12,382 research outputs found

    Simulated case management of home telemonitoring to assess the impact of different alert algorithms on work-load and clinical decisions

    Get PDF
    © 2017 The Author(s). Background: Home telemonitoring (HTM) of chronic heart failure (HF) promises to improve care by timely indications when a patient's condition is worsening. Simple rules of sudden weight change have been demonstrated to generate many alerts with poor sensitivity. Trend alert algorithms and bio-impedance (a more sensitive marker of fluid change), should produce fewer false alerts and reduce workload. However, comparisons between such approaches on the decisions made and the time spent reviewing alerts has not been studied. Methods: Using HTM data from an observational trial of 91 HF patients, a simulated telemonitoring station was created and used to present virtual caseloads to clinicians experienced with HF HTM systems. Clinicians were randomised to either a simple (i.e. an increase of 2 kg in the past 3 days) or advanced alert method (either a moving average weight algorithm or bio-impedance cumulative sum algorithm). Results: In total 16 clinicians reviewed the caseloads, 8 randomised to a simple alert method and 8 to the advanced alert methods. Total time to review the caseloads was lower in the advanced arms than the simple arm (80 ± 42 vs. 149 ± 82 min) but agreements on actions between clinicians were low (Fleiss kappa 0.33 and 0.31) and despite having high sensitivity many alerts in the bio-impedance arm were not considered to need further action. Conclusion: Advanced alerting algorithms with higher specificity are likely to reduce the time spent by clinicians and increase the percentage of time spent on changes rated as most meaningful. Work is needed to present bio-impedance alerts in a manner which is intuitive for clinicians

    Early indication of decompensated heart failure in patients on home-telemonitoring: a comparison of prediction algorithms based on daily weight and noninvasive transthoracic bio-impedance

    Get PDF
    Background: Heart Failure (HF) is a common reason for hospitalization. Admissions might be prevented by early detection of and intervention for decompensation. Conventionally, changes in weight, a possible measure of fluid accumulation, have been used to detect deterioration. Transthoracic impedance may be a more sensitive and accurate measure of fluid accumulation. Objective: In this study, we review previously proposed predictive algorithms using body weight and noninvasive transthoracic bio-impedance (NITTI) to predict HF decompensations. Methods: We monitored 91 patients with chronic HF for an average of 10 months using a weight scale and a wearable bio-impedance vest. Three algorithms were tested using either simple rule-of-thumb differences (RoT), moving averages (MACD), or cumulative sums (CUSUM). Results: Algorithms using NITTI in the 2 weeks preceding decompensation predicted events (P<.001); however, using weight alone did not. Cross-validation showed that NITTI improved sensitivity of all algorithms tested and that trend algorithms provided the best performance for either measurement (Weight-MACD: 33%, NITTI-CUSUM: 60%) in contrast to the simpler rules-of-thumb (Weight-RoT: 20%, NITTI-RoT: 33%) as proposed in HF guidelines. Conclusions: NITTI measurements decrease before decompensations, and combined with trend algorithms, improve the detection of HF decompensation over current guideline rules; however, many alerts are not associated with clinically overt decompensation

    Protocol for the 'e-Nudge trial' : a randomised controlled trial of electronic feedback to reduce the cardiovascular risk of individuals in general practice [ISRCTN64828380]

    Get PDF
    Background: Cardiovascular disease (including coronary heart disease and stroke) is a major cause of death and disability in the United Kingdom, and is to a large extent preventable, by lifestyle modification and drug therapy. The recent standardisation of electronic codes for cardiovascular risk variables through the United Kingdom's new General Practice contract provides an opportunity for the application of risk algorithms to identify high risk individuals. This randomised controlled trial will test the benefits of an automated system of alert messages and practice searches to identify those at highest risk of cardiovascular disease in primary care databases. Design: Patients over 50 years old in practice databases will be randomised to the intervention group that will receive the alert messages and searches, and a control group who will continue to receive usual care. In addition to those at high estimated risk, potentially high risk patients will be identified who have insufficient data to allow a risk estimate to be made. Further groups identified will be those with possible undiagnosed diabetes, based either on elevated past recorded blood glucose measurements, or an absence of recent blood glucose measurement in those with established cardiovascular disease. Outcome measures: The intervention will be applied for two years, and outcome data will be collected for a further year. The primary outcome measure will be the annual rate of cardiovascular events in the intervention and control arms of the study. Secondary measures include the proportion of patients at high estimated cardiovascular risk, the proportion of patients with missing data for a risk estimate, and the proportion with undefined diabetes status at the end of the trial

    Does A Loss of Social Credibility Impact Robot Safety?

    Get PDF
    This position paper discusses the safety-related functions performed by assistive robots and explores the relationship between trust and effective safety risk mitigation. We identify a measure of the robot’s social effectiveness, termed social credibility, and present a discussion of how social credibility may be gained and lost. This paper’s contribution is the identification of a link between social credibility and safety-related performance. Accordingly, we draw on analyses of existing systems to demonstrate how an assistive robot’s safety-critical functionality can be impaired by a loss of social credibility. In addition, we present a discussion of some of the consequences of prioritising either safety-related functionality or social engagement. We propose the identification of a mixed-criticality scheduling algorithm in order to maximise both safety-related performance and social engagement

    An intelligent information forwarder for healthcare big data systems with distributed wearable sensors

    Get PDF
    © 2016 IEEE. An increasing number of the elderly population wish to live an independent lifestyle, rather than rely on intrusive care programmes. A big data solution is presented using wearable sensors capable of carrying out continuous monitoring of the elderly, alerting the relevant caregivers when necessary and forwarding pertinent information to a big data system for analysis. A challenge for such a solution is the development of context-awareness through the multidimensional, dynamic and nonlinear sensor readings that have a weak correlation with observable human behaviours and health conditions. To address this challenge, a wearable sensor system with an intelligent data forwarder is discussed in this paper. The forwarder adopts a Hidden Markov Model for human behaviour recognition. Locality sensitive hashing is proposed as an efficient mechanism to learn sensor patterns. A prototype solution is implemented to monitor health conditions of dispersed users. It is shown that the intelligent forwarders can provide the remote sensors with context-awareness. They transmit only important information to the big data server for analytics when certain behaviours happen and avoid overwhelming communication and data storage. The system functions unobtrusively, whilst giving the users peace of mind in the knowledge that their safety is being monitored and analysed

    Surveillance of gastrointestinal disease in France using drug sales data

    Get PDF
    AbstractDrug sales data have increasingly been used for disease surveillance during recent years. Our objective was to assess the value of drug sales data as an operational early detection tool for gastroenteritis epidemics at national and regional level in France. For the period 2008–2013, we compared temporal trends of drug sales for the treatment of gastroenteritis with trends of cases reported by a Sentinel Network of general practitioners. We benchmarked detection models to select the one with the best sensitivity, false alert proportion and timeliness, and developed a prospective framework to assess the operational performance of the system. Drug sales data allowed the detection of seasonal gastrointestinal epidemics occurring in winter with a distinction between prescribed and non-prescribed drugs. Sales of non-prescribed drugs allowed epidemic detection on average 2.25 weeks earlier than Sentinel data. These results confirm the value of drug sales data for real-time monitoring of gastroenteritis epidemic activity

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems
    • …
    corecore