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Forecast of streamflows to the Arctic Ocean by a Bayesian

neural network model with snowcover and climate inputs

Kabir Rasouli, Bouchra R. Nasri, Armina Soleymani,

Taufique H. Mahmood, Masahiro Hori and Ali Torabi Haghighi

ABSTRACT

Increasing water flowing into the Arctic Ocean affects oceanic freshwater balance, which may lead to

the thermohaline circulation collapse and unpredictable climatic conditions if freshwater inputs

continue to increase. Despite the crucial role of ocean inflow in the climate system, less is known

about its predictability, variability, and connectivity to cryospheric and climatic patterns on different

time scales. In this study, multi-scale variation modes were decomposed from observed daily and

monthly snowcover and river flows to improve the predictability of Arctic Ocean inflows from the

Mackenzie River Basin in Canada. Two multi-linear regression and Bayesian neural network models

were used with different combinations of remotely sensed snowcover, in-situ inflow observations,

and climatic teleconnection patterns as predictors. The results showed that daily and monthly ocean

inflows are associated positively with decadal snowcover fluctuations and negatively with

interannual snowcover fluctuations. Interannual snowcover and antecedent flow oscillations have a

more important role in describing the variability of ocean inflows than seasonal snowmelt and large-

scale climatic teleconnection. Both models forecasted inflows seven months in advance with a

Nash–Sutcliffe efficiency score of ≈0.8. The proposed methodology can be used to assess the

variability of the freshwater input to northern oceans, affecting thermohaline and atmospheric

circulations.
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INTRODUCTION

The thermohaline circulation is a key element of the global

climate system. The freshwater released from ice and snow-

melt to oceans in the high latitudes sustains the global

thermohaline circulation. Runoff from northern rivers

(38%), inflow through Bering Strait from the Pacific Ocean

(30%), net precipitation on the ocean (24%), and other

sources (8%) contribute to the Arctic Ocean freshwater

system (Serreze et al. ). Circumpolar river basins dis-

charge about 3,300 km3 per year of freshwater to the

Arctic Ocean (Rachold et al. ) that sustains the ocean

This is an Open Access article distributed under the terms of the Creative

Commons Attribution Licence (CC BY 4.0), which permits copying,

adaptation and redistribution, provided the original work is properly cited

(http://creativecommons.org/licenses/by/4.0/).
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stratification, with the upper 200-m layer being cold and

fresh and the lower layer being warm and salty, similar to

the Atlantic Ocean (Aagaard & Carmack ). Streamflows

in the northern rivers have increased significantly (Syed

et al. ; Rood et al. ; Durocher et al. ) in response

to the Arctic amplification of temperature change in the last

decades (Johannessen et al. ). The increased water flow-

ing to the Arctic Ocean has caused a general freshening

tendency over the Siberian shelf as a result of increasing dis-

charge from Eurasian rivers (Polyakov et al. ) and the

Canadian Arctic as a result of increasing discharge from

North American rivers (Fichot et al. ). Peterson ()

found that the increasing river discharge and excess net

precipitation on the ocean contributed ≈20,000 km3 of

freshwater to the high-latitude oceans from the 1960s to

the 1990s. The increases in Arctic freshwater flux have

affected the Atlantic Meridional Overturning Circulation,

an important component of ocean thermohaline circulation

(Yang et al. ). Macdonald et al. () found that the

high freshening at the Surface Heat Budget of the Arctic

Ocean (SHEBA) site in 1997 was associated with an excep-

tionally high inflow from the Mackenzie River Basin (MRB).

Increasing river discharges to the Arctic Ocean with

increased water temperatures (Padilla et al. ) transfer a

large heat flux from the land water to the northern

oceans. Yang et al. () reported an estimated heat flux

of 790 × 109 megajoules to the Arctic Ocean only from the

MRB. The heat flux in the MRB does not necessarily

follow the flow regime and the largest heat flux (3,100 ×

109 megajoules) occurs in July with warm water tempera-

tures, while the highest flow occurs one month earlier

(Yang et al. ).

The freshwater input and its transport from the Arctic

Ocean to the North Atlantic have high interannual variabil-

ity (Serreze et al. ), which has a large effect on regional

and global climate variability (Proshutinsky et al. ).

Freshwater discharge from large snow-dominated rivers

varies with weather patterns, seasonality of snowcover

extent (SCE), and large-scale climatic teleconnections such

as the Arctic Oscillation (AO) and Antarctic Oscillation

(AAO) (Wang et al. ; Rasouli ). Large-scale atmos-

pheric circulations like El-Niño and La-Niña (Cohen &

Entekhabi ) affect SCE. Studies show that there is a

strong correlation between SCE and winter Pacific–North

American (PNA) and North Atlantic Oscillation (NAO)

teleconnections in North America and Canada (Gutzler &

Rosen ; Brown & Goodison ). A strong link

between NAO and SCE was also found in Europe and cen-

tral Asia (Bojariu & Gimeno ). For instance, the

unusually cold conditions over the last decade of the 20th

century near Greenland and the eastern Mediterranean

region and the anomalous warmness over northern

Europe, Russia, and much of Central Asia are related to

NAO (Hurrell ). The link between SCE and large-scale

atmospheric circulations has been intensified in the last dec-

ades as winter and early spring temperatures have increased

in western North America (Cohen & Entekhabi ;

Folland et al. ) and the Arctic (Eythorsson et al. ).

Changes in SCE affect local-scale ground heat fluxes,

snow redistribution by blowing wind (Pomeroy & Gray

; Liston ), soil moisture, and soil thermal regime

(Park et al. ). Changes in the soil thermal regime alter

thawing and freezing mechanisms, which affect water sto-

rage in soils and runoff patterns in cold regions and,

hence, the rate of discharge to the Arctic Ocean (Mackay

& MacKay ; Bao et al. ). An increase in ground

temperatures, especially in northern regions, has increased

the global temperature in response to anomalies in the

atmospheric circulations (Coulibaly & Burn ). Snow

recedes quickly, and snowmelt is intensified under increased

ground temperatures, which can affect infiltration and

streamflow, especially when rain-on-snow events occur.

Burn et al. () showed an increasing trend in the

annual minimum flow and a decreasing trend in the date

of occurrence of the spring freshet in two main subbasins

of MRB attributed to changes in snow processes under cli-

mate changes. In a relatively mild climate in the southern

parts of MRB, the annual streamflow of the rivers feeding

Lake Athabasca showed decreasing trends over the last

half-century (Rasouli et al. , a). As circumpolar drai-

nage rivers are the main contribution to the freshwater in

the northern latitudes, it is crucial to study the predictability

and variability of discharges from these rivers under spatial

and temporal variations of climate and snowcover extent.

Variability of snow and streamflow regimes in small river

basins have been linked to climatic teleconnections in the

literature (e.g., Bojariu & Gimeno ; Rasouli et al.

). Ek & Ritchie () forecasted surface water and
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energy fluxes over MRB using the Canadian global spectral

operational forecast model and found that forecasts are

strongly sensitive to a net accumulation of precipitation

minus evaporation. The model, however, was not skillful

in long-range forecasts when extended to one month.

Temimi et al. () studied the near real-time floods over

MRB using passive microwave data. Spence et al. ()

applied a combination of canonical correlation and multiple

regression analyses to forecast streamflows in MRB and

investigate the effects of discontinuing monitoring gauges

on forecasting the ungauged streamflows.

To our knowledge, there is no previous research on

forecasting the Arctic Ocean inflows from the land-rivers

incorporating snowcover and climate variations. The contri-

bution of this study is to fill this knowledge gap by providing

short-term and long-term forecasts and identifying the role

of snow, climate, and streamflow memory of the northern

rivers on decadal to sub-seasonal time scale in the variability

of the freshwater input to the Arctic Ocean. The objectives

of this research are to (1) identify the linkages of Arctic

Ocean inflow with SCE, antecedent inflows and climate tel-

econnection patterns, and (2) improve the predictability of

ocean inflows from the Mackenzie River at multiple tem-

poral scales. More specifically, we differentiate the roles of

antecedent river flow conditions, climatic teleconnection

patterns, and multi-decadal to monthly variations of snow-

cover in forecasting inflows of the Arctic Ocean one day

to seven months in advance. Linking regional-scale SCE

and large-scale climate variations to ocean inflows from

the large river basins has important implications in predict-

ing the freshwater input to the Arctic Ocean, estimating

rates of freshwater transport to the North Atlantic, and

better understanding climate variability and predictability

in the near future in regional and global scales.

STUDY AREA AND DATA SOURCES

The case study in this paper is MRB in western Canada, which

is fed by Great Slave Lake, Great Bear Lake, and Liard and

Peace rivers, and it releases water at a rate of 9,910 m3 s�1

into the Beaufort Sea in the Arctic Ocean. The basin drainage

area is 1,679,100 km2. The Mackenzie River yields the largest

North American source of freshwater discharge into the

Arctic Ocean. Figure 1 shows MRB, its subbasins, and drai-

nage systems. There is a delta near the Beaufort Sea at the

mouth of the basin. In this paper, combinations of data for

antecedent flow in MRB, remotely sensed snowcover extent,

and climatic indices such as NAO, AO, AAO, and PNA are

used to forecast daily and monthly inflows of the Arctic

Ocean from the MRB. Data cover 38 years, from January

1979 to December 2016 with daily time steps. The remote sen-

sing data acquired by well-calibrated instruments for snow

cover are not available before 1979. Therefore, the dataset

used in this study is limited to post-1979 data. Data for the

Arctic Ocean inflows were used from the gauge on MRB at

Arctic Red River (# 10LC014), recording streamflows at the

mouth of the Mackenzie River, and were obtained from the

website of the Water Survey of Canada (https://wateroffice.

ec.gc.ca). The Peel River is one of the MRB subbasins, but it

joins the MRB after the gauge. For consistency between the

streamflow and snowcover, the domain for the remotely

sensed snowcover products (Figure 1) was matched with the

domain of MRB, excluding the drainage area of the Peel

River. The climatic indices data were downloaded from the

National Oceanic and Atmospheric Administration Earth

System Research Laboratory (NOAA) website (http://www.

esrl.noaa.gov). The remotely sensed snowcover extent data

were obtained from the Japanese Satellite Monitoring for

Environmental Studies (JASMES) website (https://kuroshio.

eorc.jaxa.jp/JASMES/index.html). The JASMES SCE pro-

ducts were used in this study because: (1) these products

have 5 km spatial resolution with daily time steps; (2) they

were obtained from historical optical sensors on polar-orbiting

satellites; (3) the in-situ measured snow data were used to

evaluate the accuracy of snowcover and to correct SCEs;

and (4) they used radiance products from both the Advanced

Very High-Resolution Radiometer (AVHRR) and the Moder-

ate Resolution Imaging Spectroradiometer (MODIS)

products to accurately obtain snowcover extents (Hori et al.

). The accuracy of the JASMES products was compared

against in-situ measurements of snow depth and the SCE

maps from the National Oceanic and Atmospheric Adminis-

tration Climate Data Record (NOAA-CDR). The evaluation

showed that the JASMES product is more accurate than

NOAA products (Hori et al. ). The JASMES snowcover

image is a coded raster. All types of snow, including dry and

wet snow and an indication of snow accumulation on ice or
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Figure 1 | Mackenzie River Basin and its subbasins located in northern Canada. The hydrometric station that records the Arctic Ocean inflows from this basin is located at the Arctic Red

River station (# 10LC014) close to the Beaufort Sea delta.
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land, are used to estimate the fraction of SCE for the entire

basin. The SCE fraction can be greater than 90% in October

and less than 10% in July in the study area. A threshold of

50% SCE fraction is used to separate snow-covered and

non-snow-covered grids. Those grids that have SCE fractions

greater than 50% are used to estimate the total fraction of

the basin covered by snow.

METHODOLOGY

The role of climatic teleconnection patterns and fluctuations

of snowcover and streamflows on decadal to sub-seasonal

time scale in the predictability of ocean inflows was

assessed. The performance of two linear and nonlinear stat-

istical models in representing the interrelationship between

snowcover variation modes and inflows from a large-scale

watershed was evaluated. For this purpose, daily SCE pro-

ducts with 5 km spatial resolutions obtained from optical

remote sensing satellites by Japan Aerospace Exploration

Agency were processed and applied to predict Arctic

Ocean inflows from the MRB in Canada. To extract space-

time patterns of SCE and inflow, singular spectrum analysis

(SSA) was conducted. Multi-linear regression and nonlinear

Bayesian neural networks were applied to forecast the

Arctic Ocean inflows. Daily and monthly snowcover and

inflow observations, obtained respectively from remotely

sensing products and a gauge at the outlet of the MRB,

were used to study spectral information and extract low fre-

quency (decadal) and high frequency (monthly) modes of

oscillation in snowcover and the ocean inflow. Four tem-

poral variation modes of SCE and four temporal variation

modes of inflows, covering a wide range of variability from

multi-decades to months, were obtained and regressed

against inflows from the outlet of the basin to forecast

inflows one day to seven months in advance.

Linear and nonlinear forecasting methods

To identify the relevant hydro-climatic predictors of the

Arctic Ocean inflows from the MRB, two forecasting

methods were used at lead times of one to seven days and

one to seven months. These models are the multi-linear

regression (MLR) and the Bayesian neural network

((BNN) MacKay ). The reasons for choosing these two

linear and nonlinear models in this study are that we can

compare the performance of both linear and nonlinear

methods in large-scale streamflow forecasts, and BNN has

shown a better performance than other machine learning

methods in streamflow forecasting (e.g., Rasouli et al.

). Other nonlinear regression models can also be

applied, including generalized additive models with smooth-

ing link functions. A multiple model intercomparison,

however, was beyond the scope of this study. The infor-

mation extracted from SCE, climatic teleconnection

patterns, and antecedent flows were used to forecast inflows

of the Arctic Ocean from MRB. Let x ¼ (x1, . . . , xm) be the

vector of m predictor variables in time t and y is the forecast

variable of interest in time tþ p, with p ∈ {1, . . . , 7}. Given a

dataset of (ytþp, xt1, � � � , xtm)nt¼1 with n sample size and m

predictors, the relationship between ytþp and xt is estab-

lished by the MLR model assuming a linear relationship

and through an error variable, εt. The error variable follows

a normal distribution with mean 0 and variance σ2. Hence,

the MLR model can be written as:

ytþp ¼ β0 þ β1xt1 þ � � � þ βmxtm þ εt, εt ∼ N(0, σ2)

t ¼ 1, . . . , n j ¼ 0, � � � , m (1)

where βj and σ2 are the parameters that are estimated. After

estimating these parameters, a stepwise method was used to

select the best model with the highest parsimony. For the

nonlinear model, we used the Bayesian neural network

which is described as a nonlinear parameterized mapping

from an input, x to an output, y through a nonlinear function

g(xt; w, b, β). In fact, the relationship between the variable of

interest and the predictors are given by:

ytþp ¼ g(xt; w, b, β)þ εt

¼
Xs

k¼1

wkgk bk þ
Xm
j¼1

xtjβkj

0
@

1
Aþ εt, t ¼ 1, � � � , n (2)

where εt ∼ N(0, σ2
e ) and σ2

e is the variance of the error terms.

s is the number of neurons, wk is the weight of the k-th

neuron, bk is a bias for the k-th neuron, βkj is the weight of

the j-th input, and gk is the activation function. In this

study, a singular spectrum analysis on SCE and ocean
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inflows was conducted to remove or minimize the noises

and extract short-term and long-term variability modes of

SCE and ocean inflows from MRB. We then used multi-

linear regression and Bayesian neural network models to

determine the major contributors to the variability of the

Arctic Ocean freshwater using combined remotely sensed

and in-situ observations.

The predictors of Arctic ocean inflow

In this study, the forecasted variable of interest is ocean inflow

with lead times of one day to seven months, and the predic-

tors’ vector is composed of the climatic indices (AO, NAO,

AAO, and PNA), and the antecedent inflow and snowcover

extent variation modes (Qt and SCEt). The antecedent

inflow and SCE conditions are characterized by decadal and

interannual variation modes, representing the basin

memory. The reasons for using antecedent flow and snow-

cover conditions in this study are that the hydrological cycle

and water budget may not be closed at an annual scale, and

drivers of water storage variability are required to be studied

on decadal to sub-seasonal time scale to better understand

variations of the large-scale river flows linked with regional

climatic patterns. Since both SCEt and the Qt show a season-

ality and strong serial dependency (Figure 2), a singular

spectrum analysis is used to decompose these variation

modes. There are other methods to break down time series

into meaningful components in the literature (e.g., wavelet

transform (Huang et al. ) and empirical mode decompo-

sition (Daubechies )). According to Alexandrov et al.

(), however, the SSA method showed the highest perform-

ance. Therefore, the SSA method was used in this study. The

basic mechanism of SSA is to decompose time series into a

sum of interpretable components such as trend, periodic com-

ponents, and noise. It is based on the principal component

analysis of the auto-covariance matrix for lags ∈ {1, . . . , L}.

According to seasonality shown in Figure 2, for the analysis

of daily data, we chose L ¼ 365 and for monthly data we

chose L ¼ 12. The SSA algorithm can be divided into two

steps: decomposition and reconstruction. In the first step,

the one-dimensional time series were decomposed into multi-

dimensional series by adding lagged variables and then

creating a so-called trajectory matrix, which is used to calcu-

late the principal components. In the second step, similar

components were regrouped, and disjoint subsets were cre-

ated to form the final signal decomposition. For more

information about SSA, refer to Hsieh (). Main SSA com-

ponents of SCEt and Qt instead of the original series were

used as inputs to the MLR model as in Equation (1) and the

BNN model as in Equation (2).

The model training and validating strategy

The parameters of the MLR and weights and biases of the

Bayesian network were adjusted so as to minimize the

cost/loss/error function. The method of least squares was

used to train the coefficients of the MLR model (Equation

(1)). Different activation functions have been suggested in

the literature for neural networks. The most widely used

functions are linear, sigmoid, and rectified linear unit

(ReLu), among others. Yonaba et al. () compared a

wide range of activation functions for neural networks

with Bayesian regularization and found that the hyperbolic

(sigmoid) tangent is a more pertinent activation function

for daily streamflow forecasting than linear and logistic func-

tions. Parviz & Rasouli () also studied monthly

precipitation forecast sensitivity to the choice of activation

function and found that the hyperbolic tangent function

improved the precipitation forecast skills. The choice of acti-

vation function has less important consequences in the

forecast accuracy. In this paper, we applied the hyperbolic

tangent function that is used in the brnn R package, devel-

oped by Rodriguez & Gianola (), and it is more

suitable for streamflow forecasts. This function is given by

gk(z) ¼ tanh(z). The Bayesian framework (MacKay )

was used to estimate the unknown parameters of the BNN

model (Equation (2)) using a CRAN package developed by

Rodriguez & Gianola (). The leave-one-out cross-vali-

dation method (Vehtari et al. ) was applied to the

entire study period to train and evaluate the MLR and

BNN models to take advantage of all the data and increase

the model evaluation period, especially for forecasts with

monthly time steps. The leave-one-out cross-validation

method includes these steps: first, the entire data period

was divided into multiple chunks. Then, one chunk of the

entire data was left out at a time and used to validate the

model, while the rest was used for training. The validation

chunk was selected each time so that all of the divided
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chunks were once used for validating the model. Four

different metrics were used to assess the forecasting per-

formance of the daily and the monthly inflows using the

linear and nonlinear models: the bias (BIAS), the root

mean squared error (RMSE), the normalized root mean

squared error (NRMSE), and the Nash–Sutcliffe efficiency

(NSE).

RESULTS

The linkage between snowcover extent and the Arctic

Ocean inflows

The remotely sensed daily SCE products were processed and

long-term time series of SCE fractions were obtained for

MRB with a large drainage area. Hydrometric data were

used from the records at the Arctic Red River station, the

outlet of MRB, to estimate the basin discharge. The SCE

fractions range between 0 and 100, where 0 denotes no

snow, and 100 shows complete snow coverage of the

basin. Figure 3(a) and 3(b) demonstrate the monthly SCE

fractions in MRB and the Arctic Ocean inflows from the

outlet of this basin. The fraction of the MRB drainage area

that is covered by snow in summer (mid-May through July)

is very small. SCE gradually increases starting in August

and reaches its annual peak in late October. It gradually

decreases after February and reaches its minimum in July

(Figure 3(a)). The Arctic Ocean inflow from the basin is

very low and almost constant in winter (October through

January). It increases gradually after February and reaches

its peak in July (Figure 3(b)). The interannual variations of

Figure 2 | The autocorrelation functions for snowcover extent and the Arctic Ocean inflows from the Mackenzie River Basin calculated for 1,000-day lag time, illustrating seasonality.
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both SCE and inflows are very high. Unlike low interannual

variability of inflows in winter, flows are highly variable in

spring and summer (Figure 3(b)).

The high variability of SCE in spring is partly due to

rapid changes in weather systems and rain-on-snow events.

Inflows also respond to convective storms in summer

months, which can cause a rise in summer flows. A corre-

lation analysis between discharge and SCE (Figure 3(c))

indicates that the decrease of inflows during the snow

accumulation period (fall to early spring) and the increase

of inflows during snowmelt period (spring and summer)

are closely related to the remotely sensed SCE variations

in MRB for the period of 1979–2016. A lag time between

inflow and SCE is evidenced almost every year of the

study period. Figure 3(c) shows cross-correlation values

between inflow and SCE with 365 days lag time ahead of

and before January 1. As expected, there is a lag between

the time of the maximum SCE and time of the peak inflow

associated with the large size of the basin and the high

variability of the snowcover in the MRB. The lag time (L)

of zero-day shows the correlation coefficient (C) between

SCE fractions and inflows on January 1. There is a strong

correlation between SCE and inflow. For example, inflow

on January 6 (L ¼ 6 days) is negatively correlated to SCE

on January 1 (C ¼ �0:61), while inflow on August 13

(L ¼ 225 days) is positively correlated to SCE on January 1

(C ¼ 0:52, Figure 3(c)).

Time series of snowcover extent fractions were decom-

posed into main temporal variation modes, which explain

long-term (decadal), medium-range (interannual and seaso-

nal), and short-term (monthly) variations for the period of

1979–2016 (Figure 4(a)). Four modes obtained from SSA

were chosen as predictors for the ocean inflow from the

basin. Figure 4(b)–4(e) illustrate the modes of the SCE tem-

poral variation, ranging from decades to months. Low-

frequency modes (Figure 4(b) and 4(c)), which represent

decadal and interannual cycles of the SCE in MRB, show

an important fraction of the variance and are found to be

significantly different from the noise. This is an important

aspect of the snow regime that is neglected if only seasonal

snow in an annual hydrological cycle is considered in

streamflow forecasts. Figure 4(b) shows the decadal vari-

ation of SCE fluctuations that is linked to the climate

teleconnection patterns. Figure 4(d) and 4(e) shows seasonal

and monthly variations of SCE, which are linked to regional

climatic conditions. Four temporal modes of SCE variations

explain 98% of the variance of the SCE, and there is a good

agreement between original SCE time series and modeled

snowcover values reconstructed based on the main decadal,

interannual, seasonal, and monthly components. This

clearly indicates that SCE has distinct cycles and variation

modes, which can be decomposed from the original time

series. Extracting the main variability modes from the orig-

inal snowcover time series helps to understand their

linkage to inflow variations. Inflows were also decomposed

Figure 3 | Multi-decadal and seasonal cycles of (a) remotely sensed snowcover extent

and (b) Arctic Ocean inflow from the outlet of the Mackenzie River Basin for

the period of 1979–2016, and (c) their correlations. Shaded areas in (a) and (b)

show the interannual and monthly variation of snowcover extent and

discharge between 1979 and 2016.
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into main temporal variation modes, similar to snowcover

extent for the period of 1979–2016 in MRB (Figure 5(a)).

Four modes of inflow obtained from SSA were also chosen

as predictors for inflow predictions at short-term (one- to

seven-days) and long-term (one- to seven-months) lead

times. Figure 5(b)–5(e) illustrate the modes of the inflow vari-

ation, ranging from decadal to monthly. Figure 5(b) shows the

decadal variation of inflow fluctuations, which has a lower

frequency relative to the decadal variation mode of SCE

(Figure 5(b)). Interannual (Figure 5(c)) and seasonal

(Figure 5(d)) cycles of ocean inflow are similar to those of

SCE, except that there is a lag in the timing of the peak snow-

cover in the basin and maximum inflow.

The results show that the interannual variations of SCE

and inflow have a primary role in the fluctuation of daily

(Figure 6(a)) and monthly (Figure 6(b)) inflows from MRB

to the Arctic Ocean. Daily and monthly inflows are corre-

lated negatively to interannual variation of SCE and

positively to interannual variation of inflow. The decadal

variation mode of inflow is positively correlated to the dec-

adal variation mode of SCE, while interannual and seasonal

variation modes are negatively correlated to interannual and

seasonal variation modes of SCE (Figure 6). There is also a

strong and negative correlation between inflow and climate

teleconnection patterns such as NAO and PNA (Figure 6),

suggesting that large-scale climatic patterns play a secondary

role in inflow fluctuations. This confirms that not only the

seasonal cycle of snow accumulation and snowmelt affects

short-range inflows, but also decadal and interannual fluctu-

ations of SCE play an important role in inflow variations.

Therefore, extracting the main temporal modes of variations

in SCE and inflow is essential for better characterizing the

interrelationship between snow and the Arctic Ocean

inflow from large-scale watersheds such as MRB.

Arctic Ocean inflow forecast by linear and nonlinear

models

A pool of climatic teleconnection patterns and four princi-

pal components of SSA on both SCE fractions and inflows

were used to forecast the Arctic Ocean inflow from MRB

at one-day to seven-month lead times. To differentiate the

role of SCE, climatic teleconnections, and antecedent

inflow variations, four sets of predictors were designed: (1)

only SCE variation modes, (2) both SCE variation modes

and climate teleconnection patterns, (3) both SCE and

Figure 4 | Original (a), and decadal, (b), interannual (c), seasonal (d), and monthly (e) variation modes of the snowcover extent fractions (unitless) in the Mackenzie River Basin obtained

from a singular spectrum analysis over the period of 1979–2016.
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inflow variation modes, and (4) all SCE and inflow variation

modes and climate teleconnection patterns. The leave-one-

out cross-validation method was applied to the entire

period of 1979–2016 with 500-day subsets for daily forecasts

and 18-month subsets for monthly forecasts to train and

evaluate the MLR and BNN models. The leave-one-out

cross-validation method is especially useful for short

monthly data records with a sample size of n ¼ 456 in this

study. Since the four principal components of SCE and

inflow explained over 98% of the total variance, they were

selected to compare the role of SCE, antecedent flow con-

ditions, and climate patterns in forecasting ocean inflows

from MRB. Reconstructing snowcover from its main vari-

ation modes had a minimal modeling error and showed

the strength of the SSA method in extracting spectral infor-

mation from the snowcover data. The stepwise linear

regression method (Derksen & Keselman ) was used

to select the appropriate number of predictors for all four

input sets of both daily and monthly forecasting models

(Table 1). Despite a low cross-correlation between climate

teleconnection patterns (e.g., AO and NAO) as predictors

and inflows on January 1 as predictands (Figure 6), all of

the teleconnections were selected as predictors of inflows

at lead times of one to seven days and one month when

they were used in the pool of linear and nonlinear models

inputs (Table 1). The climatic teleconnection patterns, how-

ever, showed less linkage to monthly inflows at forecasting

lead times of two to seven months. All of the decadal, inter-

annual, seasonal, and monthly variation modes of SCE and

inflow (Table 1) were selected as predictors of daily inflows,

while interannual, seasonal, and monthly (and not decadal)

variation modes of SCE were selected as predictors of

monthly inflows (Table 1). Strong correlations between the

predictors (e.g., decadal variation modes of SCE and

inflow in Figure 6) can cause multicollinearity in regression

analysis (Farrar & Glauber ). A forward and backward

stepwise regression method was used to select the relevant

predictors for both MLR and BNN models based on the

F-test. For daily forecasts of the Arctic Ocean inflow, the

correlation coefficients between the predictors (Figure 6(a))

were not statistically significant, and all of the SCE and

streamflow variation modes were selected based on the step-

wise regression method and the F-test (Table 1). For monthly

forecasts, however, the correlation coefficients were signifi-

cant for some variables, and therefore, the correlated

predictors were discarded (Table 1).

Figure 5 | Original (a), and decadal, (b), interannual (c), seasonal (d), and monthly (e) variation modes of the Arctic Ocean inflows from the Mackenzie River Basin (m3s�1) obtained from a

singular spectrum analysis over the period of 1979–2016.
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The performance of both linear and nonlinear models

was found promising in forecasting daily inflows with a

different combination of SCE and inflow variation modes

and climatic teleconnections as predictors. Evaluation of

the MLR model showed that there is a small bias between

predicted and observed inflows (Figure 7), for both linear

and non-linear models (BIAS < 3%) at lead times of one

to seven days over 1979–2016. The Nash–Sutcliffe score is

above 0.8 when all snow, inflow, and climate predictors

were used, which showed a relatively good agreement

between model outputs and observations. Even though

there is an overestimation in high flows, the overall perform-

ance of the MLR model is reasonably good, and inflow

simulation error is within an acceptable range. The perform-

ance of the BNN model for the same period is also shown

in Figure 7. Overall, the performance of the nonlinear

model of BNN is similar to the performance of the linear

model in both high and low flow periods. Both models are

powerful tools to capture not only medium-range inflows

but also high flow events in the MRB. Figure 8 summarizes

BIAS, RMSE, NRMSE, and prediction skill score of Nash–

Sutcliffe for linear and nonlinear models. The RMSE

scores were reported on million cubic meters (MCM) of

water released to the Beaufort Sea at the mouth of the

MRB. Except for a few cases, all of the model performance

criteria for BNN are similar to those for the MLR model

(Figure 8), which implies that both models performed well

in relating the main temporal variation modes of the snow-

cover extent to streamflow magnitudes in a large-scale

watershed.

Biases between forecasted and observed daily inflows

are below 9%, and NSE is above 0.45 for both linear and

non-linear models used in this study (Figure 8). With only

SCE variation modes as daily inflow predictors, all ranges

of ocean inflow were predicted reasonably well, except for

high flows (Figure 7). Over-estimation of high inflows fore-

casted by the BNN model degraded the performance

scores (Figure 8) when the SCE variation modes were

used as predictors for lead times of 2–5 days (Figure 7).

The prediction skill scores, however, improved when

inflow variation modes were also used as predictors. For

instance, NSE for the one-day lead time forecasts increased

from 0.45, when only SCE variation modes were used as

predictor, to 0.95, when both SCE and inflow variation

modes were selected as predictors (Figure 8). The NRMSE

score also improved from 75% to 65%. The prediction skill

scores substantially improved when climate teleconnections

were used as predictors. For instance, NSE for the one-day

lead time forecasts increased from 0.45, when only SCE

variation modes were used as predictors, to 0.61 when

both SCE variation modes and climate teleconnections

were used as predictors (Figure 8). The NRMSE score also

improved from 75% to 23%. Results showed that the

linear model was not capable of improving forecast skill

scores when climatic teleconnections were selected as pre-

dictors. This is shown in Figure 8 with similar values of

the model performance scores for the cases with only SCE

variation modes as predictors and both SCE variation

modes and climatic teleconnections as predictors.

Figure 6 | The Pearson correlation coefficient among (a) daily and (b) monthly large-scale

climate teleconnection patterns and four decadal, interannual, seasonal, and

monthly variation modes of snowcover extent (SCE1–SCE4), and Arctic Ocean

inflows from Mackenzie River Basin (Q1–Q4).
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The linear and nonlinear models performed well in fore-

casting monthly inflows with a different combination of SCE

and inflow variation modes, and climatic teleconnections as

predictors. In monthly forecasting, the BNN model outper-

formed the MLR model for all of the four combinations of

predictors (Figure 9). Similar to daily forecasts of inflow,

monthly forecasts improved when variation modes of

inflow were used as predictors. The forecast skill score of

NSE increased gradually from the lead time of one month

to five months and degraded after a five-month lead time. It

is encouraging that monthly inflows from MRB can be fore-

casted with high confidence (NSE> 0:80, NRMSE< 30%)

seven months in advance (Figure 10). This is partly because

of a seven-month lag time between peak SCE and peak

inflow (Figure 3(c)), which was included in the predictor

set using monthly variation modes of SEC and inflow. The

BNN model performed well when the climatic teleconnec-

tions were used as predictors in addition to the SCE

variationmodes to forecast onemonth in advance (Figure 10).

Including the climatic teleconnections in the predictor pool

did not improve the forecasts for lead times beyond one

month. Differentiating the role of SCE and inflow variation

modes, and climatic teleconnections in forecasting both

daily and monthly inflows revealed that the multi-decadal

and interannual variations in SCE and inflow had a primary

role and the climatic teleconnection patterns had a second-

ary role in the predictability of Arctic Ocean inflows from

MRB.

Table 1 | List of predictor variables, selected by the stepwise regression in each of the four predictor cases: (1) only snowcover extent (SCE), (2) snowcover extent and climate teleconnec-

tion patterns, (3) snowcover extent and antecedent inflows – Q, and (4) snowcover extent, climate teleconnection patterns, and antecedent inflows, to force the forecasting

models with short-term (one- to seven-day) lead times, denoted by ×, and long-term (one- to seven-month) lead times, denoted by √

SCE variability modes Inflow variability modes Climate variability indices

Predictor Time Decade Year Season Month Decade Year Season Month AAO AO NAO PNA

SCE 1 ×√ ×√ ×√ ×√
2 × ×√ ×√ ×√
3 × ×√ ×√ ×√
4 × ×√ ×√ ×√
5 × ×√ ×√ ×√
6 ×√ ×√ ×√ ×√
7 × ×√ ×√ ×√

SCEþClimate 1 ×√ ×√ ×√ ×√ × × × ×
2 × × ×√ ×√ × ×√ ×√ ×
3 × ×√ ×√ ×√ × × × ×
4 × ×√ ×√ ×√ × × × ×
5 ×√ ×√ ×√ ×√ × × × ×√
6 ×√ ×√ ×√ ×√ ×√ × × ×√
7 × ×√ ×√ ×√ × × ×√ ×

SCEþQ 1 × ×√ × ×√ ×√ ×√ ×√ ×√
2 × ×√ × ×√ ×√ ×√ ×√ ×√
3 ×√ ×√ ×√ ×√ ×√ ×√ ×√ ×√
4 × ×√ ×√ ×√ ×√ ×√ ×√ ×√
5 × ×√ × ×√ ×√ ×√ ×√ ×√
6 × × ×√ ×√ ×√ ×√ ×√ ×√
7 ×√ ×√ × ×√ ×√ ×√ ×√ ×

SCEþQþClimate 1 × ×√ × ×√ ×√ ×√ ×√ ×√ ×√ √ ×√ √
2 × ×√ × ×√ ×√ ×√ ×√ ×√ × ×
3 ×√ ×√ ×√ ×√ ×√ ×√ ×√ ×√ × ×
4 × ×√ × ×√ ×√ ×√ ×√ ×√ ×√ ×√ ×
5 × ×√ × ×√ ×√ ×√ ×√ ×√ × × ×√
6 × × ×√ ×√ ×√ ×√ ×√ ×√ √ × ×√ ×
7 × ×√ × ×√ ×√ ×√ ×√ × × ×√ ×√
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Figure 7 | Performance of the multi-linear regression (MLR, black) and Bayesian neural network (BNN, gray) models in forecasting daily inflows from the outlet of the Mackenzie River Basin

with one- to seven-day lead time and under four predictor cases: (1) only snowcover extent, (2) snowcover extent and climate teleconnection patterns, (3) snowcover extent and

antecedent inflows, and (4) snowcover extent, climate teleconnection patterns, and antecedent inflows. The black lines show the 1:1 slopes.
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Figure 8 | Metrics for the assessment of the two multi-linear regression and Bayesian neural networks in forecasting the Arctic Ocean inflows from the Mackenzie River Basin, with lead

times of one to seven days.
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Figure 9 | Performance of the multi-linear regression (black) and Bayesian neural network (gray) models in forecasting monthly inflows from the outlet of the Mackenzie River Basin with

one- to seven-month lead time and under four predictor cases: (1) only snowcover extent, (2) snowcover extent and climate teleconnection patterns, (3) snowcover extent and

antecedent inflows, and (4) snowcover extent, climate teleconnection patterns, and antecedent inflows. The black lines show the 1:1 slopes.
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Figure 10 | Metrics for the assessment of the two multi-linear regression and Bayesian neural network in forecasting inflows of the Arctic Ocean from the Mackenzie River Basin, with lead

times of one to seven months.
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DISCUSSION

The Arctic Ocean inflow from MRB is highly correlated to

SCE, and there is a seven-month delay in flow response to

snowmelt and SCE recession (Figures 3(c) and 6), suggesting

that SCE can be a good proxy to forecast seasonal inflows.

The long lag time between snow depletion and inflow rise

is because of the large size and complexity of the basin and

also long groundwater residence time. The interrelationships

between SCE and streamflow were found previously by Zhou

et al. () in the Upper Rio Grande River Basin, USA, and

between snow depth and streamflow in large North Ameri-

can watersheds by Dyer (). Tong et al. () studied

snow distribution and its relationship to the hydroclimatol-

ogy of MRB. Tong et al. () also showed a similarly

strong correlation between the 50% SCE and runoff ratio in

the snow ablation season in the Quesnel River Basin in Brit-

ish Columbia, which has a small size relative to MRB. There

is a negative relationship between the areal size of a snowcov-

ered basin and its hydrograph, and streamflow is usually

smoothed as the size of a watershed increases (Zhou et al.

). Due to the large drainage area of MRB, it is expected

that streamflow responds very slowly to the variation of

snow covered fractions, obtained from the radiance products

of MODIS and AVHRR in this study.

In general, there is a negative correlation between SCE

and inflow (Zhou et al. ). In this study, however, we

found that the decadal variation of SCE fluctuations

(Figure 4(b)), obtained from the singular spectrum analysis,

surprisingly, is not negatively correlated to inflows (Figure 6).

This is important as it explains a large portion of the total

SCE variance. Linking decadal–monthly variations of SCE

fluctuations to ocean inflows can provide a better estimation

of large-scale land runoffs. Results showed that interannual

variations of both SCE and inflow had the primary control

on daily and monthly inflows, and climate and seasonal

snow variations had a secondary role in fluctuations of the

Arctic Ocean inflow from MRB (Figure 6). A strong corre-

lation between interannual SEC and present-day (month)

inflow can be explained by the large topographic gradient,

large drainage area, and long residence time of the ground-

water flows in MRB (McGuire et al. ). This supports our

hypothesis that headwater runoffs, groundwater contri-

butions, and snow conditions during the preceding years

or even decades can affect inflows at the current day and

month. The inflow predictions in large-scale watersheds are

very uncertain if only seasonal precipitation and annual

hydrological cycle are considered and antecedent moisture

conditions are ignored. A positive correlation between deca-

dal variation modes of SCE and inflow and a negative

correlation between shorter modes of SCE variation and

inflow reveal the important role of snowmelt water storage

in the basin decades and years before it releases water to

the Arctic Ocean. The snowmelt water is stored in the

basin in surface stream tributaries, lakes, soil moisture, and

groundwater. Snowmelt is influenced by spatial variability

of snowcover and heterogeneous snow redistribution and

sublimation. Irradiance reaches its peak in summer, which

accelerates the snow depletion and raises streamflow. Tong

et al. () found that every 1 �C increase in air temperature

shifts the 50% SCE fraction ten days forward. Eythorsson

et al. () found that the number of snow-covered days

has decreased by 0.91 days/year over the last two decades.

The snowcover duration, which affects summer low flows,

depends on precipitation phase and the ratio of snowfall to

total solid and liquid precipitation amounts that vary with

elevations (Meriö et al. ). With a high warming rate pro-

jected for the northern latitudes (Rasouli et al. ; Rasouli

) in the future, it is expected that snow will melt earlier

in late spring and summer in the southern parts of the

basin and contribute more to discharge in MRB. Snow, how-

ever, is expected to melt more slowly in late winter under

warm conditions as the beginning of the snowmelt period

moves toward the low irradiance time of year (Rasouli

et al. b). Seasonal changes in snowpack and precipitation

phase change from snowfall to rainfall will result in a large

change in the inflow regime under a warm climate.

An assessment of individual roles of antecedent inflow

and large-scale SCE variation modes and climate teleconnec-

tion patterns showed that the antecedent inflows and SCE

variation modes have a primary role and climatic teleconnec-

tion patterns have a secondary role in skillful forecasting of

large-scale ocean inflows (Figures 7 and 8). In a similar

study by Rasouli et al. (), climatic teleconnection patterns

were found to play an important role in flow forecasting for

short lead times (e.g., 5–7 days) in a small-scale watershed in

British Columbia, Canada. Consistently, the results presented

in this research also show that climate teleconnection patterns
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affect large-scale river flows, and incorporating relevant cli-

matic conditions in the linear and nonlinear models can

improve prediction skills, especially with the BNN model.

All four teleconnections of AAO, AO, NAO, and PNA were

selected as predictors based on the stepwise linear regression

method and the F-test (Table 1) and all of them improved

the prediction skill scores (Figure 8). Their importance, how-

ever, degraded in the monthly forecasts as not all of the

teleconnections were selected as monthly inflow predictors

(Table 1), showing that daily inflow from large-scale basins

such as MRB is strongly linked to climatic teleconnections.

This is consistent with the previous studies showing that cli-

matic and atmospheric teleconnection patterns (e.g., NAO)

affect the interannual variability of snowcover (Derksen

et al. ; Ge & Gong ; Bao et al. ) but do not signifi-

cantly affect the snowcover trends in western Canada (Vincent

et al. ; DeBeer et al. ). Durocher et al. () found

strong correlations between teleconnections (e.g., AO and

NAO) and Arctic Ocean inflows from several northern

rivers. Bonsal & Shabbar () reported that low flow

events in western Canada are associated with El Niño events

and positive phases of the PNA pattern.

Increasing trends in discharge from northern rivers

(Syed et al. ; Rood et al. ; Durocher et al. )

are likely linked to increasing trends in the decadal variation

mode of SCE in these rivers (Figure 4(b)), and especially

there is a strong correlation between decadal variation

modes of SCE and inflow (Figure 6). Freshwater inflows of

the northern oceans from land rivers are expected to

increase by 24–31% by 2080 (Arnell ). These changes

have the potential to alter the freshwater balance in the

Arctic Ocean, which may lead to thermohaline circulation

collapse (Arnell ) and shift of the climate system to an

unbalanced condition. An accurate forecast of river water

inflows to the Arctic Ocean helps to better understand the

effects of released freshwater to the ocean on physical,

chemical, and biological processes (Shiklomanov et al.

) and sea ice cover (Shimada et al. ).

CONCLUSION

Major drivers of variation in Arctic Ocean inflows were

analyzed in this study using correlation analysis, the

information from singular spectrum analysis, and statistical

models. The results show that: (i) there is a high negative

correlation between SCE in January and the volume of

water released to the Arctic Ocean at the outlet of the

basin in August; (ii) there is a strong positive correlation

between inflow and decadal cycle of the snowcover and

strong negative correlations between inflow and interannual

mode of snowcover variation and between inflow and seaso-

nal mode of snowcover variation, which are decomposed by

the spectrum analysis; and (iii) the antecedent discharge and

SCE conditions, characterized by decadal and interannual

variation modes, represent the basin memory, and show a

primary role in skillful forecasting of inflows from MRB,

while climatic teleconnection patterns and seasonal vari-

ation mode of SCE show a secondary role in describing

the variability of the ocean inflows. This suggests that the

annual hydrological cycle and water budget cannot be

closed in the large river basins, and fluctuations of water sto-

rage are required to be studied on decadal to sub-seasonal

time scale to better understand short-term and long-term

variations of the large-scale river flows in connection with

regional climatic patterns.

The results show that the performance of the Bayesian

nonlinear model in inflow prediction was similar to the

multi-linear regression model, with the nonlinear model

performing better in forecasting monthly inflows. The simu-

lation skill scores of Nash–Sutcliffe efficiency for both

models are 0.83 for seven-day forecasts and 0.80 for seven-

month forecasts. The significance of the proposed method

is that it can identify major drivers of Arctic Ocean inflow

variability and can link large-scale teleconnections to

local-scale atmospheric and cryospheric conditions. Linking

local-scale seasonal snowcover and large-scale decadal cli-

mate variations to inflows from the large river basins has

important implications in predicting the freshwater input

to the Arctic Ocean, estimating rates of freshwater transport

from the Arctic Ocean to the North Atlantic, and better

understanding of climate variability and predictability in

the near future in regional and continental scales. The

proposed methodology can be highly beneficial in the quali-

tative and quantitative assessment of low frequency flows

such as groundwater and subsurface flows in large-scale

watersheds and in better understanding surface and subsur-

face waters in the snow-dominated regions.
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