15 research outputs found

    Preface to the Special Issue of the Journal of Electrochemistry Celebrating 100 years of Chemistry at Xiamen University

    Get PDF

    Trophic ecology of intertidal harpacticoid copepods, with emphasis on their interactions with bacteria

    Get PDF
    In the era of rapidly changing natural environments, there is an urgent need for understanding biodiversity-ecosystem functioning. Trophic interactions play a key role in structuring the ecosystem. In marine systems, the feeding ecology of the larger-sized species i.e. (top) predators of food webs, is fairly well documented, yet at the basal level of food webs, the complexity of grazer interactions is much higher and trophic linkages are potentially still missing. In this PhD thesis, the focus is on trophic interactions between harpacticoid copepods and bacteria. The meiofauna (organism size between 38 ”m and 1 mm), and in particular harpacticoid copepods (the second most abundant group of the meiofauna, after nematodes), transfer microphytobenthos to higher trophic levels, predominantly larval and juvenile fish. Harpacticoids have highly complex feeding habits. They are able to consume a wide range of food sources, e.g. microalgae, cyanobacteria, flagellates, ciliates, mucoid substances, fungi and heterotrophic bacteria. They are therefore sometimes called ‘indiscriminate feeders’. However, laboratory feeding experiments and recently obtained in situ data, demonstrate their highly selective behaviour and their species-specific food preferences. Under experimental conditions, harpacticoids discriminated among substrates with poor- versus well-developed bacterial films although copepods are considered to be morphologically incapable of consuming small-sized particles such as bacteria. Based on their potential interaction with a broad range of food sources, the general importance of their herbivorous feeding strategy is being questioned and the recent development of dietary tracers such as stable isotopes and fatty acid analysis, now allows to investigate direct assimilation of bacterial matter or that of other food sources. Interest into the pathways of transfer of benthic bacterial matter upwards the food web, for instance with harpacticoids as intermediates, is due to the lack of insight into the general fate of the extensive benthic bacterial biomass and potential pathways of transfer to higher trophic levels are still unknown. A proportion of energy flows back to the microbial-detrital pool as copepod fecal pellets which are efficiently degraded and remineralized. Beside the upward fluxes of biomass and energy, the degradation and reminerilization of waste products resulting from grazing activity is crucial for the recycling of biomass and thus the efficiency of ecosystem functioning. We gained insight into food utilization by harpacticoids in a heterogeneous estuarine intertidal ecosystem, into species-specific feeding patterns and into the trophic importance of bacteria for harpacticoids. Feeding ecology was studied based on both field data of the harpacticoid species assemblages and on experimental laboratory data using individual species. The process of fecal pellet degradation was investigated with focus on the contribution of internal and external fecal pellet bacteria during early degradation and remineralisation of fecal pellets. In an attempt to gain information on the presence of internal bacteria and their position in the fecal pellet, Atomic Force Microscopy and Laser Scanning Confocal Microscopy (AFM-LSCM), a high-resolution imaging tool, was applied. It offers new prospects for studying microbial degradation of copepod fecal pellets. Harpacticoid assemblages for chapters 2 and 3 were studied at the Paulina intertidal area (Schelde estuary, The Netherlands) encompassing a gradient from tidal flat to salt marsh, from seasonal periods at five stations differing in sediment characteristics, tidal exposure, presence of vegetation, etc. To address the structural role of environmental factors, including abiotic sediment characteristics and food-related factor, for harpacticoid assemblages and disclose resource partitioning within harpacticoid assemblages, chapter 2 presents a field study into spatial-temporal heterogeneity in resource availability and in intertidal copepod assemblage structure (density, diversity and composition). An in-depth analysis of the most influential factors for species distribution added relevant information to the autoecology of intertidal harpacticoid species. Spatio-temporal harpacticoid assemblage variation was assigned to variables relating to total organic matter, microphytobenthic biofilms (characterised by pigments and their degradation products), differences in detrital origin and NH4+, suggesting a primary influence of food availability and quality. Nevertheless, harpacticoid assemblages of tidal flats were seemingly more structured by abiotic factors (granulometry and tidal exposure) and especially the harpacticoid assemblage of the sand flat (station H2, species Paraleptastacus spinicauda, Asellopsis intermedia) which was highly station-specific and constant over time. Assemblages of salt marsh stations are considerably similar in copepod family composition despite of differences in salt marsh granulometry, suggesting a primary influence of food availability and food quality. Variability in Microarthridion littorale abundances is related to microphytobenthos biomass. For Ectinosomatidae and Tachidius discipes, the limited number and low correlations for all biotic and abiotic factors indicates a generalistic occurrence. For some species, linkages between habitat characteristics and species distributions were little decisive (e.g. Platychelipus littoralis, Paronychocamptus nanus, Amphiascus sp. 1). Overall, high intercorrelation between a broad range of environmental factors hinders us to draw strong conclusions about the main regulating factors for harpacticoids distribution. Analysis of spatio-temporal variability in resource utilization by harpacticoid copepods, by means of copepod carbon isotopic profiles and fatty acid profiles (chapter 3), proved that the majority of intertidal harpacticoid species relied strongly on microphytobenthos (MPB) as a food source, with potentially fine-scaled selectivity among diatom species or other MPB components. In addition, harpacticoids spanned two trophic levels suggesting also an indirect pathway of MPB transfer to harpacticoids. Furthermore, intertidal harpacticoids showed dietary differences and species-specific spatio-temporal variability in food utilization with contributions of suspended particulate organic matter (Paronychocamptus nanus, Amphiascus sp. 1, Microartridion littorale), flagellates (M. littorale), and bacteria (Delavalia palustris) but not of Spartina detritus. Resource partitioning by harpacticoid assemblages occurred in all stations but was especially clear in the sand flat, comprising a diatom feeder (Asellopsis intermedia), a diatom feeder with temporal reliance on dinoflagellates (Tachidius discipes) and a bacterial feeder (Paraleptastacus spinicauda). In the muddy salt marsh, a trophic role of bacteria was found for Delavalia palustris and Cletodidae, the latter being unique by the utilization of a chemoautotrophic food source. In chapter 4, results from a microcosm feeding experiment using 13C-labelled bacteria, showed that bacterial feeding is linked to diatom grazing and that overall assimilation of bacterial carbon is low for all tested harpacticoid species. In contrast to the bacterivorous copepod Delavalia palustris, non-bacterivorous harpacticoid species (Nannopus palustris, Microarthridion littorale, Platychelipus littoralis) responded negatively on bacterial feeding, as deduced from their mortality and PUFA (polyunsaturated fatty acid) impoverishments. These findings suggest that bacterial biomass may complement feeding on MPB and that an exclusive bacterial diet does not meet copepod nutritional requirements. Delavalia palustris was able to biosynthesized PUFA from a bacterial diet but generally, bacteria represent a minor and low-quality food for these intertidal harpacticoid copepods. In a food-patch choice experiment with 13C-labelled bacterial biofilms (chapter 5), the ability of the harpacticoids Platychelipus littoralis and Delavalia palustris to select between bacterial species with potential different nutritional value (Gramella sp., Jannaschia sp. and Photobacterium sp.) was investigated. In line with chapter 4, bacteria carbon assimilation was low and significant bacterial fatty acid transfer was lacking. A low degree of selectivity was found (preference for Photobacterium sp.), and extracellular metabolites rather than biochemical content and bacterial densities are suggested to be the driver of selective feeding behaviour towards bacteria. Furthermore, the energetic cost of differential bacterivory resulted in a negative fatty acid balance for P. littoralis while D. palustris showed an improved fatty acid profile and thus a positive response to the low-quality bacterial food (similar as in chapter 4). As the ingested bacterial biomass is of limited use for the majority of harpacticoid species, the largest fraction of ingested bacteria returns to the microbial-detrital food web in the form of fecal pellets. Chapter 6 and 7 demonstrate that these ‘internal’ fecal pellet bacteria are viable cells with high densities and represent a diverse active community able to significantly participate in fecal pellet degradation and overall recycling of carbon for the grazer food web. In chapter 6, molecular (RNA-based PCR-DGGE) and metabolic profiling (Biolog Ecoplate assay) of freshly egested copepod fecal pellets proved the general presence of internal active bacteria with a broad metabolic potential in fecal pellets of different copepod species and with different fecal pellet content. The strong impact of the food source on the bacterial diversity of the fecal pellet, indicates the direct transfer of ingested food bacteria to the fecal pellets. Furthermore, the colonization of fecal pellets by bacteria from the surrounding water was relatively low. Consequently, internal bacteria diversity was not replaced by a new external bacterial assemblage. About half of the internal fecal pellet bacteria persisted after 60 h of fecal pellet degradation and, hence, internal fecal pellet bacteria deliver a significant contribution to fecal pellet recycling with Vibrio sp. as a potential important participant. These findings refute the hypothesis of high bacterial fp colonization, as observed for planktonic fecal pellets. AFM-LSCM (Atomic Force Microscopy - Laser Scanning Confocal Microscopy, chapter 7) imaging confirmed the presence of high densities of viable bacteria packed inside the fecal pellet. Furthermore, AFM—LSCM revealed the fibrillar network structure of the peritrophic membrane from a Paramphiascella fulvofasciata fecal pellet, similar to marine polysaccharides and α-chitin and allowed precise measurement of the membrane thickness (0.7-5.9 nm) and bacterial cell volumes (range 0.006-0.117 ”m3, in liquid). This protocol enables high-resolution interrogation of biochemical structural changes and bacterial dynamics within the copepod fecal pellets and other heterogeneous particles such as marine snow under environmental conditions. AFM-LSCM generally allows studying bacterial cell size, cell shape and cell-cell interactions. Here it was applied (1) to visualize the ultra-structure of the peritrophic membrane and (2) to locate and quantify bacterial presence (cell size measurements) both inside and outside the fecal pellet. In conclusion, it is clear that the majority of intertidal harpacticoid species primarily relies on MPB, in particular diatoms, and their diet can include small contributions of other food sources such as suspended particulate organic matter, protozoa and bacteria. Despite indications that food availability and MPB shape harpacticoid assemblages on the spatio-temporal scale, the ’real’ importance of MPB, other food-related factors or physical habitat factors for structuring harpacticoid assemblages remains unclear. Furthermore, bacteria are a nutritional food source for some harpacticoid taxa but overall, transfer of bacterial biomass to harpacticoids seems rather limited and in the intertidal microbial food web, bacteria remain a sink. Although harpacticoids consume predominantly substrate-attached bacteria and often co-incidentally during grazing on a primary food source, there are indications that bacterivorous harpacticoids have special adaptations for consuming a poor-quality food source. Selective feeders Paraleptastacus spinicauda and Cletodidae proved, the latter consuming chemoautotrophic bacteria, proves harpacticoids ability to discriminate for bacteria and for bacterial groups but more fine-scale selectivity for bacterial species or for bacterial nutritional content, remains unclear. Although bacterial biomass is (passively) ingested by harpacticoids, the majority will be channeled back to the microbial-detrital food web in the form of fecal pellets. As a consequence of the relative higher contribution of ‘internal’ fecal pellet bacteria compared to external bacteria, the process of microbial degradation of benthic fecal pellets deviates from degradation of planktonic fecal pellets. This may imply that the functioning of the benthic microbial-detrital loop is not necessarily similar to the plantonic microbial-detrital loop

    Alteraciones fisiolĂłgicas, metabĂłlicas y de la composiciĂłn de las poblaciones bacterianas de la microbiota de un suelo agrĂ­cola tras la aplicaciĂłn de residuos orgĂĄnicos urbanos

    Get PDF
    El suelo es un sistema vivo en el que se desarrollan funciones esenciales para el medio ambiente y para la agricultura, y se considera que tiene salud cuando es capaz de cumplir esas funciones a la vez de preservar sus caracterĂ­sticas quĂ­micas, fĂ­sicas y biolĂłgicas. Gran parte de estas funciones son llevadas a cabo por los microorganismos del suelo, los cuales precisan de materia orgĂĄnica para su desarrollo y actividad. Se podrĂ­a decir que la fertilidad del suelo depende de la interacciĂłn entre la materia orgĂĄnica y la microbiota. Generalmente, los suelos agrĂ­colas del clima mediterrĂĄneo son pobres en materia orgĂĄnica y, por tanto, su fertilidad es variable. Para solucionar este problema se utilizan, entre otros elementos, enmiendas orgĂĄnicas de origen urbano que incrementan la materia orgĂĄnica del suelo. Adicionalmente, se reciclan residuos urbanos cuya producciĂłn se incrementa año a año: los residuos sĂłlidos urbanos (basuras) y los lodos de depuraciĂłn de aguas residuales. Sin embargo, esta prĂĄctica puede no ser siempre beneficiosa, ya que la salud del suelo podrĂ­a verse afectada y de ahĂ­ la necesidad de ser evaluada. Para ello se tienen en cuenta distintos indicadores, entre los cuales, los microbianos cada vez son mĂĄs empleados por su rapidez, sensibilidad y capacidad de proporcionar mĂĄs informaciĂłn incluso sobre cambios leves que suceden en el suelo. Estos indicadores pueden ser fisiolĂłgicos (biomasa), de actividad (respiraciĂłn basal) y de diversidad (metabĂłlicos o taxonĂłmicos). Las investigaciones que estudian los cambios que suceden en la microbiota del suelo tras la aplicaciĂłn de enmiendas orgĂĄnicas reportan una gran variedad de resultados, destacando en ocasiones efectos perjudiciales. Debido a ello, consideramos necesario el estudio de los aspectos relacionados con la microbiota cuando se emplean estas prĂĄcticas. A partir de un ensayo previo en el que se evaluĂł el efecto de distintas cantidades de lodos de depuradora en el mismo tipo de suelo agrĂ­cola (Gondim-Porto, 2012), hemos pretendido ampliar ese estudio evaluando los efectos sobre la salud del suelo tras la aplicaciĂłn de una cantidad elevada de basura compostada y de lodos de depuradora (160 Mg ha-1). De esta manera, consideramos que puede ser interesante describir cĂłmo se afecta la salud del suelo con estas prĂĄcticas mediante marcadores microbianos (fisiolĂłgicos, de actividad microbiana y de diversidad funcional y taxonĂłmica) medidos de forma trimestral a lo largo de, al menos, 24 meses, de tal manera que nos permitiera sugerir quĂ© tipo de enmienda es mĂĄs favorable para el suelo desde el punto de vista ambiental, asĂ­ como indicar posibles marcadores de actividad microbiana o de diversidad bacteriana Ăștiles para la detecciĂłn de la aplicaciĂłn de enmiendas al suelo..

    Interactions of collembolans and different soil parameters

    Get PDF
    In Laborversuchen wurde der Einfluss von Collembolen (Folsomia candida, Xenylla corticalis, Sinella coeca, Proisotoma minuta) auf die Bodenparameter Gesamtkeimzahl, Pilzkeimzahl, Bodenatmung, DehydrogenaseaktivitĂ€t, Gehalt an organischem Kohlenstoff, Nitratgehalt, pH und Bodenfeuchtigkeit untersucht. Collembolen wurden dazu in unterschiedliches Substrat in verschiedenen VersuchsgefĂ€ĂŸen eingesetzt. Es wurden auch die Effekte in autoklaviertem Substrat, bei Zugabe verschiedener organischer Substanzen sowie bei Beimpfung des Substrates mit ausgewĂ€hlten Bodenpilzen ĂŒberprĂŒft. Der Collembolenbesatz bei Versuchsende war offenbar stark abhĂ€ngig vom zur VerfĂŒgung stehenden organischen Material, weniger von den zu Beginn eingesetzten Tierzahlen. Dabei erwies sich die Beimpfung mit einem Bodenpilz als noch wirksamer als die Zugabe von Luzernemehl. Eine Verbreitung von Pilzen und Bakterien im Boden durch Collembolen wurde nachgewiesen. Wirkungsvoll war dies vor allem in autoklaviertem Substrat. Hier fĂŒhrte der Einsatz von Collembolen zu einer deutlichen Erhöhung der Gesamtkeimzahl, der Pilzkeimzahl, der Bodenatmung und der DehydrogenaseaktivitĂ€t. In nicht autoklaviertem Substrat gab es keine eindeutige Korrelation zwischen Collembolenbesatz zu Versuchsbeginn und Gesamtkeimzahl. Collembolen verĂ€nderten aber den zeitlichen Verlauf der Entwicklung der Gesamtkeimzahl. Die Pilzkeimzahlen wurden durch den Einsatz von Collembolen in nicht autoklaviertem Substrat je nach Versuchsdauer, NĂ€hrstoffangebot und Collembolendichte teils vermindert, teils erhöht. FĂŒr F. candida wurde bei 20oC eine Atmungsrate von 0,097”l O2 pro Individuum pro Stunde festgestellt. Die Bodenatmung verĂ€nderte sich durch den Einsatz von Collembolen nicht entsprechend der Atmungsrate der eingesetzten Individuen. Bei den meisten Versuchen hatte eine mittlere Besatzdichte den stĂ€rksten Effekt im Sinne einer Erhöhung der Bodenatmung, sehr hohe Besatzdichten fĂŒhrten dagegen zu einer weniger starken Erhöhung oder sogar Verminderung der Atmung. In einigen Versuchen wurde der pH durch Collembolenbesatz erhöht, wobei möglicherweise ein Zusammenhang mit der Förderung der Gesamtkeimzahl durch die Collembolen besteht. Durch Zugabe organischen Materials wurden die Gesamtkeimzahl und die Pilzkeimzahl ebenso wie die Atmungsrate und die DehydrogenaseaktivitĂ€t des Bodens erhöht. Die Erhöhung wurde durch den Einsatz von Collembolen noch weiter verstĂ€rkt. Einsatz von Collembolen fĂŒhrte bei Vorhandensein von organischem Material zudem sowohl zu erhöhter Stickstoffmineralisierung als auch zu vermehrter Kohlenstofffixierung. Die Beobachtungen zeigen, dass Mikrokosmosversuche im Labor eine wichtige ErgĂ€nzung zu Freilanduntersuchungen darstellen und zu einem besseren VerstĂ€ndnis der komplexen Beziehungen zwischen verschiedenen Bodenorganismen und Bodenparametern beitragen können. Einfache GefĂ€ĂŸe wie WeckglĂ€ser und ReagenzglĂ€ser erwiesen sich als gut geeignet zur Bearbeitung der vorliegenden Fragestellungen.In laboratory experiments the influence of collembolans (Folsomia candida, Xenylla corticalis, Sinella coeca and Proisotoma minuta) on the soil parameters of bacterial and fungal plate counts, soil respiration, dehydrogenase activity, content of organic carbon, content of nitrate, pH and soil moisture was studied. Collembolans were introduced into different soils in various test containers. Additional experiments investigated the effects of collembolans in autoclaved soils, in soils after addition of various organic substances and after soil-inoculation with selected fungi. At the end of the tests, the number of collembolans strongly depended on the availability of organic material, but less on the number of animals that were initially added. In this respect inoculation with a soil fungus proved to be even more effective than the addition of alfalfa powder. Under the influence of collembolans, a spreading of fungi and bacteria in the soil was observed. This was particularly effective in autoclaved substrate where the addition of collembolans resulted in significant increases of bacterial and fungal plate counts, soil respiration and dehydrogenase activity. In a non-autoclaved substrate no clear correlation between the number of collembolans at the beginning of the tests and bacterial plate counts was observed. However, collembolans changed the development of bacterial plate counts over time. Fungal plate counts were either reduced or increased by introduction of collembolans into non-autoclaved substrate, depending on the duration of the tests, the abundance of nutrients and the density of collembolans. At a temperature of 20°C, a respiration rate of 0,097ul O2 per individual per hour was determined for F. candida. After addition of collembolans, the soil respiration did not change corresponding to the respiration of the individuals added. In most of the tests an intermediate density of individuals resulted in the strongest elevation of soil respiration. In contrast, a very high density of collembolans generated a minor elevation or even resulted in a reduced soil respiration. In some experiments the pH increased after addition of collembolans. Possibly there is a connection with the increase of bacterial plate counts generated by the animals. Addition of organic material resulted in augmented bacterial and fungal plate counts as well as in increased respiration rates and dehydrogenase activities of the soils. These increases were even more pronounced in the presence of collembolans. When organic material was available, the addition of animals also resulted in a higher mineralization of nitrogen and increased fixation of carbon. The observations support the idea that microcosm experiments in the laboratory can be a very useful supplement to field studies and may result in a better understanding of the complex relationships between different organisms and characteristics of soils. Simple containers like preserve jars and test tubes were found to be very useful to conduct the described experiments

    Interactions of collembolans and different soil parameters

    Get PDF
    In Laborversuchen wurde der Einfluss von Collembolen (Folsomia candida, Xenylla corticalis, Sinella coeca, Proisotoma minuta) auf die Bodenparameter Gesamtkeimzahl, Pilzkeimzahl, Bodenatmung, DehydrogenaseaktivitĂ€t, Gehalt an organischem Kohlenstoff, Nitratgehalt, pH und Bodenfeuchtigkeit untersucht. Collembolen wurden dazu in unterschiedliches Substrat in verschiedenen VersuchsgefĂ€ĂŸen eingesetzt. Es wurden auch die Effekte in autoklaviertem Substrat, bei Zugabe verschiedener organischer Substanzen sowie bei Beimpfung des Substrates mit ausgewĂ€hlten Bodenpilzen ĂŒberprĂŒft. Der Collembolenbesatz bei Versuchsende war offenbar stark abhĂ€ngig vom zur VerfĂŒgung stehenden organischen Material, weniger von den zu Beginn eingesetzten Tierzahlen. Dabei erwies sich die Beimpfung mit einem Bodenpilz als noch wirksamer als die Zugabe von Luzernemehl. Eine Verbreitung von Pilzen und Bakterien im Boden durch Collembolen wurde nachgewiesen. Wirkungsvoll war dies vor allem in autoklaviertem Substrat. Hier fĂŒhrte der Einsatz von Collembolen zu einer deutlichen Erhöhung der Gesamtkeimzahl, der Pilzkeimzahl, der Bodenatmung und der DehydrogenaseaktivitĂ€t. In nicht autoklaviertem Substrat gab es keine eindeutige Korrelation zwischen Collembolenbesatz zu Versuchsbeginn und Gesamtkeimzahl. Collembolen verĂ€nderten aber den zeitlichen Verlauf der Entwicklung der Gesamtkeimzahl. Die Pilzkeimzahlen wurden durch den Einsatz von Collembolen in nicht autoklaviertem Substrat je nach Versuchsdauer, NĂ€hrstoffangebot und Collembolendichte teils vermindert, teils erhöht. FĂŒr F. candida wurde bei 20oC eine Atmungsrate von 0,097”l O2 pro Individuum pro Stunde festgestellt. Die Bodenatmung verĂ€nderte sich durch den Einsatz von Collembolen nicht entsprechend der Atmungsrate der eingesetzten Individuen. Bei den meisten Versuchen hatte eine mittlere Besatzdichte den stĂ€rksten Effekt im Sinne einer Erhöhung der Bodenatmung, sehr hohe Besatzdichten fĂŒhrten dagegen zu einer weniger starken Erhöhung oder sogar Verminderung der Atmung. In einigen Versuchen wurde der pH durch Collembolenbesatz erhöht, wobei möglicherweise ein Zusammenhang mit der Förderung der Gesamtkeimzahl durch die Collembolen besteht. Durch Zugabe organischen Materials wurden die Gesamtkeimzahl und die Pilzkeimzahl ebenso wie die Atmungsrate und die DehydrogenaseaktivitĂ€t des Bodens erhöht. Die Erhöhung wurde durch den Einsatz von Collembolen noch weiter verstĂ€rkt. Einsatz von Collembolen fĂŒhrte bei Vorhandensein von organischem Material zudem sowohl zu erhöhter Stickstoffmineralisierung als auch zu vermehrter Kohlenstofffixierung. Die Beobachtungen zeigen, dass Mikrokosmosversuche im Labor eine wichtige ErgĂ€nzung zu Freilanduntersuchungen darstellen und zu einem besseren VerstĂ€ndnis der komplexen Beziehungen zwischen verschiedenen Bodenorganismen und Bodenparametern beitragen können. Einfache GefĂ€ĂŸe wie WeckglĂ€ser und ReagenzglĂ€ser erwiesen sich als gut geeignet zur Bearbeitung der vorliegenden Fragestellungen.In laboratory experiments the influence of collembolans (Folsomia candida, Xenylla corticalis, Sinella coeca and Proisotoma minuta) on the soil parameters of bacterial and fungal plate counts, soil respiration, dehydrogenase activity, content of organic carbon, content of nitrate, pH and soil moisture was studied. Collembolans were introduced into different soils in various test containers. Additional experiments investigated the effects of collembolans in autoclaved soils, in soils after addition of various organic substances and after soil-inoculation with selected fungi. At the end of the tests, the number of collembolans strongly depended on the availability of organic material, but less on the number of animals that were initially added. In this respect inoculation with a soil fungus proved to be even more effective than the addition of alfalfa powder. Under the influence of collembolans, a spreading of fungi and bacteria in the soil was observed. This was particularly effective in autoclaved substrate where the addition of collembolans resulted in significant increases of bacterial and fungal plate counts, soil respiration and dehydrogenase activity. In a non-autoclaved substrate no clear correlation between the number of collembolans at the beginning of the tests and bacterial plate counts was observed. However, collembolans changed the development of bacterial plate counts over time. Fungal plate counts were either reduced or increased by introduction of collembolans into non-autoclaved substrate, depending on the duration of the tests, the abundance of nutrients and the density of collembolans. At a temperature of 20°C, a respiration rate of 0,097ul O2 per individual per hour was determined for F. candida. After addition of collembolans, the soil respiration did not change corresponding to the respiration of the individuals added. In most of the tests an intermediate density of individuals resulted in the strongest elevation of soil respiration. In contrast, a very high density of collembolans generated a minor elevation or even resulted in a reduced soil respiration. In some experiments the pH increased after addition of collembolans. Possibly there is a connection with the increase of bacterial plate counts generated by the animals. Addition of organic material resulted in augmented bacterial and fungal plate counts as well as in increased respiration rates and dehydrogenase activities of the soils. These increases were even more pronounced in the presence of collembolans. When organic material was available, the addition of animals also resulted in a higher mineralization of nitrogen and increased fixation of carbon. The observations support the idea that microcosm experiments in the laboratory can be a very useful supplement to field studies and may result in a better understanding of the complex relationships between different organisms and characteristics of soils. Simple containers like preserve jars and test tubes were found to be very useful to conduct the described experiments
    corecore