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ABSTRACT 

The Waitaki River is located in the centre of the South Island of New Zealand, and hydro electricity 

generated on the river accounts for 35-40% of New Zealand’s electricity. Low inflow years in 1992 

and 2001 resulted in the threat of power blackouts. Improved seasonal rainfall and inflow forecasts 

will result in the better management of the water used in hydro generation on a seasonal basis.  

 

Researchers have stated that key directions in the fields of seasonal rainfall and streamflow 

forecasting are to decrease the spatial scale of forecast products, and to tailor forecast products to end 

user needs, so as to provide more relevant and targeted forecasts. 

 

Several season ahead lake inflow and rainfall forecast models were calibrated for the Waitaki river 

catchment, using statistical techniques to quantify relationships between land-ocean-atmosphere state 

variables and seasonally lagged inflows and rainfall. Techniques included principal components 

analysis and multiple linear regression, with cross-validation techniques applied to estimate model 

error, and randomisation techniques used to establish the significance of the skill of the models. 

 

Many of the models calibrated predict rainfall and inflows better than random chance, and better than 

the long term mean as a predictor. 95% confidence limits around most model predictions offer 

significant skill when compared with the range of all probable inflow seasonal totals (based on the 80 

year recording history in the catchment). These models explain up to 19% of the variance in season 

ahead rainfall and inflows in this catchment.  

 

Seasonal rainfall and inflow forecasting on a single catchment scale, and focussed to end user needs, 

is possible with some skill in the South Island of New Zealand. 

 

Key words: New Zealand; seasonal forecasting; Principal Components Analysis; Multiple 

linear regression; cross-validation; randomisation testing; rainfall; inflows 
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1. INTRODUCTION 

 

Approximately 60% of New Zealand’s electricity is produced from hydro generation. The Waitaki River 

is located in the centre of the South Island of New Zealand. It is sourced in the highest part of the 

Southern Alps, at 3764masl, and flows 200km to the sea on the east coast of the South Island (Figure 1). 

It passes through eight hydro power stations run by Meridian Energy Ltd, which collectively produce 35-

40% of New Zealand’s electricity. There is significant snow storage in the Waitaki catchment, and this 

results in a seasonal cycle which produces maximum inflows in spring-summer, with minimum inflows 

in autumn-winter. The pattern of peak demand for electricity, however, is the converse of this, with peak 

demands in winter and low demand in summer. Low inflow years in 1992 and 2001 resulted in the threat 

of power blackouts. In addition to this, New Zealand hydro storage can hold only 17% of total annual 

inflows (Fitzharris, 1992), and national demand for electricity is currently growing at about 2% a year. It 

is clear that considerable planning of the use of the water resource is required to prevent water shortages. 

Improved seasonal rainfall and inflow forecasts will result in the better management of the water used in 

hydro generation on a seasonal basis. 

 

The unique configuration of the Southern Alps in the South Island of New Zealand, lying perpendicular 

to the mid-latitude westerly winds results in a strongly regionalised rainfall regime, with very high 

rainfalls on the west coast and low rainfalls in the east. It has long been recognised that variations and 

trends in New Zealand regional rainfall respond significantly to circulation changes in the southwest 

Pacific (Salinger and Mullan 1999, Henderson and Thompson 1999, McKerchar et al. 1996, McKerchar 

et al. 1998, Wratt et al. 1996), and in particular the low level westerly winds (De Lisle 1956, Salinger and 
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Mullan 1999). De Lisle (1956) found that variations in rainfall relate to a general polewards displacement 

of the position of the sub-tropical anti-cyclone tracks.  

 

Figure 1: Location of the Waitaki river and sites used in this study 

 

Previous seasonal forecasts of rainfall and inflows in New Zealand have involved statistical techniques, 

the use of neural networks, and numerical model simulations (Mullan & Renwick 1996, Zheng et al. 

2000, Mullan & Thompson 1993, Mullan & Thompson 1995, Mullan & Thompson 2006, McKerchar et 

al. 1996, Fitzharris et al. 1998). Currently, the National Institute for Water and Atmospheric Research 

(NIWA) produces a three monthly probabilistic forecast using both statistical techniques and General 
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Circulation Model (GCM) outputs. This gives the general public a three month probabilistic forecast for 

each of six regions over New Zealand (http://www.niwascience.co.nz/ncc/cu/archive). 

 

The advent of better computing power and longer, higher quality data records has resulted in a 

proliferation of research into seasonal to interannual climate forecasting in recent years. These include 

both statistical (Sharma 2000a, b, Sharma et al. 2000, Zheng et al. 2000, Eshel 2000, Ryuiz et al. 2003, 

Drosdowsky and Chambers 2001, Francis and Renwick 1998, Krishna Kumar et al. 1995, Greischar and 

Hastenrath 2000) and dynamical (Colman 2004, Feddersen et al. 1999, Fennessey and Shukla 2000, 

Widmann 2003) techniques. Recently neural networks have also been used in climatological prediction 

(Yuval 2000, Chakraborty et al. 1992). Goddard et al. 2001 state that the above forecasting methods are 

generally competitive with each other in terms of the skill of their forecasts. This is reiterated by Zebiak 

2003. 

 

Several reviews of seasonal climate forecasting internationally have been undertaken in the past 15 

years (Palmer and Anderson 1994, Goddard et al. 2001). More recently, Zebiak (2003) reviewed 

research potential for improvements in climate prediction, and outlined several areas for improvement 

in climate forecasting. Two of these are: greater spatial and temporal resolution in climate forecasts, 

and tailored forecast products aimed at the user community. These particular areas of focus are 

addressed by this research. 

 

Where long historical records of variables of interest are available, statistical approaches that relate “at 

site” hydrology or climate to large scale ocean-atmosphere state variables would seem to provide the best 

basis for useful seasonal to inter-annual flow and rainfall forecasts. However, as with any real system, 

http://www.niwascience.co.nz/ncc/cu/archive
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these relationships are likely to be complex. Sharma (2000a) states that multi-variate analyses between 

groups of possible “predictor variables’ would seem to be the way forward in hydro-climatic prediction 

research.  

 

In the quest to quantify the multi-variate relationships mentioned above, many different statistical 

techniques have been used in the past. Mullan and Renwick (1996) used empirical orthogonal functions 

(EOF) analysis, Singular Value Decomposition Analysis, and Canonical Correlation Analysis to forecast 

monthly and seasonal rainfall and temperature in New Zealand. Shabbar and Barnston (1996) and 

Landman (1997) also used canonical correlation analysis in forecasting Canadian and South African 

rainfall (respectively). Statistical analyses of time series were used by Eshel et al. (2000) to forecast 

Eastern Mediterranean droughts, and Zheng et al. (2000) used analysis of variance techniques in 

attempting to quantify the potential predictability of seasonal means of monthly time series of 

meteorological variables in New Zealand. 

 

Of the multi-variate techniques used in climatic and hydrological forecasting, many use multiple 

regression as a basis for further analysis, or as a further step once data have been detrended or smoothed 

in some way. Many researchers have used multiple regression in the study and forecasting of rainfall 

and other climatological variables (Greischar and Hastenrath 2000, Lall et al. 1996, Kidson and Gordon 

1986, Hay et al 1998, Kabanda and Jury 1999, McKerchar et al. 1996, Tait and Fitzharris 1998, Zheng 

and Renwick 2003). Principal components analysis (PCA) or empirical orthogonal functions (EOFs) can 

be used to identify modes of variability in large hydroclimatic data sets, such as gridded sea level 

pressures or temperatures. PCA is also used as a data reduction technique, and has been widely used in 
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hydro-climatic research in both these capacities (Kidson and Barnes 1984, Mutai and Ward 2000, Tait 

and Fitzharris 1998, Smith 2000, Vuille et al. 2000).  

 

Many researchers have concluded that seasonal precipitation anomalies may be forecast by utilising 

various different techniques and possible predictors. However, the extent to which land surface processes 

(such as river flow) respond to ocean-atmosphere variability has thus far received “very limited attention” 

(Wedgbrow et al. 2002). Seasonal streamflow forecasting fits the recommendations of Zebiak (2003), 

mentioned above. Streamflow forecasting is often aimed at a single catchment or group of proximal 

catchments, and often aimed at the needs of river users, such as hydro-electricity generators, irrigators, 

and recreational users. 

 

It is emerging in the research that seasonal streamflow forecasting has advantages over rainfall 

forecasting, and can result in greater skill, especially for forecasts over smaller spatial areas. There appear 

to be two main reasons for this. Firstly, river flows are often a “smoothed” representation of rainfall in a 

catchment, integrating all rainfall over the area of the catchment. This is especially true in mountainous 

catchments where precipitation variability is high both spatially and temporally, and a point measurement 

may not well represent the amount of water arriving in the catchment (Benoit et al. 2000). Secondly, 

many of the users of seasonal rainfall forecasts are actually utilising the water that flows past their land in 

the form of a river flow, and thus a river flow forecast has more direct applicability to their industry than 

a precipitation forecast which may be recorded at some distal location (Wedgbrow et al. 2002). Cayan et 

al. (1999) have shown that ENSO influences on streamflow variations and extremes are proportionately 

larger than the corresponding precipitation teleconnections. Dettinger et al. (1999) state that in many 

rivers, significant (weeks to months) delays between precipitation and the release to streams of snowmelt 
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or groundwater discharge can support even longer term forecasts of streamflow than is possible for 

precipitation. Benoit et al. (2000) support the above statements by noting that the integrating effect of 

streamflows filter out some of the spatial and temporal variability that complicate the point by point 

precipitation verifications that are more commonly used. Wedgbrow et al. (2002) go further, in 

concluding that investigations of the indices for direct long-range prediction of hydro-climatological 

variables are “essential to assist the future allocation of finite water resources”. 

 

In the search for predictors of inflows in a snowy alpine catchment, some index of winter snow 

storage in the catchment is desirable as an independent variable in model calibration. However, 

quantification of the water equivalent stored as snow in a remote catchment with significant 

orography is a difficult task, and the tools that exist have wide error margins. The relationship 

between local air temperatures and seasonally lagged river flows has been documented (NIWA 1994), 

and it would seem to be a reasonable approach to use these variables as predictors in attempting to 

quantify the empirical relationship between them and seasonally lagged inflows in a snowy 

catchment, rather than trying to quantify winter snow amount in some other way.  

 

In the New Zealand context, seasonal inflow forecasting attempts have focussed on inflows to hydro 

electricity reservoirs. An analogue forecast model was formulated to predict monthly inflows to hydro 

lakes by Mullan and Thompson (1993). Later, Mullan and Thompson (1995) presented an improved 

version of their analogue forecasting model, which included SST anomalies and lake inflows as 

predictors. The model predictions were found to be statistically significant when tested on independent 

data. However, when forecast skill was assessed using rank error criteria, the best case forecasts were 

found to be not better than a forecast of persistence. Mullan and Thompson (2006) created a further 
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analogue forecasting model, with statistically significant success in month ahead and season ahead 

forecasts of rainfall and temperatures in some areas, but not on the west coast of the South Island. 

McGowan and Sturman (1996) used a multiple linear regression approach to predict one month ahead 

inflows to Lakes Pukaki and Tekapo from temperature, precipitation, and a synoptic circulation index. 

Other New Zealand studies have included Bayesian methods to predict summer inflows into South Island 

hydro lakes (McKerchar et al. 1996) and multi-discriminant analysis to forecast seasonal and annual 

precipitation, with “limited success” (Peters and Painter 1997). 

 

One of the most crucial and difficult aspects of developing a statistical rainfall or inflow forecasting 

model is obtaining a realistic estimate of forecast skill (Michaelson, 1987). Tests on the Australian 

Bureau of Meteorology Seasonal Climate Outlook tercile probabilistic forecasts, show them to be correct 

about 70% of the time (Sturman and Tapper, 1996). Renwick (2003) discusses how forecast accuracy 

varies over time, but noted that the skill of seasonal forecasts from the National Institute for Atmosphere 

and Water (NIWA) are improving year by year. Renwick uses the “hit rate” to score NIWA forecasts. 

The hit rate is the fraction of times the tercile predicted with the highest probability actually occurs. A 

random guess as a prediction would therefore result in a hit rate of 33%. In the first year of producing 

seasonal rainfall forecasts, the hit rate was approximately 33%, or equivalent to the no-skill mark. 

However, more recently it has consistently been between 40 and 50%. Renwick also states that rainfall is 

most skillfully forecast over the South Island of New Zealand, and attributes this to the strong 

dependence of South Island rainfall patterns on the predominant westerly winds and their interactions 

with the steep topography of the Southern Alps, and that the seasonal changes in the position of the 

westerly wind belt show some predictability. 
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Ultimately, the justification for any forecast model is that it hopefully supports better decision making. 

The usefulness of forecasts in supporting decision making will always depend on their error 

characteristics, which are defined through verification methods (Wilks, 1995). The enormous pool of 

potential predictors and limited temporal degrees of freedom of most geophysical data means that 

statistical models require rigorous testing in operational settings to ensure significance (Goddard et al. 

2001).  

 

The purpose of this paper is to predict season ahead lake inflows and rainfall for a single, mountainous, 

catchment, and to focus the output forecasts to end user needs. 

 

 

2. DATA 

 

Variables with some potential lag relationship with the predictands were chosen through review of 

previous research, to ascertain what predictor variables had been used with any method and any level of 

skill by other researchers in New Zealand, Australia and to a lesser extent, other international studies. 

Good quality long term synchronous data records were needed, and particular attention was paid to data 

records of long duration. Some data records that had been found to be possibly relevant were abandoned 

due to lack of record duration or quality.  

 

Seasonal averages or totals were formulated for all datasets, and the seasonal cycle was removed for 

all datasets (except Sunspot number, which has no seasonal cycle) by subtraction of the 1950-00 
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normal for each season. Seasons are denoted as Summer: Dec – Feb, Autumn: Mar – May, Winter: 

Jun – Aug, and Spring: Sep – Nov. 

 

The six dependent variables used were: Lake Pukaki total seasonal inflow volume, sum of Lakes 

Pukaki and Tekapo inflows, number of days of rain at the Hermitage, combination of rain gauges in 

the Southern Alps, Hokitika rainfall, and Hermitage rainfall.  

 

The independent datasets gathered for the study are listed below: 

 Lake Pukaki inflows (m
3
) 

 Lake Tekapo inflows (m
3
) 

 Hermitage rainfall (mm) 

 Hokitika rainfall (mm) 

 Lower Whataroa rainfall (mm) 

 Makarora station rainfall (mm) 

 Milford Sound rainfall (mm) 

 Hermitage rain days (>1mm) 

 Hermitage temperature (°C) 

 Hokitika temperature (°C) 

 Tekapo temperature (°C) 

 Lincoln temperature (°C) 

 Trenberth indices 

 Sunspot number 

 QBO of stratospheric winds 
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 SOI 

 PDO 

 SST indices 

 MSLP on a 5˚ x 5˚grid, lat 5˚N - 75˚S, long 0-355˚ (hPa) 

 700hPa geopotential height on the same grid as MSLP (height above sea level) 

 

Descriptions and sources for these datasets are given below. 

 

Lake Pukaki and Lake Tekapo are the two main hydro storage lakes in the Waitaki catchment, and in 

New Zealand as a whole. Inflow records for these lakes were obtained from the Meridian Energy Ltd 

Hydrological database. These lake inflows have been measured since 1925, when the first concepts of a 

hydro electricity scheme in the catchment were mooted. However the early years have many gaps in the 

record, and measurement methods are not well documented. Gaps in the record were filled in, but most 

trust in the record exists post-1940.  

 

Rainfall records for the following climate stations were obtained from Dr Jim Salinger at NIWA or 

through the NIWA climate database (CLIDB): Hermitage, Hokitika, Lower Whataroa, Makarora station, 

and Milford Sound. The Hermitage is the rain gauge at Mt Cook village, an alpine village at 785m above 

sea level in the head of the Waitaki catchment. The last three records were combined with Hermitage 

rainfall in a weighted combination that represented their contemporary linear relationships with Lake 

Pukaki inflows. As well as this strong relationship, these stations were chosen for their proximity to the 

north-south axis of the Southern Alps mountain range. The number of days of rain at the Hermitage 
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(1mm or more) was also used in this study. The mean air temperature records for several stations were 

also obtained from the NIWA CLIDB. These stations were Hokitika, Tekapo, and Lincoln. 

  

Trenberth Indices of air pressure are based on Trenberth (1976). These datasets were initially received 

from Dr Andrew Tait, at NIWA in Wellington. However, when these datasets needed to be updated, 

pressure data was sourced from the NIWA Clidb, and methods to derive the indices followed Trenberth 

(1976). Trenberth Indices are the anomalies from normal of the difference in station level pressure 

between two stations. “Z” indicates zonal flow, “M” indicates meridional flow, and “MZ” is a 

combination of the two. These are the relevant stations for each index: 

 

 Z1 - Auckland and Christchurch 

 Z2 – Christchurch and Campbell Island 

 Z3 – Auckland and Invercargill 

 Z4 – Raoul and Chatham Islands 

 M1 - Hobart and the Chatham Islands 

 M2 – Hokitika and Chatham Islands 

 M3 - Hobart and Hokitika 

 MZ1 – Gisborne and Hokitika 

 MZ2 – Gisborne and Invercargill 

 MZ3 – New Plymouth and Chatham Islands  

 

Sunspot numbers have been recorded since 1818, and daily data were obtained from the National 

Geophysical Data Centre website of the National Oceanic and Atmospheric Administration, in the United 
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States (http://www.ngdc.noaa.gov/stp/SOLAR/SSN/ ssn.html). Seasonal averages were then calculated 

from these daily data. 

 

The monthly Quasi-biennial oscillation of stratospheric winds at 30hPa over Singapore (Naujokat, 1986) 

was supplied by Dr Barbara Naujokat of the Free University of Berlin. This dataset is also available on 

the internet from the website of the Joint Institute for the Study of the Atmosphere and Ocean (JISAO at 

the NOAA/University of Washington) at:  http://tao.atmos.washington.edu/data_sets/qbo/. 

 

There are many derivations of the Southern Oscillation Index available globally. The one chosen for use 

in this study is from the Bureau of Meteorology, Australia. It is defined as is the Troup SOI (Troup, 

1965) which is the standardised anomaly of the mean sea level pressure difference between Tahiti and 

Darwin. It can be sourced from the Bureau of Meteorology (BoM) website at: 

http://www.bom.gov.au/climate/current/soihtm1.shtml. 

 

The Interdecadal Pacific Oscillation (IPO) is noted by Renwick (2002) to be the quasi-symmetric Pacific-

wide manifestation of the Pacific Decadal Oscillation (PDO) that has been described for the north Pacific 

by various other authors (Francis & Hare 1994, Mantua et al. 1997). The PDO index is used in this study, 

and can be sourced at the JISAO website at: http://jisao.washington.edu/pdo/PDO. 

 

A set of sea surface temperature (SST) indices were formulated by Mullan (1998).  These indices were 

derived from a principal components analysis of Southern Hemisphere sea surface temperatures and the 

contemporary and lag relationship of those principal components with New Zealand temperature and 

precipitation. Areas of the Southern Hemisphere were chosen where these relationships were strongest, 
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and SSTs averaged over these areas, and the anomalies from normal calculated. SST areas are defined in 

table 1. 

 

Table 1: Definition of SST index key areas (Mullan, 1998) 

Region LongW LonE LatN LatS Location

1 160 190 -30 -45 Northern NZ

2 125 165 -35 -45 Australian Bight and Tasman Sea

3 210 270 5 -5 Nino 3

4 160 210 5 -5 Nino 4

5 150 180 -15 -30 New Caledonia

6 195 215 -20 -40 Pacific NE of NZ

7 75 115 -5 -25 Indian Ocean NW of Australia

8 60 85 0 -15 Equatorial Indian Ocean
 

 

Mullan’s SST indices were sourced from Dr Brett Mullan, of NIWA, Wellington, originally, and then 

updated upon his advice by using Optimum Interpolation (V2) SST data from the Climate Data Centre 

(CDC) at NOAA (National Ocean and Atmospheric Administration) in the United States. 

(http://www.cdc.noaa.gov/cgi-bin/db_search/SearchMenus.pl). 

 

NCEP/NCAR Reanalysis Gridded Sea Level Pressure (SLP) data and 700hPa geopotential height data on 

a 5˚ x 5˚ grid for much of the Southern Hemisphere were sourced from the NOAA-CIRES Climate 

Diagnostics Center, Boulder, Colorado, USA, from their Web site at http://www.cdc.noaa.gov/. Data for 

5˚N to 75˚S, latitude, 0 – 355˚ longitude were originally gathered. The grid of data used was subsequently 

reduced from this initial dataset. See (http://www.cdc.noaa.gov/cgi-bin/db_search/SearchMenus.pl) for 

data source.  
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3.  METHODOLOGY 

3.1 Model calibration 

 

The amount of data gathered as potential predictor variables in this study was considerable. Reducing 

the number of predictor variables before putting them through a principal components analysis was 

undertaken to try and eliminate some variables that had potentially less chance of having predictive 

ability before further analysis began. 

 

Initially, a contemporaneous correlation matrix of all the variables was constructed. The results of 

this showed high correlations between adjacent gridded mean sea level pressure and 700hPa 

geopotential height sites over most of the area covered, and this justified the reduction of the gridded 

datasets from a 5x5 degree grid to a 10x10 degree grid. Backward and Forward Stepwise regression 

were conducted between all datasets and seasonally lagged lake inflows and rainfall to establish 

which variables had less significant relationships. Variables highlighted in both the backward and 

forward regressions as being of low significance to these relationships were eliminated from the 

model calibration process at this point. This exercise resulted in a reduction of spatial coverage of 

original data to that of 5˚ north to 55˚ south latitude, 75˚ to 355˚ longitude. A third method was 

employed in the data reduction exercise. This was to run all data through a Principal Components 

Analysis, and eliminate any independent variables that did not feature prominently as contributors to 

the resulting principal components. This resulted in just a few variables being eliminated, as the 

orthogonal nature of principal components results in most variables featuring highly in at least one 

principal component.  
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The original number of potential predictor variables was 1140 for each season. After the variable 

reduction exercise, the number of variables taken forward to further analysis was 115 for summer, 96 

for autumn, 140 for winter, and 120 for spring. Model calibrations were performed on each season 

separately. 

 

All independent datasets remaining after the intial data exploration were then subjected to an 

unrotated Principal Components Analysis, using a correlation dispersion. An unrotated PCA was 

used, because data compression (rather than physical interpretation) was the main aim of the PCA in 

this instance (Wilks, 1995). The resulting principal components were taken forward and used as the 

independent variables in a multiple regression with seasonally lagged inflows and rainfall.  

 

The Scree test  (Catell 1966), and Jolliffe’s (Jolliffe 1972) version of Kaiser’s rule (Kaiser 1960) were 

used in conjunction with each other to determine the number of eigenvalues retained from the PCA. 

This ranged from 19 to 25 eigenvalues. In this study over 50% of the variance in the data is explained 

by the first two to three PCs.  

 

The SOI seems to be the most widely used predictor in seasonal forecasting in New Zealand. 

However, there is conflicting evidence in the literature as to whether the SOI has a significant 

relationship with lagged rainfall in New Zealand (Rhoades et al. 1990, Basher 1998, McKerchar and 

Pearson 1994, McKerchar et al. 1996, McKerchar et al. 1998, Fitzharris 1992, Fitzharris et al. 1998). 

To examine this question, these model calibrations were subdivided into calibrations with the SOI 

and PDO, and calibrations without the SOI and PDO.  
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Forward stepwise regression was the regression technique employed to regress the independent 

datasets (the principal components (PCs)) with the lagged dependent dataset (rainfall or inflows), and 

the F-test (the ratio of explained variances before and after the additions of a new predictor) was used 

as a stopping criterion, with F-to-enter 4 as the value at which no more variables are added to the 

regression equation. These model calibrations predicted six different dependent variables. Each of 

these six analyses was carried out for each of four seasons, resulting in twenty-four model 

calibrations. Each of these twenty-four model calibrations incorporated cross validation techniques. 

To this end, each dataset (time series) was divided into five periods, and models were calibrated on 

each of five forty year periods, and validated on each of five ten year periods. 

 

3.2 Model validation 

 

An approximately 50 season time series was used in the model calibrations, and a 5-fold cross-

validation was conducted with a different 20% of the time series left out each time, as is 

recommended by Breiman and Spector (1992).  

 

Several goodness of fit criteria were evaluated for use in this study. All compared how well the 

predicted values in the validation dataset “fit” the observed values. The “explained variance” is used 

widely in seasonal hydro-climatic forecasting both in New Zealand and internationally as a measure 

of model skill, and was used in this study as it seemed to give the most consistent and logical results.  
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The term “explained variance” has a different definition in least squares regression, and this should 

not be confused with the application of the term used here. The explained variance of a predictive 

model, Ev, used in this study is defined as: 

 

)(

)
2

)ˆ(
(

1

2

obsVar

n

yy

Ev    (1) 

 

where )1( vE  

 

where y and y  are the observed and model predicted values, and Var(obs) is the variance of the 

observed values. 

 

The explained variance measure describes the proportion of variability within the predictand dataset 

captured by the model prediction, and is widely used in seasonal climate research (Eshel et al. 2000, 

Kabanda and Jury 1999, Kidson and Gordon 1986, Tomlinson 1981, Widmann et al. 2003).  

 

3.2.1 Residual analysis 

Before model predictions could be applied to error evaluation, some residual analysis needed to be 

carried out, to ascertain the distribution characteristics of the residuals from the model validations. 

Trends and bias in the model predictions can be shown up through residual analysis. To apply 

confidence intervals using the standard error of the residuals, a Gaussian distribution of residuals is 

required. 
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For the above reasons, four main residual analyses were undertaken. Tests were carried out to examine 

residual distributions for a) heteroscedasticity, b) trends in residuals, c) normality and d) mutual 

independence, and in most cases these criteria were met.  

 

3.2.2 Confidence intervals 

Confidence intervals are a convenient way to express average model uncertainty (Goddard et al. 

2001), and are used in this study to display uncertainty around model predictions. The formula used 

to construct the confidence intervals is: 

 

)(2/1 SEty   (2) 

 

where SE = standard error of residuals, defined by s/√n, where s = sample standard deviation, and n = 

sample size. Critical t-value tables can be used to find 2/1t  values with df = n-2. For a sample of 50, 

as in this study, the 2/1t  is 1.96 for a 95% confidence interval, and 2.58 for a 99% confidence 

interval. 

 

Although sample size of each individual validation period was small (usually 9-10 seasons), cross-

validation techniques in effect extended the sample size used for error evaluation to five times this 

size, as the model standard error used to construct confidence limits was calculated from all 

approximately 50 residuals from all five cross validation models.  
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3.2.3 Weighted average of predictions 

If the separate models from this cross-validation exercise did display fairly similar equations, a 

reasonable assumption would be that any of the different period models could be taken forward as the 

model to predict future, unseen data, and the cross validation exercise is therefore only to extend the 

sample size to better estimate “true” model error. There is also precedent in the literature for using an 

average of a range of model predictions as the one prediction to be used (Georgakakos 2001, Mo 

2003, Mullan and Renwick 1996, Sharma and Lall 2003, Sivillo et al. 1997, Stephenson et al. 1999). 

Indeed, ensemble model forecasting, where a mean or some other combination of model outputs is 

used as the actual prediction, is in regular use as a technique which hopefully minimises the errors 

associated with each of the individual models. However, the idea that the individual errors are 

minimised by using an ensemble only holds true if the individual models are independent and 

unbiased. An examination of dependence and bias in the data is undertaken in section 4.3. 

 

Model skill for each separate cross-validated model was estimated by calculating the explained 

variance (Ev) for the 9 or 10 predicted-observed pairs in that model’s validation data. Model skill 

varied between different individual period models, and so it was decided  in this study to use a 

weighted average of all five period models, weighted on their skill levels (explained variance, 

calculated on the 9 or 10 residuals from each validation period), to go forward as the future model. 

There is some precedent for using the weighted average of model predictions in the literature (Tootle 

and Piechota 2004, Colman 2004, Zhang and Casey 2000). Tootle and Piechota (2004) found that an 

ensemble of three forecasts, with different predictors, combined into one weighted combination 

forecast, had better overall skill than any of the individual forecasts. More weight was given to more 

skilful forecasts and less weight to less skilful forecasts.  
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A weighted average of the five period models, then, is used in this study as the prediction for future 

applications of the model. For future model applications, all five period models would be run to give a 

prediction. A weighted average of these five predictions is then formulated, using the explained 

variance of each period (calculated on model validation for that period) as the weighting for that 

period. So periods where model validation gave a high explained variance meant that more trust was 

placed in the model, but those with lower validation goodness of fit were not necessarily excluded 

entirely, but gave a proportionally less weighted contribution to the final future model prediction. 

 

The problem then arises in deciding what is the model error associated with this new ensemble model 

output. If we could assume independence between different models being averaged, and also that 

they are unbiased (ie. that their predictions are randomly scattered about the observed without bias), 

then averaging the models would result in a decrease in model error. 

 

Taking the weighted average of the five individual cross-validated models, in this case, could be 

reflected in the estimate of the standard error by incorporating the individual weights and the number 

of components in the mean in the error calculation. Once the requirements of independence and non-

bias have been satisfied (where possible), this is reflected in the following equation: 

 

*

))(( 2

n

VarC
SE

iiwgt
             (3) 

 

where: 

SE
wgt

 = the standard error associated with a weighted mean of model outputs 

Ci = the weights of the individual models in the weighted mean 
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Var(εi) = the variance of the distribution of all the residuals from all the individual model validations 

n* = the number of components in the weighted average 

 

The confidence interval could therefore be created about new predictions from the weighted mean of 

model outputs, by taking the standard error estimate from equation (3), and using it in equation (2). 

 

This methodology would greatly decrease the magnitude of the confidence interval, over that of 

simply using equation (2) alone. The question remains, however, if the assumption of independence 

cannot be satisfied, what then is the true model error? In reality there is no simple answer to this 

question. 

 

Due to possible bias and lack of independence of the predictions (see section 4.3 for more on this), it 

is felt that the confidence limits which take into account weightings and n, the number of components 

in the model, are probably unrealistically narrow. On the other hand, the confidence limits 

constructed using the model standard error calculated from the standard deviation of all 48 residuals 

are probably too wide for the averaged model, and unduly penalise it by attributing too much error to 

the model predictions. The true error estimate probably lies somewhere between these two 

confidence intervals. For the scope of this study, and for the risk environment of their likely 

application setting, the more conservative confidence limits (those constructed using equation 2) 

would be recommended for operational use. 
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3.3 Model skill 

 

Models from this study were evaluated for how well the predicted values fit the observed data, as 

outlined above in relation to confidence intervals, but models were also compared with an already 

existing forecast, with persistence, with the long term hydro-climatological normal, and with random 

chance.  

 

Residuals from the mean-as-predictor and from this study’s models were compared using a paired t-

test to see if one set of residuals was significantly smaller than the other.  

 

To compare this study’s prediction models with persistence, serial correlations between seasonal 

inflows and rainfall at different lags were examined.  

 

Comparing model outputs to a random prediction was undertaken using randomisation testing of the 

predicted and observed pairs from each validation dataset for each model. Software was written to 

sample every possible pairing of the predicted and observed, and to test each sampled set of residuals 

tested for goodness of fit using explained variance, Ev. In this way, the chance of the particular model 

pairing occurring by random chance was estimated with an associated probability. 
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4. RESULTS 

 

 4.1  Validation test of predictive models 

  

Predictive equations resulted from each of the forward stepwise regressions undertaken on each of the 

different model calibrations outlined in the previous section. For each dependent variable, for each 

season, five different predictive equations resulted - one for each of the different calibration/validation 

periods. The explained variance, Ev, was calculated on validation data for each period, and then 

averaged over all five periods for each dependent variable and season. These averaged goodness of fit 

scores were used to compare models predicting different dependent variables and different seasons. 

 

A summary of these averaged goodness of fit scores, can be seen in Table 2. To enable some 

recognition of “better” and “worse” models, goodness of fit values higher than zero are highlighted. It 

should be noted that highlighting positive numbers is an arbitrary move, and only gives some initial 

estimation of which models are more likely to have predictive ability over others. 

 

The main limitation of calculating goodness of fit on 9 or 10 year periods of data is that if a particular 

9 or 10 year period does not contain much variability in the observed data, then the model is not truly 

being “tested”. The explained variance measure goes some way to addressing this issue, in that it gives 

a better fit score for a model that has smaller residuals in relation to the variance contained in the 

observed values. 
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Table 2: Explained variance, Ev, as goodness of fit criterion, calculated on validation data and 

averaged over all five periods for each season and each dependent variable. Values greater than zero 

are in bold type 

Lake Pukaki 

inflows

Lakes 

Pukaki + 

Tekapo 

inflows

Hermitage 

rain days

Combination 

of rain 

gauges

Hokitika 

rainfall

Hermitage 

rainfall

Summer 0.09 0.04 0.07 -0.60 -0.20 -1.15

Autumn -0.48 -0.56 0.19 0.22 0.02 0.18

Winter 0.21 0.12 -1.19 -0.10 -0.12 -1.76

Spring -1.54 -1.57 0.15 0.06 -0.30 0.10
 

 

4.1.1 Choosing an initial subset of models for further testing 

Further testing was required to ascertain what the predictive ability of the models were, and how well 

their predictions scored against other prediction models. However, some models seemed to be 

performing badly under all validation periods, and a decision was made to distinguish between models 

that were unlikely to offer any predictive ability, based on their Ev, and those which should be retained 

at this point, for further testing.  

 

A randomisation test was conducted, whereby the explained variance of repeated random orderings of 

predicted values (matched with observed values) was calculated. All possible pairings of predicted and 

observed were sampled. A randomisation distribution of explained variance, Ev, is therefore obtained, 

and the proportion of this distribution that is greater than the calculated explained variance is obtained, 
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indicating the likelihood of the particular explained variance calculated on validation data from this 

study’s models occurring by random chance.  

 

The explained variances and their associated significance levels (lower values = significantly unlikely 

to occur by random chance) can be seen in table 3. Those explained variances that are greater than 

zero and significant at the 95% level are highlighted. An assumption is made at this stage that 

explained variances that are significant at the 95% level, but less than 0 are unlikely to have 

forecasting ability, and are therefore disregarded at this stage. 

 

Table 3: Explained variances and their associated significance levels (p-values) for every period 

model and every dependent variable and season, as obtained from randomisation testing. Those 

explained variances that are greater than zero and significant at the 95% level are highlighted. 

Dependent

variable Expl var p Expl var p Expl var p Expl var p Expl var p Expl var p

Lake Pukaki inflows 0.23 0.10 0.03 0.27 -0.10 0.48 0.00 0.07 0.55 0.00 0.14 0.00

Lakes Pukaki + Tekapo inflows 0.26 0.06 0.04 0.24 -0.07 0.48 -0.51 0.09 0.41 0.02 0.03 0.00

Hermitage rain days 0.54 0.06 0.24 0.05 0.41 0.06 -0.65 0.05 -0.42 0.40 0.02 0.00

Rainfall combination -0.08 0.12 0.14 0.14 -0.03 0.26 -2.81 0.29 -0.27 0.25 -0.61 0.05

Hokitika rainfall -0.15 0.34 0.38 0.02 -0.29 0.36 0.13 0.05 -0.23 0.23 -0.03 0.02

Hermitage rainfall 0.18 0.07 0.04 0.23 0.00 0.42 -10.89 0.43 -0.13 0.08 -2.16 0.13

Lake Pukaki inflows 0.13 0.14 -0.48 0.38 -0.16 0.22 -0.92 0.44 -0.06 0.33 -0.30 0.11

Lakes Pukaki + Tekapo inflows 0.15 0.12 -0.34 0.26 0.14 0.16 -0.32 0.37 -0.51 0.44 -0.18 0.07

Hermitage rain days 0.19 0.05 0.08 0.22 0.12 0.17 0.18 0.10 -0.05 0.36 0.11 0.01

Rainfall combination 0.39 0.02 0.40 0.03 -0.05 0.08 0.15 0.08 -0.03 0.17 0.17 0.00

Hokitika rainfall -0.21 0.31 0.20 0.08 -0.01 0.17 0.00 0.36 0.17 0.11 0.03 0.04

Hermitage rainfall 0.15 0.09 0.16 0.11 -0.07 0.11 0.43 0.02 0.16 0.12 0.16 0.00

Lake Pukaki inflows 0.24 0.03 0.34 0.01 -0.08 0.57 0.12 0.16 0.29 0.03 0.19 0.00

Lakes Pukaki + Tekapo inflows -0.46 0.42 0.65 0.02 0.55 0.01 -0.44 0.23 0.08 0.14 0.08 0.00

Hermitage rain days 0.00 0.10 -2.12 0.05 -0.75 0.09 -1.90 0.51 -0.34 0.23 -1.02 0.01

Rainfall combination 0.23 0.07 -0.11 0.51 -0.22 0.40 0.08 0.08 -0.26 0.16 -0.05 0.02

Hokitika rainfall -0.17 0.35 -0.12 0.15 0.07 0.23 -0.02 0.39 -0.60 0.21 -0.17 0.06

Hermitage rainfall -2.35 0.59 -0.43 0.27 0.23 0.06 -0.16 0.32 -0.38 0.36 -0.62 0.28

Lake Pukaki inflows -6.15 0.27 -1.08 0.35 0.29 0.07 0.09 0.19 -2.31 0.10 -1.83 0.05

Lakes Pukaki + Tekapo inflows -6.07 0.38 0.35 0.02 0.13 0.15 -0.13 0.24 -0.45 0.49 -1.23 0.19

Hermitage rain days -0.54 0.26 0.18 0.04 0.21 0.03 0.20 0.17 0.11 0.12 0.12 0.00

Rainfall combination -0.48 0.48 0.10 0.17 0.15 0.13 0.18 0.13 -0.20 0.34 -0.05 0.07

Hokitika rainfall -0.37 0.31 0.07 0.02 0.10 0.18 0.14 0.16 -0.31 0.64 -0.08 0.02

Hermitage rainfall -0.11 0.46 0.16 0.14 0.25 0.05 0.26 0.08 -0.06 0.31 0.10 0.01

Period 5 Average periods 1-5Period 1 Period 2 Period 3 Period 4
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None of the 24 models were significantly better than chance over all five individual period models. 

However, when an average was taken, and the significance calculated on the larger sample size that 

this involved, 11 of the models had a positive explained variance that was significantly better than 

chance at the 95% level. 

 

A subset of 11 models were therefore chosen as those models that had significant (at the 95% level) 

positive explained variance, and these models were denoted the “initial subset of models”, and taken 

forward for closer examination.  

 

 4.2  SOI and PDO as separate predictors 

  

As was discussed in section 3.1, two separate continuous format models were calibrated in this study, 

for each dependent variable (and season). One of these included SOI and PDO as predictors, and one 

did not. All models in the initial subset of 11 models were re-calibrated, to ascertain if inclusion of 

these two separate predictors would improve model skill.  

 

Models from the SOI and PDO model calibration process were put through the same cross-validation 

procedure as the original models, and validated in the same way. 

 

It was found that no model showed consistent improvement from the addition of these variables. 

Explained variance was invariably worse for each of the models calibrated using these variables as 

input variables. This result is discussed further the summary and conclusions section. 
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 4.3  Error evaluation 

  

Before further error evaluation was carried out, residual analysis was undertaken that showed that the 

sets of model residuals were homoscedastic, approximately normally distributed, unbiased, and 

lacking in significant trends. 

 

Having ascertained a minimal apparent bias in the models and an approximately Gaussian distribution 

of residuals, the question of independence between the five sets of residuals from the five period 

models to be used in the weighted average can be addressed. As the five period models were 

calibrated from overlapping sets of data, it is fairly certain that they will be dependent. This issue is 

also examined in Table 4, where the correlation matrix between sets of (9 or 10) residuals from two 

period models is shown.  

 

It can be seen from Table 4 that, although most of the sets of residuals are not related to each other, 

and therefore satisfy the requirement of independence, there are one or two that have high 

correlations. These are between period 1 and 2 in the Lake Pukaki winter inflows models, and between 

periods 1 and 4, 2 and 4, and 1 and 3 in the Rainfall combination autumn models, and this is typical of 

other sets of residuals tested. 
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Table 4: Correlation matrices for residuals from each of 5 individual period models that will go into 

making up the weighted average model to be used for future predictions, for a) Lake Pukaki inflows 

for winter, and b) Rainfall combination for autumn. 

 

a) Winter Lake Pukaki inflows residual correlations

Period 1 Period 2 Period 3 Period 4 Period 5

Period 1 1.00 0.52 0.40 -0.41 0.07

Period 2 1.00 -0.12 -0.21 -0.06

Period 3 1.00 -0.08 0.10

Period 4 1.00 0.07

Period 5 1.00

b) Autumn Rainfall combination residual correlations

Period 1 Period 2 Period 3 Period 4 Period 5

Period 1 1.00 0.16 -0.57 0.72 0.40

Period 2 1.00 -0.13 0.62 -0.18

Period 3 1.00 -0.33 0.02

Period 4 1.00 0.00

Period 5 1.00  

 

Owing to probable lack of independence, it is felt that the confidence limits which take into account 

weightings and n, the number of components in the model, are probably unrealistically narrow. On the 

other hand, the confidence limits constructed using the model standard error calculated from the 

standard deviation of all 48 residuals are probably too wide for the averaged model, and unduly 

penalise it by attributing too much error to the model predictions. The true error estimate probably lies 

somewhere between these two confidence intervals. Future work, when more data becomes available, 

may lead to a more accurate representation of model error. For the scope of this study, however, and 



 31 

for the risk environment of their likely application setting (their application in the hydro-electric 

generation management of the river and lake levels means that the implications of non-conservative 

application of the predictions are significant), the more conservative confidence limits would be 

recommended for operational use. 

 

 4.4  Model validation results 

  

Examples of validation tests are displayed in figures 2-7 for individual period models for 5 models 

from the initial subset. It should be noted that, although the validation tests shown in the following 

graphs form one 9 or 10 year period, the error used to construct the 95% confidence limits is 

formulated from the standard error from the residuals from validation data from all 5 period models 

(ie. 48 years). For the model predicting winter Lake Pukaki inflows, all five period model’s validation 

tests are shown on one graph (Figure 2), to give an overall picture of the variability in model 

predictions from model to model. The other graphs only show one nine or ten year period, to enable 

clearer inspection. 
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Figure 2: Validation data for all five period models predicting winter inflow total into Lake Pukaki. 

Predicted inflows with 95% confidence limits shown, and observed inflows, for winter season for the 

years 1953 to 2000. The shaded area shows all probable inflows for winter from an 80 year history. 
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Figure 3: Validation data for period 2 graph for model predicting winter inflow total into Lake Pukaki. 

Predicted inflows with 95% confidence limits shown, and observed inflows, for winter season for the 

years 1963 to 1972. The bold dotted lines show all probable inflows for winter from 80 year history. 
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Figure 4: Validation data for period 2 graph for model predicting combined winter inflow total into 

Lakes Pukaki and Tekapo. Predicted inflows with 95% confidence limits shown, and observed 

inflows, for winter season for the years 1963 to 1972. The bold dotted lines show all probable inflows 

for winter from 80 year history. 
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Figure 5: Validation data for period 4 graph for model predicting spring rainfall total at the Hermitage. 

Predicted rainfall with 95% confidence limits shown, and observed rainfall, for spring season for the 

years 1983 to 1991. The bold dotted lines show all probable rainfall for spring from 80 year history. 
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Figure 6: Validation data for period 5 graph for model predicting summer Lake Pukaki total inflows. 

Predicted inflows with 95% confidence limits shown, and observed inflows, for summer season for the 

years 1992 to 2001. The bold dotted lines show all probable inflows for summer from 80 year history. 
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Figure 7: Validation data for period 1 graph for model predicting total rainfall at a combination of 

Southern Alps rain gauges for autumn. Predicted rainfall with 95% confidence limits shown, and 

observed rainfall, for autumn season for the years 1954 to 63. The bold dotted lines show all probable 

rainfall for autumn from 80 year history. 
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4.5 Comparison of models with previously used forecast tools in the Waitaki catchment 

 

4.5.1 Comparison with long term normal inflows or rainfall 

The primary seasonal forecasting tool used in the management of the Waitaki river hydro scheme is 

the use of the long term normal as a predictor. The “normal” (or long term average) inflows or rainfall 

that can be expected in the catchment in a season is the most basic model available, and has been the 

most widely applied model in hydro catchment management in the Waitaki catchment thus far. 

 

Comparisons are made between the long term normal, used as a predictor, and the predictions from the 

models in this study. In 9 out of the 11 models examined, the standard deviation of model residuals 

was smaller for the models from this study, indicating that the model error was smaller than for the 

mean-as-predictor. 

 

The residuals from the models calibrated in this study were compared with the residuals from the 

mean-as-predictor using a paired t-test. The paired t-test was conducted on sets of residuals for all 

seasons, as well as for seasons that had been divided into wet, average, and dry portions. This 

distinction was made because it is acknowledged that being able to predict a normal season is not of 

much benefit to hydro managers, but being able to predict a dry or a wet season was critical. Paired t-

tests, were conducted where the observed inflows (or rainfall/raindays) for the season being predicted 

were more than 0.5 standard deviations below or above the mean: ie. a dry or a wet season. 

 

The model predicting Lakes Pukaki + Tekapo inflows for winter had residuals that were significantly 

smaller than the mean-as-predictor. In all other cases the residuals were found to be not significantly 
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different from each other at the 95% level, indicating that many of the models from this study were 

not significantly better at forecasting rainfall and inflows than the long term mean, taken over the 

whole data range.  

 

However 10 of the 12 models were significantly better than the mean-as-predictor in dry or wet years. 

Significance levels from the paired t-tests in table 5 show that in 10 cases the model residuals from the 

models from this study were significantly different (always smaller) than the residuals from the mean-

as-predictor. 

 

Table 5: Significance levels for paired t-test between residuals from models from this study and the 

long term mean as predictor, in dry or wet seasons only. Ticks indicate where the residuals from this 

study’s models are significantly different (smaller) than the residuals from the long term mean-as-

predictor. 

p-values Significantly smaller than mean-as-predictor

Lake Pukaki inflows 0.04 √

Lakes Pukaki + Tekapo inflows 0.03 √

Hermitage rain days 0.00 √

Hermitage rain days 0.02 √

Combination of rain gauges 0.02 √

Hokitika rainfall 0.10

Hermitage rainfall 0.01 √

Lake Pukaki inflows 0.02 √

Lakes Pukaki + Tekapo inflows 0.01 √

Hermitage rain days 0.20

Combination of rain gauges 0.02 √

Hermitage rainfall 0.05 √
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4.5.2 Persistence – serial correlation in inflows and rainfall 

Persistence of inflows and rainfall was examined for its efficacy in prediction at any lag. No 

combination of adjacent seasons or year to year seasonal serial correlation yielded any significant lags. 

Persistence, or serial seasonal correlation, in inflows and rainfall was therefore shown to have no 

significant skill in predicting inflows and rainfall in the Waitaki catchment.  

 

4.5.3 Comparison with random chance 

The potential for achieving adequate goodness of fit in validation data through random chance, 

especially when many model validations are being performed, has to be considered. This was tested 

for in this study through the use of a randomisation test on the calculated explained variance, Ev, of 

pairings of predicted and observed for validation data for every time period used in the cross-

validation process. The results of this randomisation test can be seen in table 3.  

 

Results for the continuous format models showed that 17 out of a total of 24 models calibrated had 

pairings of predicted and observed that were significantly unlikely to occur by random chance (at the 

95% level, and averaged over all 5 cross-validated periods). Of these, 8 had explained variances 

greater than 5%. This has been chosen as an arbitrary level in this study as showing some potential 

predictability. These are summarised in table 6. 

 

4.6 Constituent variables 

 

When the contribution of each constituent ocean-atmosphere state variable to each PC was 

ascertained, and then the resulting contribution of each PC to the final predictive equation, the result in 
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most instances was that no predictor variable stood out as contributing significantly more than other 

independent variables to any of the predictive equations. This is in part due to the orthogonal nature of 

the principal components, so that the methodology chosen in this study has contributed to the 

difficulty in finding any real world explanations for the predictability displayed in the model 

equations. However, a summary of variable contributions to predictions is discussed below. 

 

Table 6: Summary of explained variances and associated p levels for the 8 models with explained 

variance of greater than 5%, averaged over all 5 cross-validated periods 

Dependent variable Ev p

Summer Lake Pukaki inflows 0.14 0.00

Autumn Hermitage rain days 0.11 0.01

Autumn Rainfall combination 0.17 0.00

Autumn Hermitage rainfall 0.16 0.00

Winter Lake Pukaki inflows 0.19 0.00

Winter Lake Pukaki + Tekapo inflows 0.08 0.00

Spring Hermitage rain days 0.12 0.00

Spring Hermitage rainfall 0.10 0.01

Average periods 1-5

 

 

The predictor variable that is chosen most often and ranked most highly in the model calibration 

process for all models is SST5. This is the Mullan sea surface temperature index region 5, which is 

SSTs averaged over an area that is north of New Zealand and east of Australia. The predictor variable 

chosen second most often is Sunspot number, closely followed by sea level pressure at 35 degrees 

South latitude, 325 degrees longitude, a point off the east coast of South America. Next most 

important is the QBO, followed by SST8 (the SST index located in the Indian Ocean), and then the sea 

level pressure at 25 degrees South latitude, 285 degrees longtitude, a point off the West Coast of South 

America. 
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Models predicting different seasons of the same dependent variable utilised very different independent 

variables to predict each different season. The relative importance of ocean-atmosphere state variables 

as predictors for each season’s predictive models are listed in table 7 for the highest ranking 20 

variables for every season. For example, a variable that had one 20
th

 place ranking for one model 

would score 1. A variable that had top ranking for three models would rank 20 points x 3 models = 60. 

 

SST5 comes out clearly as the strongest predictor for winter inflow prediction models. All winter 

models in the best model set have SST5 as the strongest predictor, except the model predicting Lake 

Pukaki inflows, which uses it as the fourth strongest predictor. Other important winter inflow 

predictors include SLP and 700hPa geopotential height locations to the north-east of New Zealand, to 

the south-west of Australia, and over South America. Also included is the Trenberth indice MZ2, 

which is the difference in air pressure between Gisborne and Invercargill, representing a north-south 

pressure gradient over the Waitaki River catchment, or zonal flow across the South Island.  

 

Most summer models utilise the QBO as their most important predictor. This includes all the inflow 

prediction models in the summer initial models subset. Their next most important predictors are SLP 

and 700hPa geopotential height gridpoints over the South American land mass. However, the summer 

Hermitage raindays prediction models in the best models subset, do not include QBO amongst their 20 

most important predictors. They use Hermitage rain days from last season (ie. persistence) and the 

700hPa geopotential height at 25 degrees latitude and 305 degrees longitude (a point over Brazil) as 

their two most relevant predictors.  
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Table 7: Sum of individual rankings (1-20) of the top 20 constituent variables for each model in the 

initial models subset, divided into seasons. eg. A variable that had one 20
th

 place ranking for one 

model would score 1. A variable that had top ranking for three models would rank 20 points x 3 

models = 60. 
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QBOanom 20 20 20 20 80 MSLP-25.285 5 19 18 20 7 17 18 104
MSLP-35.325 17 13 19 19 68 SST7 19 17 19 14 14 15 98
MSLP-45.235 9 8 16 10 17 60 SST5 18 16 20 20 20 94

SST8 13 16 17 12 58 SST6 20 10 11 12 19 7 7 86
SST7 8 18 13 13 52 MSLP-55.335 12 3 12 17 18 17 79

700hpa-35.345 19 8 18 45 700hpa-25.275 15 15 9 8 16 16 79
700hpa-15.315 15 12 17 44 SST1 20 20 11 12 14 77
700hpa-35.275 14 15 14 43 700hpa-25.295 16 17 8 13 13 67

Sunspotnoanom 18 6 18 42 Sunspotnoanom 13 9 5 11 6 9 53
MSLP-5.315 3 9 1 14 15 42 SST2 15 12 12 8 6 53
MSLP-45.255 5 7 11 10 6 3 42 MSLP5.295 7 8 17 12 3 4 51
MSLP-55.155 10 12 4 15 41 700hpa-15.195 14 14 11 12 51

700hpa-55.145 17 7 16 40 SST8 19 2 11 17 49
Hermraindayanoms 19 20 39 700hpa-15.215 13 7 15 11 46

700hpa-25.305 20 19 39 Hokitikatempanom 1 6 19 19 45
MSLP-5.185 14 11 1 11 37 MSLP-5.255 10 13 11 5 5 44

700hpa-25.265 18 18 36 MSLP-25.205 3 3 1 15 9 8 39
MSLP-35.255 17 16 33 MSLP-45.205 7 8 2 10 10 37
MSLP-45.95 6 3 14 9 32 MSLP5.305 19 15 1 35
MSLP-25.245 15 14 29 MSLP-5.235 18 15 33
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MSLP-35.325 16 9 16 18 16 75 700hpa-35.285 17 17 34 143
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All the autumn models in the initial subset are rainfall or rain days prediction models. There are no 

Autumn inflow prediction models in the initial models subset. The best predictor variables utilised by 

these rainfall and rain day prediction models are sea level pressure and 700hPa geopotential height 

locations over South America and at high latitudes to the south-west of Australia. Hokitika rainfall and 

temperature (from last season) also feature as important predictors. Sea surface temperature indices 

also featured strongly as predictors of Autumn rainfall and raindays. Important SST indices were 

SST1, SST5, SST6, SST7, and SST8. 

 

The predictor variables which appear to be important for predicting spring rainfall and rain days are all 

sea level pressure and 700hpa geopotential height locations in the mid-latitudes. Longitudinally, these 

locations are found just north of New Zealand, in the mid-Pacific, and over South America. 

 

 

5. SUMMARY AND CONCLUSIONS 

 

This research has focussed on creating season ahead forecasts of lake inflows and rainfall, 

predominantly in a single river catchment, the Waitaki river. Although seasonal hydro-climatic 

research internationally is moving toward greater spatial resolution of forecast models and tailoring 

forecast products more to end user needs, this area of research is still in its infancy and has not been 

successfully applied in New Zealand before.  

 

Forecast models were created to be easily applied operationally in the management of a hydro-

electricity generation setting, and this has been achieved. The models calibrated in this study are 
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currently being tentatively applied in management of the hydro-electricity scheme in the Waitaki 

river catchment. A number of predictive models could be said to predict better than random chance 

and better than the long term mean as a predictor. One model, that predicting winter Lakes Pukaki + 

Lake Tekapo combined inflows, predicts all magnitudes of the predictand better than random chance 

and better than the long term mean as a predictor. Confidence limits around most model predictions 

in this study offer some skill when compared with the range of all probable inflows or rainfall (based 

on the 80 year recording history in the catchment). 

 

Estimation of model error was a significant part of this study, and is an important part of the creation 

of tools to be used in an environment where the consequences of relying on poor predictions are 

large. Software was developed to apply randomisation testing to observed-predicted pairs, and this 

testing allowed the conclusion that many of the models had significantly more skill than random 

chance. Attention was given to the variability in predictive skill between cross-validated models, and 

methods for defining the model, from the five cross-validated models developed, to be used 

operationally against future data. Probabilistic tercile formats were intentionally avoided, as being 

not operationally applicable. The use of a continuous predictand with confidence limits applied is 

unusual in seasonal climate forecasting, but there is beginning to be some precedent for this format, 

especially from researchers seeking to create tools from which some operational decisions can be 

made.  

 

The winter Lake Pukaki inflow models can be said to be those with the strongest predictive 

relationships in this study. Winter was the season predicted with most skill, with models predicting 

autumn dependent variables yielding models with almost as much skill as winter models. Spring and 
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summer predictions generally were less skilful than those for winter and autumn. Inflows could be 

predicted with some skill in winter and summer, but not rainfall. The reverse was true for autumn and 

spring, where rainfall could be predicted with some skill, but not inflows. If rainfall can be forecast 

with skill over inflows in some seasons, there is merit in using these rainfall forecasts as a proxy for 

inflows in hydro storage management in an all year round hydro management scheme. Implicit in 

these differences was the issue of snowmelt in a large snow-covered catchment. However, there is 

temporal and spatial variation in the predictability, and therefore using forecasts of different 

dependent variables at different times of the year is a potential means to improve the information 

available to hydro managers on the Waitaki river. 

 

A significant reason for comparing model outcomes with random chance and the mean-as-predictor 

is that comparison with previous international forecasts is difficult due to varying spatial scale of 

forecasts, different predictands, prediction format, and techniques of model validation. The amount 

of variance in the rainfall record that is potentially predictable, given perfect models, is stated by 

various researchers to be 30% or less (Madden et al., 1999), or approximately 50% (Renwick, 2003), 

in New Zealand. The rest of the variance in the rainfall record is deemed to be chaotic, and therefore 

unpredictable. Mullan and Renwick (1996) captured up to 6% of the variance in autumn and winter 

rainfall in the north of the South Island on independent trials, but found forecast models had little 

skill in the central and lower South Island. Researchers have explained over 50% of the variance in 

seasonal precipitation over eastern Australia (Cordery, 1999), and 35% of the variance in seasonal 

rainfall models in the Pacific Islands (He and Barnston, 1996). The same figure for studies in South 

America is up to 70% (Hastenrath and Greischar, 1993), 30% in South Africa (Hastenrath et al., 

1995), and 15 to 25% in the eastern Mediterranean. Techniques vary between methods of seasonal 
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forecasting of rainfall and validation techniques, so it is difficult to directly compare these explained 

variance figures. 

 

 It cannot be said that all models consistently predict either wet or dry seasons with more skill – ie it 

cannot be concluded from this study that it is easier to predict a low inflow season or a high inflow 

season, or a low rainfall season or a high inflow season. 

 

The lack of stability of relationships found between land-ocean-atmosphere variables and seasonally 

lagged inflows and rainfall meant that cross-validation model skill varied considerably. The highest 

scoring models calibrated in this study are also the ones that display the lowest variability amongst 

goodness of fit scores for all five period models. The conclusion is that these models with low 

variability of skill between period models (and high skill scores over all) will demonstrate a far 

greater robustness in the predictive relationships they define.  

 

A major theme in this research has been to attempt to predict seasonal inflows and rainfall on a finer 

spatial scale than has been done before in New Zealand. It was not generally found that predicting 

larger macro-catchments provided any increase or decrease in skill over predicting the dependent 

variables over a finer spatial area. The only possible exception to this was that of the model 

predicting Lakes Pukaki + Tekapo inflows for winter. The application here of statistical seasonal 

climate forecasting methods to river flows and to a single catchment, with some success, would lead 

to the conclusion that seasonal climate forecasting on single catchment scale, and focussed to end 

user needs, is possible with some skill. 
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Models predicting inflows and rainfall for different seasons in this study use very different sets of 

predictor variables to accomplish their seasonal predictability. This leads to the conclusion that 

inflows and rainfall, at least in a catchment with significant snow in the South Island of New 

Zealand, should be studied in the future either separately, or with the knowledge that their predictive 

mechanisms are likely to be very different. Similarly, predicting the same dependent variable but for 

different seasons led to different contributing variables. This also leads to the conclusion that 

different wider physical causative mechanisms are behind the predictability in different seasons, and 

they too, should be studied separately in any future research in this area. SST5 was found to have 

more relevance than any other predictor in predicting Waitaki river inflows and rainfall in any 

season.  

 

The models calibrated with SOI and IPO included as predictor variables were invariably worse in 

their predictive skill than those without. In addition to this, SST3 and SST4 (those in the equatorial 

area of the Pacific ocean most influenced by the El Nino-Southern Oscillation) were the only SST 

areas that did not rank in the top 20 constituent variables for any of the initial subset of models, and 

MSLP and 700hPa geopotential height locations in the top 20 ranking of predictive variables for all 

models are all located in the mid-latitudes. There are no equatorial locations amongst them. The 

conclusion from these findings is that equatorial ocean-atmosphere state variables had a much 

smaller part to play in the predictability of these models than mid-latitude and local variables. ENSO 

related features were repeatedly poorly represented in important contributing variables to the models.  
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