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Abstract 

Accurate seasonal to interannual streamflow forecasts based on climate information 

are critical for optimal management and operation of water resources systems. 

Considering most water supply systems are multipurpose, operating these systems to 

meet increasing demand under the growing stresses of climate variability and climate 

change, population and economic growth, and environmental concerns could be very 

challenging. This study was to investigate improvement in water resources systems 

management through the use of seasonal climate forecasts.  Hydrological persistence 

(streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns 

such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), 

North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the 

Pacific North American (PNA), and customized sea surface temperature (SST) indices 

were investigated for their potential to improve streamflow forecast accuracy and 

increase forecast lead-time in a river basin in central Texas.   

First, an ordinal polytomous logistic regression approach is proposed as a means of 

incorporating multiple predictor variables into a probabilistic forecast model.  Forecast 

performance is assessed through a cross-validation procedure, using distributions-

oriented metrics, and implications for decision making are discussed. Results indicate 

that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea 

surface temperature patterns associated with ENSO and PDO provide forecasts which are 

statistically better than climatology.  

Secondly, a class of data mining techniques, known as tree-structured models, is 

investigated to address the nonlinear dynamics of climate teleconnections and screen 

promising probabilistic streamflow forecast models for river-reservoir systems. Results 

show that the tree-structured models can effectively capture the nonlinear features hidden 

in the data. Skill scores of probabilistic forecasts generated by both classification trees 

and logistic regression trees indicate that seasonal inflows throughout the system can be 
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predicted with sufficient accuracy to improve water management, especially in the winter 

and spring seasons in central Texas. 

Lastly, a simplified two-stage stochastic economic-optimization model was proposed 

to investigate improvement in water use efficiency and the potential value of using 

seasonal forecasts, under the assumption of optimal decision making under uncertainty. 

Model results demonstrate that incorporating the probabilistic inflow forecasts into the 

optimization model can provide a significant improvement in seasonal water contract 

benefits over climatology, with lower average deficits (increased reliability) for a given 

average contract amount, or improved mean contract benefits for a given level of 

reliability compared to climatology. The results also illustrate the trade-off between the 

expected contract amount and reliability, i.e., larger contracts can be signed at greater 

risk.   
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1. Introduction 

1.1   Motivation and Objectives 

With seemingly ever-increasing demands for water, including urban water supply, 

recreation, hydroelectric power and environmental flow demands, it is becoming more 

important for water resources management to be as efficient as possible throughout the 

U.S., and indeed the world, to ensure reliable water supplies and ecosystem protection. 

The looming uncertainty about future supplies due to climate change, potentially 

increasing the frequency and severity of droughts and floods, presents another daunting 

challenge to water resources engineers and managers. To counter these challenges, it is 

imperative to develop optimal water resources management systems by utilizing the 

hydrologic and meteorological information readily available, including climate forecasts 

at monthly, seasonal and even longer-lead times.  

Traditionally, water resources management and planning have been based on critical 

period hydrology, in which water supply operation decisions are made with the explicit 

goal of preparedness for the drought of record (Hall and Dracup, 1970). These and other 

heuristic methods primarily depend on past experience, observations of current 

conditions, and professional judgment (Lee, 1999).  Decisions based on these methods 

may be problematic due to a lack of explicit consideration of risk and neglect of the 

effects of climate change and variability of water supplies, and thus tend to lead to 

reduced efficiency for multiple-objective water resources systems.  

The use of climate forecasts could improve water resources management and 

planning, especially in light of changing conditions in which new information can help to 

mitigate adverse impacts. As significant progress has been made in understanding 

“teleconnections” between large-scale atmospheric circulation patterns and regional 

climate anomalies, streamflow forecasts have improved for a range of lead times. In 

particular, climatic predictors such as recurrent teleconnection patterns (e.g., El 

Niño/Southern Oscillation, Pacific Decadal Oscillation, North Atlantic Oscillation) can 
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provide sufficient lead-time and accuracy for long-lead streamflow forecasts in many 

regions (Piechota et al., 1997; Hamlet and Lettenmaier, 1999; Anderson et al., 2001; 

Gutierrez and Dracup, 2001). However, climate forecasts are not without limitations. In 

some cases, the skill of the climate forecast is not great enough for operational use due to 

limited understanding of climate processes and prediction capabilities and variability in 

climate signals. This may be particularly true for geographically small basins (i.e., 

requiring downscaling of global or regional climate models) (Hamlet et al., 2002). The 

complexity involved in using forecasts and the lack of extensive records and forecasts for 

verification indicate a need for developing new tools and management strategies.  

Additionally, water managers may be hesitant to apply new information and methods that 

could expose them and other system stakeholders to greater risk.  These are some 

possible reasons why seasonal climate forecasts are not being used to the fullest extent 

possible.   

The overall goal of this study is to investigate the potential benefits of seasonal 

climate forecasts through improved on water resources management.  The study is to 

build on previous work in which a decision support model using stream flow ensembles 

was developed for the Lower Colorado River Authority (LCRA) in Austin, Texas 

(Watkins et al., 2000; Kracman et al., 2006). Whereas the previously used stream flow 

ensembles were based on climatology, this study will seek to add predictive skill to the 

model (or other appropriate decision models) by conditioning the ensemble forecasts on 

observable climate indicators such as the El Niño-Southern Oscillation (ENSO), Pacific 

Decadal Oscillation (PDO), the North Atlantic Oscillation (NAO), the Atlantic 

Multidecadal Oscillation (AMO), and the Pacific North American Pattern (PNA).   Forecasts 

based on indicators of hydrologic persistence (e.g., soil moisture) will also be 

investigated, and the value of climate information and persistence-based forecasts will be 

estimated through retrospective comparison of management decisions with conditional 

and unconditional ensemble forecasts. 

The project goal will be accomplished by completing the following five main tasks in 

a case study of the Highland Lakes system in central Texas: 
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(1)  Analysis of potential hydroclimatic predictors for the case study region in central 

Texas. 

(2)  Derivation of maximal skill forecasts based on identified predictor variables. 

(3)  Generation of stream flow ensembles consistent with the skill and uncertainty of 

the forecasts. 

(4) Development or modification of stochastic optimization models for water 

management decisions. 

(5) Application of the model(s) with and without seasonal forecast information to 

evaluate the potential benefits of forecasts. 

It is expected that this research will be of significant value to water managers at the 

Lower Colorado River Authority in Austin, Texas, as well provide a general framework 

that may be applied elsewhere.  Furthermore, increased skill in seasonal forecasts may be 

incorporated in other products, such as the ensemble streamflow forecasts issued by the 

West Gulf River Forecast Center, which if adapted to neighboring basins, may prove 

useful to other water managers in Texas. 

 

1.2    Case Study Background 

Lower Colorado River and Highland Lakes 

The Lower Colorado River Authority (LCRA) operates the Highland Lakes system in 

Central Texas, a series of six lakes on the watershed of the Lower Colorado River. As a 

water conservation and reclamation district, the LCRA provides water supply and flood 

control to a 33-county area, including the City of Austin and several rice irrigation 

districts along the Texas Gulf Coast (see Figure 1.1).  In addition, the LCRA produces 

wholesale power for a 53-county service area and provides water resources for lake 

recreation activities and in-stream flow maintenance.  To meet rapidly growing demands, 

reservoir inflow forecasts with lead times of up to 6 to 12 months would be very 

beneficial.  However, seasonal and long-term forecasts are not used by the LCRA for a 

number of reasons, including high seasonal and annual variability of stream flow and the 
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absence of easily measured hydrologic indicators such as snowpack.  Until recently, the 

LCRA has not had much experience with probabilistic planning methods, although they 

are now using a Monte Carlo simulation model to predict expected ranges of lake levels 

(Ron Anderson, LCRA, personal communication, 2009).  

 

 

Figure 1.1. Lower Colorado River Authority District (Source: LCRA 2009) 

The Colorado River of Texas runs from Southwest New Mexico, across Texas to the 

Matagorda Bay on the Gulf of Mexico. The river’s watershed covers nearly 40,000 

square miles, and the river flows a distance of approximately 600 miles from its 

headwaters to its mouth.  The water quality ranks high and is important to abundant 

aquatic biota and wildlife such as migratory birds.  The watershed includes a variety of 

land types, from the Central Texas Hill Country to the flat Coastal Plain.  Land use is also 

varied, with urbanized areas such as the City of Austin, as well as smaller residential and 

agricultural regions, wetlands, and community parks.  Perennial rivers exhibit a large 
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range of flows, which subject the region to frequent droughts and flooding (Kracman, 

2002).  

The Lower Colorado River starts in central Texas, and was legally distinguished from 

the upper portion of the river through legislation that appointed jurisdiction over this part 

of the river to the Lower Colorado River Authority (LCRA).  There are a series of six 

reservoirs, known as the Highland Lakes, on the Lower Colorado (Figure 1.2).  

Development of the Highland Lakes system occurred between the years 1939 to 1951 

with the construction of dams, mostly for the purpose of flood and drought mitigation, 

although additional uses, especially recreation, have become important over the years. 

The Owen H. Ivie Reservoir, built in 1990, marks the upstream boundary of the Lower 

Colorado River and releases flows upon which the Lower Colorado River flows depend. 

Downstream of O.H. Ivie are the confluence of the Colorado with the Pecan Bayou and 

the San Saba River, a major tributary. It then flows into Lake Buchanan, which was 

formed by Buchanan Dam, completed in 1947 with a capacity of about 918,000 acre-feet.  

Lake Buchanan is one of the two lakes with capacity for water storage. Immediately 

below Lake Buchanan is the much smaller Inks Reservoir (17,500 acre-feet, built in 1948 

for hydropower purposes), the confluence with the Llano River,  Lake Lyndon B. 

Johnson (138,500 acre-feet, built in1950), and then Lake Marble Falls (8,760 acre-feet, 

built in 1951 for hydropower purposes).   
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Figure 1.2. Lower Colorado River Basin and Highland Lakes (LCRA, n.d.) 

 

Next, the river reaches Lake Travis, created by the construction of Mansfield Dam in 

1941.  Another important tributary, the Pedernales River, flows into this lake.  The 

Mansfield Dam is considered the only flood control structure, by design, for the Lower 

Colorado and can hold 748,502 acre-ft above the conservation pool (Kracman 2002).  

The total capacity of Lake Travis is 1,170,752 acre-feet, and together, Lakes Buchanan 

and Travis hold approximately 2 million acre-feet of conservation storage.  This upper 

part of the Lower Colorado River Basin, from San Saba County to Lake Austin, is 

considered the Texas Hill Country, below which slopes decrease and the river broadens 

significantly.  Finally, the sixth reservoir is reached, Lake Austin, with a capacity of 

21,000 acre-feet.  The Tom Miller Dam, which formed Lake Austin in 1940, is operated 

by the LCRA but is owned by the City of Austin.   

Downstream of the Tom Miller Dam, and not part of the Highland Lakes system, is 

Town Lake, which is controlled by the City of Austin. Within the Austin city limits, or 

below Austin, the Lower Colorado River is met by Barton Creek, Onion Creek, and 
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numerous other small tributaries before finally reaching Matagorda Bay.  Outflows to the 

Gulf of Mexico average 2,600 cubic feet per second.  Along this downstream reach of the 

river, four main rice irrigation districts withdraw water:  Lakeside, Garwood, Pierce 

Ranch, and Gulf Coast.  These irrigation districts are shown in Figure 1.3.   

 

Figure 1.3. LCRA irrigation service areas (Source: LCRA) 

The LCRA’s initial goals were to moderate droughts and floods. With the 

construction of the Highland Lakes system these goals were better realized, and a stable 

water supply and a source of hydroelectric power encouraged growth in the region. In 

recent years, a major portion of water releases (about 50%) has gone to the irrigation 

districts (Figure 1.4).  Hydropower has become a secondary concern since the 

development of fossil fuel energy plants, though deregulation of the energy market has 

changed the value of this power source.  Overall the usage of the water has changed, as 

have community needs and goals.  Though hydropower importance has diminished, and 

flood control has remained a primary purpose, residential and municipal water supply, 
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recreation, and environmental uses have become more important on the Lower Colorado 

River. 

 

 

Figure 1.4. Distribution of water releases from the Highland Lakes (LCRA, n.d.) 

 

LCRA Water Management Plan 

The LCRA is a public agency that was established in 1934 by Texas legislature for 

the purpose of “conservation and reclamation” (LCRA, 1999).  Today, the LCRA’s water 

management plan includes consideration of private rights holders, recreational, 

environmental, and hydroelectric interests, as well as two main types of customers, those 

with firm contracts (municipal and industrial) and those who sign yearly interruptible 

contracts (agricultural).  Firm water is diverted from storage under a long-term contract 

or resolution issued by the LCRA Board to high-priority users such as the City of Austin 

and is a guaranteed water right during repetition of drought of record. Interruptible water 

contracts are issued on a shorter time scale (typically one year or less) with the condition 

that supplies may be interrupted or curtailed in the event that firm supplies become 

endangered. In allocating interruptible water, priority is given to irrigation operations 

downstream of Austin. If the availability of interruptible water exceeds these irrigation 

needs, annual contracts can then be made with other entities within the Lower Colorado 
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basin. Currently, the LCRA uses beginning-of-year (January 1) storage levels to 

determine the amount of water available to meet firm and interruptible water demands in 

the coming year (Martin, 1991). 

Firm Contracts 

The combined firm yield of Lakes Buchanan and Travis has been established to be 

536,312 acre-feet per year, considered to be the maximum demand that could be met 

during a recurrence of the drought of record. There are six types of firm demand 

customers. The O.H. Ivie Reservoir, upstream of the Lower Colorado, has rights to store 

up to 90,546 acre-feet per year. The city of Austin is supplemented by firm supply up to 

148,300 acre-feet per year. Municipalities and industries are guaranteed a total of 95,789 

acre-feet per year. Two other important interests are cooling water for LCRA’s 

hydroelectric plants (63,851 acre-feet per year) and for the South Texas Project power 

plants (5,680 acre-feet per year). Finally, environmental needs including instream flow, 

bays, and estuaries, receive 12,860 acre-feet per year.  An additional 50,000 acre-feet per 

year is reserved for future growth, and in preparation for potential depletion or pollution 

of ground water supplies.  Continued regional growth and development will likely 

increase the load on these firm contracts until it meets the full legal amount.  Better 

management today will help ensure that these future demands will be efficiently met 

(LCRA 1999). 

Rice Farming 

The four main irrigation districts--Lakeside, Garwood, Pierce Ranch, and Gulf Coast-

-are mainly concerned with supplying water for regional rice farms.  These farms play an 

important role in regional economy, being part of a $300 million industry (Texas State 

Historical Association, 2002).  Irrigation needs are met partially by groundwater, but 

70% comes from surface water, mostly releases from the Highland Lakes (LCRA, 1999).   

Rice typically takes 120 to 180 days to mature, and requires fields flooded to depths 

of 4 to 6 inches.  In this region, rice farmers often use two growing seasons, the main one 
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being March through July, and a secondary growth season during July through 

December.  Future water shortages may prevent second season harvests, even though 

irrigation water demand for these crops occurs only from August to October. 

Interruptible Contracts 

Interruptible contracts are primarily related to the irrigation districts’ demand. 

Currently the LCRA operates on a rule curve to determine how to make the interruptible 

contracts each year. The rule curve is reapplied each month to check on status compared 

to historical levels and to detect possible problems. Analysis concerning the projected 

water availability is made in October, and firm contract holders submit their projected 

needs for the year.  Then, January 1 reservoir levels are projected and the minimum 

upstream inflow for the coming year is added to these levels.  The difference between 

projected levels and firm demands is considered to be available for the interruptible 

contracts.  The final contracts for interruptible water are signed in November.  Based on 

the minimum of April, May, and June maximum storage levels, contracts are updated in 

preparation for the second rice growth season.  (As of this writing, LCRA water 

managers are investigating the ability to base first-season contract decisions on projected 

water levels in March or April.) 

Power Generation 

On the Lower Colorado River, the six dams together have the capacity for 270 

megawatts of hydroelectric power (LCRA, 1999).  Firm water is used for cooling at the 

fossil fuel plants, and other releases are used to generate hydroelectric power. Although 

hydropower is not given the status of a priority water demand, the LCRA uses brief high-

volume releases to maximize daily power generation (Kracman, 2002). 

Recreation and Tourism 

The Highland Lakes are a popular recreation spot for fishers, boaters, birders, and 

others.  Recreation and tourism have been recognized by the LCRA for their importance 

to the local economy and are included in the water management plan as part of the 
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LCRA’s “public interest responsibilities” (LCRA, 1999).  Such demand is considered 

during distribution of interruptible water. There is a tradeoff between releasing 

interruptible water to the irrigation districts, which have senior rights, and maintaining 

high lake levels for the economically important tourism industry. After the irrigation 

districts’ contracts have been met, further sales are limited based on lake levels. The 

LCRA supports local tourism businesses by encouraging visitors to the area.  They have 

built 25 parks on LCRA-owned land, which receive over one million visitors and bring in 

over $90 million each year. The economic importance of such tourism, along with 

political considerations, is also a factor in the maintenance of equitable lake levels. 

Environmental Concerns 

The LCRA also pays attention to environmental interests on the river, from both 

quality and quantity perspectives. They track the quality of the water with frequent 

monitoring and yearly assessments. In order to support habitat for waterfowl, fish, 

shrimp, aquatic plants, and other biological organisms, minimum daily flows must be 

met.  The LCRA has target flows of 1.03 million acre-feet per year to maintain the 

streamflow, bays, and estuaries. These are met with firm water supply under drought 

conditions, but during normal conditions, only interruptible water is provided for 

instream flow maintenance. 

Drought Management Plan 

The LCRA’s conceptual lake management policy for year 2010 projected demands 

calls for curtailment of interruptible supplies to begin when combined storage levels drop 

below 1,400,000 acre-ft, or about 70% of the maximum water supply storage (LCRA 

2003).  Aggressive curtailment begins at a January 1 storage level of 1,150,000 acre-ft 

(about 58% of maximum), and no interruptible water use will be sanctioned on January 1 

if levels are below 325,000 acre-ft (about 16% of maximum).  Additionally, interruptible 

water use will be stopped at any time during the year if combined storage levels drop 

below 200,000 acre-ft (10% of maximum).  Conversely, in years of high storage levels, 

additional interruptible water supplies may be available for sale if combined storage 
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levels are greater than 1,865,000 acre-ft (about 94% of maximum).  Figure 1.5 illustrates 

a hypothetical “rule curve” that corresponds to the published conceptual lake 

management policy. 

 

              

Figure 1.5. Hypothetical rule curve corresponding to LCRA’s conceptual lake 
management policy. (1 AF = 1,233.5 m3.) 
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2. Literature Review 

2.1   Ocean-Atmosphere-Streamflow Teleconnections         

There is an increasing awareness that climate variability is not necessarily randomly 

distributed in space and time. Instead, some climate anomalies appear to present certain 

patterns which may be useful for hydrologic forecasting (Piechota, et al. 2006). The term 

“teleconnections” refers to large and persistent ocean-atmospheric anomaly patterns (e.g., 

El Niño/Southern Oscillation, North Atlantic Oscillation), and apparent causal effects on 

regional climate conditions in adjacent or remote regions. Recent studies have shown that 

oceanic-atmospheric variability occurs on interannual, decadal and interdecadal 

timescales and has an impact on the climate of regions around the world. The results and 

information can be utilized to improve on long lead-time forecasts of water availability. 

This study investigates the influences of these wide-scale teleconnection patterns on 

streamflow in central Texas. These teleconnection patterns include the El Niño/Southern 

Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and the North Atlantic 

Oscillation (NAO). 

El Niño/Southern Oscillation 

ENSO is a contraction of names of two phenomena that were recognized to be 

different expressions of the same process: “El Niño” refers to anomalous strong warming 

of the surface waters of the eastern equatorial Pacific Ocean, while “Southern 

Oscillation” refers to concurrent changes in surface barometric pressure in the tropical 

Pacific (Ropelewski and Halpert 1987, Philander 1990, Piechota, et al., 2006). The ENSO 

phenomenon spans the equatorial Pacific and is associated with droughts in Australia, 

New Zealand, and Southern Africa, and simultaneously flooding in North America, Peru, 

and Ecuador (Ropelewski and Halpert 1987). The warm phase of ENSO is referred to as 

El Niño and the cool phase is referred to as La Niña (Philander, 1990). The ENSO 

generally experiences a two- to seven-year periodicity.  The atmospheric mechanisms 

associated with ENSO are understood as follows:  
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Under normal conditions, the trade winds blow towards the west and push warm 

surface water to the western Pacific, so that the sea surface level and temperatures are 

about higher at Indonesia than off the coast of Ecuador. The sea surface temperature is 

higher in the west due to an upwelling of cold water off the coast of South America. In 

normal conditions, rainfall occurs in rising air over the warm water in the western Pacific, 

and the eastern Pacific is relatively dry, as illustrated in Figure 2.1. 

 

 

     Figure 2.1. “Neutral” ENSO conditions in the equatorial Pacific Ocean. 
     (http://www.pmel.noaa.gov/tao/proj_over/diagrams/index.html. Accessed on Dec. 1, 

2010). 

 

During El Niño, the trade winds relax, causing the thermocline to drop in the eastern 

Pacific, and rise in the west, as illustrated in Figure 2.2. The eastward displacement of the 

warmest water results in large changes in the global atmospheric circulation, which in 

changes cthe limate in regions distant from the tropical Pacific through the movement of 

atmospheric wave-trains (e.g., Houseago et al., 1998). 

http://www.pmel.noaa.gov/tao/proj_over/diagrams/index.html�
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       Figure 2.2. El Niño conditions in the equatorial Pacific Ocean. 
       (http://www.pmel.noaa.gov/tao/proj_over/diagrams/index.html. Accessed on Dec. 1, 

2010). 
 

La Niña is characterized by unusually cold ocean temperatures in the Equatorial 

Pacific, compared to El Niño. During La Niña, the eastern Pacific is cooler than usual, 

and the cool water extends farther westward than usual and causes the depression of the 

thermocline in western Pacific. This leads to drier than normal conditions in the eastern 

Pacific, as illustrated in Figure 2.3. 

A commonly used index to quantify the intensity of ENSO events is the Southern 

Oscillation Index (SOI), which compares the atmospheric pressure in Tahiti to that of 

Darwin, Australia, expressed as a standardized anomaly from normal pressure. Strong 

positive values are associated with La Niña events and strong negative values are 

associated with El Niño events. Other indicators of ENSO activity include equatorial 

Pacific sea surface temperature indices, e.g., NINO12, NINO3, and the Multivariate 

ENSO index (MEI), which integrates variations of oceanic and atmospheric variables 

(Piechota, 1999; Philander, 1990). 

 

http://www.pmel.noaa.gov/tao/proj_over/diagrams/index.html�
http://www.pmel.noaa.gov/tao/elnino/el-nino-story.html�
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        Figure 2.3. La Niña conditions in the equatorial Pacific Ocean. 
(http://www.pmel.noaa.gov/tao/proj_over/diagrams/index.html. Accessed on Dec. 1, 
2010). 

  

Pacific Decadal Oscillation (PDO)  

The Pacific Decadal Oscillation, or PDO, is often described as a long-duration pattern 

of Pacific climate variability, similar to El Niño (Zhang et al. 1997). Specifically, it is 

defined as the standardized difference between sea surface temperatures (SSTs) in the 

north-central Pacific and Gulf of Alaska (Mantua et al. 1997). As with ENSO, the phases 

of the PDO are classified as being either warm or cool, as defined by ocean surface 

temperatures in the northeast and tropical Pacific Ocean. Specifically,  a PDO index 

value is defined as the leading principal component of North Pacific monthly sea surface 

temperature variability (poleward of 20N), with warm (cool) phase conditions 

corresponding to positive (negative) index values (Mantua et al. 1997). Although the 

PDO is similar to ENSO, two main characteristics distinguish the PDO from ENSO. 

First, PDO phases last much longer (typically 20 to 30 years for a single warm or cool 

phase) than ENSO events (6 to 18 months for a single phase) (Mantua et al. 1997, 

Minobe 1997). Second, the temperature patterns of the PDO are most visible in the North 

http://www.pmel.noaa.gov/tao/proj_over/diagrams/index.html�
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Pacific/North American sector, while ENSO patterns exist in the tropics. Several studies 

find evidence for just two full PDO cycles in the past century (e.g. Mantua et al. 1997, 

Minobe 1997): cool PDO regimes prevailed from 1890-1924 and again from 1947-1976, 

while warm PDO regimes occurred from 1925-1946 and from 1977 through the mid-

1990's. Recent changes in Pacific climate suggest a switch to cool PDO conditions in 

1998.  Figure 2.4 illustrates ocean and atmospheric patterns corresponding to PDO warm 

and cool phases. 

 

 

Figure 2.4. Typical wintertime Sea Surface Temperature (colors), Sea Level Pressure 
(contours) and surface wind stress (arrows) anomalies and anomaly patterns during warm 
and cool phases of PDO (http://jisao.washington.edu/pdo/. Accessed on Dec. 1, 2010). 

 

North Atlantic Oscillation 

The NAO is the dominant mode of surface level pressure (SLP) variability in the 

North Atlantic region. The NAO index, defined as the SLP difference between the 

subtropical high pressure system located in the tropical Atlantic near the Azores and the 

subpolar low pressure system located near Iceland (Rogers, 1984), describes the 

magnitude of a north-south atmospheric pressure gradient across the North Atlantic 

 Warm phase                                                      Cool Phase 

http://jisao.washington.edu/pdo/�
http://airmap.unh.edu/background/nao.html#Azoreshigh�
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Ocean (Hurrell, 1995). Like ENSO, there is an atmospheric pressure oscillation between 

Iceland and the Azores, such that if the atmospheric pressure near Iceland is low, then the 

atmospheric pressure near the Azores is usually high, and vice-versa. While low pressure 

in the north and high pressure in the south characterizes average conditions, deviations 

from this mean can result in significant shifts in Northern Hemisphere climate. The 

corresponding index varies from year to year, but exhibits a tendency to remain in one 

phase for intervals lasting several years. A positive NAO (illustrated in Figure 2.5) is 

associated with strong westerlies, and a negative NAO is linked with a reorganization of 

the Jet Stream and associated changes in regional temperatures, storm tracking, and heat 

and moisture transport (Kushnir, 1999; Hurrell et al., 2001).  

 

Figure 2.5. Positive phase NAO effects on sea level pressure for January, April, July and 
October. Values shown are the correlation (x100) of sea level pressure with the NAO 
index in the month indicated (http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml. 
Accessed on Dec. 1, 2010). 
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Atlantic Multidecadal Oscillation (AMO) 

The Atlantic Multi-decadal Oscillation (AMO) is a mode of sea surface temperature 

(SST) variability in the North Atlantic Ocean exhibiting a period of 60-80 years (Kerr, 

2000; Knight et al., 2005). Warm AMO phases occurred from 1860 to 1880 and 1930 to 

1990, while cool phases occurred from 1905 to 1925 and 1970 to 1990. Recent studies 

suggest that the AMO returned to a warm phase in 1995 (McCabe et al., 2004). The 

AMO index consists of detrended SST anomalies for the Atlantic Ocean region.  Tootle 

et al. (2006) found that AMO affects continental U.S. streamflow variability--the middle 

Atlantic and central U.S. streamflow are influenced by the cold phase of AMO, while the 

upper Mississippi River basin, peninsular Florida, and Northwest U.S. streamflow are 

affected by the warm phase of AMO.  Other studies have related the AMO to drought in 

the U.S. and demonstrated the potential coupling of AMO and PDO with ENSO 

(McCabe et al 2004; Hidalgo et al., 2004; Tootle et al., 2005). 

Pacific North American Pattern (PNA) 

The PNA teleconnection pattern is one of the most prominent modes of low-

frequency climate variability, especially during the Northern Hemisphere winter (Horel 

and Wallace, 1981). It appears as anomalies in the geopotential height fields, and is 

usually depicted as the 500 and 700 mb levels. The PNA teleconnection pattern has two 

phases. The positive phase, illustrated in Figure 2.6, consists of higher than normal 

geopotential heights over the western U.S. and below normal geopotential heights over 

the eastern U.S., and the negative phase involves below normal geopotential heights over 

the western U.S. and above normal geopotential heights over the eastern U.S. The PNA is 

closely related to the upper-level flow patterns and surface temperature and precipitation 

conditions in North America (Yin, 1994a). During the positive phase, above normal 

temperatures are expected in the western United States, while the southeastern United 

States may experience drought conditions due to an upper-level pressure ridge. Also, the 

eastern and southeastern United States may experience cooler than average conditions 

due to intrusions of polar air masses, along with enhanced cyclonic activity. During the 
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negative phase, the western United States tends to be cool and wet, while the eastern 

United States tends to be warm and dry (Yin, 1994a).  

The PNA has been found to be strongly influenced by ENSO, with the positive phase 

of the PNA pattern associated with Pacific warm episodes (El Niño), and the negative 

phase associated with Pacific cold episodes (La Niña). Researchers have demonstrated 

that the PNA pattern is important to understanding the low-frequency variability of the 

mean tropospheric flow over North America, and therefore it is very useful in explaining 

temperature patterns and precipitation patterns over North America (Yin, 1994b). 

 

Figure 2.6. Positive phases of PNA patterns for January, April, July, and October. The 
plotted value at each grid point represents the temporal correlation (x100) between the 
monthly standardized height anomalies at that point and the PNA index for the specified 
month. (http://www.cpc.noaa.gov/data/teledoc/pna_map.shtml. Accessed on Dec. 1, 
2010). 

 

http://www.cpc.noaa.gov/data/teledoc/pna_map.shtml�
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Influences of Teleconnections on Streamflow in Central Texas 

At least two previous studies have identified teleconnections for central Texas.  

Piechota and Dracup (1996) found strong correlation between the Southern Oscillation 

Index (SOI) and the Palmer Drought Severity Index (PDSI), indicating the potential of 

improved climate forecasts for the region, up to a year in advance.  However, a strong 

relationship between SOI and streamflow was not found.  One possible reason for this is 

that PDSI is a mathematical function of temperature and precipitation and provides a 

general indication of drought, whereas streamflow tends to integrate climatic processes 

over interseasonal time scales, and this seasonal averaging may limit forecast accuracy.  

For instance, streamflow is a function of both surface runoff and groundwater discharge, 

and groundwater recharge and discharge processes often exhibit lag times markedly 

longer than those of rainfall-runoff processes.  Furthermore, groundwater basins seldom 

align directly with surface watersheds, which may confound statistical analyses of 

climate and streamflow variables measured at specific gage locations.   

In another study, Rajagopalan et al. (2000) found correlation between summer PDSI 

and winter Pacific Ocean sea surface temperature anomalies (Niño-3 index).  However, 

they also found epochal variations in this correlation, with the period of 1963-1995 

showing weaker teleconnections than the period 1895-1962.  Without a means of 

predicting these epochal shifts in teleconnections, such variation tends to confound 

statistical forecasting methods based on the entire historical record.  It is widely 

hypothesized that interdecadal North Pacific variability modulates ENSO-precipitation 

teleconnections (e.g., Gershunov and Barnett, 1998), but Rajagopalan et al. (2000) were 

not able to conclude that either NAO or PDO has any effect on ENSO-precipitation 

teleconnections in central Texas. 

Tootle et al. (2005) completed a study of the influence of interdecadal, decadal, and 

interannual oceanic-atmospheric influences on streamflow in the United States. 

Unimpaired streamflow was identified for 639 stations for the period 1951–2002, and the 

phases (cold/negative or warm/positive) of ENSO, PDO, NAO, and the Atlantic 
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Multidecadal Oscillation (AMO) were identified for the year prior to the streamflow year. 

Statistical significance testing of streamflow indicated no spatially coherent 

teleconnections for central Texas.  Although this study focused on a specific annual 

period (October-September) and forecast lead time (one year), it provides an indication 

that skillful long-lead forecasts may not be available in this region 
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2.2  Nonparametric Statistical Methods in Water Resources 

Traditionally, statistical methods are based on rigid assumptions about the form of 

dependence between variables or the underlying joint or marginal probability density 

functions, and include assumptions of homogeneity and stationarity. In practice, 

hydroclimatic data or time series often show “unusual" features in the underlying 

dependence structure, such as asymmetry (or a large positive or negative coefficient of 

skewness) or multimodality, which are difficult to represent or model using analytical 

probability density functions (Sharma, et al., 1997; Lall and Sharma, 1996). For example, 

in many parametric models, streamflow data (monthly or seasonally) is assumed to be 

normally (Gaussian) distributed (Salas, 1985). However, streamflow data usually exhibits 

non-Guassian features that vary from month to month and are skewed towards the low 

flows, with an extended tail in the high flows (Prairie et al. 2006). To partially address 

these drawbacks, data are often transformed to a Gaussian distribution using a log or 

power transformation before fitting a parametric model to the transformed data, and the 

statistics generated from the model are then back-transformed into the original space. 

However, this process does not guarantee preservation of the original statistics (Sharma 

et al., 1997; Salas, 1985; Bras and Iturbe, 1985; Benjamin, 1970).  

Nonparametric methods strive to approximate a target function locally, i.e., using data 

from a “small” neighborhood of the point of estimate (Lall, 1995). They impose only 

weak assumptions, such as continuity of the target function and its differentiability to 

some order in the neighborhood, rather than a priori assumption of the global form of the 

entire target function, as do parametric methods (e.g., linear regression or fitting 

probability density functions). As a result, outliers do not exert undue influence on the 

overall fit, any arbitrary underlying functional form may be captured, and local features 

present in the data may be reproduced. The trade-off for these features of nonparametric 

methods is increased computational requirements.  However, with increasing 

computational power readily available, nonparametric techniques offer an attractive and 

efficient alternative to traditional parametric approaches. 
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Nonparametric methods, such as kernel density estimation and K-nearest-neighbor 

(K-NN) bootstrap methods, have been successfully applied to a variety of hydrologic 

problems. Kernel-based methods have been applied to rainfall modeling (Lall et al., 

1996; Harrold et al., 2003); flood frequency (Lall et al., 1993; Moon and Lall 1994); 

streamflow simulation (Sharma et al., 1997; Tarboton et al., 1998); groundwater 

applications (Adamoski and Feluch 1991); and streamflow forecasting (Smith 1991). K-

nearest-neighbor methods have been used in streamflow simulation (Lall and Sharma 

1996; Prairie 2002) and multivariate stochastic daily weather generation (Rajagopalan 

and Lall 1999; Yates et al.2003). More recently, a modified K-nearest-neighbor method 

has been developed to overcome the drawback of the K-nearest-neighbor method, which 

is that values not seen in the historical records cannot be simulated (Prairie 2002). Granz 

et al. (2006) applied this modified K-NN approach to Truckee-Carson River basin 

streamflow forecasting; Prairie et al. [2006] applied the approach for stochastic 

streamflow simulation at the Lees Ferry gauge on the Colorado River; and Singhrattna et 

al. [2005] employed the approach to develop summer rainfall forecasts in Thailand. Their 

results showed that the modified K-NN approach had better performance in terms of 

capturing the features (especially nonlinearity) present in the data in comparison with 

both a parametric periodic autoregressive and a nonparametric index sequential method. 

One of the drawbacks of the mollified K-NN approach is that the number of neighbors 

used to bootstrap the residuals will be small and consequently will limit variety in the 

ensembles when the sample size is small (Prairie et al., 2006). 

 A powerful new class of non-parametric approaches known as data mining, also 

referred to as knowledge discovery, has attracted a great deal of attention in the 

information industry.  Data mining involves extracting “hidden” information from large 

amounts of data (Hand et al. 2001).  The data mining process consists of data selection, 

data cleaning, data transformation and reduction, developing a data mining model, 

interpretation and evaluation of model results, and knowledge presentation (Han et al., 

2006). In general, data mining models can be classified into two categories: descriptive 

and predictive. Data mining algorithms, which are the mechanisms for creating data 
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mining models, include a wide array non-parametric methods, including nearest neighbor 

methods, genetic algorithms, decision trees, cluster analysis, and artificial neural 

networks.  Each of these is described briefly as follows:   

• Genetic algorithms are optimization techniques based on the process of natural 

evolution (Ting, 2005). A genetic algorithm has been shown to be successful in 

simple reservoir rule generation (Wardlaw et al., 1999).  To apply genetic 

algorithms for streamflow forecasting, parameters in the forecast model (i.e., 

coefficients and exponents applied to predictor variables) could be selected using 

a genetic algorithm to maximize the predictive skill (or minimize prediction error) 

of the model. 

• Decision trees represent decisions in a flowchart-like tree structure through a series 

of “if-then-else” constructs. The basic principle of using decision trees in data 

mining is to partition datasets to maximize the purity (homogeneity) of a response 

variable within each partition. Decision tree methods include classification and 

regression trees and chi square automatic interaction detection (Hand et al. 2001). 

Relatively little research has been done using decision trees for streamflow 

forecasting.  

• Cluster analysis divides a dataset into mutually exclusive groups such that the 

members of each group will be similar (or related) to one other and different from 

(or unrelated to) the members in other groups.  The greater the similarity (or 

homogeneity) within a group, and the greater the difference between groups, the 

“better” or more distinct the clustering (Han and Kamber, 2006).  Various cluster 

analysis algorithms may be applied to streamflow forecasting in a manner 

analogous to decision trees. 

• Artificial neural networks (ANN) are non-linear predictive models that learn 

through training and resemble biological neural networks in structure (Han and 

Kamber, 2006). Recently, numerous ANN-based models have been employed in 

water resource management because of its power and flexibility (Coulibaly et al., 

2000). Notably, the applicability of ANNs in hydrology has been extensively 
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evaluated by the American Society of Civil Engineers Task Committee on the 

Application of ANNs in Hydrology (ASCE, 2000), as well as by Dawson and 

Wilby (2001). These studies reported that ANN can be an efficient and promising 

alternative to traditional (more physically based) hydrologic models. A 

disadvantage of ANN is their “black box” nature, which makes it impossible to 

interpret relations between the individual predictors and response variable. 

 

2.3   Stochastic Optimization in Water Resources 

In recent years, sustainable development and environmental conservation have 

become increasingly important due to population growth, climate change, and increased 

awareness of environmental problems. In many places it is difficult and controversial to 

construct new large-scale water storage projects as was done in the past. How to improve 

the operational effectiveness and efficiency of existing reservoir systems for maximizing 

benefits is a crucial issue. Most reservoirs are designed as multi-purpose systems 

operating for water supply, flood control, irrigation, hydropower generation, navigation, 

recreation and environmental and ecological concerns. More often than not, there is 

conflict and competition among these diverse purposes, particularly during drought 

conditions. This is one reason why multi-objective reservoir systems often perform more 

poorly than anticipated (WCD, 2000). In addition, the inherent uncertainties associated 

with future hydrologic conditions, including possible impacts of climate change, may 

increase the difficulty of reservoir operation. 

Optimization techniques have been applied in water resources planning and 

management for several decades. A common and long used method of determining 

“optimal” reservoir operation policies is to use deterministic optimization (DO) models 

with the historical flow record or a sequence of synthetic data. This approach is intuitive, 

computationally tractable and evidently sound for systems in which supply typically 

exceeds demand significantly and the primary planning goal is to avoid some catastrophic 

failure. As a result, this method has been widely used in practice (e.g., Grygier and 
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Stedinger 1985, Martin 1991, Karamouz et al. 1992, Kirshen 1992). Several different 

optimization techniques are used to implement DO models, including linear 

programming (LP), network flow programming (NFP), dynamic programming (DP), and 

genetic algorithms. A drawback of all DO models, however, is that they select values of 

decision variables (e.g. reservoir releases, storage levels) with perfect knowledge of the 

future and ignore uncertainty.  This has been known to lead to solutions that are 

suboptimal, or even infeasible (Dantzig 1955, Beale 1955). Techniques such as 

sensitivity analysis and parametric programming can be used to estimate the risks of sub-

optimality or infeasibility, but these techniques do not provide a means of reducing or 

controlling the risks (Watkins and McKinney, 1997).  Another drawback is the resulting 

optimal operational policies inferred from the DO approach are unique to the assumed 

hydrologic time series unless the period-of–analysis is extremely long (Lund and Fereira 

1996).  Although multiple regression analysis could be applied to the optimization results 

for developing operating rules, this method may result also in poor correlations that 

invalidate the operating rules (Labadie 2004). 

Since reservoir operation planning and management is inherently stochastic given the 

uncertain nature of reservoir inflows, a large number of studies have used stochastic 

optimization methods. Stochastic optimization methods are designed to operate directly 

on probabilistic descriptions of random streamflow processes (as well as other random 

variables) rather than deterministic hydrologic sequences (Labadie 2004). This means 

that optimization is performed without the presumption of perfect foresight of future 

events. A wide variety of stochastic optimization methods, such as chance-constrained 

programming, stochastic linear programming, and stochastic dynamic programming have 

been applied to water resources problems.  

Chance-constrained programming (CCP) is one approach which explicitly accounts 

for uncertainty in hydrologic inputs. CCP replaces the deterministic constraints involving 

uncertain parameters with probabilistic constraints, which are then transformed to their 

deterministic equivalent form using the distributions (means and variances) of the 

random variables. Release policies have been derived from linear decision rules (ReVelle 
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et al 1969, Houck and Datta 1981), which permit simple formulation of the chance-

constrained problem. However, CCP can be overly pessimistic and conservative when 

more than one chance-constraint exists in the model (Loucks et al. 1981, Hogan et al. 

1981), leading to operational rules that exceed the prescribed reliability levels (Labadie 

2004). Furthermore, a number of studies have demonstrated that the operating policies 

derived from CCP models do not perform as well as some simple alternatives (Loucks 

and Dorfman 1975, Stedinger et al. 1983, Stedinger 1984). 

One technique which overcomes the limitations of CCP is stochastic dynamic 

programming (SDP).  SDP models strive to overcome the problem of dimensionality due 

to multiple decision stages. Based on estimated Markovian conditional probabilities of 

inflows, SDP uses a recursive relationship in each time stage to determine the policy 

which maximizes the expected benefit for each state of the system. SDP formulations can 

easily incorporate nonlinear and discrete features of water resources problems, and 

techniques have been developed for incorporating chance constraints (e.g., Askew 1974, 

Sniedocih 1979). SDP can also use predicted inflow instead of the previous flow as a 

hydrologic state variable (Stedinger et al. 1984). However, SDP models require 

discretization of state variables, which can lead to the “curse of dimensionality” if there 

are more than two or three state variables (Yeh 1985, Pereira and Pinto 1985). Principles 

from SDP were used to develop sampling stochastic dynamic programming (SSDP), 

which can capture the complex temporal and spatial structure of the streamflow process 

by using a large number of sample streamflow sequences (scenarios) (Labadie 2004; 

Kelman et al., 1990). SSDP can computationally outperform more traditional SDP 

methods; however, it does not alleviate the dimensionality problem associated with 

multiple state variables (Labadie 2004). 

Stochastic linear programming (SLP) (also called stochastic programming with 

recourse or two-stage linear programming) is typically used for problems with multiple 

state variables (e.g., multiple reservoirs)  In this method, only the first stage decisions are 

actually implemented, since future decisions are not known with certainty. Following 

implementation of the first stage decisions, the problem is reformulated starting with the 
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next stage and solved over the remainder of the operational horizon (Labadie 2004).  To 

apply SLP with recourse, a number of scenarios corresponding to sequences of 

realizations of random variables at each stage are required. For multi-stage models, these 

scenarios can be represented by scenario trees, as illustrated in Figure 2.7 (Watkins et al. 

2000; Kracman et al. 2006).  The primary advantage of scenario-based stochastic 

programming over the other approaches is the flexibility it offers in modeling the 

decision process and defining scenarios, particularly if the number of state variables is 

high, e.g., more than a few (Watkins et al, 2000). One disadvantage, however, is that a 

large number of possible scenarios can result in a very large-scale linear programming 

problem requiring special solution algorithms. This can be overcome through 

decomposition methods such as L-shaped algorithm (Bender 1962, Van Slyke and Wets 

1969), which can allow the large-scale problem to be decomposed by scenario and/or 

decision period (Birge 1985, Gassman 1990). 

 

Figure 2.7. Scenario tree for a multistage reservoir optimization model (Watkins et al., 

2000) 
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Multistage stochastic optimization models using linear programming have been 

developed for the LCRA (Watkins et al., 2000; Kracman et al., 2002).  The water supply 

planning models were based on a simplified representation of the Highland Lakes System 

as shown in Figure 2.8.  The general formulation of these economic optimization models 

was as follows: 

Max   s s
s

Z c x p c y= +∑1 2
  

(2.1) 

Subject to 

Ax +Bys = bs           ∀s  (2.2) 

ys= ys'                         for  s ≡ s' (2.3) 
X, ys  ≥ 0               ∀s (2.4) 

where x is the first–stage water contract decision supported by model; ys are the 

subsequent stage contract and release decisions, and the resulting reservoir storage levels 

corresponding to scenario s; ps is the probability of scenario s; and A, B, c, and bs are the 

model parameters and data, some of which vary across scenarios.  Equation (2.1) is the 

objective function for the model, including components representing the expected 

benefits from run-of-river and interruptible water diversions made to the irrigation 

districts, penalties for water demand deficits (municipal and irrigation), recreation 

benefits, and hydropower generation benefits. Equations (2.2) are constraints that 

represent reservoir mass balances and water demand requirements. Equations (2.3) are 

the non-anticipativity constraints which ensure that decisions are the same for scenarios 

that identical up to the point in time that the decisions are made.  

The multiple-stage linear programming model represented by Eqs (2.1)–(2.4) requires 

stochastic inputs in the form of a scenario tree, with levels in the tree corresponding to 

decisions stages. A scenario in the model is a sequence of monthly available tributary 

inflows which are representative of flows which could occur in the future (Watkins et al., 

2000). This stochastic optimization model, however, is not run in real time, but rather 

was formulated as a planning model to help “enhance the understanding of water 
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planning in the LCRA service area and provide a rational method of developing and 

comparing robust and reliable reservoir operation alternatives for the LCRA in the face of 

uncertainty” (McKinney et al., 2002).  In contrast, the forecast models developed in this 

work may be applicable for real-time decision making. 

 

Figure 2.8. Schematic of the Highland Lakes System (Kracman 2002) 

Only a few studies have utilized forecasts within the context of stochastic 

optimization models.  Faber and Stedinger (2001) used National Weather Service 

Ensemble Streamflow Prediction (ESP) forecasts in SSDP models.  Prior to that, Kelman 

et al. (1990) discussed how inflow forecasts could be used in a multi-stage stochastic 

linear programming model for hydropower system operations.  Jacobs et al. (1995) 

describe a multi-stage stochastic optimization model for scheduling hydroelectric power 

generation under uncertainty, where the scenario tree includes short- to medium-term 

streamflow forecasts.  More recently, a number of studies by Kim and colleagues have 

assessed the value of seasonal forecasts using SSDP (Kim et al., 2007; Eum and Kim, 

2010). 
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3. Seasonal Forecasts Using Logistic Regression1

3.1    Introduction 

 

Reliable streamflow forecasts with lead times of even one season can have a 

significant effect on the performance of reservoir operation policies and operation 

efficiency (Karamouz et al. 2004; Sun et al. 2006).  In recent years, much effort has been 

made to develop mid- to long-term (seasonal to annual) hydroclimatic and streamflow 

forecasting models for water management in the United States.  For example, the NOAA 

Climate Prediction Center issues seasonal forecasts of temperature, precipitation, and soil 

moisture, as well as a drought outlook, for the entire U.S.  In the western U.S., the USDA 

Natural Resources Conservation Service provides streamflow forecasts in the first half of 

the year based on observed snowpack conditions.  At many stream gage locations 

throughout the U.S., the National Weather Service provides probabilistic seasonal flow 

forecasts through a procedure known as Ensemble Streamflow Prediction, or ESP (Day 

1985; Smith et al. 1992). Traditionally, each of the meteorology traces has been assumed 

to represent an equally likely scenario for the future; more recently, methods have been 

developed to condition the probabilities of the historical meteorological traces based on 

seasonal climate forecasts (e.g., Croley 2000; Duan et al. 2006).  On a global scale, the 

NOAA/Columbia University International Research Institute for Climate and Society 

(IRI) is one institution that issues seasonal forecasts of temperature and precipitation. 

Significant progress has been made in understanding the influence of large-scale 

ocean-atmospheric patterns, such as El Niño–Southern Oscillation (ENSO), Pacific 

Decadal Oscillation (PDO), the North Atlantic Oscillation (NAO), and Atlantic 

Multidecadal Oscillation (AMO), on regional climate anomalies around world. Numerous 

studies have shown that statistical models incorporating large-scale ocean-atmospheric 

patterns can improve the ability to forecast streamflow with long lead times (e.g., Hamlet 
                                                            
1 This chapter is constituted by the article by Wei and Watkins (2010) “Probabilistic Streamflow Forecasts 
Based on Hydrologic Persistence and Large-Scale Climate Signals in Central Texas,” to be published in the 
Journal of Hydroinformatics.  It has been reprinted from the Journal of Hydroinformatics, with permission 
from the copyright holders, IWA Publishing (Appendix A). 
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& Lettenmaier 1999; Sharma 2000; Tootle et al. 2006).  At least three previous studies 

have identified teleconnections for Central Texas. Piechota and Dracup (1996) found 

strong correlation between the Southern Oscillation Index (SOI) and the Palmer Drought 

Severity Index (PDSI), indicating the potential of improved hydroclimatic forecasts, with 

up to one year in lead time, for the region.  However, a strong relationship between SOI 

and streamflow was not found. One possible reason for this is that PDSI is a 

mathematical function of temperature and precipitation and provides a general indication 

of drought, whereas streamflow tends to integrate climatic processes over interseasonal 

time scales, and this seasonal averaging may limit forecast accuracy. For instance, 

streamflow is a function of both surface runoff and groundwater discharge, and 

groundwater recharge and discharge processes often exhibit lag times markedly longer 

than those of rainfall-runoff processes (Alley 1985).  Furthermore, groundwater basins 

seldom align with surface watersheds, which may confound statistical analyses of climate 

and streamflow variables measured at specific gage locations.  

In another study, Rajagopalan et al. (2000) found correlation between summer PDSI 

and winter Pacific Ocean Sea Surface Temperature (SST) anomalies.  However, they also 

found epochal variations in this correlation, with the period of 1963-1995 showing 

weaker teleconnections than the period 1895-1962. Of course, without a means of 

predicting these epochal shifts in teleconnections, such variation tends to confound 

statistical forecasting methods based on the entire historical record.  It is widely 

hypothesized that interdecadal North Pacific variability modulates ENSO-precipitation 

teleconnections (e.g., Gershunov & Barnett 1998), but Rajagopalan et al. (2000) were not 

able to conclude that either NAO or PDO has any effect on ENSO-precipitation 

teleconnections in Central Texas.  

Finally, Tootle et al. (2005) completed a study of the influence of interdecadal, 

decadal, and interannual oceanic-atmospheric influences on streamflow in the United 

States. Unimpaired streamflow was identified for 639 stations for the period 1951–2002, 

and the phases (cold/negative or warm/positive) of ENSO, PDO, NAO, and AMO were 

identified for the year prior to the streamflow year (i.e., long lead time). Statistical 
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significance testing of streamflow, based on the interdecadal, decadal, and interannual 

oceanic-atmospheric phase (warm/positive or cold/negative), indicated no spatially 

coherent teleconnections for Central Texas. Although this study focused on a specific 

annual period (October-September), and a particular forecast lead time, it provides an 

indication that long-lead climate forecasts may not be useful to water managers in this 

region. 

Streamflow forecasts may be either deterministic or probabilistic, but probabilistic 

methods are often preferable for water management because they can provide more 

information about uncertainty. Categorical streamflow forecasts are common, providing 

the probabilities of flow being in each of a number of categories (e.g., low, medium, 

high).  Probabilities of each category could be generated directly or indirectly. Piechota et 

al. (1998) proposed linear discriminant analysis to produce the probabilities of each 

category of streamflow directly. This method involves nonparametric kernel density 

estimation of the probability density function for each flow category. Regonda et al. 

(2006) employed logistic regression to directly predict the probability of streamflow 

above a given threshold. They applied this approach to categorical forecasts of the spring 

(April-June) streamflow at six locations in the Gunnison River Basin. However, this 

approach treats the response variable as binary, i.e., equal to 1 if the streamflow value 

exceeds a given threshold and zero otherwise. A drawback of this approach for multiple 

categories is that the logistic regression needs to be repeated to obtain the probability 

corresponding to each category threshold, and the sum of probabilities is not guaranteed 

to equal 1. 

In this paper, a statistical method called polytomous logistic regression for ordinal 

response (Kutner et al. 2004) is proposed to generate probabilistic forecasts with seasonal 

lead times for the Highland Lakes system in Central Texas.  In the method, the response 

variable (streamflow) has multiple discrete outcomes rather than binary. Further, the 

response categories (e.g., below normal, normal, above normal) could be considered as 

ordered, thus allowing a parsimonious and easily interpreted logistic model, called a 

proportional odds model, that may be employed to generate a probabilistic (multi-
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category) forecast using a single model.  A number of distributions oriented metrics, such 

as the Brier Skill Score and the Ranked Probability Skill Score, may be used to assess 

model performance (Wilks 1995).  This is demonstrated for the Highland Lakes system in 

Texas for a number of potential predictor variables, including streamflow autocorrelation 

(hydrologic persistence), sea surface temperatures, and other large-scale climate signals.  

 

3.2  Case Study Data 

The Lower Colorado River Authority (LCRA) operates the Highland Lakes system in 

Central Texas, a series of six lakes on the Lower Colorado River. As a water 

conservation and reclamation district, the LCRA provides water supply and flood control 

to a 33-county area, including the City of Austin and several rice irrigation districts along 

the Texas Gulf Coast (see Figure 3.1).  In addition, the LCRA produces wholesale power 

for a 53-county service area and provides water resources for lake recreation activities 

and in-stream flow maintenance.  To meet rapidly growing demands, reliable reservoir 

inflow forecasts with seasonal lead times would potentially be very beneficial; however, 

hydrologic forecasts are not used by the LCRA for a number of reasons, including high 

seasonal and annual variability of stream flow, the absence of easily measured hydrologic 

indicators such as snowpack, and a lack of experience with probabilistic planning 

methods (Watkins & O’Connell 2005).  
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Figure 3.1 | Lower Colorado River Authority District 

 

To explore the patterns of streamflow and the influence of teleconnections in Central 

Texas, monthly streamflow data are acquired from two sources: 1) aggregate inflows to 

the Highland Lakes (upstream), based on USGS gage measurements and adjustments 

made by LCRA staff to account for runoff from ungaged areas; and 2) unregulated 

tributary flows to the Colorado River downstream of the Highland Lakes, as determined 

by the Texas Water Availability Model (WAM) (Wurbs 2005). The reservoir inflow data 

spans a total of 57 years, from 1950 to 2006, and the naturalized downstream flow data 

spans 59 years, from 1940 to 1998. For most of the analyses, the flow data are 

normalized through a two-step process—first a logarithmic transformation, then 

conversion to a standardized anomaly by subtraction of the mean (of the log values) and 

division by the standard deviation (of the log values).  While this transforms the data so 

that the statistical assumption of normality is more valid, it should be noted that the 

correlation coefficients are generally inflated by the log-transform, and thus an effort is 

made to illustrate the results in terms of the raw flow data. 
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Figures 3.2 and 3.3 show the monthly and seasonal autocorrelations of these two time 

series. Monthly autocorrelations of (upstream) reservoir inflows range from a high of 

nearly 0.8 for February and March flows to a low of essentially zero for July and August 

flows.  Seasonal correlation coefficients also peak in the winter season, with a value of 

0.66.  (The correlation coefficient that is significant at the p = 0.05 level is 0.20.)  It may 

be surprising that the seasonal correlation between OND and JFM flows is higher than 

the average of monthly correlation coefficients during this period.  One reason for this 

may be that averaging over a three-month period reduces the “noise” that results from 

individual storm events which have a significant effect on monthly flow totals.  

The tributary flows to the Colorado River downstream of the Highland Lakes, 

estimated as the WAM naturalized flows at Mansfield Dam minus the naturalized flows 

at Bay City, have monthly autocorrelation coefficients that reach a maximum of 0.8 for 

February and March and have a minimum of near 0.2 for September and October. The 

average monthly autocorrelation for the downstream data is about 0.27 higher than the 

upstream data. Seasonal autocorrelations peak in the spring season with a value of 0.82, 

which is lagged by one season in comparison with the upstream data. All seasonal 

autocorrelation coefficients for the downstream data are significant at p = 0.10 or less, 

and the average autocorrelation coefficient is about 0.23 higher than the upstream data. 
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Figure 3.2 | Monthly autocorrelations for aggregate inflows to the Highland Lakes 
(Upstream) and the Texas Water Availability Model (Downstream) data.  Correlation 
coefficients are computed using raw flow data. 

  

 
 

Figure 3.3 | Seasonal autocorrelations for aggregate inflows to the Highland Lakes 
(Upstream) and the Texas Water Availability Model (Downstream) data. Correlation 
coefficients are computed using raw flow data. 
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Based on these autocorrelation coefficients, seasonal streamflow forecasts for certain 

times of the year may be based solely on hydrologic persistence. We investigate the 

predictive skill of these forecasts, as well as the potential for large scale ocean-

atmosphere interactions to provide additional forecast skill.  The oceanic-atmospheric 

phenomena investigated as potential predictor variables for streamflow in Central Texas 

are the El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the 

North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), and the 

Pacific North American (PNA).  The ENSO and NAO generally have a two- to seven-

year periodicity (Philander, 1990), while PDO and AMO exhibit long-term periodicity 

(about 25 to 60 years) (Mantua et al. 1997; Kerr 2000; Gray et al. 2004). 

Various indices were selected to quantify the magnitude of these ocean-atmospheric 

oscillations.  The Niño 3.4 index, which characterizes the tropical Pacific Ocean sea 

surface temperature (SST) anomalies between latitudes 5S and 5N and longitudes 170W 

and 120W, was selected as an indicator of ENSO, and monthly index data were obtained 

from the National Weather Service (NWS) Climate Prediction Center (CPC) 

(http://www.cpc.ncep.noaa.gov/data/indices). The PNA index values, a measure of 

atmospheric pressure anomalies at four locations in the northern hemisphere (Horel & 

Wallace 1981) were also obtained from the CPC.  The PDO index values were obtained 

from the University of Washington (http://jisao.atmos.washington.edu/pdo).  Finally, 

NAO index values were obtained from the National Center for Atmospheric Research 

(http://www.cgd.ucar.edu/cas/jhurrell/indices.html), and the AMO index values (Kerr 

2000) were obtained from the National Oceanic and Atmospheric Administration 

(NOAA) Climate Diagnostics Center (CDC) (http://www.cdc.noaa.gov/Climateindices).  

In all cases, monthly index values for the period 1940-2006 were used for the analysis. 

In addition, SST data was analyzed directly for correlations with streamflow.  The 

data used was the extended reconstructed sea surface temperature (ERSST) analysis 

(Smith et al. 2008), obtained from the National Climatic Data Center (NCDC) through 

the KNMI Climate Explorer, an on-line data analysis tool (Oldenborgh & Burgers 2005).  

Six correlation patterns with high statistical significance (p < 0.01) were identified and 

http://en.wikipedia.org/wiki/El_Ni%C3%B1o�
http://www.cpc.ncep.noaa.gov/data/indices�
http://jisao.atmos.washington.edu/pdo�
http://www.cgd.ucar.edu/cas/jhurrell/indices.html�
http://www.cdc.noaa.gov/Climateindices�
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referenced as ERSST1 through ERSST6, corresponding to the following seasonal 

streamflows: 1) winter reservoir inflows, 2) spring reservoir inflows, 3) winter 

downstream flows, 4) spring downstream flows, 5) summer downstream flows, 6) fall 

downstream flows.  For each SST pattern, a normalized index was computed based on 

average seasonal temperatures over a 4-degree by 4-degree area, similar to the procedure 

of Block and Rajagopalan (2007). 

 

3.3   Statistical Forecast Model 

Multiple logistic regression is most frequently used to model the relationship between 

a binary response variable and a set of predictor variables, which may be either numerical 

or categorical. Let p = Pr(Y = 1) denote the probability of success. The ratio of p/(1-p) is 

called odds, and the function log(p/(1-p)) is called logit(p), which is in fact the logarithm 

of the ratio of probability of success to the probability of failure. A multiple logistic 

regression model can be expressed as follows: 

0 1 1logit( ) log( /(1 )) k kp p p x xβ β β= − = + + ⋅⋅⋅⋅ ⋅   (3.1) 

where the parameters βj are usually estimated using maximum likelihood theory 

(Menard 1995).  

In the binary logistic case, logit(p) compares the probability of a category-1 response 

(success) to the probability of a category-2 response (failure). If the response variable has 

more than two levels, logistic regression can still be employed by means of a polytomous 

or multicategory logistic regression model (Kutner et al. 2004). For a response variable 

with J categories, it is necessary to develop J - 1 logistic regression models. One category 

will be chosen as the baseline or reference category, and then all other categories will be 

compared to it. The choice of reference category is arbitrary. Frequently the last category 

is chosen. 
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Using category J to denote the reference category, only J - 1 logits need to be 

developed.  For a nominal response, the jth logit expression for the ith observation is 

given as: 

j
T
i

iJ

ij X
p
p

β=







log       for   j = 1, 2, … J – 1 (3.2) 

where  0 1

T

j j j kjβ β β β =     and [ ]11 T
i i ikX X X=  . 

(Note that vectors βj  are different for each category j.).  

Given the J - 1 logit expressions, it is possible (algebra not shown) to obtain the J-1 

direct expressions for the category probabilities in terms of the J-1 linear predictors, 

XTβjJ. The resulting expressions are 
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exp( )
−

=
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+∑
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β
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1
1

        for j = 1,2, ……J-1 (3.3) 

The estimates of the J -1 parameter vectors β1, β2 , ……βJ-1  can be obtained 

simultaneously using  maximum likelihood  estimation. The sum of probabilities of each 

category for ith observation is equal to 1. For example, for 3 response categories, we use 

category J = 3 as the baseline category, and there are two comparisons to this reference 

category. Let pij denote the probability that category j is selected for the ith response, and 

then the logit for the two comparisons are: 

' 'log ,    log= =i i
e i e i

i i

p pX X
p p

β β1 2
1 2

3 3

 (3.4)  

and we constrain  pi1 + pi2 + pi3  = 1. Then we can obtain the probabilities of each 

category for ith observation by solving above 3 algebraic equations as below: 

exp( )
exp( ) exp( )
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+ +
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1 X X
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β β

 (3.5) 
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exp( )
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 If multiple response categories are treated as ordered, the logistic regression model 

could be reduced to J - 1 cumulative logits as follows: 

( )log
1 ( )

Ti
j i

i

p Y j X
p Y j

α β
 ≤

= + − ≤ 
       for   j = 1, 2, …J – 1 (3.8) 

The difference between the ordinal response logits and the nominal response logits is 

that each of the J - 1 parameter vectors βj is unique for the nominal case; for ordinal 

response, the slope coefficient vector β is identical for each of the J - 1 cumulative logits, 

and only the intercepts iα differ. Finally, the cumulative probabilities jYp i ≤( ) for the 

ordinal logistic regression model are given as follows: 

)exp(1
)exp()(
βα

βα
T
ii

T
ii

i X
XjYp
++

+
=≤       for  j = 1, 2, …J – 1 (3.9) 

The goal of this study is to develop a framework for developing categorical forecasts 

of streamflows. Since these categories may be treated as ordered, thus the ordinal 

polytomous logistic regression model, which is also called the proportional odds model, 

can be used to produce tercile probability forecasts (below normal, normal, and above 

normal categories). This   may be more effective, yielding a more parsimonious model 

with easily interpreted results. The software package VGAM developed in R 

(http://www.r-project.org) was used to derive the ordinal polytomous logistic regression 

model.  This software employs the maximum likelihood method to estimate the model 

parameters (Yee 2010).  

 

http://www.r-project.org/�
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3.4  Predictors Selection 

In this study, a total of seven potential predictor variables are examined for each of 

the two forecast locations and four seasonal forecast periods. Therefore, 128 (27) 

alternative models can be constructed with each predictor either included or excluded 

from each the 8 forecast models.  Automatic search procedures are employed to screen 

the most promising models according to a specified criterion without requiring the fitting 

of all of possible regression models. For logistic regression modeling, two commonly 

used criteria are Akaike’s Information Criterion (AIC) and Bayesian Information 

Criterion (BIC), which are defined, respectively, as follows: 

AIC = -2Ln (L(b)) + 2P  (3.10) 

BIC = -2Ln (L(b)) + PLn(n) (3.11) 

where b denotes the vector of estimated parameters of the logistic regression model 

(using maximum likelihood method), L(b) is the log-likelihood function, P is the number 

of estimated parameters, and n is the total number of observations. Promising models will 

yield relatively small values for these criteria.  

In this study, a forward stepwise search procedure is used to select the best logistic 

regression model (Seber et al. 2003). Essentially, this search method develops a sequence 

of regression models, at each step adding or deleting a predictor variable according to a 

decision rule. For logistic regression, the decision rule is based on the likelihood-ratio test 

and its significance (p-values), which are obtained from a chi-square distribution with the 

associated degree of freedom. In the forward stepwise procedure, a predictor variable will 

be added to the model at each step only if the chi-square statistic is greater than a critical 

value or if the corresponding p-value is less than a predetermined level (usually 0.05). 

Additionally, a predictor variable in the model will be deleted when its p-value associated 

with its test statistic exceeds a predetermined level.  The procedure will terminate until no 

further predictor variables can be added with resulting p-values less than a predetermined 
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level, i.e., there are no predictors considered sufficiently helpful to enter the regression 

model. 

The forward stepwise method is applied to select predictor variables from a set of 

potential predictors, which include streamflows and large-scale climate signals observed 

in the seasonal period prior to the forecast. For convenience, the seasons are defined as 

winter (January-March), spring (April–June), summer (July–September), and fall 

(October–December). Semi-annual streamflow (January-June) is also predicted based on 

observations from the previous fall.  A summary of the logistic regression models 

selected using the forward stepwise method for reservoir inflows is presented in Table 

3.1.  Climate indices and streamflow for the season prior to the predicted seasonal 

streamflow are designated by (-1).   The results show that streamflow persistence is a 

statistically significant predictor (p = 0.05) for winter, spring, fall and Jan.-June 

streamflow forecasts. Amongst the large-scale climate signals, either the ERSST1 pattern 

(shown in Figure 3.4) or PDO is a significant predictor in the logistic regression model 

for winter streamflow forecasts, but not both, likely due to high colinearity between these 

predictors.  For spring streamflow forecasts, however, both the ERSST2 (shown in Figure 

3.5) and PNA are significant predictors to be retained in the model. The other large-scale 

signals (ENSO, NAO, and AMO) are not statistically significant in the logistic regression 

model. Also shown is the relative improvement of forecast models with the selected 

predictor(s) in terms of model selection criterion AIC and BIC over forecasts based on 

seasonal climatology (i.e., forecasts equal to the median historical value). The greatest 

improvement is observed for winter streamflow forecasts; whereas the stepwise selection 

procedure indicates there are no significant predictor variables for summer streamflow 

forecasts. 
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Table 3.1 | Best logistic regression models from forward stepwise regression for seasonal 
streamflow forecasts of aggregate inflows to the Highland Lakes (Upstream).  Values in 
brackets are p-values for variable entering the model.  Percent improvement is relative to 
climatology (median historical value). 

 Model  
Selected Predictors  
 (p-value) 

Model Fitting Criteria 
Improvement (%) 

Regression Model Climatology 
AIC BIC AIC BIC AIC BIC 

 Winter-A 
 Fall(-1)          (<0.001) 

94.93 107.08 127.01 131.06 25.3 18.3 
 PDO(-1)          (0.017) 

 Winter-B 
 Fall(-1)          (<0.001) 

92.73 104.88 127.01 131.06 27.0 20.0 
 ERSST1(-1)    (0.010) 

 Spring 
 Winter(-1)       (0.003) 

105.69 117.95 129.24 133.33 18.2 11.5  ERSST2(-1)  (<0.001) 
 PNA(-1)          (0.002) 

 Fall   Summer(-1)    (0.004) 122.41 130.58 129.24 133.33 5.3 2.1 
 Jan-Jun  Fall(-1)            (0.004) 119.83 127.93 127.01 131.06 5.6 2.4 
 

A summary of logistic regression models selected for seasonal streamflow forecasts 

of downstream flows is presented in Table 3.2. Results show that streamflow persistence 

is a significant predictor for all seasons. Amongst the large-scale climate signals, SST 

indices (based on the correlation patterns shown in Figures 3.6-3.8) have the most 

significant impact in the logistic regression models. The other large-scale signals do not 

have a statistically significant impact on the unregulated flows downstream of the 

Highland Lakes; however, it should be noted that each of the SST patterns used to 

develop the climate indices can be related to one of the named oscillations. 
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Table 3.2 | Best logistic regression models from forward stepwise regression for seasonal 
streamflow forecasts of unregulated tributary flows, from the Texas Water Availability 
Model (Downstream).  Values in brackets are p-values for variable entering the model.  
Percent improvement is relative to climatology (median historical value). 

    Model  
  Selected Predictors   
  (p-value) 

Model Fitting Criteria 
Improvement (%) 

Regression Model Climatology 
AIC BIC AIC BIC AIC BIC 

    Winter  
  Fall(-1)          (<0.001) 

88.47 99.70 109.47 113.21 19.2 11.9 
  ERSST3(-1)    (0.013) 

    Spring 
  Winter(-1)     (<0.001) 

83.82 91.39 111.62 115.41 24.9 20.8 
  ERSST4(-1)  (<0.001) 

    Summer 
  Spring(-1)     (<0.001) 

107.39 119.86 133.60 137.76 19.6 13.0 
  ERSST5(-1)    (0.007) 

    Fall  
  Summer(-1)    (0.002) 

100.97 108.54 111.62 115.41 9.5 6.0 
  ERSST6(-1)    (0.005) 

 
 
 
 
 

 
 

Figure 3.4 | Correlation map of winter aggregate inflow to the Highland Lakes with fall 
sea surface temperatures. Circled regions indicate strong positive and negative 
correlations used to derive the ERSST1 index. 



47 
 

 

 

Figure 3.5 | Correlation map of spring aggregate inflow to the Highland Lakes with 
winter sea surface temperatures. Circled regions indicate strong negative correlations 
used to derive the ERSST2 index 

 

 

Figure 3.6 | Correlation map of winter downstream flows with fall sea surface 
temperatures. Circled regions indicate strong positive and negative correlations used to 
derive the ERSST3 index. 
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Figure 3.7 | Correlation map of spring downstream flows with winter sea surface 
temperatures. Circled regions indicate strong positive and negative correlations used to 
derive the ERSST4 index. 
 
 

 

Figure 3.8 | Correlation map of summer downstream flows with spring sea surface 
temperatures. Circled regions indicate strong positive and negative correlations used to 
derive the ERSST5 index. 
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3.5  Forecast Verification 

Forecast verification aims to evaluate the agreement between forecasts and 

observations (Katz & Murphy 1997; Stephenson 2003). The Brier skill score (BSS) and 

the ranked probability skill score (RPSS) are common statistics used to measure the 

improvement in the accuracy of multicategory probability forecasts over a naïve 

forecasting method such as climatology.  The Brier skill score (BSS) (Dogget 1998) is 

defined as 

BSS = 1 – BS / BSC (3.12) 

where BS is the Brier score, and is defined as 

BS = (1/n)Σ(fi-l(obsi))2  (3.13) 

where fi is the forecast probability of event i occurring; l(obsi) is an indicator variable 

(1 if event in category i occurs, else 0); n is the number of events; and BSC is the 

climatologically expected value of BS, equal to BSC = Pi * (1 - Pi), where Pi is the 

climatological probability of the event.  The Brier score is often applied to events that 

exceed a given threshold, but it can also be applied to categorical events. In this study, we 

consider three tercile categories, i.e., below normal, normal and above normal.  

Accordingly, BSC = (1/3)*(1-1/3) = 0.222 for each category.  A perfect forecast has a 

value of BSS of 1; positive values between zero and one indicate forecast performance 

better than climatology, and negative values indicate forecast performance worse than 

climatology. 

The ranked probability score (RPS) evaluates the sum of the squared differences in 

the cumulative probability space, so that  
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where K is the number of forecast categories (below normal, normal and above 

normal), fk is the forecast probability for the kth point, and ok equals zero or one to 

indicate whether or not the observed flow is in the kth category.  The use of RPS results in 

higher penalties for forecasts farther away from actual outcomes, rather than scoring 

based on only hit and miss.  The RPS can assume a number between zero and one, with a 

perfect forecast scoring zero.  The ranked probability skill score (RPSS) then measures 

the relative improvement of using a forecast over climatology alone, and is given by 

yatocyatoc

yatoc

RPS
RPS

RPSo
RPSRPSRPSS

loglimloglim

loglim 1−=
−
−

=                                     (3.15) 

The probabilities of streamflow in each category in the climatology forecast (i.e., 

prior probabilities) are the same and equal 1/3 due to the definition of the flow regimes. 

Thus, the RPS values of the three categories (below normal, normal and above normal) in 

the climatology forecast are 0.278, 0.111 and 0.278, respectively.  A perfect RPSS is 1, 

and negative scores indicate that forecasts performed worse than climatology. 

In this study, forecast performance is evaluated using a leave-one-out cross-validation 

method, in which one observed streamflow value is held out and the remaining data are 

used to generate a prediction.  This process is repeated for each value in the data set, and 

the cross-validated forecasts are then evaluated using BSS and RPSS. 

 

3.6  Results and Discussion 

The ordinal polytomous logistic regression models with the minimum AIC and BIC 

values, indicated in Tables 3.1 and 3.2, were applied to generate tercile probability 

forecasts for flows in the Highland Lakes system. The Brier skill score (BSS) and the 

ranked probability skill score (RPSS) were used to evaluate the performance of cross-

validated (leave-one-out) forecasts. Summaries of the results for both of the data sets 

(upstream and downstream of the reservoirs) are presented in Tables 3.3 and 3.4. 
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Results show that (upstream) reservoir inflows for the winter season can be predicted 

with significant skill with one season lead time based on either persistence and ERSST1 

or persistence and PDO.  The BSS and RPSS values indicate that winter streamflow 

forecasts have an average improvement in skill of 25.6% and 22.5% improvement, 

respectively, over climatology.  Table 3.3 also shows the BSS and RPSS for winter 

streamflow forecasts based only on persistence (18.7% and 12.7%, respectively), which 

indicates that including ERSST1 or PDO can provide a significant improvement over a 

forecast based on streamflow persistence only.  For spring streamflow forecasts, BSS and 

RPSS values indicate that forecast skill can be improved by about 8-13% over 

climatology based on persistence, ERSST2 and PNA together. Spring streamflow 

forecasts based only on persistence have no skill.  Hydrologic persistence also shows no 

skill as a predictor for fall streamflows, and the other large-scale climate indices (ENSO, 

PDO, NAO, AMO and PNA) are not useful predicators for any season. 

 
Table 3.3 | Brier Skill Score (BSS) and Ranked Probability Skill Score (RPSS) for cross-
validated seasonal forecasts of inflows to the Highland Lakes reservoir system. “*” 
denotes values for a forecast model based on hydrologic persistence only. 
 

Forecast Model Forecast Skill Score 

BSS (%) RPSS (%) 

           Winter-A 22.9 19.2 

           Winter-B 28.2 25.8 

           Winter * 18.7 12.7  

           Spring 13.8 8.4 

           Spring * 0.2 -2.0 

            Fall -3.2 -4.7 

           Jan-Jun 2.7 1.4 
 

Results in Table 3.4 show that streamflow persistence (autocorreation) is a useful 

predictor for downstream unregulated flows for winter, spring, and summer seasons.  In 
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addition, the derived SST indices ERSST3, ERSST4, and ERSST5 provide additional 

forecast skill for these three seasons, respectively.  The forecast skill score indicate 

between 12 and 33% improvement over climatology-based forecasts for these seasons.  

For fall forecasts, however, skill scores are very close to zero, indicating no improvement 

over climatology, despite the correlations found in the regression analysis using all data 

together (i.e., not holding data out as in cross-validation).    

 

Table 3.4 | Brier Skill Score (BSS) and Ranked Probability Skill Score (RPSS) for cross-
validated seasonal forecasts of downstream unregulated flows. “*” denotes values for a 
forecast model based on hydrologic persistence only. 

 

Forecast Model 
Forecast Skill Score 

BSS (%) RPSS (%) 

          Winter 32.3 14.1 

          Winter * 27.6 8.5 

          Spring 36.1 16.7 

          Spring * 33.4 12.6 

          Summer 16.2  14.8 

          Summer * 9.2 8.6 

           Fall -4.8 -3.9 

 

These results for both upstream and downstream flows forecasts are generally similar 

to the findings of Rajagopalan et al. (2000) and Tootle et al. (2005), but with some 

important differences.  Both of these previous studies concluded that weak relationships 

exist between climate indices and streamflow in Central Texas.  In this study, only one 

identified oceanic-atmospheric mode, PDO, was found to provide significant 

improvement in winter streamflow forecasts (a second, PNA, provided small 

improvement in spring forecasts).  However, derived SST indices, each of which have a 

spatial correlation pattern similar to ENSO or PDO, were found to provide significant 
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improvements in forecast skill when included in the regression models.  Some differences 

are also attributed to different lead times—this study focuses on a seasonal lead time 

while the investigation by Tootle et al. (2005) was based on an annual lead time.     

Comparisons of observations and cross-validated forecasts are shown in Figures 3.9 

and 3.10 for winter reservoir inflows and spring downstream flows, respectively. The 

ordinal polytomous logistic regression models provide tercile probability forecasts for 

flows.  So, the following method is used to obtain the streamflow volume forecast 

corresponding to the categorical probabilities. 

1) First we calculate the empirical cumulative probabilities based on climatology 

forecasts. This assumes that each flow observation is equally likely, and the 

probability of each category is equal to 1/3. 

2) Given the forecasted tercile probability of each flow, we adjust the empirical 

cumulative probabilities. The probability of each category is then adjusted to the 

forecasted probability instead of 1/3. This is similar to the approach of Croley 

(2000). 

3) To obtain the streamflow volumes corresponding to the 33% and 66% non-

exceedance probabilities, we simply interpolate quantiles of a log-normal 

distribution to according to the adjusted cumulative probabilities. 

  Results show many years in which the climate-based forecasts provide a significant 

improvement over climatology.  For instance, the forecasts accurately predict high 

reservoir inflows in 10 of the 12 years in which winter inflows exceeded 442,400 acre-ft 

(Ln(442,400) = 13.0).  Perhaps more importantly, the forecasts accurately predict low 

reservoir inflows (Ln(Streamflow) < 11.0) in 8 of 11 cases. Downstream flow forecasts 

for the spring season have even better skill, with accurate predictions of high flows 

(Ln(Streamflow) > 13.5) in 9 of 11 cases, and accurate predictions of low flows 

(Ln(Streamflow) < 11.5) in all 11 cases. 
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Figure 3.9 | Plot of observations and cross-validated forecasts for winter reservoir 
inflows to the Highland Lakes.  Units on the y-axis are the natural logarithm of flow in 
acre-feet per month (1 acre-ft equals approximately 1,234 m3). 
 
 

 
 

Figure 3.10 | Plot of observations and cross-validated forecasts for spring streamflows 
downstream of the Highland Lakes.  Units on the y-axis are the natural logarithm of flow 
in acre-feet per month (1 acre-ft equals approximately 1,234 m3).  
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The results of this cross-validation exercise indicate that hydrologic persistence 

(streamflow autocorrelation) can provide skillful forecasts of reservoir inflows during the 

winter and spring seasons and downstream flows during the winter, spring, and summer 

seasons.  One reason for this is that streamflow in the winter months is closely related to 

soil moisture, which tends to be higher during fall and winter, with persistence from fall 

through winter and early spring in Central Texas.  This is not the case for late spring and 

summer in the upper watershed, when soils dry and high runoff mainly results from 

convective storm events.  Persistence in soil moisture extends further into the spring, and 

sometimes early summer, in the more humid portion of the watershed downstream of the 

reservoirs, which may explain why downstream flows are somewhat predictable during 

the summer season.  

To further evaluate the forecast models, we performed the forecasts by randomly 

holding out two observations from each of the three (climatology based) categories, thus 

dropping approximately 10-12% at random, then making the forecasting on the dropped 

observation. Repeated above procedure100 times. The BSS and RPSS skills for both 

upstream and downstream flows during winter and spring were shown as box plots in 

Figure 3.11 and 3.12. The median skill scores were almost the same as the leave-one-out 

cross-validation forecasts, although there is considerable variability in the skill scores due 

to resampling. 
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Figure 3.11 | Box plot of BSS (left) and RPSS (right) of upstream flows forecasts for 
winter and spring. Forecasts are based on dropping 10-12% of the observations randomly. 
The boxes correspond to the interquartile ranges (IQR), the horizontal line in each box is 
the median, and whiskers extend to the 1.5 IQR of lower quartile and upper quartile. 
Individual symbols o represent “mild” outliers. 

 

 

Figure 3.12 | Box plot of BSS (left) and RPSS (right) of downstream flows forecasts for 
winter and spring. Forecasts are based on dropping 10-12% of the observations randomly. 
The boxes correspond to the interquartile ranges (IQR), the horizontal line in each box is 
the median, and whiskers extend to the 1.5 IQR of lower quartile and upper quartile. 
Individual symbols o represent “mild” outliers. 
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It is more difficult to explain how large-scale climate signals affect streamflow in 

Central Texas.  Either the derived SST index ERSST1 or the PDO index was found to be 

useful in predicting winter reservoir inflow, and there is strong correlation between the 

two indices (r = 0.88), indicating that ERSST1 is essentially a surrogate for PDO.  There 

is also strong correlation between ERSST2 and PDO (r = 0.62).  Warm-phase PDO 

winters correspond to blocking high pressure over the northeastern Pacific Ocean, which 

shifts the jet stream northward, leading to warmer and drier than average conditions, and 

thus lower soil moisture, in Central Texas.  Conversely, cool-phase PDO winters tend to 

be cooler and wetter than average, with higher soil moisture.  There is strong persistence 

in the PDO index from October to March, and so the fall PDO index (October to 

December) is a good indicator of soil moisture through the winter season. This 

persistence may extend to early spring, which may explain why ERSST2 is a significant 

indicator for spring season.  PNA has a similar but weaker effect on soil moisture; 

nonetheless it is a statistically significant indicator for spring conditions. 

In contrast to the upstream flows, none of the climate indices considered were 

selected by the stepwise method for inclusion in the logistic regression models for 

downstream flow forecasts.  However, each of the identified SST patterns (Figures 3.6-

3.8), from which new indices were derived, can be related to typical PDO or ENSO SST 

patterns in the Pacific and Atlantic Oceans.  (PDO and Nino3.4 indices were likely not 

selected due to colinearity with these patterns.)  Figure 3.6 shows the temporal 

correlation map between fall SSTs and winter downstream flows.  While ENSO is most 

well known to affect SSTs in the equatorial Pacific, it also strongly affects the climate of 

northeastern Brazil (e.g., Souza Filho et al. 2003).  The SST pattern shown in Figure 3.7, 

used to forecast spring downstream flows, exhibits a classic ENSO pattern in the western 

Pacific.  Similarly, the SST pattern exhibited in Figure 3.8, used to forecast summer 

downstream flows, is typical of PDO patterns in the northern Pacific. 
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3.7  Conclusion 

This work aimed to develop seasonal streamflow forecast models for the Highland 

Lakes system in Central Texas.  Hydrologic persistence (streamflow autocorrelation), 

five large-scale climate indices (Nino3.4, PDO, NAO, AMO, and PNA), and six derived 

SST indices were screened for inclusion in an ordinal polytomous logistic regression 

model.  Results indicate that hydrologic persistence is a useful predictor of seasonal 

streamflows both upstream and downstream of the Highland Lakes reservoir system 

during the winter and spring. Summer downstream flow forecasts based on persistence 

also exhibit significant skill.   In addition, winter reservoir inflow forecasts may be 

significantly improved by including either a derived SST index or the PDO index, and 

spring reservoir inflow forecasts may be improved by including a derived SST index and 

PNA.  Similarly, including derived SST indices, related to ENSO and PDO SST patterns, 

improves downstream flow forecasts during the winter, spring and summer.   

The methods presented here are completely transferable to other regions where 

significant hydrologic persistence and/or teleconnections between seasonal streamflow 

and large-scale climate anomalies exist.  Stepwise linear regression with selection of 

predictor variables based on information criteria proved an effective method of screening 

a large number of potential predictors.  Ordinal polytomous logistic regression proved an 

effective and parsimonious method for producing the probabilistic (categorical) 

streamflow forecasts.  Both of these methods assume linearity, however, while 

relationships between streamflow and climate anomalies are likely to be nonlinear and 

include multivariate interactions due to the complexity of ocean-atmosphere dynamics 

(Araghinejad et al. 2006).  Linear regression and logistic regression models are difficult 

to interpret if nonlinearity and/or interactions are present.  To this end, nonlinear 

statistical methods such as data mining (machine learning) may be considered in the 

future work to improve the predictive skill of seasonal forecasts. 
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4. Seasonal Forecasts Using Data Mining2

 
 

4.1   Introduction 

Data mining is the automated analysis of (often large) data sets to classify the data 

and uncover relationships that are both understandable and useful to the data owner 

(Hand et al. 2001). As an automated technique, data mining involves the integration of 

multiple disciplines such as database technology, statistics, machine learning, data 

visualization, and information science. In general, data mining tasks can be classified into 

two categories: descriptive and predictive. Data mining algorithms typically search 

databases for trends, patterns, and relationships that describe data (e.g., knowledge 

discovery), such as those that can be represented as regression models, rules, clusters, 

graphs, tree structures or recurrent patterns in time series. The patterns generated from a 

data mining system should be novel, easily understandable, and potentially useful for 

prediction. To effectively extract information from large amounts of data, it is necessary 

for data mining algorithms to be efficient and scalable. The mining process will be 

ineffective if the samples are not a good representation of the large body of data. 

Therefore, another important issue is the verification and validation of patterns on new or 

test data. The capability of handling noise, exceptional cases, or incomplete data objects 

is also required.  

In recent years, a number of data mining algorithms have been developed to infer 

models or patterns from large datasets in many different fields of application, including 

marketing, surveillance, fraud detection and scientific discovery (Han and Kamber, 2006; 

Hand et al., 2001). Methods used in hydrology include cluster analysis, nearest-

neighborhood methods, tree models, and artificial neural networks. Clustering uses 

iterative techniques to identify relationships and group data into clusters that contain 

similar characteristics, which can then be used to generate predictions (Han and Kamber, 

2006). Nearest-neighborhood methods try to classify or predict the new objects based on 
                                                            
2 This chapter is constituted by the article by Wei and Watkins (2010) “Data Mining Methods for 
Hydroclimatic Forecasting,” currently under review by the journal Advances in Water Resources. 
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nearest neighbors in the training dataset (Hand et al., 2001), with Euclidean distance or 

Mahalanobis distance typically used to define nearest or closest neighbors. (For 

observational data with n dimensions, or variables, the Euclidean distance D between two 

points X=(x1, x2, ….xn) and Y=(y1, y2, …..yn) is defined as:  D = [∑(xi – yi)]1/2; the 

Mahalanobis distance accounts for correlation among variables and is scale-invariant.) 

This algorithm is sensitive to the local structure of the data but can perform poorly in 

problems with many variables (McLachlan, 1992). Tree models or decision tree models 

are also known as classification and regression trees or induction trees (Bessler et al., 

2003).  The basic principle of tree-based models is to partition datasets to maximize the 

purity (homogeneity) of a response variable within each partition. This method can 

explain and/or predict a response that is either categorical (classification) or continuous 

(piecewise regression).  

Artificial neural networks (ANN) is a related method based on the operation of 

biological neural networks. Recently, ANN has attracted a great deal of attention for 

hydrologic forecast modeling (Maier and Dandy, 1996; Shamseldin, 1997; Clair and 

Ehrman, 1998; Coulibaly et al., 2001; Giustolisi and Laucelli, 2005) because of its power 

and flexibility. Notably, the applicability of ANNs in hydrology has been extensively 

evaluated by the American Society of Civil Engineers Task Committee on the 

Application of ANNs in Hydrology (ASCE, 2000), as well as by Dawson and Wilby 

(2001). These studies reported that ANN can be an efficient and promising alternative to 

traditional (more physically based) hydrologic models. A disadvantage of ANN is their 

“black box” nature, which makes it impossible to interpret relations between the 

individual predictors and response variable.  In this respect, tree models are considered 

more comprehensible for decision makers (Tu, 1996).  

In this study, we investigate the potential applicability of tree models for long-lead 

time streamflow forecasting. The methods of classification trees (CT) and logistic 

regression trees (LRT) are used to examine a set of potential streamflow predictors, 

including large-scale climate indices (teleconnections) and hydrological persistence, and 

screen the most promising predictive models accordingly. Data mining is particularly 
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attractive because the methods can effectively address the nonlinear dynamics of oceanic-

atmospheric interactions with regional climate (Araghinejad et al, 2006)—nonlinearities 

which make traditional modeling approaches such as multiple and multivariate linear 

regression models statistically invalid (Piechota et al., 1998).  Although there have been a 

number of studies using artificial neural networks (ANNs) to forecast streamflow 

(Coulibaly, et al., 2001), and Bessler et al. (2003) report a study using induction trees to 

screen multi-reservoir control rules, to the authors’ knowledge tree methods have not 

been applied to long-lead streamflow forecasting.   

With increasing water demands in many watersheds, increasing environmental 

awareness and conflicts over water resources, and growing concern about the hydrologic 

impacts of climate change, long-lead streamflow forecasts may play a critical role in 

water resources planning and management. Especially, the looming uncertainty about 

future supplies due to climate change, presents a daunting challenge to water resources 

engineers and managers. Many researchers have been investigating the relationship 

between hydrological variables, particularly streamflows, and the large-scale climate 

indices, such as El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation 

(PDO), Pacific North American (PNA), the North Atlantic Oscillation (NAO), and 

Atlantic Multidecadal Oscillation (AMO). Recent studies have shown that incorporation 

of large-scale ocean-atmospheric patterns can improve the ability to forecast streamflow 

at seasonal to annual lead times in particular regions (Hamlet and Lettenmaier, 1999; 

Sharma, 2000; Piechota et al., 2001; Tootle, et al, 2006).  Studies also indicate that the 

relationship between the large-scale climate indices and streamflow is usually nonlinear 

due to the complex dynamics of the ocean-atmosphere interaction with regional climates 

(Araghinejad et al, 2006). 
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4.2  Methodology 

The basic goal of data analysis using tree-structured algorithms is to determine a set 

of if-then logical conditions (or “splits”) that permit accurate predictions or classification 

of observational data.  In this study, we use two tree-structured data mining techniques—

classification trees (CT) and logistic regression trees (LRT) to develop seasonal 

streamflow prediction models. The details of the two methods are described below. 

Classification and Regression Trees 

The methodology of classification and regression trees (CRT) was developed by 

Breiman et al. (1984). This method is intended to explain and predict a dependent 

(response) variable, using a set of independent (predictor) variables, also referred to as 

explanatory variables, through a binary partitioning procedure. Both the response and the 

explanatory variables can be either categorical or numerical. Typically, a classification 

tree is used when the response variable is categorical, whereas a regression tree is used 

when the response variable is continuous. In this study, although the response variable 

(streamflow) is continuous, we use classification trees to estimate the probability that the 

observed value will be within one of three categories (high, medium, and low). 

Classification trees have much in common with the traditional methods of 

discriminant analysis (Breiman et al., 1984), but the flexibility of classification trees 

makes them an attractive analysis option. Discriminant analysis determines the class of 

an observation based on a set of linear functions of the predictors, known as discriminant 

functions. The maximum number of discriminant functions will be equal to the degrees of 

freedom or the number of predictor variables in the analysis. The recursive approach to 

constructing classification trees does not face this limitation. Additionally, classification 

trees can be computed for categorical predictors, continuous predictors, or any mix of the 

two types of predictors, while discriminant analysis requires that predictor variables are 

continuous or at least measured on an interval scale (Breiman et al., 1984; Lim et al., 

1997). Similarly, regression trees parallel analysis of variance (ANOVA) techniques.  In 

http://www.statsoft.com/textbook/discriminant-function-analysis/�
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the ANOVA model, interaction is represented by cross-products between predictors, 

while in the regression tree model, it is represented by branches from the same node 

which have different splitting predictors lower in the tree. 

In contrast to other methods of analyzing classification and regression problems, such 

as generalized linear/nonlinear models, interpreting results summarized in a tree is often 

very straightforward, and there are no implicit assumptions about underlying 

relationships between the response variable and predictor variables (such as the variables 

being linearly related or normally distributed). Thus, tree-structured methods are well 

suited for data mining tasks with little a priori knowledge about the data being analyzed, 

and they are powerful for screening variables, summarizing large multivariate datasets, 

constructing and evaluating predictive models, and assessing the adequacy of alternative 

linear models (Ripley, 1996).  

CRT analysis consists of three basic steps: (1) construction of the maximal-tree, (2) 

pruning of the tree, and (3) selection of the optimal tree. CRT builds trees by recursively 

splitting the data into mutually exclusive subgroups. Each such step may give rise to new 

branches, called nodes. The goal of this process is to maximize homogeneity (purity) of 

the values of the dependent variable in each subgroup or node, i.e. minimize the 

variability (impurity) of the response variable in each node (Ripley, 1996). To this end, 

the CRT algorithm searches through all possible splits for all variables included in the 

analysis. The best split then is chosen by evaluation of impurity of the nodes resulting 

from all possible splits. For numerical explanatory variables, a split value is selected to 

generate two groups (nodes) at each node. For categorical explanatory variables, a split is 

made by relating one or more levels of the variable to a specific node. If the splitting 

procedure is repeated until no further split can perform, the resulting tree thus is called 

the maximal tree, and the terminal nodes are referred to as leaves.  

Maximal trees usually turn out to be very complex and fit the training set perfectly. In 

modeling, this is called overfitting (Heyden et al. 2002). Such trees may be difficult to 

interpret, and their ability to predict new observations is generally poor because they tend 
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to extract all information from the training set, even the random variation, or noise, in the 

data. The selection of a more parsimonious tree is then necessary for predictive purposes. 

The tree pruning is performed based on a best compromise between complexity and 

accuracy. For classification trees, a cost–complexity measure may be used to determine 

the best one.  The cost-complexity measure Rα is defined as a linear combination of the 

cost (estimated prediction error) of the tree and its complexity (Caelli, et al., 2005): 

𝑅𝛼(𝑇) = 𝑅(𝑇) + 𝛼|𝑇�|  (4.1) 

where R(T) is the resubstitution estimated error, which for a classification tree is 

given by the misclassification error; |𝑇�| represents the tree complexity, which is the size 

of the sub-tree (number of terminal nodes); and α is the complexity parameter. During the 

pruning procedure α takes values between 0 and 1, starting at 0 for the maximal tree and 

increasing to generate the optimal tree.  The cost-complexity measure is thus analogous 

to information criteria such as the Akaike Information Criterion (AIC) (Ripley, 1996), 

except that it is adaptive according to the stage of the modeling process. 

The procedure of tree pruning will generate a sequence of smaller trees, with the 

optimal tree selected from the sequence of subtrees by evaluating the predictive error of 

the trees. The predictive error is often estimated using a cross-validation method, in 

which samples are randomly drawn from the data set to test the tree grown with the rest 

of the data. The optimal tree may be selected as the one with the minimal cross-validation 

error (most accurate tree). In practice, the optimal tree is generally obtained by selecting 

the simplest tree with a predictive error comparable to the predictive error of the most 

accurate tree (Put et al., 2003).  

In this study, the software CART® developed by Salford Systems was used for data 

mining analysis using classification trees (Breiman et al., 1984; Steinberg et al., 1997). 

Logistic Regression Trees 

Logistic regression is a statistical method used to model the probability of occurrence 

of an event, represented as a binary-valued response, in terms of explanatory or predictor 
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variables that may be either numerical or categorical (Kutner 2004). Let p = Pr(Y = 1) 

denote the probability of an event occurring, or a “success.”  In statistics, the ratio p/(1-p) 

is called the odds, and the function log(p/(1-p)) is called logit(p), which is in fact 

modeling the logarithm of the ratio of probability of success to the probability of failure.  

In linear logistic regression, logit(p) can be expressed as a function of one (simple linear 

logistic regression) or more predictor variables xi (multiple linear logistic regression) as 

follows: 

   (4.2) 

The unknown parameters βj are usually estimated using maximum likelihood theory. 

Although multiple linear logistic regression models can provide accurate estimates of the 

probability of an event affected by many variables, the resulting model may be complex 

and difficult to interpret, especially if the number of predictor variables is large, and if 

collinearity, nonlinearity, or interaction exists among the predictor variables. On the other 

hand, an overly simple model may have little predictive power (Chan et al 2004).  

To overcome these problems, a logistic regression tree method known as Logistic 

Tree with Unbiased Selection (LOTUS) was developed by Chan and Loh (2004), which 

can retain both the graphical interpretability of simple models and also the predictive 

accuracy of more complex models. LOTUS is an algorithm for automatic construction of 

logistic regression trees, based on the underlying principle of fitting a piecewise (simple 

or multiple) linear logistic regression model by recursively partitioning the data and 

fitting a different linear logistic regression to the data in each partition. LOTUS uses a 

trend-adjusted chi-square test to control bias in variable selection at the intermediate 

nodes (Cochran, 1954; Armitage, 1955).  This can distinguish nonlinear from linear 

effects and ensure the integrity of inferences drawn from the tree structure.  

Once the initial binary tree is grown, analogous to the maximal classification tree, it is 

pruned back by minimizing a cross-validation estimate of the predicted deviance per 

degree of freedom (similar to the cost-complexity measure in Eq. 4.1), instead of simply 

the sum of square residuals, which would tend to lead to overfitting. Deviance is a 

0 1 1logit( ) log( /(1 )) k kp p p x xβ β β= − = + + ⋅⋅⋅⋅ ⋅
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standard measure of variation for generalized linear models and also the impurity 

measure for tree-based models (McCullagh and Nelder, 1989) and the degrees of freedom 

is defined as the number of fitted observations minus the number of estimated 

parameters, including the intercept terms. For logistic regression, the deviance is defined 

as: 

𝐷 = −2∑ [𝑦𝑖log (𝑝̂𝑖/𝑦𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔{(1 − 𝑝̂𝑖)/(1 − 𝑦𝑖})]𝑛
𝑖=1    (4.3a) 

or   𝐷 = −2∑ [𝑦𝑖log (𝑝̂𝑖) + (1 − 𝑦𝑖)log (1 − 𝑝̂𝑖)]𝑛
𝑖=1    (4.3b) 

where 𝑝̂𝑖  is the estimated probability for the ith observation, and yi is the ith binary 

response. The total impurity for a tree is the sum of the deviances in all the partitions. 

LOTUS allows the choice of one of three roles for each quantitative predictor variable: f-

variables for fitting only, acting as a regressor; s-variables for splitting only, serving as 

split selection; and n-variables for both splitting and fitting.  These features allow 

nonlinearity of the data to be modeled without requiring variable transformations.  

Furthermore, by fitting linear logistic regressions for each node, the tree model is 

visualizable and hence more comprehensible than standard multiple linear logistic 

regression.  

 

4.3  Case Study Data  

The Lower Colorado River Authority (LCRA) is a water conservation and 

reclamation district established by the State of Texas, USA. It supplies electricity, 

manages water supplies and floods in the lower Colorado River basin, supports water and 

wastewater utilities, provides public parks for water-based recreation, and promotes 

community and economic development in 58 counties in Central Texas (see Figure 4.1).  

To meet rapidly growing water demands through more efficient operation of the 

Highland Lakes reservoirs, seasonal river flow forecasts would be very beneficial. 
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Figure 4.1. Lower Colorado River Authority District in Central Texas (provided by Ron 
Anderson, LCRA).  

To explore the patterns of streamflow and the influence of ocean-atmosphere 

teleconnections in Central Texas, monthly streamflow data are acquired from two 

sources: 1) aggregate Highland Lakes inflows (upstream), based on USGS gage 

measurements and adjustments made by LCRA staff to account for inflows from ungaged 

areas; and 2) unregulated flows downstream of the Highland Lakes, as determined by the 

Texas Water Availability Model (WAM) (Wurbs, 2008). The reservoir inflow data spans 

a total of 57 years, from 1950 to 2006, and the naturalized downstream flow data spans 

59 years, from 1950 to 1998. For most of the analyses, the raw flow data are normalized 

through a two-step process—first a logarithmic transformation, then conversion to a 

standardized anomaly by subtraction of the mean (of the log values) and division of the 

standard deviation (of the log values).  While this transforms the data so that the 

statistical assumption of normality is valid, it should be noted that the correlation 

coefficients are then inflated (due to the log-transform), and thus an effort is made to 

illustrate the results in terms of the raw flow data. 
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Monthly autocorrelations of (upstream) reservoir inflows range from a high of nearly 

0.8 for February and March flows to a low of essentially zero for July and August flows.  

Seasonal correlation coefficients also peak in the winter season, with a value of 0.66.  

(The correlation coefficient that is significant at the p = 0.05 level is 0.20.)  It may be 

surprising that the seasonal correlation between OND and JFM flows is higher than the 

average of monthly correlation coefficients during this period.  One reason for this may 

be that averaging over a three-month period reduces the “noise” that results from 

individual storm events which have a significant effect on monthly flow totals. 

The tributary flows to the Colorado River downstream of the Highland Lakes, 

estimated as the WAM naturalized flows at Mansfield Dam minus the naturalized flows 

at Bay City, have monthly autocorrelation coefficients that reach a maximum of 0.8 for 

February and March and a minimum of about 0.2 for September and October. The 

average monthly autocorrelation for the downstream data is about 0.27 higher than the 

upstream data. Seasonal autocorrelations peak in the spring season with a value of 0.82, 

which is lagged by one season in comparison with the upstream data. All seasonal 

autocorrelation coefficients for the downstream data are significant at p = 0.10 or less, 

and the average autocorrelation coefficient is about 0.23 higher than the upstream data, 

most likely due to the humid conditions along the Texas coast compared to semi-arid 

central and western Texas. 

Based on these autocorrelation coefficients, seasonal streamflow forecasts for certain 

times of the year may be based solely on hydrologic persistence. The predictive skills of 

these forecasts are investigated, as well as the potential for large scale ocean-atmosphere 

interactions to provide additional forecast skill.  The oceanic-atmospheric phenomena 

investigated as potential predictor variables for streamflow are the El Niño-Southern 

Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the North Atlantic 

Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), and the Pacific North 

American (PNA).  The ENSO and NAO generally have a two- to seven-year periodicity 

(Philander, 1990), while PDO and AMO exhibit long-term periodicity of about 25 to 60 

years (Mantua et al. 1997; Kerr 2000; Gray et al. 2004). Various indices were selected to 

http://en.wikipedia.org/wiki/El_Ni%C3%B1o�
http://en.wikipedia.org/wiki/El_Ni%C3%B1o�
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quantify the magnitude of these ocean-atmospheric oscillations, as summarized in Table 

4.1 (Wei and Watkins, 2010).  In all cases, seasonal (three-month average) index values 

for the period 1950-2006 were used for the analysis. 

In addition, SST data was analyzed directly for correlations with streamflow.  The 

data used was the extended reconstructed sea surface temperature (ERSST) analysis 

(Smith et al., 2008), obtained from the National Climatic Data Center (NCDC) through 

the KNMI Climate Explorer, an on-line data analysis tool (Oldenborgh & Burgers, 2005).  

Six correlation patterns with high statistical significance (p < .01) were identified and 

referenced as SST1 through SST6. For each SST pattern, a normalized index was 

computed based on average seasonal temperatures over a 4-degree by 4-degree area, 

similar to the procedure of Block and Rajagopalan (2007). For details, see Wei and 

Watkins (2010). 

Table 4.1. Predictor variables indentified for streamflow in Central Texas, based on sea 

surface temperatures (SST) or sea level pressures (SLP).  Data last accessed on July 17, 

2010. 

 

Climate 

   Index 

Climate 

variable 

Periodicity  

(years) 
On-line Data Source 

   Niño 3.4  SST        2-7   

    PNA  

http://www.cpc.ncep.noaa.gov/data/indices 

SLP    0.25-10 

    PDO 

http://www.cpc.ncep.noaa.gov/data/indices 

SST       25-60  

    NAO 

http://jisao.atmos.washington.edu/pdo 

SLP       2-7  

    AMO 

http://www.cgd.ucar.edu/cas/jhurrell/indices.html 

SST       25-60  

 

http://www.cdc.noaa.gov/Climateindices 

  

http://www.cpc.ncep.noaa.gov/data/indices�
http://www.cpc.ncep.noaa.gov/data/indices�
http://jisao.atmos.washington.edu/pdo�
http://www.cgd.ucar.edu/cas/jhurrell/indices.html�
http://www.cdc.noaa.gov/Climateindices�
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4.4  Forecast Model Development 

Both CT and LRT models were used to screen significant predictor variables from the 

set of potential predictors, observed in the season prior to the forecast. For convenience, 

the seasons are defined as winter (January-March), spring (April–June), summer (July–

September), and fall (October–December). Climate indices and streamflow for the season 

prior to the predicted seasonal streamflow are designated by (-1). 

First, the CT approach is applied to both the reservoir inflow and downstream flow 

data sets.  In both cases, the response variable, i.e. seasonal streamflow, is treated as a 

categorical variable with three levels, or terciles (above normal, normal, and below 

normal), and all potential predictor variables are continuous. Accordingly, in a 

classification tree, the forecast probabilities for each category are given by the empirical 

relative frequencies of the classes in the terminal nodes of the optimal tree. For example, 

if there are 30 cases at a certain terminal node, 15 of which are in the below normal 

category, 10 of which are in the normal category, and 5 of which are in the above normal 

category, then this terminal node will correspond to the following probabilistic (tercile 

probability) forecast: 50% chance of below normal, 33.3% chance of normal, and 16.7% 

chance of above normal. 

A summary of the optimal classification trees for downstream flows, selected based 

on cross-validation, is presented in Table 4.2. The results show all trees have three or 

more levels, indicating nonlinearity in the relationships between streamflow and the 

predictor variables for all four seasons. The more levels a tree has, the more complicated 

the nonlinearity of the relationship is. Generally, the variable used to split data in the first 

level of the tree is more important than the variables used to split data in lower levels.  

Thus, for winter downstream flow forecasts, SST3 appears to be the most important 

predictor, though the other predictors (SST6 and fall streamflow) are also statistically 

significant (p = 0.05).   
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A plot of the optimal classification tree for winter downstream flow forecasts, with 

four levels and four terminal nodes, is shown in Figure 4.2(a). For spring downstream 

flow forecasts, a classification tree with five levels indicates more complicated 

nonlinearity. In this case, streamflow persistence is likely the most important predictor, 

while both SST3 and AMO are also significantly related to spring downstream flows. For 

summer downstream flow forecasts, persistence is not important, but SST5 and AMO 

are, with SST5 being the more important predictor. For fall downstream flows forecasts, 

streamflow persistence is again important, and SST3 is also found significant. 

A summary of the optimal classification trees for reservoir inflows (upstream) based 

on cross-validation is presented in Table 4.3. Results show that all classification trees 

have two or three levels, again indicating nonlinearity in the relationships between 

streamflow and predictor variables, but in this case the relationships are less complicated 

than those for downstream flows. Results also show that fewer predictors are significant 

for reservoir inflow forecasts. Streamflow persistence is a statistically significant 

predictor (p = 0.05) for winter, spring and fall reservoir inflow forecasts. In addition, 

PNA is also found to be a significant predictor for spring inflow forecasts, and both PNA 

and NAO are significant predictors for summer reservoir inflows. A plot of the optimal 

classification tree for spring reservoir inflow forecasts is shown in Figure 4.2(b). 
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Table 4.2. The optimal classification trees based on cross-validation for seasonal 
streamflow forecasts of unregulated tributary flows, from the Texas Water Availability 
Model (Downstream). 

 

Classification trees Winter(JFM) Spring (AMJ) Summer (JAS) Fall (OND) 

Tree levels 4 5 3 3 

Terminal nodes 4 5 3 3 

Split variables and 

values 

SST3(-1)=-0.974 Winter(-1)=-0.974 SST5(-1)=0.037 summer(-1)= -0.543 

SST6(-1) = 0.217  SST3(-1)=-0.120 AMO(-1)= -0.073 SST3(-1)= -0.482 

Fall(-1) = -0.177 AMO(-1) = -0.082     

  Winter(-1) = 0.782     

 

 

 

Table 4.3. The optimal classification trees based on cross-validation for seasonal 
streamflow forecasts of aggregate inflows to the Highland Lakes (Upstream). 
 

Classification trees Winter(JFM) Spring (AMJ) Summer (JAS) Fall (OND) 

Tree levels 2 3 3 2 

Terminal nodes 2 3 3 2 

Split variables and 

values 

Fall(-1) = 0.238 Winter(-1) = 0.255 PNA(-1) = -0.102 summer(-1) = 0.17 

  PNA(-1) = 0.030 NAO(-1) = -0.195   
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(a)                                                                        (b) 

Figure 4.2. Optimal classification trees for (a) winter streamflows downstream of the 
Highland Lakes, and (b) spring inflows to the Highland Lakes. Intermediate and terminal 
nodes are represented by circles and squares, respectively. The number inside an 
intermediate node is the splitting value, and splitting variable is given beneath it. If a case 
is equal to or less than the splitting value, it goes to the left branch; otherwise the right 
branch. The number inside a terminal node indicates the dominant category level, i.e., 
above normal (3), normal (2), and below normal (1). 
 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

  

    

     
     

Fall(-1) 

SST6(-1) 

SST3(-1) 

PNA(-1) 

Winter(-1) 
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Next, the LRT approach is applied to both the reservoir inflows (upstream) and 

downstream flow data sets. In logistic regression trees, the response variable, i.e. seasonal 

streamflow, is considered binary (either a threshold flow is exceeded or it is not), and the 

potential predictor variables are continuous and used both for splitting selection during 

tree construction and for fitting the linear logistic models at each terminal node. To 

develop tercile probability forecasts using LRT, the following steps are taken: 

1. The 33.3 percentile is first chosen as a threshold, and the response variable Y is equal 

to 1 if seasonal streamflow (Q) is equal to or less than the threshold, and 0 otherwise.  

2. A logistic regression tree is generated to obtain the probability for the below-normal 

category: p(BN) = p(Q <= 33.3 percentile).  

3. Steps 1 and 2 are repeated for the 66.6 percentile, and the probability for normal and 

above-normal categories, p(N) and p(AN), are derived as follows:  

p (N) = p(Q <= 66.6 percentile) – p(BN) 

p(AN) = 1- p(Q <= 66.6 percentile) or p(AN) = 1- p(BN) - p(N) 

 Following this procedure, the sum of probabilities for each category is guaranteed to 

equal 1. 

Summaries of the logistic regression trees generated using LOTUS for both 

downstream flows and (upstream) reservoir inflows are presented in Tables 4 and 5, 

respectively. The logistic regression trees for both downstream flows and upstream flows 

are much simpler in structure than the corresponding classification trees. This is likely 

due to the logistic regression essentially being a nonlinear regression in terms of response 

functions (Kutner, et al. 2004), capturing the nonlinear features between the response 

variable and independent variables without the need for more complex splitting in the 

tree. Results show that logistic regression trees with two levels are generated for winter 

and summer downstream flow forecasts, while only one-node trees are grown for spring 

and fall downstream flows and all seasonal reservoir inflows.  One-node trees indicate 
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there is a global relationship between streamflows and predictors, and a single logistic 

regression function can be used to capture the relationship. 

Results in Table 4.4 show that streamflow persistence is a statistically significant 

predictor (p= 0.05) as a fitting variable for all seasons of downstream flows.  SST3 

through SST6 are also statistically significant predictors as fitting variables for 

corresponding seasonal downstream flows. Forecast models for spring and fall 

streamflow can be represented by a single multiple logistic regression function, 

respectively. Nonlinear features present in winter and summer streamflow data are 

accounted for by partitioning the data into two parts using splitting variable SST3 and 

Nino3.4, respectively, and fitting a different multiple logistic regression for each 

partition. For example, the logistic regression tree for winter streamflow forecasts, shown 

in Figure 4.3, has two terminal nodes, designated as Nodes 1 and 2. The corresponding 

fitting multiple logistic regression functions are given as follows:  

Node 1:     Logit(p) = -1.282 – 1.704*Fall(-1) + 1.432*SST3(-1)  (4.4) 

Node 2:     Logit(p) = -1.061 + 1.308*Fall(-1) – 6.084*SST3(-1)  (4.5) 

The estimated probabilities are then derived from these logit equations as follows: 

Node 1: [ ]exp( . . ( ) . ( ) 1
ip 1 1 282 1 704 Fall 1 1 432 SST 3 1 −= + − − ∗ − + ∗ −   (4.6) 

Node 2: [ ]exp( . . ( ) . ( ) 1
ip 1 1 061 1 308 Fall 1 6 084 SST 3 1 −= + − + ∗ − − ∗ −   (4.7) 

Results in Table 4.5 show that streamflow persistence is a statistically significant 

predictor (p = 0.05) for each season of reservoir inflows (upstream) except for summer. 

This is consistent with results from the classification tree analysis. In addition, both SST1 

and SST2 are significant predictors for winter streamflow forecasts, and SST2 is also a 

significant predictor for spring streamflow forecasts. PNA is found to be a significant 

predictor for fall streamflow forecasts. Each of the global relationships present in the 

winter, spring and fall can be modeled using a single multiple logistic regression 
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function.  The logistic regression tree analysis indicates there are no significant predictor 

variables for summer streamflow forecasts. 

 

Table 4.4. The best logistic regression tree based on the cross-validation method for 
seasonal streamflow forecasts of unregulated tributary flows downstream of reservoirs. 
    

Logistic regression trees   Winter(JFM)   Spring (AMJ)   Summer (JAS)   Fall (OND) 

Tree level   2 1 2 1 

Terminal nodes  2 1 2 1 

Splitting variables    SST3(-1) = -0.163   None  Nino34(-1) =0.17   None 

Fitting variables  
  Fall(-1)   Winter(-1)  Spring(-1)   Summer(-1) 

SST3(-1)   SST4(-1)  SST5(-1) SST6(-1) 

 

 

Table 4.5. The best logistic regression tree based on the cross-validation method for 
seasonal streamflow forecasts of aggregate inflows to the Highland Lakes reservoirs 
(Upstream). 
 

 Logistic Regression trees  Winter(JFM) Spring (AMJ) Summer (JAS) Fall (OND) 

 Tree level  1 1 1  1 

 Terminal nodes 1 1 1  1 

 Splitting variables  None   None  None  None 

 Fitting variables  
Fall(-1)   Winter(-1)  

 None 
 Summer(-1) 

SST1(-1), SST2 (-1)   SST2(-1) PNA(-1) 

 

 

 

 



77 
 

 

 

 

 

 

Figure 4.3.  Plot of stepwise logistic regression tree for winter streamflows downstream 
of the Highland Lakes. Intermediate and terminal nodes are represented by circles and 
squares. The splitting variable is SST3, and the splitting value is -0.163.  If a case is equal 
to or less than the splitting value, it goes to the left branch; otherwise to the right branch. 
The ratio of cases with Y =1 to the node sample size is given beneath each terminal node. 
Total sample size is 48. 

 

 

4.5   Forecast Verification 

Forecast verification aims to evaluate the agreement between forecasts and 

observations (Katz and Murphy, 1997; Stephenson, 2003). In this study, the Brier skill 

score (BSS) and the ranked probability skill score (RPSS) are used to measure the 

improvement in the accuracy of multicategory probability forecasts over a naïve 

forecasting method such as climatology.    

The Brier skill score (BSS) (Dogget, 1998) is defined as 

BSS = 1 – BS / BSC  (4.8) 

where BS is the Brier score, and is defined as 

BS = (1/n)Σ(fi-l(obsi))2  (4.9) 

SST3 

     1 2 

10/24 6/24 

-0.163 
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where fi is the forecast probability of event i occurring; l(obsi) is an indicator variable 

(1 if event in category i occurs, else 0); n is the number of events; and BSC is the 

climatologically expected value of BS, and is defined as BSC = Pi * (1 - Pi), where Pi is 

the climatological probability of the event.  In this study, we consider three tercile 

categories, i.e., below normal, normal and above normal. Accordingly, BSC = (1/3)*(1-

1/3) = 0.222 for each category.  A perfect forecast has a value of BSS of 1; positive 

values between zero and one indicate forecast performance better than climatology, and 

negative values indicate forecast performance worse than climatology. 

The ranked probability score (RPS) evaluates the sum of the squared differences in 

the cumulative probability space, so that  
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where K is the number of forecast categories (below normal, normal and above 

normal), fk is the forecast probability for the kth point, and ok equals zero or one to 

indicate whether or not the observed flow is in the kth category.  The use of RPS results in 

higher penalties for forecasts farther away from actual outcomes, rather than scoring 

based on only hit or miss.  The RPS can assume a number between zero and one, with a 

perfect forecast scoring zero.  The RPSS then measures the relative improvement of using 

a forecast over climatology alone, and is given by 

yatocyatoc

yatoc

RPS
RPS

RPSo
RPSRPSRPSS

loglimloglim

loglim 1−=
−
−

=
 (4.11)  

The probabilities of streamflow in each category in the climatology forecast (i.e., 

prior probabilities) are the same and equal 1/3 due to the definition of the flow regimes. 

Thus, the RPS values of the three categories (below normal, normal and above normal) in 

the climatology forecast are 0.278, 0.111 and 0.278, respectively.  A perfect RPSS is 1, 

and negative scores indicate that forecasts performed worse than climatology 
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Using the BSS and RPSS as metrics for evaluation, the optimal classification tree and 

logistic regression tree models, indicated in Tables 4.2-4.5, are applied to forecast 

seasonal flows upstream and downstream of the Highland Lakes reservoir system in 

Central Texas. Summaries of the results are presented in Tables 4.6 and 4.7.  Results in 

Table 4.6 show that downstream unregulated flows can be predicted with significant skill 

based on either the CT or LRT approach. The BSS and RPSS values indicate that 

forecasts using CT have an average improvement in skill over climatology of 39.4% and 

25.4%, respectively, while using LRT the average corresponding improvement in skill is 

43.5% and 33.2%. In particular, downstream flows for winter and spring seasons can be 

predicted very well, with skill score improvements of about 40-50% using either the CT 

or LRT model.  

Results also indicate the tree-structured models can capture the nonlinear features of 

the downstream flows data. For example, SST3 appears as a splitting variable in the first 

level of both the classification and logistic trees for winter streamflow forecasts. This 

implies not only that SST3 is an important predictor of streamflows, but also nonlinear 

features present in winter streamflow data can be accounted for by partitioning data based 

on SST3 values. In the logistic regression tree, there is no further partitioning, but a 

multiple logistic regression model using streamflow persistence and SST3 as fitting 

variables is selected for each partition. In the classification tree, SST6 and streamflow 

persistence are used as splitting variables for further partitioning. The nonlinear 

relationships of winter streamflow with these predictors are illustrated in Figures 4.4 and 

4.5. It is the capability of tree-structured models to capture such nonlinear features that 

make them attractive for developing forecast models. 

Results in Table 4.7 show that reservoir inflows can also be predicted with significant 

skill for winter, spring and fall seasons using either CT or LRT models. The BSS and 

RPSS values indicate that reservoir inflows forecasts for these seasons using CT have an 

average improvement in skill over climatology of 14.1% and 10.4%, respectively, while 

using LRT the average corresponding improvement in skill is 21.6% and 20.6% 

improvement. For summer forecasts, however, skill scores obtained from CT are very 
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close to zero, indicating no improvement over climatology. There is no predictor selected 

by LRT for summer forecasts, so the skill score is zero. 

Forecast skill scores indicate that LRT generally performs better than CT. This is 

likely because the probabilities derived from LRT are based on a regression function 

fitted for each terminal nodes of the tree, while the probabilities given by CT are based 

on simply the empirical relative frequencies of each category represented in each terminal 

node.  Thus, the logistic regression tree can more accurately model variability within 

each classification (terminal node).  

Table 4.6. Brier Skill Score (BSS) and Ranked Probability Skill Score (RPSS) using 
classification trees and logistic regression trees for seasonal forecasts of unregulated 
tributary flows downstream of the reservoirs.  Skill scores are based on cross-validation 
forecasts.  

Forecast Models 

Seasonal Forecast Skill Scores  

Winter Spring Summer Fall 

BSS RPSS BSS RPSS BSS RPSS BSS RPSS 

Classification Tree 40.1% 39.3% 49.9% 42.1% 34.7% 7.0% 32.8% 13.1% 

Logistic Regression Tree 53.7% 43.5% 50.8% 38.7% 40.7% 34.5% 28.9% 16.3% 

 

Table 4.7. Brier Skill Score (BSS) and Ranked Probability Skill Score (RPSS) using 
classification trees and logistic regression trees for seasonal streamflow forecasts of 
aggregate inflows to the Highland Lakes reservoirs (Upstream).  Skill scores are based on 
cross-validation forecasts. 
 

Forecast Models 

Seasonal Forecast Skill Scores  

Winter Spring Summer Fall 

BSS RPSS BSS RPSS BSS RPSS BSS RPSS 

Classification Tree 13.8% 8.9% 16.3% 12.2% 5.7% 1.2% 12.1% 10.0% 

Logistic Regression Tree 29.3% 27.1% 24.2% 23.1% 0.0% 0.0% 11.4% 11.6% 
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Figure 4.4.  Surface plot of winter streamflow as a function of SST3 and SST6 
predictors, demonstrating nonlinearities in the relationship represented by the logistic 
regression tree. Units on the z-axis (winter streamflow) are the natural logarithm of flow 
in acre-feet per month (1 acre-ft equals approximately 1,234 m3). 
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Figure 4.5.  Surface plot of winter streamflow as a function of SST3 and streamflow 
persistence predictors, demonstrating nonlinearities in the relationship represented by the 
classification tree. Units on the y- and z-axis (streamflow persistence and winter 
streamflow) are the natural logarithm of flow in acre-feet per month (1 acre-ft equals 
approximately 1,234 m3). 
 

Comparisons of observations and cross-validated flow forecasts based on either the 

logistic regression tree or the classification tree models are shown in Figures 4.6 and 4.7 

for winter reservoir inflows and spring downstream flows, respectively.  Shown are many 

years in which the tree-based forecasts provide a significant improvement over 

climatology.  For instance, as shown in Figure 4.6, the forecasts from LRT accurately 

predict high winter reservoir inflows in 8 of the 11 years in which inflows exceeded 

442,400 acre-ft (Ln(442,400) = 13.0).  Perhaps more importantly, the forecasts accurately 

predict very low winter reservoir inflows (Ln(Streamflow) < 11.0) in 6 of 9 cases. As 
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shown in Figure 4.7, downstream flow forecasts from CT for the spring season have even 

better skill, with accurate predictions of high flows (Ln(Streamflow) > 13.5) in 10 of 11 

cases, and accurate predictions of low flows (Ln(Streamflow) < 11.5) in 8 of 11 cases. 

 

 

Figure 4.6. Plot of observations and cross-validated forecasts for winter reservoir inflows 
to the Highland Lakes using the logistic regression tree model.  Units on the y-axis are 
the natural logarithm of flow in acre-feet per month (1 acre-ft equals approximately 1,234 
m3). 
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Figure 4.7. Plot of observations and cross-validated forecasts for spring streamflows 
downstream of the Highland Lakes using the classification tree model. Units on the y-
axis are the natural logarithm of flow in acre-feet per month (1 acre-ft equals 
approximately 1,234 m3).  

 

One additional observation from Figure 4.7 is that the tercile probability forecasts are 

“flat” in places, with many of the same values re-occurring. This is an artifact (and 

potential drawback) of the CT models developed in this study, in which the probabilities 

are based on the empirical relative frequencies in each category in the terminal nodes of 

the classification tree. In contrast to the LRT models, the CT models are not able to 

model variability within a terminal node.   Future work may extend the CT approach to 

classification and regression trees (CRT), with a method to derive tercile probability 

forecasts based on analysis of regression residuals (errors). 
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4.6   Conclusion 

For developing statistical hydroclimatic forecast models, tree-structured data mining 

techniques offer a flexible and attractive alternative to traditional modeling approaches 

such as multiple linear regression. Since these data mining methods require no a priori 

knowledge about the data being analyzed, they are powerful tools for screening large 

numbers of potential predictor variables. Tree-structured models also have the ability to 

deal effectively with multicollinearity, nonlinearity and/or interactions present in the data. 

In addition, the results represented by the binary trees are easy to understand and explain 

to decision makers as a set of if-then-else rules. These features may be valuable in 

searching for useful predictors or improving the reliability of existing statistical forecast 

models. 

 In this study, classification trees (CT) and logistic regression trees (LRT) are used to 

screen 12 predictor variables (including hydrologic persistence, large-scale climate 

indices, and derived sea surface temperature patterns) and identify seasonal streamflow 

prediction models for a reservoir system in Central Texas. Application of the tree-

structured models to flows both upstream and downstream of the reservoirs resulted in 

significantly improved forecast skill for both locations and all seasons, except for 

summer flows upstream of the reservoirs. Comparing the CT and LRT approaches, 

classification trees are easier to understand, but logistic regression trees are more accurate 

due to their ability to model variability in each node of the tree.  

 The tree-structured data mining techniques presented here are completely 

transferable to other regions with significant hydrologic persistence and where 

teleconnections between seasonal streamflow and large-scale ocean-atmospheric patterns 

exist. Whenever data mining is used to identify predictor variables, as in this study, 

further research is needed to better understand the physical mechanisms behind these 

interactions. Future work may extend the classification tree approach to include linear 

regression models for each terminal node, and should also include development of a 



86 
 

statistical forecast-decision model to evaluate the benefits of the streamflow forecasts in 

the context of water resources decision making. 
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5. Use of Seasonal Forecasts in Water Management 
 

5.1    Introduction 

Accurate seasonal to interannual streamflow forecasts based on climate information 

are critical for optimal management and operation of water resources systems. 

Considering most water supply systems are multipurpose, operating these systems to 

meet increasing demand under the growing stresses of climate variability and climate 

change, population and economic growth, and environmental concerns could be very 

challenging.   

In the last decade, significant improvement in the skill of seasonal climatic forecasts 

has been achieved based on the output of general circulation models or statistical models 

developed from historical data (Goddard et al., 2003). There is increasing evidence that 

the continental scale rainfall and streamflow patterns are modulated by the large-scale 

oceanic- atmospheric circulation patterns such as El Niño-Southern Oscillation (ENSO), 

the Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal Oscillation (AMO), and 

the North Atlantic Oscillation (NAO) (Dettinger et al. 2000; Souza et al. 2003; Tootle et 

al. 2005).  Recent results show that incorporating the large-scale oceanic-atmospheric 

phenomena could improve the accuracy of seasonal to interannual streamflow forecasts 

(Clark et al. 2001; Hamlet et al. 2002).  Seasonal streamflow forecasts based on climate 

information rely on statistical and dynamic modeling approaches. The statistical 

modeling frequently employs the statistical relationship between the related climate 

indicators, historical rainfall or streamflow volume at a site to forecast streamflow (Souza 

et al., 2003; Devineni et al., 2008). With the dynamic modeling approach, seasonal 

streamflow forecasts can be obtained by applying climate predictions from a regional 

climate model (RCM) coupled with the General Circulation Model (GCM) outputs to a 

hydrological model (Seo et al., 2003). To address the uncertainties of streamflow 

forecasts arising from initial conditions and boundary conditions, model structure and 

modeled processes, significant attention has been given to multimodel forecasts 

techniques by combining different individual  models. The results show that multimodel 
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forecasts have considerable improvement in the overall predictability of seasonal 

streamflow forecasts and reducing the overall model error (Regonda et al., 2006; 

Devenieni et al., 2008). 

A wide array of seasonal hydroclimatic forecast products is now available in the 

public domain. For example, the NOAA Climate Prediction Center issues seasonal 

forecasts of temperature, precipitation, and soil moisture, as well as a drought outlook, 

for the entire U.S. In the western U.S., the USDA Natural Resources Conservation 

Service forecasts streamflows in the first half of the year based on observed snowpack 

conditions. At many stream gage locations throughout the U.S., the National Weather 

Service provides probabilistic seasonal flow forecasts through a procedure known as 

Ensemble Streamflow Prediction, or ESP (Day, 1985; Smith et al., 1992). The ESP  

method uses conceptual or physically based hydrologic models to issue streamflow 

forecasts based on the current soil moisture, river, and reservoir conditions by assuming 

that past meteorological events will recur in the future with historical probabilities 

(Schaake and Larsen 1998). Recently, methods have been developed to condition the 

probabilities of the historical meteorological traces based on seasonal climate forecasts 

(e.g., Croley 2000). On a global scale, the NOAA/Columbia University International 

Research Institute for Climate and Society (IRI) issues seasonal forecasts of temperature 

and precipitation.   

Recent studies have demonstrated that seasonal streamflow forecasts based on climate 

information can significantly improve management of water supply systems 

(Georgakakos, et al., 2007; Golembesky et al., 2009). Notably, Hamlet et al. (2002) 

estimated $161 million/year in potential benefits from use of long-lead streamflow 

forecasts to improve hydropower system operations in the Columbia River basin. Grantz 

et al. (2007) showed that incorporating seasonal streamflow forecasts based on climate 

information into a decision-making model for water management in the Truckee-Carson 

River Basin can offer skillful, longer lead-time forecasts of decision variables. 

Golembesky et al. (2009) showed that multimodel streamflow forecasts with season-

ahead lead time could provide a more reliable way to develop water management 
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strategies such as invoking restrictions during below-normal flow years for the Falls Lake 

Reservoir in the Neuse River Basin, N.C.   

Although verification of seasonal climatic forecasts and the corresponding seasonal 

streamflow forecasts often shows that they have significant skill, adoption by water 

management agencies appears to be slow. Some proposed reasons for this include a lack 

of understanding of probabilistic forecasts and the associated uncertainty (Pagano et al., 

2001). Furthermore, there are no structured framework and policy instruments for water 

managers and reservoir operators to incorporate such information into water-resources 

decision-making (Pagano et al., 2002). In addition, lack of confidence in forecast 

accuracy also discourages water managers from utilizing such probabilistic forecasts in 

the current operating systems. 

In this study, a seasonal streamflow forecast model is developed based on 

hydrological persistence and large-scale climate indicators.  A simple water resources 

economic-optimization model is proposed to investigate the potential value of these 

forecasts for seasonal water contracts under water availability uncertainty.  Some 

recommendations for adoption of this approach by the water management agency are 

provided. 

 

5.2    LCRA Water Management 

The Lower Colorado River Authority (LCRA) is a water conservation and 

reclamation district that operates a series of six lakes and dams on the watershed of the 

Lower Colorado River in Central Texas. The purposes of the LCRA are to supply low-

cost electricity for Central Texas; manage water supplies and floods in the lower 

Colorado River basin, including the City of Austin and four rice irrigation districts along 

the Texas Gulf Coast; develop water and wastewater utilities; provide public recreation; 

and support community and economic development in 58 Texas counties (Figure 5.1). 

According to the LCRA Revised Water Management Plan (LCRA 2003), the LCRA 

supplies water to two general categories of water demands: firm and interruptible.  Firm 
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demands include municipal and industrial, steam-electric power generation, some 

irrigation, and in-stream flow and estuarine flow maintenance. Currently, interruptible 

stored water is used almost entirely for agricultural irrigation, specifically rice irrigation, 

and environmental flow maintenance.  

 

Figure 5.1.  LCRA Water Service Area (Source: Ron Anderson, LCRA) 

In year 2000, surface water demands within the lower Colorado River basin totaled 

approximately 675,800 acre-ft annually (1 acre-ft = 1,233.5 m3), including stored water 

and pass through of storable inflows from Lakes Buchanan and Travis to maintain in-

stream flows and freshwater inflows to the bay and estuary in the lower Colorado River. 

About 56 percent of surface water diversions are used for rice irrigation in the four major 

irrigation operations located in Colorado, Wharton and Matagorda Counties in the Gulf 

Coastal Plain. The next largest demand for surface water is the City of Austin, which in 

year 2000 used approximately 163,800 acre-ft for municipal use and steam-electric power 
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generation under its own run-of-river rights and contracts for stored water from Lakes 

Buchanan and Travis (LCRA 2003). 

The LCRA uses beginning-of-year (January 1) combined storage levels in the two 

lakes used for water supply, Lakes Buchanan and Travis, to determine the amount of 

water available to meet firm and interruptible water demands in the coming year. Firm 

water is that which is diverted from storage under a contract or resolution issued by the 

LCRA Board to high-priority users such as the City of Austin.  Interruptible water 

contracts are issued on a shorter time scale (typically one year) with the condition that 

supplies may be interrupted or curtailed in the event that firm supplies become 

endangered. In allocating interruptible water, priority is given to irrigation operations 

downstream of Austin.  If it is projected that the availability of interruptible water 

exceeds these irrigation needs, annual contracts can then be made with other entities 

within the Lower Colorado basin.  Seasonal and long-term forecasts are not used formally 

by the LCRA for a number of reasons, including high seasonal and annual variability of 

stream flow and the absence of easily measured hydrologic predictors such as snowpack. 

The LCRA’s conceptual lake management policy for year 2010 projected demands 

calls for curtailment of interruptible supplies to begin when combined storage levels drop 

below 1,400,000 acre-ft, or about 70% of the maximum water supply storage, decreasing 

at a rate of approximately 31,200 acre-feet for each 100,000 acre-foot decrease in 

combined storage, (LCRA 2003).  “Aggressive” curtailment begins at a January 1 storage 

level of 1,150,000 acre-ft (about 58% of maximum), decreasing at a rate of 

approximately 4,250 acre-feet for each 100,000 acre-foot decrease in combined storage. 

No interruptible water use will be sanctioned on January 1 if levels are below 325,000 

acre-ft (about 16% of maximum).  Additionally, interruptible water use will be stopped at 

any time during the year if combined storage levels drop below 200,000 acre-ft (10% of 

maximum).  Conversely, in years of high storage levels, additional interruptible water 

supplies may be available for sale if combined storage levels are greater than 1,865,000 

acre-ft (about 94% of maximum).  Figure 5.2 illustrates a hypothetical “rule curve” that 
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corresponds to the published conceptual lake management policy (Wei and Watkins, 

2006). 

 

 
 

Figure 5.2. Hypothetical rule curve corresponding to LCRA’s conceptual lake 
management policy. (1 AF = 1,233.5 m3.) 

 

5.3     Development of Seasonal Streamflow Forecast model 

Recent studies have shown that incorporation of large-scale ocean-atmospheric 

patterns can improve the ability to forecast streamflows at seasonal to annual lead times 

in particular regions (Hamlet and Lettenmaier, 1999; Sharma, 2000; Piechota et al., 2001; 

Tootle, et al, 2006). Studies also indicate that the relationship between the large-scale 

climate indices and streamflow is usually nonlinear due to the complex dynamics of the 

ocean-atmosphere interaction with regional climates (Araghinejad et al, 2006). According 

to the LCRA Revised Water Management Plan, interruptible stored water may be 

contracted for sale with six-month ahead of each year based on January 1 combined 

storage levels. According to this decision horizon, a data mining technique known as 

logistic regression trees (LRT) is used to develop a seasonal streamflow forecast model 
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for January-June reservoir inflows. A number of potential predictors were evaluated for 

forecasting these 6-month reservoir inflows, including hydrological persistence 

(streamflow and precipitation), large-scale climate indices related to the El 

Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic 

Oscillation (NAO), and customized sea surface temperature (SST) indices (for detail, see 

Wei and Watkins (2010). In all cases, monthly index values for the period 1950-2006 

were used for the analysis. The SST data used was the extended reconstructed sea surface 

temperature (ERSST) analysis (Smith et al., 2008), obtained from the National Climatic 

Data Center (NCDC) through the KNMI Climate Explorer, an on-line data analysis tool 

(Oldenborgh and Burgers, 2005).  The SST pattern having the highest correlation with 

January-June inflows (p < .01) was identified and referenced as ERSST8, shown in 

Figure 5.3.  A normalized index for ERSST8 was computed based on average seasonal 

temperatures over a 4-degree by 4-degree area, similar to the procedure of Block and 

Rajagopalan (2007). 

 

 

Figure 5.3 | Correlation map of Jan.-June reservoir inflows to the Highland Lakes with 
fall (Oct.-Dec.) sea surface temperatures. Circled regions indicate strong positive and 
negative correlations used to derive the ERSST8 index. 
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An algorithm for building accurate and comprehensible logistic regression trees 

known as Logistic Tree with Unbiased Selection (LOTUS), developed by Chan and Loh 

(2004), was employed to screen significant predictor variables from all potential 

predictors observed in fall season (October- December) prior to the forecast (for detail, 

see Wei and Watkins (2010). The underlying principle of LOTUS is to fit a piecewise 

(simple or multiple) linear logistic regression model by recursively partitioning the data 

and fitting a different linear logistic regression to the data in each partition. LOTUS uses 

a trend-adjusted chi-square test to control bias in variable selection at the intermediate 

nodes (Cochran, 1954; Armitage, 1955).  This can distinguish nonlinear from linear 

effects and ensure the integrity of inferences drawn from the tree structure. The logistic 

regression tree obtained from LOTUS for January-June reservoir inflow forecasts is 

shown in Figure 5.4.  Results indicate that both hydrological persistence (streamflow and 

precipitation) and ERSST8 are statistically significant predictors (p= 0.05) for January-

June reservoir inflows forecasts. The tercile probabilities for January-June reservoir 

inflows then are predicted using the logistic regression tree based on these three 

predictors. The following steps are taken to derive tercile probability forecasts from LRT 

1) The 33.3 percentile is first chosen as a threshold, and the response variable Y is 

equal to 1 if seasonal streamflow (Q) is equal to or less than the threshold, and 0 

otherwise.  

2) A logistic regression tree is generated to obtain the probability for the below-

normal category: p(BN) = p(Q <= 33.3 percentile).  

Steps 1 and 2 are repeated for the 66.6 percentile, and the probability for normal and 

above-normal categories, p(N) and p(AN), are derived as follows:  

p (N) = p(Q <= 66.6 percentile) – p(BN) 

p(AN) = 1- p(Q <= 66.6 percentile) or p(AN) = 1- p(BN) - p(N) 

Following this procedure, the sum of probabilities for each category is guaranteed to 

equal 1. 
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For example, the estimated logistic regression functions for terminal node 1 and 2 are 

given as follows: 

[ ]ˆ exp( . . . 1
1p 1 0 873 0 784 Streamflow 0 904 ERSST 8 −= + − − ∗ + ∗  (5.1) 

[ ]ˆ exp( . . ) 1
2p 1 0 811 0 973 Precipitation −= + − + ∗   (5.2) 

Using the Brier skill score (BSS) and the ranked probability skill score (RPSS) as 

metrics, forecast performance is assessed through a leave-one-out cross-validation 

procedure. The BSS and RPSS values show that the January-June reservoir inflows 

forecasts have an improvement in skill of 16.7% and 13.6% improvement, respectively, 

over climatology-based forecasts (i.e., tercile probability forecasts equal to 1/3 for each 

category). 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.  Plot of stepwise logistic regression tree for January-June reservoir inflows of 
the Highland Lakes. Intermediate and terminal nodes are represented by circles and 
squares, respectively. The splitting variable is streamflow, and the splitting value is -
0.573.  If a case is equal to or less than the splitting value, it goes to the left branch; 
otherwise to the right branch. The selected fitting variables for each terminal node are 
given below. 
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5.4   Decision Modeling 

To illustrate the beneficial use of information provided by the forecast model 

developed above, we consider the LCRA’s decision of whether or not to sell additional 

interruptible stored water, exclusive of priority allocation to the Gulf Coast irrigation 

districts, when January 1 combined storage levels are greater than 94% of maximum 

storage.  According to the LCRA Revised Water Management Plan, up to 13,000 acre-ft 

of stored water may be contracted for sale during the first six months of the year.  

Presumably, this is a “safe” allocation based on a repetition of the drought of record 

(DOR) beginning on January 1.  We consider whether or not larger contracts may be 

safely signed when reliable forecast information is available. 

To formulate the decision model, we first consider that “stored water” is water that 

may be stored in the reservoirs after pass-through releases are made for senior water 

rights holders, in-stream flow maintenance, channel losses, etc. (LCRA 2003).  While the 

LCRA estimates historical values of storable inflows using a detailed daily simulation 

model, It is found that the following linear relationship provides a good approximation of 

this model on a seasonal (6-month) basis (r2 = 0.8487 for a regression of the total 

January-June inflows and actual stored inflows volumes for the period January-June): 

Qstorable = 0.708 Qtotal – 88209   acre-ft                                             (5.3)  

Thus, we can consider a certain volume of inflow during the first six months of each 

year to be passed through and not available for storage. Second, we also must consider 

that stored water is committed to firm uses (firm yield) and priority irrigation demands.  

Simulations of the DOR, though lasting for 11 years (historically, 1946-1956), indicate a 

critical drawdown period of approximately 6 years (1946-1952), at the end of which the 

combined storage in Lakes Travis and Buchanan would drop to a critically low “reserve” 

level under current demand levels.  During this drawdown period, the average aggregate 

storable inflow to the lakes in the first 6 months of each year was 232,905 acre-ft, and so 

we assume that this volume would be needed to meet firm demands during a repeat of the 

DOR Thus, our goal is to forecast when the total January-June inflows will exceed the 
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sum of these two values (88,209 plus 232,905 acre-ft) and to allow the “excess” inflow to 

be made available for sale. 

Qavailable = MAX (0, 0.708× Qtotal – 88209 – 232,905)   acre-ft  (5.4) 

We propose a simplified two-stage stochastic economic-optimization model to 

investigate improvement in water use efficiency and the potential value of using seasonal 

forecasts, under the assumption of optimal decision making under uncertainty (Israel and 

Lund, 1995; Watkins and McKinney, 1997). The model uses ensemble streamflow 

forecasts as input and includes a risk aversion parameter, which makes it somewhat 

general for a range of practical applications. Real-world application, however, would 

likely require a more complex system representation and consideration of additional 

objectives and constraints. 

The conceptual model applied here involves the sale of interruptible water contracts 

under water supply uncertainty, with the objective of maximizing the seller’s expected 

net revenues from contract sales. In the event that a given contract amount cannot be 

provided due to lower than expected water availability, the seller is to pay a penalty. 

Considering a set of scenarios, denoted by s, to represent hydrologic uncertainty, the 

model is formulated as the following linear programming problem:  

Max     s s
s S

Z Contract pen p Deficit
∈

= − ×∑
 (5.5)

 

Subject to 

Contract – Deficits ≤ Inflows        ∀s 

Deficits ≥ 0                                    ∀s 

where Contract is the contract amount, pen is a penalty coefficient selected by the 

decision maker, ps is the probability assigned to scenario s, Deficits is the deficit occurring 

under scenario s, and Inflows is the random inflow (water availability) realized under 

scenario s.  
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In this study, the inflow data set is taken from 56 years (from 1951 to 2006) of 

aggregate inflows to the Highland Lakes , based on USGS gage measurements upstream 

of the reservoirs and adjustments made by LCRA staff to account for runoff from 

ungaged areas. Assuming climatology, each scenario is assumed equally likely, ps = 1/56. 

Reservoir inflow forecasts provided by the above seasonal forecast model (based on 

hydrological persistence and large-scale ocean-atmospheric patterns) enter the 

optimization model through adjustment of these probabilities to be consistent with the 

derived tercile probability forecasts. This is similar to the approach of Croley (2000). 

 

5.5    Results and Discussion  

The water contract optimization model was applied using climatology-based forecasts 

(equal probabilities of low, medium, and high inflows in all years) and the hydroclimatic 

forecasts (with a leave-one-out cross validation approach).  Model results are shown in 

Tables 5.1 and 5.2 for these two cases, respectively, using a range of penalty coefficients 

to evaluate the tradeoff between maximizing contract amounts and minimizing the risk of 

deficits occurring. The values listed are the mean seasonal (first six-month of each year) 

interruptible water contracts and deficits over all 56 years, assuming that the optimal 

amount is contracted according to the inflow forecast.  If the actual inflow is less than the 

(predicted) optimal contract, a contract deficit results.  The reliability is computed as the 

fraction of years in which the actual inflow (water availability) is greater than or equal to 

the forecast contract. A plot of contract-deficit trade-off curves for climatology and 

seasonal forecasts is shown in Figure 5.5.   

These results demonstrate that incorporating the probabilistic inflow forecasts into the 

optimization model can provide a significant improvement in seasonal water contract 

benefits over climatology, with lower average deficits (increased reliability) for a given 

average contract amount, or improved mean contract benefits for a given level of 

reliability compared to climatology. Comparing results with LCRA Revised Water 

Management Plan which calls up to 13,000 acre-ft of stored water for sale during the first 
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six months of the year when storage levels are high, an additional 16,000 acre-ft of water 

is available for seasonal contracts with a reliability of 93% (in any year) if reservoir 

inflow forecasts are used optimally. The results also illustrate the trade-off between the 

expected contract amount and reliability, i.e., larger contracts can be signed at greater 

risk.  Keep in mind that the “no risk” option under the assumed circumstances is no 

additional interruptible water contract, as specified by the LCRA Revised Water 

Management Plan whenever reservoir storage levels are below 94% of capacity.  

 

Table 5.1.  Trade-off between mean contract amount and deficit (reliability) using 
climatology-based forecasts (1 AF = 1233.5 m3). 

Mean Contract (AF) Mean Deficit (AF) Reliability (%) 

116537 59505 41 

95485 47238 45 

57025 26864 52 

31220 14422 52 

21640 9804 54 

13644 6091 55 
 

 

 

 

 

 

  



100 
 

Table 5.2. Trade-off between mean contract amount and deficit (reliability) using 
seasonal streamflow forecasts (1 AF = 1233.5 m3). 

Mean Contract (AF) Mean Deficit (AF) Reliability (%) 

137189 59382 50 

91404 36138 64 

49989 13519 77 

29242 3239 93 

23188 2097 95 

17491 719 96 

9437 0 100 

 

 

 

Figure 5.5. Plot of contract-deficit tradeoff curves for both climatology and seasonal 
forecasts 
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Future research will continue to investigate other potential predictor variables for 

streamflow in Central Texas. In this study, a customized Pacific Ocean SST index was 

derived because the standard indices of the large-scale climate phenomena were not good 

predictors, as has been observed in other locations (e.g., Grantz et al., 2006). However, 

by no means was our search exhaustive. Using new predictors, more skillful streamflow 

forecast models may also be derived with longer lead times (for instance, one-year lead 

times would provide valuable information for annual water interruptible water contracts).  

Other future work will be to develop a more complex multi-reservoir systems 

optimization model with consideration of additional objectives and constraints and 

potential to prescribe reservoir releases based on downstream (unregulated) inflow 

forecasts. Furthermore, an insurance mechanism for limiting risk in the event of bad 

forecasts may be incorporated into revised operating policies that improve risk-based 

water resources management and planning. 
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6. Conclusions and Future Work 

The overall goal of this study was to investigate improvement in water resources 

systems management through the use of seasonal climate forecasts.  Hydrological 

persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric 

patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation 

(PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), 

the Pacific North American (PNA), and customized sea surface temperature (SST) 

indices were investigated for their potential to improve streamflow forecast accuracy and 

increase forecast lead-time in a river basin in Central Texas.  The study allowed the 

following conclusions to be drawn for this specific case study location: 

1. Hydrological persistence, alone, shows the greater potential for skillful forecasts 

than oceanic-atmospheric teleconnections alone. Monthly and seasonal 

streamflow autocorrelations are much stronger both upstream and downstream of 

the Highland Lakes reservoir system, especially during the winter and spring 

seasons.  Furthermore, the average monthly and seasonal autocorrelations for 

downstream data are higher than the corresponding correlations for upstream data. 

Hydrological persistence does not provide for longer lead time (six months or 

more) forecasts, however.  

2. Nonlinearity exists in hydrologic persistence and in the relationships between 

streamflow the large-scale ocean-atmospheric patterns examined for flows both 

upstream and downstream of the Highland Lakes reservoir system. This study 

used linear correlation analysis as a means of screening potential predictors, but 

by means of other algorithms such as data mining methods, the nonlinear features 

are revealed. Some climate indices, such as the derived sea surface temperature 

patterns SST1 through SST4, PNA, PDO, and AMO were identified and 

employed as important predicators for both upstream and downstream flows 

during certain seasons of the year. 

3. Seasonal streamflow forecasts with considerable skill were achieved based on 

distributions-oriented metrics. After developing forecast models for flows both 
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upstream and downstream of the reservoirs, forecast performance was assessed 

through a leave-one-out cross-validation procedure using the Brier skill score 

(BSS) and the ranked probability skill score (RPSS) as metrics. The results show 

that seasonal streamflow forecasts based on either tree-structured models or 

polytomous logistic regression have significant skill compared to climatology-

based forecasts. In particular, both upstream and downstream flow forecasts 

during winter and spring offer a great improvement over climatology. Results also 

show that forecast skills for downstream flow forecasts are higher than for 

upstream flow (reservoir inflow) forecasts. 

4. Incorporating the probabilistic inflow forecasts into a simple water contract 

optimization model indicated significantly increased benefits. Using seasonal 

streamflow forecasts for January-June can provide a significant improvement in 

water contract benefits over climatology, with lower average deficits (increased 

reliability) for a given average contract amount, or improved mean contract 

benefits for a given level of reliability.. For example, an additional 16,000 acre-ft 

of water is available for seasonal contracts with a reliability of 93% (in any year) 

if reservoir inflow forecasts are used optimally. Comparing results with LCRA 

Revised Water Management Plan, water contracts could increase by 125%. The 

results also illustrated the trade-off between the expected contract amount and 

reliability, i.e., larger contracts can be signed at greater risk. 

Several of the findings and conclusions from the Central Texas case study are 

relevant for other locations.  First, non-traditional streamflow forecast models (i.e., based 

on tree-structured data mining techniques) were developed to deal effectively with 

multicollinearity, nonlinearity and/or interactions present in the data.  The tree-structured 

data mining techniques, i.e., classification and regression trees (CRT) and logistic 

regression tree (LRT), were also useful in screening large numbers of potential predictor 

variables and establishing the corresponding forecast models. Compared with traditional 

modeling approaches such as multiple linear regression, tree-structured data mining 

techniques offer a flexible and attractive alternative without a priori knowledge about the 
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data being analyzed. In addition, the results represented by the binary trees are easy to 

understand and explain to decision makers as a set of if-then-else rules.  

As have many other studies (e.g., Araghinejad et al., 2006), this study demonstrated 

that more useful information can be provided by probabilistic forecast models than by 

deterministic forecast models. Probabilistic forecasting methods are preferable for water 

management and planning because of uncertain initial conditions, limited data resources, 

and complexity and nonlinearity of hydrometeorological processes. In this study, new 

methods of obtaining categorical streamflow forecasts, such as tercile probability 

forecasts, were used for tree-structured models (LCT and CRT) and logistic regression 

models. In particular, through the polytomous logistic regression model, multi-category 

probabilities can be generated directly using a single model and the sum of probabilities 

is guaranteed to equal 1. 

Future work in the case study region should include further investigation of other 

potential predictor variables and their relationships to streamflow. Predictors identified in 

this study can provide significant improvement in skill and reliability of seasonal 

streamflow forecasts. However, streamflow forecasts with longer lead times, for example, 

one-year lead times would provide valuable information for annual interruptible water 

contracts. In this study, customized Pacific Ocean SST indices were used to forecast 

streamflow at seasonal time scales. Other studies (e.g., Grantz et al., 2006) have 

demonstrated that the standard indices of the large-scale climate phenomena were not 

good predictors in certain locations. To increase the lead times, further investigation may 

focus on other customized indices of large-scale climate phenomena. For example, 

Grantz et al. (2006) found that the 500mb geopotential height index could improve the 

skill of streamflow forecasts at longer lead times than other predictors in the Truckee and 

Carson River basins in the Sierra Nevada Mountains. Other predictors such as antecedent 

soil moisture content also show potential for streamflow forecasting in Central Texas and 

should be incorporated into the prediction model (Watkins et al. 2006).  The NCEP 

NARR soil moisture data set (Mesinger et al., 2005), however, only covers the shorter 
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time period from 1979 to1999. This is why soil moisture data was not used as a predictor 

in our study. 

Data mining methods were used in this study to screen and identify the potential 

predictor variables because the relationships between streamflow and climate anomalies 

are likely to be nonlinear and include multivariate interactions due to the complexity of 

ocean-atmosphere dynamics. Further research is needed to better understand the physical 

mechanisms behind these interactions. One approach is to conduct simulation 

experiments using fully coupled land-oceanic-atmospheric models to investigate the 

relative importance of different physical mechanisms (e.g., Anyah et al., 2006). 

A potential drawback of the classification tree (CT) models developed in this study is 

that the probabilities are based on the empirical relative frequencies in each category in 

the terminal nodes of the classification tree.  In contrast to the logistic regression tree 

(LRT) models, the CT models are not able to model variability within a terminal node.   

Future work may extend the CT approach to classification and regression trees (CRT), 

with a method to derive tercile probability forecasts based on analysis of regression 

residuals (errors). 

To further address the uncertainty in forecast models, multimodel (superensemble) 

techniques need to be investigated in the future. Recent studies have demonstrated that 

multimodel forecasts techniques that combine different individual models, can provide 

considerable improvement in the overall predictability of streamflows and reduce the 

overall model error (Devenieni et al., 2008). 

In this study, only a simplified stochastic economic-optimization model was 

developed for seasonal water contracts in the Highland Lakes system in Central Texas. 

Future work should continue to develop a more complex multi-reservoir systems 

optimization model with consideration of additional objectives and constraints, with the 

ability to prescribe reservoir releases based on both reservoir inflow and downstream 

(unregulated) flow forecasts. Furthermore, an insurance mechanism for limiting risk in 
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the event of bad forecasts may be incorporated into revised operating policies that 

improve risk-based water resources management and planning.  
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