1,381 research outputs found

    Seasonal prediction of lake inflows and rainfall in a hydro-electricity catchment, Waitaki river, New Zealand

    Get PDF
    The Waitaki River is located in the centre of the South Island of New Zealand, and hydro-electricity generated on the river accounts for 35-40% of New Zealand's electricity. Low inflows in 1992 and 2001 resulted in the threat of power blackouts. Improved seasonal rainfall and inflow forecasts will result in the better management of the water used in hydro-generation on a seasonal basis. Researchers have stated that two key directions in the fields of seasonal rainfall and streamflow forecasting are to a) decrease the spatial scale of forecast products, and b) tailor forecast products to end-user needs, so as to provide more relevant and targeted forecasts. Several season-ahead lake inflow and rainfall forecast models were calibrated for the Waitaki river catchment using statistical techniques to quantify relationships between land-ocean-atmosphere state variables and seasonally lagged inflows and rainfall. Techniques included principal components analysis and multiple linear regression, with cross-validation techniques applied to estimate model error and randomization techniques used to establish the significance of the skill of the models. Many of the models calibrated predict rainfall and inflows better than random chance and better than the long-term mean as a predictor. When compared to the range of all probable inflow seasonal totals (based on the 80-year recorded history in the catchment), 95% confidence limits around most model predictions offer significant skill. These models explain up to 19% of the variance in season-ahead rainfall and inflows in this catchment. Seasonal rainfall and inflow forecasting on a single catchment scale and focussed to end-user needs is possible with some skill in the South Island of New Zealand

    Wetland Water-Level Prediction in the Context of Machine-Learning Techniques: Where Do We Stand?

    Get PDF
    Wetlands are simply areas that are fully or partially saturated with water. Not much attention has been given to wetlands in the past, due to the unawareness of their value to the general public. However, wetlands have numerous hydrological, ecological, and social values. They play an important role in interactions among soil, water, plants, and animals. The rich biodiversity in the vicinity of wetlands makes them invaluable. Therefore, the conservation of wetlands is highly important in today’s world. Many anthropogenic activities damage wetlands. Climate change has adversely impacted wetlands and their biodiversity. The shrinking of wetland areas and reducing wetland water levels can therefore be frequently seen. However, the opposite can be seen during stormy seasons. Since wetlands have permissible water levels, the prediction of wetland water levels is important. Flooding and many other severe environmental damage can happen when these water levels are exceeded. Therefore, the prediction of wetland water level is an important task to identify potential environmental damage. However, the monitoring of water levels in wetlands all over the world has been limited due to many difficulties. A Scopus-based search and a bibliometric analysis showcased the limited research work that has been carried out in the prediction of wetland water level using machine-learning techniques. Therefore, there is a clear need to assess what is available in the literature and then present it in a comprehensive review. Therefore, this review paper focuses on the state of the art of water-level prediction techniques of wetlands using machine-learning techniques. Nonlinear climatic parameters such as precipitation, evaporation, and inflows are some of the main factors deciding water levels; therefore, identifying the relationships between these parameters is complex. Therefore, machine-learning techniques are widely used to present nonlinear relationships and to predict water levels. The state-of-the-art literature summarizes that artificial neural networks (ANNs) are some of the most effective tools in wetland water-level prediction. This review can be effectively used in any future research work on wetland water-level prediction.publishedVersio

    Use of hydroclimatic forecasts for improved water management in central Texas

    Get PDF
    Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk

    Predicting Water Quality Distribution of Lakes through Linking Remote Sensing–Based Monitoring and Machine Learning Simulation

    Get PDF
    The present study links monitoring and simulation models to predict water quality distribution in lakes using an optimized neural network and remote sensing data processing. Two data driven models were developed. First, a monitoring model was established that is able to convert spectral images to TDS distribution. Moreover, a simulation model was developed to generate a TDS distribution map for unseen scenarios for which no spectral images are available. Outputs of the monitoring model were applied as the observations for training the simulation model. The Nash–Sutcliffe model efficiency coefficient (NSE) was utilized in the system performance measurement of the models. Based on the results in the case study, the monitoring model was sufficiently robust to convert the operational land imager spectral bands of Landsat 8 to the TDS distribution map. The NSE was more than 0.6 for the monitoring model, which confirms the predictive skills of the model. Furthermore, the simulation model was highly reliable in generating the TDS distribution map of the lakes. Three tests were carried out to demonstrate the reliability of the model. When comparing the results of the monitoring model and simulation model, an NSE of more than 0.6 was found for all the tests. It is recommendable to apply the proposed method instead of conventional hydrodynamic models that might be highly time consuming for simulating water quality parameters distribution in lakes. Low computational complexity is the main advantage of the proposed method

    Forecast of streamflows to the Arctic Ocean by a Bayesian neural network model with snowcover and climate inputs

    Get PDF
    Increasing water flowing into the Arctic Ocean affects oceanic freshwater balance, which may lead to the thermohaline circulation collapse and unpredictable climatic conditions if freshwater inputs continue to increase. Despite the crucial role of ocean inflow in the climate system, less is known about its predictability, variability, and connectivity to cryospheric and climatic patterns on different time scales. In this study, multi-scale variation modes were decomposed from observed daily and monthly snowcover and river flows to improve the predictability of Arctic Ocean inflows from the Mackenzie River Basin in Canada. Two multi-linear regression and Bayesian neural network models were used with different combinations of remotely sensed snowcover, in-situ inflow observations, and climatic teleconnection patterns as predictors. The results showed that daily and monthly ocean inflows are associated positively with decadal snowcover fluctuations and negatively with interannual snowcover fluctuations. Interannual snowcover and antecedent flow oscillations have a more important role in describing the variability of ocean inflows than seasonal snowmelt and large-scale climatic teleconnection. Both models forecasted inflows seven months in advance with a Nash–Sutcliffe efficiency score of ≈0.8. The proposed methodology can be used to assess the variability of the freshwater input to northern oceans, affecting thermohaline and atmospheric circulations

    Modeling reservoir surface temperatures for regional and global climate models: A multi-model study on the inflow and level variation effects

    Get PDF
    UIDB/04292/2020 KI-853/13 KI-853- 16 UIDB/04292/2020The complexity of the state-of-the-art climate models requires high computational resources and imposes rather simplified parameterization of inland waters. The effect of lakes and reservoirs on the local and regional climate is commonly parameterized in regional or global climate modeling as a function of surface water temperature estimated by atmosphere-coupled one-dimensional lake models. The latter typically neglect one of the major transport mechanisms specific to artificial reservoirs: heat and mass advection due to inflows and outflows. Incorporation of these essentially two-dimensional processes into lake parameterizations requires a trade-off between computational efficiency and physical soundness, which is addressed in this study. We evaluated the performance of the two most used lake parameterization schemes and a machine-learning approach on high-resolution historical water temperature records from 24 reservoirs. Simulations were also performed at both variable and constant water level to explore the thermal structure differences between lakes and reservoirs. Our results highlight the need to include anthropogenic inflow and outflow controls in regional and global climate models. Our findings also highlight the efficiency of the machine-learning approach, which may overperform process-based physical models in both accuracy and computational requirements if applied to reservoirs with long-term observations available. Overall, results suggest that the combined use of process-based physical models and machine-learning models will considerably improve the modeling of air-lake heat and moisture fluxes. A relationship between mean water retention times and the importance of inflows and outflows is established: reservoirs with a retention time shorter than ĝ1/4g100gd, if simulated without inflow and outflow effects, tend to exhibit a statistically significant deviation in the computed surface temperatures regardless of their morphological characteristics.publishersversionpublishe

    Machine-Learning Algorithms for Forecast-Informed Reservoir Operation (FIRO) to Reduce Flood Damages

    Get PDF
    Water is stored in reservoirs for various purposes, including regular distribution, flood control, hydropower generation, and meeting the environmental demands of downstream habitats and ecosystems. However, these objectives are often in conflict with each other and make the operation of reservoirs a complex task, particularly during flood periods. An accurate forecast of reservoir inflows is required to evaluate water releases from a reservoir seeking to provide safe space for capturing high flows without having to resort to hazardous and damaging releases. This study aims to improve the informed decisions for reservoirs management and water prerelease before a flood occurs by means of a method for forecasting reservoirs inflow. The forecasting method applies 1- and 2-month time-lag patterns with several Machine Learning (ML) algorithms, namely Support Vector Machine (SVM), Artificial Neural Network (ANN), Regression Tree (RT), and Genetic Programming (GP). The proposed method is applied to evaluate the performance of the algorithms in forecasting inflows into the Dez, Karkheh, and Gotvand reservoirs located in Iran during the flood of 2019. Results show that RT, with an average error of 0.43% in forecasting the largest reservoirs inflows in 2019, is superior to the other algorithms, with the Dez and Karkheh reservoir inflows forecasts obtained with the 2-month time-lag pattern, and the Gotvand reservoir inflow forecasts obtained with the 1-month time-lag pattern featuring the best forecasting accuracy. The proposed method exhibits accurate inflow forecasting using SVM and RT. The development of accurate flood-forecasting capability is valuable to reservoir operators and decision-makers who must deal with streamflow forecasts in their quest to reduce flood damages

    Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks

    Get PDF
    A model for multivariate streamflow generation is presented, based on a multilayer feedforward neural network. The structure of the model results from two components, the neural network (NN) deterministic component and a random component which is assumed to be normally distributed. It is from this second component that the model achieves the ability to incorporate effectively the uncertainty associated with hydrological processes, making it valuable as a practical tool for synthetic generation of streamflow series. The NN topology and the corresponding analytical explicit formulation of the model are described in detail. The model is calibrated with a series of monthly inflows to two reservoir sites located in the Tagus River basin (Spain), while validation is performed through estimation of a set of statistics that is relevant for water resources systems planning and management. Among others, drought and storage statistics are computed and compared for both the synthetic and historical series. The performance of the NN-based model was compared to that of a standard autoregressive AR(2) model. Results show that NN represents a promising modelling alternative for simulation purposes, with interesting potential in the context of water resources systems management and optimisation.</p> <p style='line-height: 20px;'><b>Keywords: </b>neural networks, perceptron multilayer, error backpropagation, hydrological scenario generation, multivariate time-series.</p>
    corecore