select (n sell se!2 datol dato2 datl dat2 pi pi pip2)
(local dl d2)

(repeat i 1 n
; input data buffering

(musolo dl.0. i datl.l elk)
(musolo d2.9. i datZ.l elk)
(pisolo dl.l.i datl. 8 elk)
(pisolo d2.1. i dat2.8 elk)

; delay for output data
(pisolo datol. 1. i dl.0. i elk)
(pisolo dato2.1.i d2.8. i elk)
(musolo datol. 0. i dl.l.i elk)
(musolo dato2.0. 5 d2.1.i elk)

; se I ect i on
(select_pi sell.l.i dl.0. i d2.0. i pipl.0. i pip2.0. i elk)
(select_pi se!2.1. i dl.0. i d2.0. i pip2.0. i pipl.0. i elk)
(selectjnu sell.0. i dl.l.i d2.1. i pipl.l. i pip2.1.i elk)
(selectjnu se!2.0. i dl.l.i d2.1. i pip2.1. i pipl.l. i elk)

(macro csas (n p lop dat sel erin Isb msb hold elk)
(local pps car bp a b er ripcar Isb I msb I dd inc inccar Isbi)

(repeat i 1 n
; local control buffering and delay

(p i so I o msb I . i msb c I k)
(muso I o I sb I . i I sb c I k)

; bit-product formation
(xor_pi bp.l. i sel.0. i dat.0. i elk)
(xorjnu bp. 8. i sel.l.i dat.l. i elk)

; delayed error compensation signal
(musolo er. i erin.l.i elk)

; main CSAS computer
(olscar_pi car.l. i bp.0. i pps.0. (- i 1) er. i car.0. i Isbl.i elk)
(olssum_pi pps.l. i bp.0. i er. i pps.0. (- i 1) car.0. i Isbl.i elk)
(omscarjnu car.0. i bp.l.i msbl.i pps. 1. (- i 1) car.l.i elk)
(omssumjnu pps. 0. i bp.l.i msbl.i pps. 1. (- i 1) car.l.i elk)

; ripple-adder with holding latches
(pihold a. i pps.0. (- i 1) hold elk)
(pi ho Id b. i car.0. i hold elk)
(ripcsap. i ripcar. i a. i b. i ripcar. (+ i 1))

)
; s i gn-repet i t i on connect i ons for ma i n CSAS computer

(connect pps. 0.0 pps. 0.1)
(connect pps. 1.0 pps. 1.1)

; data delays and msb- treatment on feed to incrementing adder
(musolo dd.0 dat.l.n elk)
(pisolo inc. 1 dd.0 elk)
(pisolo dd. 1 dat.0.n elk)
(xorjnu inc.0 dd. 1 msbl.n elk)

-192-

delayed control feed to incrementing adder
(pisolo Isbi Isbl.n elk)

incrementing adder
(evcarjnu inccar.0 inccar.l Isbi inc.l pps.l.n elk)
(evsumjnu Iop.8 inc.l pps.l.n inccar.l Isbi elk)
(car_pi inccar.l inc.0 pps.B.n inccar.0 elk)
(sum_pi lop.l inc.0 pps.0.n inccar.0 elk)

final ripple-adder stage and holding latches
(pihold ripcar.(+ n 2) inc.0 hold elk)
(pihold a. (+ n 1) pps.0.n hold elk)
(pihold b.(+ n 1) inccar.0 hold elk)
(ripcsa p. (+ n 1) ripcar. (+ n 1) a. (+ n 1) b. (-1- n 1) ripcar. (+ n 2))

; LEVEL 2
(Ioad "/i sg/sgs/rnI/1atch/1atchIi b.net")
(macro ripcsa (sum car a b c)
(local nS n9 n8 p4 n20 n!9 p!5 p!8 p!7 p!4)
(ptrans a sum h6 4 3)
(etrans a sum n20 4 3)
(ptrans a sum p!5 4 3)
(etrans a sum p4 4 3)
(ptrans b nS n9 4 3)
(etrans b nS n8 4 3)
(ptrans c n9 Gnd 4 3)
(etrans c n8 Gnd 4 3)
(ptrans b p4 p!7 4 3)
(etrans b p4 p!8 4 3)
(ptrans a car n20 4 3)
(ptrans b car n!9 4 3)
(etrans a car p!5 4 3)
(etrans b car p!4 4 3)
(ptrans b n20 nS 4 3)
(etrans b n20 n9 4 3)
(ptrans c n!9 Gnd 4 3)
(ptrans b p!5 p!8 4 3)

x(etrans b plS p!7 4 3)
(etrans c plS Vdd 4 3)
(ptrans c p!7 Vdd 4 3)
(etrans c p!4 Vdd 4 3)
)
(macro olscar_pi (out PIP B ER C LSB elk)
; seIect i on (3) from oI scar_pi.tre
(local top bot N4 N8 N7 N2 N3)
(etrans PIP top N4 4 3)
(etrans B top N2 4 3)
(etrans B N4 N8 4 3)
(etrans ER N4 N7 4 3)
(etrans C N4 N8 4 3)

-193

(ptrans LSB N8 bot 4 3)
(etrans LSB N7 bat 4 3)
(etrans C N2 N3 4 3)
(ptrans LSB N3 bat 4 3)
(pi out top bat elk)

(macro olssumjai (out PIP ER B C LSB elk)
; selection (18) from oIssumjji.tre
(local top bat N5 Nil N18 N8 N9 N2)
(ptrans PIP top NB 4 3)
(etrans PIP top N2 4 3)
(etrans ER NB Nil 4 3)
(ptrans B NB N18 4 3)
(etrans B NB N8 4 3)
(etrans LSB Nil bot 4 3)
(etrans C N18 N9 4 3)
(ptrans C N8 N9 4 3)
(ptrans LSB N9 bot 4 3)
(ptrans ER N2 Nil 4 3)
(ptrans B N2 N8 4 3)
(etrans B N2 N18 4 3)
(pi out top bot elk)

(macro carjnu (out A B C elk)
; se I ect i on (8) from carjnu. tre
(local top bot N3 N2)
(ptrans A top N3 4 3)
(ptrans B top N2 4 3)
(ptrans B N3 bat 4 3)
(ptrans C N3 bot 4 3)
(ptrans C N2 bot 4 3)
(mu out top bot elk)

(macro sumjnu (out A B C elk)
; selection (8) from sumjnu.tre
(local top bot N4 N7 N6 N2)
(ptrans A top N4 4 3)
(etrans A top N2 4 3)
(ptrans B N4 N7 4 3)
(etrans B N4 N6 4 3)
(ptrans C N7 bot 4 3)
(etrans C N6 bot 4 3)
(ptrans B N2 N6 4 3)
(etrans B N2 N7 4 3)
(mu out top bot elk)

(macro muxjnu (out HISEL CTRL LOSEL elk)
; selection (8) from muxjnu.tre
(local top bot N3 N2)
(ptrans HISEL top N3 4 3)
(ptrans CTRL top N2 4 3)

- 194-

(etrans CTRL N3 bot 4 3)
(ptrans LOSEL N2 bot 4 3)
(mu out top bot elk)

(macro selectjai (out DATA1 DATA2 PIP1 PIP2 elk)
; selection (5) from seIectJDi.tre
(local top bot N4 N7 N6 N2)
(ptrans DATA1 top N4 4 3)
(etrans DATA1 top N2 4 3)
(ptrans DATA2 N4 N7 4 3)
(etrans DATA2 N4 N6 4 3)
(etrans PIP1 N7 bot 4 3)
(etrans PIP2 N6 bot 4 3)
(ptrans DATA2 N2 N6 4 3)
(etrans DATA2 N2 N7 4 3)
(pi out top bot elk)

(macro selectjnu (out DATA1 DATA2 PIP1 PIP2 elk)
; selection (5) from seIectjnu.tre
(local top bot N4 N7 N6 N2)
(ptrans DATA1 top N4 4 3)
(etrans DATA1 top N2 4 3)
(ptrans DATA2 N4 N7 4 3)
(etrans DATA2 N4 N6 4 3)
(ptrans PIP1 N7 bot 4 3)
(ptrans PIP2 N6 bot 4 3)
(ptrans DATA2 N2 N6 4 3)
(etrans DATA2 N2 N7 4 3)
(mu out top bot elk)
) *
(macro car_pi (out A B C elk)
; selection (0) from carjDi.tre
(local top bot N3 N2)
(etrans A top N3 4 3)
(etrans B top N2 4 3)
(etrans B N3 bot 4 3)
(etrans C N3 bot 4 3)
(etrans C N2 bot 4 3)
(pi out top bot elk)

(macro sumjDi (out A B C elk)
; selection (0) from sumjai.tre
(local top bot N4 N7 MB N2)
(ptrans A top N4 4 3)
(etrans A top N2 4 3)
(ptrans B N4 N7 4 3)
(etrans B N4 N6 4 3)
(etrans C N7 bot 4 3)
(ptrans C N6 bot 4 3)
(ptrans B N2 N6 4 3)
(etrans B N2 N7 4 3)

-195-

(pi out top bot elk)
)
(macro evcarjnu (out C LSB A B elk)
; seIect i on (5) from evcarjnu.tre
(local top bot N4 N3)
(ptrans C top N4 4 3)
(etrans LSB top N4 4 3)
(ptrans A top N3 4 3)
(ptrans A N4 bot 4 3)
(ptrans B N4 bat 4 3)
(ptrans B N3 bot 4 3)
(mu out top bot elk)
)
(macro evsumjnu (out ABC LSB elk)
; seIect i on (8) from evsumjnu.tre
(local top bot N4 N8 N6 N7 N2)
(ptrans A top N4 4 3)
(etrans A top N2 4 3)
(ptrans B N4 N8 4 3)
(etrans B N4 N6 4 3)
(ptrans C N8 bot 4 3)
(etrans LSB N8 bot 4 3)
(etrans C N6 N7 4 3)
(ptrans LSB N7 bot 4 3)
(ptrans B N2 N6 4 3)
(etrans B N2 N8 4 3)
(mu out top bot elk)
)
(macro xorjnu (out A B elk)
; se I ect i on (8) from xorjnu. tre
(local top bat N3 N2)
(ptrans A top N3 4 3)
(etrans A top N2 4 3)
(ptrans B N3 bot 4 3)
(etrans B N2 bot 4 3)
(mu out top bot elk)
)
(macro xorjai (out A B elk)
; selection (8) from xorjp i. tre
(local top bot N3 N2)
(ptrans A top N3 4 3)
(etrans A top N2 4 3)
(etrans B N3 bat 4 3)
(ptrans B N2 bot 4 3)
(pi out top bot elk)
)
(macro notjoi (out A elk)
; selection (8) from notjp\ . tre
(local top bot)
(ptrans A top bot 4 3)
(pi out top bot elk)

-196-

(macro omscarjnu (out A MSB B C elk)
; selection (0) from omscarjnu.tre
(local top bot N5 N8 N7 N2 N4)
(ptrans A top N5 4 3)
(etrans A top N2 4 3)
(ptrans MSB N5 N8 4 3)
(ptrans B N5 N7 4 3)
(ptrans B N8 bot 4 3)
(ptrans C N8 bot 4 3)
(ptrans C N7 bot 4 3)
(etrans USB N2 N8 4 3)
(ptrans B N2 N4 4 3)
(ptrans C N4 bot 4 3)
(mu out top bot elk)
)
(macro omssumjnu (out A MSB B C elk)
; seIect i on (0) from omssumjnu.tre
(local top bot N4 N10 N6 N9 MS N2)
(ptrans A top N4 4 3)
(etrans A top N2 4 3)
(ptrans MSB N4 N10 4 3)
(etrans MSB N4 N6 4 3)
(ptrans B N10 N8 4 3)
(etrans B N10 N9 4 3)
(ptrans B N6 N9 4 3)
(etrans B N6 N8 4 3)
(etrans C N9 bot 4 3)
(ptrans C N8 bot 4 3)
(ptrans MSB N2 N6 4 3)
(etrans MSB N2 N18 4 3)
(mu out top bot elk)

; LEVEL 3
(macro pi latch (out in elk)
(local outbar mid)
(ptrans elk in outbar 4 3)
(etrans out outbar mid 4 3)
(etrans elk Gnd mid 4 3)
(ptrans outbar Vdd out 4 3)
(etrans outbar Gnd out 4 3)
)
(macro mulatch (out in elk)
(local outbar mid)
(etrans elk in outbar 4 3)
(ptrans out outbar mid 4 3)
(ptrans elk Vdd mid 4 3)
(ptrans outbar Vdd out 4 3)

-197-

(etrans outbar Gnd out 4 3)
)
(macro pi sense (out top bot elk)
(ptrans elk Vdd top 4 3)
(etrans elk Gnd bot 4 3)
(ptrans out bot top 4 3)
(ptrans bot Vdd out 4 3)
(etrans bot Gnd out 4 3)
)
(macro musense (out top bot elk)
(ptrans elk Vdd top 4 3)
(etrans elk Gnd bot 4 3)
(etrans out bot top 4 3)
(ptrans top Vdd out 4 3)
(etrans top Gnd out 4 3)
)
(macro pi (out top bot elk)
(Ioca I i nv)
(pisense inv top bot elk)
(pi latch out inv elk)
)
(macro mu (out top bot elk)
(I oca I i nv)
(musense inv top bot elk)
(mulatch out inv elk)
)
(macro pi ho Id (out in hold elk)
(local inv held)
(ptrans in inv Vdd 4 3)
(etrans in inv Gnd 4 3)
(etrans hold inv held 4 3)
(pi latch out held elk)
)
(macro muhold (out in hold elk)
(local inv held)
(ptrans in inv Vdd 4 3)
(etrans in inv Gnd 4 3)
(ptrans hold inv held 4 3)
(mulatch out held elk)
)
(macro pi solo (out in elk)
(Ioca I i nv)
(ptrans in inv Vdd 4 3)
(etrans in inv Gnd 4 3)
(pi latch out inv elk)
)
(macro musolo (out in elk)
(I oca I i nv)
(ptrans in inv Vdd 4 3)
(etrans in inv Gnd 4 3)
(mulatch out inv elk)

-198-

Next we list the MOSYN descriptions of the logic blocks used. In this case
PRESYN was not used, i.e. the descriptions are operationally fixed (as twin-pipe).
In the case of TT-timed output, conductance of the logic tree is required when the
function is true. In the case of n-timed output, conductance of the logic tree is
required when the function is false.

; mu carry function
*function carmu
CH: major(A,B,C)
else C9

; pi carry function
*f unction carpi
C9: major(A,B,C)
else CH

; mu carry function with clearable C
*f unction evcarmu
CH: major(A,B,and(C,not(LSB)))
else CO

; mu sum function with clearable C
*function evsummu
CH: xor(A,B,and(C,not(LSB)))
else C0

; mu multiplexer
*function muxmu
CH: or (and (HISEL, CTRL), and (LOSEL, not (CTRL)))
else C0

; pi not function
*function notpi
C9: not (A)
else CH

; carry function with clearable B and loadable C
*function oI scarpi
C0: major(PIP,and(B,not(LSB)),or(and(ER,LSB),and(C,not(LSB))))
else CH

; sum function with clearable B and loadable C
*function olssumpi
C8: xor (PIP, and (B, not (LSB)), or (and (ER, LSB), and (C, not (LSB))))
else CH

-199-

; A + B carry function with ripple-carry
*function car
Cl: major(A,B,C)
else C0
; A + B sum funct i on w i th ri ppIe-carry
*function sum
Cl: xor(A,B,C)
else C8

; mu PIP selector
*function selectmu
CH: or(and(PIPI,not(xor(DATAl,DATA2))),and(PIP2,xor(DATAl,DATA2)))
else C0

; pi PIP selecter
*function selectpi
C8: or (and(PIP1,not(xor(DATAl,DATA2))),and(PIP2,xor(DATAl,DATA2)))
else CH

; mu sum function
*function summu
CH: xor(A,B,C)
else C0

; pi sum function
*function sumpi
C0: xor(A,B,C)
else CH

; mu xor function
*function xormu
CH: xor(A,B)
else C0

; pi xor function
*function xorpi
C8: xor(A,B)
else CH

Simulation

The model was exercised under various input patterns. The task of the com­

plex multiplier was to perform the calculation: E = AC - BD, F = AD + EC. In

each case, the correct result was observed. One such example is given below, for

the conditions:

-200-

variable

A
B

PIP1
PIP2

C
D

E
F

sim.name

rd
id
ic
re

rp
ip

expression

-%(PIP1 + PIP2)
-%(PIP1-PIP2)

AC-BD
AD+BC

binary

001100
001101
001110
001111

111010110001
111001111011

decimal

12
13
14
15

-29
-1

-335
-389

The drive file is shown below, followed by the simulation output. The top 7
bits of real and imaginary product terms are bunched, parallel outputs, while the
bottom 5 bits are in twin-pipe serial form, starting with the JJL-timed LSB (rlop.O
and ilop.O) at time = 90.

(load "uwstd.I") '
(load "eustd.I")
(read-network "xmult.bin")
(setq incr 100)
(log-file "xmult.res")
I
sim-init
V elk Ihlhlhlhlhlhlh
V dlod hhlllll
V clod llhhlll
V Isb hhhhhhl
V msb III III I
V hold Illllll

MINI
MINI
llhhhh
Ihhlll
lllhhl

I rd.l rd.2 rd.5 rd.6
h

id.l id.2 id.5 rc.l re.2 re.6 ic.l ic.2
rd.3 rd.4 id.3 id.4 id.6 re.3 re.4 re.5 ic.3 ic.4 ic.5 ic.6

w elk rp.l rp.2 rp.3 rp.4 rp.5 rp.6 rp.7 rlop.0 rlop.l
w ip.l ip.2 ip.3 ip.4 ip.5 ip.6 ip.7 i lop.0 ilop.l
g rp.l rp.2 rp.3 rp.4 rp.5 rp.6 rp.7
g ip.l ip.2 ip.3 ip.4 ip.5 ip.6 ip.7
R

201-

Switen-level init : 2994

RM. simulation results : SWITCH LEVEL
r r i i
II II

rrrrrrr o o i i i i i i i o o
c ppppppp p p ppppppp p P
I

TIME k 1234567 8 1 1234567 0 1
(ns)
8 8 8888881 1 1 8188881 1 1
18 8 1111111 1 1 1111111 1 1
28 1 1111111 1 1 1111111 8 1
38 8 1111111 1 8 1111111 8 1
48 1 1111111 1 8 1111111 8 1
58 8 1111111 1 8 1111111 8 1
68 1 1111111 8 8 1111111 8 1
78 8 1111111 8 8 1111111 8 8
88 1 1111111 1 8 1111111 1 8
90 8 1111111 1 8 1111111 1 1
188 1 1111111 8 8 1111111 8 1
118 8 1111111 8 8 1111111 8 1
128 1 1111111 1 8 1111111 1 1
138 8 1118181 1 1 1118811 1 1
148 1 1118181 8 1 1118811 8 1

-202-

Appendix D

Author's publications

The following is a list of the author's relevant publications, in chronological
order. Appendix E is a reproduction of a book chapter (ref. 7 below), which con­
tains detailed case studies of FIRST which were performed prior to the work
reported in Chapter 5.

In available literature

1. S. G. Smith, C. F. N. Cowan and M. J. Rutter, "A New Structure for Adap­
tive Echo Cancellation," Proc. IEEE ICASSP'83 pp. 49 - 52 (Boston, MA,
April 1983)

2. C. F. N. Cowan, S. G. Smith and J. H. Elliott, "A Digital Adaptive Filter
using a Memory-Accumulator Architecture: Theory and Realisation," Trans.
IEEE ASSP-31 pp. 541 - 549 (June 1983)

3. N. Petrie, J. Mavor and S. G. Smith, "General-Purpose Adaptor Structure for
Wave-Digital-Filter Realisation," Electronics Letters 19 pp. 1038 - 1039
(November 24, 1983)

4. J. H. Nash and S. G. Smith, "A Front End Graphic Interface to the FIRST
Silicon Compiler," Proc. IEE Electronic Design Automation Conf. (EDA84) pp.
120 - 124 (Warwick, UK, March 1984)

5. S. G. Smith, "Modelling Musical Instruments in the Digital Domain," Proc.
IEEE ICASSP'84 pp. 19.7.1 - 19.7.4 (San Diego, March 1984)

6. S. G. Smith, "A Silicon Compiler for Bit-Serial Signal Processors," Proc. Com­
puter Graphics User '85 pp. 67 - 76 (London, February 1985)

7. S. G. Smith, "Fourier Transform Machines," Chapter 8, pp. 147 - 199 in P. B.
Denyer & D. Renshaw, VLSI Signal Processing - A Bit-Serial Approach, Read­
ing, MA, Addison-Wesley, 1985

8. S. G. Smith, 'Transversal Filters," Chapter 9, pp. 200 - 235 in P. B. Denyer &
D. Renshaw, VLSI Signal Processing •• A Bit-Serial Approach, Reading, MA,
Addison-Wesley, 1985

9. P. B. Denyer and S. G. Smith, "Bit-Serial Architectures for Parallel Arrays,"
Proc. SPIE 614, Highly Parallel Signal Processing Architectures pp. 66 - 73
(Los Angeles, January 1986)

-203-

10. S. G. Smith and P. B. Denyer, "Efficient Bit-Serial Complex Multiplication
and Sum-of-Products Computation Using Distributed Arithmetic," Proc.
IEEE-IECEJ-ASJ ICASSP'86 pp. 2203 - 2206 (Tokyo, April 1986)

11. S. G. Smith, A. Fitzgerald, P. B. Denyer, D. Renshaw, N. P. Wootton and
R. Creasey, "A Comparison of Micro-DSP and Silicon Compiler Implementa­
tions of a Polyphase-Network Filter Bank," Proc. IEEE-IECEJ-ASJ ICASSP'86
pp. 2207 - 2210 (Tokyo, April 1986)

12. S. G. Smith, "Efficient Serial/Parallel Inner-Product Computation," Electronics
Letters 22 pp. 750 - 752 (July 3, 1986)

13. S. G. Smith, "Serial/Parallel Modules for Complex Arithmetic," Electronics
Letters 22 pp. 1256- 1257 (November 6, 1986)

14. S. G. Smith "Silicon Compilers - Design Synthesis Beyond CAD," pp. 135 -
147, Chapter 11 in G. Russell (ed.) Computer-Aided Tools for VLSI Design,
Peter Peregrinus (1987)

To appear

15. S. G. Smith and P. B. Denyer, "Serial/Parallel Architectures for Area-Efficient
Vector Multiplication," Proc. IEEE ICASSP'87 (Dallas, TX, April 1987)

16. S. G. Smith, M. S. McGregor and P. B. Denyer, 'Techniques to Increase the
Computational Throughput of Bit-Serial Architectures," Proc. IEEE
ICASSP'87 (Dallas, TX, April 1987)

17. S. G. Smith, P. B. Denyer, D. Renshaw, K. Asada, K. P. Coplan, M.
Keightley and J. I. Mhar, "Full-Span Structural Compilation of DSP
Hardware," Proc. IEEE ICASSP'87 (Dallas, TX, April 1987)

18. S. G. Smith and P. B. Denyer, "Synthesis of Area-Efficient VLSI Architec­
tures for Vector and Matrix Multiplication," Proc. 8th IEEE Symp. on Com­
puter Arith. (Como, Italy, May 1987)

In review

19. S. G. Smith and P. B. Denyer, "Radix-4 Modules for High-Performance Bit-
Serial Computation," submitted to Proc. IEE Pan E (November 1986)

20. S. G. Smith, "Comments on 'A Signed Bit-Sequential Multiplier'," submitted
to IEEE Trans. Computers (November 1986)

21. S. G. Smith, "Incremental Computation of Squares and Sums of Squares," sub­
mitted to IEEE Trans. Computers (November 1986)

22. M. S. McGregor, S. G. Smith, P. B. Denyer and A. F. Murray, "Serial-Data
Computation on Twin Pipelines," submitted to Electronics Letters (December
1986)

23. S. G. Smith, 'The Serial/Parallel Automultiplier," submitted to Electronics
Letters (January 1987)

-204-

Appendix £

Included publications

v>
Si
3 >

unique property of the complex exponential function (of
pies) is that uniformly spaced samples form orthonormal sequet

rt rtr a.. o^4 ^^

1

irithm, as we shall see.

ii

nalised angles be reduced modulo N. The ability to reduce angle e sequence length is a cornerstone of the Fast Fourier Transfo

•^ j»

a !3|

of

uency. The variable n represents time, and so the quantity nk i nalised angular displacement. As angles can be reduced modulo

tf-S*S 2

§ 1

?l

tment of the complex exponential, allowing k to span (at discrete frequency range from zero up to, but not including, the

1 i'

d <5

o. 5 v<
^ O r>

31 f<y» 3* H
^X &Mf
g.^ AQ, ^^ ̂ ^^
PC W s^

= 8- °4
If |t» ^^ 3-
i-h V
3 S
3 1
o|
|8Z Q.

1 U

sl
f*s ="S-8
gi-
?5
o oIg
2 3
31 3 ^°

F* •«

f k times every N samples. In equation form, the value of the t

the k-th frequency point, or 'bin', is given by:

3
c«
•*

sr to

ccumulating the element-by-element product of the input sequ
i the particular complex exponential weighting sequence whici

3
A O•S **
S ^

£ 3,

n o.

it sampled time series into an equivalent N-point frequency series, onsider the k-th member of the output series, X(k). X(k) is co

v>l-»

if?
0.

n "&

:tral analysis, and is a common tool for mapping between I
uency domains in digital signal processing. The DFT transfon

3 3
eg n3 »
?g.

$

Discrete Fourier Transform (DFT) plays a significant role in th

"
g-
S,

00
K3

The Discrete Fourier Transform

3" X a 3 > «
8 i "g 3 £ -*
3 5 3 I' S. -
S n o |- 3 3i r S-w ~ q-Q P» os c« o o
a' 8" 2 e & 5.•v »•• ^* w C ^

oe w sr a. n 5
2 G. n S' o S

.3 3 s;-

O
T3

2. n
< 3 Cft

Sal
<? w J?
o 2" Z
M " PS3- »
3 B. 3
eg1 ?
m OP^

a n
3.

OQ

e ,
>n wa!, s 5-

O

V)

o
i

00

n3;5'

148
V

LSI signal processing

the N com
plex exponential w

eighting sequences are m
utually orthonorm

al
over the transform

 length, and as such form
 the basis vectors of an N

-
dim

ensional transform
 space. The D

FT consists of the projection of the input
sequence on to each of these basis vectors. A

lternatively, the D
FT is the

evaluation of the z-transform
 of the input sequence x(n) at N equally-spaced

points on the unit circle in the com
plex plane. W

hilst it is not absolutely
necessary to absorb the underlying theory, the relevance of the unit circle to
the D

FT should not be m
issed.

Each com
plex exponential sequence m

ay be realised by taking the unit
vector in the com

plex plane, and repetitively rotating it by a constant angle
until the N

-point com
plex sequence has been generated. This process is carried

out for the set of N
 different angles (p for w

hich Ntp = 0 m
odulo 2n. A

ny vector
of unit length w

hose angle exhibits this property is an N
-th root of unity. Then

equation (8.1) can be expressed:

N
-1

X
(k) = i x(n)W

,5k
n-O

8.2

w
here w

e take W
N = exp(-j2»r/N

) to be the principal N
-th root of unity.* If

w
e im

agine the set of N
-th roots of unity as form

ing the spokes of a w
heel w

hose
rim

 is the unit circle in the com
plex plane, then W

 is the clockw
ise neighbour

to the spoke representing unity.
The input sequence to the D

FT is assum
ed to consist of N rotating

com
ponents, w

hose angular advances in one sam
ple period (i.e. frequencies)

correspond to the angles betw
een the N w

heel-spokes and unity. It is then
periodic in N

 sam
ples. A

ny com
ponent of norm

alised frequency k will be 'de-
rotated' by the k-th com

plex exponential, and accum
ulation in the k-th bin will

result in vector grow
th to a value proportional to the com

ponent.
D

ue to the orthogonality of the basis vectors, and the assum
ed orthogonality

of the signal com
ponents, each signal com

ponent projects on to only one
output bin. If the input signal is not periodic, it w

ill contain com
ponents w

hich
project on to m

ore than one basis vector, and the energy of such com
ponents

will be distributed over several bins.

8.2.1
Som

e com
putational approaches to the D

FT
To com

pute the D
FT, w

e need only the operations of rotation and com
bination

of vectors in the com
plex plane, w

hich m
ay be accom

plished by com
plex

m
ultiplication and accum

ulation respectively. C
om

putation of the D
FT by

straightforw
ard m

eans requires order (N
2) com

plex arithm
etic operations

(rotate-and-accum
ulates).

This
is

equivalent
to

general
m

atrix-vector
m

ultiplication. H
ow

ever, the D
FT m

atrix m
ay be factored in m

any w
ays, and

if som
e com

bination is done before rotation, the am
ount of com

putation m
ay

be reduced.

' The reader should be aw
are of som

e inconsistency in the literature w
here the sign of the com

plex
exponent is concerned. W

e follow the m
ore usual convention W

N = exp(-j2ff/N
).

Fourier trm
m

torm
 m

ariihtft
149

The Fast Fourier Transform
 (FFT) (C

ooley and Tukey, 1965; B
ergland,

1969) takes advantage of the properties of sym
m

etry and periodicity of the
D

FT w
eights to reduce the com

putational com
plexity of the D

FT to order(N

logN
).

A
nother class of D

FT m
achines perform

 N
um

ber Theoretical Transform
s

(N
TTs). These algorithm

s exploit num
ber theoretical properties of either data

or data addresses. The form
er class of algorithm

s treat data sam
ples as

elem
ents in som

e finite com
putational structure, such as a field or a ring

(M
cClellan and R

ader, 1979). H
ardw

are realisations m
ake extensive use of

residue arithm
etic; for exam

ple R
eed et al. (1983) detail a recent pipeline

-architecture for an N
TT.

Exam
ples of the latter algorithm

 class range from
 R

ader's prim
e-length

transform
 (R

ader, 1968) to the W
inograd Fourier Transform

 A
lgorithm

(W

FTA
)

(W
inograd,

1978).
The

W
FTA

features

a
low

er
arithm

etic
com

plexity than the FFT, but at the expense of m
ore com

plicated control
arrangem

ents. It is certainly a useful algorithm
 for com

putation of the D
FT

on m
ainfram

e com
puters, w

here com
plex data routing (still a m

atter of
m

em
ory reads and w

rites) is alm
ost free and m

ultiplication is tim
e-consum

ing.
In V

LSI, how
ever, com

m
unication becom

es a dom
inant algorithm

ic expense
(M

ead and Conw
ay, 1980).

W
e restrict our studies to FFT and full D

FT m
achines, staying w

ithin the
m

ainstream
 of current system

s im
plem

entation (Sw
artzlander and H

allnor,
1984; Linderm

an et al., 1984). The first study consists of a full array realisation
of a sixteen-point block FFT, using a constant geom

etry, decim
ation-in-tim

e
(D

IT) radix-2 algorithm
 (R

abiner and G
old, 1975), but containing a hardw

ired
shuffle to produce norm

ally-ordered outputs. The use of m
ultiplexing to

reduce this m
achine to a single processor colum

n is dem
onstrated, and

partitioning issues are addressed to produce an optim
ised set of 4 chip types.

N
ext w

e describe a different m
ultiplexing schem

e, in the form
 of a radix-4,

64-point pipeline m
achine resem

bling that of M
cC

lellan and Purdy (1978) but
w

ith a shuffle netw
ork for output re-ordering. In contrast, our final study

follow
s a m

odular, pipelined linear array architecture to com
pute the D

FT as
described by A

lien (1984) after R
ung (1980).

8.3
A DFT toolkit

It is norm
al design practice to specify from

 the top dow
n, and im

plem
ent from

the bottom

 up. H
ow

ever, as this chapter serves to introduce the practical
application of FIR

ST, w
e shall begin by creating som

e sm
all m

odules w
hich

can be used later on to construct Fourier transform
 m

achines. This w
ill

necessarily lead to som
e 'acts of faith', as som

e com
putational elem

ents are
introduced before their theoretical background is discussed.

8.3.1
Vector rotation

It is clear from
 the preceding discussion that all Fourier transform

 m
achines

ISO
VLSI signal processing

require the operation of vector rotation. C
O

R
D

IC
 (for Co-O

rdinate Rotation
D

igital C
om

puter) hardw
are (V

oider, 1959) is capable of either vector
rotation or angle extraction, and has been used in the construction of FFT
m

achines (D
espain, 1974). H

ow
ever, being of iterative nature it is not well

suited to bit-serial im
plem

entation.
The m

ost com
m

on vector rotation elem
ent is the com

plex m
ultiplier w

ith
unity-m

odulus coefficient. The FIR
ST prim

itive set outlined in C
hapter 4 does

not contain a com
plex m

ultiplier per se,
but its construction from

 real
arithm

etic elem
ents is straightforw

ard.
W

e need hardw
are to solve the follow

ing:

e + jf = (a+jb)(c+jd)

w
here j2 = -l, i.e.

e — ac - bd,
f = ad + be

8.3

8.4

Equation (8.4) show
s explicitly the requirem

ents of com
plex m

ultiplication
using real arithm

etic elem
ents. W

e need four m
ultipliers, an adder and a

subtracter - all w
ithin the set of FIR

ST prim
itives. The code for this

O
PER

A
TO

R
 'X

m
ult' is:

O
PER

A
TO

R
 X

m
ult [coeff.latj (cl -> clout) a, b, c, d-> e, f

Ilatency is(3*coeff)/2 + 2 + lat, i.e. sum
 of m

ultiplier and adder latencies

SIG
N

A
L ac.bd, ad, be

C
O

N
TR

O
L ell

M
U

LTIPLY
 [1 .coeff,0,0] (cl -> cl 1) a, c-> ac, N

C
M

U
LTIPLY

 [1,coeff ,0,0] (cl -> N
C) b; d -> bd, N

C
M

U
LTIPLY

 (1,coeff ,0,0] (cl -> N
C) a, d-> ad, N

C
M

U
LTIPLY

 [l.coeff.O
.O

] (cl -> N
C) b, c-> be, N

C
SU

B
TR

A
C

T (lat,0,0,OJ (ell) ac, bd, G
N

D
-> e, N

C
A

D
D

 (lat,0,0,0] (ell) ad, be, G
N

D
-> f, N

C

C
B

ITD
ELA

Y
 [lat] (cl 1 -> clout)

EN
DThis code declares an O

PER
A

TO
R

 w
hose external input signal nodes a, b,

c and d correspond to the initial variables of the right-hand side of equation
(8.3); the elem

entary variables for the calculations. The external output signal
nodes e and f represent the left-hand side of equation (8.3), w

hich we wish to
evaluate in term

s of a, b, c and d. The internal signal nodes (ac, bd, etc.), on
the other hand, are the interm

ediate term
s in equations (8.4). W

e need neither
rem

em
ber how

 a com
plex m

ultiplier w
orks after w

e design it, nor have further
dealings w

ith internal nodes. These details are hidden in the hierarchy. W
e had

Fow
ler m

151

a problem
 (equation 8.3), and now

 have a functional elem
ent (O

PER
A

TO
R

X

m
ult) to solve it.

The only significant feature of X
m

ult, apart from
 its function, is its latency;

the tim
e delay in bits betw

een inputs and outputs. W
hen X

m
ult is used at a

higher design level, its latency m
ust be know

n. It is good practice to include
the latency in a 'com

m
ent'.

For future flexibility we have param
eterised the coefficient w

ordlength used
in the various m

ultipliers, and the latency of the adder and subtracter. This
allows the resolution and hence the accuracy of the vector rotator to be varied,
while the adder latency m

ay control its overall latency. W
e do not anticipate

using the input predelay option, so all predelays are set to zero.
Control for the adder and subtracter is derived from

 one of the m
ultipliers

(the m
ultiplier outputs control as well as data). The m

ultiplier control output
is further delayed to achieve synchronous control and data outputs from

 the
O

PER
A

TO
R

. Figure 8.1 show
s the flow

-graph for X
m

ult.

X
.—

—
—

->(UPY [i.co.o.
ac

caacw-

bd
—

—
—

©
-"

be

•—JMD [M.o.o,oh-
J

ad

clout

Fig. 8.1
Com

plex M
ultiplication O

PER
A

TO
R

'X
m

ulf.

A better com
plex m

ultiplier?
The com

ponents of X
m

ult are capable of generating the sum
 of one product

pair and the difference of another. W
e have created a com

plex m
ultiplier by

cross-w
iring the inputs. Just as the FFT uses the com

m
onality of coefficients

to m
ake com

putational savings over the D
FT by com

bining before rotating,
so it is possible to perform

 addition before m
ultiplication to reduce the num

ber
of real m

ultiplies in the com
plex m

ultiplier.
U

sing the com
m

onality property, equation (8.3) m
ay be expanded as:

152
VLSI signal processing

or
e + jf = (ac-bd) + j((a+b)(c+d)-ac-bd)

e + jf = a(c+d)-d(a+b) + j(a(c+d)-c(a-b))
(G

olub's m
ethod), or in the m

ore specific case w
here c = cos6 and d = sin6

(vector rotation),

e + jf = (l+cos6)(a-btan(e/2))-b + j((l+cos8)(a-btan(e/2))tan(e/2)+a)

(B
unem

an's m
ethod (D

espain, 1974)).
Each expression involves only three m

ultiplies, and five (G
olub) or three

(B
unem

an) add/subtracts. In term
s of silicon area, these seem

 to be m
ore

attractive options. H
ow

ever, there are penalties to be paid for these savings.
Firstly m

ultiplier coefficients have been allow
ed to exceed unity; som

e extra
shifting m

ust be incorporated to re-align products. Initial addition causes
w

ords to grow
 by one bit, causing loss of coefficient resolution which can only

be regained by increasing the size and latency of the m
ultipliers. The sam

e loss
(of a bit) applies to the data, and thus the system

 w
ordlength m

ust be increased
by one bit to com

pensate. Finally we m
ust include som

e control delay
prim

itives, as w
e cannot derive control output from

 an adder. These features
m

ake the three-m
ultiplier rotators som

ew
hat less attractive in this case.

The best of all solutions is to engineer a dedicated com
plex m

ultiplier
prim

itive. M
urray et al. (1984) report an exam

ple of a bit-serial, m
odular

design. H
ere advantage is taken of com

m
onality of coefficients to produce a

com
pact linear array com

plex m
ultiplier, cascadable to any desired coefficient

size.

8.3.2
Short DFT m

achines
A

nother building block com
m

on to m
ost Fourier transform

 m
achines is the

short D
FT. This is used in the construction of 'butterflies' of various radix

(R
abiner and G

old, 1975). A
 radix-2 butterfly, so called because of its

conventional graphic representation (Figure 8.2), realises either:
v = y + w

x
and

if decim
ating in tim

e (D
IT), or

v = y
and

u = y-w
x

u = w
(y-x)

if decim
ating in frequency (D

IF) (R
abiner and G

old, 1975).
H

ere y and x are com
plex inputs, v and u are com

plex outputs, and w is a
com

plex w
eight of unity m

agnitude, know
n as a 'tw

iddle factor' (G
entlem

an
and Sande, 1966) - realisable using O

PER
A

TO
R

 X
m

ult. D
ecim

ation in tim
e

(or frequency) is so called because the input (or output) sequence is split into
R sub-sequences of 1/R tim

es the original length in the process of replacing
an N

-point transform
 by R

 of length N
/R

, R
 being the m

achine radix (R
abiner

and G
old, 1975). W

e discuss this later.
The radix-2 butterfly perform

s a 2-point D
FT, w

ith a tw
iddle (or vector

Fourier tranrfonB
153

y
+

w

x

y —

w
x

y
+

x

w
(y

-

x)

DIT
D

IF
Fig. 8.2

Radix-2 D
IT and D

IF butterfly representations.

rotation) carried out on either the low
er input (if D

IT), or low
er output (if

D
IF), leg. W

e have seen that an N
-point D

FT requires the generation of N
distinct, equally-spaced unit vectors in the com

plex plane (recall the w
heel-

spokes analogy). H
ere N = 2, and the vectors are sim

ply 1 and -1. Thus no
m

ultipliers are required for a 2-point D
FT. W

e need only add
e + jf=

(a+
'c) + j(b + d)

and subtract
g + jh=

(a-c) + j(b-d)
the tw

o com
plex data inputs. O

nce again, w
e need to im

plem
ent som

e com
plex

arithm
etic elem

ents - call them
 'X

add'
and 'X

sub'.
Figure 8.3 show

s
O

PER
A

TO
R

 X
add.

O
PER

A
TO

R
 X

add [lat](cl) a, c,b,d->
e,f

(latency is lat
A
D
D
 [lat.0,0,0] (cl) a, c, G

N
D
-
>
 e, N

C

A
D
D
 [lat.0,0,0] (cl) b, d, G

N
D
 -> f, N

C

E
N
D

e1

Flg. 8.3
C

om
plex A

ddition O
PER

A
TO

R
 'X

add'.

154
V

LSI signal processing

O
PER

A
TO

R
 X

sub[lat](cl) a, c,b,d->
g,h

llatency is lat

S
U
B
T
R
A
C
T
 [lat.0,0,0] (cl) a, c, G

N
D
 -> g, N

C

S
U
B
T
R
A
C
T
 [lat,0,0,0](cl)b,d,GND->h,NC

E
N
D

W
e can now

 design a 2-point D
FT m

achine, and call it 'D
ft2' (Figure 8.4):

O
PER

A
TO

R
 D

ft2[lat](cl) a, c,b,d->
e,g,f,h

llatency is lat

X
add[lat](cl)a,c,b,d->

e,f
X

sub[lat](cl)a,c,b,d->
g,h

E
N

D

Fig. 8.4
2-point D

FT
 O

PE
R

A
T

O
R

 <D
ft2>.

H
ere w

e have used the sam
e param

eter and node nam
es in the declarations

as in the instantiations. FIR
ST does not require this - how

ever, it helps to
clarify the m

apping of 'algorithm
' into FIR

ST source code. W
e leave the

sim
ulation of D

ft2 until later.
Butterflies of any radix norm

ally have tw
iddle-free top legs. D

ata on this leg
m

ust be delayed to com
pensate for the latency of any tw

iddles. Before
constructing a radix-2 butterfly, w

e encapsulate X
m

ult and som
e delay to m

ake
a tim

e-aligned tw
iddling block called Tw

iddle2', show
n in Figure 8.5. The

expression for com
pdel derives from

 the latency form
ulae for m

ultiplier and
adder in X

m
ult.

O
PER

A
TO

R
 Tw

iddle2[coeff.lat] (cl -> clo) rinl, rin2, iinl, iin2, w
re,

wim
 -> routl, rout2, ioutl, iout2

llatency is com
pdel (see C

O
N

STA
N

T declaration below
)

Fourier truM
fon*

155

rinl
clrln2

wr»

w
lm

11n2

nni

^

[
-
-
-

i i
:

1
X

m
ult [c

o
.M

j
\

T

routl

d
o

rout
—

 >
louti

lout

Fig. 8.5
R

adix-2 tw
iddling O

PE
R

A
T

O
R

 'T
w

iddler.

CO
N

STA
N

T com
pdel = (3 * coeff)/2 + 2 + lat

B
ITD

ELA
Y

 [com
pdel] rinl -> routl

B
ITD

ELA
Y

 [com
pdel] iinl -> ioutl

X
m

ult [coeff.lat] (cl -> clo) rin2, iin2, w
re, w

im
-> rout2, iout2

EN
DIt is now

 possible to construct both D
IT and D

IP radix-2 butterflies; called
'R

ad2D
it' (Figure 8.6) and 'R

ad2D
if (Figure 8.7) respectively:

O
PER

A
TO

R
 R

ad2D
it[coeff,latl,lat2](cl)rinl,rin2,iinl,iin2,w

re,
w

im
 -> routl, rout2, ioutl, iout2

llatency is com
pdel (see C

O
N

STA
N

T declaration inTw
iddle2) + Iat2

SIG
N

A
L

rl,r2,il,i2
C

O
N

T
R

O
L

cll
Tw

iddle2 [coeff.latl] (cl -> ell) rinl, rin2, iinl, iin2, w
re, w

im
-> rl,

r2,il,i2
D

ft2 [Iat2] (ell) rl, r2, il, i2-> routl, rout2, ioutl, iout2

EN
D

wr«

rln1
Hnl
cl

"rin2
Hn2
IM

|*M
W

lm

1

—
—

 »

—
—

 »

•
->

—
—

 »

—
—

 » *
-,

T
w

H
d

M
 [c

o
.M

1
]

_J

^
J

"
1

&rt
,

^

D
ft2

[M
2
]

routl
Ioutl

f

rout2
k>ut2 J

Fig. 8.6
R

adix-2 D
IT

 butterfly O
PE

R
A

T
O

R
 'R

ad2D
it'.

156
VLSI signal proceM

lng

w
r«

rinl
I!n1
c
l

"rinjf
Iln2

w
lm

—
 »

—
 »

-•—
 »

-r-»
+

•I

D
H

2 [la
(2

]

r1
,

.».
>

°H
.

*!
i

-S
i-l

*
l/
Q

l*
l

\1j ^fw
iddl«2 [c

o
,la

t1
]

i

routl
ioutl >

rout2
Iout2

Fig. 8.7
Radix-2 D

IP butterfly O
PER

A
TO

R
 >R

ad2D
ir.

O
PER

A
TO

R
 R

ad2D
if[coeff.Iatl,lat2] (cl) rinl, rin2, iinl, iin2, w

re,
w

im
-> routl, rout2, ioutl, iout2

(latency is Iat2 + com
pdel (see C

O
N

STA
N

T declaration in Tw
iddle2)

SIG
N

A
L rl,r2,il,i2

C
O

N
TR

O
L ell

D
ft2 [Iat2] (cl) rinl, rin2, iinl, iin2-> rl, r2, il, i2

Tw
iddle2 [coeff.Iatl] (ell -> N

C) rl, r2, il, i2, w
re, wim

 -> routl,
rout2, ioutl, iout2

C
B

ITD
ELA

Y
 [Iat2] (cl -> cl 1)

EN
DThese O

PER
A

TO
R

S have tim
e-aligned inputs and outputs (see C

hapter 6).
W

hilst this m
akes them

 conceptually easier to handle later on in the design
process, they contain delays w

hich m
ay im

pair their efficiency. It m
ay be

desirable to optim
ise these elem

ents for a particular design.
N

otice that w
e require a C

B
ITD

ELA
Y

 in Rad2D
if, as we cannot take

advantage of a control output from
 D

ft2. A
lso the C

B
ITD

ELA
Y

 prim
itive in

X
m

ult is redundant here - a penalty of tim
e-aligning.

8.3.3
AradJx-4DFT

The radix-2 m
achine D

ft2 perform
s a parallel D

FT on 2 points of com
plex data.

It requires no m
ultipliers because internal rotations are through 0 and 180

degrees only, w
hich can be accom

plished by adding and subtracting. The step
to a radix-4 butterfly, w

hich involves angular shifts of 0, 90, 180 and 270
degrees - none of w

hich require m
ultipliers - is a logical one. Furtherm

ore,
we can build a 2 x 2 array of D

ft2 O
PER

A
TO

R
S to im

plem
ent €D

ft4', a little
4-point FFTm

achine. This is depicted in Figure 8.8.

Fourier tnm
ttorm

 M
achine*

157

Fig. 8.8
4-point D

FT O
PE

R
A

T
O

R
'D

ft4'.

O
PER

A
TO

R
 D

ft4 [Iatl,lat2] (cl) rinl TH
R

O
U

G
H

4, iinl TH
R

O
U

G
H

 4
-> routl TH

R
O

U
G

H
 4, ioutl TH

R
O

U
G

H
 4

! latency is latl + Iat2
SIG

N
A

L rl TH
R

O
U

G
H

 4, il TH
R

O
U

G
H

 4
C

O
N

TR
O

L ell
D

ft2 [latl] (cl) rinl, rin3, iinl, iin3-> rl, r2, il, i2
D

ft2 [latl] (cl) rin2, rin4, iin2, iin4-> r3, r4, i3, i4
D

ft2 [Iat2] (cl 1) rl, r3, il, i3 -> routl, rout3, ioutl, iout3
D

ft2 [Iat2] (ell) r2, i4, i2, r4-> rout2, rout4, iout4, iout2

C
B

ITD
ELA

Y
 [latl] (cl -> cl 1)

EN
DN
ote the use of the shorthand TH

R
O

U
G

H
 statem

ent (C
hapter 3) to avoid

nam
ing long node lists explicitly. The delays latl and Iat2 are param

eterised
for the present, and the required control delay is built in to synchronise the
second colum

n of processors. The tortuous routing around the last D
ft2

operator is to effect a prem
ultiplication by -j, an internal 'tw

iddle' in the 4-
point FFT m

achine.

Sim
ulation

The structure has now
 becom

e sufficiently com
plicated to m

erit sim
ulation.

W
e m

ust create a sim
ulation environm

ent for D
ft4. This entails creation of a

SY
STEM

containing

a
C

H
IP

w
ith

D
ft4

connected
to

a
C

O
N

TR
O

LG
EN

ER
A

TO
R

 prim
itive, and of course the inputs and outputs of

D
ft4 connected to pads.

i-,,
VLSI signal processing

H
ere we are using 'perfect' arithm

etic, i.e. addition and subtraction, in
v.hich no num

erical degradation occurs (provided overflow
 is avoided), and

(he input sam
ples will not suffer from

 quantisation, being either zero or som
e

u>»stant am
plitude. Therefore w

e need not be concerned w
ith quantisation

ellects.
The O

PER
A

TO
R

 D
ft4 is a 4-point parallel D

FT m
achine. Let us input

Parallel signal blocks of length 4 sam
ples, containing single frequencies of 0,

,7 2, it and 3ir/2 radians/sam
ple period, each starting w

ith zero phase, and w
ith

som
e space betw

een. In Figure 8.9 we see the response to each frequency
appearing only in the correct single output w

ire (or bin), and the four distinct
pit uses of each sam

ple block.

binO

binl

bin2

bin 3

real
im

og

real
im

ag

real

Im
ag

8.9
Sim

ulation of 'D
fl4', showing com

plex am
plitude response to stim

ulus at distinct output
frequencies.

S.3.4
A radix-4 butterfly

To construct a radix-4 butterfly, w
e m

ust add tw
iddles, just as in the case of

i ;ulix-2. A
ll but the top leg of the butterfly contain tw

iddles. H
ere we require

a M
ock of 3 X

m
ult operators and the com

pensating delays for the top
(uniw

iddled) w
ire. W

e already have the com
ponents for this - Tw

iddle! and
X

m
ult. So the code for Tw

iddle4* (Figure 8.10) is:

O
P H

R
A

TO
R

Tw
iddle4 [coeff,lat] (cl -> clo) rinl TH

R
O

U
G

H
4,

iinl TH
R

O
U

G
H

 4, w
rel TH

R
O

U
G

H
 3, w

im
l TH

R
O

U
G

H
 3-> -

routl TH
R

O
U

G
H

 4, ioutl TH
R

O
U

G
H

 4
! la i oncy is constdel (as defined in X

m
ult) + lat

Tw
iddle2 [coeff.lat] (cl -> N

C) rinl, rin2, iinl, iin2, w
rel, w

im
l -> -

routl, rout2, ioutl, iout2
X

m
ult [coeff,lat] (cl -> clo) rin3, iin3, w

re2, w
im

2-> rout3, iout3
X

m
ult [coeff,lat] (cl -> N

C) rin4, iin4, w
re3, w

im
3-> rout4, iout4

I-N
I)

Fourier tnw
sfo

•acfeiM
*

159

w
ral

Fig. 8.10
Radix-4 twiddling O

PER
A

TO
R

'Tw
iddled.

and 'R
ad4D

if (Figure 8.11) follow
s on easily:

O
PER

A
TO

R
 Rad4D

if [coeff ,latl ,lat2,lat3] (cl -> clo) rinl TH
R

O
U

G
H

 4,
iinl TH

R
O

U
G

H
 4, w

rel TH
R

O
U

G
H

 3, w
im

l TH
R

O
U

G
H

 3 -> -
routl TH

R
O

U
G

H
 4, ioutl TH

R
O

U
G

H
 4

(latency is constdel (as defined in X
m

ult) + Iat2
SIG

N
A

L rl TH
R

O
U

G
H

 4, il TH
R

O
U

G
H

 4
C

O
N

TR
O

L ell
D

ft4 [Iat2,lat3] (cl) rinl TH
R

O
U

G
H

 4, iinl TH
R

O
U

G
H

 4-> -
rl TH

R
O

U
G

H
 4, il TH

R
O

U
G

H
 4

Tw
iddle4 [coeff ,latl] (ell -> N

C) rl TH
R

O
U

G
H

 4, il TH
R

O
U

G
H

 4,
w

relT
H

R
O

U
G

H
3,w

im
lT

H
R

O
U

G
H

3->-
routl TH

R
O

U
G

H
 4, ioutl TH

R
O

U
G

H
 4

CBFTD
ELA

Y
 [Iat2 + Iat3] (cl -> ell)

EN
D'R
ad4D

it' is constructed by cascading the tw
o com

ponents of R
ad4D

if in
reverse order.

8.3.S
W

indowing
i

The D
FT operates on blocks of data. A

 block of data can be im
agined as an

infinite tim
e series pointw

ise m
ultiplied w

ith a unit rectangular w
indow

function, that is a function w

hich is zero outside som
e range, else unity. Since

160
V

LSI signal processing

w
r«1 TH

R
. 4

rim
 THR. 4

I!n1 THR. 4
c1

w
lm

l TH
R

. 4 =\—
 »

3—
 >

D
ft4

[lo
t2

.M
J]

—
—

—
 5

—
—

—
 »

—
—

—
 >

—
—

—
 »

-
L
/
7
\

c1
1

_
_

_
_

_
_

I
> f

Tw
iddle*

[co
cff.la

tlj

T
"

V
L
/rf -

 M
2
 + M

J

kM

/

ro
u
tl THR. 4 }

—
—

—
—

—
—

—
—

 i

Io
u
tl TH

R
. 4

Fig. 8.11
R

adix-4 D
IP butterfly O

PE
R

A
T

O
R

'R
ad4D

ir.

pointw
ise m

ultiplication in the tim
e-dom

ain is equivalent to convolution in the
frequency-dom

ain (R
abiner and G

old, 1975), w
e find that the D

FT output is
convolved w

ith the spectrum
 of a rectangular w

indow
, w

hose am
plitude

function is of the sin(x)/x type (H
arris, 1978). A

lthough it has value zero at
all discrete observation frequencies, and accordingly does not affect on-bin
com

ponents,
this

function
has

a
sym

m
etrical

series
of off-axis

peaks
(sidelobes).

A
 related problem

 in analysis of finite length sequences is that any signal
com

ponents which are not periodic in the block length exhibit discontinuities
at the boundaries of the observation, resulting in what is known as 'spectral
leakage*. W

hen a non-periodic com
ponent is convolved with the window

spectrum
, the result is a spread of energy over the range of bins. The norm

al
solution to this problem

 is to w
indow

 the input sequence with som
e function

whose sidelobe behaviour in the frequency dom
ain im

proves on that of the
rectangular w

indow
.

A
ll window design is an application-dependent com

prom
ise. H

arris (1978)
sum

m
arised m

any of the alternatives, and Nuttall (1983) reduced the design
criteria to two param

eters - sidelobe decay and m
ainlobe to peak-sidelobe

ratio.
For now we will consider the design of a program

m
able window processor

- we can worry about w
indow

 functions later. The twiddles preceding the first
colum

n are trivial in the case of a D
IT FFT, and non-existent in the case of

D
IP, so we can take advantage of this by building in the window m

ultipliers
instead of the twiddles. The w

indow
 function has identical weights for real and

im
aginary signal com

ponents, leading to som
e sharing of coefficients. A

ll that
is required is a real w

eighting O
PER

A
TO

R
 'Xweight2' (Figure 8.12) which

perform
s four real m

ultiplications with two shared coefficients on two com
plex

data points:

Fow
ler tr

1(1

O
PER

A
TO

R
 X

w
eight2[w

coeff](cl-> clo)rinl,rin2,iinl, iin2,w
l,

w
2-> routl, rout2, ioutl, iout2

Hatency is 3/2 * w
coeff + 2

M
U

LTIPLY
 [1,w

coeff ,0,0] (cl -> clo) rinl, w
l -> routl, N

C
M

U
LTIPLY

 [1,w
coeff,0,0] (cl -> N

C) rin2, w
2-> rout2, N

C
M

U
LTIPLY

 [1 .w
coeff,0,0] (cl -> N

Q
iinl, w

l -> ioutl, N
C

M
U

LTIPLY
 [1, w

coeff, 0,0] (cl -> N
C) iin2, w

2-> iout2, N
C

EN
D

A
gain w

e defer sim
ulation - the effects of w

indow
 type, quantisation, etc., can

only be properly studied in the context of a real system
 sim

ulation. The first-
colum

n processor 'W
indow

2' will consist of X
w

eight2 and D
ft2 in cascade:

O
PER

A
TO

R
 W

indow
2[w

coeff,lat](cl)rinl, rin2, iinl,iin2,w
l,

w
2-> routl, rout2, ioutl, iout2

Hatency is 3/2 * w
coeff + 2 + lat

SIG
N

A
L rl,r2,il,i2

C
O

N
TR

O
L ell

X
w

eight2 [wcoeff] (cl -> cl 1) rinl, rin2, iinl, iin2, w
l, w2 -> r 1, r2,

il,i2
D

ft2 [lat] (cl 1) rl, r2, il, i2 -> routl, rout2, ioutl, iout2
EN

DThe O
PER

A
TO

R
S W

indow2 (not illustrated) and R
ad2D

it are functionally
dissim

ilar, but topologically identical.

rinl

.P
l

w
l

nni

rln2

w2
Hn2

i

*
-

t
-*GpY

_
n/i/V

—
' 1'*c'°'°J

j~
+

!_
..._

t
T̂

_j
—

—
 &

P
Y

—

^•
— *H/py

"\
[1,w

c.0.0jjr-
1•[l.w

c
.0

.o
h
-

1[1.w
o.0.oh-

l_
_

*

ro
u
tl^

d
o

.

routZ

Iout2
>

Fig. 8.12
W

eighting O
PE

R
A

T
O

R
 'X

w
eight2'.

162
VLSI ii(n«l procuring

I In

oneelgM
h

intdat

«
--

•—
-i(s

U
B

 f f.ftftQ
/)

(7

Fig. 8.13
7/8 scaling O

PER
A

TO
R

 'SevenEighths1.

8.3.6
C

om
plex-to-m

agnitude conversion

In m
any cases only the m

agnitude output of an FFT processor is required. The
m

agnitude of a com
plex num

ber is the root of the sum
 of the squares of its

com
ponents. There exist m

any approxim
ation algorithm

s, sum
m

arised by
Filip (1976), the sim

plest of w
hich has already been introduced in Chapters 1

and 3. W
e structure the O

PER
A

TO
R

 to show
 explicitly how

 the fraction 7/8
is realised. O

PER
A

TO
R

 SevenEighths (Figure 8.13) is the tim
e-aligned

lm

/—
—

—
—

—
—

\
I

/—
—

—
—

—
\

'
cl

(ABS [awl.O
]

k—
»

(xaS /*»/,0/
]

"
V

v

V

~
v

obsr«
I—

_
—

I

«*•»«•«

^^5Z--- ."3
Inm

in
[

|
Inm

ox

("—
—

—
 —

—
—

N
c16

DSHIFT [1.0]y.—
 —

—
 —

—
 ----»—

—
—

—

—
—

hoW
nm

ln
I

I
*

V
.

e112
s**^

I Sw
enE

IgM
hff

(
j
)

_
_

•-"
 fc—

—
^—

^—
J

hotfdd
j[

X
—

~—
—

—
—

\
c113

[ADO [1.0.0.0]^- —
—

 —
—

 -
|

m
axdel

"
"
"
I

^
^
^
H

^
*_

aw

m
oq

Fig. 8.14
O

PER
A

TO
R

'C
om

plexToM
agnitude'.

Fourier tr*M
fo

1*3

com
ponent

w
hich

executes
the

7/8
function.

The
tw

o
B

ITD
ELA

Y
s

com
pensate for the latencies of the D

SH
IFT and SU

B
TR

A
C

T prim
itives.

O
PER

A
TO

R
 SevenEighths (cla.clb) in-> out, del

H
atencyis?

SIG
N

A
L oneeighth, intdel

D
SH

IFT[3,0] (cla)in-> oneeighth
SU

B
TR

A
C

T [1,0,0,0] (clb) intdel, oneeighth, G
N

D
-> out, N

C
B

ITD
ELA

Y
 [6] in-> intdel

B
ITD

ELA
Y

 [1] intdel-> del
EN

D

The
full

O
PER

A
TO

R

Com
plexToM

agnitude
(Figure

8.14)
contains

O
PER

A
TO

R
 SevenEighths. N

ote that use has been m
ade of input predelay

in the final O
R

D
ER

 prim
itive, allow

ing tim
e aligning of SevenEighths outputs

at no expense in w
aterfront. Com

plexToM
agnitude is an exam

ple of an
O

PER
A

TO
R

 w
hich contains a m

ixture of elem
ents at the sam

e level and at
the adjacent low

er level in the hierarchy. FIR
ST allow

s infinite nesting of those
levels of hierarchy (O

PER
A

TO
R

 and SU
BSY

STEM
) w

hich have no direct
physical significance.

O
PER

A
TO

R
 Com

plexToM
agnitude[sw

l] (cl,c!3,c!6,cl!2,cl!3,cl!4)re,
im

 -> m
ag

Uatency is 3 * swl + 17
SIG

N
A

L absre, absim
, inm

ax, inm
in, halfinm

in, seveight, sum
,

m
axdel, halfdel

A
B

SO
LU

TE [swl.O] (cl) re-> absre
A

B
SO

LU
TE [swl.O] (cl) im

-> absim

O
R

D
ER

 [sw
l,0,0] (c!3) absre, absim

-> inm
ax, inm

in
D

SH
IFT [1,0] (c!6) inm

in -> halfinm
in

A
D

D
 [1,0,0,0] (cl!3) seveight, halfdel, G

N
D

-> sum
, N

C
SevenEighths (cl6,cl!2) inm

ax -> seveight, m
axdel

B
ITD

ELA
Y

 [3] halfinm
in-> halfdel

O
R

D
ER

 [sw
l.0,1] (cl!4) sum

, m
axdel-> m

ag, N
C

EN
D

Sim
ulation

W
e use the C

om
plexToM

agnitude O
PER

A
TO

R
 to evaluate the am

plitude of
a com

plex signal. W
e input a signal of the form

 exp(-(a + jb)t), w
here

a < 1. This signal consists of a com
plex sinusoid w

ith an am
plitude envelope

exp(-at), w
hich w

e m
ay extract w

ith Com
plexToM

agnitude. Figure 8. IS show
s

the result. N
ote the delay in response due to the O

PER
A

TO
R

 latency.
W

ith this addition to the toolkit, w
e m

ay consider it com
plete enough to start

looking at som
e D

FT system
s.

164
VLSI signal processing

m
agnitude output

tim
e

sine input

cosine input

Fig. 8.15
Sim

ulation of 'C
om

plexToM
agnitude', show

ing response to a decaying com
plex

exponential input.

8.4
FFT m

achines
For tutorial purposes, w

e com
m

enced design in a bottom
 up m

anner; now
 we

shall start to specify system
s from

 the top dow
n. The D

FT toolkit is ready for
the construction of an actual FFT m

achine. W
e have a vector rotator, and

radix-2 and 4 D
FT m

achines, w
hich m

ay be used to build the butterflies w
hich

are germ
ane to the FFT com

putation. W
e also have w

indow
ing and m

agnitude
conversion blocks for front and back end processing.

Before w
e can build an FFT m

achine, how
ever, we m

ust know
 a little m

ore
about the operation of the FFT. Those readers w

ho are already fam
iliar w

ith
the FFT, or indeed those w

ho don't wish to be, m
ay skip the next section.

A
lternative derivations and explanations abound in

the
literature (see

References).

8.4.1
Indexing and shuffling in the FFT

It is instructive to investigate tw
o types of shuffling transform

ation w
hich occur

naturally in the FFT. The first is the ideal, or perfect shuffle (Stone, 1971). A

radix R, order M
 perfect shuffle CTM has the effect of interleaving elem

ents of
a data sequence of length N

 = R
M in such a m

anner as to bring together
elem

ents spaced apart by P sam
ples, w

here P = N
/R

 = R
M~'. The second

shuffle is the digit reversing shuffle - the result of repeated application of M

perfect shuffles of descending order.
H

aving defined R
 as a radix/ w

e m
ay index data sequences in term

s of R
,

giving an M
-digit index. These shuffles serve to transform

 the indices of data
sequences - the latter in a rather obvious m

anner. The effect of a perfect
shuffle of order m

 is to circular left-shift the m
 least-significant digits of the

index (Stone, 1971). N
ote that significance, or w

eight, of digits rem
ains

constant throughout transform
s.

' H
ere R

 is constant throughout the transform
, although m

ixed-radix transform
s are possible

(R
abiner and G

old, 1975).

Fourier I
1*5

bcdA
cdbA

cdB

A
 dcB

A
 dCBA dCBA DCBA

Fig. 8.16
16-point radix-2 C

ooley-Tukey FFT netw
ork, show

ing index transform
ations across

the array.

Figure 8.16 show
s a netw

ork for com
puting the Cooley-Tukey FFT (Cooley

and Tukey, 1965), w
ith R

 = 2 and M
 = 4. The key property of this netw

ork
is that each point in the input sequence is able to com

m
unicate through a radix-

R
, depth-M

 tree structure w
ith each point in the output sequence. W

e refer
to this property as 'universal connectivity*.

D
igit reversal

A
lthough the input sequence is correctly ordered, the topology of the netw

ork
effectively perfect shuffles the sequence, bringing together elem

ents spaced
apart by P = 8 sam

ples into groups of R
 = 2 before the first colum

n of the
m

achine. A
fter the first colum

n, w
e have R

 groups of P/R
 sam

ples, w
hich are

in turn perfect shuffled by the netw
ork topology. The order of the perfect

shuffle here is one less than before. The effect on the data index of repeated,
decreasing order perfect shuffles at the colum

n interfaces is show
n along the

top of Figure 8.16.

1 66
V

LSI signal proccw
lng

It is im
portant to note that the digit reversing shuffle inherent in the FFT

is a result of the universal connectivity of the netw
ork, and nothing else. If

orrectly ordered output is required, a further digit reversing shuffle m
ust be

I >erform
ed at som

e stage in the transform
.

The
butterflies

have
no

topological
effect

(they
are

horizontally
sym

m
etrical), and only serve to alter the interpretation of the stage digit from

nm

e to frequency indexing (see low
er and upper case letters in Figure 8.16).

ilach butterfly carries out a local R-point D
FT on a tim

e sub-sequence,
sum

m
ing over the stage digit, for all com

binations of the other digits.

s.4.2
The C

ooley-Tukey FFT algorithm
So far w

e have described a netw
ork w

hich offers a constant, m
inim

um
 length

path from
 any input point to any output point, given a radix R. W

e have yet
10 im

plem
ent the arithm

etic w
hich occurs in the nodes and branches of the

netw
ork, although w

e hinted at its function.
The

FFT can be described in
theory as successively fracturing one-

dim
ensional sequences into equivalent tw

o-dim
ensional sequences (G

old and
Bially , 1973). This can be done in several w

ays, the tw
o m

ost com
m

on of which
ire decim

ation in tim
e (D

IT) and in frequency (D
IF) (R

abiner and G
old,

1975). A
s w

e develop the tw
o algorithm

s below
, their sim

ilarity will becom
e

i ibvious.
Either D

IT or D
IF algorithm

s m
ay be im

plem
ented on the netw

ork of Figure
N. 16. A

 right-to-left m
irror im

age of Figure 8. 16 will produce correctly ordered
output from

 digit-reversed input, again using either D
IT or D

IF. The
algorithm

s and topologies m
erely decide the location and value of tw

iddle
i actors. The netw

orks exhibit isom
orphism

 (they are all different layouts of the
sam

e radix-R
, universally connective tree structure). From

 a functional point
i >f view

 they are identical .
U

sing the shorthand notation

= i R'z,
i-O

we index the input series x(n) and output series X
(k) w

ith
M

-l
M

-1
k = I R

mcm = c'M_,

W
ith this indexing notation in m

ind, w
e m

ay now
 develop the FFT

algorithm
. W

e start w
ith the D

FT equation:
N

-l
X

(k) = i x(n)W
fl nk

n-O

Im
pressing n in term

s of its com
ponent digits dm allow

s splitting of the
sum

m
ation into M

 sum
s, each over R term

s.

X
(k

)=
i'

i'
do-O

d

,-0
dM_,-0

nk
8
.5

FoM
riertraM

fo
cfeloa

1*7

The advantage in splitting into a nest of sum
s over R term

s is that, if a
rotation factor can be found w

hich is periodic in R, the basic com
putational

unit at each netw
ork node can be realised by an R-point D

FT m
achine, w

hich
we have already seen to be a fast and com

pact unit (at least for R = 2 and 4).
The m

echanism
 of the FFT algorithm

 m
ay now

 be revealed, as we m
anipulate

the W
 term

.
A

s a com
pletely general algorithm

 developm
ent w

ould lead to som
e rather

unw
ieldy expressions, w

e shall develop the D
IT and D

IF algorithm
s in

parallel. In the text, references to variables will appear in the form
 D

IT {DIF}
Equations are in pairs, D

IT first.
First of all w

e separate the com
ponent digits of n {k}.

W
fik = wtf* w

£

then w
e use the periodicity property to cancel pow

ers of R in the exponent of
W

 at each stage, thereby 'coarsening' its angular range w
here possible.

W
fi" =

N
ext w

e resolve k {n} into its com
ponent digits, noting that only those digits

w
hose w

eight is less than the periodicity of W
 are effectively non-zero (again

due to the periodicity property):

and finally w
e separate term

s involving d {c} into a part w
hich is periodic in

R, and a part w
hich isn't:

W
fik

d>M-2
8.6

d^.,-0

Substituting equation (8.6) into equation (8.5) gives the D
IT expression

.
R—1 _

. *»_**.. . _
 _ »!_*.•__ _ R—1 r- - -» _______ *<.«.'.. _

•*"'
X

(k)= I
,

do-O

'
d,-0

and the D
IF expression

X
(k) = "•do-O

8
.7

.
R

-l

8.8

i. £
VLSI signal processing

The reader should attem
pt to establish a link betw

een these equations and
ilie topology of the FFT netw

ork. A
t each stage of the m

achine, a sum
m

ation
is perform

ed over the associated index digit. This sum
m

ation is perform
ed for

all com
binations of the other digits, leading to an N

/R by M
 array of processors.

I ,ach butterfly colum
n effectively transform

s the interpretation of the stage
digit from

 the tim
e dom

ain to the frequency dom
ain. A

s butterfly inputs and
outputs are characterised by the stage digit, the 'span' of each colum

n, i.e. the
distance betw

een these elem
ents, equals the w

eight of the stage digit.
The rotation factors w

hich are not periodic in R are the tw
iddle factors

i m
ployed in netw

ork branches of the transform
. Those w

hich are periodic in
l< serve to com

plete the D
FT definitions, w

hose necessity was underlined
earlier. W

herever d {c} = 0, the tw
iddle factor corresponds to a m

ultiplication
hy unity, and is om

itted - hence the tw
iddle free input {output} top leg on all

butterflies.
W

hatever the geom
etry used, any tw

iddle factor m
ay be evaluated by tracing

connections to any elem
ents in transform

 input and output sequences, and
evaluating at the relevant stage in equation (8.7) {(8.8)}. Finally, note that
both transform

s render tw
iddle factors unnecessary outside the D

FT colum
ns

a fact w
hich is often overlooked in the literature.

N .4.3
The constant-geom

etry algorithm
M

any other topologies exist to satisfy the needs of FFT users. C
onstant

geom
etry algorithm

s (R
abiner and G

old, 1975) allow one colum
n of processors

10 be repeated across the array, thus allow
ing a standard part (w

hether a chip
or a circuit board) to be used throughout the transform

. The cost of this
m

odular approach is the inclusion of trivial rotations by W
° before the first (in

D
IT realisations) or after the last (in D

IF) colum
n, or som

e extra control and
sw

itching circuitry for their obviation.
To im

plem
ent a constant-geom

etry algorithm
, we m

ust ensure that the
spacing betw

een elem
ents in sequences (i.e. span) rem

ains constant across the
array. This m

ay be achieved by including an order-M
 perfect shuffle after each

stage. Figure 8.17 (a) and (b) illustrates (explicitly and im
plicitly) the right-

hand side of one such stage, show
ing the action of the perfect shuffle. Spans

are increased by a factor of R
, w

hich cancels the reduction by R inherent in
i he Cooley-Tukey FFT. The effect on D

IT tw
iddles is m

erely to perfect shuffle
i hem

 as well - this has the beneficial effect of ordering them
 correctly dow

n
i he colum

ns (cf. digit reversal in the C
ooley-Tukey D

IT FFT).
N

ote that in this netw
ork M

 extra shuffles are perform
ed. They have no

i iverall effect, as this corresponds to a com
plete circular shift of the index back

to its original state. G
iven N and R

, all FFT netw
orks are isom

orphous and
differ only in the em

ploym
ent of tw

iddles and shuffles throughout. For
instance, norm

ally-ordered output can be produced from
 the m

irror im
age of

ilie netw
ork im

plied, by Figure 8.17, if the input sequence index is digit-
10versed. The perfect shuffles of the netw

ork, both inherent (for universal
connectivity) and additional (for constant geom

etry), are in this case inverse
shuffles, or 'unshuffles'.

Fourier traM
fon*

149

(a)
(b)

Fig. 8.17
Right-hand side of constant-geom

etry FFT stage, show
ing (a) explicitly and (b)

im
plicitly the action of the additional order-M

 perfect shuffle.

W
e now

 have the tools and the know
ledge to proceed w

ith the design of an
FFT m

achine.

8.5
The full array FFT m

achine
O

ur first exercise is a 16-point full array FFT m
achine w

ith program
m

able
input

data
w

indow
ing,

im
plem

ented
on

the
inverse

constant-geom
etry

netw
ork just described and operating on 12-bit data w

ords. W
e include a hard­

w
ired shuffle on the inputs, and arrange for the output of the m

achine to
appear in m

agnitude form
.__

The heart of an N
-point FFT m

achine m
ay be represented at the highest level

by a block w
ith N tim

e-dom
ain inputs and N

 frequency-dom
ain outputs.

H
ow

ever, the input signal is norm
ally a w

ord-stream
 (e.g. the output from

 an
A

/D
 converter), and so we em

ploy a corner-turning m
em

ory to load a block
of N sam

ples, and output each sam
ple on its ow

n w
ire (or w

ire pair if the input
signal is com

plex). A
lthough the inverse of this process can be perform

ed on
the transform

er output, converting N
 parallel w

ords into a block of N

170
VLSI signal processing

contiguous frequency-dom
ain sam

ples on one w
ire, we choose to leave the

transform
 output in w

ord-parallel form
. Figure 8.18 show

s the high level
system

 pi an.
The

corner-turning
m

em
ory

has
not

been
studied

as
part

of
our

m
ethodology, but it is clear that this is no m

ore than a sophisticated input
prim

itive. The corner-turning m
em

ory is the w
ord-stream

 equivalent of a
serial-to-parallel converter (S1PO

) acting on a bit-stream
. G

arverick and
Pierce (1983) report the design of such a m

em
ory. For the purpose of this study

we restrict ourselves to the m
ain com

putational engine.

F
IR

S
T

CHIP SET

c'plex

input

CO
RNER

TURNING

M
EM

O
RY

—
 —

—

—
 <

W
INDO

W

PRO
CESSO

R

FFT

PRO
CESSO

R

M
AG

NITUDE

EXTRACTER

m
ag.

o
/p

Fig. 8.18
High-level system

 plan of parallel FFT m
achine.

8.5.1
Prelim

inary architectural decisions
W

e wish to realise a 16-point FFT m
achine, containing a m

inim
al num

ber of
different chip types. For the purpose of sim

ulation, we shall create notional
chips for generation of constants (w

indow
 coefficients and tw

iddle factors - see
below

), and for the input corner-turning m
em

ory. The heart of the m
achine,

in slightly expanded form
, will consist of an array of 8 by 4 radix-2 'butterfly*

processors. The 16-point com
plex output will feed a colum

n of com
plex-to-

m
agnitude converters.
A

s we saw
 earlier, tw

iddle factors in the first colum
n are not required, and

the correspondingly reduced butterfly can be com
bined w

ith the w
indow

ing
coefficients and the data shuffling to form

 a first-colum
n processor. The

rem
aining three

colum
ns

then
consist of regularly connected

butterfly
processors. The block diagram

 for the target system
 is detailed in Figure 8.19.

W
ord ranges and precisions

D
ue to the additions and subtractions inherent in the butterfly, w

ord grow
th

occurs in the FFT as com
putation proceeds across the array. A

s this array
consists of 4 colum

ns, w
e need 4 guard bits on top of our system

 w
ordlength

to accom
m

odate w
ord grow

th. This is a sim
pler approach, although one very

slightly inferior in term
s of noise perform

ance, to any form
 of truncation w

ithin
ihe process (O

ppenheim
 and W

einstein, 1972). W
e also m

ust observe the

Fow
fertrm

fonB
171

In
W

1N
U

U
W

,

SHUFFLE

&

FIRST

CO
LUM

N

SECO
ND

CO
LUM

N

THIRD

CO
LUM

N

FO
URTH

CO
LUM

N

CO
M

PLEX

TO

M
AG

NfTUDE

CO
LUM

N

out

Fig. 8.19
Block diagram

 of parallel FFT m
achine.

requirem
ent for the custom

ary 2 guard bits in the data input to all m
ultipliers,

w
hich ensure their correct operation .
The fact that the final butterfly stage follow

s the final m
ultiplier in the data

path allow
s us to 'steal' one of the tw

o guard bits, potentially reducing the
system

 w
ordlength swl by one bit. A

lthough the m
agnitude converter can cause

grow
th by one bit, given full-scale signals on both real and im

aginary inputs,
we feel that this is a sufficiently unlikely situation to w

arrant an extra bit of
system

 w
ordlength. Thus swl m

ust be at least five bits greater than the input
signal w

ordlength s.
W

e present here a fully concurrent im
plem

entation of the FFT algorithm
.

The transform
 rate r, for the block FFT is thus equal to the w

ord rate, w
hich

we recall is the ratio of process clock rate rp (8 M
H

z here) to system

w
ordlength, i.e.

_
rp

The latency of a butterfly processor will depend on the resolution of the
coefficients. This resolution is a fundam

ental system
 param

eter. A
s our

transform
 is a very short one (the w

heel spokes are sparse), a considerable
am

ount of coefficient inaccuracy can be tolerated. In any case, the 3%

tolerance of the m
agnitude converters introduces a considerable am

ount of
noise into the output. A

s 8-bit m
ultipliers are physically com

pact, w
e select an

8-bit coefficient w
ordlength.

For a 8-bit coefficient, the m
inim

um
 butterfly latency is 16 bits, the objects

in the data path being an 8-bit m
ultiplier (latency 14 bits), and tw

o adders or
subtracters (latency a m

inim
um

 of 1 bit each). If, as seem
s likely, a chip

boundary is to be included, this figure rises to 17. H
appily, a 12-bit input signal

w
ordlength requires at least a 17-bit system

 w
ordlength, as explained earlier.

For a system
 w

ordlength of 17 and a bit-rate of 8 M
H

z, the w
ord rate will be

471 kH
z. A

ssum
ing this is adequate, w

e set the system
 w

ordlength at 17 bits,
thereby forcing w

ord synchronism
 betw

een colum
ns as well as row

s in the
array, w

hich greatly sim
plifies control.

Thus the 16-point dem
onstration m

achine will perform
 block transform

s at
471 kH

z, on data sam
pled at 7.S3 M

H
z. If this data rate seem

s unspectacular,
it should be noted that throughput here is proportional to transform

 length.

172
V

LSI signal processing

Thus, by m
erely instantiating m

ore identical processors, extending the rows
and colum

ns of the m
achine according to their form

ulae given above, we could
com

m
ission a 256-point FFT processor capable of transform

ing data sam
pled

at frequencies exceeding 80 M
H

z. In this case, the 8-bit coefficient w
ord w

ould
severely degrade num

erical accuracy, and an increase to 12 bits m
ight be called

for. The cost of this ploy w
ould be increased chip area and transform

 latency,
and the loss of colum

n synchronism
.

8.5.2
A twiddle factor strategy

W
e are using a fractional tw

o's com
plem

ent num
ber system

 to im
plem

ent
tw

iddle factors, to 8-bit accuracy. This approach suffers from
 the inability to

express unity, w
hich is outside the range of the num

ber system
. M

ost rotations
suffer from

 inaccuracy due to quantisation errors, but we can alw
ays choose

a com
plex coefficient w

hich is w
ithin 0.707 of a bit of its correct value in the

com
plex plane (consider any point w

ithin a unit square, and its distance from

the nearest corner of the square). W
hen attem

pting to represent unity (or for
that m

atter j), how
ever, w

e m
ust accept a constant 1-bit error in the

representation, w
hich notably degrades accuracy at short coefficient lengths.

A
lternatively, w

e can seek a m
ethod of avoiding unity in either real or

im
aginary coefficients, noting that the num

ber -1 is exactly represented in
fractional tw

o's com
plem

ent.
The transform

 is a parallel one, and reads all elem
ents of its input vector

sim
ultaneously. In that case, it is a sim

ple m
atter to reverse the input sequence

to the transform
, thereby replacing the sequence by its conjugate (the real part

is an even function, the im
aginary part odd). This conjugation can be cancelled

by replacing all tw
iddle factors by their conjugates. A

lthough this m
eans that

the transform
 output appears in conjugate form

, this phase error is of no
concern as w

e are extracting output m
agnitude. Com

m
onality of real and

im
aginary tw

iddle coefficients has now
 increased, and the num

ber -1 is no
longer required as a coefficient.

W
e w

ish to avoid unity (not -1), so the next step is to negate the conjugate
tw

iddle factors. The effect of this step can be im
m

ediately cancelled by adding
instead of subtracting, and vice versa, in O

PER
A

TO
R

 D
ft2. R

ather than
disturb the low

-level O
PER

A
TO

R
 D

ft2, w
hich is useful in its ow

n right, we
create the m

odified O
PER

A
TO

R
 D

ft2Sw
ap, w

hich w
e subsequently use in

Rad2D
it and W

indow
2. W

e are m
aking one declarational change, and tw

o
m

stantiational changes,
but only

from

the point of view
 of renam

ing
constituent elem

ents of O
PER

A
TO

R
S. This m

eans that the topology of the
m

achine rem
ains undisturbed.

To sum
 up, by reversing the input sequence, replacing all tw

iddle factors by
their negative conjugate, and effectively sw

apping the adds and subtracts in
the 2-point D

FTs, we m
ay m

axim
ise coefficient com

m
onality and represent

unity in exact m
anner. Such a strategy is only feasible in parallel transform

s,
and only necessary w

here coefficient resolution is poor.

Fourier trft
173

8.5.3
Im

plem
entation

W
e have com

pleted the design of arithm
etic elem

ents to be em
ployed, and

have m
ade the decisions on num

erical issues. N
ow

 w
e can im

plem
ent the

rem
ainder of the m

achine.
A

s stated earlier, our architecture is based on the use of regular colum
ns of

processors. This im
m

ediately suggests a SU
BSY

STEM
 corresponding to each

colum
n. The m

achine then consists of one w
indow

ing and shuffling colum
n,

three butterfly colum
ns, and one com

plex-to-m
agnitude colum

n in cascade.
Estim

ates on chip sizes, based m
ostly on m

ultiplier content, indicate that for
a 5 jim

 nM
O

S process, one butterfly processor will fit on a chip, one
w

indow
ing processor likew

ise, w
hile tw

o of the m
agnitude processors m

ay
share a chip. This m

eans that the first colum
n, the three central colum

ns and
the final colum

n each contain 8 chips, m
aking 40 chips in all. (It is reasonable

to assum
e that each of these colum

ns could fit on one chip using a m
ore

advanced technology w
ith around 2 jim

 feature sizes.) W
e now

 form
ally

specify the three CH
IPs.

The CH
lPs

To create the C
H

IP Bfly2 w
e have to encapsulate R

ad2D
it in a C

H
IP, and

assign values to the various param
eters using the CO

N
ST A

N
T statem

ent.

CH
IP Bfly2 (pcl)prinl,prin2,piinl,piin2,pw

re,pw
im

->proutl,
prout2, pioutl, piout2

(latency is 17 bits
SIG

N
A

L rinl, rin2, iinl, iin2, w
re, w

im
, routl, rout2, ioutl, iout2

C
O

N
TR

O
L cl

PA
D

IN
 (pel -> cl) prinl, prin2, piinl, piin2, pw

re, pw
im

-> rinl,
rin2, iinl, iin2, w

re, wim
P A

D
O

U
T routl, rout2, ioutl, iout2 -> proutl, prout2, pioutl, piout2

PA
D

O
R

D
ER

 V
D

D
, pel, prinl, prin2, piinl, piin2, G

N
D

, pw
re,

pw
im

, C
LO

C
K

, proutl, prout2, pioutl, piout2

C
O

N
STA

N
T coeff = 8, latl = 1, Iat2 = 1

R
ad2D

it [coeff,latl ,lat2] (cl) rinl, rin2, iinl, Hn2, w
re, wim

 -> routl,
rout2, ioutl, iout2

EN
DPlate 3 is a photom

icrograph of C
H

IP Bfly2 (here param
eter Iat2 = 2, and

coeff = 12). Such a device m
ight form

 a com
putational node in a m

uch larger
transform

, e.g. 256-point. The CH
IPS 'W

indow
' and 'M

agnitude* are equally
easy to im

plem
ent - W

indow
 contains one W

indow
2 O

PER
A

TO
R

, and
M

agnitude tw
o Com

plexToM
agnitude O

PER
A

TO
R

S. A
s before, this task is

m
erely one of encapsulation and param

eter assignm
ent.

174
V

LSI signal processing

THRO
UG

H 8

Fig. 8.20
M

ain butterfly processor colum
n SU

BSY
STEM

 'M
ainColum

n', showing perfect
unshuffle on output. All data lines are com

plex.

w
e have the three chip types which we require to build the full array

FFT. O
ur only rem

aining task is to im
plem

ent the netw
ork topology in the

SU
BSY

STEM
S.

The M
ainColum

n and H
eart subsystem

s
The Bfly2 CH

IPs connect together in the constant-geom
etry FFT architecture

depicted in Figure 8.20 to form
 the SU

BSY
STEM

 M
ainColum

n.

SU
BSY

STEM
 M

ainColum
n (cl) rl TH

R
O

U
G

H
 16, il TH

R
O

U
G

H
 16,

rcl TH
R

O
U

G
H

 8, icl TH
R

O
U

G
H

 8 -> rol TH
R

O
U

G
H

 16,
iol TH

R
O

U
G

H
 16

SIG
N

A
L yr, xr, yi, xi, w

r, w
i, yro, xro, yio, xio

BHy2 (cl) yr, xr, yi, xi, w
r, w

i-> yro, xro, yio, xio- TIM
ES 8 W

ITH
yr = rl,r3,r5,r7,r9,rll,rl3,rl5
xr = r2, r4, r6, r8, rlO

, r!2, r!4, r!6
yi = il,i3,i5,i7,i9,ill,il3,il5
xi = i2, i4, i6, i8, ilO, i!2, i!4, i!6
w

r = rcl TH
R

O
U

G
H

 8
wi = icl TH

R
O

U
G

H
 8

yro = rol TH
RO

U
G

H
 8

xro = ro9 TH
RO

U
G

H
 16

yio = iol TH
R

O
U

G
H

 8
xio = io9 TH

RO
U

G
H

 16
EN

D

Fourier trurfM
175

This
code

uses
the

shorthand
TIM

ES
statem

ent,
w

ith
assignm

ent-
replacem

ent to w
ire up the Bfly2 chips. The netw

ork topology is contained in
the ordering of the replacem

ent lists follow
ing the TIM

ES statem
ent. The list

of internal nodes declared in the SIG
N

A
L statem

ent are in fact dum
m

y nodes
- they are replaced by the corresponding elem

ent of the list as the chips are
instantiated. Every node here is distinct (no nodes connect to m

ore than one
chip). TIM

ES syntax allow
s m

any m
ore connection types, as we saw in C

hapter
3.A

s we selected a constant-geom
etry algorithm

, the SU
BSY

STEM
 H

eart
m

ay be constructed by sim
ply cascading three M

ainColum
n SU

BSY
STEM

S.
H

ere the appropriate tw
iddle factors m

ust be routed to the butterflies. In
practice we w

ould store these in RO
M

, but for the purpose of sim
ulation we

create a chip w
hich contains CO

N
STG

EN
 prim

itives for each num
erically

individual coefficient.

SU
BSY

STEM
 H

eart (cl)rl TH
R

O
U

G
H

 16, il TH
R

O
U

G
H

 16,
wreOTHROUGH 7-rol TH

RO
U

G
H

 16, iol TH
RO

U
G

H
 16

SIG
N

A
L rcl TH

R
O

U
G

H
 8, icl TH

R
O

U
G

H
 8

M
ainColum

n (cl) rl TH
RO

U
G

H
 16, il TH

RO
U

G
H

 16, rcl TH
RO

U
G

H
 8,

icl TH
R

O
U

G
H

 8-rol TH
R

O
U

G
H

 16, iol TH
R

O
U

G
H

 16-
TIM

ES 3 W
ITH

 rol TH
R

O
U

G
H

 16, iol TH
R

O
U

G
H

 16-
rl TH

R
O

U
G

H
 16, il TH

R
O

U
G

H
 16

rcl wreO, wreO, wreO
rc2 w

reO
,w

reO
,w

rel
rc3 w

reO
,w

re2,w
re2

rc4 w
reO

,w
re2,w

re3
rc5 w

re4,w
re4,w

re4
rc6 w

re4, w
re4, w

re5
rc7 w

re4, w
re6, w

re6
rc8 w

re4, w
re6, w

re7
icl w

re4, w
re4, w

re4
ic2 w

re4, w
re4, w

re3
ic3 w

re4,w
re2,w

re2
ic4 w

re4,w
re2,w

rel
ic5 wreO, wreO, wreO
ic6 wreO, wreO, w

rel
ic7 wreO, w

re2, w
re2

ic8 wreO, w
re2, w

re3

EN
DN
ote the extensive use of assignm

ent-replacem
ent in H

eart (Figure 8.21),
to route the appropriate tw

iddle factors to the Bfly2 C
H

IPs. W
e take full

advantage of com
m

onality betw
een real and im

aginary tw
iddle com

ponents.

176
VLSIdgnaJproccM

lng

cosO
THROUG

H •'
7rl

1
THRO

UG
H:

16
!

U
olnC

otum
n

U
afnC

olum
n

M
afnColumn

ro1
THROUGH

16

Fig. 8.21
SU

B
SY

STEM
'H

eart', show
ing routing of tw

iddle factors. A
ll data lines are com

plex.

Cascading is realised by the syntax im
m

ediately after the TIM
ES statem

ent,
w

hich specifies how
 outputs of one colum

n connect to the next. A
ny node not

m
entioned in either the cascading syntax or the assignm

ents is connected
globally - for instance the cl inputs to these SU

BSY
STEM

S. Thus all output
nodenam

es m
ust appear in the syntax which follow

s the TIM
ES statem

ent, if
node conflicts are to be avoided.
The InColum

n SU
BSYSTEM

The construction of the SU
BSY

STEM
 InColum

n (Figure 8.22) is a m
ore

com
plex problem

, as it is here that the index bit-reversal is im
plem

ented. W
e

further com
plicate m

atters by using the sym
m

etry of the w
indow

ing function
to reduce the num

ber of coefficient lines into the SU
BSY

STEM
. A

gain w
e use

w1 THROUGH 8

Fig. 9.22
W

indow
ing SU

BSY
STEM

 'InC
olum

n', show
ing bit-reversing shuffle on input and

perfect unshuffle on output. A
ll data lines are com

plex.

Fourier tnniforni m
achines

177

assignm
ent-replacem

ent for coefficient routing.
H

ere we are using a truly sym
m

etric w
indow

, and not a D
FT-sym

m
etric

w
indow

 (H
arris, 1978). The axis of sym

m
etry of the latter falls on sam

ple N
/2,

w
hile that of the form

er falls half a sam
ple period earlier. The D

FT sym
m

etric
w

indow
 requires one extra coefficient to be generated, increasing pin count,

and the im
provem

ent in perform
ance (over true sym

m
etry) predicted by

H
arris is unlikely to be significant, given the noisy nature of our transform

.

SU
BSY

STEM
 InColum

n (zcl) rl TH
R

O
U

G
H

 16, il TH
R

O
U

G
H

 16,
w

l TH
R

O
U

G
H

 8-> rol TH
R

O
U

G
H

 16, iol TH
R

O
U

G
H

 16
SIG

N
A

L yr, yi, xr, xi, wy, w
x, yro, xro, yio, xio

W
indow

 (zcl) yr, xr, yi, xi, w
y, wx -> yro, xro, yio,

xio TIM
ES 8 W

ITH

yr = rl, r5, r3, r7, r2, r6, r4, r8
xr = r9, r!3, rl 1 , r!5, rlO

, r!4, r!2, r!6

xi = i9, i!3, ill, i!5, ilO, i!4, i!2, i!6
wy = w

8, w
4, w

6, w
2, w

7, w
3, w

5, w
l

wx = w
l, w

5, w
3, w

7, w2, w
6, w

4, w8
yro = rol TH

R
O

U
G

H
 8

xro = ro9 TH
R

O
U

G
H

 16
yio = iol TH

R
O

U
G

H
 8

xio = io9 TH
R

O
U

G
H

 16
EN

D

The O
utColum

n SU
BSYSTEM

Recall the O
PER

A
TO

R
 Com

plexToM
agnitude from

 C
hapter 3, w

hich w
as

duplicated
and

integrated
on

C
H

IP
M

agnitude.
The

construction
of

SU
BSY

STEM

O
utcolum

n
(Figure

8.23)
then

consists
of

8
distinct

instantiations of M
agnitude. The w

iring topology used is som
ew

hat arbitrary,
as any schem

e w
hich m

aintains consistency of in, out and m
ag node num

bering
will do.

SU
BSY

STEM
 O

utC
olum

n (cl) rel TH
R

O
U

G
H

 16,
im

l TH
R

O
U

G
H

 16-> m
agi TH

R
O

U
G

H
 16

SIG
N

A
L rea, reb, im

a, im
b, m

aga, m
agb

M
agnitude (cl) rea, reb, im

a, im
b -> m

aga, m
agb TIM

ES 8 W
ITH

rea = rel TH
R

O
U

G
H

 8
reb = re9 TH

R
O

U
G

H
 16

im
a = im

l TH
R

O
U

G
H

 8
im

b = im
9 TH

R
O

U
G

H
 16

m
aga = m

agi TH
R

O
U

G
H

 8
m

agb = m
ag9 TH

R
O

U
G

H
 16

EN
D

178
VLSI signal processing

m
agi

THROUGH
16

Fig. 8.23
M

agnitude extraction SU
BSY

STEM
 'O

utC
olum

n', show
ing necessary sym

m
etry.

Input lines are com
plex, output real.

The FFTSYSTEM
W

e have now
 arrived at the top (SY

STEM
) level in the hierarchy. The pow

er
of hierarchy lies in the ability of the designer to hide detail in low

er levels. This
we have already done w

ithin SU
BSY

STEM
S (topological details), and CH

IPs
(com

putational details). Thus putting together the SY
STEM

 FFT (Figure
8.24) is m

erely a m
atter of cascading the SU

BSY
STEM

S InC
olum

n, H
eart and

O
utColum

n in a regular m
anner, and requires little effort.

SY
STEM

 FFT rin,iin->outl TH
R

O
U

G
H

 16
SIG

N
A

L rinl TH
R

O
U

G
H

 16, iinl TH
R

O
U

G
H

 16,
rl TH

R
O

U
G

H
 16, il TH

R
O

U
G

H
 16, rol TH

R
O

U
G

H
 16,

iol TH
R

O
U

G
H

 16, cosO TH
R

O
U

G
H

 7, w
l TH

R
O

U
G

H
 8

C
O

N
TR

O
L cl

C
orner rin,iin-> rinl TH

R
O

U
G

H
 16, iinl TH

R
O

U
G

H
 16

Tw
iddles (cl)->

 cosO
TH

R
O

U
G

H
 7

H
am

Coeffs (cl)->
 w

l TH
R

O
U

G
H

 8
C

generate(->cl)
InColum

n (cl) rinl TH
R

O
U

G
H

 16, iinl TH
R

O
U

G
H

 16,
w

l TH
R

O
U

G
H

 8-> rl TH
R

O
U

G
H

 16, il TH
R

O
U

G
H

 16
H

eart (cl) rl TH
R

O
U

G
H

 16, il TH
R

O
U

G
H

 16,
cosO

TH
R

O
U

G
H

7-> rol TH
R

O
U

G
H

 16, iol TH
R

O
U

G
H

 16
O

utColum
n (cl) rol TH

R
O

U
G

H
 16, iol TH

R
O

U
G

H
 16-> -

outl TH
R

O
U

G
H

 16

EN
D

Fourier transform
 m

achine*
17*

W
l THROUGH 8

cosO
 THROUGH 7

rin
1 THR(

1
fr-

InC
olum

n

—
—

H
eart

O
utC

olum
n

le iin
M

JGH 16
r It 1

1 THRO
UG

H
16

ro It io
m

ag
1 THRO

UG
H 16

1 THRO
UG

H 16

Fig. 8.24
SY

STEM
'FFT.

8.5.4
Sim

ulation
The Fourier transform

er is a m
achine w

hich allow
s decom

position of a signal
into an arbitrary num

ber of spectral com
ponents or 'bins' - in this case 16.

W
indow

ing is perform
ed prior to FFT processing to m

inim
ise the effects of

'off-bin'
com

ponents
on

non-related
bins.

W
e

em
ploy

H
am

m
ing

and
Blackm

an w
indow

s (H
arris, 1978) to effect w

indow
ing.

To dem
onstrate the use of w

indow
s, w

e illustrate a sim
ple tw

o-tone
detection problem

. O
ne tone is at full-scale am

plitude, and the other is at 1%

of this (i.e. 40 dB dow
n). Figure 8.25 show

s the log-m
agnitude output of the

processor w
hen both tones are at discrete observation frequencies, on bins 7

and 12. W
e observe the 40 dB difference betw

een these bins, and note that
transform

 noise due to poor arithm
etic accuracy alm

ost m
asks the m

inor tone.
The w

orst offender is the partner tone to the dom
inant - this is bin 15 (7 +

the span, w
hich is 8 here). This bin accum

ulates energy (and errors) in identical
m

anner to the dom
inant until the last butterfly colum

n, w
here it is uniquely

.identified. The 6 dB loss of dynam
ic range necessary for correct m

ultiplier
operation can be seen in the dom

inant tone. The energy in bins 2, 6, 10 and
14 corresponds to one bit.

N
ext we m

ove the dom
inant tone on to a position betw

een bins, the new

norm
alised frequency being 6.5. The spread of energy over the other bins is

apparent, and the m
inor tone is no longer detectable (Figure 8.26).

180
VLSI signal processing

-1
0

-2
0

S
?
-3°

€*^
S

. _

-4
0

«T
J

1

~
5
°

|-6
0

l-n
£
-8

0
0-1

0
0

-1
1

0

-o
n
0
1

2
3
4

5
6

7
8

9
10

11
12

13
14

15
norm

alised frequency

Fig. 8.25
FFT sim

ulation, show
ing response to tones on bins 7 and 12, with 40 dB difference,

no w
indow

 used.

Introduction of the H
am

m
ing w

indow
, show

n in Figure 8.27, reduces the
leakage to a great enough extent to reveal the m

inor tone once m
ore - a good

14 dB above its neighbours. The Blackm
an w

indow
 has a w

ider m
ain lobe, and

low
er sidelobe energy than the H

am
m

ing w
indow

. Its detection characteristics
are displayed in Figure 8.28, show

ing higher energy in im
m

ediate neighbours
of the tw

o tones, but less in other bins.

0 -

-1
0
-

-2
0
-

"T30
~

-4
0

x.§"
-60

E
.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
norm

alised frequency
15

Fig. 8.26
R

esult of m
oving dom

inant tone to a m
id-bin position (bin 6.5), no w

indow
 used.

Fourier tn
181

0 -

-1
0
-

-20-

m •o3a§
•-«-90

-100

-110

0
1

2
3

4
5

6
7

B
9

10
11

12
13

14
15

norm
alised frequency

Fig. 8.27
InlroductionofH

am
m

ingw
indow

revealsm
inortoneoncem

ore.

8.5.5
Som

e com
m

unications issues

The full array FFT m
achine is capable of one transform

 every w
ord-tim

e. If
the input w

ord rate to the entire m
achine - corner-turning m

em
ory included

- is equal to the processor w
ord-rate, then such a m

achine perform
s a 'sliding

transform
' on the input data. Each incom

ing w
ord participates in N transform

s
before expiring, and the m

axim
um

 am
ount of processing is carried out on the

u -

-1
0-

-2
0
-

S

3°-
•o~
-4

0
-

o= -5
0
-

.t:
J

|-6
0
-

|-7
0

f-8
0

o
-9

0

-1
0

0

-1
1

0

i^n
0

1
2
3

4
5

6
7

B
9

10
11

12
13

14
15

norm
alised frequency

Fig. 8.28
R

esponse of Blackm
an w

indow
 in the sam

e experim
ent.

182
VLSI signal processing

input sequence. A
 sliding transform

 of the type just described, w
here phase

inform
ation is neglected, can also be realised recursively by a colum

n D
FT

m
achine w

ith only order(N
) processors (Ting, 1980). A

lthough this m
achine

accum
ulates an output phase error, this is of no im

portance if only output
m

agnitude is of interest.
A

 m
ore com

m
on transform

 is the 'block transform
', w

hereby a block of
entirely new

 sam
ples is presented to the m

achine every w
ord-tim

e. Each input
w

ord then participates in just one transform
. H

ow
ever, for such a schem

e to
be effective, the input w

ord-rate should be N tim
es the processing w

ord-rate.
Even for a m

odest m
achine such as the one just described, the input w

ord-rate
is 7.53 M

H
z. H

igher transform
 lengths lead to unattainable input data rates,

despite the ability of the processor to deal w
ith the data once input. In/out

bandw
idth lim

its perform
ance in this case.

A
 com

m
on com

prom
ise betw

een the com
putational burden of the sliding

transform
 and the com

m
unications burden of the block transform

 is the
'overlapped transform

' (R
abiner and G

old, 1975). This is accom
plished

through the m
ultiplexing technique described in C

hapter 5, allow
ing m

atching
of in/out and processing bandw

idths. A
lternatively, block transform

 m
achines

m
ay be realised w

ith in/out data rates less severe than that of the parallel
m

achine.
The FFT being im

plem
ented on a rectangular array of processors, tw

o
m

ultiplexing schem
es suggest them

selves - a row
 schem

e and a colum
n

schem
e. W

e investigate both, but only produce a chip set for the form
er

m
achine.

8.6
The colum

n FFT m
achine

W
e m

entioned earlier that the constant geom
etry netw

ork w
ould allow

 one
colum

n of processors to be repeated spatially, i.e. cascaded, to im
plem

ent the
transform

. If the repetition is m
ade tem

poral rather than spatial, then only one
physical colum

n of processors is required. W
e are trading tim

e against silicon
area - a com

m
on technique in system

s optim
isation.

It is fortunate that in the case N = 16 (giving M
 = 4 for radix-2), the sub-

block length (= N
/M

, = 4) is an integer. Thus w
e process 4 sam

ples at a tim
e,

and carry out block transform
s at a quarter of the rate of the full array m

achine,
using approxim

ately a quarter of the hardw
are. W

e say 'approxim
ately'

because the area-tim
e tradeoff is m

ore than just a m
atter of dividing dow

n the
hardw

are of the full array m
achine - som

e delay and sw
itching elem

ents m
ust

also be introduced for correct operation.
A

 further penalty, as m
entioned earlier, is that w

e m
ust im

plem
ent the

'trivial' tw
iddles of the first colum

n, as the sam
e hardw

are realises all colum
ns

of the m
achine. Thus w

e cannot com
bine w

indow
ing w

ith the first colum
n as

before. N
ot only is this w

asteful of silicon, but it also causes arithm
etic

degradation due to the fact that unity cannot be represented. O
ne w

ay round
this w

ould be to negate all tw
iddle factors, and sw

ap the com
plex adders and

subtracters in the butterflies (one of the tricks used in the full array m
achine).

Fourier traart
113

H
ardware overview

O
ur initial concept of the colum

n m
achine is a single colum

n of butterfly
processors, like M

ainColum
n of the full array study, w

ith a w
indow

ing front
end and a m

agnitude-extracting back end. The front end can be a set of sim
ple

w
eighting blocks, like X

w
eight, and the back end can contain elem

ents like
Com

plexToM
agnitude. A

s the in/out data rate is one-quarter of that of the full
array m

achine, only four instantiations of these O
PER

A
TO

R
S are required.

The corner-turning m
em

ory takes four sam
ples from

 the input w
ord-stream

,
and outputs them

 on four w
ire-pairs. Figure 8.29 show

s a high level system

plan.
Som

e design problem
s m

anifest them
selves as we consider the operation of

the butterfly colum
n, and how

 it com
m

unicates w
ith the front and back ends.

This colum
n m

ust read in its 16-point w
indow

ed data block, then recirculate
its outputs three tim

es before reading the next block. Its inputs and outputs
are 16-point, w

hile the interfaces to the front and back ends are 4 x 4-point
(i.e. four sequential blocks of four). Tw

o actions are required from
 the

designer.
Firstly we m

ust 'tim
e align' the four sub-blocks w

hich are output sequentially
from

 the w
eighting block. Sim

ilarly w
e m

ust 'de-align' the colum
n outputs, for

correct presentation to the m
agnitude-extraction block. Secondly we m

ust
ensure that the colum

n and the back end 'read' the correct data at the correct
tim

e.
The form

er strategy can be im
plem

ented using 'w
edges' of delay - in the case

of the front end interface w
ith com

m
on inputs, and in the case of the back end

w
ith distinct inputs (Figure 8.30). The front end w

edge is arranged to perform

the required bit-reversing shuffle on the 4 x 4-point signal block. The
technique em

ployed m
inim

ises the num
ber of crossovers in signal paths, at no

greater hardw
are cost than a hardw

ired shuffle.

^

,*

con
tun-
m

e

fsor­
ting
m

ory

—
—

 >
—

—
 >

—
—

 >

w
indow

processor

i

Ir

—
—

 >
—

—
 »

—
—

 »

—
—

 i'

—
—

 »
—

—
 »

—
—

 1
—

—
 »

—
—

 »
—

—
 >

—
—

 »*
—

—
 »

—
—

 »
—

—
 »

—
—

 i

m
agnitude

conversior

input
butterfly

output
terfoce

colum
n

Interface

Fig. 8.29
C

olum
n FFT m

achine plan.

184
V

LS
I ilg

iu
l processing

The latter strategy is accom
plished by em

ploying M
U

LTIPLEX
 prim

itives
- at the front end interface to read a valid input block once in four cycles, and
at the back end to select one from

 four sub-blocks, ensuring both that selection
order is correct, and that the valid m

achine output is read and not som
e

interm
ediate

inter-colum
n

result.
The

signals
are

passed
by

the
M

U
LTIPLEX

ers w
hen valid (as show

n by the node num
bers in tim

e sequences
in Figure 8.30).

A
nother issue is the sharing of m

ultiplier coefficients in the w
eighting block

and in the FFT colum
n engine. W

e m
ust realise a m

em
ory loop of length 4

w
ords for each processor, containing a M

U
LTIPLEX

 sw
itch to read in

coefficients
on

start
up.

The
coefficients

will
subsequently

recirculate
indefinitely, appearing in the correct tim

e-slot at the m
ultiplier. Thus the

m
achine m

ust run in tw
o m

odes - start up and steady state.
Initial hardware decisions
W

e now
 have a m

uch clearer idea of w
hat com

prises the colum
n m

achine, and
can com

m
ence its design. M

uch of this w
ork has already been done in the full

array study - w
e need only add the w

edges, sw
itches and m

em
ory loops

described above. The front end w
edge can be included at the outputs of each

w
indow

ing m
ultiplier, at the cost of increasing pin count on that chip. The back

end w
edge, having distinct inputs and outputs, should inhabit the sam

e chip
as the '1 from

 4' data selector used by the m
agnitude extractors, thereby

m
inim

ising the num
ber of pin-expensive 16 channel transfers betw

een chips.
The butterfly chips can be the sam

e as used in the full array study, w
ith the

addition of M
U

LTIPLEX
 prim

itives for input data selection, and m
em

ory

I
I «• unit w

orddeloy
x - don't core

input shuffling
w

edge
B

utterfly
Colum

n
4 x Pick1from

4
(1

show
n)

Fig. 8.30
A

ction of input and output interfacing w
edges.

Fow
ler tr

185

loops for storing real and im
aginary coefficients. N

ote that the inclusion of
M

U
LTIPLEX

 in the signal path increases the swl by one bit, as the swl has
a

m
inim

um

value
decided

by
the

latency
of

the
BFLY

2
chip

(for
synchronisation reasons). Thus swl = 18 bits here. Finally the M

agnitude chip,
being sm

all, can support the system
 C

O
N

TR
O

LG
EN

ER
A

TO
R

 (CG
).

Control and m
ultiplexing issues

In the full array study, w
e ensured a sim

ple control system
 by m

aking all
colum

ns of the m
achine w

ord synchronous. A
ll we then needed to do was

supply a cl signal to each chip in the system
. H

ere w
e are involved w

ith a m
ore

com
plicated control netw

ork, and som
e care m

ust be taken in the design
process.

W
e are using a m

ultiplexing regim
e, and accordingly m

ust em
ploy higher

levels of control than cl. M
U

LTIPLEX
 prim

itives are situated at the colum
n

inputs, and at the back end inputs. In the form
er task, they select one from

tw

o signals, recirculating outputs back to inputs for 3 out of 4 w
ord cycles. This

suggests a c2 C
Y

C
LE, or 'fram

e', of length 4. In the latter task they select one
from

 four, in a cyclic fashion.
A

s w
e only have one-from

-tw
o M

U
LTIPLEX

 prim
itives available to us, we

could
construct

a
one-from

-four
selector

as
a

binary
tree

of
three

M
U

LTIPLEX
ers. This necessitates a c2 CY

CLE of 2 w
ords and a c3 CY

CLE
of 2 fram

es, yielding a 2-bit control code for selection control. U
nfortunately

this com
prom

ises our earlier schem
e for the butterfly data recirculation, and,

as it is the latency of this loop w
hich will decide our m

inim
um

 system

w
ordlength, w

e m
ust seek another solution for the one-from

-four selector.
Figure 8.31 show

s a schem
e w

hich em
ploys a c2 C

Y
C

LE of 4, and a c3 CY
CLE

of2.W
e m

ust also provide the facility for catching m
ultiplier coefficients

described earlier. A
 M

U
LTIPLEX

 sw
itch can be program

m
ed to allow

 the
coefficients to be loaded into the loop on start up. This action is under the

c3
"ini"

c2

in2
c3d2
in3

c2d2

In4

U
U

X
 [1

.0
.0

])

[i.o.o]

int3

'"
--V

-~
»

M
I«

/* [1
.0

.0
]

Int4

Fig. 8.31
O

utput selection O
P

E
R

A
T

O
R

 'Pick IfronvT.

186
VLSI signal processing

control of an event pulse, of length 4 w
ords (the fram

e length), and thus we
associate the EV

EN
T w

ith C
Y

C
LE c2.

A
 final design issue is the control tim

ing. W
e m

aintain cl synchronism
 at chip

level throughout, at the cost of a 4-bit C
B

ITD
ELA

Y
 on M

agnitude CH
IPs

(w
hich in turn allow

s som
e cyclic cl optim

isation on M
agnitude). W

e have
hidden cl details in the hierarchy.

The next control level, c2, decides w
hen the butterflies read the new

 input
vector. A

s w
e are not concerned about how

 the input data stream
 is sectioned

into blocks, w
e can treat the inputs to the Colum

n SU
BSY

STEM
 as a tem

poral
'reference point* (R

P), and design the control netw
ork from

 there on. The
controls input to O

PER
A

TO
R

 'Picklfrom
4' are w

ord synchronous, and in fact
are c2-fram

e synchronous as well (the Colum
n output is valid at the sam

e tim
e

as it reads its new
 input). Thus the control im

plem
entation of 'Picklfrom

4'
reduces to the problem

 of w
iring up its 4 input lines - see code and Figure 8.31.

O
PER

A
TO

R
 Picklfrom

4 (c2, c2d2, c3, c3d2) inl TH
R

O
U

G
H

 4-> out
(latency is 3

SIG
N

A
L intl TH

R
O

U
G

H
 4

M
U

LTIPLEX
 [1,0,0] (c2) in2, inl -> intl

M
U

LTIPLEX
 [1,0,0] (c2d2) in4, in3 -> int2

M
U

LTIPLEX
 [1,0,0] (c3) intl, int2 -> int3

M
U

LTIPLEX
 [1,0,0] (c3) int2, intl -> int4

M
U

LTIPLEX
 [1,0,0] (c3d2) int3, int4-> out

EN
DThe event pulse for coefficient catching should be in synchronism

 w
ith other

control signals. Synchronism
 m

ay be m
aintained by setting the latency of

O
PER

A
TO

R
 'C

ofC
atch' to swl, via the M

U
LTIPLEX

 latency param
eter.

(Signals passing through M
U

LTIPLEX
 are delayed by at least 1 bit, thus 1

w
ord is the cost of m

aintaining synchronism
.) N

ow
 we m

ust ensure that
coefficients are presented to CofCatch in such a fashion as to coincide w

ith the
desired data sam

ples at the m
ultipliers.

O
PER

A
TO

R
 CofCatch [swl] (e3) in -> out

{latency is swl
SIG

N
A

L si TH
R

O
U

G
H

 3
M

U
LTIPLEX

 [sw
l,0,0] (e3) s3, in -> out

B
ITD

ELA
 Y

 [swl] out -> si
B

ITD
ELA

Y
[sw

l]sl->s2
B

ITD
ELA

 Y
 [swl] s2-> s3

E
N

D

Fourier In
irr

H
ardware partitioning

The description contains 4 SU
BSY

STEM
S, each of which contains m

ultiple
instances of a unique CH

IP. Figures 8.32-8.35 show
 the floorplans of the four

CH
IPs em

ployed.
The w

indow
ing CH

IP W
indo contains 4 m

ultipliers, 4 w
edges, and 4

CofCatch O
PERA

TO
RS. The w

edges, consisting of B
ITD

ELA
Y

s of length
1, 2 and 3 w

ords, are decom
posed into 6 equal-length B

ITD
ELA

 Ys to reduce
chip height. Sim

ilarly CofCatch is partitioned into 4 w
ord-sized blocks.

The butterfly C
H

IP Bfly is m
uch the sam

e as the parallel version, but
includes 2 CofCatch O

PER
A

TO
R

S, 4 M
U

LTIPLEX
 prim

itives and output
recirculation. The M

U
LTIPLEX

s are com
bined w

ith X
m

ult to m
ake the tim

e-
aligned block 'PickA

ndTw
iddle' (like Tw

iddle2 of the previous study, w
ith

selection on all 4 inputs). N
ote the 1-bit predelay on all m

ultiplexers, to
com

pensate for pin delay. This is necessary because synchronous data
recirculation is internal to the C

H
IP, and does not incur a pin delay. D

elays
required in the tw

iddle-free top leg are realised in the M
U

LTIPLEX
 latency

param
eter.

O
PER

A
TO

R
 PickA

ndTw
iddle[coeff,lat] (cl,c2->clo)rinl,rin2,iinl,iin2,

rbl, rb2, ibl, ib2, w
re, w

im
-> routl, routi, ioutl, iout2

{latency iscom
pdel + 1 (see expression below

)
SIG

N
A

L r,i
C

O
N

STA
N

T com
pdel = (3 * coeff)/2 -I- 2 + lat

M
U

LTIPLEX
 [1 + com

pdel.1,0] (c2) rbl, rinl -> routl
M

U
LTIPLEX

J1 + com
pdel.1,0] (c2) ibl,iinl->

 ioutl
M

U
LTIPLEX

 [1,1,0] (c2) rb2, rin2-> r
M

U
LTIPLEX

 [1,1,0] (c2) ib2, H
n2-> i

X
m

ult [coeff,lat] (cl -> clo) r, i, w
re, wim

 -> rout2, iout2
•

EN
DW

e partition the SU
BSY

STEM
 W

edgePair in a different m
anner from

 the
rest of the m

achine - w
e separate real and im

aginary parts, as this is the only
form

 of sym
m

etry displayed by the SU
BSY

STEM
. SU

BSY
STEM

 W
edgePair

consists of tw
o O

ut W
edge C

H
IPs, one each for real and im

aginary signals.
O

ut W
edge in turn consists of 4 Picklfrom

4 O
PER

A
TO

R
S, and a w

edge m
ade

w
ith

6
D

elayBlock
O

PER
A

TO
R

S,
D

elayBlock
being

a
4

channel
param

eterised delay elem
ent. W

e call D
elayBlock 6 tim

es, not 3, in order to
restrict B

ITD
ELA

 Y
s to a size com

m
ensurate w

ith the rest of the chip, just as
in W

indo and C
ofC

atch.
Finally the M

agnitude C
H

IPs are im
plem

ented m
uch as before, but w

ith the
inclusion

of
a

C
O

N
TR

O
LG

EN
ER

A
TO

R

prim
itive,

and
a

4-bit
C

B
ITD

ELA
Y

 to m
aintain cl synchronism

 at chip level (4 bits is the latency
of the previous C

H
IP in the path, O

utW
edge). The CG

 m
ust be isolated from

the rest of the chip, as FIR

ST allow
s the use of only one C

G
 per system

.
Internal control on M

agnitude is brought in via its pins.

VLSI signal

>
'/.l..l

fij
».-*» *

«
«
V

*
«
R

A
tt-

-II II (I II I III
,'

"
I

,
|
l

I
i
l
l

l
i
l
t

.
I

.
"
:
«
|l

'
!l,-.--"H

M
»
.M

^.M

H Ig. 8.32
R

oorplan of input w
eighting C

H
IP' W

indo'.

S.!J!
Ilia

III.....
I

illiiiiil 1

I
I

I-
\

i{, iviuji•

Klg. 8.33
Floorplan of butterfly processor C

H
IP 'Bfly 1 .

Fourier transform
 m

adU
sM

i
189

!i!
!L

,
..p.

''
L

J
L

l(J
L

J
L

jfL
lL

l!J
[J

L
|lJ

L
J
('

„
>

. t
.. w

lL
.a

u
 I

«
U

|:M
«
I

H
W

 I
«** I

*U
« I

M
U

 |
U

U
 I

(U
»U

|
IU

'I
M

*U
|

Fig. 8.34
R

oorplan of output w
edging and selecting C

H
IP'O

utW
edge'.

:{2—

vcmr.wirei.uw'

Fig. 8.35
Floorplan of m

agnitude extraction and control generation C
H

IP 'M
agnitude'.

190
VLSI signal processing

Figures 8.32-8.35 show
 the chips used - their sizes are as follows:

Chip
Bfly
W

indo
O

utW
edge

M
agnitude

W
idth (X)
2461
2657
2237
1691

H
eight (K)

1645
1666
1314
1337

Aspect Ratio
1.50
1.59
1.70
1.26

This study has show
n that m

any design issues arise after floorplans have been
produced, and som

e iteration is norm
ally required to optim

ise any chip set.
The silicon com

piler lets the designer successively refine his w
ork, allow

ing
physical, as well as functional, considerations to com

e to bear on the design.
W

e oversim
plified the physical design issues in the full array study - it is

unusual to com
pile and use an O

PER
A

TO
R

 'toolkit' w
ithout any regard to

physical im
plications.

8.7
The pipeline FFT m

achine
W

e have seen (for radix-2) how
 the FFT can be im

plem
ented in a fully parallel

m
anner, using a large num

ber - (N
/R)logRN - of butterfly processors, w

here
N is the transform

 length and R is the radix. It follows that the hardw
are cost

is of order (N
/R)logRN (there are logRN colum

ns, each containing N
/R

processors). The parallel structure is capable of block transform
s in unit w

ord
tim

e. The area-tim
e product is therefore also of order (N

/R)logRN.
W

e have also seen how
 area could be traded against tim

e to realise the
colum

n m
achine. W

hen N is large, this schem
e still leads to fast but hardw

are-
intensive system

s. A
 m

ore com
m

on area-tim
e tradeoff is to divide area, and

m
ultiply tim

e, by N
/R

, i.e. to em
ploy a m

ultiplexing level of N
/R. The sam

e
transform

 m
ay then be perform

ed in a w
ord tim

e of N
/R, using only logRN

processors. This is in effect im
plem

enting just one row
, and m

ultiplexing dow
n

the colum
ns. The resulting m

achine is a pipeline FFT (M
cClellan and Purdy,

1978), and the m
ost advanced FFT m

achine know
n to the authors em

ploys this
architecture (w

ith radix R = 4) to realise 4096-point transform
s on 40 M

H
z

data (Sw
artzlander and H

allnor, 1984).

8.7.1
Som

e radix issues
A

 radix-R D
FT is capable of processing R points of com

plex data at a tim
e,

and a radix-R butterfly uses (R
 - 1) tw

iddles. A
n N

-point radix-R full array
m

achine
requires

(N
/R)logRN

butterflies,
w

hile
an

equivalent
pipeline

m
achine needs logRN stages of processors (R

abiner and G
old, 1975). If we

neglect the cost of adders, and also 'trivial' colum
ns of tw

iddles (usually one
colum

n is tw
iddle-free), we can state that a radix-R m

achine will yield a factor
of R/2 im

provem
ent in throughput over a radix-2 m

achine, w
hilst only costing

(R
-l)/log2R tim

es m
ore hardw

are.

FoM
riertra

191

It w
ould seem

 from
 these figures that if the ratio of throughput to hardw

are
cost w

ere proposed as a figure of m
erit for FFT m

achines, then we should
choose as high a radix as possible. This leads us to expose the fallacies of the
approxim

ations w
e m

ade. A
t radices higher than 4, using standard arithm

etic,
the D

FT m
achines used in the butterflies require internal m

ultipliers, for
instance 2 in the case of radix-8. It seem

s that radix-4 is in som
e sense optim

al
for long transform

s on pipeline m
achines (M

cClellan and Purdy, 1978), and
this is the radix w

e choose.
W

e shall dem
onstrate here a fairly m

odest m
achine; a 64-point, radix-4

transform
. In this instance we om

it the details of physical im
plem

entation, i.e.
the partitioning of the system

 into chips.

Fig. 8.36
64-point Radix-4 C

ooley-Tukey FFT network, drawn in tuch a way ai to indicate the
position and size of delays in the equivalent pipeline m

achine.

192
V

LSI signal processing

8.7.2
A

rchitecture

The area-tim
e tradeoff m

entioned above is a little m
ore com

plicated in reality,
as we neglected the cost of storage in the pipeline FFT. Storage is required as
a result of the non-local routing in all FFT algorithm

s. W
e choose a netw

ork
which has m

axim
al locality of routing, and correspondingly requires m

inim
al

storage. This netw
ork im

plem
ents the radix-4 Cooley-Tukey FFT.

Figure 8.36 show
s the parallel version of the netw

ork, and Figure 8.37 the
pipeline equivalent. Figure 8.36 has four colum

ns of 'w
iring posts' interspersed

w
ith three colum

ns of processors. Locality can be visualised as the vertical
distance of connections from

 posts to processors in Figure 8.36. N
ote that the

vertical distances from
 processors to posts have been distorted by a factor of

R for diagram
m

atical convenience, resulting in the vertical gaps betw
een

subsequent processor groups. The vertical distances (w
hich are proportional

to the stage spans) decrease by a factor of R as we m
ove from

 left to right
through the parallel processor.

-16
=

4

Butterfly
C

om
m

utator
Butterfly

C
om

m
utator

Butterfly

Fig. 8.37
Pipeline equivalent of radix-4 FFT m

achine, show
ing unit delays at each stage.

Pipe lengths
The decrease in span is accom

panied by a factor of R increase in topological
repetition. The quantity of span in the parallel m

achine has been traded for
tim

e delay in the pipeline m
achine. The tim

e delays are im
plem

ented by
w

edges of delay w
hich re-align sam

ples spaced N
/R w

ords apart. The length
of these w

edge com
ponents corresponds to the spans of Figure 8.36, bearing

in m
ind the distortion m

entioned earlier. A
ccordingly, the pipe lengths

decrease by a factor of R as we m
ove through the pipeline processor (Figure

8.37).
The com

m
utator

The pipeline FFT m
achine perform

s exactly the sam
e transform

 as the parallel
m

achine, but processes data in contiguous parallel sub-blocks of length R,
w

here R is the transform
 radix (4 here). A

lthough, as we saw in the previous
exam

ple, the topology of FFT algorithm
s can be arranged to be constant across

the array, it cannot be m
ade constant in a dow

nw
ard direction, the direction

in w
hich w

e m
ultiplex in the pipeline m

achine/

' N
ote thai the constant-geom

etry netw
ork is inappropriate for pipelining - locality is constantly

poor.

Fourier truirfo
tcfaloes

193

The netw
ork topology, w

hich w
as hardw

ired in the parallel and colum
n

m
achines, is im

plem
ented here using a dynam

ic routing device, or com
m

utator
(R

abiner and G
old, 1975), along w

ith the antisym
m

etric w
edges of m

em
ory

on either side. N
otice in Figure 8.36 that the first colum

n topology repeats
once, the m

iddle colum
n four tim

es and the last colum
n sixteen tim

es. This
property has an analogy in Figure 8.37 - the num

ber of tim
es the com

m
utator

runs through its sw
itching pattern in a transform

 period.
The sw

itching pattern itself relates to the algorithm
 topology, at the input

to each processor group. Just as w
e replace the colum

ns of processors in the
parallel m

achine by a single processor in the pipeline m
achine, we replace the

colum
n of w

iring posts w
ith a w

edge-com
m

utator-w
edge arrangem

ent, which
acts as a 'topological interface' betw

een processors, perform
ing the perfect

shuffle w
hich w

as hardw
ired in the previous m

achines. This arrangem
ent will

transpose an R x R m
atrix of signal sub-blocks. The length of these sub-blocks

is the span at that stage in the transform
, and form

s the 'unit pipe length' for
the particular transform

 stage. Figure 8.38 show
s the action of the com

m
utator

in snuffling a 4 x 4 signal block.
Transform

 types and input buffering
The initial colum

n of posts is replaced by the right-hand w
edge only, as a

com
m

utator is unnecessary unless m
axim

um
 block transfer rate is required.

Sim
ply tying the R

 input lines together allows execution of 'overlapped'
transform

s, useful in fast convolution (R
abiner and G

old, 1975), w
here the

overlap ratio is (R
-1)/R

. W
e shall im

plem
ent a m

achine of this type.
Full speed block transform

 capability requires fast input buffering. This
usually takes the form

 of a 'sw
inging buffer' m

em
ory - a dual delay line of

length N
, w

ith R
 equally spaced tap-out points. W

hile one m
em

ory is filling
at the input w

ord-rate, the other is em
ptying on the R

 lines, at the w
ord-rate

supported by the bit-serial hardw
are it feeds. The input w

ord-rate is thus R
tim

es the processing w
ord-rate. Like the corner-turning m

em
ory of the parallel

m
achine, we have not explicitly studied this m

em
ory.

O
utput data shuffling

The overlapped transform
 is frequently used in fast convolution, w

here the
input signal undergoes an FFT, is term

-by-term
 m

ultiplied w
ith a reference

signal (the frequency dom
ain equivalent of convolution), and then inverse

FFT'd. This allow
s an order(N

/log N
) speed-up over conventional sum

 of
lagged-products structures (Stockham

, 1966). The inverse FFT (IFFT) is
exactly equivalent to the FFT (save for a scaling factor and the use of conjugate
tw

iddles (R
abiner and G

old, 1975). Thus the topology is identical, and a
double dose of digit reversal results in the correct ordering of the output. The
reference sequence m

ust be input in digit-reversed order.
W

e shall shuffle the outputs, how
ever, to sim

plify their interpretation. To
this end, w

e m
ust im

plem
ent a digit-reversing netw

ork. D
igit-reversal can be

em
bedded in the transform

 itself (Parker, 1980), but this leads to poor locality.
If the w

edge-com
m

utator-w
edge arrangem

ent w
hich perform

s the perfect
shuffle of order 2 after colum

n 1 is replicated at the pipeline output, it will

'4
VLSI signal processing

t - 0

t - B

t - 2B

t - 3B

t - 4B

t = SB

t - 6B

t - 78

J
I

I
H

» 511117 13

H
4nO

I6t—
—

—
fT

T
~

t-
I

I1
5
I1

1
I7

H
-I3

I
I

t- X

I
I

II319
_
_
_

i i n 4noi—
rem

—
I

I
I15I11M

7I3I
l

H
1IO

I
H

J
an—

a

IIIIIIIIIIIIII
I

1
4

1
ttrhhrhhhhhI-hI- 3—

E3EZEQ—

\
/

•\/—
IT

T
T

I—
—

(_
7\-iB—

—
a

-E
ra—

E 41HHHHHH^H^Hi\11\oHll»•112

III|III|III|I|I|III|

i i i i i-rm
-

11«. 8J8
Block shuffling action of the com

m
utator. B is the unit delay in w

ords, and sw
itch

pattern is show
n before data transfer takes place.

perform
 a digit reversing shuffle. This is only possible because the relationship

betw
een processor output and effective netw

ork topology differs betw
een

M
age 1 and stage 3 outputs.
A. digit-reversing snuffle can be im

plem
ented as a cascade of decreusing-

1'ider perfect shuffles (or unshuffles). The order 1 shuffle is a null operation.

Fow
tertraM

form
195

The order 2 perfect shuffle of the additional netw
ork, being a sim

ple digit-
sw

ap, is identical to an order 2 unshuffle. The stage 3 topology is derived from

that of stage 1 by a perfect unshuffle of order 3, as can be seen by inspection
of the netw

ork in Figure 8.36. Thus we have a cascade of decreasing order
unshuffles, w

hich as stated earlier effects the digit-reversing shuffle.
Final design issues
W

e are already fam
iliar w

ith m
ost of the elem

ents w
hich constitute the pipeline

FFT - for instance the O
PER

A
TO

R
S X

m
ult and D

ft4. A
lthough a dedicated

prim
itive w

ould be
m

ore elegant, O
PER

A
TO

R

'C
om

m
utator'

can
be

im
plem

ented as 2 instantiations of O
PER

A
TO

R
 'FourPole', w

hich consists of
8 M

U
LTIPLEX

 prim
itives controlled by a 2-bit code. The third control signal

(cdel) is a delayed version of cnplusl.

O
PER

A
TO

R
 FourPole[s] (cnplusl,cdel,en)inlT

H
R

O
U

G
H

4->-
outl TH

R
O

U
G

H
 4

! latency is s
SIG

N
A

L si TH
R

O
U

G
H

 4
M

U
LTIPLEX

 [s/2,0,0] (cnplusl) in3, inl -> si
M

U
LTIPLEX

 [s/2,0,0] (cdel) in4, in2-> s2
M

U
LTIPLEX

 [s/2,0,0] (cnplusl) iul, in3-> s3
M

U
LTIPLEX

 [s/2,0,0] (cdel) in2, in4-> s4
M

U
LTIPLEX

 [s-{s/2),0,0] (en) s2, si -> outl
M

U
LTIPLEX

 [s-(s/2) ,0,0] (en) si, s2 -> out2
M

U
LTIPLEX

 [s-(s/2),0,0] (en) s4, s3-> out3
M

U
LTIPLEX

 [s-(s/2) ,0,0] (en) s3, s4 -> out4

EN
D

The overall control problem
 reduces to one of generating a succession of binary

counted w
ord fram

es, and im
plem

enting the 2-bit control codes at each stage.
The latency of processing elem

ents in the pipeline should be taken into
consideration w

hen connecting up control.
It should be borne in m

ind that (neglecting processor latency) the first block
of transform

 output appears in synchronism
 w

ith the last block of transform

input (see the horizontal lines in Figure 8.36, corresponding to zero pipe
delay). Thus the control code for the final shuffle com

m
utator should be

presented one w
ord early w

ith respect to any reference point used for the rest
of the m

achine.

8.8
The linear array DFT

So far w
e have described only FFT m

achines. A
lthough these m

achines
im

prove on the D
FT in term

s of arithm
etic hardw

are usage (order(N
 log N

)
for the FFT, order(N

2) for the D
FT), hardw

are savings are not dram
atic w

hen
N is low. K

ung (1980) described a linear 'systolic' array of length N w
hich

1%

VLSI signal processing

evaluates the D
FT by H

orner's m
ethod, using the input sequence x(n) as

polynom
ial coefficients. Equation (8. 1) m

ay be rew
ritten:

X
(k) =

x(0))
8.9

A
lthough this m

ethod is prone to rounding errors from
 repeated m

ultiplication
of the partial results by W

k, this again is not so im
portant w

hen N is low. The
advantage of the approach is the high degree of processor m

odularity, and the
locality of com

m
unication afforded.

A
lien (1984) m

odified K
ung's array for continuous operation on real data,

and im
plem

ented it in FIR
ST, producing a C

H
IP for each stage of the linear

array. H
e also dem

onstrated the ease w
ith w

hich the array elem
ents can be

m
ultiplexed for bandw

idth m
atching, and produced a further floorplan using

the G
olub com

plex m
ultiplier described earlier.

The processing m
odule

The D
FT values are com

puted sequentially by passing partial results, together
w

ith the appropriate value of W
 (these are input in ascending rotational order),

dow
n the array. A

t each point in the array, they m
eet up with the polynom

ial
coefficients x(n), w

hich travel dow
n the array at half the speed, and are latched

in each processor for the transform
 duration. This ploy is used to reverse the

input sequence w
hile m

aintaining local com
m

unication. In cell n, the partial
result p(k) is m

ultiplied by W
k, and added to the input sequence elem

ent
x(N

-l-n) resident in the cell. A
t the end of the array, p(k) = X

(k), and the

c2

-—
 -—

 —
 5U

/C
/X

 [2
1

,0
.0

]\-

X
m

u
lt

/xo.o.o/y

-X 28

P'Q
>

w
ro^

w
io

Fig. 8.39
Linear array D

FT m
odule.

Fourier traasfonn m
achine*

197

Fig. 8.40
Floorplanof linear array D

FTC
H

IP.

transform
 latency is 2N

 w
ords.

There is a strong parallel betw
een the w

ord-level operation of this array, and
the bit-level operation of a serial m

ultiplier (Lyon, 1976). Figure 8.39 show
s

the basic processor cell (w
ith system

 w
ordlength of 28 bits), and Figure 8.40

the C
H

IP floorplan.
C

ontrol
A

lien ensured that his design w
as cl-synchronous at C

H
IP level, save for the

PA
D

 delays incurred in com
m

unication betw
een C

H
IPs. This allow

s cl to be
passed

dow
n

the
array

w
ith

the
other

signals,
m

aintaining
local

com
m

unication. C
ontrol is needed at c2 level, to m

ark 'start of block'. The c2
control signal, of cycle length N

, is passed dow
n the array at the sam

e speed
as p(k) and W

k. A
t each processor, c2 'catches up* w

ith a m
em

ber of the input
sequence x(n), and the M

U
LTIPLEX

 prim
itive controlled by c2 steers this

elem
ent into the w

ord-long loop w
here it recirculates for N w

ord tim
es while

being added into p(k).

8.9
Conclusions

:
W

e have im
plem

ented several types of Fourier transform
 m

achine, using only
a sm

all subset of the FIR
ST prim

itive set. The use of structure in design has

198
VLSI signal processing

dem
onstrated that previous projects can provide m

uch of the m
aterial for a

new
 system

. Com
plexity can be hidden at the appropriate level in the hierarchy

em
ployed. The availability of a param

eterised, high-level language com
piler

plus sim
ulator allow

s not only design verification, but architectural exploration
as well. The tim

e saved by autom
ating the low

-level tasks of 1C design can be
fruitfully spent w

orking at the system
 level, w

here the designer uses his talents
m

ost productively.
The FFT is a prim

e case for the developm
ent of further application-specific

prim
itives. In this case custom

 com
plex m

ultipliers and adders, or even full
butterfly stages, m

ay be m
erited. Som

e m
ore sophisticated data sw

itching
elem

ents w
ould be advantageous here.

References

A
lien, G

. H
., D

enyer, P. B
., and R

cnshaw
, D

. 'A
 Bit-Serial Linear A

rray D
FT', Proc.

IEEE IC
ASSP'84, pp 41 A

. 1-4, San D
iego, 1984.

B
ergland, G

. D
., 'A

 G
uided Tour of the Fast Fourier Transform

', IEEE Spectrum
, vol.

6,no7,pp41-52,1969.
Cooley, J. W

. and Tukey, J. W
., 'A

n A
lgorithm

 for the M
achine Calculation of

C
om

plex Fourier Series', M
ath. C

om
p., vol. 19, pp 297-301,1965.

D
espain, A

. M
., 'Fourier Transform

 C
om

puters using C
O

R
D

IC
 Iterations', IEEE

Trans. Com
puters, vol. C-23, pp993-1001,1974.

Filip, A
. E

., 'A
 B

aker's D
ozen M

agnitude A
pproxim

ation and Their D
etection

Statistics', IE
E

E
 Trans. A

E
S, vol. A

ES-12, pp87-89,1976.
G

arverick, S. L. and Pierce, E. A
., 'A

 Single W
afer 16-Point 16-M

H
z FFT Processor',

Proc. 1983 C
IC

C
, R

ochester, N
ew

 Y
ork, 1983.

G
entlem

an, W
. M

. and Sande.G
., 'Fast Fourier Transform

s- For Fun and Profit', 7966
Joint Fall Com

put. C
onf., AFIPS Proc., vol. 29, pp 563-578, W

ashington D
C

, 1966.
G

old, B. and Bially, T
., 'Parallelism

 in Fast Fourier Transform
 H

ardw
are', IEEE

Trans. Audio Electroacoust., vol. A
U

-21, pp 5-16,1973.
H

arris, F. J., 'O
n the U

se of W
indow

s for H
arm

onic A
nalysis w

ith the D
iscrete Fourier

Transform
', Proc. IE

E
E

, vol. 66, pp 51-83,1978.
la'Ja', J., 'H

igh-Speed N
etw

orks for C
om

puting the D
iscrete Fourier Transform

',
Proc. M

.I.T. Conference on Advanced Research in VLSI, pp 11-20, C
am

bridge,
M

A
, 1984.

K
ung,

H
.

T.,
'Special-Purpose

D
evices

for
Signal

and
Im

age
Processing:

an
O

pportunity in V
ery Large Scale Integration (V

LSI)', Proc. SP1E, vol. 241, Real-
Tim

e Signal Processing III, pp 76-64, San D
iego, 1980.

Linderm
an, R. W

. el al., 'D
igital Signal Processing C

apabilities of C
U

SP, a H
igh

Perform
ance Bit-Serial V

LSI Processor', Proc. IE
E

E
 IC

ASSP'84, pp 16.1.1-4, San
D

iego, 1984.
Lyon, R

. F., T
w

o's C
om

plem
ent Pipeline M

ultipliers', IE
E

E
 Trans. Com

m
unications,

vol. C
O

M
-24, pp 418-425,1976.

V
fcClellan, J. H

. and Purdy, R. J., 'A
pplications of D

igital Signal Processing to R
adar',

pp 239-329 in A
. V

. O
ppenheim

 (ed.), Applications of D
igital Signal Processing,

Prentice-H
all, 1978.

VfcClellan, J. H
. and Rader, C. M

., (eds.) Num
ber Theory in Digital Signal Processing,

Prentice-H
all, 1979.

Fooricr trm
infann -»-**•*•"•

199

M
eadC

. A.. &
ndC

onw
ay,L., Introduction to VLSI System

s, A
ddison-W

eslcy, 1980.
M

urray, A
. F., D

enyer, P. B. and D
onaldson, W

., 'A
 CM

O
S Cell Library for Bit-Serial

Signal Processing', Proc. ESSC
IRC

'84, pp 205-209, Edinburgh, 1984.
N

uttall, A
. H

., 'A
 Tw

o-Param
eter Class of Bessel W

eightings for Spectral A
nalysis or

A
rray Processing - The Ideal W

eighting-W
indow

 Pairs', IEEE Trans. ASSP, vol.
A

SSP-31, pp 1309-1312,1983.
O

ppenheim
, A

. V
. and W

einstein, C. J., 'Effects of Finite R
egister Length in D

igital
Filtering and the Fast Fourier Transform

', Proc. IEEE, vol. 60, pp 957-976,1972.
Parker, D

. S., 'N
otes on Shuffle/Exchange-Type Sw

itching N
etw

orks', IEEE Trans.
Com

puters, vol. C-29, pp 213-222,1980.
R

abiner, L. R
. and G

old, B
., Theory and Application of D

igital Signal Processing,
Prentice-H

all. 1975.
R

ader, C. M
., 'D

iscrete Fourier Transform
 W

hen the N
um

ber of D
ata Sam

ples is
Prim

e', Proc. IEEE, vol. 56, pp 1107-1108,1968.
R

eed, I. S., Y
eh, C. -S. and Truong, T. K

., 'A
 V

LSI A
rchitecture for D

igital Filters
U

sing Com
plex N

um
ber-Theoretic Transform

s', Proc. IEEE 1CASSP'83, pp 923-
926, B

oston, 1983.
Stockham

, T. G
. Jr., 'H

igh Speed Convolution and C
orrelation', 1966 Spring Joint

C
onf., AFIPSC

onf. Proc.,vol.28,pp229-233,1966.
Stone, H

. S., 'Parallel Processing w
ith the Perfect Shuffle', IEEE Trans. Com

puters,
vol. C

-20,pp 153-161,1971.
Sw

artzlander, E. E. Jr. and H
allnor, G

., 'Fast Transform
 Processor Im

plem
entation',

Proc. IEEE IC
ASSP'84, pp 25A

.5.1-4, San D
iego, 1984.

Ting, C. -H
., 'Fourier Transform

 Faster than Fast Fourier Transform
 (FFT)', Proc.

SPIE, vol. 241, Real-Tim
e Signal Processing III, pp 167-171, San D

iego, 1980.
V

oider, J. E., 'The C
O

R
D

IC
 Trigonom

etric C
om

puting Technique', IRE Trans.
Electron. C

om
put., vol. EC-8, pp 330-334,1959.

W
ard, J. S. el al., 'Figures of M

erit for V
LSI Im

plem
entations of D

igital Signal
Processing A

lgorithm
s', Proc. lEEPt. F.vol. 131, pp64-70,1984.

W
inograd, S., 'O

n C
om

puting the D
iscrete Fourier Transform

', M
ath. C

om
p., vol. 32,

pp 175-199,1978.

