659 research outputs found

    Artificial intelligence methods enhance the discovery of RNA interactions

    Get PDF
    Understanding how RNAs interact with proteins, RNAs, or other molecules remains a challenge of main interest in biology, given the importance of these complexes in both normal and pathological cellular processes. Since experimental datasets are starting to be available for hundreds of functional interactions between RNAs and other biomolecules, several machine learning and deep learning algorithms have been proposed for predicting RNA-RNA or RNA-protein interactions. However, most of these approaches were evaluated on a single dataset, making performance comparisons difficult. With this review, we aim to summarize recent computational methods, developed in this broad research area, highlighting feature encoding and machine learning strategies adopted. Given the magnitude of the effect that dataset size and quality have on performance, we explored the characteristics of these datasets. Additionally, we discuss multiple approaches to generate datasets of negative examples for training. Finally, we describe the best-performing methods to predict interactions between proteins and specific classes of RNA molecules, such as circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), and methods to predict RNA-RNA or RNA-RBP interactions independently of the RNA type

    PLIT: An alignment-free computational tool for identification of long non-coding RNAs in plant transcriptomic datasets

    Get PDF
    Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs which play a significant role in several biological processes. RNA-seq based transcriptome sequencing has been extensively used for identification of lncRNAs. However, accurate identification of lncRNAs in RNA-seq datasets is crucial for exploring their characteristic functions in the genome as most coding potential computation (CPC) tools fail to accurately identify them in transcriptomic data. Well-known CPC tools such as CPC2, lncScore, CPAT are primarily designed for prediction of lncRNAs based on the GENCODE, NONCODE and CANTATAdb databases. The prediction accuracy of these tools often drops when tested on transcriptomic datasets. This leads to higher false positive results and inaccuracy in the function annotation process. In this study, we present a novel tool, PLIT, for the identification of lncRNAs in plants RNA-seq datasets. PLIT implements a feature selection method based on L1 regularization and iterative Random Forests (iRF) classification for selection of optimal features. Based on sequence and codon-bias features, it classifies the RNA-seq derived FASTA sequences into coding or long non-coding transcripts. Using L1 regularization, 31 optimal features were obtained based on lncRNA and protein-coding transcripts from 8 plant species. The performance of the tool was evaluated on 7 plant RNA-seq datasets using 10-fold cross-validation. The analysis exhibited superior accuracy when evaluated against currently available state-of-the-art CPC tools

    A new computational framework for the classification and function prediction of long non-coding RNAs

    Get PDF
    Long non-coding RNAs (lncRNAs) are known to play a significant role in several biological processes. These RNAs possess sequence length greater than 200 base pairs (bp), and so are often misclassified as protein-coding genes. Most Coding Potential Computation (CPC) tools fail to accurately identify, classify and predict the biological functions of lncRNAs in plant genomes, due to previous research being limited to mammalian genomes. In this thesis, an investigation and extraction of various sequence and codon-bias features for identification of lncRNA sequences has been carried out, to develop a new CPC Framework. For identification of essential features, the framework implements regularisation-based selection. A novel classification algorithm is implemented, which removes the dependency on experimental datasets and provides a coordinate-based solution for sub-classification of lncRNAs. For imputing the lncRNA functions, lncRNA-protein interactions have been first determined through co-expression of genes which were re-analysed by a sequence similaritybased approach for identification of novel interactions and prediction of lncRNA functions in the genome. This integrates a D3-based application for visualisation of lncRNA sequences and their associated functions in the genome. Standard evaluation metrics such as accuracy, sensitivity, and specificity have been used for benchmarking the performance of the framework against leading CPC tools. Case study analyses were conducted with plant RNA-seq datasets for evaluating the effectiveness of the framework using a cross-validation approach. The tests show the framework can provide significant improvements on existing CPC models for plant genomes: 20-40% greater accuracy. Function prediction analysis demonstrates results are consistent with the experimentally-published findings

    Common Features in lncRNA Annotation and Classification: A Survey

    Get PDF
    Long non-coding RNAs (lncRNAs) are widely recognized as important regulators of gene expression. Their molecular functions range from miRNA sponging to chromatin-associated mechanisms, leading to effects in disease progression and establishing them as diagnostic and therapeutic targets. Still, only a few representatives of this diverse class of RNAs are well studied, while the vast majority is poorly described beyond the existence of their transcripts. In this review we survey common in silico approaches for lncRNA annotation. We focus on the well-established sets of features used for classification and discuss their specific advantages and weaknesses. While the available tools perform very well for the task of distinguishing coding sequence from other RNAs, we find that current methods are not well suited to distinguish lncRNAs or parts thereof from other non-protein-coding input sequences. We conclude that the distinction of lncRNAs from intronic sequences and untranslated regions of coding mRNAs remains a pressing research gap

    Uncovering structural genomic contents of wheat

    Get PDF
    Production rate of wheat, an important food source worldwide, is significantly limited by both biotic and abiotic stress factors. Development of stress resistant cultivars are highly dependent on the understanding of the molecular mechanisms and structural elements in wheat and/or wheat interacting species. The huge and complex genome of bread wheat (BBAADD genome) has stood as a vital obstruction for understanding the molecular mechanisms until the recent availability of wheat reference genome. In this study, we provided improved and/or novel methodologies to reveal structural elements in plants. These methodologies include miRNA identification, manual curation of lncRNAs, identification of lncRNAs using wheat specific prediction models and a comparative analysis of WES data analysis tools. Using these techniques, we here focused on the uncovering of structural genomic contents of wheat. With an improved identification methodologies and manual annotation of lncRNAs, we revealed several miRNAs and lncRNAs in Triticum turgidum species and Wheat stem sawfly (WSS), a major pest of wheat. We provided a comprehensive transcriptome analysis of tetraploid wheat varieties and revealed drought responsive transcripts. Additionally, we presented the first clues of miRNA mobility between WSS larva and hexaploid wheat. Thereby, besides enrichment of the genetic information available for wheat species, this study provides important elements driving both abiotic and biotic stress responses in wheat. In this study, we also applied machine learning approaches for the fast and accurate prediction of lncRNAs in wheat species. With annotated genomes of hexaploid and tetraploid wheats, we provided better accuracy scores (99.81%) over the most popular tools available. Finally, we conducted a comparative analysis of the tools used for variant discovery. Among eight aligners and three callers, we chose the best combination for the variant calling in wheat. Later, we performed variant calling in 48 lines of elite wheat cultivars using the best tool sets. Overall, this study focused on the improvements on the identification of miRNAs, lncRNAs and structural variations in whea

    A Deep Learning Approach to LncRNA Subcellular Localization Using Inexact q-mer

    Get PDF
    Long non coding Ribonucleic Acids (lncRNAs) can be localized to different cellular components, such as the nucleus, exosome, cytoplasm, ribosome, etc. Their biological functions can be influenced by the region of the cell they are located. Many of these lncRNAs are associated with different challenging diseases. Thus, it is crucial to study their subcellular localization. However, compared to the vast number of lncRNAs, only relatively few have annotations in terms of their subcellular localization. Conventional computational methods use q-mer profiles from lncRNA sequences and then train machine learning models, such as support vector machines and logistic regression with the profiles. These methods focus on the exact q-mer. Given possible sequence mutations and other uncertainties in genomic sequences and their role in biological function, a consideration of these changes might improve our ability to model lncRNAs and their localization. I hypothesize that considering these changes may improve the ability to predict subcellular localization of lncRNAs. To test this hypothesis, I propose a deep learning model with inexact q-mers for the localization of lncRNAs in the cell. The proposed method can obtain a high overall accuracy of 94.7%, an average of 91.3% on a benchmark dataset, using the 8-mers with mismatches. In comparison, the exact 8-mer result was 89.8%. The proposed approach outperformed existing state-of-art lncRNA predictors on two different datasets. Therefore, the results support the hypothesis that deep learning models using inexact q-mers can improve the performance of computational lncRNA localization algorithms. The lengths of the lncRNAs vary from hundreds to thousands of nucleotides. In this work, I also check whether the length of lncRNA will impact the prediction accuracy. The results show that when the lncRNA sequence\u27s length is between 2000 and 3000 nucleotides, our model is more accurate

    Non-coding yet non-trivial: a review on the computational genomics of lincRNAs

    Get PDF

    Role of Next-Generation RNA-Seq Data in Discovery and Characterization of Long Non-Coding RNA in Plants

    Get PDF
    The next-generation sequencing (NGS) technologies embrace advance sequencing technologies that can generate high-throughput RNA-seq data to delve into all the possible aspects of the transcriptome. It involves short-read sequencing approaches like 454, illumina, SOLiD and Ion Torrent, and more advance single-molecule long-read sequencing approaches including PacBio and nano-pore sequencing. Together with the help of computational approaches, these technologies are revealing the necessity of complex non-coding part of the genome, once dubbed as “junk DNA.” The ease in availability of high-throughput RNA-seq data has allowed the genome-wide identification of long non-coding RNA (lncRNA). The high-confidence lncRNAs can be filtered from the set of whole RNA-seq data using the computational pipeline. These can be categorized into intergenic, intronic, sense, antisense, and bidirectional lncRNAs with respect to their genomic localization. The transcription of lncRNAs in plants is carried out by plant-specific RNA polymerase IV and V in addition to RNA polymerase II and target the epigenetic regulation through RNA-directed DNA methylation (RdDM). lncRNAs regulate the gene expression through a variety of mechanism including target mimicry, histone modification, chromosome looping, etc. The differential expression pattern of lncRNA during developmental processes and different stress responses indicated their diverse role in plants

    Detecting and comparing non-coding RNAs in the high-throughput era.

    Get PDF
    In recent years there has been a growing interest in the field of non-coding RNA. This surge is a direct consequence of the discovery of a huge number of new non-coding genes and of the finding that many of these transcripts are involved in key cellular functions. In this context, accurately detecting and comparing RNA sequences has become important. Aligning nucleotide sequences is a key requisite when searching for homologous genes. Accurate alignments reveal evolutionary relationships, conserved regions and more generally any biologically relevant pattern. Comparing RNA molecules is, however, a challenging task. The nucleotide alphabet is simpler and therefore less informative than that of amino-acids. Moreover for many non-coding RNAs, evolution is likely to be mostly constrained at the structural level and not at the sequence level. This results in very poor sequence conservation impeding comparison of these molecules. These difficulties define a context where new methods are urgently needed in order to exploit experimental results to their full potential. This review focuses on the comparative genomics of non-coding RNAs in the context of new sequencing technologies and especially dealing with two extremely important and timely research aspects: the development of new methods to align RNAs and the analysis of high-throughput data

    Transcriptome Analysis of Non‐Coding RNAs in Livestock Species: Elucidating the Ambiguity

    Get PDF
    The recent remarkable development of transcriptomics technologies, especially next generation sequencing technologies, allows deeper exploration of the hidden landscapes of complex traits and creates great opportunities to improve livestock productivity and welfare. Non-coding RNAs (ncRNAs), RNA molecules that are not translated into proteins, are key transcriptional regulators of health and production traits, thus, transcriptomics analyses of ncRNAs are important for a better understanding of the regulatory architecture of livestock phenotypes. In this chapter, we present an overview of common frameworks for generating and processing RNA sequence data to obtain ncRNA transcripts. Then, we review common approaches for analyzing ncRNA transcriptome data and present current state of the art methods for identification of ncRNAs and functional inference of identified ncRNAs, with emphasis on tools for livestock species. We also discuss future challenges and perspectives for ncRNA transcriptome data analysis in livestock species
    corecore