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ABSTRACT 

Long non-coding RNAs (lncRNAs) are known to play a significant role in several biological 

processes. These RNAs possess sequence length greater than 200 base pairs (bp), and so 

are often misclassified as protein-coding genes. Most Coding Potential Computation (CPC) 

tools fail to accurately identify, classify and predict the biological functions of lncRNAs in plant 

genomes, due to previous research being limited to mammalian genomes. 

In this thesis, an investigation and extraction of various sequence and codon-bias features for 

identification of lncRNA sequences has been carried out, to develop a new CPC Framework. 

For identification of essential features, the framework implements regularisation-based 

selection. A novel classification algorithm is implemented, which removes the dependency on 

experimental datasets and provides a coordinate-based solution for sub-classification of 

lncRNAs. For imputing the lncRNA functions, lncRNA-protein interactions have been first 

determined through co-expression of genes which were re-analysed by a sequence similarity-

based approach for identification of novel interactions and prediction of lncRNA functions in 

the genome. This integrates a D3-based application for visualisation of lncRNA sequences and 

their associated functions in the genome.  

Standard evaluation metrics such as accuracy, sensitivity, and specificity have been used for 

benchmarking the performance of the framework against leading CPC tools. Case study 

analyses were conducted with plant RNA-seq datasets for evaluating the effectiveness of the 

framework using a cross-validation approach. The tests show the framework can provide 

significant improvements on existing CPC models for plant genomes: 20-40% greater 

accuracy. Function prediction analysis demonstrates results are consistent with the 

experimentally-published findings. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Genomics is a field which focusses on studying the genome of organisms. The genome is 

made up of DNA sequence which codes for protein structures required for normal functioning 

of cells and tissues. Apart from these protein-coding sequences, DNA also consists of several 

other types of sequences which do not code for any protein structures but play a pivotal role in 

the gene regulation process. These non-coding RNA sequences have also been found to be 

associated with several cancer types (Huarte, 2015). They affect the proliferation, migration, 

survival, genomic stability and in the regulation of cellular homeostasis. Current advancements 

in genomics have enabled sequencing of coding and non-coding transcripts. To identify their 

potential functions in various biological processes, it is essential to accurately identify these 

sequences in the genome. Identification of these non-coding RNAs can be performed through 

computational algorithms which can predict these transcripts with certain degree of accuracy, 

however accurate computationally identification of these non-coding RNA sequences and their 

functions in plants is still an open problem. The research presented in this thesis addresses 

the gaps in computational genomics with application to RNA sequence analysis in plant 

datasets. 

This chapter introduces the background to the problem and the motivation for undertaking the 

research. It then identifies the research questions recognized from the study of current 

research developments in identification, classification and function prediction of long non-

coding RNA (lncRNA) sequences. This is followed by a description of the aims and objectives 

of the thesis. A short description of methods adopted in order to achieve the primary research 

goals is also provided, followed by a summary of the research contributions made in the project. 

This chapter also clarifies the scope of the research undertaken. A summary of the work is 

presented which is followed by the description of the thesis structure. 

1.2 Background 

DeoxyriboNucleic Acid (DNA) is the hereditary substance found in the nucleus of a cell in all 

cellular organisms. However, small amounts of DNA can also be found in the mitochondria, 

otherwise known as mitochondrial DNA (mtDNA). DNA is primarily made up of four chemical 

bases: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). These chemical bases pair 

up with each other to form base pairs (bp). For example, A pairs with T and G pairs with C 
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(Figure 1.1). Each base is attached to a phosphate and sugar molecule to form a nucleotide. 

These nucleotides are organized in two long DNA strands forming a double helix. 

Figure 1.1: Graphical illustration of Chromosome, DNA and Gene in the nucleus of a cell. After 
(Genome.gov, 2014). 

The DNA encodes a functional unit of heredity called gene (Figure 1.1) which is made up of 

DNA, acting as instructions for making molecules called proteins. The human genomic DNA is 

estimated to contain 25,000 – 30,000 genes encoding several different proteins required for 

cellular differentiation, repair and maintenance of a cell. These functions as antibodies binding 

to foreign particles such as bacteria and viruses, enzymes involved in undertaking several 
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chemical reactions, messenger proteins involved in transmission of signals for coordinating 

biological processes, as structural components providing support and structure for the cells, 

and as transporters responsible for conduction of ions and small molecules across the cell. 

These protein structures are formed by the processes involving transcription and translation 

(Figure 1.2). Transcription involves transfer of information from DNA to messenger RNA 

(mRNA). The DNA serves as template for complementary base pairing through RNA 

polymerase enzyme which catalyses pre-mRNA molecule. The pre-mRNA undergoes 

processing inside the nucleus to form mature mRNA. The resulting mRNA then translocate out 

of the nucleus into the cytoplasm of the cell where it undergoes translation. The translation 

process involves conversion of mRNA encoded information into a polypeptide chain. The 

polypeptide chain undergoes folding which forms into a compact molecular structure called 

protein. The protein is transported to various locations in the cell for performing cellular 

function.   

Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.

Figure 1.2: Expression of a gene through the processes of transcription and translation. 
(Clancy and Brown, 2008). 
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The genome of an organism comprises of a complete DNA sequence containing all the 

information needed for building and maintaining that organism. A human genome is made up 

of 3 billion bp which are distributed across 24 chromosomes residing in the nucleus of each 

cell. The genome encodes numerous protein-coding genes which are required for the normal 

functioning of cells and tissues in an organism. Genome sequencing has revealed that 98% of 

the genome which is transcribed into RNA has little or no protein-coding ability (Xie et al., 

2014a). This class of RNA is called non-coding RNAs (ncRNAs). Additionally, the majority of 

ncRNAs are expressed along with protein-coding genes thus displaying accurate localisation 

within the cell which mainly suggests their potential regulatory functions. 

ncRNAs are functionally categorised into two types: housekeeping and regulatory ncRNAs. 

Housekeeping ncRNAs include transfer RNA (tRNA), ribosome-associated RNA (rRNA), small 

nuclear RNA (snRNA) and small nucleolar RNA (snoRNA) playing critical roles in cellular and 

processes and are involved in maintenance of cellular functions. While regulatory ncRNAs 

include micro RNA (miRNA), small interfering RNA (siRNA), long non-coding RNA (lncRNA), 

enhancer ncRNA (eRNA), promoter-associated RNA (PARs) and piwi-interacting RNA 

(piRNA). 

Unlike other ncRNAs and protein-coding genes which are highly conserved across the 

genome, lncRNAs exhibit lower sequence conservation. The majority of lncRNAs possess 

sequence length greater than 200 bp whereas other classes of ncRNAs commonly occur with 

sequence lengths less than 200 bp. Due to their longer lengths, they are often misclassified as 

protein-coding genes. In contrast to the protein-coding sequences having experimentally-

verified functions, only a small fraction of lncRNA sequences have been known to be 

associated with molecular function. However, through experimental studies, lncRNAs have 

been implicated in many crucial cellular and biological processes such as genomic imprinting, 

X-chromosome inactivation, centromere and telomere organisation, nuclear trafficking and 

sub-cellular organisation. Additionally, changes in the expression of lncRNAs have been 

reported in multiple diseases which makes them an important therapeutic target. The function 

of lncRNA in the genome generally depends on four factors: (1) Sequence composition, (2) 

Pattern of expression, (3) Interactions with protein-coding genes, and (4) Genomic localisation. 

To determine each of the factors, several methods have been evolved. 

Since the 1970s, several technologies have emerged for sequencing DNA, including Sanger 

sequencing and Maxam-Gilbert sequencing, the first-generation sequencing technologies 

which initiated the sequencing of DNA through conventional methods (Heather and Chain, 
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2016; Mardis, 2017). However, due to the speed of analysis and cost involved, a second 

generation of sequencers emerged which included Illumina, Ion Torrent, Roche/454, 

ABI/SOLiD sequencers (Heather and Chain, 2016; Mardis, 2017). 

The emergence of powerful machines revolutionised DNA sequencing and analysis. However, 

second generation sequencers involved a Polymerase Chain Reaction (PCR) amplification 

step which was expensive and took longer time. To remedy the problems caused by Second 

Generation Sequencing (SGS) machines, a third generation of sequencers often referred to as 

Next-Generation Sequencing (NGS) technology evolved which provided significant 

improvement over speed and cost (Heather and Chain, 2016; Mardis, 2017). This opened 

gateways to identification and analysis of various DNA sequences through bioinformatics 

approaches such as sequencing of the whole genome using Whole-Genome Sequencing 

(WGS), sequencing of protein-coding genes using Whole Exome Sequencing (WES), 

sequencing of RNAs using RNA sequencing (RNA-seq), identification protein-DNA interaction 

sites using Chromatin Immunoprecipitation sequencing (ChIP-Seq), identification of DNA 

methylation using MethylSeq (Buermans and den Dunnen, 2014).    

NGS sequencing technologies such as RNA-seq not only allowed identification of protein-

coding sequences but also allowed sequencing of lncRNA sequences. Through RNA 

sequencing, several lncRNAs have been catalogued in public databases such as GENCODE 

and NONCODE which have now been developed for storage of lncRNAs and protein-coding 

sequences (Harrow et al., 2012; Zhao et al., 2016b). Currently, a large number of the lncRNAs 

identified through RNA-seq and predicted through computational approaches have been 

reported in mammalian species. However, current knowledge on lncRNAs and their biological 

function in plants is still limited. Even though NGS techniques such as RNA-seq is actively 

used for identification and revelation of novel lncRNAs, accurately identifying the lncRNAs and 

determining their functions in model/non-model plant organisms is an area of open research. 

Through computational and statistical approaches, a number of tools have been developed 

which provide identification of novel lncRNAs. However, most of them fail in accurately 

determining lncRNAs in plants. These tools are primarily based on machine learning methods 

which involves extraction and statistical analysis of various features from the sequences. 

Current tools and methods employed for computational prediction of lncRNA transcripts can 

be broadly classified into alignment-free and alignment-based methods. Alignment-based tools 

predicts the lncRNAs based on their alignment with protein-coding sequences deposited in the 

web databases. The transcript sequences are scored, and the prediction is obtained based on 
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the degree of match with the protein-coding sequences. Alignment-free methods on the other 

hand derive the sequence characteristics features predominantly based on features such as 

sequence motifs (repetitive sequence patterns) and sequence length. Currently available 

methods do not provide information about the significance of each feature from the 

identification process. Determining feature importance, not only helps to accurately determine 

lncRNAs, but also highlights the crucial role of the features. 

Additionally, current methods developed for identification of lncRNAs are focused on 

mammalian species which means that similar computational models fail to provide a 

reasonable accuracy for the identification of plant lncRNA sequences. These include non-

availability of lncRNA sequences, known lncRNA-protein interaction data, protein-protein 

interaction data, lncRNA genomic annotation data for plant species. Since lncRNAs exhibit 

poor sequence conservation across several species unlike protein-coding genes which show 

high level of sequence conservation, identification of lncRNAs becomes even more challenging 

in plants. 

One of the major bottlenecks is the accurate determination of lncRNA sub-classes (Ma, Bajic 

and Zhang, 2013; St.Laurent, Wahlestedt and Kapranov, 2015) among the overabundance of 

sequences. lncRNAs are generally categorised into four types depending upon their position 

in the genome: (1) Sense and Antisense lncRNAs, (2) Intronic or Exonic lncRNAs, (3) 

Intergenic lncRNAs and (4) Bidirectional lncRNAs. Currently available computational tools and 

databases provide limited resources of lncRNA sub-classes in plants, due to which the majority 

of the lncRNAs remains unclassified. Also, prediction of these sub-classes using machine 

learning methods often leads to poor accuracy due to data limitations. Therefore, a smarter 

approach is required, which removes the dependency on machine learning classifiers and also 

provides detailed and comprehensive classification of lncRNA sequences. Classifications of 

lncRNA sequences are of fundamental importance for lncRNA studies as it is helpful for 

formulation of new hypothesis based on different lncRNA features and exploration of functional 

mechanisms of lncRNAs. 

Through experimental approaches, lncRNAs have been known to regulate several biological 

processes through interaction with protein-coding genes (Dykes and Emanueli, 2017). 

However, determination of functions of lncRNAs still remains challenging. Currently developed 

lncRNA function prediction tools rely on known lncRNA-protein interactions which are 

commonly available for mammalian species due to which the application of function prediction 

becomes limited and cannot be applied to other non-mammalian species (Hou et al., 2016; 
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Wang et al., 2016a; Zheng et al., 2016; Zhou et al., 2018). Furthermore, present research on 

lncRNA function imputation is predominantly based on co-expression of lncRNA and protein-

coding genes and disease association in humans (Guo et al., 2015; Hao et al., 2015; Wang 

et al., 2016b; Cagirici, Alptekin and Budak, 2017; Zhu et al., 2017). Currently, elucidation of 

lncRNA function is still in its infancy, due to limitation of known lncRNA-protein interaction data, 

potential functions becomes difficult to impute. 

1.3 Motivation for undertaking this work 

LncRNA plays a significant role in the regulation of several biological processes but accurate 

determination of lncRNAs and their sub-classes remains a challenge (Ma, Bajic and Zhang, 

2013). Current computational tools and methods developed for identification of lncRNAs are 

tailored for determining sequences derived from GENCODE, Refseq and NONCODE 

databases but fail to identify lncRNAs obtained from RNA-seq data (Wang et al., 2013; Li, 

Zhang and Zhou, 2014; Zhao et al., 2016a). A crucial step in lncRNA identification process 

requires extraction of relevant sequence features. These features are then used by Machine 

Learning (ML) methods such as Random Forest (RF), Support Vector Machines (SVM) and 

Logistic Regression (LR) for classification. Most of the currently developed ML-based methods 

derive features for classification based on sequence alignment-free and sequence alignment-

based approaches. Usage of the alignment-based approach for classification often requires 

significant computational resources such as processing power for sequence alignment process 

and storage of large number of alignment data due to which usage of such tools becomes 

computationally impractical and therefore limits their usage. Whereas alignment-free methods 

extract the features which depends on relative oligonucleotide frequencies or k-mers. K-mer is 

a small DNA substring of length k. Given a DNA string of length L, there are L – k + 1 possible 

k-mers for a given DNA substring. K-mer dependent alignment-free methods require longer 

computation times and therefore becomes unsuitable. These tools also tend to generalise the 

features for different species such as mammals and plants due to which important information 

regarding potential selection of synonymous codons remain hidden and cannot be identified in 

individual species. 

From various experimental studies (Harrow et al., 2012; St.Laurent, Wahlestedt and Kapranov, 

2015), lncRNAs have been known to belong to discrete categories based on their genomic 

position. Identification of various lncRNA sub-classes provides valuable insights into their 

sequence, structure, function and possible interactions with partner RNA sequences. Current 

methods and tools attempting to identify lncRNAs fail to classify the sequences. Additionally, 
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currently available data on lncRNA sub-classes in public databases only covers mammalian 

genomic sequences. Therefore, ML-based tools developed for identification of these sub-

classes are biased towards identification in mammalian species and a plethora of lncRNA 

sequences in plants are still waiting to be classified. 

Experimental results show lncRNAs are often subjected to multiple regulatory and processing 

steps which are coordinated through interactions with DNA and RNA-binding proteins (RBPs) 

(Moore, 2005). These interactions often regulate nuclear export of mRNA to the cytoplasmic 

region, and maturation, providing stability and translation of mRNA to protein structures. 

Therefore, identification of lncRNA-protein interaction becomes crucial for understanding their 

function; however current tools for function prediction are particularly designed for predicting 

functions in mammalian species. 

A wide range of studies have been conducted on optimisation of ML-based approaches for 

selection of optimal features but are commonly limited to application on microarray data. 

Therefore, considering the gaps in the literature, the main goal of this research is to address 

these limitations, by developing an approach for identification, classification and prediction of 

functions of lncRNA sequences. The proposed approach not only identifies the sequences but 

also determines essential features through a feature selection approach which provide insights 

into their sequence characteristics. The approach also implements a classification algorithm 

which removes the dependency from experimental datasets and therefore provides a position-

based classification approach widely applicable to multiple plant and mammalian species. For 

function prediction of lncRNAs, the approach relies on the identification of novel lncRNA-protein 

interactions based on sequence similarity between plant and mammalian transcript sequences. 

Functions are determined based on the Bayesian inference from the lncRNA-protein regulatory 

network. This unified approach of LPI determination and probabilistic computation of lncRNA 

functions provide a reliable computational model for plant species. 

1.4 Research questions 

An in-depth review of the current state-of-the-art presents the following research questions: 

1. Is it possible to computationally predict the molecular/regulatory functions of lncRNAs 

based on coexpression of lncRNAs and protein-coding genes? 

2. Can the lncRNA and protein interactions be predicted based on known lncRNA-protein 

interactions from humans? 

28 



	
	

           

       

 

       

   

 

    

           

         

         

      

        

     

   

  

           

     

          

         

 

      

  

       

       

  

         

       

 

     

 

 

   

3. How can we improve the prediction accuracy for distinguishing lncRNA sequences from 

protein-coding sequences as well as identify various sub-classes of lncRNAs based on 

the genomic coordinates? 

4. Can we observe an improvement in the prediction accuracy of lncRNA identification 

using sequence-based, ORF-based, and codon-biased features? 

1.5 Aims and objectives 

This proposed research aims to improve the currently developed computational approaches 

for lncRNA classification and function prediction in plant species. 

From the above aim, the following research objectives emerge: 

• Develop a computational workflow for identification of coding and non-coding regions 

in the DNA from reference and RNA-seq datasets. 

• Derive and extract sequence-based features from the RNA-seq data using coding 

potential measures established through literature review. 

• Develop an optimisation method by integrating a regression-based feature selection 

method with an iterative Random Forest (iRF) classifier for identifying and extracting 

optimal features in species-specific datasets. 

• Classification of lncRNAs using a LASSO-iterative Random Forest-Feature Selection 

(LiRF-FS) approach for obtaining optimal features derived from Refseq and GENCODE 

databases in plants and mammalian species. 

• Develop a pipeline for identification of lncRNAs from RNA-seq data using species-

specific feature subset. 

• Annotate lncRNAs into various sub-classes based on their genomic location. 

• Benchmark performance of the model against currently developed lncRNA 

identification methods. 

• Prediction of lncRNA and protein interactions in plant species. 

• Predict functions of lncRNAs based on lncRNA-protein inteactions and protein-protein 

interactions. 

• Visualisation of diverse lncRNA sequence transcripts annotated with function 

information. 

1.6 Research methodology 
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The initial stages of this work were focused on methods to identify the differentially expressed 

(DE) mRNAs from Arabidopsis thaliana time-series RNA-seq datasets. Subsequent part of this 

work involved development of the framework and demonstration on plant time-series datasets 

for performance evaluation of classification and function prediction methods. The following 

steps were implemented to achieve the goals enlisted in the thesis: 

a) Identification of differentially expressed genes (DEGs) 

We obtained the RNA-seq data of the A. thaliana apical-shoot dataset originally deposited 

by Klepikova et al. (A. V. Klepikova et al., 2015) and constructed a customized pipeline 

which involved several data pre-processing and post-processing steps for identification of 

DEGs. Pre-processing steps involved include format conversion, quality checks before and 

after data cleaning, reference alignment, transcript identification and quantification, 

merging quantified transcripts from control and cases samples and identification of DEGs 

using multiple methods. Post-processing steps included identifying DEGs by intersection 

of results from several different approaches, gene ontology enrichment analysis, pathway 

analysis, protein-protein interaction network analysis and alternative splicing analysis. 

b) Datasets 

For testing and implementation of the computational model, FASTA sequences of protein-

coding and long non-coding sequences were obtained from reference Refseq and 

GENCODE databases as well as from RNA-seq datasets. FASTA sequences of eight plant 

species were derived from the Refseq database whereas FASTA transcript sequences of 

two mammalian species (humans and mouse) were obtained from the GENCODE 

database. We obtained time-series datasets of A. thaliana and Z. mays species from the 

NCBI SRA database to implement the model already tested and benchmarked on reference 

datasets. 

c) Data preparation 

For feature extraction and classification of lncRNAs, lncRNA FASTA sequences extracted 

from reference databases were filtered using a cutoff value ≥ 200bp. An equal number of 

protein-coding sequences matching number of filtered lncRNA sequences were extracted 

to create a balanced dataset. 

d) Feature generation and extraction 
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To extract several different features from the FASTA sequences for classification analysis, 

scripts for extraction of features were constructed in Javascript. 7 sequence-based and 66 

codon-biased based features were extracted from protein-coding and lncRNA FASTA 

sequences. A feature matrix was constructed with 73 features which was normalized by 

scaling the values in all the columns between 0 and 1. Using normalised feature matrix, 

training and test sets were generated by dividing the feature set into 70% training set and 

30% test set which was applied similarly to all species. 

e) lncRNA identification using all features 

Once the data is normalized and separated into training and test sets, the Random Forest 

classifier from Python module “scikit-learn” (Pedregosa and Varoquaux, 2011) and the iRF 

classifier (Basu et al., 2018) were applied for identifying the lncRNA sequences in the test 

set, as well as to test the prediction accuracy of the lncRNA sequences using all features. 

f) Feature selection 

Feature selection was to extract relevant features using the LASSO regression method, 

which was combined with the iRF classifier to build an integrative approach for finding the 

optimal feature set in order to produce a higher accuracy. Several feature selection 

methods were tested against the LASSO method to benchmark its performance. 

g) Annotation of lncRNA sequences based on their genomic location 

Since lncRNAs can be found in several different regions in the genome, their genomic 

location determines their sub-type which can be categorised into sense, antisense, 

bidirectional and intergenic. Using FASTA sequences of lncRNAs, transcript sequences 

can be classified based on unique mapping algorithm. 

h) Identification of lncRNA-protein interaction pairs 

To identify potential lncRNA and protein interaction pairs, sequence similarity between 

lncRNA-lncRNA and protein-protein FASTA sequences was performed. FASTA sequences 

of plants were matched against FASTA sequences of human species having confirmed 

interaction as reported in NPInter database. Using NRLMF approach, sequences similarity 

matrices and adjacency matrix were used for obtaining novel interactions between lncRNA 

and proteins of plant sequences. LncRNA-protein interaction pairs were retained having 

Pearson Correlation Coefficient (PCC) ≥ -0.5. 
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i) Identification of protein-protein interaction pairs 

To identify the protein-protein interaction pairs, protein-protein interaction data was 

retrieved from the STRING database (Szklarczyk et al., 2015). Furthermore, mRNA 

associated Gene Ontology (GO) terms were also extracted. 

j) Functional prediction of lncRNAs 

Using lncRNA-protein interaction pairs, protein-protein interaction pairs and protein-

GOterm pairs, function prediction of lncRNAs was performed using BMRF method. 

Potential lncRNAs having probability ≥ 0.8 were retained and were annotated with 

molecular function using GOterms. 

k) Construction of visualisation framework 

By analyzing the results obtained from the above methods, a visualisation report was 

constructed using D3.js library which provides a graphical interactive interface to the results 

obtained from lncRNA identification, lncRNA sub-type annotation and lncRNA function 

prediction. 

1.7 Research scope 

The proposed computational method can be widely applied for the identification of lncRNA 

sequences and the selection of the optimal features in plant RNA-seq datasets. The approach 

depends on data processing using bioinformatics and statistical tools. It uses multiple 

sequence features for classification which can be widely used for feature extraction in multiple 

species. However, the method does not restrict the application of these features in lncRNA 

identification. The feature selection approach developed can be used for identification of 

essential features from FASTA-based datasets. The algorithm developed for sub-classification 

of lncRNAs relies on the availability of the FASTA sequences and the coordinates of lncRNAs 

and protein-coding transcripts. Therefore, the approach is purely sequence and position-based 

and cannot be applied on data with missing coordinates or sequences. 

The computational approach developed has been tested on two plant time-series RNA-seq 

datasets for identifying known lncRNA sequences and predicting functions based on time-

series expression. For determining lncRNA-protein interactions, the approach relies on the 

availability of FASTA sequences for computing sequence similarities based on known and 

confirmed experimental lncRNA-protein interactions. The scope of the project is to provide a 

computational method for identification, annotation and functional prediction of lncRNAs in 
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plants based on known lncRNA and mRNA data available from web-based genomic databases. 

Genome-wide exploration and function prediction of lncRNAs across several plant species is 

beyond the scope of this work. The proposed computational method can be widely applicable 

on several plant species for lncRNA prediction and function prediction. 

This research only focusses on partial and full-length lncRNA and protein-coding transcript 

sequences. It filters out the rest of the RNA sequences as the scope of the project is limited to 

the analysis of lncRNA and protein-coding sequences only. Each component of the 

computational framework can be individually applied on reference and RNA-seq datasets. 

1.8 Research contributions 

The contributions of this thesis are briefly outlined below: 

1. The thesis has adopted a novel approach for identification of lncRNAs which uses an 

ensemble of 73 carefully selected features that not only includes sequence-based 

features but also takes advantage of the codon-biased features to increase 

discriminative power. 

2. The thesis has implemented LASSO-based feature selection in combination with the 

iRF classification for the selection of the optimal features from the reference datasets 

of plants and mammalian species with higher prediction accuracy and Area Under the 

ROC Curve (AUC) scores. This approach selects optimal features based on the training 

and validation datasets, which can be widely implemented on test set data. It not only 

provides an optimal and informative set of features but also delivers a list of the higher-

order feature combinations which can be used to confirm the results obtained though 

LiRF-FS implementation. Implementation of LiRF-FS approach with codon-biased 

features promotes elucidation of potential regulatory motifs or codons which provide 

insights into distribution of codons in mRNA and lncRNA transcripts. 

3. The development of the coordinate-based mapping algorithm for sub-classification of 

lncRNAs removes dependency over machine learning methods for prediction. 

4. Demonstration of function prediction of lncRNA sequences in plant species through 

combinatorial approach utilizing NRLMF-derived lncRNA-protein interactions and 

determination of lncRNA functions using probabilistic Bayesian approach to Markov 

Random Fields. This provides accurate function predictions of unannotated lncRNAs 

using regulatory network and gene ontology data. 
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5. Plant-specific lncRNA prediction tool provides a useful resource for understanding 

lncRNA biology in plants. 

6. The developed computational methods provide valuable functional and mechanistic 

insight into lncRNAs which are crucial for informing subsequent functional studies. 

7. The lncRNA-protein interactions uncover relationships between lncRNA and protein in 

model and non-model plant species which help in determining potential functions of 

lncRNAs. 

8. Implementation of lncRNA prediction, feature selection using LASSO and iRF, lncRNA 

sub-classification, lncRNA-protein interaction prediction and lncRNA function 

annotation as a computational framework will provide a useful bioinformatics resource 

for biomedical research studies. 

9. Implementation of LiRF-FS approach with codon-biased features promote elucidation 

of potential regulatory motifs or codons which provide insights into distribution of codons 

in mRNA and lncRNA transcripts. 

1.9 Alternative splicing and translation processes 

Once the transcription is completed (as described in Section 1.2), the pre-mRNA or premature-

mRNA sequences undergo alternative splicing before translation into protein structure. The 

pre-mRNA sequence is composed of introns and exons. Conversion of the pre-mRNA to 

mature-mRNA or mRNA transcript sequence requires removal of introns and ligation of exons 

which codes for a gene. A gene can be coded by one or more transcript sequences which 

ultimately depend on the selection of exons. The process in which the preferred exons are 

selected, and certain exons are skipped is called alternative splicing (Figure 1.3). 

Figure 1.3: Illustration of alternative splicing and generation of transcripts. 
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As shown in Figure 1.8, mRNA consists of multiple exons and introns. Splicing of the mRNA 

sequence can generate multiple transcripts of the same gene. For example, if the gene name 

is ABC1, then the selection of exon 1, 2 and 4 will generate transcript ID ABC1.1, exon selection 

2 and 3 will generate ABC1.2 and exon selection of 1 and 3 will generate ABC1.3. This means 

that all transcripts code for the same function and are represented by the gene name ABC. 

The entire process of transcription and translation involves three steps: In the first step, RNA 

polymerase binds to the promoter sequence, also known as the transcriptional start site (TSS) 

of the DNA strand (Figure 1.4). Transcription generates a primary transcript of the gene called 

pre-mRNA, which consists of exons and introns. This primary transcript contains multiple start 

codons (AUG) and stop codons (UAG/UGA/UAA). 

The sequence which lies in between the start and stop codon is called the open reading frame 

(ORF). A pre-mRNA transcript may contain single, multiple or no ORFs, depending upon the 

sequence it contains. The exons and introns are contained within the ORF sequences which 

are separated by GT-AG motifs called exon-intron boundaries. The sequence starting from the 

start codon until the sequence before GT motif, consists of an exonic sequence (exon 1). The 

sequence starting from GT and ending with first AG motif consists of an intronic sequence 

(intron 1). The sequence beginning after the first AG motif until sequence before the GT motif 

is exon 2 and so on, until the end of the sequence is reached. 

The second step involves production of mature mRNA transcript by alternative splicing 

mechanism. The mature mRNA consists of 5’ untranslated region (UTR) which is located 

upstream to the start codon, along with 5’CAP which caps the mature mRNA sequence to 

provide stability during the translation process. Capping is a process in which nucleotides on 

the 5’ end of the DNA undergoes modification to provide stability. 5’ CAP and 5’UTR itself is 

not translated but are required for the stability. Similarly, on the 3’ end of the sequence, the 

mRNA sequence is sometimes polyadenylated (poly-A) during the RNA sequencing. The poly-

A tails also ensures stability and nuclear export of the mRNA to tRNA molecule for protein 

synthesis. 
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Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.

Figure 1.4: Illustration of transcription, alternative splicing and translation events. After (Ben-
Hur et al., 2008) 

The third step involves export of the mature mRNA transcript from the nucleus into the 

cytoplasm where it binds to the rRNA molecule and the protein sequence is generated with the 

help of tRNA. The tRNA bearing the codon sequence complementary to the mRNA codon binds 

and releases the amino acid which forms the protein sequence. The protein sequence is then 

folded to form a protein structure which is exported to the different parts of the eukaryotic cell.  

1.10 Next-generation sequencing (NGS) 

NGS or deep sequencing is a high-throughput technology for sequencing of base-pairs in DNA 

or RNA samples. It is a revolutionary genomic tool by which valuable insights into the whole 

genome can be obtained. The whole genome sequencing application of NGS helps in 

identifying genetic variants such as Single Nucleotide Polymorphisms (SNPs), insertions, 

deletions and structural variants which contribute to many human diseases including cancer. 

NGS technology evolved by fundamental discovery of the DNA structure and developments of 

sequencing methods such as Sanger sequencing (Sanger and Coulson, 1975). To achieve 

routine sequencing on genomic scale, advances in multiple areas were brought together which 

led to development of polymerase chain reaction (Saiki et al., 1985, 1988). This led to 

development of fluorescent-based automated DNA sequencing and enabled sequencing of 

human genome which was accomplished in 2001 by Human Genome Project (Consortium, 

2001). Since then, many technologies have emerged which promoted many advances and the 

growth of bioinformatics. 
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Current sequencing platforms require shearing of DNA into molecular weights of several 

different sizes. DNA fragments with higher molecular weight are extracted and prepared as 

libraries for sequencing. Adapter sequences are ligated to 5’ and 3’ ends. Different sequencing 

technologies use different sets of adapters which depend on compatibility of adapter 

sequences with downstream processes in the protocol. Pre-processing also requires choosing 

suitable template for preparing sequence libraries which ultimately leads to detection of signal 

and bases from the genome. 

Several different platforms have been built for sequencing of genomes. The Illumina technology 

(Illumina, 2010) uses bridge amplification technology and sequencing-by-synthesis approach 

during library preparation steps. Fluorescently labeled dNTPs are incorporated into a growing 

DNA chain during sequencing such that each base is identified and acts as a reversible 

terminator. With this platform, high quality paired-end reads with length up to 2×150 bp can be 

generated in less than 30 hours. 

The sequencing templates in the Ion Torrent platform (Rothberg et al., 2011) developed by Life 

Technologies are generated on Sphere or Bead via emulsion Polymerase Chain Reaction 

(PCR) (Nakano et al., 2003). The Ion torrent chips consist of solid-state pH sensors which 

detect bases incorporated during sequencing by the release of H+ ions during the extension of 

each nucleotide, which changes the pH within the sensor wells. Since the sequencing is based 

on ion detection, it fails to differentiate between different bases which leads to the generation 

of homo-polymer errors (Merriman, Torrent and Rothberg, 2012). With ion torrent technology, 

average read lengths up to 400 bp can be produced with 60-80 million reads per run with ~10X 

(10 times) coverage in 4 hours. 

Another sequencing platform called Single Molecule Real-Time (SMRT) (Eid et al., 2009) 

developed by Pacific Biosciences is based on single molecule detection using optics for 

detecting fluorescently labelled nucleotides and the ligated adapters have hairpin loop structure 

which becomes circular after ligation to double stranded DNA fragments during library 

preparation. With SMRT sequencing, read length upto 15 kbp can be produced in 4 hours. 

Based on the above-mentioned sequencing technologies, NGS has several applications such 

as expression analysis using RNA-seq (Transcriptome sequencing), methylation analysis 

using Methylated DNA ImmunoPrecipitation Sequencing (MeDIPSeq), identification of protein 

binding sites using Chromatin Immunoprecipitation Sequencing (ChIP-Seq), de novo Whole 

Genome Sequencing (WGS), disease gene identification using Whole Exome Sequencing 

(WES) and identification of rare variants by Targeted Sequencing (TS). 
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WGS is commonly used for identification of disease association in whole genome which 

interrogates 3.2 billion base pairs of human genome. WES on the other hand is a cost-effective 

method and uses targeted sequencing technology which represents sequences using less than 

2% of the whole genome (van Dijk et al., 2014). De novo sequencing sequences DNA in the 

absence of a reference genome where sequence reads are assembled into short reads or 

“contigs” and quality of the coverage depends on the continuity and size of the contigs. In 

targeted sequencing, only subset of genomic region is isolated and sequenced with high 

coverage with 500-1000x coverage which allows researchers to focus data analysis on specific 

area of interests and allow identification of rare variants. Transcriptome sequencing allows the 

study of gene expression, which provides a comprehensive snapshot of the transcriptional 

profile of the cell rather than a fixed subset of genes. Additionally, it allows for the detection of 

splice junctions, isoforms, novel transcripts and gene fusions. Methylation sequencing 

application is primarily based on the detection of 5-methyl cytosine (5mC) methylation states 

in the DNA which significantly regulates gene expression (Phillips, 2008). With ChIP-Seq 

analysis, protein-DNA or protein-RNA interactions can be determined which significantly affect 

many biological processes. 

1.11 RNA Sequencing 

RNA Sequencing (RNA-seq) is a method for precisely measuring transcript levels and their 

isoforms. This includes messenger RNAs (mRNAs), non-coding RNAs (ncRNAs) and small 

RNAs (sRNAs). RNA-seq determines transcriptional profiles of RNAs by quantifying gene 

expression levels, splicing patterns, start sites and post-transcriptional modifications. Several 

technologies have developed methods for quantifying the transcriptome, which includes 

sequence-based and hybridisation approaches, incubating fluorescently labelled cDNAs or 

high-density oligo microarrays for the detection and quantification of spliced isoforms. These 

however possess several limitations, such as restriction on the range of signal detection which 

often requires intricate normalisation methods. On the other hand, the microarray-based 

approach determines cDNA sequences but is relatively expensive, of low throughput and most 

importantly not quantitative. 

To overcome the limitations over existing approaches, RNA-seq presents several advantages. 

First, RNA-seq is not limited to transcript detection of existing genomic sequences which makes 

it a particularly attractive tool for sequencing of non-model organisms whose sequences have 

not yet been determined. Secondly, the generation of short reads sequences provides 

information about how two exons are connected. Thirdly, RNA-seq reveals critical sequence 
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variations in the transcribed regions (Marioni et al., 2008). Fourthly, RNA-seq generates very 

low background noise, compared to microarrays. In contrast to microarrays, RNA-seq is highly 

accurate in terms of the quantification of expression levels. Therefore, RNA-seq is the first 

sequencing-based method that provides very high-throughput and quantitative results than 

other methods. 

Figure 1.5: Workflow of RNA-seq experiment. Long RNAs are converted into shorter sequence 
fragments by DNA fragmentation. In the next step, sequencing adapters are ligated to each 

cDNA fragment. Resulting sequence reads are then aligned against reference genome which 

are then classified into junction reads, exonic reads and poly(A) end-reads. These three types 

are then used to generate expression profile for each gene. 

For the identification and quantification of RNA sequences, several steps are involved in 

transcript profiling (Figure 1.5). Unlike smaller RNA sequences such as micro RNAs (miRNAs), 

piwi-interacting RNAs (piRNAs) and short interfering RNAs (siRNAs) which can be easily 

sequenced after ligation of adapters; larger RNA sequences require fragmentation into 200-

500 bp short read sequences for compatibility with major high-throughput sequencing 

approaches. Apart from sequencing, RNA-seq also faces certain informatics challenges such 

as development of efficient approaches for storing, retrieving and processing large amount of 

data to reduce errors in base calling and removal of low quality reads. Once high quality reads 

are obtained, short reads are mapped to reference genome using bioinformatics tools such as 
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Bowtie (Langmead et al., 2009), STAR (Dobin et al., 2013) and Tophat (Trapnell, Pachter and 

Salzberg, 2009). 

Read mapping reveals the transcriptome landscape of a sequenced sample. Where poly(A) 

sequences are identified by the presence of multiple As and Ts at the end of sequence reads, 

exon-exon junctions are identified by the presence of specific sequences (GT-AG 

dinucleotides) which can be confirmed by the detection of lower expression of intronic 

sequences that are removed during splicing. For larger transcriptomes, performing alignment 

leads to alignment of sequence reads at multiple locations on the genome. A solution to this 

problem is to assign these sequences based on mapping of reads to neighbouring unique 

sequences which can be applied to low copy number repeat sequences (Mortazavi et al., 

2008). However, for reads having higher copy numbers and larger repetitive regions, paired-

end sequencing can be applied in forward and reverse directions of the DNA strands, which 

extends the fragment length to 200-500 bp. 

1.11.1 RNA-seq data analysis 

For performing sequencing analysis, a workflow is required which entails steps for processing 

of raw sequence data and preparing it for further downstream analysis. Since RNA-seq has a 

variety of applications and analyses scenarios, an optimal pipeline cannot be suggested. The 

application of a workflow is adopted depending on the organisms being studied and their 

research objectives. For organisms having sequenced genomes, short reads from samples are 

aligned to the reference genome whereas for those without any sequenced genome, de novo 

assembly of reads is performed, which is followed by the mapping of contigs onto the 

transcriptome. 

Every experimental scenario in RNA-seq data analysis consists of five primary steps: 

(1) Performing quality checks, 

(2) Sequence alignment, 

(3) Transcript quantification, 

(4) Normalisation, and 

(5) Identifying DEGs. 

A key step in RNA-seq data analysis is the identification of DEG. Quality control of raw reads 

involves analysis of GC content, sequence quality, presence of adapter sequences, duplicate 

reads, overrepresented k-mers and possible contamination due to PCR artifacts. The checks 
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mentioned above can be performed by FastQC 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) or NGSQC (Dai et al., 2010) tools. For 

trimming low-quality reads and adapter sequences, Cutadapt (Martin, 2011) or Trimmomatic 

(Bolger, Lohse and Usadel, 2014) are generally used which eliminates these sequences to 

retain high-quality reads. 

The second step is the alignment of sequence reads where reads are mapped against the 

transcriptome reference sequence. This involves fine-tuning of multiple parameters, which 

depends specifically on the organism under study. Since the majority of reads are mapped at 

multiple locations, the fraction of multi-mapping reads is comparatively higher than those 

coming from unannotated transcripts. In the absence of reference genomes, RNA-seq reads 

are assembled de novo, using the tools Trinity (Haas et al., 2013), Trans-ABySS (Grabherr et 

al., 2011) and SOAPdenovo-Trans (Xie et al., 2014b). Due to the presence of low expressed 

transcripts, it becomes impossible sometimes to assemble these reads as they lack sufficient 

coverage and therefore leads to misassembly of reads. Hence, it is often recommended to 

perform computational reduction of reads (Haas et al., 2013). 

Once the reads are aligned, the estimation of gene and transcript expression is required. For 

transcript quantification, raw counts of mapped reads are aggregated using the HTSeq-count 

tool (Anders, Pyl and Huber, 2015) which uses a Gene Transfer Format (GTF) file containing 

genomic coordinates of genes and exons for producing raw read counts. Since raw read counts 

are often affected by multiple factors such as sequencing bias, total number reads and 

transcript length, normalisation of raw sequence counts is performed to convert it to a RPKM 

(Reads Per Lilobase of exon model per Million) mapped reads value which removes library-

size and feature length effects. Some tools convert raw sequence counts to FPKM (Fragments 

of Per Kilobase of exon model per Million) mapped reads or TPM (Transcripts Per Million) 

values. Correction of gene length is required for comparing gene expression changes within 

gene and across samples. Tools such as Cufflinks (Trapnell et al., 2012) estimate transcript 

expression with the aid of the expectation-maximisation approach, using mapped reads aligned 

from Tophat. The key step in RNA-seq analysis is the DEG step that requires the comparison 

of gene expression values among samples. 

Normalisation methods such as RPKM, FPKM and TPM normalize the sequencing depth. 

However, these methods perform poorly when samples have diverse transcript distributions, 

which skews the distribution of counts. To resolve such issues, normalisation methods are 

preferred, such as DESeq (Anders and Huber, 2010) and PoissonSeq (Li et al., 2012) which 
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ignore highly variable features. Other normalisation packages such as NOISeq (Tarazona et 

al., 2012) identify sources of biases in the data and correct the variation in transcript length 

across samples, positional bias in coverage and GC contents. 

Despite sample-specific normalisation, batch effects are sometimes present in the data which 

can be removed by batch correction methods such as COMBAT (Johnson, Li and Rabinovic, 

2007). Some popular methods, such as edgeR (Robinson, McCarthy and Smyth, 2010) 

conduct an integrated normalisation and differential expression analysis by using a negative 

binomial distribution for normalisation. Certain Bayesian approaches such as EBSeq (Leng et 

al., 2013) and baySeq (Hardcastle and Kelly, 2010) utilizes negative binomial distribution by 

computing the posterior probability of each experimental group and for each gene. 

1.12 Non-coding RNAs 

Non-coding RNA (ncRNA) commonly refers to the class of RNA that does not encode proteins. 

This means they do not contain any information and hence do not perform any function. 

However, recent evidence suggests that the majority of the genomes are in fact transcribed, 

which includes miRNAs and snoRNAs (Dieci, Preti and Montanini, 2009; Schanen and Li, 

2011). Most of the functions of ncRNAs are still unknown and might have important regulatory 

functions such as RNA splicing, DNA binding, transcription, translation and turnover. 

From past years, it has been clear that the mammalian transcriptome largely consists of two 

major types of ncRNAs, namely (1) small non-coding RNAs (sncRNAs) and (2) long non-coding 

RNAs (lncRNAs). sncRNAs is a family made up of three sub-classes of ncRNAs: (a) short 

interfering RNAs (siRNAs), (b) miRNAs and (c) piRNAs. These have been associated with 

multiple biological pathways which leads to specific gene silencing and protection against 

viruses, retro-elements, mobile repetitive DNA sequences and transposons (Moazed, 2009). 

miRNAs and siRNAs are 20-30 nucleotides (nt) long RNA sequences which originate from the 

double stranded RNA (dsRNA) precursors and are endogenously produced during gene 

expression on sense and antisense DNA strands. siRNAs are small RNA duplex molecules 

that are produced by the ribonuclease III enzyme (Meister and Tuschi, 2004). miRNAs are 

transcribed by RNA polymerase II and possess a stem loop structure (Jinek and Doudna, 

2009). 

piRNAs are 24-31 nt long RNA sequences and are one of the least characterised class of 

sncRNAs which are extensively expressed in different cells and tissue types. Although not 

42 



	
	

             

            

  

   

  

            

          

           

             

           

              

        

      

   

            

         

            

             

           

             

          

       

           

  

             

    

        

              

          

           

           

        

much is known about this class of sncRNA, certain loss-of-function mutations studies identified 

the role of piRNAs in transposon silencing (Chen, Pane and Schüpbach, 2007). Certain studies 

also demonstrate their role in developmental gene regulation and heterochromatin formation 

(Rangan et al., 2011; Simonelig, 2011). 

1.12.1 Long non-coding RNAs 

Although at least 2% of the genome has been reported to contain protein-coding genes, while 

the remaining 98% of the human genome consists of non-protein coding sequences, most of 

which contains lncRNAs. Surprisingly, transcription is not limited to protein-coding genes but 

is in fact ubiquitous in mammalian genome (Carninci et al., 2005). Actually more than 90% of 

the genome is probably transcribed (ENCODE Consortium, 2007). A hypothesis stated by 

Ulitsky and Bartel says that most of the annotated lncRNAs are non-functional (Ulitsky and 

Bartel, 2013). Due to the non-perfection of the transcription machinery, spurious RNAs are 

produced with no significant biological purpose (Struhl, 2007) and many lncRNAs are 

polyadenylated, capped and spliced. 

However, many lncRNAs have been reported to play important biological roles in regulation 

and transcription processes. For example, Xist lncRNA has been reported to control X-

chromosome inactivation (Penny et al., 1996). lncRNAs have also been reported to play an 

important cell cycle regulatory roles as well as in the establishment of the cell identity (Pauli, 

Rinn and Schier, 2011; Rinn and Chang, 2012). Importantly, lncRNA dysregulation has been 

found to be associated with several human disorders such as in cancer and neurological 

disorders (Mitra, Mitra and Triche, 2012; Bhan and Mandal, 2014). lncRNAs exhibit distinct 

expression patterns in tumors and metastases, which can be primarily used for diagnosis and 

prognosis of cancer and could potentially serve as an aim for therapeutics (Tsai, Spitale and 

Chang, 2011). 

lncRNA sequences are comparatively smaller in size than mRNA sequences. They have also 

been found to possess fewer exons on an average which is attributed to both incomplete 

assembly and lower abundance (Pauli et al., 2012). Regarding features and characteristics of 

lncRNAs, the basic features are equivalent to mRNAs. Firstly, lncRNAs have also been known 

to exhibit alternative splicing (Derrien et al., 2012). From an experimental dataset obtained by 

Cabili et al. (2011), 98% of spliced lncRNAs possess only two exons. Secondly, lncRNAs are 

characterized by ‘K4-K36’ domains consisting of histone lysine trimethylation along with the 

transcribed regions (Cabili et al., 2011; Derrien et al., 2012). Thirdly, through experimental 

43 



	
	

            

         

            

          

     

          

           

 

  

          

                  

              

           

            

       

      

            

            

      

  

                

           

   

              

           

           

         

             

         

    

              

        

          

studies, lncRNAs have been found to be transcribed by RNA polymerase II and contain 

canonical polyadenylation signals, similar to mRNAs (Pagano et al., 2007). In contrast to 

mRNAs which are highly conserved in multiple species, lncRNAs exhibit poor sequence 

conservation. However, lncRNA sequences originating from the promoter region of the DNA 

have been found to be more conserved exhibiting similar characteristics to mRNAs (Cabili et 

al., 2011; Derrien et al., 2012). Similar to mRNAs, lncRNAs also contain Open Reading Frame 

(ORF), however the length of the ORF is much shorter than those found in mRNAs (Dinger et 

al., 2008). 

1.13 Machine learning 

Machine learning methods are approaches for learning functional relationships from the data 

without any need to define them a priori. It is a process which causes the system to improve 

with experience by learning from data provided to the machine. There are three main 

categories of machine learning: (1) Supervised learning, (2) Semi-supervised learning and (3) 

Unsupervised learning. In supervised learning, both input and output variables are observed 

and the results of subsequent classification processes depend on the output results from 

previous steps. Semi-supervised learning refers to the class of supervised learning where the 

classifier classifies a large amount of unlabeled data, using small amounts of labelled data. 

Unsupervised learning is the method where inferences are drawn from datasets having 

unlabeled response variables. The general workflow of machine learning consists of the 

following seven steps (Figure 1.6): 

1) Data acquisition: The first step in machine learning is to acquire the data needed for 

training and testing. Therefore, reliable data should be obtained to solve the problem 

and to perform initial descriptive analysis. 

2) Feature extraction: The second step is to extract relevant features from the dataset 

under study. For example, if flower petals and sepals are studied from the iris flower 

dataset (Bache and Lichman, 2013), then values are extracted for each characteristic 

feature such as petal length, petal width, sepal length and sepal width. This step also 

involves construction of response class values. For example, in the case of binary 

classification, certain features are extracted from Sentosa flower, while other features 

are extracted from versicolor plant. 

3) Data preparation: The third step is to prepare the data by removing outlier values, 

removing missing values, transformation of non-numeric to numeric values and 

normalising the values by scaling them between a given range. 
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4) Classifier selection: Once the features are extracted and data is normalised, a classifier 

is required to make decisions on the data and provides good accuracy on the testing 

data. Several classifiers have been developed for performing classification, such as 

Random Forests, Support Vector Machines, Neural Networks, Logistic Regression, 

Linear Regression, KNN and K-Means. The right classifier to apply depends on the 

dataset used in the study. 

5) Model fitting: Once the appropriate classifier is chosen, training data is selected from 

the normalised data matrix. The training data is then fed into the classifier for learning 

and development of a predictive model. This predictive model is specifically dependent 

on the training dataset as the classifier only knows the values which have been provided 

in the training set. 

6) Prediction of testing data: After the classifier is trained and the predictive model is 

generated, testing data is used for prediction into either one of the classes. 

7) Model validation: In this last optional step, the predicted testing dataset is used for 

cross-validation, such that the complete dataset is divided into equally sized groups 

called folds, consisting of training and testing data, and each fold consists of separate 

training and test sets. This process is repeated so that each fold receives an opportunity 

of being left out and therefore act as testing data. Model validation process helps in 

evaluating the classifier capability and feature strength. 

Figure 1.6: Schematic workflow of machine learning process. 
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With advancements in high-throughput genome sequencing, which has resulted in generation 

of thousands of samples, new completed sequences are getting deposited in the repositories 

everyday which has led to an enormous increase in the volume of the data and a need to 

computationally analyze massive amounts of data with smarter algorithms in computer science. 

There are approximately around a thousand databases of interest to biologists (Galperin, 2008) 

which contain crucial information, ranging from sequences, structures, annotation, networks, 

etc. 

Machine learning has many applications in engineering and computing, such as pattern 

recognition, process optimisation and image analysis. Apart from its applications in engineering 

and computing, it has also several known applications in computational biology which includes 

identification of protein-coding genes from genomic sequences, prediction of protein function, 

identification of binding sites which includes protein-DNA and protein-RNA, prediction of 

protein secondary and tertiary structure based on amino acid sequence (Cheng, Tegge and 

Baldi, 2008; Suresh, Gromiha and Suwa, 2015a; Liu, 2017). These applications may require 

supervised or unsupervised learning, for example, given a dataset of protein sequences with 

experimentally labeled associated functions, a classifier can be trained such that it can predict 

the function for a novel sequence, which can be performed using supervised learning, whereas 

identification of functional modules in gene expression data can be performed using the 

unsupervised learning strategy. Since the function of a novel sequence is unknown, supervised 

learning strategy helps in predicting its function based on the sequence characteristics of 

similar sequences associated with functions. Whereas the functional modules of gene 

expression data can be inferred from the public databases such as Kyoto Encylcopedia of 

Gene and Genome (KEGG) (Ogata et al., 1999) and Gene Onotology (GO) (Ashburner et al., 

2000).         

In a traditional problem, features extracted from genomic data are constructed into a feature 

set and are generally associated with a single class label. This is called the single-label 

classification problem. When two classes are present, features in the set are associated with 

either of the two elements, which is called the binary classification problem. If the set has more 

than two elements, then it defines a multi-class classification problem which has been applied 

in several biological applications. An example of such type of class is where many proteins and 

genes have multi-functional association. Most existing algorithms fail to classify them due to 

the complexity of the data, therefore they assign it to a subset of the node in the hierarchy 

when performing classification, which produces hierarchical multi-label classification problem 
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(Boutell et al., 2004). The solution to this problem is to transform it into k-binary class 

classification by constructing k datasets, such that the dataset is labeled as 1 if has certain 

label or 0 otherwise. The classifier returns prediction of the test set by classifying into one of 

the class labels. 

1.13.1 Random Forests 

Random Forest (RF) is a method for making predictions by averaging over several predictions 

of independent base models. The RF was introduced by Breiman (2001) who originally devised 

it as a method for combining several classification and regression trees, using the bagging 

approach. Since its first introduction, RF has been applied in several applications to solve 

numerous problems. RFs are built by combining independently trained predictions from several 

trees. Prediction using RF is based on creation of decision trees. Decision trees are created 

based on a rule-based system. Given a dataset of features and targets, the decision tree 

algorithm performs the prediction on the test dataset based on the set of rules. The decision 

trees can be understood by considering a binary classification scenario. For example, playing 

with a ball is dependent on weather conditions. To decide whether to “play” or “not play” is 

guided by the creation of a tree. The decision is made based upon the traversal down the leaf 

nodes where the data is bucketed into smaller parts. This can be clearly illustrated by Figure 

1.7. The data shown in the figure demonstrates weather characteristics of 14 days which are 

labelled as “Play” and “Not Play”. The data consists of five features, namely, sunny, overcast, 

rain, humidity and wind conditions. Based on the feature values, the prediction on test data is 

made whether a day is suitable for playing or not playing outside. 

Figure 1.7: Example illustration of decision tree estimation on weather data. 

The feature set also consists of two classes: “Play” and “Not Play”. Based on the principal of 

bootstrapping, random trees are generated (Figure 1.8). An example of a random tree is shown 
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in Figure 1.7. The prediction of the test dataset is dependent on both the feature values and 

class labels. The correlation between these is important for accurate prediction of test data into 

one of the following classes. In this example, the dataset consists of 9 and 5 samples classified 

into “Play” and “Not Play”, respectively. The feature matrix is split based on the threshold and 

binary values of the features. The tree is first split into three leaf nodes based on three primary 

features containing discrete values: “Sunny”, “Overcast” and “Rain”. 

Based on the split, two samples have been recognized as “Sunny” and fit for playing football 

outside, whereas three samples have been recognized as “Not Play” and considered as 

inappropriate for playing football outside. The first leaf node is further splitted into sub-leaves 

based on the “Humidity” feature with samples having threshold values <= or > 70. If the values 

are <= 70, the day is labeled as “Play”, otherwise “Not Play”. The second leaf node consists of 

four samples categorised based on “Overcast” feature. The third leaf node classified five 

samples based on “Rain” featue. These samples are further splitted into sub-leaves based on 

“Windy” and “Not windy” features. If the feature values are positive for “Windy” within “Rain”, 

the samples are classified into “Not Play”, otherwise the samples classified into “Not windy” are 

classified as “Play”. 

Each decision tree in the random forest starts the traversal with a root node from which splitting 

takes place. The attribute value in the root node is compared with the internal nodes until 

decision node is reached. The root node for each tree is selected based on two criterions: 

Information Gain and Gini Index. These criterions calculate the values for each attribute or 

feature. The calculated values are sorted, and higher value is assigned the root node in the 

tree. Each tree creates several leaf nodes based on the features selected in that decision tree. 
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Figure 1.8: Illustration of RF model with each tree consisting of decision nodes and leaf nodes. 

There are two steps in RF algorithm: (1) creating RF, and (2) performing predictions based on 

RF created. 

To construct a tree, there are three major choices which should be made and considered: (1) 

the methods for leaf splitting, (2) the type of the predictor that will be used in each leaf, and (3) 

the method for injection of randomness into the trees. 

To specify a method for leaf splitting, the selection of the shapes of candidate splits and the 

method for evaluation of quality of each candidate are required. For leaf splitting, axis aligned 

splits can be used, where the data is routed to sub-trees which depend on whether it exceeds 

the threshold value. The threshold value can be randomly chosen by optimising a function. To 

split a leaf, a collection of splits is generated and a candidate split is chosen which optimizes 

the purity function over the created leaves and which maximises the information gain (Hastie, 

Tibshirani and Friedman, 2009). 

The second choice is to choose the type of predictor and the most common choice is to use 

the average response over the training points falling over a leaf. Third choice is to inject 

randomness in the tree construction, where the dimensions need to be chosen for splitting 

candidates at each split and coefficients should be chosen for generating random combinations 
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of features. Another method for introducing randomness is to use a sub-sampled or a 

bootstrapped dataset for building each tree, which introduces differences between the trees. 

To find the patterns in the data and achieve the decision node in the tree, the randomness is 

injected by selecting random records and random features. Each tree is built from random 

samples of data using bootstrap sampling. This generates random samples of data for each 

tree which sometimes leads to overfitting. Random feature selection involves examination of 

each feature and selecting the best split from the features. Therefore, RF selects random 

subset of features for each split. 

Therefore, the complete algorithm works by growing M randomised trees. Before construction 

of each tree, ) observations are randomly drawn from the dataset. Then a split is performed 

on each cell of the tree by maximising the Classification and Regression Trees (CART) criteria 

(Breiman et al., 1984). The CART criteria measure the difference between the variance before 

and after the split is performed. This process is repeated M times. As M grows the variance 

decreases. This also reduces overfitting and hence, more accurate predictions can be obtained 

with large values of M (Breiman, 2001). 

1.13.2 Iterative Random Forests 

With the development of tree-based methods in machine learning, several methods have been 

developed for the detection of interactions among the features, which include RF (Breiman, 

2001), CART (Breiman et al., 1984), Forest Garrote (Meinshausen, 2009), Node Harvest 

(Meinshausen, 2010) and RuleFit3 (Friedman and Popescu, 2008). These methods have been 

applied in the field of genomics as machine-learning classifiers such as identification of DNA 

tetranucleotide frequencies in bacterial genomes (Dyer, Kahn and Leblanc, 2008), regression 

of peptide data against RNA expression data (Bánfai et al., 2012), application of RF in large 

genome-wide association studies (Goldstein et al., 2010), classification of microRNA 

precursers (Jiang et al., 2007) and prediction of non-synonymous polymorphisms (Bao and 

Cui, 2005). However, these methods produce shallow trees to prevent overfitting, with the 

exception of the RF and therefore exclude the possibility of the detection of higher-order 

interactions without affecting the accuracy in a computationally feasible manner. The RF 

creates deep decision trees that produce higher-order interactions without affecting the 

prediction accuracy. Due to the instability in decision paths, interpretation of results from RF 

remain a challenge and therefore cannot be considered as an alternative. 
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Iterative Random Forests (iRF) (Basu et al., 2018) overcome these challenges by searching 

important local higher-order interactions. iRF algorithm is based on the Principle of Stability 

(Yu, 2013) which grows feature-weighted RF sequentially to perform a soft dimensional 

reduction of feature space and to stabilise decision paths. The fitted RF are decoded and 

higher-order feature interactions are determined by the Random Intersection Trees (RIT) 

algorithm (Shah and Meinshausen, 2014) which extracts stable higher-order feature 

combinations in the RF decision tree ensemble. The iRF uses the supervised learning 

approach for identifying class-specific index sets which are needed for RIT algorithm. This 

framework allows for detection of higher-order combinations in feature-weighted RFs. iRF 

classifier has been applied for the prediction of Drosophila embryo and alternative splicing 

transcripts in human-derived cells where it derived novel third-order transcriptional factor 

interactions (Basu et al., 2018).  

For classification and determination of interactions, iRF consists of three steps: 

1) Iteratively re-weighted Random Forest 

2) Generalized RIT 

3) Bagged Stability Scores 

By performing these steps, iRF can recover higher-order combinations of features. The details 

of the algorithm implementation will be discussed in Chapter 4 (Methodology). 

1.13.3 Support Vector Machines 

A Support Vector Machine (SVM) is a supervised ML algorithm which is used for classification 

problems. A SVM plots each data point into n-dimensional space (where n=number of features) 

with each feature value being a coordinate. The classification is performed by finding a hyper-

plane that separates the two classes effectively (Figure 1.9). A hyperplane is a line that linearly 

separates and classifies the data points. The further the data points from the hyperplane, the 

stronger the classification accuracy. The distance between the data points and the hyperplane 

is known as the margin. For achieving higher accuracy within the training dataset, a hyperplane 

separating the data points with higher margin values is required. 
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Figure 1.9: Illustration of an SVM containing Support Vectors separated by a hyperplane. 

The classification process primarily depends upon the identification of an optimal hyperplane. 

To accurately separate the red and green circles, the SVM starts by constructing three different 

hyperplanes: A, B and C (Figure 1.10). Scenario-1 illustrates the hyperplanes segregating the 

data points in an n-dimensional space whereas scenario-2 demonstrates margin distances 

between the data points and three hyperplanes. The scenario shows that the margins between 

the data points and hyperplanes B and C are smaller than the hyperplane A. Therefore, 

hyperplane A maximises the margin of the training data. 
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a b 

Figure 1.10: Illustrations of different hyperplanes in SVM classification. (a) Scenario-1, and (b) 

Scenario-2. 

1.14 Feature selection in machine learning 

With an increase in dimensionality, computational cost increases as well. To counter this 

problem, there are two approaches. First is the subset selection of features and second is to 

extract meaningful features. A typical example of multi-dimensional complex data is the 

microarray cancer data, where the data can be originated from many cancer types ) and each 

type of data can have multiple features * which makes )×* features. When machine learning 

methods are applied on the data, the general outcome of the study depends on whether the 

data can be classified as cancerous or non-cancerous. The feature subset selection criteria 

work by removing redundant or non-relevant features from the dataset provided that selected 

features give best performance according to an objective function. However, when compared 

to feature extraction methods, feature selection does not alter the natural representation of the 

data (Saeys, Inza and Larranaga, 2007). Algorithms for feature selection are categorised into 

three types: 

1) Filters: Those which extract features from the dataset without requiring any learning. 

2) Wrappers: Those which use the learning approach for evaluating whether the features 

are useful. 

3) Embedded techniques: Those which combine feature selection and classifier 

construction steps. 

Filter methods works without any classifier which makes them computationally efficient. They 

are divided into univariate and multivariate methods. Univariate methods, such as 
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unconditional mixture modeling (Law, Jain and Figueiredo, 2000) assumes binary states of the 

genes which affect the classification process using mixture-overlap probability. Whereas 

multivariate methods, such as markov blanket filtering (Zeng, Luo and Lin, 2009) finds features 

which are independent of class labels, such that the removal of these features does not affect 

accuracy. Another popular multivariate feature selection method used in Machine Learning 

(ML) is the minimum Redundancy Maximum Relevance (mRMR) (Peng et al., 2005a) which 

maximises the relevance of genes with class label while minimising redundancy in each class. 

mRMR uses Mutual Information (MI) for measuring the information a random variable gives 

about another, such as class label or gene activity (Peng et al., 2005b). Another multivariate 

approach is Correlation-based Feature Selection (CFS) (Hall, 1999) which is based on the 

principle that a feature subset is good when it highly correlates with a class and does not 

correlate with one another. Therefore, CFS evaluates the features based on this criterion. 

Another method ReleifF selects features which distinguishes the data among different classes 

(Hall and Smith, 1998). 

Wrapper methods are based on a supervised classification approach due to which these 

methods can be computationally inefficient. These are generally based in two categories: 

Deterministic and Randomised. Deterministic wrappers use a combination of wrapper and 

Sequential Forward Selection (SFS) for the feature selection, by adding several possible 

single-attribute expansion to existing attributes and evaluating the accuracy on each step 

(Pudil, Novovičová and Kittler, 1994). The Feature Selection (FS) starts with an empty set of 

features. Features are added to the empty set one-by-one and accuracy is evaluated using a 

Support Vector Machines (SVM), a neural network, or k-nearest neighbors. Randomized 

wrappers use Genetic Algorithms with SVM (GA-SVM) and simulated annealing. GA-SVM 

creates a population of chromosomes as binary strings representing feature subsets which are 

evaluated using an SVM (Perez and Marwala, 2012). Whereas simulated annealing works by 

exploring neighbours for seeking solutions which minimises the objective function and avoid 

local minima. 

Embedded methods work better, in contrast to wrapper methods, by performing classifier 

dependent selection which might not work with other classifiers. A popular implementation of 

the embedded technique is the RF method, where RF are created iteratively and the forest with 

the smallest number of features producing lowest error is selected. This method of feature 

selection is called Block Diagonal Linear Discriminant Analysis (BDLDA) (Lingyan et al., 2009). 

BDLDA works by limiting the number of features by imposing a block diagonal structure on the 
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covariance matrix. Accuracy is evaluated by SVM classification and features are selected 

based on the accuracy. The SVM-Recursive Feature Elimination (SVM-RFE) method begins 

by including all features and excludes those features that cannot identify separating samples 

in different classes (Huang et al., 2014). 

Feature selection can also be achieved with statistical regression techniques such as t-

statistics, in which the significance of individual predictors can be judged under the assumption 

that the set of predictors is fixed in advance. Fixing the predictor set can lead to bias and 

overfitting during the classification. An example of overfitting is commonly observed in the 

Partial Least Squares (PLS) method (Abdi, 2003). Therefore, improvement in feature selection 

provides interpretable and unbiased generalised models with accurate predictions. 

There are several kinds of regression methods which have been developed for model fitting 

and feature selection. The first method is the Forward Stepwise Regression (FSR) which 

begins by selecting a single predictor variable which produces the best fit or smallest residual 

sum of errors (Mundry and Nunn, 2009). Subsequently, another predictor is added, which 

produces the best fit in combination with the first one, which is followed by the third and so on. 

This continues until the stopping criteria is reached, which is based on no improvement in fit. 

Similar to FSR, another approach is the Backward Stepwise Regression (BSR), in which we 

start with a larger subset of features and iteratively remove one-by-one similar to the 

implementation by SVM-RFE except it uses Efroymson’s procedure (Efroymson, 1960) that 

combines backward and forward steps. The linear regression method simplifies the BSR 

approach by computing the stepwise and subset procedures. Computing the procedures in a 

single pass through the dataset significantly improves speed. However, all these methods 

utilise linear regression by computing the residual sum of squares which has a high tendency 

of overfitting. Shrinkage methods on the other hand estimate coefficients by significantly 

reducing the variance, thereby improving the problem of overfitting. 

Shrinkage methods such as Ridge regression (RR) (Marquardt, 1970; Tibshirani, 1996) 

reduces the variance by adding a degree of bias or penalty to the regression estimates, thereby 

shrinking the estimates towards zero. Therefore, RR has two major advantages over Ordinary 

Least Squares (OLS) method: (1) It penalises the estimates such that less influential features 

are more penalised than higher influential ones and (2) the addition of penalty term converts 

correlation of variables (multicollinearity) to independent variables. Such methods are called 

“penalised regression” methods. Least Absolute Shrinkage and Selection Operator (LASSO) 
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(Tibshirani, 1996) is a similar technique to RR: it also penalises regression coefficients and 

shrinks the values to zero. LASSO differs from RR such that instead of squares it uses absolute 

values in the penalty function which leads to penalisation of values to exact zero. Penalty value 

is directly proportional to shrinkage. The larger the penalty term, the more estimates get shrunk 

to zero.  

1.15 Bayesian networks and Markov models 

The Bayesian network represents a probabilistic relationship between a set of random 

variables. The relationship between the random variables is represented by a joint probability 

distribution. A Bayesian network consists of two major parts: Directed Acyclic Graph (DAG) 

and a set of conditional probability distributions. The DAG consists of set of random variables 

which are represented by nodes in the network. A directed edge between two nodes in the 

network represents an existence of causal probabilistic dependence between two random 

variables. A conditional probability distribution for each node in the network is defined by a 

possible outcome of the preceding causal nodes. Any node in the Bayesian network is 

conditionally independent of all the nodes in the network given their relationship with parent 

nodes. Therefore, the joint probability distribution of all the random variables in the network 

factorizes into a series of conditional probability distributions of random variables given their 

relationship with parent nodes. 

A Markov Random Field (MRF) or a Markov network is a class of Bayesian network 

represented by undirected graphs. The Bayesian Networks (BN) represents the probability 

distribution of variables by directed graph. MRFs possess several advantages over BNs: (1) 

Due to non-dependency relationships in MRF, they can be applied to wider range of 

applications; (2) MRFs can express certain relationships or dependencies which BNs cannot 

easily describe; (3) MRFs provide more abilities than BN. 

If A, B, C and D are variables which are connected to each other such as: (A,B), (B,C), (C,D) 

and (D,A), the relationship between these variables is represented by an undirected graph 

(Figure 1.11). 
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Figure 1.11: Representation of an undirected graph having joint probability over four variables. 
Graph on the right represents pairwise factors present in the model. 

The joint-probability of the four variables is expressed by the following form: 

, /, 0, 1) 4( , /)4(/, 0)4(0, 1)4(1, ) (1.1) 

where 4(5, 6) is a factor that assigns more weights to the relationship between X, Y. Therefore, 

the factors in the unnormalised distribution becomes: 

=
1 (1.2) 

+(-, /, 0, 1)
7
+(-, /, 0, 1) 

where 7 is a normalising constant which ensures that the distribution sums to one. 

A MRF is a probability distribution over the variables 8 , 8 , 8 , . . . , 8< defined by an undirected # 9 :

graph where nodes correspond to variables 8 . The probability distribution is given by: =

(1.3) 
=
1

+(8#, 89, . . . , 8<) >
? A

4?(8?)
∈

where 0 denotes set of cliques (cliques are fully connected subgraphs). The value of > is 

calculated as follows: 

(1.4) 4?(8?).> =
BC,BD,...,BE ?∈A 
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Thus, the probability distribution in a graph G may contain factors which are determined by 

clique in G which can be node, edge, triangle, node, etc. 

MRF is mainly applied for “guilt-by-association” approaches, particularly in protein function 

prediction problems where a network is constructed. The edges represent pairwise interactions 

between the proteins in the network. The network is generally represented by three classes of 

interactions. The first class of interaction is F (1,1) = G(#,#) where both interacting proteins #

performs functions; the second class of interaction is F (1,0) = G(#,H) where only one #

interacting protein performs function; and the third class of interaction is F (0,0) = G(H,H) where #

none of the interacting proteins have known functions. The corresponding number of protein 

pairs in the three classes are defined as I##, I#H and IHH. Therefore, the energy function of 

the MRF is defined using the classes such that: 

=M

L (1.5) 
J 8 + G##I## + G

#HI#H + G
HHIHH.= 

# 

For determining functions of unannotated proteins, repeated sampling of the neighbouring 

proteins having unknown function is performed which is defined by Gibbs sampling (Geman 

and Geman, 1984).  

A similar method called Bayesian Markov Random Fields (BMRF) implements the Bayesian 
H #approach and draws inference from the joint probability density of 8, J, G , G using Markov 

Chain Monte Carlo (MCMC) (Geyer, 1991). Using Gibbs sampling method, the elements of 8(N)

H #which corresponds to unannotated proteins are updated based on the values of 8, J, G , G .
H #The parameter update of 8, J, G , G values is performed using the Differential Evolution Markov 

Chain (DEMC) (Ter Braak and Vrugt, 2008) method. The use of an adaptive DEMC approach 

in MRF leads to the accurate estimation of parameters and protein prediction when compared 

to the standard implementation of MRF for protein function prediction application. 

1.16 Tools for RNA-seq data analysis 

1.16.1 Development of RNA-seq workflows in plants 

In the past few years, several research studies have been conducted for the development of 

computational workflows and bioinformatics tools employed for processing and analysis of 

RNA-seq data. A study conducted by Liu et al. (2014) provided a comparison and 

benchmarking of several methods for the detection of differential splicing of transcriptomes in 

plant species. The study compared eight software tools using simulated and real A. thaliana 
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RNA-seq data. From the analysis they found that the annotation accuracy provides a major 

impact on the detection of alternative splicing events, therefore they suggested the 

consideration of annotation in Differential Expression (DE) analysis. Altogether, Cufflinks 

(Trapnell et al., 2012) showed a better tradeoff between recall and precision metrics in the 

presence of incomplete annotation. Whereas DEXSeq (Anders, Reyes and Huber, 2012) 

performed relatively well for simulated data with an accurate and strong annotation of 

alternative splicing. In the case of complex alternative splicing events, Multivariate Analysis of 

Transcript Splicing (MATS) (Shen et al., 2012) showed better performance for real RNA-seq 

datasets. 

Another research study conducted by Zhang et al. (2014) suggested the use of Cufflinks-

Cuffdiff2 (Trapnell et al., 2012), DESeq (Anders and Huber, 2010) and edgeR (Robinson, 

McCarthy and Smyth, 2010) tools for DE analysis. Using MicroArray Quality Control Project 

data, K_N RNA-seq and lymphoblastoid cell lines data, benchmarking of edgeR with DESeq 

and Cuffdiff2 was conducted in which they found better performance of edgeR in terms of its 

ability to uncover true positives. However, they recommended to involve the intersection of 

edgeR with two or more tools to obtain true positives and less false positives. They also 

recommended to include the RNA-seq dataset in research studies that have biological 

replicates, which further increases the chance of obtaining true positives. 

A research study conducted by Klepikova et al. (2015) on A. thaliana species from the apical-

shoot meristem revealed expression dynamics of major flowering genes in cell-cycle related 

events. The authors conducted an RNA-seq data analysis, using CLC Genomics Workbench 

(Sequencing, 2011) as tool for read trimming and genome mapping to TAIR10 genome and 

DE analysis was conducted using DESeq. For data processing, authors employed the use of 

default parameter. Through DE analysis of the Shoot Apical Meristems (SAMs), the authors 

found a number of DE genes during transition from vegetative to inflorescence stage. They 

also obtained and identified DE genes expressed during the cell division phase in transition to 

flowering stage, by conducting hierarchical clustering analysis using the R package 

“fastcluster” (Müllner, 2013). A similar study conducted by Chen et al. (2010) on Arabidopsis 

male meiocytes, involved use of bioinformatics and statistical analysis pipelines through which 

reads were aligned to TAIR10 genome using the GSNAP tool (Wu et al., 2016) and de novo 

assembly using ABySS-P (Birol et al., 2009) and SSAKE (Warren et al., 2007). PCAP (Huang 

and Yang, 2005) was used for assembly merging. Using these methods, several transposable 
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element genes were found to be DE in anthers during meiosis with potential functions identified 

using Revigo GO analysis toolkit (Du et al., 2010). 

Another study conducted by Zhang et al. (2015) involved the identification of genes expressed 

during meiosis in rice genome. For obtaining the DE genes, the authors removed the adapter 

sequences and low quality reads prior to aligning raw reads to the rice genome using the 

SOAPaligner/soap2 tool (Xie et al., 2014b) with two base mismatches. Furthermore, ERANGE 

software was used for computing the gene expression levels which generated reads per kilo-

base per million reads (RPKM) values. Transcriptional gene activity was determined by 

applying a cutoff of RPKM>0. For gene enrichment analysis of DE genes, Blast2GO (Conesa 

et al., 2005) was used. Moreover, pathway analysis was also undertaken using reference 

KEGG database from which well-conserved meiotic genes were identified from RNA-seq data. 

Another study involving emergence of plant diseases caused due to microbes and parasites 

studied gene expression of plant Ocimum basilicum and its obligate parasite Peronospora 

belbahrii using de novo sequencing assembly tools for identification of virulence and host 

defense genes during parasitic infection. Due to absence of reference genome, authors 

proposed a computational pipeline which utilized Trimmomatic (Bolger, Lohse and Usadel, 

2014) for adapter and quality trimming and RSEM (Li and Dewey, 2011) for de-novo assembly 

and transcript abundance estimation with default parameters. Using PANTHER tool for GO 

enrichment, distinct genes were identified suggesting biological functions enriched in transport, 

localisation, photosynthesis, precursor metabolites generation, energy production, etc. 

Many of these RNA-seq studies focus on the identification of DEGs using bioinformatics tools 

in plant genomes. However, very often these comparative studies fail to consider optimal 

parameters that are required for upstream processing of the data prior to DEG analysis. Due 

to this, RNA-seq studies involving plants, sometimes do not generate optimal results. 

Furthermore, commercial RNA-seq software, such as CLC Genomics fails to consider this 

aspect, which can lead to unreliable results. Therefore, considering the impact of the 

parameters on read mapping to identification of DEGs, a standardised computational pipeline 

is required. Also, previous studies did not consider the impact of DEG intersection approach 

using multiple methods. Hence, the subsequent study attempts to develop a bioinformatics 

pipeline for processing and analysis of RNA-seq data in plants which employs species-specific 

parameters, obtained through experimental results through the intersection of different 

normalisation methods. The use of optimal parameters not only generates valid results but also 
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ensures and demonstrates a reliable scientific approach that helps in reducing the outcome of 

false positives during the differential expression analysis. 

1.17 Tools for lncRNA identification and annotation 

1.17.1 Tools developed for lncRNA identification 

With the emergence of NGS technologies, a number of tools have confirmed the presence of 

lncRNAs in the human genome. Due to their non-conservation of sequence, lncRNAs have 

become one of the most poorly studied area. A number of studies have demonstrated the 

critical role of lncRNAs in biological processes and their involvement in diseases. Several 

databases and tools have been developed for identification and annotation of lncRNAs in the 

past few years. Most of the computational lncRNA prediction methods are based on machine 

learning approaches, which include PhyloCSF (Lin, Jungreis and Kellis, 2011), Coding 

Potential Calculator (CPC) (Kong et al., 2007), Coding Potential Calculator 2 (CPC2) (Kang et 

al., 2017), Coding-Non-Coding Index (CNCI) (Sun et al., 2013), Coding Potential Assessment 

Tool (CPAT) (Wang et al., 2013), Predictor of long noncoding RNAs and messenger RNAs 

based on an improved k-mer scheme (PLEK) (Li, Zhang and Zhou, 2014a), lncScore (Zhao et 

al., 2016a), PLncPRO (Singh et al., 2017), Coding potential calculation tool based on multiple 

features (COME) (Hu et al., 2016), LncRNA-ID (Achawanantakun et al., 2015), lncRScan-SVM 

(Sun et al., 2015), lncRNA-MFDL (Fan and Zhang, 2015), LncRNApred (Pian et al., 2016) and 

DeepLNC (Tripathi et al., 2016). 

Based on comparative genomics method, Lin et al. (2011) proposed PhyloCSF which analyzes 

sequence alignments of nucleotides from multiple species. The authors reformulated the 

Codon Substitution Frequencies (CSF) metric by implementing the use of multiple alignments 

in a phylogenetic framework that produces likelihood ratios as output. PhyloCSF assesses 

coding potential of the individual exons from transcripts and aligns to one or more genomes at 

certain phylogenetic distances. For the parameter estimation, it also requires the genome of 

interest to possess good quality gene annotations. For distinguishing coding from non-coding 

regions, two models are assumed. One representing the evolution of codons in protein-coding 

genes and another one representing the evolution in nucleotide triplet sites in non-coding 

regions. Using the alignment, the Maximum Likelihood Estimate (MLE) of coding and non-

coding models are determined. Protein-coding or non-coding decision is taken based on the 

value of log-likelihood ratio. 
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CPC is a web-server application that is used for assessing the coding potential of a protein 

using six biological sequence features. The first three features are ORF based features, in 

which it uses log-odds score and coverage as the first two features. The third feature is the 

integrity of ORF which indicates the ORF start, end and in-frame stop codon. The next three 

features are alignment-based features, namely the number of hits of sequence to protein 

database, the hit score of a sequence with measurements of High-scoring Segment Pairs 

(HSPs), and the frame score for measuring the distribution of HSPs among 3 open-reading 

frames. These six features are incorporated in the Support Vector Machine (SVM) classifier 

implemented in the LIBSVM package (Chang and Lin, 2011) for measuring the classification 

performance. CPC2 on the other hand, computes the coding probability of the sequence by 

computing its peptide length, isoelectric point, Fickett score (Fickett, 1982) and ORF integrity. 

CPC2 employed SVM using RBF kernel for training 17984 protein-coding and 10452 non-

coding transcripts from Refseq, Ensembl (v87), and EnsemblPlants (v32) databases. Similar 

to CPC, PLncPRO is an alignment-based lncRNA prediction tool which derives features from 

BLASTX tool (O’Donovan et al., 2002) using alignment of the query sequence with the protein-

coding sequences deposited in Non-Redundant (NR) database. The tool uses RF for 

classification of FASTA sequences derived from plants into lncRNA or proteins. 

CNCI distinguishes lncRNAs from protein-coding sequences by profiling Adjoining Nucleotide 

Triplets (ANTs). CNCI constructs an ANT matrix by identifying the Most-Like Coding 

Sequences (MLCDS) in each transcript sequence, which is calculated in all six reading frames. 

Using MLCDS, CNCI extracts five features: score-distance, length percentage, S-score, length 

and codon-bias which are incorporated in the SVM with a standard radial basis kernel function 

like CPC for classification. CPAT on the other hand, classifies lncRNAs using logistic 

regression as a classifier by extracting four sequence based features, namely, maximum length 

of ORF, ORF coverage, Fickett score (Fickett, 1982) and hexamer score (Fickett and Tung, 

1992). The Fickett score is used for evaluating the unequal distribution of codons in the 

sequence, whereas hexamer score is used for measuring the bias in codon usage of adjacent 

amino acids. PLEK is another alignment-free tool which uses calibrated k-mer frequencies of 

a sequence and sliding window approach as features for classification. However, when 

compared to CNCI using multiple species, PLEK does not perform well as the algorithm fails 

to consider insertions and deletions in the sequence when performing classification. Similar to 

CPC and CNCI, PLEK also uses SVM with radial basis kernel function. 
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lncScore is another alignment-free tool which also uses logistic regression on 11 sequence-

based features namely, hexamer score, hexamer score distance, sequence length, coding 

score, coding score percentage, Fickett score, hexamer score, ORF length, ORF coverage, 

and hexamer score distance. These features can also be calculated from the partial length 

mRNA transcript sequences. The features are calculated from all three frames which are 

independent of start or stop codons since some of the partial length transcript sequences lack 

start/stop codons. This affects the protein coding potential computation of ORF based features. 

Like CPAT, this tool also uses logistic regression for assessing the coding potential of a 

transcript. 

COME is another tool which uses a combination of sequence-based and experiment-based 

features by employing the decompose-compose method for the construction of features. Unlike 

other tools, COME constructs features on genome level by indexing genomes and using 

indexed bins of 100-nt size which overlaps with the exons. These overlapping bins were 

converted to feature vectors using the mean, maximum and variance for constructing the 

feature matrix. COME also used expression and histone modification profiles as the 

experimental features which evaluated the performance using different datasets. For 

classification of lncRNA sequences, COME uses Balanced Random Forest (BRF). In contrast 

to COME, LncRNA-ID uses three sets of Feature Groups (FG): ORF-based, ribosome 

interaction based, and protein conservation based. ORF-based FG included ORF length and 

ORF coverage whereas ribosome interaction FG included two initiation interaction features: 

nucleotides at the positions {-3, +4} and {-2, -1}, and two features based on Translation and 

Termination process: ribosome coverage and Ribosome Release Score (RRS). Using protein 

conservation, it extracted alignment score, alignment length in the query sequence and 

alignment length in the HMM profile. Identical to COME, LncRNA-ID also uses BRF for the 

classification. 

lncRScan-SVM classifies transcripts by extracting six features, namely, transcript length, 

standard deviation of counts of stop-codons between three frames, CDS score, exon length, 

exon count and sequence conservation using PhastCons scores from UCSC genome browser 

(Kent et al., 2002). Unlike COME, lncRScan-SVM tested the model performance using 

GENCODE (Harrow et al., 2012) humans and mice datasets and used SVM for classification. 

lncRNA-MFDL is using the deep learning approach for classification, which is based on four 

sequence features: k-mer, ORF, MLCDS and secondary structure which are integrated to 

construct a classification model based on the deep stacking network. LncRNApred on the other 
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hand uses a self-organising map clustering method for selecting samples as a training set. 

Using the ORF length, ORF coverage, GC content and k-mer, it transforms the query sequence 

to a binary vector in order to construct a signal-to-noise ratio feature which is Fourier 

transformed using Discrete Fourier Transform (DFT) to obtain a power spectrum curve. 

Protein-coding sequences are differentiated from lncRNAs using the peak observed at N/3 

position in the sequence where N=length of transcript, using 3-periodic property. With 86 

features, they classified lncRNAs with 92.9 % accuracy using RF on NONCODE humans and 

mice datasets. DeepLNC uses deep neural networks and classifies lncRNAs using k-mer 

based 1104 features by calculating the possible combinations of k-mers with k=2,3,4 and 5. To 

achieve a reasonable accuracy, it chooses the best possible combination of features from four 

sets (i) 2, 3; (ii) 2, 3, 4; (iii) 2, 3, 5; and (iv) 2, 3, 4, 5 by using the Forward selection backward 

elimination (FBSE) method. 

1.17.2 Tools developed for identification and genomic annotation of lncRNA sub-classes 

lncRNAs are generally classified into different types which depends on their position in the 

genome. These can be classified into: (1) Sense-overlapping: lncRNAs overlapping the exons 

and located on the sense DNA strand, (2) Antisense-overlapping: lncRNAs overlapping the 

exons but located on opposite DNA strand, (3) Bidirectional: lncRNAs which are oriented head-

to-head within 1 kilo basepair distance, (4) Intergenic: lncRNAs transcribed and expressed 

between two- protein-coding genes. The fifth class is called circular RNA. It is not considered 

as lncRNA but identified as non-coding RNA which are single-stranded circular molecules that 

regulate gene expression and have been identified as potential biomarkers of cervical cancer 

(Qu et al., 2015). For the annotation of lncRNAs, fewer tools and computational methods have 

been developed. Wucher et al. (2017) developed a computational tool called FEELnc for 

identification and annotation of lncRNAs using multi k-mer frequencies. Based on the predicted 

lncRNAs, authors classified the transcript sequences into long-intergenic ncRNA (LincRNA), 

genic-sense and genic-antisense. The classifier module of the FEELnc framework uses a 

sliding window approach that reports all reference transcripts within the sliding window around 

the lncRNAs. It further uses a set of rules for sub-classification which depends on the direction 

(antisense or sense) and interaction type (intergenic or genic). The authors employed the 

classifier module on the reference human Ensembl v83 dataset and on the dog RNA-seq 

dataset where it identified and annotated lincRNAs and antisense exonic lncRNAs. 

Another research study undertaken by Zhao et al. (2016a) proposed genome-wide 

identification of lncRNAs in RNA-seq samples obtained from patients with Intervertebral Disc 
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Degeneration (IDD) and spinal cord injury. The authors employed CPC (Kong et al., 2007), 

PhyloCSF (Lin, Jungreis and Kellis, 2011) and CPAT (Wang et al., 2013) tools for identification 

of lncRNAs and further classified the differential expressed lncRNAs. 

A third study conducted by Pan et al. (2015) developed a computational framework called 

PredcircRNA for the identification and classification of circular RNAs from lncRNAs using 

hybrid features. Using combination of conservation, sequence and graph features from 

transcript sequences, the authors classified circular RNAs from other lncRNA types (lincRNA, 

antisense, sense intronic, sense overlapping and processed transcripts) with 77.8% overall 

accuracy using the Multiple Kernel Learning (MKL) approach. Results of the multi-class 

classification analysis shows that the classifier can differentiate classes of lncRNAs (antisense, 

lincRNA, circularRNA and processed transcripts) with 60.4% accuracy. 

Current tools and methods enlist alignment-free and alignment-based features but do not 

provide the significance of the features in the classification process. As it is widely known that 

lncRNAs exhibit poor sequence conservation and are relatively expressed at lower levels, 

alignment-based methods such as CPC (Kong et al., 2007), PLncPRO (Singh et al., 2017) and 

PhyloCSF (Lin, Jungreis and Kellis, 2011) rely on the alignment of the transcript sequence with 

the reference sequence database and assigns scores for each target sequence; the latter can 

sometimes become inaccessible and increase the computation times. Additionally, alignment-

free methods such as PLEK (Li, Zhang and Zhou, 2014a), LncRNA-MFDL (Fan and Zhang, 

2015) and FEELnc (Wucher et al., 2017) heavily rely on computation of k-mer frequencies from 

transcript sequences. Due to this, they demand higher computational resources as well as 

increased computation times. Also, most current computational prediction methods target at 

mammalian genomes, and do not work well on plant species. Moreover, current alignment-free 

methods do not consider the importance of codon-bias features which can potentially impact 

and improve the classification performance. Currently developed computational methods for 

classification of different lncRNA classes do not provide reasonable accuracies and often 

misclassifies the lncRNA sub-class. Currently developed methods for lncRNA sub-

classification are based on machine learning based approaches, which heavily rely on the 

availability of the training set. Due to the unavailability of experimental lncRNA sub-class data 

in plant genomes, a computational approach is required which can accurately classify the 

predicted sequences in the absence of training datasets. Also, to address the issue of 

inaccurate identification of lncRNAs in plant species, a light-weight computational approach is 

required. Hence, a need for development of an appropriate method arises. 
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1.18 Selection of optimal features in lncRNA identification 

Identification of lncRNAs is primarily conducted using computational approaches which employ 

the extraction of features for classification and characterisation of lncRNAs and protein-coding 

genes. However, accurate identification depends on the choice of features selected for 

classification analysis. In this domain, fewer studies have been performed. With regards to the 

selection of features for classification of lncRNAs, two major research studies have been 

conducted. The first relevant approach attempted by Hu et al. (2015) proposed a strategy called 

RNAfeature for the determination of the essential features which can accurately identify 

ncRNAs in multiple species. Using this approach, 622 datasets from five species were curated. 

They calculated expression, TRF (transcription and regulation factors) binding signals, histone 

modifications from 100 nucleotide genomic bins. These genomic bins were then annotated 

using gold standard datasets which helped in determining training and testing sets. For the 

feature selection process, a supervised machine learning framework with cross-validation was 

employed which implemented Recursive Feature Elimination (RFE) (Granitto et al., 2006) for 

filtering inessential features. Furthermore, to rigorously eliminate features, Greedy Backward 

Algorithm (GBA) (Harikumar and Bresler, 1996) was implemented. The final set of the selected 

features were obtained by intersecting feature sets from multiple species. Using the initial 

feature set, 15 features were extracted from three species for feature selection. These included 

protein conservation, DNA sequence conservation, GC content, RNA secondary structure 

homology, stability, conservation and ORF property. Finally, based on the accuracy, the 

authors obtained 10 features selected for four species: DNA sequence conservation, GC 

content, protein sequence conservation, small RNA-seq, ORF property, histone modification 

signals, poly(A)+ RNA-seq signal and poly(A)- RNA-seq signals. 

A study conducted by Ventola et al. (2017) designed a web-based tool for feature selection 

that included some of the novel feature sets such as nucleotide repeat occurrence in 

transposable elements. Using different feature selection algorithms, the prediction ability was 

evaluated by studying humans, zebrafish and mouse genomes. Authors collected ~130 

genomic features which were grouped into 5 categories: (1) Basic, (2) ORF metrics, (3) 

conservation scores, (4) nucleotide arrangements and composition, and (5) novel features 

based on repeat elements. Authors implemented 11 different feature selection approaches 

which were classified into (1) Filter-based methods: Wilcoxon-test, Gain Ratio (GR), 

Information Gain (IG) and RFE (Guyon and Elisseeff, 2003). (2) Wrapper-based methods: 

Greedy Forward Selection (GFS) (Zhang, 2008) and RFE with SVM (Guyon and Elisseeff, 
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2003), (3) Embedded methods: Elastic net (Zou and Hastie, 2005), Lasso regression 

(Tibshirani, 1996) and RF, (4) Ensemble methods: which merges the outcome of different 

algorithms by computing the score for each feature. By employing this methodology for feature 

selection, the authors evaluated the stability of feature selection and identified a signature set 

of features. These features were selected based on the intersection of the results from the 

feature selection approaches. Due to the instability in consistently obtaining features, some of 

the algorithms were discarded. In comparison with other tools, the authors obtained ~21-24% 

increase in accuracy. 

Currently developed computational approaches for selection of optimal features however pose 

many drawbacks. Firstly, wrapper-based FS methods such as SVM-RFE are computationally 

inefficient and fail to identify optimal feature subsets. Whereas filter-based FS methods, such 

as IG and GR assign relevance score or rank to each feature by considering each feature 

separately and ignoring any dependencies between features which lead to a worse 

classification performance. Regression based approaches utilized by Ventola et al. (2017) 

employed the elastic net method for feature selection. Elastic net uses a combination of ℓ1 and

ℓ2 regularisations. Usage of ℓO norm (with q < 1 or q > 1) approaches for optimisation are 

generally non-convex and make the minimisation computationally challenging. Additionally, 

elastic net regularisation is meant to be used for solving problems with higher number of 

features (p) and less number of variables (n). All research studies conducted employ a greater 

number of variables with several thousand sequences and fewer features. Under such 

circumstances, the method may fail to generate a reliable set of features. Moreover, previous 

attempts for development of FS methods focused mainly on mammalian datasets which can 

potentially bias the analysis. Therefore, considering the potential drawbacks from the literature 

reviewed, the development of a potential feature selection approach has been undertaken in 

this research work. Unlike previous work which measures the stability of different FS methods, 

the research approach employed in this project implements regression-based approach and 

compares the performance of the developed approach with other methods which fails to 

provide reasonable set of features. 

1.19 Tools for predicting lncRNA-protein interactions 

lncRNA-protein interactions are essential for understanding important biological processes. 

These interactions play a major role in splicing, post-translational gene regulation, signaling, 
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translation and in the progression of many complex diseases. Thus, identifying these 

interactions is critical for gaining insights into diverse functions and molecular mechanisms of 

lncRNAs. Since experimental methods for the detection of lncRNA-protein interaction is time 

consuming, several computational approaches have been proposed. Bellucci et al. (2011) 

proposed CatRAPID in which pairs of lncRNA and proteins are encoded into feature vectors 

and are scored using matrix computation. Similarly, the RPIseq method was proposed, which 

implemented RF and SVM classifiers for the prediction of lncRNA-protein interaction that 

exploited sequence information of lncRNAs (Muppirala, Honavar and Dobbs, 2011). 

Surest et al. (2015) proposed RPI-pred in 2015 by developing a computational approach for 

identifying binding partners of RNA-protein interaction pairs. Using 16 structural fragments 

which they called Protein Blocks (PBs), an accurate representation of protein structures was 

made. Using experimentally verified PDB structures of RNA and protein from Protein Data 

Bank (PDB), a training set was created. Using higher-order structures of RNAs and PBs, a 

SVM classifier could be applied on a query set for predicting RNA-protein interactions. 

Li et al. (2015) developed a network-based approach called lncRNA-protein interaction 

prediction based on Heterogenous Network Model (LPIHN) in which a heterogenous network 

was constructed using Protein-Protein Interactions (PPI), known lncRNA-protein interactions 

and expression similarity of lncRNAs. Random Walk with Restart (RWR) approach was then 

applied on the heterogenous network for elucidating novel lncRNA-protein interactions. Based 

on a similar, approach Ge et al. (2016) proposed the lncRNA-protein bipartite network inference 

(LPBNI) method, which is using lncRNA-protein bipartite network. The propagation process in 

LPBNI is derived from recommendation algorithms (Zhou et al., 2007) which use known 

interactions of lncRNA and proteins. On the other hand, Hu et al. (2017) proposed an 

eigenvalue transformation-based semi-supervised link prediction called LPI-ETSLP, for 

identifying relationships between proteins and lncRNAs. The advantage of this approach is that 

it does not need any negative samples for the prediction during the classification process. 

Using this approach, they achieved an AUC score of 0.8876. 

Using the heterogenous network model, Xiao et al. (2017) proposed the PLPIHS method which 

uses the HeteSim measure for computing the relatedness of lncRNA-protein pairs in the 

heterogenous network. Identical to LPIHN, the heterogenous network is made up of lncRNA-

protein association network, PPI network, lncRNA-lncRNA similarity network. Using HeteSim 

scores, SVM is used for predicting lncRNA-protein interactions. The HeteSim is a path-

constrained measure which computes the relatedness of objects of different or similar types in 
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a uniform framework. Using a transition probability matrix, the similarity of lncRNA and proteins 

is calculated and HeteSim score is assigned between to the lncRNA and protein pair. 

Identical to LPI-ETSLP method, Liu et al. (2017) proposed a matrix factorisation computational 

method for determining lncRNA-protein interactions; this is a semi-supervised approach and 

does not need negative samples for prediction, as it deduces the interactions mainly based on 

similarities and their known interactions. The method uses the neighborhood regularized 

logistic matrix factorisation approach thereafter called LPI-NRLMF method. The method 

combines the similarity of the modified matrix with the Gaussian interaction profile for achieving 

accuracy in prediction. The method focusses on the prediction of the probability of association 

of lncRNA with protein by mapping protein and lncRNA to low dimensional space. Moreover, 

the local structure of data association was also studied for achieving a higher accuracy, which 

exploited the influence of neighbors of the most similar proteins and lncRNAs. Using leave-

one-out-cross validation, the LPI-NRLMF method achieved an AUC score of 0.9025 with 

significant improvement in the prediction performance over previous prediction models. 

Development of LPI-NRLMF method was based on original implementation of NRLMF method 

proposed by Liu et al. (2016). The method was developed for prediction of drug-target 

interactions using logistic matrix factorisation. 

Currently developed approaches for prediction of lncRNA-protein interactions utilises both 

network-based and structure-based approaches, which partially depends on the availability of 

known lncRNA-protein interactions. Known interaction data of lncRNAs and mRNAs is currently 

available for human and mouse genome, however no interactions have been reported in plant 

species. Unavailability of lncRNA-protein interactions significantly limits the prediction of 

potential functions. Therefore, since current tools and techniques have primarily focused on 

the identification of lncRNA-mRNA interactions in mammalian genomes, less attention has 

been given on function prediction based on computational prediction of interactions in plant 

genomes. Moreover, from the literature reviewed, many studies have confirmed that lncRNAs 

tend to co-express with mRNAs (Guo et al., 2015; Sun et al., 2016; Wang et al., 2017). 

Therefore, in this study, a combinatorial approach for function prediction using NRLMF and co-

expression of genes has been devised for predicting novel interactions.  

1.20 Tools for lncRNA function prediction 

1.20.1 lncRNA function prediction 
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Over the past few years, sequencing approaches have revealed the transcriptional complexity 

of genomes. Through RNA sequencing methods and expression microarrays, there has been 

an increase in the number of lncRNAs which now exceeds protein-coding genes. Despite of 

such an enormous catalogue of lncRNA sequences, only a small number of lncRNAs have 

known functions. Currently developed experimental investigations have provided insights into 

functions of lncRNAs, however, the majority of lncRNAs still remains functionally 

uncharacterised. Some of the known functionally characterised lncRNAs include HOTAIR 

(Hajjari and Salavaty, 2015), XIST (McHugh et al., 2015), COLDAIR (Kim, Xi and Sung, 2017), 

and H19 (Zhang et al., 2017) which illustrate their potential involvement in protein and gene 

expression. With the growing need for identification of the lncRNA function, several 

computational techniques have been developed for imputation of lncRNA function. These 

include: (1) Differential expression, (2) Guilt-by-Association, (3) Condition-specific expression, 

(4) Disease association, (5) Conservation, (6) lncRNA-protein interactions. One of the easiest 

ways of inferring functions is through differential expression analysis; however, DE does not 

alone provide functional insights. Alternative methods such Guilt-by-Association are needed 

for exploiting the biological network of genes and their regulation. 

Langfelder and Horvath (2008) developed an R package for the imputation of the lncRNA 

function through Weighted Gene Co-expression Network Analysis (WGCNA), which relies on 

correlation networks of genes across microarray experimental samples by finding clusters of 

highly correlated genes. WGCNA has been successfully applied on cancer, yeast genetics, 

mouse genetics and in the analysis of brain imaging data. Another method developed by Xiao 

et al. (2015) relies on the prediction of the lncRNA function, based on Bayesian networks. Using 

Bayesian networks, dependency relationships of lncRNA and proteins was built. Using lncRNA-

protein interaction network, lncRNAs connected to protein-coding genes in the network were 

eventually used to infer functions of corresponding lncRNAs. Through this approach, 762 

lncRNAs were allocated to functions and were found to be involved in embryo development 

and tissue development in 58 prostate cancer samples. Identical to WGCNA, Yao et al. (2015) 

implemented co-expression networks for identifying enhancer RNAs (eRNAs) in the human 

brain, by constructing an eRNA-protein gene interaction network across fetal brain and multiple 

adult brain regions. Through this, they found eRNA association in autism. 

Zhou et al. (2015) proposed a novel rank-based approach for disease association analysis, 

called RWRHLD which implements Random-Walk with Restart (RWR) on Heterogenous 

lncRNA and Disease networks. They constructed lncRNA-lncRNA networks by examining the 
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co-occurrence of shared miRNA response elements on the transcripts of lncRNAs, disease-

disease similarity network and known lncRNA disease association networks. They integrated 

all these networks to construct a heterogenous network and implemented the RWR on this 

heterogenous network to impute the association of lncRNAs in diseases. Disease association 

analysis has also been performed by constructing a functional similarity network using 

information from miRNA (Chen, 2015). lncRNA-disease association was predicted by 

integrating lncRNA-miRNA interaction and miRNA-disease association information to construct 

hyper geometric distribution of lncRNA-disease association inference (HGLDA). Colorectal, 

breast and lung cancer samples were used for lncRNA-disease association prediction. By 

integrating disease semantic similarity using direct acyclic graphs and MeSH descriptors, 

lncRNA functional similarity based on lncRNA-miRNA interactions and miRNA functional 

similarity, functions were associated to lncRNAs. The miRNA functional similarity was 

computed based on the miRNA-disease association and disease semantic similarity. 

Chen et al. (2013) proposed LRLSLDA, a semi-supervised learning approach for lncRNA-

disease association by integrating phenome-lncRNAome network which was acquired from 

LncRNADisease database, lncRNA similarity network and disease similarity network. The 

method assumed that similar diseases interact with similar lncRNAs. Wang et al. (2016a) 

proposed LncDisease, an improvement over LncRNADisease database, by predicting the 

lncRNA association with hypertension and breast cancer. For the prediction of lncRNA-miRNA 

interactions, miRanda (Betel et al., 2008) and TargetScan (Friedman et al., 2009) were used, 

whereas for the prediction of lncRNA-disease association, the TAM method (Lu et al., 2010) 

was used; the latter uses disease associated miRNAs as its input from the HMDD database (Li 

et al., 2014b) and enrichment analysis is performed which outputs the significance of the 

miRNAs predicted in each of the disease-associated miRNA set. Identical to the RWRHLD 

method, Sun et al (2014) proposed a network-based method called RWRlncD, which integrated 

the known lncRNA-disease association, disease similarity networks and functional networks of 

lncRNAs. 

Based on the correlation of lncRNAs and protein-coding genes, Jiang et al. (2015) developed 

a comprehensive web-based resource, called LncRNA2Function, consisting of functional 

association of 9625 human lncRNAs with biological pathways and GO terms. Using RNA-seq 

data from 19 human normal tissues and annotation information of lncRNA and protein from the 

GENCODE database, expression values were computed using Cufflinks. Through these 

expression values, Pearson Correlation Coefficient and significantly expressed lncRNAs and 
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mRNAs were calculated with PCC > 0.9 and adjusted P-value < 0.05. Using correlation, GO 

annotation and pathway annotation data of protein-coding genes, lncRNAs were annotated. In 

their work, Perron et al. (2017a) suggested a similar approach based on correlation analysis. 

by calculating the co-expression for 9 vertebrates and 30 human tissues using a rank product 

algorithm. They calculated a functional prediction score from a set of RNA-seq samples and 

quantified the gene expression of each sample. Tissue-specific and phylogenetic conserved 

gene expression was evaluated in 10 mammalian species and 8 organs which were published 

by Necsulea et al. (2014). From this dataset, they profiled 5400 lncRNAs and 22000 mRNAs. 

They also collected tissue-specific expression of genes from 2923 samples distributed across 

30 tissues from which 7000 lncRNAs and 19500 mRNAs were profiles. lncRNAs were 

functionally annotated by assigning Gene Ontology (GO) terms assigned to protein-coding 

genes. Through this analysis, they found several lncRNAs PTENP1, BRAFP1, TUSC7 and 

MYCNUT predicted to be involved in cancer. 

Guo et al. (2013) proposed a novel network based approach called bi-coloured network, which 

integrates protein-interaction and gene expression data. The lncRNA global function predictor 

(lnc-GFP) method is a bi-coloured network which uses coding-noncoding expression data and 

protein interaction data. Using this method, functions for 1625 lncRNAs were assigned from a 

total of 1713 lncRNAs. By constructing the network, 87874 edges were determined having 

29393 mRNA-mRNA interactions, 59173 co-expression and 692 both mRNA-mRNA and co-

expression. Through this analysis, 1625 lncRNAs were found to be associated with 5284 GO 

terms.    

Previous work on lncRNA function prediction included mapping of long-intervening ncRNAs to 

chromatin states, through which the prediction function was assigned (Guttman et al., 2009). 

Khalil et al. (2009) used the same strategy and identified ~3300 long-intervening ncRNAs in 

six human cell types and examined association between long-intervening ncRNAs and PRC2 

complex. Identical LncRNA2Function, Cabili et al. (2011) defined a catalogue of more than 

8000 long-intervening ncRNAs and characterizing them functionally through co-expression 

between non-coding and protein-coding genes. 

Apart from the functional identification of lncRNAs in mammals, a few studies have been 

performed which included functional characterisation of lncRNAs in stress drought plant (Li et 

al., 2017). Li et al. (2017) performed a co-expression study on cold and drought stress affected 

Manihot esculenta (cassava) plant for screening and identifying functions of lncRNAs under 

stress and drought conditions. They used a strand-specific RNA-seq approach for investigating 
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genome-wide transcriptome reconfiguration of Manihot esculenta. Using 9 samples through 

whole-transcriptome ssRNA-seq, 453 lincRNAs and 229 lncNATs were identified using CPC, 

CPAT and CNCI as lncRNA predictors. For identifying functions of stress-responsive lncRNAs, 

co-expression analysis was performed to identify trans-regulatory networks. 45 GO terms were 

associated to stress-responsive lncRNAs. 

Functional prediction of lncRNAs was also performed lncRNAs using gene expression 

microarrays. Zhang et al. (2016) obtained 481 DE lncRNAs from tumorous and normal tissue 

samples of nonkeratinizing carcinoma (NKC). Through co-expression network, transcription 

factor binding motif, interactive miRNAs and gene ontology analysis, functional prediction was 

performed for inferring lncRNA functions in NKC. 

1.20.2 Protein function prediction 

Although most of the known protein-coding genes have associated functions, several proteins 

remain functionally uncharacterised. Certain in-silico approaches have been conducted for 

associating functions to these proteins. Using neural networks, Rifaioglu et al. (2017) 

developed a multi-task deep neural network architecture using GO terms called DEEPred, for 

protein function prediction. The DEEPred implements post-processing of prediction based on 

GO direct acyclic graphs. Using the subsequent profile map (SPMap), feature vectors of protein 

sequences are generated, which are then clustered together based on the BLOSSUM-62 

matrix. The clusters are transformed into probabilistic profiles, where each GO term is assigned 

to an individual profile which is classified by the classifier in order to assign a function. Another 

approach using Multimodal Deep Autoencoders (MDA) was also developed using a network 

fusion method called deepNF (Gligorijević, Barot and Bonneau, 2018). The method 

implemented the RWR approach for vector representation and Positive Pointwise Mutual 

Information (PPMI) approach for constructing the matrix by capturing structural information of 

network. PPMI matrices were fused using MDA and then predicted lncRNA functions using 

SVM classifier. 

Studies have also been conducted for predicting functions by identifying DNA and RNA-binding 

proteins using machine learning RF models (Peled et al., 2016). Nucleic Acid (NA) binding 

proteins were predicted based on the assumption that the distribution of the predicted binding 

site differentiates protein which binds NA more accurately than proteins which do not bind NA. 

Certain studies have also been performed for protein function prediction based on sequence, 

structure and protein-protein interaction information. The COFACTOR web server uses hybrid 
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models which combine information from sequence and structure homologies, and protein-

protein interaction networks for the protein function prediction. COFACTOR implements 

sequence-based, structure-based and PPI-based pipelines for inferring GO function prediction 

which is given by the confidence score (Zhang, Freddolino and Zhang, 2017). Delattre et al. 

(2016) implemented a distance homology search approach for constructing a tool called 

Phagonaute based on Hidden Markov Models (HMM) for > 80,000 proteins derived from 

phages and archaeal viruses and performed pairwise comparisons. Using this approach, the 

function of unknown phage protein can be inferred. 

Like lncRNA function prediction, network-based approaches have also been used for function 

prediction of proteins. Sharan et al. used direct and indirect methods for function prediction 

(Sharan, Ulitsky and Shamir, 2007). Direct methods involve function assignment of an unknown 

protein, when the unknown protein interacts with a known protein having a function, whereas 

indirect methods involve the identification of functional modules in the network. The 

overrepresented or enriched functions in these modules are used for annotating the 

unannotated proteins in the network. Deng et al. (2002) developed a direct method based on 

a probabilistic approach called Markov Random Fields (MRF). MRF method says that the 

function of protein ideally depends on two conditions: (1) Its direct interaction with neighbouring 

proteins having associated function and (2) interaction with those that do not perform function. 

Using logistic regression (Nelder and Wedderburn, 1972), the parameters of the relationships 

can be known and learned from the training set. Gibb’s sampling is then implemented for 

determining the functions of proteins with unknown functions. Lee et al. (2006b) combined the 

properties of MRF and SVM to generate a Kernel Logistic Regression (KLR) approach in which 

parameter estimation and predictions could be performed much faster. The use of the diffusion 

kernel for parameter estimation outperformed MRF and SVM when several experiments were 

carried out using Mus musculus datasets for functional inference. 

An improvement of MRF method was proposed by Gehrmann et al. (2013) called Conditional 

Random Fields (CRF), which removed the requirement of modeling relationships between 

various data sources, thus providing substantial improvement over the data derived from the 

genetic interaction networks. Using a network-based approach, Mostafavi et al. (2008) 

developed a fast heuristic algorithm, using ridge regression, by integrating multiple functional 

association networks for predicting protein functions. Kourmpetis et al. (2010) discovered a 

potential problem in the parameter estimation step in the MRF approach which could be 

troublesome when annotated proteins are connected with unannotated proteins as neighbors. 
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Therefore, the authors revised the MRF method by implementing a Joint Parameter Estimation 

(JPE) and prediction step with moderate computational cost. JPE on missing datasets performs 

iterative estimation of parameters using logistic regression in the first step and then unknown 

function is estimated by optimizing the objective function till convergence. They named this 

method Bayesian Markov Random Fields (BMRF) (Kourmpetis et al., 2010). Using the BMRF 

approach, it outperformed MRF and KLR methods on function prediction when tested on 1170 

Saccharomyces cerevisiae unannotated proteins. 

Recent advances in lncRNA function prediction primarily focus on mammalian datasets where 

genome annotation and co-expression data are easily available (Jiang et al., 2015; Xiao et al., 

2015; Perron, Provero and Molineris, 2017). Therefore, less attention has been paid on 

functional prediction on non-model plant RNA-seq datasets. Development and application of 

current methods for function prediction has primarily focused on the annotation of lncRNAs 

involved in diseases such as breast cancer. Development of such methods significantly biases 

the analysis as they are mostly used for identifying disease-related functions of lncRNA 

sequences. Therefore, functional roles unrelated to diseases becomes difficult to impute. Other 

methods, such as RPI-pred (Suresh et al., 2015b) rely on the experimental structure of 

lncRNAs and proteins for the prediction of novel binding partners. Due to limited availability of 

the experimental structures and their fixed binding interactions with protein-coding genes, the 

identification process becomes restricted and computationally resource intensive. Therefore, 

the work in this thesis attempts to overcome the above-mentioned drawbacks, by employing 

the Bayesian approach for identification of lncRNA functions in plant RNA-seq data. 

1.21 lncRNA visualisation tools 

With the increase in the size of data generated by high-throughput sequencing experiments 

visualisation tools are required to visualise, analyse and interpret these datasets. A genome 

consists of a vast amount of Information about various genes, transcripts, mutations, 

substitutions, inversions, translations, structural variations, length of sequence, gaps in 

sequence, open reading frames in the sequence, etc. A genome browser visually conveys this 

information as well as the spatial relationship between different bits of sequence data in the 

genome. 

A genome browser helps to visually compare and correlate information from different sources 

and provide an informative and comprehensive graphical representation of the data. With the 
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absence of web-based bioinformatic applications the enormous amount of data generated by 

HTS machines could not be shared or processed and visualised. With development and 

publication of the first web-based genome browser (UCSC human genome browser) 15 years 

ago, the visualisation of human genome was achieved, which provided significant details about 

characteristics and limitless information of the genome in detail (Kent et al., 2002). This 

encouraged the development of web-based visualisation tools, not only for visualisation, but 

also for data processing and analysis as well. Many web-based genome browsers have been 

developed for the visualisation of genome which includes the UCSC genome browser, JBrowse 

(Skinner et al., 2009), Ensembl genome browser (Fernández-Suárez and Schuster, 2010), 

Integrated Genome Browser (IGB) (Freese, Norris and Loraine, 2016), pileup.js browser, which 

enable the visualisation of large genomic sequences (Vanderkam et al., 2016). The recent 

development of web-based data processing, analysis and visualisation of genomic sequences 

has filled the gap of sequence generation and data interpretation on the web. 

Like lncRNA identification and function prediction, several studies have been reported for 

visualisation of lncRNAs in genomic datasets. Gong et al. (2017) developed a comprehensive 

workflow called lncRNA-screen for computational evaluation of lncRNA transcripts from large 

multi-modal datasets. The pipeline provides RNA-seq alignment, transcript assembly, 

assessment of quality, filtering transcripts, lncRNA identification, estimation and quantification 

of transcript levels, histone enrichment profile integration, DE analysis, annotation and 

visualisation. The visualisation component consists of interactive report showing genomic 

snapshots of mRNA-lncRNA interactions based on Hi-C data. Since visualisation based on 

sequence conservation of lncRNAs generates false positive results, publicly available ChIP-

Seq, CAGE-Seq and DNase-Seq databases can be used for providing improved precision in 

the visualisation. Avila Cobos et al. (2017) developed Zipper plot which uses the genomic 

coordinates of transcriptional start sites (TSS) of lncRNAs and produces a summary table with 

statistics which was implemented using jQuery, HTML5 and PHP. Volders et al. (2013) 

developed a web-based database called LNCipedia consisting of annotated lncRNAs derived 

from Homo sapiens, which allows the user to query and download sequences and structures 

of lncRNAs. Using Perl, it also allows visualisation and querying of data. 

Although limited visualisation tools are available for lncRNAs, many tools and applications have 

been developed for the visualisation of RNA-seq data. Thorvaldsdóttir (2013) developed a 

desktop application called Integrated Genomic Viewer (IGV) for NGS data visualisation. Using 

the data tiling approach, originally developed by Google Inc. (Google.com, 2014), interactive 
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exploration of large scale genomic data can be achieved on a standard desktop computer. By 

dividing the genome into tiles which corresponds to viewable region on the screen, an increase 

in zoom proportionately increases the tiles of the chromosome, which corresponds to the 

screen pixel displayed at that resolution. The application further optimises the computational 

usage by removing tiles which are no longer needed to support current view, thereby providing 

browsing on all resolution with minimal memory. Certain tools used for DE analysis of RNA-

seq data also provide visualisation of transcripts. 

Anders and Huber (2014) developed DESeq2 which provides DE analysis as well as 

visualisation and gene ranking which is based on the stable estimation of Logarithmic Fold 

Change sizes (LFCs). For visualisation of RNA-seq data, the count data should be transformed 

using either log transformation of variance stabilising transformation. Log-transformed or 

variance stabilised count data can then be used for visualisation as heat map of raw and 

transformed data, sample to sample distances using Euclidean distance and principal 

component analysis plot of the samples. Another tool called ngs.plot and developed by Shen 

et al. (2014) utilises and integrates the information from genomic databases to provide genomic 

visualisation of enrichment patterns of DNA-interacting proteins. This is achieved by collecting 

and retrieving functional elements from publicly available datasets and plotting them using the 

R tool (R Development Core Team, 2016). Ngs.plot selects the region of interest and uses the 

genome crawler which grabs genomic annotation from databases and packs the information 

into an archive. The information is used by the script that calculates and visually inspects the 

correlation among the samples. This is then plotted using R graphical functions. It produces 

two plots which provide an average profile of the mean of all regions and a heatmap showing 

the enrichment of the region across genome. 

A similar R package has also been developed, called Scater (McCarthy et al., 2017), which 

provides data pre-processing, quality control, normalisation and visualisation of single cell 

RNA-seq data. For visualisation of scRNA-seq data, it provides functions such as plotPCA for 

performing and visualising principal component analysis, plotTNSE function for performing t-

distributed stochastic neighbour embedding, plotMDS for generating multi-dimensional scaling 

plots and plotDiffusionMap for generating diffusion map of differential processes. 

For NGS data visualisation based on web technology, the BrowserGenome tool was developed 

by Schmid-Burgk and Hornung (2015) for data analysis and visualisation of RNA-seq data. 

BrowserGenome is mainly focused on the analysis of mRNA-seq data and provides a circular 

representation of mapped density using FASTQ data. User interface is developed based on 
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principles of Google Maps (Google.com, 2014) such that exons and gene names can be 

displayed with higher zoom levels. Some studies were also performed for visualisation of RNA-

seq data in three dimensions, which was accomplished by Shifman et al. (2016) by developing 

the Cascade tool, which provides a 3D visualisation of cancer RNA-seq data. Using analysed 

data from RNA-seq, it can be mapped onto the biological pathways defined by the users. For 

interactive 3D representation, it implements three.js library which generates a “hair-ball” 

network style diagram, where gene names are represented as nodes and are connected to 

each other by edges/lines with concentric rings as the representation of depth in the pathway. 

Cascade uses MySQL database for storing pathway information, gene expression, copy 

number variants information, mutations and alternative splicing information, and gene lists. This 

information is retrieved using PHP scripts and the gene pathway network is represented using 

three.js. 

Currently developed visualisation tools have primarily focused on providing improved analysis 

and visualisation of RNA-seq data. However, less effort has been put on the visualisation of 

lncRNAs, its sub-classes and its function in the genome. Therefore, the present study attempts 

to develop a visualisation application using a combination of statistical-based and Javascript-

based approach, which is expected to provide a comprehensive view of the genome that can 

display annotated lncRNAs and its sub-classes and also annotated with function predicted 

using the Bayesian approach. 

1.22 Summary 

This chapter introduced the background to various concepts and a review of relevant work has 

been carried out and reported in this chapter. The general background of RNA-seq data 

analysis consisted of two sub-sections. In the first sub-section, various tools developed for 

analysis of raw RNA-seq data have been listed. In the second sub-section, several research 

studies employing these tools for identification and analysis DE genes in plant genomes were 

reviewed. Several tools developed for prediction and identification of lncRNAs from FASTA 

sequences and RNA-seq datasets as well as advancements in lncRNA sub-classification were 

discussed which provided a comprehensive understanding of the technical developments in 

the field of computational biology. Current developments in the prediction of lncRNA-protein 

interactions using in-silico approaches in which tools developed from 2011 to 2018 have been 

reviewed and discussed as well. Furthermore, the chapter discussed several computational 
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tools developed for function prediction of lncRNAs. Since this thesis adopts a novel probabilistic 

computational approach for the prediction of the lncRNA function, this section also attempted 

to present the tools that have been developed for protein function prediction using evolutionary 

sequence-based and statistical methods. Several computational technological developments 

in terms of the visualisation of lncRNAs were reviewed. Due to the limited availability of tools 

for lncRNA visualisation, current and previous research on genomic visualisation of RNA-seq 

data has also been discussed, as this thesis has adopted a methodology for the development 

of web-based visualisation of lncRNAs from RNA-seq data. This section discussed and enlisted 

various shortcomings/demerits in previous work and demonstrated potential gaps in lncRNA 

sequence analysis. This has motivated the author to undertake the research work. The 

development of a novel computational approach, which to the author’s knowledge has not been 

carried out before, is presented in this thesis. 

Chapter 2 is intended to provide detailed description of the methods used and algorithms 

developed to fulfill the research objectives. The methods discussed in the forthcoming chapter 

addresses the limitations discussed and provides a computational framework for identification, 

classification and function prediction of lncRNA sequences in the plant species. 
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CHAPTER 2: RESEARCH METHODOLOGY 

2.1 Introduction 

The previous chapter surveyed tools and research studies for RNA-seq data analysis 

approaches from a wide range of algorithm developments to implementation and application 

of developed methods for construction of analysis pipelines. We comprehensively reviewed 

tools developed for identification, classification and prediction of long non-coding RNAs 

(lncRNAs) from web-based genomic databases using machine learning approaches. Various 

features used in lncRNA identification and their performance were also reviewed. Later, several 

developed computational approaches for identification of lncRNA-protein interactions as well 

as previous and current developments in the function prediction of lncRNAs and proteins were 

discussed. Several computational developments in visualisation of lncRNAs and genomic 

visualisation of RNA-seq datasets using desktop-based and web-based methods were 

discussed. 

This chapter provides a review of the key ideas and detailed implementation of topics 

discussed in the literature review chapter. In this chapter, the methodology and its 

characteristics for enhancing the identification and function prediction of lncRNAs in RNA-seq 

datasets has been described. 

This chapter is organized in 12 sections. Section 2.2 explores processing and analysis of RNA-

seq data using computational and statistical methods. Section 2.3 provides the datasets used 

in this research study. In Section 2.4, the computational pipeline and workflow for performing 

lncRNA identification, classification and prediction is presented. The features used for 

classification and identification of lncRNAs is discussed in Section 2.5. In Section 2.6, the 

methodology of the steps required for feature extraction from RNA-seq datasets is presented. 

Section 2.7 reviews the iterative random forest classifier method used for classification. The 

detailed implementation of the classifier for identification and differentiation of lncRNAs from 

coding sequences is provided in Section 2.8. Section 2.9 discusses detailed implementation of 

the optimisation method coupled with the classifier on RNA-seq datasets. Sections 2.10 and 

2.11 presents the details of performance evaluation methods using cross validation approach. 

The methodology for classification of lncRNA sequences based on genomic position is 

presented in Section 2.12. Section 2.13 outlines the implementation of function prediction 

approach for lncRNA sequences. The methodology for web-based visualisation of lncRNAs is 

provided in Section 2.14. A summary of this chapter is discussed in Section 2.15. 
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2.2 RNA-seq data analysis 

2.2.1 RNA-seq datasets collection 

Two RNA-seq datasets were used for the identification of DE genes. The first dataset consists 

of 10 samples derived from the apical shoot meristem time-series dataset from A. thaliana 

genome obtained from the NCBI SRA database (Project ID: PRJNA268115) (A. V Klepikova 

et al., 2015). This consists of 10 samples from Day-7 to 16 with two replicates from 9-14 days. 

The samples have been denoted as S1, S2, …, S16. 9 sample pairs were constructed by 

comparing samples from Day 8-16 against Day-7. The second dataset consisted of 11 time-

series samples (from 0 to 20 days) from whole seed of Z. mays inbred line B73 which was 

obtained from SRA database (Project ID: SRP037559) (Chen et al., 2014). 

2.2.2 Data processing workflow 

For the identification of DE genes from RNA-seq datasets, a computational pipeline was 

constructed (Figure 2.1) with customised parameters for reference-based RNA-seq datasets. 

The pipeline starts with the conversion of raw sequence reads from SRA format to FASTQ 

format using SRA toolkit (Ostell and McEntyre, 2007) as FASTQ files were needed for 

sequence alignment. In the next step, a quality metric report was generated using the FastQC 

tool (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) which briefly outlines the metrics 

of sequence quality, quality scores, sequence content, sequence length distribution, sequence 

duplication levels, overrepresented sequences, adapter content and Kmer content. Based on 

the metrics, reads were trimmed to generate trimmed read files for each sample using Cutadapt 

(Martin, 2011). Following read trimming, samples were again checked for contaminated 

sequences, adapters, and poor-quality reads using the FastQC tool so that they could be 

removed before alignment in the next step. 

Individual sample reads were aligned to the genome using TopHat2 (Kim et al., 2013) which is 

a fast splice junction mapper based on Bowtie2 (Langmead and Salzberg, 2012). Cufflinks and 

Cuffmerge (Trapnell et al., 2012) were then used for transcript assembly and transcript 

merging. Differential Gene Expression (DGE) was performed using Cuffdiff (Trapnell et al., 

2012). For reducing the chances of obtaining false positives and increasing true positives from 

data, DESeq (Anders and Huber, 2010) and edgeR (Robinson, McCarthy and Smyth, 2010) 

tools were also employed for DGE analysis. Using DESeq and edgeR, BAM files obtained from 

Tophat2 are converted to raw read counts using the HTSeq (Anders, Pyl and Huber, 2015) 

tool. There are many other transcript quantification tools available, such as RSEM (Li and 
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Dewey, 2011) and StringTie (Pertea et al., 2015), which utilize the BAM file generated from 

Tophat2 and reference GTF file and produce Reads Per Kilobase of transcript per Million 

(RPKM) reads. HTSeq utilizes a simpler approach and produces raw read count from the SAM 

file and reference GTF file. 

Raw reads were then used for DGE using DESeq (Anders and Huber, 2010) and edgeR 

(Robinson, McCarthy and Smyth, 2010). There are many other tools available for RNA-seq 

DGE analysis however Cuffdiff was chosen as it is specifically designed for DGE analysis from 

transcripts, spliced regions and promoters, and is best suited to use in conjunction with 

TopHat2. Another advantage of employing DESeq and edgeR in DE analysis is that both tools 

are designed to work with and without replicates, which provides additional validity in the 

approach. Coupling HTSeq with DESeq and edgeR helps in direct integration of raw read 

counts from htseq-count as input into DESeq and edgeR programs. 

Post-analysis was performed using the SpliceR (Vitting-Seerup, B. T. Porse, et al., 2014) tool 

for annotation of transcript features obtained from Cuffdiff. Results from Cuffdiff, DESeq and 

edgeR were merged to obtain collective DEGs in the sample pairs. The final step of the pipeline 

consisted of gene enrichment, pathway analysis and protein-protein interaction (PPI) network 

analysis using the Araport portal (Krishnakumar et al., 2015), ClueGO (Bindea et al., 2009) and 

GeneMania (Montojo et al., 2010) for identifying novel gene clusters associated with flower 

development. 
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Figure 2.1: Flowchart of the proposed RNA-seq data analysis pipeline. The workflow is 
divided into three stages namely, data processing, DGE and GO enrichment & network 

interaction analysis. 

2.2.3 Read trimming, reference genome mapping and transcript assembly 

Adapter trimming and genome mapping are represented in the pre-processing step, as seen 

in Figure 2.1. The first 15 base pairs of the reads were trimmed using Cutadapt to remove the 

adapter sequences. Adapter trimming retains only high quality reads with a quality score (Q-

score) greater than or equal to 30 (Martin, 2011). Each sample consists of two reads: therefore, 

each read was trimmed and a FastQC report was regenerated on the trimmed data to examine 

the quality and verify that the resulting reads satisfied the criterion. 

The A. thaliana trimmed reads were mapped to the A. thaliana genome (TAIR10) and the Z. 

mays trimmed reads were mapped to the Z. mays genome (AGPv4 Ensembl Genomes 39) 
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using the TopHat2 aligner (Kim et al., 2013). With customized parameters for different datasets, 

minimum intron length and maximum intron length were adjusted based on values obtained 

through previous experimental results. Therefore, TopHat2 was run on both the reads with 

values of default parameters changed to suit A. thaliana and Z. mays genome intron lengths. 

For A. thaliana dataset, minimum intron length (-i) was set to 40, maximum intron length (-I) 

was set to 5000, segment length was set to 20, segment mismatches was set to 2, number of 

max-multihits (-g=1), minimum normalised depth (F) was set to 0 and minimum anchor length 

was set to 10 (-a=10). 

For Z. mays dataset, minimum and maximum intron lengths were set to 5 and 60,000 

respectively, segment mismatches was set to 1, max-multihits was also set to 1 and segment 

length to 25. The rest of the parameters were kept to the default. The parameter values are 

summarized in Table 2.1. 

Trimmed reads were also aligned using Bowtie2 with minimum (i) and maximum (I) intron 

lengths as mentioned above for three datasets. Similarly, the maximum intron length for plant 

genomes, which is otherwise set to 500bp, is much larger than vertebrates. By setting the max-

multihits option to 1, we are forcing unique mapping of the reads to the genome which will allow 

for the best mapping of the read to the genome. In the A. thaliana dataset, by setting the value 

of minimum anchor length to 10 instead of 8, TopHat2 will report junctions spanned by reads 

with at least this many bases on each side of the junction. Finally, to eliminate the heuristic 

filter associated with vertebrate genomes, the minimum normalised depth was set to 0 instead 

of 300. 
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Table 2.1: List of some parameters used for reference alignment of reads using Tophat2. Each 
parameter contains their description, default value and the changed value for the analysis. 

Flag Meaning Default 
Value 

Customized Value 
for A. thaliana 

Customized Value 
for Z. mays 

-i The minimum 
intron length. 

70 nt 40 nt 5 nt 

-I The maximum 
intron length. 

500000 nt 5000 nt 60000 nt 

--segment-
length 

Each read is cut 
up into 
segments, each 
at least this long. 
These segments 
are mapped 
independently. 

25 
segments 

20 segments 25 segments 

-g Instructs TopHat 
to allow up to this 
many 
alignments to the 
reference for a 
given read, and 
choose the 
alignments 
based on their 
alignment 
scores if there 
are more than 
this number. 

20 
alignments 

1 alignment 1 alignment 

-a The "anchor 
length". 

8 bp 10 bp 8 bp 

-F Minimum 
normalised 
depth 

300 bp 0 bp 300 bp 

--segment-
mismatches 

Read segments 
which are 
mapped 
independently 
allows this many 
number of 
mismatches in 
each segment 
alignment 

2 
mismatches 

2 mismatches 1 mismatches 

Reads aligned using TopHat2 were then used by Cufflinks (Figure 2.1) for assembling 

individual transcripts with the above-mentioned minimum and maximum intron lengths 

parameters. In plant genomes, the difficulty of estimation of transcript abundance arises due 

to multi-reads and the genome becomes highly-repetitive. Therefore, to address the 
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uncertainty, an Expectation-Maximisation algorithm (EM) has been applied using Cufflinks for 

estimating transcript abundance. It computes the fractional distribution of each multi-read after 

read alignment in the E-step and then estimates relative abundance of transcripts in the M-

step until it converges. After obtaining the transcripts for each read, transcripts from two 

comparable samples were merged using Cuffmerge (Figure 2.1). For example, for comparing 

S7 with S10, the transcripts of each read of the two samples will have 3 read transcripts (i.e. 

one for S7 and two for S10 as S10 contains one biological replicate). These were merged to 

form an assembled transcript GTF file for further analysis. 

2.2.4 Differential gene expression analysis 

Differential expression analysis of the reads was carried out by testing the samples against the 

first sample to obtain DEGs at each consecutive stage. For the A. thaliana dataset, 

comparisons of the two samples from consecutive days were also performed (Table 2.2). The 

reason why the first day in time-series data is chosen for benchmarking was that when the 

samples are compared against the first sample, significant changes can be observed in plants 

when time advances, which leads to differential expression of number of genes with significant 

fold-changes. These analyses were carried out using Cuffdiff. The multi-read-correct option 

was enabled to carry out an initial estimation procedure that weights and maps the reads to 

multiple locations on the genome. Quartile normalisation was used to obtain Fragments of Per 

Kilobase of transcript per Million (FPKM) and fragment counts via the ratio of 75th quartile 

fragment counts to 75th quartile value across all samples. The significantly expressed genes 

were obtained by filtering the genes having q-values ≤ 0.05. 
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Table 2.2: Comparison chart for differential expression analyses. Two analyses for A. thaliana 
were carried out: first, all samples were compared to day 7 (S7) when plants had two leaves 

visible; second, a step-wise analysis was done between two successive days. For Z. mays, ten 

samples were compared against Day-0 in a consecutive manner. 

Arabidopsis thaliana Zea mays 
Against S7 Step analysis Against Day-0 
S7 vs S10 S9 vs S10 Day-0 vs Day-2 
S7 vs S11 S10 vs S11 Day-0 vs Day-4 
S7 vs S12 S11 vs S12 Day-0 vs Day-6 
S7 vs S13 S12 vs S13 Day-0 vs Day-8 
S7 vs S14 S13 vs S14 Day-0 vs Day-10 

Day-0 vs Day-12 
Day-0 vs Day-14 
Day-0 vs Day-16 
Day-0 vs Day-18 
Day-0 vs Day-20 

Sequence read counts were obtained from the reads aligned by Tophat2 using the HTSeq tool 

to generate raw read counts. The read counts were then used to produce a list of DEGs using 

the DESeq and edgeR tools. For A. thaliana, comparative analysis of S7 against S8 to S16 

and step-wise analysis were conducted. Since the dataset contains partial replicates for 5 

samples (S9N to S14N), we used blind dispersion estimation for samples with no replicates 

along with the sharing mode set to ‘fit-only’ and we used pooled empirical dispersion for 

samples with one or more replicates. The negative binomial method was applied for obtaining 

DEGs. Results were filtered based on FDR (q-value) <= 0.05 and log2 fold-change less than -

2 and greater than 2. To compare samples involving replicates, the Generalised Linear Model 

(GLM) was applied for estimating common and tagwise dispersion. To compare samples for 

which no replicates were found, Fisher’s exact test was applied with the biological coefficient 

of variation set to 0.2 (Benjamini and Hochberg, 1995). For performing DGE analysis using 

edgeR for samples having no biological replicates, we used common Biological Coefficient of 

Variation (BCV) with square-root dispersion value which was set to 0.4 for humans and 0.1 for 

genetically identical organisms (Robinson, McCarthy and Smyth, 2010). 

2.2.5 Alternative splicing classification analysis 

To obtain statistics of transcript level information, we utilised SpliceR (Vitting-Seerup, B. Porse, 

et al., 2014) to classify isoform transcripts obtained from Cuffdiff. Output files containing FPKM 

tracking, count tracking and read group tracking files enabled us to detect Exon 

Skipping/Inclusion (ESI) events, Alternative Transcription Start Site (ATSS), Alternative 
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Transcription Termination Site (ATTS), Alternative 3-prime splice site (A3), Alternative 5-prime 

splice site (A5) and Mutually Exclusive Exon (MEE) events. Additionally, the average number 

of transcripts per gene and the average number of ESI events per transcript were computed 

using the spliceR function for each of the sample pairs in three datasets. 

2.2.6 Gene Ontology (GO) enrichment, pathway and protein-protein interaction analysis 

Results obtained from the overlap of Cuffdiff, DESeq and edgeR were used for the functional 

enrichment to categorise genes and their associated functions. Overlapping DEGs that were 

expressed more than once were retained for further analysis. GO enrichment functional 

annotation and clustering of the genes were performed using the Araport portal (Krishnakumar 

et al., 2015) to identify genes associated with enriched categories. Gene identifiers were used 

as inputs into the Araport Thalemine tool. These identifiers were then used for enrichment in 

gene ontologies (biological process, cellular component and molecular function). Pathway 

analysis was performed using the ClueGo plugin (Bindea et al., 2009) of the Cytoscape 

software (Shannon et al., 2003). 

Gene identifiers were used to identify the association and clustering of genes in pathways using 

KEGG (Ogata et al., 1999), REACTOME (Croft et al., 2014) and WikiPathways (Kutmon et al., 

2015) databases. Enrichment or depletion of GO categories in ClueGO was performed using 

the two-sided hypergeometric test and FDR was calculated for the enriched GO categories 

using the Benjamin and Hochberg (1995) approach. Gene enrichment and clustering results 

obtained from Araport and Cytoscape were further filtered with FDR ≤ 0.05 to identify highly 

significant enriched clusters. A PPI network was constructed using the GeneMania plugin 

(Mostafavi et al., 2008) of the Cytoscape software to obtain prevalent interactors and their 

degree of interactions from the network. 

2.2.7 Calculation of relative expression values 

To calculate relative expression values, FPKM counts were used in each sample pair. Counts 

were normalised by dividing the sample pair read count by the maximum read count value from 

all other sample pairs to obtain values between 0 and 1. Expression profiles of each gene were 

constructed by comparing expression values from Cuffdiff and DESeq-edgeR. 

2.2.8 Calculating correlation of expression values 

88 

http:FDR�0.05


	
	

          

            

         

       

      

     

 

 

              

           

          

          

          

           

           

               

              

         

              

            

           

       

            

             

         

   

 

 

     

For calculating the correlation between the expression profiles, Pearson’s Correlation 

Coefficient (PCC) (Williams, 1996) was used. Expression profiles of DEGs involved in flower 

development for A. thaliana dataset were compared against the expression profiles of FLC and 

LFY genes to obtain the PCC between them. Also, the difference in expression using PCC was 

also evaluated by comparing the expression profiles of genes obtained from Cuffdiff, DESeq 

and edgeR with those obtained from Klepikova et al. (2015). 

2.3 Datasets 

2.3.1 Reference sequence datasets 

Since a reliable dataset is important for model training and prediction, an unbiased random 

selection of protein-coding and lncRNA transcripts were obtained from the Refseq (Pruitt, 

Tatusova and Maglott, 2007) and GENCODE (Harrow et al., 2012) databases for constructing 

reference gold-standard datasets which are composed of FASTA files for different species. 

These reference datasets contain two categories: mammalian and plants. 

For mammalian, protein-coding (mRNA) and long non-coding RNA (lncRNA) sequences of 

Homo sapiens (HS) andMus musculus (MM) were downloaded from the GENCODE database. 

For HS, a total of 95146 mRNA and 27720 lncRNA sequences were extracted. Whereas for 

MM a total of 62112 mRNA and 16113 lncRNA sequences were obtained out of which 5000 

were randomly selected from HS and MM datasets. 

For plants, as there is no dedicated IncRNA database, lncRNA and mRNA of Arabidopsis 

thaliana (ATH), Brassica rapa (BRA), Brassica napus (BNA), Brassica oleracea (BOL), Zea 

mays (ZM), Oryza sativa (OS), Solanum tuberosum (ST) and Solanum lycopersicum (SL) were 

downloaded from the RefSeq database. For ATH, 66066 mRNA sequences and 4950 ncRNA 

sequences were obtained from Refseq out of which 4219 mRNA and lncRNA sequences were 

randomly selected. lncRNA sequences for all plant species were obtained by applying a 

threshold cutoff of 200bp on ncRNA FASTA files. Details of the number of transcript sequences 

extracted from RefSeq and GENCODE have been provided in Table 2.3. 

Table 2.3: Number of transcript sequences obtained from RefSeq and GENCODE. 
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Species Source Number of 
mRNA 
transcripts 

Number of 
lncRNA 
transcripts 

Number of 
ncRNA 
transcripts 

Arabidopsis 
Thaliana 

RefSeq 66066 4219 4950 

Brassica Rapa RefSeq 68631 8670 8983 
Brassica Napus RefSeq 114795 16391 16835 
Brassica Oleracea RefSeq 57387 7774 7942 
Homo Sapiens GENCODE 95146 27720 -
Mus Musculus GENCODE 62112 16113 -
Oryza Sativa RefSeq 105139 5516 6406 
Solanum 
Lycopersicum 

RefSeq 53678 4182 4351 

Solanum 
Tuberosum 

RefSeq 38004 3194 3559 

Zea Mays RefSeq 230720 7917 9274 

2.3.2 RNA-seq datasets 

As described in Section 2.2.1, two RNA-seq datasets were used for the identification of DE 

genes. Details of the datasets have been presented and discussed in the Section 2.2.1. 

2.4 Workflow of computational framework 

The complete workflow (Figure 2.2) of the analysis is divided into four components: 

1) Sequence mapping 

2) Feature extraction, optimisation and prediction 

3) lncRNA sub-classification 

4) lncRNA function prediction 

In the first component, raw sequence reads are mapped based on reference genome or 

mapped de-novo in the absence of reference genome. The second component extracts 

features from the transcript sequences, performs feature selection and optimisation, and 

predicts lncRNAs from sets of transcript sequences. The third component sub-classifies the 

lncRNAs sequences. The fourth component of the framework performs function prediction of 

lncRNAs by first computing lncRNA and protein interactions using NRLMF approach (Liu et al., 

2016). Using lncRNA-protein interactions, protein-protein interaction and protein function 

association data, molecular functions of lncRNAs are predicted using the BMRF approach 

(Kourmpetis et al., 2010). 
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Figure 2.2: Workflow of the framework for identification and functional prediction of lncRNAs. 

2.5 Features for lncRNA identification 

To identify and classify lncRNA and mRNA sequences, many features were extracted from 

FASTA sequences which are categorised into either ORF-based features or codon bias 

features (Table 2.4). These features constitute a feature set F = {f1, f2, f3 … fn}, where fn
NWdenotes the ) feature. The features used are derived from two separate groups: (1) Open 

Reading Frame (ORF) based and sequence-based features, and (2) codon-bias based 

features, which are extracted for producing the feature matrix for the identification of lncRNA 

sequences. Since the framework employs alignment-free approach for lncRNA prediction, the 

features were selected based on previous knowledge of sequence measures and codon bias 

measures (Fickett and Tung, 1992; Roth, Anisimova and Cannarozzi, 2012). 
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Table 2.4: Features used for classification of lncRNAs 
ORF and Sequence based features Codon Bias features 
Feature 
name 

Feature 
number 

No. of 
features 

Feature name Feature 
number 

No. of 
features 

Max ORF 
length 

X# 1 Frequency of Optimal 
codons (Fop) 

XY 1 

ORF 
coverage 

X9 1 Codon Usage Bias 
(CUB) 

XZ 1 

Mean ORF 
coverage 

X: 1 Relative codon bias 
(RCB) 

X#H 1 

Transcript 
length 

X[ 1 Weighted sum of 
relative entropy (Ew) 

X## 1 

GC content X\ 1 Synonymous codon 
usage order (SCUO) 

X#9 1 

Fickett score X] 1 Relative synonymous 
codon usage (RSCU) 

X#: 61 

Hexamer 
score 

X̂  1 

2.5.1 ORF and Sequence based features 

We extracted three ORF-based features: maximum ORF length (X#), ORF coverage (X9) and 

mean ORF coverage (X:) and 4 sequence-based features: transcript length (X[), GC content 

(X\), Fickett score (X]) and Hexamer score (X̂ ). X# is the maximum length of the ORF. X# is one 

of the most fundamental feature used to distinguish lncRNA from mRNA as majority of protein-

coding genes have ORFs greater than 100 amino acids (Frith et al., 2006). X9 is the ORF 

coverage defined as the length of the longest ORF divided by the transcript length. This feature 

has also been shown to produce good classification performance when compared to ORF 

length (Wang et al., 2013; Zhao, Song and Wang, 2016). X: is the mean ORF Coverage defined 

as average of the total ORF lengths divided by transcript length for sequence. X[ is the total 

length of each transcript sequence. X\ is the GC content, which is also a common measure to 

differentiate lncRNA from protein-coding transcripts as coding sequences have been reported 

to have higher GC content in exons over introns (Amit et al., 2012). GC content is simply 

calculated as absolute total number of GC motifs in a sequence. X] is the Fickett score (Fickett, 

1982) obtained by calculating four base pair position values in transcript sequence. X] is 

calculated as follows: Let 

A1 = Number of A’s in positions 1, 4, 7, 10, …., 

A2 = Number of A’s in positions 2, 5, 8, 11, …, and 

92 



	
	

            

 

 	    

 

 
	   

 

     

    

           

          

       

 

 
	  

 

 

                

             

             

           

           

        

       

	 	         

 	 	    

    

 
 

 

 

 

           

       

A3 = Number of A’s in positions 3, 6, 9, 12, …., 

Then -`ab=N=a< is defined as: 

MAX(A#, A9, A:) (1.1)
=-`ab=N=a< MIN A#, A9, A: + 1 

and h̀ ab=N=a<, F`ab=N=a< and 0`ab=N=a< are calculated similarly. In a similar manner, -?a<Ni<N,

h?a<Ni<N, F?a<Ni<N and 0?a<Ni<N of the sequence are determined by calculating percentage 

composition of each base in the sequence. These eight values are then converted to a 

probability value (p) using a lookup table (Fickett, 1982) and multiplied by a weight (w) for each 

base. The Fickett score X] is then determined as: 

Y (1.2)
X] = + j= = 

=M# 

X is the hexamer score which is computed by making a hexamer table of 4096 (64×64^ 

hexamers) k-mers using a reference set of coding and non-coding sequences. Hexamer score 

is calculated by first measuring frequencies of hexamers in the test set sequences. The 

logarithmic ratio of coding and non-coding sequences is then computed for each hexamer 

having non-zero frequency in the test set. Positive X indicates higher probability of protein-^

coding sequence whereas negative score indicates higher probability of non-coding RNA 

sequence. The in-frame hexamer frequency of protein-coding sequences is given by

F h where i = 0, 1, … , 4095 and in-frame hexamer frequency of lncRNA sequences is given 

by F′ h where i = 0, 1, … , 4095. Therefore, for each hexamer sequence, u = v ,v , v:, … , vw, 
n 

n

f is given by: 
# 9

^

^

w (1.3)ℎ=
=
1

X
* 

log
{

{}(ℎ )=
=M# 

2.5.2 Codon-biased features 

In protein-coding genes, the translational mapping process of codons (or nucleotide triplets) to 

amino acids involves the use of synonymous codons which codes the same amino acids which 
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are non-distinguishable at protein level. However, it has been reported that there exists a non-

uniform codon usage in most genes which causes codon bias (Clarke, 1970; Ikemura, 1982). 

Many indices have been proposed for measuring codon bias; usage of all the indices is beyond 

the scope of this study. Therefore, we carefully selected six codon-bias measures which could 

be important in distinguishing lncRNAs from mRNAs. These are frequency of optimal codons 

(XY) (Fickett, 1982; Amit et al., 2012), codon usage bias (XZ) (Karlin and Mrázek, 1996), relative 

codon bias (X#H) (Roymondal, Das and Sahoo, 2009), weighted sum of relative entropy (X##) 

(Suzuki, Saito and Tomita, 2004), synonymous codon usage order (X#9) and relative 

synonymous codon usage (X#:) (Wan et al., 2004). 

XY is the frequency of optimal codons (Fop) which is calculated as the ratio of the total number 

of optimal codons to the total number of synonymous codons. Fop was also one of the 

measures proposed by Ikemura (Ikemura, 1982, 1985). Optimal codons are defined based on 

nucleotide chemistry and must fulfill two criterions: (a) pyrimidine two codons AA prefer A-

ending over G-ending (Bulmer, 1988), (b) purine two codons AA prefer C-ending over U-ending 

(Bulmer, 1988).  The number of optimal codons is calculated as: 

(1.4) = ~~a`N ?

?∈A�ÄÅ 

Where Copt is defined as subset of optimal codons from all codons C and Otot is the total 

number of codons in the sequence. Therefore, XY is calculated as: 

a`N (1.5) 
XY = ~NaN 

Amino acids with one codon Methionine (M) and Tryptophan (W) were excluded from the 

analysis as they do not contribute any information.

XZ is the Codon Usage Bias (CUB) which assesses the codon bias in the test set relative to the 

reference set. It is based on the weighted sum of distances of relative codon usage frequencies 

between the reference set and test set sequences (Karlin and Mrázek, 1996). The reference 

set is used as standard to which other sequences can be compared against XZ is defined as: 
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(1.6) {ÇÉ(XÇ, XÇ
ÑiÖ)XZ =

Ç∈Ü 

where {Ç is frequency of amino acid a in the test set sequence whereas XÇ and XÇ
ÑiÖ are codon 

frequencies for amino acid a in test and reference sets, respectively and É is the L1 norm or 

manhattan distance for the codon frequency XÇ and XÇ
ÑiÖ vectors which is calculated as: 

É XÇ, XÇ
ÑiÖ = |XÇ?, XÇ

ÑiÖ| (1.7) 

?∈Aà 

where XÇ? is the frequency of codon c encoding amino acid a in the test set sequences and 

XÇ
ÑiÖ is the frequency of amino acid a in the reference set sequences. 

X#H is the Relative Codon Bias (RCB) (Roymondal, Das and Sahoo, 2009) which is a measure 

that defines the contribution of a codon as: 

?

å

− å[ ?] (1.8) âAä =j? [~ ]
,

?

âAäwhere å[~ ] is the expected number of codon occurrences in three codon positions. Once j

is determined the RCB score is calculated by the following method for each sequence: 
? ?

(1.9) 
X#H = exp ( 

1
ëíì j?

âAä) − 1 
~NaN

?∈î 

X## feature used is the weighted sum of the relative entropy (åj) which measures the degree 

of deviation from equal codon usage (Suzuki, Saito and Tomita, 2004). Therefore, åj is 

defined as the sum of relative entropy of each aa weighted by its relative frequency in the test 

sequence which is given by: 

(1.10) = .X## 
Ç∈Ü

{ÇåÇ 

Here {Ç is the relative frequency of amino acid a in the test sequence and åÇ is computed as: 
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(1.11) 
åÇ = ëíì

v

9

Ç

ïÇ 

where ïÇ is number of synonymous codons observed in the test sequence and vÇ is the 

entropy which measures the uncertainty of codon usage in the test sequence for amino acid a 

and is computed as: 

(1.12) vÇ = − XÇ?ëíì9XÇ?.
?∈Aà 

X#9 is the Synonymous Codon Usage Order (SCUO) and is also an entropy-based codon bias 

measure, similar to åj which differs only by the way entropy is calculated for each amino acid 

(Wan et al., 2004). Instead of calculating the relative entropy, normalised difference between 

maximum and observed entropy is computed as: 

= 
ëíì9ïÇ − vÇ (1.13) 

.åÇ ëíì9ïÇ 

Then the SCUO is computed as: 

(1.14) = .X#9 
Ç∈Ü

{ÇåÇ 

X#: is the Relative Synonymous Codon Usage (RSCU) score which defines the relationship 

between observed codon frequencies and the number of times codon is observed when 

synonymous codon usage is random with no codon bias (Sharp, Tuohy and Mosurski, 1986). 

This is calculated as: 

ñu0óÇ? = 1 
Ç? (1.15) 

?∈Aà ~Ç?ïÇ 

where ~Ç? is the frequency of codon c for amino acid a. ñu0óÇ? is the RSCU score for each 

codon c encoding amino acid a and is computed for 61 codons individually by the above 
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equation. Methionine (M), Tryptophan (W) and stop codons were excluded from the analysis 

as M and W do not have any synonymous codons and stop codons do not contribute any 

information. Therefore, in the total RSCU score provided 61 features for the classification. 

The codon-biased or codon-usage features were computed by computing codon-bias on the 

whole transcript sequence. However, an alternative to this approach is to compute the codon-

bias characteristics based on the longest ORF in the transcript. However, the codon-bias 

features computed from the longest ORF in the transcript did not generated increase in the 

prediction accuracies when compared with those compared against features from the whole 

transcript sequence. Therefore, codon-biased featured based on the former approach has 

been implemented in this thesis. 

2.5.3 Feature normalisation 

Features extracted from the pool of transcript sequences were concatenated to generate a 

single matrix XL×ò containing I features and É sequences and Y class label consisting of 

binary class values of size É. Feature vector matrix was normalised to scale values between 0 

and 1 using the following equation: 

= 
5 − min 5 (1.16) 

.5LaÑwÇô=biò max 5 − min (5)

Normalised feature matrix (5LaÑwÇô=úiò) was then used for the creation of training and testing 

datasets by randomly selecting 75% and 25% from 5LaÑwÇô=úiò feature matrix. 

2.6 Feature extraction from RNA-seq datasets 

For the identification of lncRNAs from RNA-seq datasets, an aligned sequence file (BAM file) 

was created from Tophat2. The BAM file was used for extraction of FASTA sequences. For 

FASTA sequence extraction from the BAM file, a consensus FASTA sequence for each 

transcript coordinate was constructed by a two-step process (Figure 2.3): 

(1) SNP and INDEL calling of BAM file using samtools mpileup which generated a VCF file, 

and 
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(2) sequence extraction from the genome and consensus sequence generation using variants 

from VCF by samtools faidx tool (Li et al., 2009). 

The first step generated a list of variants from the BAM file. These were used in conjunction 

with the genomic coordinates and genome file to extract consensus FASTA sequences from 

user defined genomic regions. 

Figure 2.3 represents an example workflow of how a desired consensus transcript FASTA 

sequence is produced. From the BAM file, a Variant Calling Format (VCF) file is generated 

using samtools. For each query coordinate supplied, “chr1:215632147-215632850” in this 

case, the program extracts the consensus FASTA sequences using the genome file of the 

species to substitute “T” with “C” in 215632155 base position in the genome file. Once the 

FASTA sequences are extracted, features are extracted for transcript sequences to construct 

feature matrix file. The feature set is normalized as described in Section 2.5.2.  

Figure 2.3: Conceptual workflow of consensus FASTA file generation from sequence 
alignment file. 

2.7 Classifier used for lncRNA identification 

For the classification of labeled data, eg. the reference dataset obtained from Refseq (Pruitt, 

Tatusova and Maglott, 2007) and GENCODE (Harrow et al., 2012), an iterative Random 

Forests (iRF) classifier (Basu et al., 2018) has been used on the extracted features for 

classification purposes. Based on the Principle of Stability, iRF can detect higher order 

interactions of DNA and protein structures. Classification results using iRF classifier on 
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Drosophila species indicate several fifth and sixth order interactions (Basu et al., 2018). The 

inherent structure of the random forest algorithm implemented in the iRF classifier enables to 

detect higher-order feature combinations which is particularly suitable for applications in 

genomic, transcriptomics and epigenomics NGS datasets. 

iRF uses the supervised learning approach for identifying class-specific index sets which is 

needed for the RIT algorithm (Shah and Meinshausen, 2014). This framework allows for the 

detection of higher-order combinations in feature-weighted RF. Considering a binary 

classification setting with training dataset D, the data is represented in the following form 

where, {(8=, ù=)}=<M# with categorical or continuous variables, where, x = (8#,89, … , 8`) with 

binary labels ù ∈ {0,1}, our goal is to find subsets of features or interactions which are highly = 

frequent or common within a class 0 ∈ {0,1} and provide recognisable differentiation between 

the two classes. To generalise the results, interactions are searched in decision tree ensembles 

fitted on bootstrap samples. For the classification and determination of interactions, iRF 

consists of three components: (1) Iteratively re-weighted Random Forest, (2) Generalised RIT, 

and (3) Bagged Stability Scores. 

(1) Iteratively re-weighted Random Forest: Given û (an iteration number), iRF iteratively 

grows weighted RFs on data D such that ñ{ j ü , ï = 1, … , û. The first iteration of iRF 

when ï = 1 starts with j(#) ≔
#
, … ,

#
, and stores the Gini importance, also called as 

` ` 

#mean decrease in Gini impurity of + features is denoted as °(#) = (° , … , °(#)). In the `

(ü) (ü¢#)

#

second iteration when ï = 2, we set the j = ° and weighted RFs are grown 

with weights set equal to the importance of RF feature from previous iteration. 

(2) Generalised RIT: Generalized RIT is applied on the last feature-weighted RF grown in 
üthe ûth iteration. The collection of trees generated in the process of fitting ñ{ j

provides mappings from categorical to binary features, which produces a collection of 

interactions. To determine feature combinations or interactions, each tree £ = 1, … , h in 

the output tree ensemble of RF has leaf nodes collected and indexed by § = 1, … , •(£).N

Each feature-response pair (8 , ù ) is represented for each tree by (> , ¶ ) where ¶ is= = = = =Å Å Å

the set consisting of unique feature indices which falls on the path of the leaf node 

containing (8 , ù ) in the tth tree. Therefore, each 8 , ù produces T index set-label pairs 

which corresponds to T trees. The pairs are aggregated across trees and observations 

such as ñ = { > , ¶ : 8 falling on leaf node © of tree £} to obtain a set ñ of interactions. 

= = = = 

= = = NÅ Å
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(3) Bagged Stability Scores: Once the set ñ
#

of interactions is obtained, the stability score 
äof an interaction is defined as ´£¨ u = ≠M# 1{u ∈ u(≠)} which represents the number ä 

of times interaction occurs. 

2.8 Implementation of iRF for lncRNA identification 

2.8.1 Classification on labeled feature set 

For the identification of lncRNAs from protein-coding transcript sequences and to benchmark 

the classification accuracy of iRF against known coding-potential tools, sequences were 

extracted from reference databases and tested using the iRF classifier. 73 features were 

constructed from each FASTA sequence to generate feature matrix 5<×ò (where ) is the 

number of transcript sequences and É is the number of features) and 6 number of classes (6 = 

0,1 ) where mRNA is 0 and lncRNA is represented by 1. iRF classifier was then used for model 

fitting using training and test sets feature matrices with labeled class values. Classification was 

performed for sequences extracted from reference sequence datasets (Refseq and 

GENCODE) using Algorithm-1 (Table 2.5). 

Table 2.5: Algorithm for classification and identification of lncRNAs from feature matrix based 
on labeled test set. 

Algorithm-1: iRF	 classification with reference	 sequence	 data 
Input: Xtrain: n	 x d	 matrix with	 n-1	 features and d feature elements in training set 
Ytrain: n	 x d	 matrix with	 (n-(n-1)) vector and d class elements in training set 
Xtest: n	 x d	 matrix with	 n-1	 features and d feature	 elements in test set 
Ytest: n	 x d	 matrix with	 (n-(n-1)) vector and d class elements in test set 
ntrees: number of random forest trees 
Output: vector accRfPred containing binary	 prediction values	 for Xtest 
1: Load Xtrain, Xtest, Ytrain, Ytest 
2: p ← number of columns(Xtrain)
3: n ← no. of iterations 

#
4: selProb ← replicate( , p)

µ

5: initialize rf as list 
6: for iter = 1 to n do 
7: rf iter = Fit RF(Xtrain, Ytrain, Xtest, Ytest, selProb, ntrees)
8: selProb ← GiniImportance( rf iter )
9: end	 for 
10: rfMaxIndex ← Get index of maximum accuracy value from rf iter list 
11: rfMax ← extract predictions from the test set stored in rf rfMaxIndex list 
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The algorithm starts with training and testing set files. A fixed set of selection probabilities are 

assigned for each feature in the training set. Number of random forest trees are also assigned. 

In iRF, initially fixed selection probabilities are assigned as the algorithm starts with a fixed 

probability of selection of features. The selection probability is then updated with the generation 

of trees and the classification of sequences. For each iteration, the selection probabilities are 

stored in rf iter object where length of rf object equals the number of iterations performed. 

The index of the rf object generating the highest accuracy is extracted and stored in 

rfMaxIndex. Predictions are then extracted from rf rfMaxIndex [test] and stored in rfMax. 

2.8.2 Classification on unlabeled feature set 

For the classification of lncRNAs from the test set feature matrix having unlabeled or no class 

labels, classification was performed using the iRF classifier using Algorithm-2 described in 

Table 2.6. Results of iRF classification are stored in a predictions vector which are finally written 

to a text file. 

Table 2.6: Algorithm for classification and identification of lncRNAs from feature matrix based 
on unlabeled test set. 

Algorithm-2: iRF classification with unlabeled test set 
Input: Xtrain: n x d matrix with n-1 features and d feature elements in training set 
Ytrain: n x d matrix with (n-(n-1)) vector and d class elements in training set 
Xtest: n x d matrix with n-1 features and d feature elements in test set 
ntrees: number of random forest trees 
Output: vector predictions and output file containing binary prediction values for Xtest 
1: Load Xtrain, Xtest, Ytrain 
2: p ← number of columns(Xtrain)
3: n1 ← number of rows in Xtest 
4: Ytest ← randomise 1,2 with size of n1 

#5: selProb ← replicate( , p)
µ

6: rf = Fit RF(Xtrain, Ytrain, Xtest, Ytest, selProb, ntrees)
7: predictions ← extract predictions from rf[test] list 

Training and test set files are assigned to Xtrain, Xtest, Ytrain variables. Number of RF are 

assigned to ntrees variable. To identify lncRNAs using iRF, a false class label is created using 

the “np.random.randint” function of Python’s Numpy package (Community, 2011) using 1 and 

2 as class labels. This function creates randomised values of 1 and 2 with size equals to the 

number of rows of the “Xtest” feature matrix. This is then appended to the “Ytest” array which 

is used in iRF for generating predictions on “Xtest”. Prediction results are extracted from the 

rf[test] object and saved to predictions variable. 

101 

http:ntreesvariable.To


	
	

             

       

      

         

         

       

           

     

 

            

  

    

              

     

             

        

               

      

 

           

              

       

 

      	 	    

          

     

            

 

 

 

The iRF classifier has been implemented in this thesis as iRF resulted in higher prediction 

accuracies when compared against ML-based classifiers. The Artifical Neural Networks (ANN)-

based ML methods were not adopted in this project as ANN-based methods do not provide 

elucidation of potential regulatory motifs or distribution of codons in mRNA and lncRNA 

transcripts, and therefore the performance of such methods are incomparable against currently 

available CPC tools. Additionally, ANN-based methods require a significant amount of 

computational time and resources for model training and is less interpretable which makes it 

computationally infeasible for lncRNA prediction application. 

2.8.3 Performance Evaluation Criteria 

To assess performance classification of lncRNAs and mRNA transcripts, the following metrics 

were calculated: 
π∫ªπL

- Accuracy = 
π∫ªº∫ªºLªπL 

π∫
- Sensitivity or Recall = 

π∫ªºL
measures the proportion of true positive values from the 

dataset by quantifying false negative values along with true positive values. 
πL

- Specificity = 
º∫ªπL

measures the proportion of true negative values from the dataset 

by quantifying false positive values along with true negative values. 
π∫

- Precision or Positive Predictive Value (PPV) = 
π∫ªº∫

is a measure of detecting true 

positive values from the test dataset by quantifying false positive values along with 

true positive values. 
9×(∫Ñi?=b=a<×âi?Çôô)

- F1-Score = is weighted average of precision and recall. 
∫Ñi?=b=a<ªâi?Çôô 

πL
- Negative Predictive Value (NPV) = 

πLªºL
is a measure of detecting true negative 

values from the test dataset by quantifying false negative values along with true 

negative values. 
π∫×πL ¢ (º∫×ºL)

- Matthews Correlation Coefficient (MCC) = is a 
π∫ªº∫ × ºLªπL × º∫ªπL ×(π∫ªºL)

measure of assessment of the quality of two-class classification problem. The 

correlation coefficient value lies between -1 and +1 with +1 being perfect prediction. 

where TP denotes True Positive, TN True Negative, FP False Positive and FN False 

Negative. 
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2.9 Feature selection and implementation on RNA-seq datasets 

2.9.1 Background 

Selection of optimal features is an important optimisation approach for classification. Least 

Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996) is a feature selection 

method which combines least-square loss with the ℓ1 norm constraint and produces sparse 

features by shrinking coefficients to zero. Other approaches such as ridge regression 

(Marquardt, 1970; Tibshirani, 1996), use the ℓ2 norm due to which it produces non-zero 

coefficients and therefore becomes inefficient for feature selection. Usage of the ℓO norm (with

O < 1 or O > 1) approaches for optimisation are generally non-convex and makes the 

minimisation computationally challenging. Given a dataset D with n feature vectors of length p 

arranged in a design matrix 5 ∈ ℝ<æ`, we would like to predict n x 1 response vectors as ù ∈

ℝ< in a linear model. LASSO (Tibshirani, 1996) solve the ℓ1-regularised optimisation problem 

by the following objective function: 

(1.17)
GôÇbba = ø¿ℝÄ| ù − 5G | + ¬ÇÑ¡w=< 

9
9 |G√|

√M# 

(1.18)GôÇbba =
ÇÑ¡

ℝ
w <
ø¿ Ä| ù − 5G |9

9 + ¬| G |# 

9
9, where ¬ ≥ 0, | ù − 5G | is the loss function (i.e. sum of squares), | G | is the penalty term#

and ¬ is the tuning parameter which controls the strength of the penalty. The LASSO estimate 

can also be written as: 

L (1.19)
GôÇbba

ÇÑ¡w=
ø
< 9= (ù= − GH − 8=√G )√
=M# √M#

` 

subject to |G | ≤ £.√

√M# 

The only reason LASSO is chosen over Ridge regression is that LASSO yields sparse 

solutions. The equivalent Lagrangian form of LASSO problem is written as: 
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ÇÑ¡w < 
L (1.20)

1 9= (ù − G − 8=√G√) + λ |G |GôÇbba 2 = H √

=M# √M# √M#
ø 

which can also be written as, 

ÇÑ¡w < 1 (1.21)
GôÇbba = 2)

| 5G − ù |9
9 + λ||G|| .#

ø

Here coefficients (G) for each feature are calculated by the following formula: 

G (5π5)¢#5π6 (1.22) 

where 5 and 6 are training feature matrix and class vector, respectively. 

2.9.2 Implementation of LiRF-FS on reference datasets 

For selection of optimal features from labeled reference datasets, a feature selection algorithm 

has been constructed following the LASSO method. An iRF classifier which produces sparse 

coefficient values for the features based on λ in each iteration, performs classification using 

iRF and benchmarks each feature set against others, based on the difference between the 

accuracy obtained from each feature set. The method for the selection of the optimal features 

using a labeled feature set is called LASSO-iRF Feature Selection (LiRF-FS) method (Figure 

2.4) (Table 2.7). 
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Figure 2.4: LiRF-FS algorithm workflow. Sequence and codon-bias features from the training 

and validation lncRNA and protein-coding sequences are extracted. LASSO coefficients are 

generated from the training set and iteratively applied on the validation set using an iRF 

classifier to test the accuracy at each λ value. Optimal features are selected based on threshold 

tolerance value which can be applied on the test set sequences using Random Forest 

classifier. Labelled prediction results are generated for the test set sequences identifying 

lncRNA or mRNA sequences. 

Table 2.7: Algorithm for implementation of LiRF-FS method in labeled dataset. 
Algorithm 3: LiRF-FS implementation 
1: Initialize λ«»… À, λÃµµ À, λÕŒ µ¢Õnœ , β, n, listArray, thresholdAccDiff, trainingSet,
validationSet, ntrees 
2: λ = List of λ values ranging from λÃµµ Àto λ«»… À value with step-size of λÕŒ µ¢Õnœ 
3: rain = feature matrix of trainingSet 
4: 

Xt
Xtest = feature matrix of validationSet 

5: rain = Binary class vector of trainingSet 
6: 

Yt
Ytest = Binary class vector of validationSet 

7: tolerance = 1e − 2 
8: function ◊ÿŸ⁄€:

#
9
99: return | 5G − ù | + λ||G||#9<

10: for i=0 to length λ do 
11: beta_estimate = minimise(estBL, listArray,method = CD)
12: if values in beta_estimate < tolerance then 
13: set values in beta_estimate = 0 
14: beta_estimate_non_zero ← length(values in beta_estimate ≠ 0)
15: end if 
16: beta_estimate_array ← beta_estimate 
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17: if beta_estimate_non_zero < length(beta_estimate_array − 1) then 
18: for j = 1 to beta_estimate_non_zero do 
19: rainF ← Xtrain[ ]
20: 

Xt
XtestF ← Xtest[j]

21: rainF ← Ytrain[

j

j]
22: 

Yt
YtestF ← Ytest[j]

23: end for 
#24: selProb ← replicate(
µ
, p)

25: initialize rf as list 
26: for iter = 1 to n do 
27: rf iter = Fit RF(XtrainF, YtrainF, XtestF, YtestF, selProb, ntrees)
28: selProb ← GiniImportance(rf iter )
29: end for 
30: maxAccIndex ← Get index of maximum accuracy value from rf iter list 
31: accRfPred ← maxAccIndex 
32: end if 
33: end for 
34: for i=maxAccIndex to 0 do 
35: diffArrNeg ← accRfPred i − accRfPred[i − 1]
36: end for 
37: for i=maxAccIndex to length(accRfPred) do 
38: diffArrPos ← accRfPred i − accRfPred[i + 1]
39: end for 
40: for i=0 to length(diffArrNeg) do 
41: if diffArrNeg i ≤ thresholdAccDiff then

)42: thresArrNeg ← index(diffArrNeg i
43: else if diffArrNeg i ≥ thresholdAccDiff then 
44: thresArrNeg ← max(accRfPred)
45: end if 
46: end for 
47: for i=0 to length(diffArrPos) do 
48: if diffArrPos i ≤ thresholdAccDiff then 
49: thresArrPos ← index(diffArrPos i
50: else if diffArrPos i ≥ thresholdAccDif

)
f then 

51: thresArrPos ← max(accRfPred)
52: end if 
53: end for 
54: lastElementValueNeg← Get last element from thresArrNeg list 
55: lastElementValuePos ← Get last element from thresArrPos list 
56: t aturesNeg ← Extract features from beta_estimate_arr usi lastElementValueNeg. 
57: 

op
opt

Fe
FeaturesPos ← Extract features from beta_estimate_arr

ay
ay usi

ng
ng lastElementValuePos. 

The main steps of the LiRF-FS method are: 

1. Initialization of λ«»… À, λÃµµ À and λÕŒ µ¢Õnœ values; empty listArray vector; n value 

number of iterations required for iRF classifier; number of trees to generate for ntrees
9value; empty p integer value; tolerance threshold value (tol) of 10¢ and

thresholdAccDiff value to user defined value (For ex- thresholdAccDiff = 0.5). 
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2. Construct the λ list using λ«»… À, λÃµµ Àand λÕŒ µ¢Õnœ . 

3. Construct Xtrain, Xtest, Ytrain and Ytest using training set and validation set. 

4. Calculate β value using X and Y of training set using the following equation,

β = (X‚X)¢#X‚Y. 

5. The β«„ÕÕ» in the estBL function calculates the β coefficients using the following 

equation, 

9
9β«„ÕÕ» =

ÇÑ¡w=<

2

1

)
| 5G − ù | + λ||G|| .#

ø 

where the coefficients are calculated by coordinate-descent minimisation (Wu and 

Lange, 2008). The beta_estimate_non_zero variable stores the non-zero feature 

coefficient values from the beta_estimate_array list. 

6. Non-zero coefficients are selected which are used as indices to construct filtered 

training set to construct filtered training and filtered test sets for corresponding iteration. 

7. Using λ, execute a loop through the upper bound to lower bound λ values. 

8. Using if statement, we check whether the length of non-negative beta estimate array is 

less than beta estimate array. If True, then extract the all the features using index values 

of the non-zero coefficient values for that λ value in current iteration and construct 

filtered training and validation sets XtrainF. 

9. Construct selection probabilities vector selProb by defining p as length of columns of 

training set XtrainF. 

10. Using ntrees, selProb and filtered training and test sets, run iRF classifier to obtain 

prediction for each iteration. 

11. Store prediction information of rf iter by searching for rf iter producing highest 

accuracy. accRfPred list stores accuracies for each corresponding λ values. 

12. Run a loop through the accRfPred array to search for maximum accuracy value and 

store the index of that λ value producing highest accuracy. Store that index value in 

maxAccIndex. 

13. For extracting the least number of features, a loop is executed from maxAccIndex value 

to zeroth value in reverse (i.e. [i − (i − 1)], [i − (i − 2)], . . . , 0) with index of accRfPred. 

The diffArrNeg array stores the difference between the previous value and the 

maximum prediction value. If the difference between the maximum prediction accuracy 

and the previous value is within the toleranceCutoffValue value (toleranceCutoffValue = 

maxAccValue − tolerance), the value is stored in the thresArrNeg array. If the 
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thresArrNeg array does not contain any values, then extract the index of the 

maxAccValue. The maxAccValue contains the maximum prediction accuracy value. The 

index contains the value of λ for that particular prediction accuracy. 

14. For extracting the highest number of features, a loop is executed from maxAccIndex 

value to zeroth value in forward direction (i.e. [i − (i + 1)], [i − (i + 2)], . . . , n) with index 

of accRfPred. The diffArrPos array stores the difference between the next value and the 

maximum prediction value. If the difference between the maximum prediction accuracy 

and the next value is within the toleranceCutoffValue value, the value is stored in the 

thresArrPos array. If the thresArrPos array does not contain any values, then extract 

the index of the maxAccValue. 

15. Using thresArrNeg and thresArrPos, extract the last index values to obtain in 

lastElementValueNeg and lastElementValuePos variables. The variables are the 

indexes of the lambda value that contains the least and maximum number of optimal 

features within tolerance value from the maximum prediction accuracy value. 

16. Based on the value of λ in optFeaturesNeg and optFeaturesPos variables, the optimal 

feature set containing the least and the highest optimal features can be obtained based 

on beta_estimate_array. 

17. optFeaturesNeg contains the least number of features and the optFeaturesPos contains 

the highest number of features producing accuracy within the tolerance value. 

2.9.3 LncRNA prediction on plant RNA-seq datasets 

Once the LiRF-FS is executed on labeled training and validation sets obtained from the Refseq 

database, the optimalFeatureSet obtained from LiRF-FS is then used for selection of optimal 

features from RNA-seq feature matrix set file created using the instructions mentioned in 

Section 2.6. 

Implementation of feature selection and lncRNA prediction on RNA-seq datasets is performed 

using the following steps: 

1. Using GTF annotation file of the species from Ensembl database, extract protein-coding 

and lncRNA sequences using the instructions in Section 4.6. 

2. Construct a feature matrix using 73 ORF and codon-bias features. 

3. Using the optimalFeatureSet created from Algorithm 3, extract optimal features from the 

feature matrix. 
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4. Execute the Algorithm 2 (Table 4.6) to obtain predictions on test set sequences. 

5. Store the results in an output comma-separated values (CSV) file. 

2.10 Performance evaluation with k-fold cross validation 

To benchmark the performance of the computational framework against the popular coding 

potential tools, a k-fold Cross Validation (CV) performance validation test was performed. In k-

fold CV, the data is randomly partitioned into k equal sized subsets or folds. Of the k subsets, 

a single subset is retained as validation set for testing the model, and the remaining k-1 subsets 

are used as training data. The validation set data selected in each fold does not overlap with 

the data selected in previous folds. The CV is then repeated k times with each of the k subset 

used exactly once as the validation set. The performance evaluation was performed based on 

k=10. To summarise the results, an average over the accuracy values in each fold is calculated. 

For benchmarking the performance of the framework against the tools, 90% of the transcript 

sequences were used as training set, whereas, remaining 10% were selected as validation set 

sequences. A balanced number of lncRNA and protein-coding transcript sequences were 

selected for training and validation sets. The training and validation set data selected in each 

fold was used for evaluating the performance of the framework and other coding potential 

computation tools. The k-fold CV performance benchmarking was performed on A. thaliana 

and Z. mays RNA-seq derived sequences to evaluate the prediction accuracy of the framework 

on test set sequences against known CPC tools. The RNA-seq datasets were chosen primarily 

based on the availability of annotated lncRNA sequences from web databases. 

2.11 Performance evaluation with repeated k-fold cross validation 

To evaluate the robustness of the framework, its prediction accuracy was bechmarked against 

other CPC tools using repeated k-fold CV with data shuffling. As discussed in Section 2.10, k-

fold CV was performed for five repetitions (i.e. iterations) with shuffled FASTA sequences in 

each repetition. Randomisation of sequences in each iteration creates unbiased analysis of the 

data and evaluates the robustness of the tool under comparison. Five repetitions were 

performed with 10-fold CV analysis in each repetition. The performance of the framework was 

compared against CPAT, lncScore, PLEK and CPC2 tools. 

2.12 Sub-classification of lncRNAs 
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lncRNAs are generally classified into seven different types depending on their relationship with 

protein-coding genes. These can be classified as: 

(1) Sense Overlapping Exonic (SOE): exonic regions of lncRNAs transcripts overlapping one 

or more exons of protein-coding transcript on the same DNA strand, 

(2) Sense Overlapping Intronic (SOI): exonic regions of lncRNAs transcripts overlapping one 

or more introns of protein-coding transcript on the same DNA strand, 

(3) Antisense Overlapping Exonic (AOE): exonic regions of lncRNAs transcripts overlapping 

one or more exons of protein-coding transcript on the opposite DNA strand, 

(4) Antisense Overlapping Intronic (AOI): exonic regions of lncRNAs transcripts overlapping 

one or more introns of protein-coding transcript on the opposite DNA strand, 

(5) Antisense lncRNA: Those originating from the antisense strand of DNA that may or may 

not overlap the protein-coding sequences, 

(6) Intergenic lncRNA: Those which are transcribed and expressed between two protein-coding 

genes, and 

(7) Bidirectional Promoter: Those lncRNAs which are located on the antisense strand and are 

transcribed within 1 kilo basepair (kB) of protein-coding gene located on sense strand. 

Figure 2.5 shows several different classes of lncRNA sub-classes based on the overlap of 

exonic and intronic sequence. 
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Figure 2.5: Implementation of Position-Based Classification (PBC) strategy lncRNA sub-
classification. Sub-classification of lncRNA sequences is performed based on positional 

coordinates. Sense and antisense-overlapping is performed based on GT-AG exonic and 

intronic sequences from the ORFs. Intergenic classification is performed by scanning lncRNA 

sequences between protein-coding genes. Bidirectional lncRNAsequences are classified by 

finding lncRNAexonic sequences less on 1000 bp from the protein coding exonic sequences. 

For the identification of lncRNA sub-classes, a Position-Based Classification (PBC) strategy 

(Table 2.8) has been developed (Figure 2.5). The method extracts the ORF sequences. The 

exonic and intronic regions from lncRNAs and protein-coding ORF sequences are extracted 

based on GT-AG motifs. The sequence overlaps of the exonic (E) and intronic (I) regions of 

lncRNAs with exonic and intronic regions of mRNAs are obtained by checking for overlaps of 

the E and I regions based on genomic coordinates. Based on the degree of overlap, sequence 

alignment is performed that produces an overall score. For identification of seven sub-classes, 

seven respective rules were developed which helps in identification of the lncRNA sub-class. 

The main steps of the sequence alignment mapping algorithm in classification are as follows: 

1. Extraction of ORFs from lncRNA and mRNA transcripts based on start and stop codons 

2. Extraction of E and I regions of ORF sequences of lncRNA and mRNA transcripts 

3. For SOE classification, the start and end coordinates of each exon of lncRNA sequence 

is scanned over genomic coordinates of every single mRNA exon. If one or more E 
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regions of lncRNA overlaps with E regions of mRNA on ‘+’ strand lying on the same 

chromosome, it is classified as SOE. 

4. For SOI classification, if one or more E regions of lncRNA overlaps with one of more I 

regions of mRNA on ‘+’ strand lying on the same chromosome, it is classified as SOI. 

5. For AOE classification, every single E region in lncRNA sequence located on ‘-’ strand 

is scanned over every single E region of mRNA on ‘+’ strand. If one or more E regions 

of lncRNA overlaps with one or more E regions of mRNA lying on the same 

chromosome, it is classified as AOE. 

6. For AOI classification, every single E region in lncRNA sequence located on ‘-’ strand 

is scanned over every single I region of mRNA on ‘+’ strand. If one or more E regions 

of lncRNA overlaps with one or more E regions of mRNA lying on the same 

chromosome, it is classified as AOE. 

7. For antisense lncRNA classification, if the sequence lies on the ‘-’ strand, it is broadly 

classified as ‘antisense_RNA’. 

8. For intergenic classification, if the lncRNA transcript sequence lies between the 

genomic coordinates of two mRNA transcript sequences such that the start«‰ÂÊÁÜ > 

endµÀ È_ÍÊÁÜ and end«‰ÂÊÁÜ < start‰ æŒ_ÍÊÁÜ in a sorted mRNA sequence array, it is 

classified as intergenic sequence. 

9. For bidirectional classification, if the start coordinate of lncRNA first exonic sequence 

on antisense strand (‘-‘) lies within 1000 bp away from start coordinate of the first exonic 
ÕŒ„ÀŒî»»Àsequence of mRNA on sense strand (‘+’) such that lncRNAÎnÀÕŒÏ <

ÕŒ„ÀŒî»»À ÕŒ„ÀŒî»»À ÕŒ„ÀŒî»»ÀmRNAÎnÀÕŒÏ and lncRNAÎnÀÕŒÏ > mRNAÎnÀÕŒÏ − 1000, then the sequence is 

considered as bidirectional. 

10. The overlaps of SOE, SOI, AOE and AOI are based on the following four conditions: 

(1) lncRNAÕŒ„ÀŒÌ»Õ ≥ mRNAÕŒ„ÀŒÌ»Õ and lncRNA ‰ÓÌ»Õ ≤ mRNA ‰ÓÌ»Õ, 

(2) lncRNAÕŒ„ÀŒÌ»Õ ≤ mRNAÕŒ„ÀŒÌ»Õ and lncRNA ‰ÓÌ»Õ ≥ mRNA ‰ÓÌ»Õ, 

(3) lncRNAÕŒ„ÀŒÌ»Õ ≤ mRNAÕŒ„ÀŒÌ»Õ and lncRNA ‰ÓÌ»Õ ≤ mRNA ‰ÓÌ»Õ and

lncRNA ‰ÓÌ»Õ ≥ mRNAÕŒ„ÀŒÌ»Õ, 

(4) lncRNAÕŒ„ÀŒÌ»Õ ≥ mRNAÕŒ„ÀŒÌ»Õ and lncRNA ‰ÓÌ»Õ ≥ mRNA ‰ÓÌ»Õ and

lncRNAÕŒ„ÀŒÌ»Õ ≤ mRNA ‰ÓÌ»Õ. 

Table 2.8: Algorithm for the implementation of PBC approach for lncRNA sub-classification. 
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Algorithm 4: Implementation of PBC approach for lncRNA sub-classification 
Input: noncoding: CSV file containing multiple lncRNA sequences and genomic annotation 
coding: CSV file containing multiple protein-coding sequences and genomic annotation 
Output: Genomic annotation text file with sub-class annotation for lncRNA sequence 
1: codingList ← Load coding file 
2: noncodingList ← Load noncoding file 
3: codingSeqs ← Extract sequences from the codingList 
4: noncodingSeqs ← Extract sequences from the noncodingList 
4: codingAnnot ← Extract annotation information from the codingList 
5: noncodingAnnot ← Extract annotation information from the noncodingList 
4: or Coding ← Extract ORF for each sequence from codingSeqs 
5: or Noncoding ← Extract ORF for each sequence from noncodingSeqs
6: or

f
f
fCodingCoord ← Store start and end coordinates of each ORF using information from

codingAnnot 
7: orfNoncodingCoord ← Store start and end coordinates of each ORF using information 
from noncodingAnnot 
8: codingEI ← Extract Exon-Intron boundaries from each ORF sequence in orfCoding
9: noncodingEI ← Extract Exon-Intron boundaries from each ORF sequence in
orfNoncoding
10: cE ← Using codingEI and orfCodin d lists, extract coordinates of exons 
11: cI ← Using codingEI and orfCodin

gCoor
gCoord lists, extract coordinates of introns 

12: nE ← Using noncodi EI and orfCodingCoord lists, extract coordinates of exons 
13: nI ← Using noncodi

ng
ngEI and orfNoncodingCoord lists, extract coordinates of introns 

14: annotationList ← Empty annotation list 
15: for i in nE do: 
16: for j in cE do: 
17: if chromosome = chromosome and strand = strand then:

bNÇÑN bNÇÑN bNÇÑN18: (nE[i] ≤ cE[j] ¨)É nE[i]i<ò ≥ cE[j]i<ò) or (nE[i] ≥
cE bNÇÑN bNÇÑN bNÇÑN i<ò ≤¨)É nE[i]i<ò ≤ cE[j]i<ò) or (nE[i] ≤ cE[j] ¨)É nE[i]

i<ò an bNÇÑNcE
[
[
j
j
]
] d nE[i]i<ò ≥ cE[j]

19: annotationList ← “Sense Overlap Exonic” 
20: end if 
21: end for 
22: end for 
23: for i in nE do: 
24: for j in cI do: 
25: if chromosome = chromosome and strand = strand then:

bNÇÑN bNÇÑN bNÇÑN26: (nE[i] ≤ cI[j] ¨)É nE[i]i<ò ≥ cI[j]i<ò) or (nE[i] ≥
bNÇÑN bNÇÑN bNÇÑN i<ò ≤cI[j] ¨)É nE[i]i<ò ≤ cI[j]i<ò) or (nE[i] ≤ cI[j] ¨)É nE[i]
i<ò an bNÇÑNcI[j] d nE[i]i<ò ≥ cI[j]

27: annotationList ← “Sense Overlap Intronic” 
28: end if 
29: end for 
30: end for 
31: for i in nE do: 
32: for j in cE do: 
33: if chromosome = chromosome and strand ð = strand then: 
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34: (nE[i]bNÇÑN ≤ cE[j]bNÇÑN ¨)É nE[i]i<ò ≥ cE[j]i<ò) or (nE[i]bNÇÑN ≥
cE bNÇÑN ¨)É nE[i]i<ò ≤ cE[j]i<ò) or (nE[i]bNÇÑN ≤ cE[j]bNÇÑN ¨)É nE[i]i<ò ≤
cE
[
[
j
j
]
]i<ò and nE[i]i<ò ≥ cE[j]bNÇÑN 

35: annotationList ← “Antisense Overlap Exonic” 
36: end if 
37: end for 
38: end for 
39: for i in nE do: 
40: for j in cI do: 
41: if chromosome = chromosome and strand ð = strand then: 
42: (nE[i]bNÇÑN ≤ cI[j]bNÇÑN ¨)É nE[i]i<ò ≥ cI[j]i<ò) or (nE[i]bNÇÑN ≥
cI bNÇÑN ¨)É nE[i]i<ò ≤ cI[j]i<ò) or (nE[i]bNÇÑN ≤ cI[j]bNÇÑN ¨)É nE[i]i<ò ≤
cI
[
[
j
j
]
]i<ò and nE[i]i<ò ≥ cI[j]bNÇÑN 

43: annotationList ← “Antisense Overlap Intronic” 
44: end if 
45: end for 
46: end for 
47: for i in noncodingAnnot do: 
48: if strand = ′ − ′ then: 
49: annotationList ← “Antisense lncRNA” 
50: end if 
51: end for 
52: for i in noncodin Annot do: 
53: for j in codin

g
gAnnot do: 

54: if noncodingAnnot[i]bNÇÑN > codingAnnot[j − 1]i<ò and noncodingAnnot[i]i<ò <
codingAnnot[j + 1]bNÇÑN 

55: annotationList ← “Intergenic lncRNA” 
56: end if 
57: end for 
58: nEL ← Extract the coordinates of the last exon from each lncRNA sequence 
59: for i in nEL do: 
60: for j in cE do: 
61: if chromosome = chromosome and strand ð = strand then: 
62: if nEL[i]bNÇÑN < cE[j]bNÇÑN and nEL[i]bNÇÑN > cE[j]bNÇÑN − 1000 then: 
63: annotationList ← “Bidirectional Promoter” 
64: end if 
65: end if 
66: end for 
67: end for 

2.13 lncRNA function prediction analysis 

To predict the functions of lncRNAs obtained from the lncRNA identification process using iRF 

classifier in the RNA-seq datasets, three input parameters are required: 

• LncRNA-protein interaction data 

• Protein-protein interaction data 
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• Protein gene ontology enrichment data 

The methodology for obtaining individual dataset is presented in following sections. 

2.13.1 Identification of lncRNA-protein interactions 

Unlike the mammalian species such as H. sapiens and M. musculus for which known 

interactions are available in the genomic databases (NPInter (Wu et al., 2006)), known 

regulatory interactions between the lncRNAs and proteins are currently unknown in plant 

species. Therefore, to identify potential interactions of the lncRNAs, known interations of 

lncRNA and protein-coding genes were obtained from the NPInter database (Wu et al., 2006). 

Inspired by the work of Liu et al. (2017), lncRNA sequence similarity and protein sequence 

similarity was performed using Smith-Waterman pairwise-sequence alignment (Pearson, 1991) 

with match of 2, mismatch of -1, gap opening of 5 and gap extension of 2. For construction of 

lncRNA sequence similarity matrix, lncRNA sequences were extracted from the lncRNA-

protein interactions in H. sapiens. Each lncRNA sequence of A. thaliana and Z. mays were 

matched with the lncRNAs of H. sapiens to construct a lncRNA sequence similarity matrix. The 

protein sequence similarity matrix was also constructed in a similar way. Normalisation of the 

Sequence Similarity Matrix (SSM) was performed by the following function: 

(1.23) 
uuñ u=, u√ =

´j u , u√ − min [´j u=, u√ ]=

max ´j u=, u√ − min [´j u=, u√ ] 

where ´j u , u represents pairwise alignment score of sequence © with sequence §. An 

adjacency matrix was constructed between the lncRNA-protein interaction partners. lncRNA 

and protein-coding sequences from plants and humans used to construct the similarity matrix 

were used for constructing the adjacency matrix. If an association is confirmed, it is represented 

by 1 in the matrix, and otherwise 0. 

= √ 

Based on the proposed work on identification of drug-target interactions by Liu et al. (2016), 

the Neighbourhood Regularised Logistic Matrix Factorisation (NRLMF) method was applied for 

the identification of lncRNA-protein interactions. The probability of the lncRNA-protein 

interaction is modeled by the following logistic function: 

exp (ò √
π) (1.24) =

=+=√ 1 + exp (ò °π)= √

where ò= and °√ are latent vectors of lncRNAs and proteins represented by ó ∈ ℝw×Ñ and ô ∈

ℝ<×Ñ respectively, where ò= is the ith row in ó and °√ is the jth row in ô. 
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The lncRNA-protein interaction pairs were further filtered based on correlation of FPKM 

expression values Pearson Correlation Matrix (PCC) ≥ -0.5 computed using Pearson 

Correlation method (Williams, 1996). The generated similarity matrix is represented by 

LncRNA-Protein Interaction (LPI) matrix. For computing LPI pairs in Arabidopsis and Maize 

datasets, a representative random subset of 50 lncRNAs and 402 protein-coding genes were 

selected for analysis against random subset of 50 ncRNA and 400 protein-coding genes in H. 

sapiens derived from NPInter database. Representative subset was selected in order to 

remove biasness against selection of data and speed up the computation time for the 

calculation of SSMs. 

2.13.2 Identification of protein-protein regulatory interactions 

For identification of interactions between protein-coding transcripts, proteins predicted to be 

interacting with lncRNAs were used for identifying the protein interaction pairs. The Protein-

Protein Interactions (PPI) deposited in the STRING database have been used for inferring 

interactions of protein-coding transcripts with other proteins. For identifying the PPIs, the 

following steps have been undertaken: 

1. Using the LPI matrix constructed in Section 2.12.1, protein-coding transcript IDs were 

extracted. 

2. Known protein interactions were obtained from the STRING database consists of three 

columns: Column 1: Interacting protein 1, Column 2: Interacting protein 2 and Column 

3: strength of interaction. 

3. Protein-coding transcript IDs extracted form the LPI matrix were used to match 

transcript IDs in column 1 so that interactions of these proteins with other proteins could 

be determined. Finally, the resulting PPI matrix was generated. 

2.13.3 Identification of GO enrichment data for proteins 

For function prediction of lncRNAs, an important component required is the gene annotation 

process which associates gene ontology ID during the prediction process. Therefore, to obtain 

this component, GO annotation of transcripts in plants has been obtained from Ensembl Plants 

(Zerbino et al., 2017). To construct the GO annotation file, LPI and PPI matrices were 

concatenated to generate a LPI-PPI matrix. Protein-coding transcript IDs were extracted from 

the generated matrix and duplicate IDs were removed. Resulting IDs were used as primary 

column for extracting GO annotation. 
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2.13.4 Function prediction of lncRNAs using Bayesian Markov Random Fields method 

To predict the functional association of lncRNAs, we used the BMRF method, which has been 

previously used for the prediction of protein functions of unannotated proteins (Kourmpetis et 

al., 2010). BMRF is originally based on MRF approach (Deng et al., 2002) where the nodes 

are coloured and encoded in the binary vector with X = 1 if the ©NW protein performs that = 

particular function and X = 0 if the ©NW protein does not possess any function. We substituted = 

lncRNAs where X = 0 for ©NW protein not having functions in the network. Therefore, the = 

probability of state x of the network was defined by: 

(1.25) 
õ ö ÷ =

>

1

÷
exp −ó ö, ÷ 

where > ÷ is normalising constant which depends on ÷, and −ó is energy function. The energy 

function ó can be in the following way for homogenous second order MRF: 
L L L (1.26) 

ó ö ÷ = F (8 ) + F (8 , 8 )# = 9 = √

=M# =M# √M=ª# 

where F# and F9 are problem-dependent functions. F# takes one value for per state of the 

network such that F (1) = J and F (0) = 0. The function F becomes zero if lncRNA and # # 9

proteins do not interact. The Pseudo-Likelihood Function (PLF) is the product of the conditional 

probabilities across the nodes in the network. The PLF is computed by the following equation: 

. (1.27) õø{ ö J, G#, GH L õ 8ù ú¢ù, J, G
#, GH=M# 

where ú¢ù denotes ú without the ith element. PLF possesses properties similar to a full-likelihood 

function and therefore helps in determining the logistic equation by setting pseudo-score to 

zero. PLF outperforms over the full-likelihood function as the latter has an intractable 

normalising constant. The conditional probability of an unannotated lncRNA © is given by a
¢#logistic function (1 + û8+(−° )) . Each state of the unannotated lncRNA is sampled using the =

logistic function. Once the PLF is computed, Gibbs-Sampling (GS) is performed by iterating 

over all the states of the unannotated lncRNA sequences. In each iteration, t elements of 
H #lncRNA are updated conditionally with parameter values corresponding to J, G and G which 

are updated conditionally using the Differential Evolution Markov Chain (DEMC) method. This 

process is repeated until convergence is reached. The Bayesian process averages across the 

unknown lncRNAs (i.e. lncRNAs with unknown functions) and models the joint posterior 
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distribution of the model parameters and functional states of the lncRNAs which are 

unannotated. It samples from the joint distribution using the Markov Chain Monte Carlo 

(MCMC) method (Geyer, 1991). 

Therefore, to predict and associate function using the BMRF method, following steps have 

been performed: 

1. Read in the LPI-PPI matrix and protein GO annotation files (Figure 4.6). 

2. Execute BMRF for predicting GO annotations of unannotated lncRNAs. 

3. Using lncRNA IDs, match the IDs from the output file to extract GO annotations. 

4. Filter the lncRNA annotation file by probability value with probability ≥ 0.8. Although the 

probability cutoff value can be chosen by the user, value of 0.8 is recommended for 

extracting predicted lncRNA genes having higher probabilities. 

5. Using the protein GO annotation file, match the GO IDs of filtered lncRNA annotation 

file with protein GO annotation file to obtain function description associated with each 

GO term. 
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Figure 2.6: Workflow of the lncRNA function prediction NRLMF-BMRF model. 
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2.13.5 Function prediction of DE lncRNA genes 

To determine the functions of lncRNAs which are DE in RNA-seq time-series samples, lncRNA 

transcript IDs were extracted from the interaction/co-expression matrix. The IDs were matched 

with transcript IDs in the Cuffdiff gene expression results file. The Cuffdiff results file consists 

of the following information for each transcript ID: gene name, transcript ID, genomic 

coordinate, log2 Fold Change (log2FC) value, p-value, q-value and significance status. 

Cuffdiff results were filtered to keep transcript ID having q-value (i.e. False Discovery Rate 

(FDR) value) ≤ 0.05 and log2FC > 1 and < -1. log2 Fold Change provides measure of genes 

significantly up or down-regulated during gene expression process. log2FC values greater than 

1 and less than -1 demonstrates significant up and down-regulation of genes. lncRNA transcript 

IDs were matched with filtered DEGs to obtain DE lncRNAs for each sample pair analysis. 

Using filtered GO annotation, PPI and LP interaction/co-expression, molecular functions and 

GO terms with associated probability was annotated using BMRF. 

2.13.6 Gene filtering based on the published experimental data 

Results from the NRLMF-BMRF analysis were further filtered based on the published 

experimental data. A summary of experimentally reported lncRNA-function association data in 

plants (Liu et al., 2015) (Table 2.9) were used for validation of the results. The function 

annotation results were filtered based on the dictionary of keywords which were extracted from 

the experimentally-derived lncRNA regulatory functions. 
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Table 2.9: Summary of known lncRNA genes in plants. 

Gene name Species Biological function Regulatory 
mechanism 

Reference 

COLDAIR A. thaliana Flowering time Histone 
modification 

(Heo and 
Sung, 2011) 

COOLAIR A. thaliana Flowering time Promoter 
interference 

(Swiezewski et 
al., 2009; 
Csorba et al., 
2014) 

LDMAR 
(P/TMS12-1) 

O. sativa Fertility Promoter 
methylation 

(Ding et al., 
2012) 

HID1 A. thaliana Photomorphogenesis Chromatin 
association 

(Wang et al., 
2014) 

IPS1 A. thaliana Phosphate 
homeostasis 

Target mimicry (Franco-
Zorrilla et al., 
2007) 

Cis-
NATPHO1;2 

O. sativa Phosphate 
homeostasis 

Translational 
enhancer 

(Jabnoune et 
al., 2013) 

OsPI1 O. sativa Phosphate 
homeostasis 

Unknown (Wasaki et al., 
2003) 

TPS11 S. 
lycopersicum 

Phosphate 
homeostasis 

Unknown (Liu, Muchhal 
and 
Raghothama, 
1997) 

asHSFB2a A. thaliana Vegetative and 
gametophytic 
development 

Antisense 
transcription 

(Wunderlich, 
Groß-Hardt 
and Schöffl, 
2014) 

ASCO-
lncRNA 

A. thaliana Lateral root 
development 

Alternative 
splicing 
regulators 

(Bardou et al., 
2014) 

APOLO A. thaliana Auxin-controlled 
development 

Chromatin loop 
dynamics 

(Ariel et al., 
2014) 

To filter the lncRNA functions predicted by BMRF, a filter-based approach was constructed. 

Table 2.10 illustrates the algorithm for filtering the genes based on the known regulatory 

mechanisms. 

Table 2.10: Algorithm for filtering the lncRNA gene functions. 

Algorithm 4: Algorithm for filtering the lncRNA gene functions 
Input: annotationFile: Input TXT file containing predicted functions, GOTerms and 
associated with probability values for each lncRNA gene. 
expAnnotation: Input TXT file containing list of experimentally confirmed lncRNA regulatory 
annotation data. 
Output: output: Output TXT file containing filtered prediction results. 
1: df ← annotationFile 
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2: dfe ← expAnnotation 
2: Function ← df[′Function′]
3: Gene ← df[′genename′]
4: 

df
df
dfeList ← convert the dfe dataframe to list 

4: üeyDfe ← split each word in dfeList by space 
5: newFun, newGen ← Initialize lists 
6: ignoreList1 ← construct a list of words containing punctuations, frequent words (e.g. a, 
and, the, or, nor, it, etc.). 
7: ignoreList2 ← construct a list of non-relevant words (e.g. located, constituent, situated, 
composed, found, find, etc.). 
8: for i=0 to length(üeyDfe) do 
9: if üeyDfe[i] in ignoreList1 then 
10: continue 
11: end if 
12: else 
13: üeyDfeF ← append üeyDfe[i]
14: end for 
15: for i=0 to length(üeyDfeF) do 
16: for j=0 to length(dfFunction) do 
17: if üeyDfeF[i] in dfFunction[j] then 
18: newFun ← dfFunction[j]
19: newGen ← dfGene[j]
20: end if 
21: else 
22: continue 
23: end for 
24: end for 
25: newList ← Join newGen and newFun lists 
26: for i=0 to length(ignoreList2) do 
27: if ignoreList2[i] in newList then 
28: Remove element from newList 
29: end if 
30: end for 
31: output ← Save the newList file 

The main steps of the algorithm are as follows: 

1. The algorithm requires input function prediction file generated by BMRF analysis 

(annotationFile) and an input experimental annotation file (expAnnotation) containing 

the list of regulatory function mechanisms in text format. Each regulatory mechanism 

should be separated by a newline. 

2. Load the annotationFile and expAnnotation input files into df and dfe tables. 

3. Extract the ‘Function’ column from the df table and store it into dfFunction list. 

4. Extract the ‘genename’ column from the df table and store it into dfGene list. 

5. Convert the dfe table to a list and store the elements in dfeList list. 
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6. Split each element of the dfeList to individual words by space delimiter and store the 

elements in üeyDfe list. 

7. Construct a list ignoreList1 containing articles, punctuations, frequent words (such as: 

and, the, or, if, by, for, when, in, etc.). 

8. Construct another list ignoreList2 containing non-relevant words (such as located, 

constituent, situated, composed, found, find, etc.). 

9. Match each element of the üeyDfe list to the ignoreList elements. If the element matches 

one of the elements, then continue the loop, else, append the current element of the 

üeyDfe to üeyDfeF list. 

10. Run a loop over the elements of the üeyDfeF list. Within this loop, run another loop over 

the individual elements of dfFunction list. Check whether each element of the üeyDfeF 

list can be found in dfFunction elements. If the element occurs, then append the current 

element of dfFunction to newFun list, and dfGene to newGen list. If it does not match, 

then continue the loop to the next iteration. 

11. Join the newGen and newFun lists as the newList file. 

12. Run a loop through each element of ignoreList2. Match each element of ignoreList2 

with individual elements of newList. If the element of ignoreList2 is found, then remove 

that element from the newList, else continue to next element. 

13. Save the modified newList as output file. 

The output file contains the filtered list of the lncRNA genenames and its corresponding 

regulatory functions. 

2.14 Visualisation of lncRNA sequences using D3.js Javascript library 

The web-based visualisation application (D3VizRNA) is a client-side application which is 

constructed using D3.js Javascript library and is used for viewing the positions of predicted 

lncRNA and mRNA transcript sequences obtained from prediction using the iRF classifier. The 

visualisation application also provides information of the genomic location of lncRNA and 

mRNA genes in the genome; for example, if the lncRNA gene is intergenic, sense-intronic, 

sense-exonic, bidirectional, etc. The prediction results are stored in a Comma Separated 

Values (CSV) format file which is then used by the D3.js to generate the visualisation 

application. For generating the graphical visualisation, the CSV file requires the following input 

fields: 

1. Chromosome name (chrName) 
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2. Chromosome start value (chrStart) 

3. Chromosome end value (chrEnd) 

4. Start position of the gene (geneStart) 

5. End position of the gene (geneEnd) 

6. Width of the position (geneWidth) 

7. Position of the gene on y-axis (geneYaxis) 

8. Height of the gene (geneHeight) 

9. Gene name (geneName) 

10. Gene type (geneType) 

11. Gene Function (geneFunction) 

The D3.js based application requires the creation of the following fields before constructing the 

visualisation: chrName, chrStart, chrEnd, geneWidth, geneYaxis and geneHeight. These fields 

are created by a Python-based program which formats the input coordinates data into D3.js 

compatible format. 

The output data resulting from the lncRNA identification, classification and prediction steps is 

used as input into the Python-based application (Table 2.11) for producing D3.js coordinate file 

format. For constructing the D3.js file format, the application requires the following fields in 

CSV format: 

1. Chromosome name 

2. Start position of the gene 

3. End position of the gene 

4. Strand value 

5. Gene type 

6. Gene function 

Table 2.11: Input file format of the genes obtained from the classification and prediction 
analysis. 

chromosome,start,end,strand,gene_type,gene_function 
1,3899,4670,+,protein_coding,glucosinolate biosynthesis 
1,4589,8900,-,protein_coding,metabolic function 
2,230078,256789,+,sense overlapping lncRNA,DNA damage repair 
2,347897,348690,-,Antisense overlapping lncRNA,Functions in chromosome organisation 
2,567845,567904,-, protein_coding,biosynthetic function 

The main steps of the application (Table 2.12) are as follows: 
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1. Input coordinates and genome index files are loaded in CSV format as data frames. 

2. Individual column values are stored as list vectors. 

3. Width of each gene sequence is calculated by taking the difference of End value minus 

Start value 

4. Based on the chromosome field, chromosome start and end values are stored in 

separate vectors 

5. Two identical lists dictList1 and dictList2 are created consisting of following format. 

[{‘chromosome’: 1, ’chrStart’:0, ’chrEnd’:500000, ’start’: 3899, ’end’: 4670, ’strand’:’+’, 

’gene_type’:’protein_coding’, ’gene_function’:’glucosinolate biosynthesis’, 

’yaxis’:30},{‘chromosome’:1, ’chrStart’:0, ’chrEnd’:500000, ’start’:4589, ’end’:8900, 

’strand’:’-’, ’gene_type’:’protein_coding’, ’gene_function’:’metabolic function’, 

’yaxis’:30}]. Fixed y-axis values are appended to each gene. 

6. An empty list dictList3 is created. 

7. An empty list vector countArray is created. Count is performed and stored for each gene 

by matching coordinates of each gene sequence in dictList1 to all elements in dictList2 

based on the following five conditions: 
ÓnÂ
‰
ŒþnÕŒ# ÓnÂŒþnÕŒ9 ÓnÂ

‰
ŒþnÕŒ#1) If startPositioný = startPositioný ‰ Õ and endPositioný = 

ÓnÂŒþnÕŒ9 ÓnÂ
‰
ŒþnÕŒ# ÓnÂ

‰
ŒþnÕŒ9endPositioný ‰ Õ and strandý = strandý 

2) If startPositionÓný Â‰ŒþnÕŒ# ≤ startPositionÓný
Â
‰
Œþ
Õ
nÕŒ9 and endPositionÓný Â‰ŒþnÕŒ# ≥

ÓnÂŒþnÕŒ9 ÓnÂ
‰
ŒþnÕŒ# ÓnÂ

‰
ŒþnÕŒ9endPosition ‰ and strandý = strand , push 1 to countArray[©],ý Õ ý

ÓnÂ
‰
ŒþnÕŒ# ÓnÂŒþnÕŒ9 ÓnÂ

‰
ŒþnÕŒ#3) If startPositioný ≥ startPositioný ‰ Õ and endPositioný ≤ 

endPositionÓnÂŒþnÕŒ9 and strandÓnÂ‰ŒþnÕŒ# = strandÓnÂ‰
ŒþnÕŒ9, push 1 to countArray[i],ý ‰ Õ ý ý 

4) If startPositionÓný Â‰ŒþnÕŒ# ≤ startPositionÓný
Â
‰
Œþ
Õ
nÕŒ9 and endPositionÓný Â‰ŒþnÕŒ# ≥

ÓnÂŒþnÕŒ9 ÓnÂ
‰
ŒþnÕŒ# ÓnÂŒþnÕŒ9startPositioný ‰ Õ and endPositioný < endPositioný ‰ Õ and

strandÓnÂ‰
ŒþnÕŒ# = strandÓnÂ‰

ŒþnÕŒ9, push 1 to countArray[i]ý 

ÓnÂ
‰
ŒþnÕŒ

ý

# ÓnÂŒþnÕŒ9 ÓnÂ
‰
ŒþnÕŒ#5) If startPositioný ≥ startPositioný ‰ Õ and endPositioný > 

endPositionÓný
Â
‰
Œþ
Õ
nÕŒ9 and startPositionÓný Â‰ŒþnÕŒ# < endPositionÓný

Â
‰
Œþ
Õ
nÕŒ9and strandÓýnÂ‰ŒþnÕŒ# = 

strandÓnÂ‰
ŒþnÕŒ9, push 1 to countArray[i]ý 

8. An empty list vector countArray1 is created. 

9. Values in countArray are added for each sequence and stored in countArray1 

10. Y-axis values are updated in dictList1 by adding 10 times countArray1 for each yaxis 

value in 
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each sequence 

11. Updated y-axis values, genomic coordinates and annotation data are stored in dictList3 

12. dictList3 is exported to CSV file which is then used as input for the visualisation 

application 

Table 2.12: Algorithm for formatting the genomic coordinates of the genes. 

Algorithm 6: Implementation of gene coordinates formatting algorithm 
Input: inputCoordinates: input CSV file containing genomic coordinates for each transcript 
sequence. 
chromosomeIndex: input CSV file containing chromosome lengths 
Output: output: output CSV file containing genomic coordinates compatible for visualisation 
1: df ← inputCoordinates 
2: chrdf ← chromosomeIndex 
2: start ← row values of start position from df 
3: end ← row values of end position from df 
4: strand ← row values of end position from df 
5: neName ← row values of gene names from df 
6: neÿype ← row values of gene types from df 
7: 

ge
ge
geneFunction ← row values of gene functions from df 

8: chrStart ← 0 
9: height ← 5 
10: width ← list vector 
11: for i = 0 to length(start) do 
12: width ← end[i] − start[i]
13: end for 
14: chrEnd ← row values of chromosome lengths from chrdf 
15: dictList1, dictList2 ←
{chrStart, chrEnd, start, end, width, height, yaxis, strand, geneName, geneÿype, geneFunction}
16: dictList3 ← empty dictionary
17: countArray ← list vector 
18: for i = 0 to length(dictList1) do 
19: for j = 0 to length(dictList2) do 
19: if strand = strand and start = start and end = end then 
20: continue 
21: end if 

ÓnÂŒþnÕŒ# ÓnÂŒþnÕŒ9 ÓnÂŒþnÕŒ#21: if strand = strand and start(i) ≤ start(j) and end(i) ≥
ÓnÂŒþnÕŒ9start(j) then 

22: countArray ← 1 
23: continue 
24: end if 

ÓnÂŒþnÕŒ# ÓnÂŒþnÕŒ9 ÓnÂŒþnÕŒ#25: if strand = strand and start(i) ≥ start(j) and end(i) ≤
ÓnÂŒþnÕŒ9start(j) then 

26: countArray ← 1 
27: continue 
28: end if 

ÓnÂŒþnÕŒ# ÓnÂŒþnÕŒ9 ÓnÂŒþnÕŒ#29: if strand = strand and start(i) ≤ start(j) and end(i) >
ÓnÂŒþnÕŒ9 ÓnÂŒþnÕŒ# ÓnÂŒþnÕŒ9start(j) and end(i) < end(j) then 
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30: countArray ← 1 
31: continue 
32: end if 

ÓnÂŒþnÕŒ# ÓnÂŒþnÕŒ9 ÓnÂŒþnÕŒ#33: if strand = strand and start i ≥ start(j) and end(i) >
ÓnÂŒþnÕ ÓnÂŒþnÕŒ# ÓnÂŒþnÕŒ9end(j) Œ9 and start(i) < end

(
(j
)
) then 

34: countArray ← 1 
35: continue 
36: end if 
37: end for 
38: end for 
39: countArray1 ← sum values in each sequence 
40: dictList3 ← {chrStart, chrEnd, start, end, width, height, yaxis + 10 ∗ 
countArray1Õ "Ã ‰Â , strand, geneName, geneÿype, geneFunction}
41: output ← save dictList3 to CSV file 

The resulting output file is then used as an input file for visualisation of lncRNAs in the genome. 

The Python script generates output files for individual chromosomes. Table 2.13 provides the 

algorithm for construction of lncRNA sequences using rectangles and viewing functionality of 

the sequences using D3.js. An "index. html" file is constructed which acts as Graphical User 
Interface (GUI) for accessing the viewing functionalities defined in the HTML < script > tag. 

Table 2.13: Algorithm for construction of lncRNA visualisation. 

Algorithm 7: Implementation of lncRNA visualisation algorithm using D3.js 
Input: inputCoordinates: input chromosome CSV files containing genomic annotation of 
lncRNA sequences formatted using Algorithm 3. 
Scripts: d3. v4.min. js
Output: output: output HTML ‘index.html’ file displaying visualisation of lncRNA sequences 
of individual chromosomes 
1: Insert < div > attributes for holding visualisation chart and chromosome selection button 
2: Attach event listener function displayChromosomeView() to option button 
3: Call displayChromosomeView() to trigger the event when the webpage loads 
4: data ← CSV file using É3. $´°() # Load input CSV file using É3. $´°() function 
5: Call chromosome 1 (chr1.csv) CSV file during initial webpage loading 
6: Define SVG dimensions (width and height) 
7: Define menu object containing annotation information from data array 
8: Add SVG element using d3. select("svg")
9: Define width and height of the visualisation window 
10: Define x, y, x2, y2 variables as scales for constructing the visualisation using
d3. scaleLinear() function which takes range of input values lying between 0 and width for
x axis and 0 and height for y axis. 
11: Define xAxis, xAxis2 and yAxis variables using
d3. axisBottom(x), d3. axisBottom(x2) and d3. axisLeft(y)
12: Define brush using d3. brushX() function which constructs a small static navigation 
panel for the visualisation 
13: Define zoom variable using d3. zoom() function which provides zoom functionality by 
calling zoomed() function 
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14: Define focus and context variables to the svg as class focus and class context. 
15: Define domains for the x and y axes using . domain() function. The x domain takes 
the chromosome length whereas the y domain takes the minimum and maximum values 
as range from the yaxis variable from data 
16: Define rect variable and append "rect" to SVG with class zoom which xAxis and zoom 
functions 
17: Append "rect" to the focus group class which contains the data for the constructing 
rectangles for the lncRNA genes. The x, y, width and height attributes constructs the 
rectangles for the genes. Annotation is appended using d3. contextMenu(menu) function. 
Gene types are coloured individually. Colours are displayed on the visualisation for each 
gene using mouseover and mouseout functions 
18: The rectangle attributes for each lncRNA gene are added to the x and y axes using
xAxis function. The zoom() function is called using . call(zoom)
19: Focus and context group classes are added to the "axis axis − −x" and "axis axis − 
−y" classes and xAxis, xAxis2 and yAxis variables are called using . call(xAxis), . call(yAxis)
and . call(xAxis2)
20: Context group class appends the brush class and calls brushed() function which 
provides navigation functionality within x. range()
21: The brushed() function is defined which implements event listener using 
d3. event. sourceEvent function which listens to the zoom function and zoom event trigger. 
22: The s variable is defined which contains the selection values from the x axis using 
d3. event. selection function. The range of values selected on the x2 axis is passed to the 
d3. event. selection which is stored in s variable. The selection is then passed to the focus 
group class which is further passed to the SVG element which scales and translates the 
rectangles 
23: The zoomed() function is defined using d3. event. sourceEvent function which listens to 
the brush function and brush event trigger. The zoom transforms the rectangles using 
d3. event. transform function and rescales the x domain using . rescaleX(x2). domain()
function. 
24: When zoom function is called, context class calls brush.move function with x. range()
which is mapped to the domain using . map function. 
25: To complete the zoom functionality, step 15 is copied to the zoomed() function which 
zooms the rectangles with transform and translate functionalities, annotation and colour 
attributes. 

2.15 Summary 

This chapter started by summarizing the contents of previous chapter. A short methodology 

workflow was outlined to describe the contents briefly. It then described various methods for 

lncRNA identification, classification, prediction and visualisation used in the research which led 

to the formulation of the research questions addressing significant research gaps. Methods 

used at each step were explained in detail. The methods used in this research address the 

research questions and provide a better understanding of lncRNA identification and 

classification using computational approaches. The next chapter provides the results, analysis 
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and discussion of the identification and classification of lncRNA sequences from Refseq and 

GENCODE databases. 
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CHAPTER 3: RESULTS AND ANALYSIS OF LONG NON-CODING RNA 
CLASSIFICATION 

3.1 Introduction 

The previous chapter outlined detailed methodology for computational processing and analysis 

of RNA-seq data. We discussed various tools and statistical methods for obtaining DEGs in 

RNA-seq data. We also discussed detailed methodology for identification of lncRNAs in 

Reference and RNA-seq datasets using the iRF classifier. Theoretical details of various 

features and their implementation in extraction from FASTA sequences were also provided. 

Furthermore, details about implementation of LASSO method and iRF classifier in feature 

selection in obtaining optimal features were also discussed. Finally, the methodology for the 

prediction of functions of lncRNAs in RNA-seq datasets was also presented. 

This chapter presents the results obtained using the methodology discussed in Chapter Four, 

as well as the evaluation of the results using machine learning methods. This chapter focusses 

on lncRNA identification results from reference datasets, optimisation of the classification 

approach using the LiRF-FS method and genomic annotation of lncRNA sequences using web-

based genomic datasets. 

3.2 Reference dataset statistics 

Statistical analysis on the transcript sequences obtained from the GENCODE and Refseq 

datasets shows that in total, 9890 lncRNA and 41219 mRNA transcripts in mammals, whereas 

10000 lncRNA and 41219 mRNA sequences in plants species were retrieved (Table 3.1). The 

statistics show that mammalian transcript sequences contain comparatively higher GC% than 

plant sequences. The results also show that mammalian sequences are comparatively much 

larger than plant sequences, which is evident from the maximum length (max len) value. When 

the mean length is compared, both mRNA and lncRNA sequences have comparable lengths 

which shows that some of the lncRNA and mRNA transcript sequences have equal lengths. 

Plant sequences on the other hand, contain higher nucleotide content and nucleotide bases 

when compared to mammalian sequences which do not contain any nucleotide bases. 
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Analysis of minimum lengths of lncRNAs and mRNAs shows that the minimum length of 

lncRNAs is 200, whereas for plants and mammals, the minimum lengths are 19 and 63 of 

mRNA respectively. The difference in minimum lengths is due to the sequence length cutoff of 

200 bp that has been applied on lncRNA sequences to remove non-lncRNA sequences from 

the analysis. Analysis of nucleotide quantities shows that both mammalian and plant transcript 

sequences contain higher number of adenine (A), cytosines (C), guanines (G) and thymines 

(T) in mRNAs when compared to lncRNAs. However, the number of Ts in plant lncRNA 

sequences is proportional to mRNA sequences. 

3.3 lncRNA classification on reference datasets 

From reference datasets, mRNA and lncRNA transcript sequences from 10 different species 

were extracted. Using 73 different ORF-based and codon-bias features described in Chapter 

2 Section 2.5, 73 features for each transcript sequence were extracted to construct the feature 

matrix from which training and test sets were created. Using these training and test sets, 

classification was performed using RF and iRF classifiers. Classification using RF has been 

additionally performed for the comparison of the results obtained using iRF. The following 

section details the results obtained from the classification analysis on all features. 

3.3.1 Classification performance evaluation 

Using the RF classifier, the performance of the 73 features was measured in 10 species for 

identification of lncRNAs. According to the metrics discussed in Chapter 2 Section 2.8.3, 

Accuracy (ACC), Sensitivity (SENS), Specificity (SPEC), Precision (PRES), NPV, F1-Score 

and MCC have been measured for 10 species obtained from reference datasets (Table 3.2). 

Results of the classification analysis showed that the prediction performance obtained from RF 

on 73 features of plant species showed ACC and PRES ≥ 93% with ZM, BNA, BRA, BOL, OS, 

SL and ST achieving ACC and PRES ≥ 95%. For mammalian species HS and MM 

demonstrated comparatively lower ACC and PRES as compared to plant species having ACC 

and PRES values of 91% and 90%, respectively. NPV metrics showed similar performance 

with differences of 1% in ACC and PRES metrics for all species. 
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Table 3.2: Classification performance of 73 features using RF classifier. 

Species ACC SENS SPEC PRES PPV NPV F1 MCC 
ATH 93.78 94.57 92.97 93.79 93.30 94.29 93.78 0.875 
ZM 95.63 94.45 96.84 95.66 96.82 94.48 95.63 0.91 
BNA 96.62 95.24 98 96.65 97.96 95.34 96.62 0.93 
BRA 96.11 94.98 97.28 96.14 97.31 94.94 96.11 0.92 
BOL 96.10 95.61 96.59 96.11 96.46 95.77 96.10 0.92 
OS 97.18 97.21 97.16 97.18 97.05 97.31 97.18 0.94 
SL 97.30 96.70 97.90 97.31 97.87 96.74 97.30 0.94 
ST 96.27 95.34 97.20 96.28 97.15 95.42 96.27 0.92 
HS 91.07 89.86 92.37 91.12 92.66 89.48 91.07 0.82 
MM 90.13 87.05 93.39 90.34 93.30 87.21 90.13 0.80 
6-plants 95.26 94.87 95.64 95.26 95.51 95.01 95.26 0.90 
2-mammals 90.57 89.63 91.46 90.57 90.80 90.36 90.57 0.81 

F1-score is a weighted average of PRES and SENS, and it showed similar performance as 

displayed by PRES with only slight differences. SPEC is the measure of identification of true 

negative rate. Therefore, the results of SPEC showed an overall average of 97% on all plant 

species with ATH as an exception with SPEC of ~93%. Mammalian data also showed SPEC 

of ~93%. MCC metric illustrates the quality of classification of the binary classes by the 

classifier, which ranges between 0 and 1. Therefore, from the MCC metrics, all plant species 

except ATH displayed MCC between 0.9 and 1 with ATH having MCC of 0.875; whereas 

mammalian species displayed MCC of 0.82% and 0.8% for HS and MM, respectively. 

Classification performance of 73 features was also measured using iRF which is shown in 

Table 3.3. On the other hand, iRF demonstrated similar statistics with marginal differences. 

Accuracy performance using iRF showed similar values as those obtained using RF having 

ACC ≥ 95% for ZM, BNA, BRA, BOL, OS, SL and ST whereas ATH displayed a slightly higher 

ACC of 94.20% using iRF. However, ACC obtained for HS and MM showed differences 

between the accuracies from RF by 0.12% and 0.16%, respectively. PRES performance 

displayed an overall increase of 1-1.5% as compared to RF. With RF, the SENS produced 

consistent values in multiple species whereas NPV showed slightly higher values for BRA, 

BOL, SL and ST using iRF. 
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Table 3.3: Classification performance of 73 features using iRF classifier. 

Species ACC SENS SPEC PRES PPV NPV F1 MCC 
ATH 94.20 95.02 93.34 93.67 93.67 94.77 94.34 0.88 
ZM 95.39 94.45 96.34 96.34 96.34 94.46 95.38 0.91 
BNA 96.62 95.09 98.15 98.11 98.11 95.21 96.58 0.93 
BRA 96.39 95.52 97.28 97.32 97.32 95.46 96.42 0.93 
BOL 96.16 95.96 96.36 96.24 96.24 96.08 96.10 0.92 
OS 96.82 96.72 96.92 96.80 96.80 96.85 96.76 0.93 
SL 97.05 96.7 97.4 97.38 97.38 96.72 97.04 0.94 
ST 96.07 95.47 96.67 96.63 96.63 95.52 96.05 0.92 
HS 90.95 89.94 92.04 92.37 92.37 89.51 91.14 0.82 
MM 89.97 86.44 93.71 93.56 93.56 86.73 89.86 0.80 
6-plants 95.02 94.95 95.08 94.98 94.98 95.06 94.97 0.90 
2-mammals 90.33 89.30 91.31 90.62 90.62 90.07 89.95 0.80 

The F1-score also showed similar statistical measures showing slightly higher values for ATH, 

BRA and HS with increase of 0.56%, 0.31% and 0.07%, respectively. MCC values also 

provided similar statistics, with MCC ≥ 0.9 and < 1 for ZM, BNA, BRA, BOL, OS, SL and ST 

whereas ATH, HS and MM displayed MCC of 0.88, 0.82 and 0.8, respectively. SPEC on the 

other hand displayed slighter variations with an increase of 0.37% for ATH, decrease of 0.5% 

for ZM, increase of 0.15% for BNA, decrease of 0.23% for BOL, decrease of 0.24% for OS, 

decrease of 0. 4% for SL, decrease of 0.57% for ST, decrease of 0.33% for HS, and increase 

of 0.32% for MM. 

Apart from classifying and measuring the performance on individual species, cross-species 

analysis has also been performed, in which a feature matrix of 30,000 sequences across 6 

plant species (ATH, BNA, BRA, BOL, ZM and OS) and 10,000 sequences of 2 mammalian 

species (HS and MM) were used for classification analysis. 73 features extracted from these 

cross-species datasets were used for measuring the performance using RF and iRF classifiers. 

Classification performance of 6-plant species using RF (Table 3.2) shows overall ACC, SPEC, 

PRES, NPV and F1-score of ~95% and MCC of 0.9 whereas 2-mammalian species displayed 

ACC, PRES, NPV and F1-score of ~90% with slight variations in SENS of 89.63%, SPEC of 

91.46% and MCC of 0.81. 

On the other hand, iRF also generated similar ACC, SENS, NPV and MCC for plants and 

mammals (Table 3.3) with minute differences in SENS, SPEC, PRES and F1-score. Regarding 

computation time, classification analysis of cross-species took slightly longer than classification 

on individual species. This is mainly due to the number of sequences involved in the training 

step with generation of 400 forests. 
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Table 3.4: Classification performance of 73 features using SVM classifier. 

Species ACC SENS SPEC PRES PPV NPV F1 MCC 
ATH 94.56 94.66 94.47 94.56 94.66 94.47 94.56 0.89 
ZM 95.05 93.87 96.26 95.08 96.23 93.91 95.05 0.90 
BNA 95.52 93.66 97.40 95.60 97.32 93.84 95.52 0.91 
BRA 96.07 94.83 97.36 96.11 97.38 94.79 96.07 0.92 
BOL 95.87 94.85 96.87 95.90 96.71 95.08 95.87 0.91 
OS 96.90 97.54 96.29 96.91 96.20 97.60 96.90 0.93 
SL 96.30 95.60 97 96.30 96.95 95.66 96.30 0.92 
ST 95.60 94.80 96.40 95.61 96.34 94.88 95.60 0.91 
HS 90.07 86.99 93.36 90.29 93.35 87.01 90.07 0.80 
MM 89.51 85.39 93.86 89.86 93.64 85.87 89.50 0.79 
6-plants 94.73 94.23 95.21 94.73 05.07 94.4 94.73 0.89 
2-mammals 90.18 88.25 92 90.21 91.2 89.27 90.17 0.80 

Classification of lncRNAs and mRNA sequences was also evaluated using a Support Vector 

Machine (SVM) classifier to benchmark the performance of 73 features and accuracy in 

determining lncRNAs using SVM. Results of the analysis has been shown in Table 5.4. SVM 

shows that performance using SVM does not vary significantly but does show slight variations 

in all the metric values. However, for some metrics, SVM does have lower values than RF and 

iRF. A comparison of ACC, PRES, SENS and F1 of three classifiers on multiple datasets 

(Figure 3.1) shows slightly lower performance of SVM for the majority of the datasets. When 

comparing to ACC (Figure 3.1a), a decrease in ACC using SVM is evident in ZM, SL, ST, HS 

and MM datasets whereas ACC obtained using RF and iRF does not vary much. When PRES 

is compared (Figure 3.1b), again a notable difference is observed for SVM, RF and iRF in ZM, 

BNA, BRA, SL, ST, HS and MM datasets where a decrease in PRES values is observed using 

SVM. It is also important to note that iRF produces the highest PRES values in these datasets 

amongst RF and SVM which can be observed in BNA, BRA, HS and MM datasets with 

significantly higher PRES values for iRF. SVM however only performs better in the ATH 

dataset, where it shows an increase of 0.57±0.21 for ACC and 0.83±0.06 for PRES. Results of 

SENS analysis also shows a decrease in SENS values for ZM, BNA, BRA, BOL, SL, ST, HS 

and MM datasets. iRF however, shows an improvement in ATH, BRA and BOL datasets. For 

the rest of the datasets, similar performance of iRF and RF can be observed, particularly in SL, 

ST, HS, MM, 6-plants and 2-mammals datasets. The comparison with respect to F1-score 

shows similar scores as observed in ACC metrics with a decrease in F1 values in ZM, BNA, 

BRA, BOL, SL, ST, HS, MM, 6-plants and 2-mammals. 
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Figure 3.1: Classification performance comparison of RF, iRF and SVM classifiers with 73 

features on plants and mammalian species. (a) Accuracy performance, (b) Precision 

performance, (c) Sensitivity performance and (d) F1-Score performance. Horizontal axis 

represents various species and vertical axis represents accuracy in percentage. 
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The comparison of speed performance of RF, iRF and SVM shows that SVM performs 

comparatively much faster while training the transcript sequences. 

a b 

Accuracy comparison of multiple Precision comparison of multiple 

98 

species	 with 3 classifiers 
99 

species	 with 3 classifiers 

97 

96 

98 

97 

Sensitivity comparison of multiple F1-Score comparison of multiple 
species	 with 3 classifiers species	 with 3 classifiers 

9898 
97

96 
96 

93 

94 

95 

Accuracy-iRF 
Accuracy-RF 

A
TH ZM BN
A

A
TH ZM BN
A

BR
A

BO
L

O
S SL ST H
S

M
M

 

6-
pl
an
ts

 

2-
m
am

m
al
s 

BR
A

BO
L

O
S SL ST H
S

M
M

 

6-
pl
an
ts

 

2-
m
am

m
al
s 

F1
-S
co
re

 
Pr
ec
is
io
n 

91 

92 

95 

94 

93 

93 

94 

95 

Precision-SVM 
Precision-iRF 
Precision-RF 

A
TH ZM BN
A

A
TH ZM BN
A

BR
A

BO
L

O
S SL ST H
S

M
M

 

BR
A

BO
L

O
S SL ST H
S

M
M

 

2-
m
am

m
al
s 

6-
pl
an
ts

 
6-
pl
an
ts

 

2-
m
am

m
al
s 

136 



	
	

              

             

          

               

        

                 

       

  

				

           

           

     

 

           

         

          

              

         

           

              

	
Comparison of iRF, RF and SVM was also performed by benchmarking their performance with 

respect to the total time (in seconds) in classifying lncRNAs and mRNA sequences from 

multiple species (Figure 3.2). Speed comparison results indicate that SVM performs the fastest 

classification, with less amount of time required for training than RF and iRF with iRF being 

comparatively slower. However, for 6-plants datasets, SVM takes 144.26 seconds to train and 

predict the data, which is almost twice the time taken by iRF classifier. RF on the other hand, 

performs identical to SVM, with less time for training and prediction steps displaying a faster 

performance in 6-plants dataset. 
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Figure 3.2: Speed comparison of RF, iRF and SVM classifiers in classification of lncRNAs and 

mRNA transcript sequences on multiple species datasets with horizontal axis representing 

various species and vertical axis time in seconds. 

We further evaluated how the classification performance of multiple species using 73 features 

by plotting Receiver Operating Characteristics (ROC) curves. Figure 3.3a shows the ROC 

curves of 6-plant species, whereas Figure 3.3b shows ROC curves of 2-mammalian species 

where False Positive Fraction (FPF) is plotted against True Positive Fraction (TPF). The ROC 

curves in Figure 3.3a show that all the plant species exhibit similar performance, except for 

ATH, where the curve slightly dips downwards. The corresponding Area Under the Curve 

(AUC) score for the ROC curves of plant species (Table 3.5) illustrates an average AUC score 
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of 99.23% by averaging the maximum AUC scores of 8 plant species. On the other hand, HS 

and MM datasets also display identical ROC curves except MM which displays lower TPF 

compared to HS having a higher TPF. 

a 

b 

Figure 3.3: ROC curves showing performance comparison of 10 different species involving 

plants and mammalian datasets where TPR is the True Positive Rate and FPR is False Positive 

Rate. (a) shows ROC curves of 6 individual plants species and (b) shows ROC curved of 2 

individual mammalian species. 
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HS and MM produces an average AUC score of 96.82% with maximum AUC scores over 4 

iterations using iRF. For computation of accuracy values, 4 iterations were performed. iRF 

produced maximum AUC of 97.32% and 96.33% for HS and MM, respectively. AUC scores of 

6-plants and 2-mammalian species were also computed. 6-plants cross species produced 

maximum AUC of 99.07% whereas 2-mammalian species produced an AUC of 96.12%. 

Table 3.5: AUC scores of multiple species using iRF classifier with 4 iterations. 

Species AUC score 
(Iteration 1) 

AUC score 
(Iteration 2) 

AUC score 
(Iteration 3) 

AUC score 
(Iteration 4) 

ATH 98.58% 98.6% 98.58% 98.58% 
ZM 98.9% 99.06% 99.02% 99.06% 
BNA 99.46% 99.48% 99.49% 99.48% 
BRA 99.2% 99.22% 99.18% 99.19% 
BOL 99.22% 99.13% 99.11% 99.07% 
OS 99.6% 99.58% 99.52% 99.53% 
SL 99.67% 99.66% 99.67% 99.66% 
ST 98.89% 98.91% 98.99% 98.91% 
HS 97.32% 96.98% 96.96% 96.98% 
MM 96.33% 96.24% 96.14% 96.21% 
6-plants 99.07% 98.98% 98.95% 98.96% 
2-mammals 96.12% 96.12% 96.07% 96.05% 

Furthermore, a separate analysis was also conducted using the RF classifier to examine the 

classification of mRNA and lncRNA transcript sequences using 73 features by classifying into 

four separate classes: (1) mRNA plants, (2) mRNA mammals, (3) lncRNA plants and (4) 

lncRNA mammals. This analysis was primarily conducted to evaluate the performance of the 

features in distinguishing the transcript sequences into its appropriate class. Results of the 

classification are illustrated in Table 3.6 which shows PRES, SENS and F1-Score of the four 

classes. Results from multi-class classification analysis show that mRNA_plants class 

achieves PRES of 82 with SENS of 91 and F1 of 0.86 whereas mRNA_mammals achieves an 

average PRES and SENS of 90 and F1 of 0.90. Regarding lncRNA classes, lncRNA_plants 

achieves PRES of 89, SENS of 83 and F1 of 0.86 whereas lncRNA_mammals scores higher 

than plants with PRES of 92, SENS of 89 and F1 of 0.91. From the results, PRES or PPV of 

mRNA sequences in plants have slightly lower accuracy than other classes due to which the 

overall PRES decreases to 88 whereas lncRNA_plants show SENS of 83 mainly due to 

misclassification of lncRNA sequences in other classes. 
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Table 3.6: Classification metrics of lncRNA and mRNA transcript sequences in plants and 

mammalian species using a RF classifier. 

Species Precision Recall or 
Sensitivity 

F1-Score 

mRNA_plants 82 91 0.86 
mRNA_mammals 91 90 0.90 
lncRNA_plants 89 83 0.86 
lncRNA_mammals 92 89 0.91 
Average 88 88 0.88 

F1-score metrics which is a harmonic mean of both PRES and SENS shows that mRNA and 

lncRNA sequences in plants have comparatively lower values as compared to mammalian 

sequences which display F1-score of 0.9. 

3.3.2 Determination of feature interactions 

Prevalent feature interactions are the combinations of features which have a higher probability 

of occurrence and selection during the classification process as these combination of features 

produces better and improved accuracy. To achieve a prevalent list of feature interactors, an 

RIT algorithm has been employed, which provides a list of multi-order interactors. From RIT 

analysis, 2, 3, 4 and order-5 interactors were identified for plant and mammalian cross species 

datasets (Figure 3.4). The interactions were scored and assigned stability scores, which vary 

from 0.1 to 1.0. Feature interactions having stability scores ≥ 0.7 were extracted for further 

analysis. In this analysis, the search space was limited to obtaining order-5 interactions, since 

no new interactions were obtained with order > 5. 
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Figure 3.4: Dot chart showing prevalent feature interactions with list of highly prevalent feature 

combinations on vertical axis and stability scores on horizontal axis for (a) 6-plant species and 

(b) 2-mammalian species. 

Results from RIT analysis (Table 3.7) shows only one order-5 interaction was obtained for 6-

plant species with combination of ORF length, ORF coverage, Fickett score, RCB and SCUO 
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features having stability score of 0.7. For mammalian species, no order-5 interaction was 

observed. For plants, four order-4 interactions, eleven order-3 interactions having stability 

scores of 1, and five order-2 interactions were produced with a score of 1. 

In mammalian species (Table 3.7), order-4 interactions primarily displayed interactions 

between hexamer score, ORF length, ORF coverage, Fickett score and CGGRSCU features 

having stability scores of 0.7 and 1. Whereas, order-3 interactions of these generated the score 

of 0.7 and 1. With order-3 interactions, three combinations of these features produced the score 

of 1 and remaining two combinations exhibited scores of 0.8. The CGGRSCU feature was 

selected only in the order-4 interaction which shows that CGGRSCU was preferentially selected 

with Hexamer score, ORF length and ORF coverage features. 

Table 3.7: Prevalent feature interactions with stability scores ≥ 0.7 in plants and mammalian 

species obtained using the RIT algorithm. 

Order 6-Plants dataset 2-Mammals dataset 
Order-5 ORFLength-ORFCoverage-

FickettScore-RCB-SCUO 
None 

Order-4 ORFLength-ORFCoverage-
FickettScore-RCB 
ORFCoverage-FickettScore-RCB-
SCUO 
ORFLength-ORFCoverage-
FickettScore-SCUO 
ORFLength-ORFCoverage-RCB-SCUO 

HexamerScore-ORFLength-
ORFCoverage-FickettScore 
HexamerScore-ORFLength-
FickettScore-CGGRSCU 

Order-3 MeanORFCoverage-ORFCoverage-
SCUO 
ORFCoverage-GC-SCUO 
ORFCoverage-Fop-SCUO 
ORFCoverage-FickettScore-RCB 
ORFCoverage-EW-SCUO 
ORFLength-ORFCoverage-EW 
ORFCoverage-FickettScore-SCUO 
ORFCoverage-RCB-SCUO 
ORFLength-ORFCoverage-
FickettScore 
ORFLength-ORFCoverage-SCUO 
ORFLength-ORFCoverage-RCB 

HexamerScore-ORFLength-
FickettScore 
ORFLength-ORFCoverage-
FickettScore 
HexamerScore-ORFLength-
ORFCoverage 

Order-2 ORFCoverage-Fop 
ORFCoverage-FickettScore 
ORFCoverage-EW 
ORFCoverage-RCB 
ORFLength-ORFCoverage 

ORFLength-FickettScore 
HexamerScore-ORFLength 
ORFLength-ORFCoverage 
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Apart from feature interactions having higher stability scores, other feature interactions with 

scores less than 0.7 were also obtained to study combination of features which are less stable. 

From this analysis, 52 feature combinations were obtained for 6-plant species (Figure 3.5a) 

having stability scores less than 0.7 out of which nine order-5 feature interactions were also 

obtained. In total, 26 feature interactions were observed for 6-plant species in which hexamer 

score, ORF Length, Fickett score, ORF coverage, SCUO, EW, GC, Fop were selected to form 

order-4 feature combinations producing scores of 0.5, 0.4, 0.3, 0.2 and 0.1. order-3 

interactions, 11 combinations were produced with scores ranging between 0.1 and 0.6. For 

order-2 interactions, only four interactions were observed. For mammalian species (Figure 

3.5b), four order-5 interactions were observed having stability scores less than 0.7. The order-

4 feature combinations produced much lower scores between 0.1 and 0.4, whereas order-2 

interactions displayed scores of 0.1. 

143 



	
	

  

	 	
        

     

	
               

 

      

        

        

     

          

        

            

          

a b 

Figure 3.5: Dot chart showing prevalent feature interactions with list of all feature interactions 

for (a) 6-plant species and (b) 2-mammalian species. 

Results from the RIT analysis indicate selection of certain features in plants and mammals. RIT 

generated higher number of feature combinations in plants as compared to mammals. 6-plant 

dataset generated 74 feature combinations whereas the 2-mammalian dataset generates 21 

combinations. The combinations produced stability scores ≥ 0.7 in plants, whereas mammalian 

dataset generates 8 combinations with higher stability scores. As the search space is limited 

to order-5 combinations, plants species generate only one order-5 combination with the 

selection of ORF length, ORF coverage, Fickett score, RCB and SCUO features with stability 

score of 0.7. Contrastingly, mammalian dataset does not generate any order-5 feature 

combination with score ≥ 0.7. The rest of the order-5 combinations in plants and mammals 

display stability scores of 0.5, 0.3, 0.2 and 0.1. Regarding order-4 combinations, plants display 
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4 feature combinations with 50% having scores of 1 and the rest 50% having scores of 0.8. For 

mammals, two order-4 feature combinations display scores of 1 and 0.7. For order-3 

combination of features, 8 out of 11 features have stability scores ≥ 0.8. Mammals however 

display two order-3 combinations with scores of 1 and one with score of 0.7. Order-2 feature 

combinations however contain the majority of combinations with scores of 1 in both the species. 

A separate analysis was also undertaken to observe feature combinations with order > 5. 

However, no higher order feature combinations were generated using iRF. 

3.3.3 Prediction performance of prevalent features 

Based on the feature combination obtained in Table 3.5, performance of each combination was 

evaluated on 6-plants and 2-mammals dataset. The prediction accuracies were computed to 

evaluate their performance. Results of the performance evaluation can be observed from 

Figure 3.6 which shows a line chart of prediction accuracies in 6-plants and 2-mammals using 

the iRF classifier. 

In 6-plants (Figure 3.6a), the 5 and 4-order feature combinations generated highest prediction 

accuracies ranging between 94.77% and 93.61%. The accuracy showed a decrease of ~2% 

in 3-order combinations. However, some feature combinations demonstrated an increase in 

the accuracy bringing the value to 94.1%. The increase in the accuracy was mainly observed 

in the combinations which contains EW and SCOU features. This confirms the importance of 

EW and SCUO as their selection improved the overall prediction accuracy in plants. Accuracy 

of 2-order combinations exhibited a sudden drop from ~92% to ~86%. Apart from EW and 

SCUO features, ORF length also improved the accuracy significantly which confirmed its ability 

to distinguish the sequences. 
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Figure 3.6: Performance of feature combinations based on prediction accuracy for (a) 6-plants, 

and, (b) 2-mammals datasets. 

In contrast to plants, mammalian sequences exhibited dissimilar pattern of accuracies with 

feature combinations. The highest prediction accuracy of 90.18% was observed for the order-

4 combination where CGGRSCU was observed in combination with hexamer score, ORF length 

and Fickett score. The second lowest accuracy of 89.94% was observed with selection of ORF 

coverage instead of CGGRSCU. The order-3 combinations generated lower accuracies than the 

order-4 combinations and steady decline in the accuracy was observed. Based on the non-

selection of essential features in order-3 features and decrease in the accuracy, ORF coverage 

was ranked 1 followed by hexamer score with rank 2 and Fickett score with rank 3. From the 

order-2 features, the highest accuracy of 88.33% was produced by ORF length and Fickett 

score. The non-selection of Fickett score produced lower prediction accuracy values. This 

shows that in mammals, the most important features are the order-4 features: hexamer score, 

ORF length, Fickett score and CGGRSCU . 
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3.3.4 Performance evaluation of individual features 

Features extracted from the transcript sequences were also used for the evaluation of their 

individual performance in the classification of lncRNAs in 6-plants and 2-mammalian species 

transcript sequences. Figure 3.7 displays the performance of each feature classified using an 

iRF classifier. Results of the analysis in plants (Figure 3.7a) show that ORF length achieves 

the highest accuracy of 90.44%, followed by ORFCoverage with 82.32%. Fickett score 

achieves accuracy of 73.75% followed by GC with 69.57%. Performance of hexamer score 

becomes slightly lower when compared to other features in distinguishing lncRNAs in plants. 

Individual performance of codon bias features generates an average ACC of 61.55%. The bar 

plot below also illustrates that codon-bias features such as CUB, EW and SCUO individually. 

a 

b 

Figure 3.7: Bar charts displaying individual feature performance using iRF classifier in (a) 6-

plant species transcript sequences and (b) 2-mammalian species transcript sequences. 
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Individual feature performance in mammalian sequences (Figure 3.7b) illustrates higher 

, CGGRSCU prediction accuracy of 83.85% by ORF length which is followed by CGARSCU , 

CGCRSCU , CGTRSCU , GCGRSCU with ACC of 74.27%, 73.68%, 73.48, 71.09% and 69.83% 

respectively. Sequence-based features such as Fickett score, GC content and ORF coverage, 

display slightly lower accuracy values of 68.73%, 67.95% and 67.23%, respectively. From the 

Figure 3.7b it can be clearly observed that some of the RSCU codon-bias features display 

higher accuracy in mammals when compared with plant data. This signifies that the RSCU 

features in mammals and ORF length in plants as well as mammals play significant roles in 

distinguishing the transcript sequences. 

3.3.5 10-Fold Cross Validation performance on reference datasets 

The performance of the iRF classifier with 73 features on 6-plants and 2-mammalian 

GENCODE datasets was evaluated using 10-Fold Cross-Validation (CV) feature sets. 10% of 

the features from the overall feature set were selected as a test set in each fold. The 

mammalian dataset consists of 10000 sequences; 9000 were selected as the training set and 

the remaining 1000 were selected as the test set. The plant dataset consists of 30000 protein-

coding and lncRNA sequences, out of which 27000 were selected for the training set and 3000 

as the test set. With unique test set values in each fold, AUC and accuracy values were 

computed (Figure 3.8). 

Results from the 10-Fold CV show that the AUC scores for plants fluctuates between 98.7 and 

99.4, whereas for mammals it fluctuates between 95.5 and 98. At fold 4 in mammals, the AUC 

score peaks to 97.77. This significant increase in the value suggests that the sequences 

chosen as test values at fold=4 show significant differentiation. In plants, the AUC metric 

reaches a peak value of 99.29 at fold 10. The same inference is generated suggesting the 

lncRNA and protein-coding sequences chosen as test set at the fold value of 10 can be easily 

distinguished with higher accuracy. 

Comparison of accuracy values shows a similar pattern observed in the AUC scores. Accuracy 

values in plants show that the highest accuracy of 95.7% was obtained in fold 9 when compared 

to AUC value at fold=10. Since AUC is obtained by computing the fractions of true positive and 

negative rates, the tradeoff in the PPV and NPV values might affect the overall AUC, as well 

as the accuracy. On the other hand, accuracy values of mammalian dataset do not show 

significant differences with AUC scores. However, minor variations in folds=1, 2 and 8 can be 

observed which is attributed to the fractions of PPV and NPV values. The datasets display an 

149 

http:using10-FoldCross-Validation(CV)featuresets.10


	
	

         

     							

  

	 	
  

	 	
        

               

     

 

	 	 	 	 	
	 	 	 	 	 	 	

	 	 	

	 	 	 	
	 	 	

	 	 	 	
	 	 	

average AUC of 99.04 for plants and 96.54 for mammals, whereas the average accuracy for 

plants is 95.37% and 90.99% for mammals. 

a b 
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Figure 3.8: 10-Fold cross-validation performance of plants and mammalian GENCODE 

datasets using iRF classifier with (a) and (b) showing AUC scores, and (c) and (d) showing 

Accuracy scores. 
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3.4 Selection of optimal features using LiRF-FS on reference datasets 

After performing classification using 73 features, the LiRF-FS algorithm was implemented to 

search for optimal features on the reference datasets. The feature selection method was 

applied on 6-plants and 2-mammals species to search for the feature set producing the highest 

accuracy in plants and mammals. Using the above approach for 6-plant species (Figure 3.9a), 

the lower λ value was kept to 10*+ and upper λ value was kept to 0.1. Using LASSO, the first 

feature was identified at λ = 0.1 which is ORF coverage. ORF coverage produced classification 

accuracy of 82.34% as a single feature. As λ further decreased from 0.1 to 0.032, two features 

were selected, namely, ORF coverage and Fickett score. With two features, the accuracy 

increased to 86.34%. A further decrease in λ value from 0.032 to 0.026 generated three 

features with additional selection of RCB feature, which increased the accuracy to 92.8%. With 

a decrease in λ from 0.026 to 0.0092, the mean ORF coverage gets selected which further 

increased the accuracy to 94.09%. With gradual decrease in λ value, the accuracy gets 

increased to the maximum value of 95.22% with the selection of 11 features, namely: Hexamer 

score, mean ORF coverage, ORF coverage, transcript length, GC content, Fop, RCB, EW, 

SCUO, TATRSCU , GATRSCU at λ = 3×10*0. Further shrinking the λ decreases the accuracy to 

94.45% with selection of 72 features at λ = 10*+. However, the accuracy seems to fluctuate 

with mean accuracy of 94.83±0.385%. By applying the feature selection criteria mentioned in 

the methodology, the LiRF-FS method provides 7 optimal features: hexamer score, mean ORF 

coverage, ORF coverage, Fickett score, Fop, RCB and SCUO with accuracy of 94.91% at λ = 

6.9×10*0 . 
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Figure 3.9: Line chart showing corresponding accuracy and optimal number of features 

selected with decrease in λ value using LiRF-FS method for (a) 6 plant species and (b) 2 

mammalian species. Horizontal axis represents various λ values with accuracy in (%) 

representing primary vertical axis and number of features selected in secondary vertical axis. 

In the case of the mammalian species, a similar pattern of selection was observed, as shown 

in Figure 3.9b. Unlike plants, the first feature (ORF coverage) gets selected at λ = 0.071 

yielding an accuracy of 67.32%. Decrease in λ from 0.071 to 0.046 selects two features, ORF 

coverage and Fickett score which generate accuracy of 75.53%. By further decreasing λ to 
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0.0087, the accuracy drastically increases to 88.29% with selection of four features ORF 

coverage, Fickett score, EW and SCUO. At λ = 0.0057, Mean ORF coverage gets selected 

which increases the accuracy by 0.75%. The accuracy further increases and reaches peak 

value of 90.37% with the selection of 11 features, namely, Hexamer score, ORF length, mean 

ORF coverage, ORF coverage, transcript length, Fickett score, CUB, RCB, EW, SCUO, 

ACCRSCU at λ = 3.8×10*0. Further decrease in λ from 3.8×10*0 to 2.7×10*3 stabilizes the value 

at 90.06%, with the selection of 31 features after which the accuracy starts to decrease to 

89.86% and starts to fluctuate downwards. At λ = 10*+, 67 features are selected producing an 

accuracy of 88.61%. The trend of selection of features is quite like the one observed in plants 

species, with stability in λ = 3×10*0 to 1.2×10*0 with selection of 31 features producing an 

accuracy of 95.11%. From λ = 2.3×10*3, the accuracy decreases and remains constant till λ = 

10*+ . This demonstrates that the optimal features should be selected based on the λ value 

where the prediction accuracy matches closely with λ value producing highest prediction 

accuracy. 

Selection of features in plants and mammalian species can be explained by plotting the trace 

path of LASSO coefficients at various λ values. Figure 3.10 shows the result of applying LASSO 

on the training set with λ values on the x-axis. The x-axis is scaled so that maximal bound 

corresponding to OLS estimate is one. From the plots it can be clearly observed that most of 

the coefficient values of features range between 0 and 0.3 and are not selected when λ is 

higher. This LASSO behavior can be explained by the geometry underlying the ℓ5 constraint 

which can be better understood by looking at the contour plot of LASSO and Ridge regression 

as shown in Figure 3.11. The contour plot illustrates coefficient values for feature 6 plotted 

using LASSO and Ridge regressions. Ridge regression employs the ℓ7 norm which shrinks the 

values due to the circular nature of the constraint regions. LASSO on the other hand, employs 

the ℓ5 norm creating squared constraint regions. The red ellipses represent the contours of the 

residual sum of squares (RSS) function of the OLS estimate and 8 represents the 

unconstrained least-squares estimate. The RSS has elliptical contours where the constraint 

region for Ridge is |8|57 + |8|77 ≤ <7 and the constraint region for LASSO is + ≤ <. Due 

to the circular constraint region in Ridge, the coefficients for the features rarely reach zero. In 

other words, the probability of coefficients approaching zero is low, therefore the coefficient 

values of features shrink but do not reach zero. Contrastingly, due to the diamond shape of the 

contour, the RSS contour of the OLS or 8 coefficients of the features (8=) touch either of the 
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four corners of the diamond constraint, where the values become zero. Due to this nature, 

LASSO tends to yield sparse features having fewer non-zero coefficients whereas ridge does 

not. 

When the trace path was constructed for the plants and mammalian species dataset, the 

majority of the features had zero coefficient values between 0 and 0.3 in plants (Figure 3.10a) 

and therefore these features do not contribute in improving the accuracy of the lncRNA 

identification. The trace path from 0.3 to 1 shows the selection of rest of the features when the 

λ = 3×10*0 to λ = 2×10*+ . The λ is represented by |coef|/max|coef| value. Similarly, for 

mammalian species the trace path shows that the larger number of features produces zero 

coefficient values from 0 to 0.3 where the λ is optimal at 3.8×10*0. A further decrease in λ does 

not alter the accuracy which is evident from the trace plot in Figure 3.10b, when the λ value 

increases from 0.3 to 1. With an increase in the number of features having non-zero coefficient 

values leading to decrease in sparsity, the accuracy does not improve significantly when the λ 

changes from 4×10*0 to 3×10*+. The selection of sparse features can be clearly observed in 

Figure 3.12 which shows the trace path of λ values from 0 to 0.4 for plants and 0 to 0.16 in 

mammals. Comparison of the accuracies of the selected features shows that features such as 

ORF coverage and Fickett score produces non-zero coefficient values when the λ value is 

lower. However, optimal features can be obtained when the λ value is 0.3 (Figure 3.12a) with 

an accuracy of 95.22% and the selection of 11 features in plants. When the value approaches 

0.4, the prediction accuracy remains constant at 95.11% with selection of 27 features. In 

mammals, the prediction accuracy reaches the maximum at 0.07 λ value with ACC of 90.37%. 

Similar to the trace path in plants, a further increase in λ value from 0.07 to 0.16 does not alter 

the accuracy and keeps it constant with accuracy of 90.06%. An increase in λ value to 1 

produces no improvement in the accuracy with further selection of features. 
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a 

b 

Figure 3.10: LASSO trace path of the coefficients against the ℓ5-norm of the coefficient vectors 

as λ varies from 0 to 1. (a) and (b) shows the complete LASSO trace path for all values of λ for 

6-plants and 2-mammalian datasets, respectively with |coef|/max|coef| (i.e. λ) values on 

horizontal axis and 8 coefficient values for selected features on vertical axis. 
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a b 

Figure 3.11: An estimation picture for (a) Ridge regression and (b) LASSO regression showing 

the contours of error and constraint functions. Solid blue regions are the constraint regions 

|8|57 + |8|77 ≤ <7 and + ≤ <, respectively. 85 87 
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Figure 3.12: LASSO trace path of the coefficients against the G5-norm of the coefficient vectors 

showing selection of features with increase in accuracy over the selected λ values. (a) and (b) 

shows the LASSO trace path for selected λ values for 6-plants and 2-mammalian datasets, 

respectively when the accuracy increases, with λ values ranging from 0.1 to 1.2×10*0 for plants 

and 0.071 to 3.5×10*3 for mammals on the horizontal axis and 8 coefficient values for selected 

features on vertical axis. 

Feature selection using LiRF-FS methodology was applied on 6-plants and 2-mammalian 

species. By varying the λ from 1 to 10*3 with step size of 10*3 and tolerance value of 0.5, 7 

157 

http:species.By
http:Figure3.12


	
	

        

           

             

              

     

         

        

      

          

         

        

   

 

  

	 	
 

         

      

            

           

        

        

    

             

optimal features are generated, namely, hexamer score, mean ORF coverage, ORF coverage, 

Fickett score, Fop, RCB and SCUO at λ = 6.9×10*H with prediction accuracy of 94.95%. Since 

the tolerance value provided was 0.5, the difference from the maximum accuracy was 0.33%. 

The prediction accuracy was highest at λ = 3.9×10*H with the selection of 10 features, namely: 

hexamer score, mean ORF coverage, ORF coverage, transcript length, Fickett score, Fop, 

RCB, Ew, SCUO and TATRSCU producing accuracy of 95.28%. For mammals, the optimal 

features were selected at λ = 7.2×10*H producing an accuracy of 90.10% with the selection of 

8 features, namely: hexamer score, mean ORF coverage, ORF coverage, transcript length, 

Fickett score, RCB, Ew, SCUO. The accuracy at this λ value differs from the maximum 

accuracy value of 90.37% with a difference of 0.27%. When the accuracy reaches its maximum 

at λ = 3.8×10*H, 11 features are selected, namely: hexamer score, ORF length, mean ORF 

coverage, ORF coverage, transcript length, Fickett score, CUB, RCB, EW, SCUO, ACCRSCU 

and CGARSCU . 

a b 

Figure 3.13: Venn diagram showing the number of common and exclusive features from 6-

plants and 2-mammals datasets with (a) features producing the maximum prediction 

accuracy, and (b) optimal features obtained from LiRF-FS. 

Resulting features obtained from plants and mammalian datasets using LiRF-FS method were 

compared to obtain the features which are commonly selected in both the datasets (Figure 

3.13). Two comparisons were made, namely: (1) features producing maximum prediction 

accuracy among all the features in both the species (Figure 3.13a), and (2) features obtained 

from LiRF-FS optimisation producing accuracy within the given threshold value (Figure 3.13b). 

Results from the intersection of features show an overlap of 7 features, namely, hexamer score, 

158 

http:Figure3.13
http:thedifferencefromthemaximumaccuracywas0.33


	
	

       

          

       

          

         

            

        

      

 

             

           

           

         

           

      

     

  

mean ORF coverage, ORF coverage, transcript length, RCB, EW and SCUO which are 

commonly selected in both species, whereas 4 and 2 features were exclusively selected in 

plants and mammals, respectively. GC content, Fop, TATRSCU , GATRSCU were exclusively 

selected among plants and ORF length, Fickett score, CUB and ACCRSCU were exclusively 

selected among mammals. Another analysis of results obtained from the LiRF-FS optimisation 

method shows an overlap of 6 features, namely, hexamer score, mean ORF coverage, ORF 

coverage, Fickett score, RCB and SCUO. Among the exclusive features, Fop was selectively 

found among plants whereas transcript length and EW were selected among mammalian 

datasets. 

To study the feature importance obtained from the LiRF-FS on plants and mammals, 

frequencies of individual features were computed over the iterations of λ values selected in 

plants and mammals. Results of the feature importance in plants and mammals has been 

plotted in Figure 3.14. The results show the frequency of selection of individual features across 

the overall values of λ. Results demonstrate that in both the species, the sequence and ORF-

based features are highly selected as compared to codon-biased features. However, some of 

the codon-biased features do display selection in selected λ values. 
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b 

Figure 3.14: Frequency of selection of individual features across various λ values in (a) 6-

plants, and (b) 2-mammalian GENCODE datasets. 

Results from the datasets can be divided into three clusters: 

1. Cluster-1: Features displaying highest frequencies (Frequency > 30) 

2. Cluster-2: Features displaying moderate frequencies (Frequency < 30 and ≥ 15) 

3. Cluster-3: Features displaying lower frequencies (Frequency < 15) 
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Table 3.8: Distribution of features based on individual performance in plants and mammals. 

Species Cluster-1 Cluster-2 Cluster-3 
Plants ORF coverage, mean 

ORF coverage, Fickett 
score, RCB, SCUO, 
EW, CUB, transcript 
length, hexamer score, 
TTTRSCU , ATGRSCU , 
ACARSCU , TATRSCU , 
CAARSCU , GATRSCU , 
GGTRSCU , GGGRSCU 

ORF length, GC 
content, Fop, CTGRSCU , 
ATCRSCU , ATARSCU , 
GTTRSCU , GTCRSCU , 
GTGRSCU , TCARSCU , 
CCTRSCU , CCARSCU , 
CCGRSCU , ACTRSCU , 
ACGRSCU , GCCRSCU , 
GCGRSCU , TACRSCU , 
CACRSCU , AAARSCU , 
AAGRSCU , GACRSCU , 
GAARSCU , TGCRSCU , 
TGGRSCU ,CGCRSCU 

TTCRSCU , TTARSCU , 
TTGRSCU , CTTRSCU , 
CTCRSCU , CTARSCU , 
ATTRSCU , GTARSCU , 
TCTRSCU , TCCRSCU , 
TCGRSCU , CCCRSCU , 
ACCRSCU , GCTRSCU , 
GCARSCU , CATRSCU , 
CAGRSCU , AATRSCU , 
AACRSCU , GAGRSCU , 
TGTRSCU , CGTRSCU , 
CGARSCU , CGGRSCU , 
AGTRSCU , AGCRSCU , 
AGARSCU , AGGRSCU , 
GGCRSCU , GGARSCU 

Mammals Hexamer score, ORF 
length, mean ORF 
coverage, ORF 
coverage, transcript 
length, Fickett score, 
Fop, CUB, RCB, SCUO, 
ACCRSCU , GCGRSCU , 
CATRSCU , CGARSCU , 
GGGRSCU 

GC content, EW, 
TTTRSCU , TTCRSCU , 
TTGRSCU , CTCRSCU , 
GTARSCU , GTGRSCU , 
TCCRSCU , CCCRSCU , 
CCGRSCU , ACARSCU , 
GCARSCU , TACRSCU , 
CACRSCU , AACRSCU , 
AAARSCU , GACRSCU , 
TGGRSCU , CGTRSCU , 
CGGRSCU , AGGRSCU , 
GGCRSCU , GGARSCU 

TTARSCU , CTTRSCU , 
CTARSCU , CTGRSCU , 
ATCRSCU , ATARSCU , 
ATGRSCU , GTCRSCU , 
TCARSCU , TCGRSCU , 
CCTRSCU , CCARSCU , 
ACTRSCU , ACGRSCU , 
GCTRSCU , GCCRSCU , 
TATRSCU , CAARSCU , 
CAGRSCU , AATRSCU , 
AAGRSCU , GATRSCU , 
GAARSCU , GAGRSCU , 
TGTRSCU , TGCRSCU , 
CGCRSCU , AGTRSCU , 
AGCRSCU , AGARSCU , 
GGTRSCU 

Results from plants datasets (Figure 3.14a) suggests that 17 features with frequencies above 

30 show higher selection (Table 3.8). 8 RSCU features were selected in this category. Second 

cluster consists of 2 sequence-based and 24 codon-bias features. Whereas the third cluster 

included 30 RSCU codon-biased features. From the mammalian datasets (Figure 3.14b), 15 

features were selected in the first cluster displaying higher frequencies (Table 3.8). These 

included 6 sequence-based 9 codon-bias features. The second cluster consisted of only 1 

sequence-based and 23 codon-bias features. The third cluster was comprised of 31 RSCU 

features. 
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Figure 3.15: Venn diagram of the unique and shared features between plants and mammals 

in (a) Cluster-1, (b) Cluster-2 and (c) Cluster-3. 

Results from the intersection of the features from the Venn diagram (Figure 3.15a) show that 

in Cluster-1, 9 features were found to be overlapping in both plants and mammalian datasets 

along with 8 and 6 species-specific non-overlapping features. Whereas in Cluster-2 (Figure 

3.15b), only 8 features had overlaps. A large proportion was found to have selectively moderate 

frequencies as non-overlapping features. Cluster-3, however, displayed a large fraction of 

features as shared feature sets from both species (Figure 3.15c). From the overlaps obtained 

between the three clusters, approximately 50% of the features were selected with high, 

moderate and lower frequencies. 

3.5 Comparison of different feature selection methods 

Comparison of prediction performance of the LiRF-FS method was performed with five other 

feature selection methods, namely, mRMR (Peng et al., 2005b), Chi-square (Chen and Chen, 

2011), Information Gain (IG) (Lee and Lee, 2006a), ReliefF (Durgabai, 2014), and UDFS (Yang 

et al., 2011). Comparison was performed on the 6-plants and 2-mammalian species datasets. 

Classification of lncRNA and mRNA was performed using the RF classifier. The feature 

selection was performed on the training set. Using a threshold value of 10, only the top 10 

features were selected from the ranked list of features (Table 3.9). Using the above criteria, IG 

selected 7 features ORF coverage, Fickett score, hexamer score, RCB, mean ORF coverage, 

SCUO and Fop in plants (Table 3.9) with prediction accuracy of 94.88%. Whereas for 

mammals, it produced ORF coverage, Fickett score, hexamer score, RCB, transcript length, 
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EW, SCUO, mean ORF coverage with accuracy of 89.67%. Chi-square on the other hand 

selected ORF coverage, Fickett score, hexamer score, RCB, EW, ORF length, TATRSCU , 

CCARSCU , CACRSCU and GC content producing accuracy of 95.37%. For mammals, it produced 

ORF coverage, Fickett score, hexamer score, SCUO, EW, GC content, RCB, transcript length, 

ORF length and CUB with accuracy of 89.9%. 

Table 3.9: Comparison of features selected using different feature selection methods. 

Method Features selected in Plants Features selected in Mammals 
mRMR hexamer score, ORF coverage, 

ATGRSCU Fickett score, Fop, , 
GCTRSCU TATRSCU CAGRSCU , , , 
TGTRSCU and CGGRSCU 

mean ORF coverage, GC content, 
CCARSCU Fickett score, CUB, , 

CAGRSCU GATRSCU GAARSCU , , , 
TGCRSCU and CGTRSCU 

Chi-square ORF coverage, Fickett score, 
hexamer score, RCB, EW, ORF 

, CCARSCU , CACRSCU length, TATRSCU 
and GC content 

ORF coverage, Fickett score, 
hexamer score, SCUO, EW, GC 
content, RCB, transcript length, 
ORF length and CUB 

Information ORF coverage, Fickett score, ORF coverage, Fickett score, 
Gain hexamer score, RCB, mean ORF 

coverage, SCUO and Fop 
hexamer score, RCB, transcript 
length, EW, SCUO and mean ORF 
coverage 

ReliefF Fickett score, ORF coverage, 
SCUO, Fop, RCB, hexamer score, 
mean ORF coverage, GC content, 
CUB and transcript Length 

mean ORF coverage, EW, RCB, 
ORF coverage, Fop, hexamer 
score, ORF length, transcript length, 
TCARSCU and TGCRSCU 

UDFS ORFLength, TranscriptLength, GC, 
TTARSCU TTGRSCU CTARSCU , , , 
CTGRSCU GCTRSCU TGTRSCU , , and 
TGCRSCU 

TTARSCU TTGRSCU TCTRSCU , , , 
TCARSCU AAGRSCU GATRSCU , , , 
GACRSCU, GAARSCU, GAGRSCU and 
AGCRSCU 

For selection of features using mRMR, Mutual Information Difference (MID) was used as 

method for selection of features on training dataset. The discretization threshold value was 

kept to 0 and 1. Using discretization threshold of zero for plants, hexamer score, ORF 

, GCTRSCU , TATRSCU , CAGRSCU , TGTRSCU and CGGRSCU coverage, Fickett score, Fop, ATGRSCU 

were selected (Table 3.9) from 73 feature set and performed the binary classification producing 

accuracy of 94.59%. Using similar parameters, mammalian dataset produced mean ORF 

, CAGRSCU , GATRSCU , GAARSCU , TGCRSCU coverage, GC content, Fickett score, CUB, CCARSCU 

and CGTRSCU exhibiting accuracy of 86.45%. Changing the discretization threshold parameter 

, ATGRSCU , CCGRSCU , CAGRSCU to 1 produced hexamer score, ORF coverage, Fop, TTGRSCU , 

GATRSCU , TGTRSCU and CGCRSCU giving accuracy of 94.41% in plants whereas the same 

, GCARSCU , CAGRSCU parameter generated mean ORF coverage, Fickett score, CUB, ACARSCU , 

AAGRSCU , GATRSCU , GAARSCU and GAGRSCU producing accuracy of 85.62%. 
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Feature selection using ReliefF in plants produced Fickett score, ORF coverage, SCUO, Fop, 

RCB, hexamer score, mean ORF coverage, GC content, CUB and transcript Length produced 

accuracy of 95.27% (Table 3.9). For mammals, ReliefF selected mean ORF coverage, EW, 

RCB, ORF coverage, Fop, hexamer score, ORF length, transcript length, TCARSCU and 

TGCRSCU with 88.57% accuracy. The results from the analysis show that Chi-square, ReliefF 

and IG performed similar to the LiRF-FS method, exhibiting similar prediction accuracies as 

displayed by LiRF-FS method. mRMR on the other hand produced similar prediction accuracy 

to LiRF-FS in plant species, but the accuracy dropped by 3-4% in mammalian species. The 

reason for the decrease in accuracy is the non-selection of essential features such as hexamer 

score, SCUO, EW, GC content, RCB, transcript length and ORF length. 

Unsupervised Discriminative Feature Selection (UDFS) was also applied on the unified 

datasets for testing the prediction accuracies and evaluate the selection of optimal features. 

Implementation of UDFS in plants produced 3 sequence-based and 7 codon-biased features 

(Table 3.9) predicting lncRNA sequences with an accuracy of 92.76%. In mammalian species, 

UDFS selected all codon-biased features as optimal set generating an accuracy of 75.05%. As 

discussed above, the accuracy of identifying the transcripts require selection of principle 

features such as hexamer score, SCUO, EW, GC content. UDFS is an unsupervised approach 

with ℓ7,5-norm regularisation which is particularly suitable for finding correlations between 

samples. Results from UDFS suggest non-sensitivity and non-specificity for FASTA sequence 

derived features. 

3.6 Performance comparison evaluation 

To evaluate the predictive power of the framework in lncRNA identification, its performance 

was measured on four other popular coding-potential alignment-free tools i.e. PLEK (Li, Zhang 

and Zhou, 2014a), CPAT (Wang et al., 2013), lncScore (Zhao, Song and Wang, 2016) and 

CPC2 (Kang et al., 2017) (Table 3.10). The comparisons were made for 8 plants and 2 

mammalian species. Prediction on test set data in individual species shows that in general, 

LiRF-FS achieves higher accuracy and presents better performance than other tools in 

individual species prediction. Specifically, the framework performed exceptionally accurate on 

ZM, OS and ST datasets and comparatively better on ATH and SL datasets with marginal 

differences in specificity, sensitivity and NPV metrics. Results from the BRA, BOL and ST 

datasets show marginal differences in the metric values with a difference of 0.5-1% when 

compared with CPAT. The framework exhibited highest precision and accuracy values in 5 

plant species when compared with PLEK and CPAT. When compared with CPC2, the 
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framework displayed superior performance in all the species except ATH where higher metrics 

were observed for CPC2. An average prediction accuracy difference of 1 – 4% between the 

framework and CPC2 was detected in ZM, BNA, BRA, BOL, SL and ST species. OS displayed 

an accuracy difference of 47.17% whereas an average difference of 6.49% was observed in 

mammalian species between the framework and CPC2. 

The prediction accuracies of the framework were comparable with CPAT and lncScore in BRA, 

BNA, BOL, SL, HS and MM datasets. However, the framework in the ATH dataset generated 

lower accuracy as compared to CPAT and lncScore. A difference in the accuracy of 2.53% and 

2.77% was observed against lncScore and CPAT, respectively. Comparison of the prediction 

accuracy on ZM and HS datasets shows highest accuracy, precision, sensitivity and specificity 

in ZM dataset when compared with other tools whereas for HS, the framework displayed 

highest accuracy, specificity, F1 and MCC against PLEK and CPAT tools. LncScore exhibited 

the highest performance in the mammalian species. Performance of PLEK in the mammalian 

and plants datasets was significantly lower in multiple species. Accuracy difference between 

the framework and PLEK showed an average difference of ~30 – 40% in BNA, BRA, BOL and 

ZM datasets, ~7 – 15% in HS, MM and ATH, whereas a significant difference of 72.34% was 

observed in OS species. 
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Table 3.10: Performance comparison of the framework with PLEK, CPAT, lncScore and 

CPC2 tools on multiple species. 

Tools Species ACC SENS SPEC F1-Score NPV MCC 
Framework ATH 94.51 94.91 94.12 94.51 94.93 0.89 
PLEK ATH 80.82 68.58 92.89 78.91 74.98 0.63 
CPAT ATH 97.28 97.25 97.3 97.28 97.21 0.94 
lncScore ATH 97.04 95.58 99.23 97.37 95.76 0.94 
CPC2 ATH 95.99 94.62 97.34 95.96 94.83 0.92 
Framework ZM 94.71 93.6 95.95 94.72 93.11 0.89 
PLEK ZM 65.8 67.03 64.43 65.71 63.8 0.31 
CPAT ZM 94.71 95.21 94.28 94.74 95.75 0.89 
lncScore ZM 94.36 92.63 96.36 94.46 92.18 0.88 
CPC2 ZM 91.82 94.27 89.10 91.61 93.34 0.83 
Framework OS 96.95 97.23 96.66 96.95 97.13 0.93 
PLEK OS 24.61 26.92 39.7 32.08 58.79 -0.29 
CPAT OS 93.7 98.29 90.38 94.17 98.49 0.88 
lncScore OS 19.63 99.78 2.03 4 96.15 0.06 
CPC2 OS 49.78 13.74 86.9 23.73 49.44 0.009 
Framework BNA 96.73 95.75 97.76 96.73 95.67 0.93 
PLEK BNA 56.77 45.68 68.32 54.75 54.73 0.14 
CPAT BNA 96.86 97.14 96.58 96.86 97.27 0.93 
lncScore BNA 96.35 95.61 97.16 96.38 95.5 0.92 
CPC2 BNA 94.64 95.08 94.19 94.63 94.85 0.89 
Framework BRA 95.77 94.54 97.01 95.78 94.65 0.91 
PLEK BRA 61.29 54.93 67.68 60.64 59.91 0.22 
CPAT BRA 96.9 96.39 96.42 96.9 97.43 0.93 
lncScore BRA 96.34 95.74 97.09 96.41 95.78 0.92 
CPC2 BRA 94.73 94.30 95.16 94.73 94.33 0.89 
Framework BOL 96.35 95.38 97.32 96.35 95.47 0.92 
PLEK BOL 54.98 44.71 65.31 53.08 54.23 0.1 
CPAT BOL 96.78 96.86 96.75 96.8 96.86 0.93 
lncScore BOL 96.43 94.51 98.51 96.47 94.74 0.93 
CPC2 BOL 92.45 89.56 95.33 92.35 90.14 0.85 
Framework SL 97.25 97.63 96.87 97.25 97.58 0.94 
PLEK SL 67.94 70.67 65.17 67.81 68.68 0.35 
CPAT SL 97.98 98.62 97.36 97.98 98.66 0.95 
lncScore SL 97.92 97.53 98.33 97.92 97.51 0.96 
CPC2 SL 95.85 97.53 94.16 95.81 97.41 0.91 
Framework ST 95.69 95.55 95.83 95.69 95.32 0.91 
PLEK ST 62.29 54.94 70.06 61.59 59.52 0.25 
CPAT ST 95.36 95.78 94.98 95.38 96.06 0.9 
lncScore ST 95.43 93.78 97.18 95.45 93.66 0.9 
CPC2 ST 93.73 95.30 92.08 93.66 94.88 0.87 
Framework HS 91.67 89.82 93.59 91.67 89.87 0.83 
PLEK HS 84.22 72.04 98.11 83.08 76.99 0.72 
CPAT HS 91.47 91.45 91.49 91.47 91.78 0.82 
lncScore HS 93.03 91.46 95.97 93.66 91.46 0.87 
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CPC2 HS 85.06 74.88 95.62 83.99 78.6 0.71 
Framework MM 89.49 87.91 91.12 89.49 87.95 0.79 
PLEK MM 78.63 66.2 92.1 77.03 72.4 0.6 
CPAT MM 90.63 91.68 89.67 90.66 92.17 0.81 
lncScore MM 93.15 91.31 95.73 93.47 91.39 0.87 
CPC2 MM 83.11 72.03 94.56 81.77 76.60 0.68 

When F1 values are compared, the framework displays higher F1 score than CPAT and PLEK 

with marginal differences of 0.004, 0.05, 0.018, 0.019 and 0.05 in BNA, BRA, BOL, SL, ST and 

MM datasets. Comparison of metric values in mammalian species demonstrates higher 

accuracy, F1 and MCC values in the HS dataset. Performance in MM dataset illustrates minor 

differences in the metric values where CPAT performs better than other tools. 

The higher sensitivity and specificity values obtained from the comparison indicate that the 

framework can correctly identify the proportion of true mRNA and lncRNA sequences using 

sensitivity analysis and it can also identify true negative values with greater accuracy. Results 

from MCC analysis indicate a near perfect prediction of lncRNA sequences in the test dataset, 

whereas PLEK displays a random prediction of observation values. CPAT and lncScore on the 

other hand, performed similarly to the performance obtained from the framework. F1 measure 

provides information on the accuracy of the classifier with values between 0 and 1. Since the 

values obtained from the analysis have been scaled to 100, the indication of the performance 

can be best identified at this scale. In general, comparison of F1 score shows higher F1 values 

in 5 out of 10 species with minor differences in BNA, BRA, BOL, ST and MM datasets with 

difference ranging between 0.1-3.12%. Comparison of the results indicate that the features 

selected and extracted from mRNA and lncRNA sequences from multiple species provide good 

classification potential. Usage of the iRF classifier in conjunction with the features extracted 

improves the prediction of lncRNA sequences and hence can be employed for the identification 

of lncRNA sequences in other FASTA-based datasets. 

3.7 lncRNA sub-classification 

The classification of lncRNA sequences is important to identification of functional mechanism 

in the genome. Due to the lower gene expression of lncRNA sequences in RNA-seq datasets, 

the biological roles of lncRNAs becomes difficult to interpret. Therefore, by identifying the 

various sub-classes of lncRNA sequences based on their genomic position, valuable insights 

into the functional mechanism can be understood. Sub-classification analysis was performed 
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on H. sapiens (HS) and M. musculus (MM) GENCODE datasets based on the rules outlined in 

Section 2.12. The analysis was performed based on two rules: 

1) Rule 1 states that the classification performed for five classes follows the following 

rules: 

a. Overlap of lncRNA exons with mRNA exons on ‘+’ strand for SOE class. 

b. Overlap of lncRNA introns with mRNA exons on ‘+’ strand for SOI class. 

c. Overlap of lncRNA exons lying on ‘-’ strand with mRNA exons lying on ‘+’ strand 

for AOE class. 

d. Overlap of lncRNA introns lying on ‘-’ strand with mRNA exons lying on ‘+’ strand 

for AOE class. 

2) Rule 2 states that the classification performed for five classes follows the following 

rules: 

a. Overlap of lncRNA exons with mRNA exons on ‘+’ strand OR overlap of lncRNA 

exons with mRNA exons on ‘-’ strand for SOE class. 

b. Overlap of lncRNA introns with mRNA exons on ‘+’ strand OR overlap of lncRNA 

introns with mRNA exons on ‘-’ strand for SOI class. 

c. Overlap of lncRNA exons lying on ‘-’ strand with mRNA exons lying on ‘+’ strand 

OR overlap of lncRNA exons lying on ‘+’ strand with mRNA exons lying on ‘-’ 

strand for AOE class. 

d. Overlap of lncRNA introns lying on ‘-’ strand with mRNA exons lying on ‘+’ strand 

or overlap of lncRNA introns lying on ‘+’ strand with mRNA exons lying on ‘-’ 

strand for AOE class. 

Here SOE is “Sense Overlap Exonic”, SOI is “Sense Overlap Intronic”, AOE is “Antisense 

Overlap Exonic”, AOI is “Antisense Overlap Intronic”, BDP is “Bidirectional Promoter” and INT 

is “Intergenic” classes. 

Results were obtained from the classification of the sequences using Rules 1 and 2 which have 

been presented in Table 3.11 and 3.12. 27908 sequences were classified based on 61022 

protein-coding sequences scattered across 24 chromosomes in humans. Based on Rule-1, 

124 lncRNAs were classified as SOE, whereas 121 were classified as SOI. Classification into 

antisense category indicates that 181 sequences were classified as AOE whereas 175 were 

classified as AOI class. On the other hand, 648 sequences were classified into BDP class and 

12884 were classified into INT class based on Rule-1. Based on Rule-2, the number of SOE 

and SOI sequences increased to 152 and 149, respectively. Whereas sequences belonging to 

168 

http:Section2.12


	
	

            

         

       

            

        

      

             

            

         

          

            

            

          

     

             

               

          

         

          

                 

    

         

     

        
        
        

 

         
  

        
        
        

 

AOE and AOI classes showed significant increase with 431 sequences classified in AOE class 

and 421 classified as AOI class. Sequences belonging to BDP and INT classes using Rule-2 

did not showed significant differences as 556 sequences were classified as BDP and 10542 

were classified in INT class. Those sequences belonging to the “antisense_RNA” (ANT) 

category were larger than the overlap categories. Since the ANT classification is purely based 

on the strand annotation, identical number of ANT sequences were obtained in both rule-based 

classification algorithms. A total of 4972 ANT sequences were obtained from the HS dataset 

which is almost half the number of the INT sequences. ANT contributes as the second highest 

category, based on the number of sequences classified. 

Classification results obtained from MM lncRNA sequence classification using Rule-1 shows a 

comparatively smaller number of lncRNA sequences, with 54 sequences classified in SOE and 

SOI classes. Antisense category included 138 sequences classified as AOE class and 135 

classified as AOI class. BDP class included 431 sequences, whereas INT included 6923 

sequences altogether. Results based on Rule-2 showed similar performance to HS dataset 

with an increase of sequences classified in sense and antisense overlap categories. 74 

sequences were classified in SOE and SOI classes, 286 and 278 were classified in AOE and 

AOI classes, respectively, whereas the number of sequences classified as BDP and INT 

remained similar to those obtained by Rule-1. When compared to the HS data, MM generated 

a total of 1725 ANT sequences using PBC. Although, the number of sequences classified as 

ANT in MM is much lower than that obtained in HS, the number of ANT sequences is still 

greater than sense-overlap, antisense-overlap and bidirectional classes. 

Table 3.11: Statistics of lncRNA sequences annotated in various sub-classes with GENCODE 

datasets using Rule 1. 

Species SOE SOI AOE AOI ANT BDP INT 
HS 124 121 181 175 4972 648 12884 
MM 54 54 138 135 1725 431 6923 

Table 3.12: Statistics of lncRNA sequences annotated in various sub-classes with GENCODE 
datasets using Rule 2. 

Species SOE SOI AOE AOI ANT BDP INT 
HS 152 149 431 421 4972 556 10542 
MM 74 74 286 278 1725 431 6923 
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Results from the classification using two different rules show differences in the number of 

lncRNA sequences classified. As compared to the sense and antisense overlap classes, a 

significant number of sequences are classified into INT classes, with approximately 50-60 times 

more sequences than in the rest of the classes. Sequences which have been classified in the 

BDP class show a comparatively higher number than sense and antisense classes. Using 

Rule-2 in the HS dataset, a higher number of antisense classes were observed, with 852 

sequences classified in antisense category, as compared to 556 sequences classified as BDP, 

showing a difference of 296 sequences. Results from the MM dataset do not show significant 

increase in sequences categorised in antisense class, where 564 sequences were classified 

as antisense class and 431 sequences classified as BDP class, showing a minor increase in 

the classified sequences. 

The increase in the number of sequences in sense and antisense classes using Rule-2 is due 

to scanning of sequences in ‘+’ and ‘-’ strands for searching sense and antisense overlaps. 

Experimental studies suggest that lncRNA sequences are often transcribed from the antisense 

‘-’ strand of the DNA (Ma, Bajic and Zhang, 2013) and the protein-coding genes are transcribed 

from the sense ‘+’ strand. Based on these principles, the classification shows fewer genes 

classified into these classes based on Rule-1. However, Rule-2 on the other hand, considers 

overlap of lncRNA sequences on both the strands, with respect to protein-coding genes. 

According to the lncRNA sequence annotation obtained from GENCODE database, the SOE 

and SOI lncRNA sequences can overlap on ‘-’ strand of DNA which will still be considered as 

sense overlaps. On the other hand, the antisense RNA sequences from GENCODE shows 

overlap on either strand. This means that if the mRNA sequence occurs on ‘+’ strand and the 

lncRNA sequence overlaps the position of mRNA sequence on the ‘-’ strand or the mRNA 

sequence lies on ‘-’ strand and lncRNA sequence overlaps the position on ‘+’ strand, it will be 

considered as antisense lncRNA. 
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Figure 3.16: Comparison of classification results obtained from PBC versus GENCODE results 

for (a) H. sapiens dataset, and (b) M. musculus dataset. 

Results of the sub-classification were compared to the annotation information obtained from 

the GENCODE datasets. Figure 3.16 shows the statistics of the total number of annotation 

matches of the PBC approach, with HS and MM GENCODE data. The results of the 

classification were performed on individual chromosomes to obtain the total matching 

annotation results. Class matching based on chromosome provides a clear picture of the 
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overall classification analysis. Results from the analysis clearly show that intergenic lncRNAs 

produced the highest number of matches followed by antisense lncRNA, sense intronic and 

sense overlapping classes. No matching bidirectional lncRNA sequences were detected in the 

result set, however, bidirectional lncRNA sequences were annotated using PBC approach. 

In the HS dataset, ~60% of the classified lncRNA sequences displayed identical match based 

on Rule-2 classification. The highest matches were produced by the intergenic class. Antisense 

lncRNA on the hand, produced a comparatively lower match than the intergenic class. Sense 

intronic and exonic overlap classes showed little overlap of sequence classification with 

GENCODE data. On the other hand, classification using PBC on MM produced a matching 

percentage of 52-55% on different chromosomes. As illustrated in Figure 3.16b, the highest 

matches have been attributed to intergenic lncRNA sequences, followed by the antisense 

lncRNA class. Sense intronic overlap class contributed minimally to the overall sequence 

match, whereas sense exonic overlap class did not contribute at all. Similar to HS data, results 

from MM data did not exhibited bidirectional lncRNA matches. 
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Figure 3.17: Genome-wide density distribution of antisense lncRNA sequences on sense and 

antisense strands in (a) HS GENCODE, and (b) MM GENCODE datasets. 

An analysis of the distribution of antisense lncRNA sequences on sense and antisense strands 

of DNA was performed in the HS and MM GENCODE datasets (Figure 3.17). From the figure, 

a large proportion of sequences have been identified as antisense lncRNAs in both datasets. 

The distribution of antisense sequences shows that sequences are equally distributed on both 

the strands for the majority of the chromosomes. In HS dataset (Figure 3.17a), only a few 

chromosomes namely, chr2, chr4 and chr17 have a comparatively greater number of lncRNA 

sequences distributed on the sense strand, whereas in most of the cases the number of 

lncRNA sequences annotated on antisense strand is comparatively higher. However, the 

difference is marginal and therefore can be considered as equal. 

In the MM dataset (Figure 3.17b), a similar distribution pattern can be observed with equal 

dispersion of antisense RNA sequences on both the strands. ANT sequences distributed on 

sense strand in chr2 and chr13 display higher proportion than the ANT sequences distributed 

on the antisense strand, whereas the rest of the chromosomes display equal distribution. No 

antisense lncRNA sequences were observed in chrY from the MM GENCODE data. 

The density distribution of the antisense lncRNA sequences in GENCODE datasets suggests 

that the lncRNA sequences annotated as “antisense_RNA” on the sense strand of the DNA 

does not depend on its position on the DNA strand. The results suggest that their distribution 

is completely independent, and the majority of the sequences annotated on sense strand may 
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overlap the coordinates of protein-coding sequences. Such sequences may be classified as 

antisense overlaps and hence are hidden from the data available. Analysis of the pattern 

indicate that the distribution follows Rule-2 implemented in the PBC approach, where a greater 

number of lncRNAs were annotated as antisense lncRNAs. Results obtained from the 

GENCODE data demonstrate a dissimilar distribution of the sense and antisense overlapping 

sequences compared to those obtained from the PBC approach. These results indicate a 

contradiction to published research studies (Ma, Bajic and Zhang, 2013). 

a 

Distribution of unannotated sequences in HS GENCODE data 

Chromosomes 
Figure 3.18: Genome-wide density distribution of processed and TEC lncRNA transcript 

sequences in (a) HS GENCODE, and (b) MM GENCODE datasets. 

The GENCODE dataset obtained from HS and MM species contains a large proportion of 

unannotated sequences classified as “Processed Transcript” (PT) and “TEC” where TEC 

stands for “To be Experimentally Confirmed”. An analysis of the genome-wide distribution of 

these sequences was performed (Figure 3.18). Sequence distribution in HS dataset (Figure 

3.18a) show that sequences annotated as “processed transcript” are significantly higher than 
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TEC sequences particularly in chr1, chr2, chr3, chr7, chr10, chr17, chr20 and chr22. 

Sequences distributed on the remaining chromosomes are also higher, but the difference is 

moderate. TEC sequences annotated in chr16 show higher proportion than “processed 

transcript” sequences.  

The distribution of lncRNA classified sequences on the MM dataset (Figure 3.18b) show a 

dissimilar pattern to the PBC-based class distribution observed on HS data. Distribution of the 

GENCODE annotation demonstrates significantly higher proportion of TEC sequences and 

lower proportion of “processed transcript” sequences in MM. The proportion is significantly 

higher in chr1, chr3, chr5, chr6, chr7, chr8, chr10 and chr13. The “processed transcript” 

sequences display higher proportion only on chr2, chr11, chr17, chr18, chr19 and chrX. chrY 

displayed extremely lower proportion of unannotated transcripts in MM data. 

Sub-classification analysis of “processed transcript” and TEC sequences using the PBC 

approach was performed. These sequences were classified either as: processed transcript 

intergenic (PT-INT), processed transcript sense overlapping exonic (PT-SOE), processed 

transcript sense overlapping intronic (PT-SOI), processed transcript antisense overlapping 

exonic (PT-AOE), processed transcript antisense overlapping intronic (PT-AOI), processed 

transcript bidirectional promoter (PT-BDP), processed transcript antisense (PT-ANT), TEC 

intergenic (TEC-INT), TEC sense overlapping exonic (TEC-SOE), TEC sense overlapping 

intronic (TEC-SOI), TEC antisense overlapping exonic (TEC-AOE), TEC antisense overlapping 

intronic (TEC-AOI), TEC bidirectional promoter (TEC-BDP) and TEC antisense (TEC-ANT). 

Results of the sub-classification analysis on HS dataset (Table 3.13) show that greater number 

of unannotated sequences were classified as PT-ANT, TEC-ANT, PT-INT and TEC-INT, 

whereas only a fraction of the sequences were classified as SOE, SOI, AOE and AOI. 

Sequences classified as PT-BDP and TEC-BDP displayed the third higher proportion that 

sense and antisense overlaps occupying approximately 15% of the total “processed transcript” 

and TEC sequences in HS data. GENCODE data also contains “Blank” annotation where 

lncRNA sequences are not classified in any class and therefore have been left unannotated. 

Analysis of this group suggests that sequences distributed in 3 chromosomes namely, chr11, 

ch12 and chr22 were annotated as intergenic (INT) class using PBC. However, the proportion 

of “Blank” category is low when compared to other categories. 

Sub-classification analysis on MM dataset (Table 3.14) also shows a similar distribution pattern 

of PT-ANT, PT-INT, TEC-ANT and TEC-INT classes, as observed in the HS dataset displaying 
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a significantly higher proportion of lncRNA sequences classified as “antisense_RNA” and 

“intergenic”. As observed from the genome-wide density distribution diagram (Figure 3.14b), 

the number of sequences annotated as TEC is significantly higher than PT sequences. 

Sequences annotated as PT-INT display a higher proportion than the rest of the sequences 

annotated in chromosomes chr1 to chr9, chr11 to chr17, chr19 and chrX. Chr10 and chr18 

shows equal distribution in all the classes. Sequences annotated as PT-ANT display the 

highest proportion of annotated sub-class in all the chromosomes. In contrast to HS data, 

sequences annotated as PT-BDP in MM data are comparatively equally distributed as the rest 

of the classes i.e. (PT-SOE, PT-SOI, PT-AOE and PT-AOI). Distribution of TEC sequences 

however, display a slightly different pattern. Sequences annotated as TEC-SOE, TEC-SOI, 

TEC-AOE, TEC-AOI and TEC-BDP can be observed in chromosomes chr1 to chr9. Distribution 

of the sequences annotated as the above-mentioned classes cannot be observed in the rest 

of the chromosomes, where 90-95% of the sequences are classified as TEC-ANT and TEC-

INT. Unannotated sequences “Blanks” can only be observed in chr4 and chr13 classified in 

INT class.  
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Table 3.13: Sub-classification statistics of unannotated sequences ofH
S
G
EN
C
O
D
E
dataset using

PBC
 approach. 

C
hrom

osom
es 

PT-IN
T 

PT-SO
E 

PT-SO
I 
PT-A

O
E 

PT-A
O
I 
PT-B

D
P 

PT-A
N
T 

TEC
-IN
T 

TEC
-SO

E 
TEC

-SO
I 

1 
128 

5 
4 

0 
0 

6 
182 

24 
1 

1 

2 
268 

1 
1 

1 
1 

3 
287 

37 
0 

0 

3 
109 

3 
3 

2 
2 

5 
122 

16 
0 

0 

4 
28 

0 
0 

0 
0 

0 
44 

24 
0 

0 

5 
24 

9 
9 

1 
1 

11 
43 

49 
2 

2 

6 
34 

1 
1 

2 
2 

3 
58 

24 
1 

1 

7 
64 

11 
11 

0 
0 

7 
102 

28 
0 

0 

8 
35 

0 
0 

2 
2 

1 
42 

19 
1 

1 

9 
46 

1 
1 

0 
0 

1 
23 

16 
0 

0 

10 
37 

1 
1 

18 
18 

8 
52 

17 
0 

0 

11 
92 

2 
2 

0 
0 

2 
86 

52 
0 

0 

12 
62 

6 
5 

0 
0 

2 
61 

51 
1 

1 

13 
39 

1 
1 

0 
0 

1 
12 

16 
0 

0 

14 
39 

2 
2 

0 
0 

1 
26 

14 
0 

0 

15 
54 

2 
2 

0 
0 

8 
21 

28 
0 

0 
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3 
40 

61 
1 

1 

17 
97 

7 
7 

1 
1 

9 
102 

33 
2 

2 

18 
9 

2 
2 

0 
0 

2 
12 

19 
1 

1 

19 
79 

5 
5 

2 
2 

6 
76 

28 
1 

1 

20 
69 

0 
0 

0 
0 

0 
57 

5 
0 

0 

21 
2 

0 
0 

0 
0 

0 
18 

12 
0 

0 

22 
32 

0 
0 

1 
1 

1 
25 

4 
0 

0 

X 
16 

9 
9 

0 
0 

0 
25 

11 
0 

0 

Y 
2 

0 
0 

0 
0 

0 
1 

0 
0 

0 
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C
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es 

TEC
-A
O
E 

TEC
-A
O
I 

TEC
-B
D
P 

TEC
-A
N
T 

PT 
TEC

 
B
lanks 

1 
0 

0 
1 

15 
143 

27 

2 
1 

1 
3 

25 
275 

42 

3 
1 

1 
1 

17 
124 

19 

4 
0 

0 
1 

19 
28 

25 

5 
0 

0 
0 

34 
55 

53 

6 
0 

0 
1 

12 
43 

27 

7 
0 

0 
1 

21 
93 

29 

8 
2 

2 
2 

18 
40 

27 

9 
1 

1 
1 

7 
49 

19 

10 
0 

0 
0 

14 
83 

17 

11 
1 

1 
1 

35 
98 

55 
1 IN

T 

12 
2 

2 
1 

52 
75 

58 
3 IN

T 

13 
1 

1 
1 

12 
42 

19 

14 
1 

1 
0 

9 
44 

16 

15 
1 

1 
0 

28 
66 

30 

16 
5 

5 
3 

56 
38 

76 
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17 
1 

1 
4 

43 
122 

43 

18 
1 

0 
1 

21 
15 

23 

19 
0 

0 
6 

41 
99 

36 

20 
0 

0 
0 

4 
69 

5 

21 
0 

0 
0 

7 
2 

12 

22 
2 

2 
2 

6 
35 

10 
3 IN

T 

X 
1 

1 
1 

6 
34 

14 

Y 
0 

0 
0 

0 
2 

0 

Table 3.14: Sub-classification statistics of unannotated sequences ofM
M
G
EN
C
O
D
E
dataset using

PBC
 approach. 
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-SO
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1 
38 

2 
3 

2 
2 
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69 
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3 

3 

2 
70 

5 
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4 
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3 

3 

3 
58 
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2 
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57 
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3 
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4 
43 

1 
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16 
0 
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0 
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63 
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0 
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0 
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5 
27 
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0 
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2 
2 

2 
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0 
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1 
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1 
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19 
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0 

0 
20 

65 
0 

0 
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0 
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0 

0 
65 
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0 

0 
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10 
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0 
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6 
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9 
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0 

3 
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0 

0 

181 



	
	

 
 

 
 

      
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

C
hrom

osom
es 

TEC
-A
O
E 

TEC
-A
O
I 

TEC
-B
D
P 

TEC
-A
N
T 

PT 
TEC

 
B
lanks 

1 
2 

2 
7 

261 
52 

217 

2 
0 

0 
2 

47 
89 

44 

3 
1 

1 
4 

147 
74 

181 

4 
2 

2 
3 

19 
52 

23 
2 IN

T 

5 
6 

6 
10 

262 
66 

278 

6 
3 

3 
8 

140 
47 

160 

7 
6 

6 
10 

131 
70 

172 

8 
2 

0 
2 

84 
37 

79 

9 
3 

3 
3 

108 
64 

99 

10 
0 

0 
1 

88 
17 

104 

11 
0 

0 
0 

9 
61 

4 

12 
1 

1 
1 

61 
55 

57 

13 
0 

0 
3 

50 
19 

68 
1 IN

T 

14 
0 

0 
0 

16 
44 

14 

15 
0 

0 
0 

10 
16 

12 

16 
0 

0 
1 

7 
53 

24 

182 



	
	

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

	
	

17 
0 

0 
0 

12 
46 

9 

18 
0 

0 
0 

6 
21 

11 

19 
0 

0 
0 

3 
33 

1 

X 
0 

0 
0 

4 
70 

4 

183 



	
	

 

             

    

         

        

             

          

            

           

        

          

            

             

         

             

         

     

    

        

  

3.8 Summary 

This chapter has discussed the results, analysis and evaluation of lncRNA classification in 

plants and mammalian reference datasets. Comparison was performed between different 

machine learning classifiers on various evaluation measures. Comprehensive analysis of 

plants and mammals was performed by combining transcript sequences from multiple species. 

Performance of individual features was also evaluated on unified datasets of plants and 

mammals. Comparison of the framework against known coding potential computation tools 

was also conducted on various evaluation metrics on sequence derived from reference 

datasets. Demonstration of LiRF-FS analysis was performed on the unified datasets for 

obtaining optimal feature sets in plants and mammalian species. RIT analysis was performed 

for obtaining prevalent feature interactions which were compared against results from LiRF-FS 

analysis. Results from LiRF-FS were assessed against other feature selection tools/methods. 

This chapter also presented results of the lncRNA sub-classification based on two rules. 

Classification analysis was performed on mammalian GENCODE transcript sequences. 

Results of the classification analysis obtained from the framework were compared against the 

GENCODE annotations of humans and mouse sequences. Results from the classification 

generated moderate number of matching sequences based on Rule-2. Additionally, large 

proportion of unannotated sequences were found to be annotated with PBC into sense, 

antisense, bidirectional and intergenic classes. 
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CHAPTER 4: CASE STUDY ANALYSIS 

4.1 Introduction 

This chapter presents the results on the identification of novel flowering DE protein-coding 

genes from the A. thaliana apical-shoot dataset. Following this, it presents the results obtained 

from the identification of lncRNA sequences in plant RNA-seq datasets. It also presents results 

of sub-classification analysis of lncRNA data predicted from three plant RNA-seq datasets. 

Furthermore, results from the function prediction of lncRNA sequences using a Bayesian 

method is also discussed. This chapter also displays results from performance benchmarking 

analysis with known CPC tools. An analysis of the results obtained has been discussed in each 

section. 

This chapter provides details and the implementation of the framework on two plant RNA-seq 

time-series transcriptome datasets: A. thaliana and Z. mays. The lncRNA and protein-coding 

sequences are extracted from the RNA-seq datasets are used for classification and function 

prediction. Results from the analysis are validated against the annotated lncRNA sequences 

and the performance of the classification is compared against the known coding potential 

computation tools. The functions of lncRNA sequences predicted are validated against the 

experimentally determined functions from plant transcriptome studies. 

4.2 Case study 1: A. thaliana apical shoot meristem RNA-seq dataset 

4.2.1 Differential Expression (DE) analysis 

Results obtained from the DGE of five sample pairs (S10-S14) were computed in “Against S7” 

and “Step analysis” manner as detailed in Table 2.2 of Chapter 2. When samples from 

transition phase were compared with sample 7, 5266 DEGs were obtained for S7-S10, 2841 

genes for S7-S11, 4760 for S7-S12, 6337 for S7-S13 and 2532 genes for S7-S14 sample pair 

(Figure 4.1a). DGE using “Step analysis” was performed to identify DEGs from the previous 

day which yielded fewer genes as compared to that obtained from the “Against S7” sample 

pairs (Figure 4.1b). However, significantly greater number of genes were obtained using 

Cuffdiff in S9-S10, S10-S11, S13-S14 and S15-S16. DESeq on the other hand, produced 

higher genes than edgeR in S11-S12, S12-S13, S13-S14 and S15-S16. 
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Figure 4.1: Density distribution of DE genes observed using Cuffdiff, DESeq and edgeR tools 

in (a) Against S7 sample pairs, and (b) Step analysis sample pairs. 

To retrieve the true positive values from the analysis, DEGs obtained from Cuffdiff, DESeq and 

edgeR were overlapped and intersection of the DEG overlaps were obtained for each “Against 

S7” and “Step analysis” sample pairs. By overlapping Cuffdiff, DESeq and edgeR, 418 genes 

were found for S7-S10 with FDR <= 0.05. Using the same cutoff, S7-S11 generated 277 genes, 

S7-S12 produced 520 genes, S7-S13 gave 1,534 genes and S7-S14 gave 150 genes (Table 

4.1). On the other hand, 28 genes were found for S9-S10, 3 genes for S10-S11, 7 genes for 

S11-S12, 38 genes for S12-S13 and 74 genes were found for S13-S14. Overlapping genes 

were also found for Cuffdiff-edgeR, DESeq-edgeR and Cuffdiff-edgeR-DESeq pairs. From 

Cuffdiff-DESeq-edgeR overlap, 690 genes were identified in “Against S7” and 19 genes in 

“Step analysis” which are significantly expressed in more than one sample pairs. This set of 

common genes is referred to as CGenes in the following analysis. 

Results show that both Cuffdiff and edgeR display significant numbers of DEGs in S7-S10, 

S7-S12 and S7-S13. Overlapping of genes can be visualized by Venn diagrams constructed 

for transition phase samples. Results from the intersection of Cuffdiff-DESeq-edgeR, Cuffdiff-

DESeq and Cuffdiff-edgeR show that the number of DE genes decreases in “Step analysis” 

sample pairs as compared to “Against S7” sample pairs. edgeR additionally displays a large 

number of DE genes in S7-S14, S7-S15 and S7-S16 which are not notably identified by 

Cuffdiff or edgeR. 
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On the contrary, Cuffdiff displays the maximum number of DE genes from “Step analysis” 

results as compared to DESeq and edgeR. By comparing the results of Cuffdiff with DESeq 

and edgeR, it can be clearly observed that the overlap from Cuffdiff-edgeR was more significant 

than Cuffdiff-DESeq or DESeq-edgeR. This difference can be clearly observed in “Step 

analysis” for S10-S11 where 1347 genes were found to be common for Cuffdiff-edgeR as 

compared to 4 genes obtained from Cuffdiff-DESeq results. Thus, the total number of common 

genes was significantly reduced for Cuffdiff-DESeq-edgeR intersection which is primarily due 

to a smaller gene count obtained in Cuffdiff-DESeq. Thus, only 1% of the genes were found to 

be common for Cuffdiff-DESeq-edgeR confirming that the decrease in the overlap is mostly 

due to DESeq results. 

4.2.2 GO enrichment and pathway analysis of DE genes during transition phase 

Results of the GO enrichment analysis applied to CGenes were classified in three categories: 

Biological Process (BP), Molecular Function (MF) and Cellular Component (CC). Results from 

GO enrichment (Figure 4.2) of common genes obtained from “Against S7” sample pairs show 

664 genes were significantly enriched in BP and CC ontologies with p-values < 0.05. Whereas 

those obtained from “Step Analysis” sample pairs show 18 genes significantly enriched only in 

the BP ontology with p-value < 0.05. From the pathway analysis of “Against S7” DEGs, 30 

genes have been found to be involved in Glucosinolate Biosynthesis, 2-Oxocarboxylic acid 

metabolism, Sulfur metabolism, Cysteine and methionine metabolism with FDR ≤ 0.05 whereas 

for “Step analysis” only 4 genes were found to be involved in 2-Oxocarboxylic acid metabolism, 

C5-Branched dibasic acid metabolism, Valine, leucine and isoleucine biosynthesis. 
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b 

Figure 4.2: GO enrichment functional classification results of common genes from (a) “Against 

S7” sample pairs, and (b) “Step analysis” sample pairs. Bars coloured in red represent genes 

enriched in “Molecular Function” whereas bars coloured in blue represent genes enriched in 

“Cellular Component”. 

Results from GO enrichment analysis were used to obtain expression profiles of the genes 

involved in metabolic processes involved in plant defense. Figure 4.3 shows the relative 

expression profiles of the genes expressed in “Against S7” and “Step analysis” sample pairs 

that play major roles in Glucosinolate Biosynthetic Process (GluBP), Glycosinolate Biosynthetic 
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Process (GlyBP), Glucosinolate Metabolic Process (GluMP), Glycosinolate Metabolic Process 

(GlyMP), Sulfur Compound Biosynthetic Process (SCBP) and Sulfur Compound Metabolic 

Process (SCMP). 21 genes have been found to be associated with GluBP and GlyBP, 27 

associated with GluMP and GlyMP, 25 associated with SCBP and 37 have been found to be 

associated with SCMP. From the expression profiles in “Against S7”: ACO1, ACO2, APS1 and 

AT4G05090 display different behavior where expression varies between 1 and 0.6 for SCMP. 

In SCBP, CYSD1 expression value remains constant whereas for CYP83B1, the expression 

display “zig-zag” pattern. In GBP, only CYP83B1 shows variable expression. Apart from these 

genes, certain other genes such as TGG1 and TGG2 show a “zig-zag” expression pattern 

which encodes myrosinase enzymes and helps in the breakdown of glucosinolates (Barth and 

Jander, 2006). As compared to these genes, CYP83B1 and CYP83A1 are expressed in the 

SCMP, SCBP and GluBP. These encode non-redundant enzymes which also metabolise 

oximes in glucosinolate biosynthesis (Naur et al., 2003). Similarly, ACO1 and ACO2 in the 

SCMP also differ in their expression profiles despite being similar in structure and function. 
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Figure 4.3: Expression profiles of common genes from Cuffdiff-DESeq-edgeR overlap. The 

above graphs show expression profiles of genes enriched in GluBP, GlyBP, GluMP, GlyMP, 

SCBP and SCMP. (a) to (f) shows expression profiles of gene clusters in “Against S7” sample 

pairs. Common genes were obtained by overlapping DEGs from Cuffdiff, DESeq and edgeR 

and expressed in more than one sample pair. 
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4.2.3 Identifying important regulators using PPI network analysis 

Interactions between DEGs were studied for identifying the most prevalent interacting genes 

and their regulation on neighbouring genes. A protein-protein interaction (PPI) network was 

constructed for identifying highly connected genes and their most prevalent interactions. From 

PPI network analysis, 18 genes were found to have the highest interactions with edges ≥ 100 

and thus be significantly involved in GluBP (Appendix A; Figure A.1). Apart from these 14 

genes, 114 genes were involved in induced systemic resistance, sulphur compound 

biosynthetic process, cellular biogenic amine metabolic process, sulphur metabolism and 

biosynthesis, anion transport, organic acid transport and cellular response to external stimulus. 

Results show that most of the DEGs during the transition phase regulate other DEGs which 

provide induced resistance and protection against external factors such as stress, pathogens, 

herbivores, temperature variations, etc. A recent study on the relationship of glucosinolates to 

flowering in A. thaliana suggests that the presence of the MAM1 gene affects glucosinolate 

accumulation and flowering time in the absence of APOP2 and APOP3 genes and leads to the 

production of C3 glucosinolates (Jensen et al., 2015). 

Results from the PPI network analysis clearly show that MAM1 regulates several other genes 

in glucosinolates and displays a high expression profile correlation of 0.75 to FLC which 

supports the hypothesis of glucosinolate production and protection during flowering phase. 

Glucosinolates are sulphur and nitrogen-rich chemical compounds in plants that provide 

defense against pathogens and herbivores by forming a toxic compound upon herbivore attack 

when the cell wall is ruptured (Jensen et al., 2015; Mohammadin et al., 2017). Glucosinolates 

play a crucial role in flowering time regulation during transition from vegetative to reproductive 

phase and provide protection from herbivores and pathogens for the plant’s vegetative and 

generative tissues during the transition phase. Therefore, differential expression of 

glucosinolates during the transition phase becomes essential. 

4.2.4 Expression profiles of DE flowering genes 

From CGenes, genes responsible for flowering and involved in regulation of flower 

development were identified. 5 genes were found to be involved in “Flowering”. 18 were found 

to be associated with “Flower Development”, 8 with “Regulation of Flower Development” and 

3 with “Negative Regulation of Flower Development” (Figure 4.4). In “Against S7” sample pairs, 

many experimental genes such as FLC, SOC1, EMS1 and FD have also been identified by 

enrichment analysis. Expression profiles of flowering genes shows that SOC1, FCA, SAP and 
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AGL31 increase in expression as compared to FLC which decreases in expression in “Against 

S7”. In the “Flower Development” process, a large cluster of genes in “Against S7” sample 

pairs display a “zig-zag” pattern of expression. There are four gene clusters observed in this 

process. The first cluster consists of ATX1, RDR6, SOC1, KAN2, BPE, SRS2, FCA, the 

expression values of which increase in S7-S9, decrease in S7-S11 and increase again in S7-

S12. The second cluster consists of ATX1, NAC054, NGA1 and F-ATMBP shows a decrease 

in expression followed by an increase in S7-S15 and S16. The third cluster consists of EMS1, 

KAN2, ABCB19, SOC1 and SAP1 shows a peak in expression value from S7-S14. The fourth 

cluster of genes consists of SPT, SRS2, ATX1 and FCA in S7-S14 where the expression varies 

between 0.7 and 0.8. In the “Regulation of Flower Development” process, POLA, FD, ATX1, 

SOC1, AGL31 and FCA show a decrease in expression in S7-S11 whereas ATX1 shows an 

increase in expression in S7-S11. In the “Negative Regulation of Flower Development” 

process, only FLC, AGL31 and POLA are expressed. 
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Figure 4.4: Expression profiles of flowering genes. The above figure illustrates relative 

expression profiles of genes involved in flowering, flower development, regulation of flower 

development and negative regulation of flower development. (a), (b), (c) and (d) shows relative 

expression of genes in “Against S7” sample pairs. 

FPKM expression values of FLC and LFY genes from Day-1 to 10 were used to identify 

potential novel genes from the CGenes set by selecting those displaying the highest correlation 

195 



	
	

       

              

       

            

       

             

              

      

           

    

  

with FLC and LFY expression profiles and having no ontology information for A. thaliana. 

Results of correlation and GO enrichment analysis showed that 69 and 7 genes which 

displayed the highest correlation (PCC≥0.9) in expression to FLC and LFY respectively did not 

get enriched in any biological or molecular function (Figure 4.5). 69 genes were found to be 

highly correlated by FLC out of which 14 genes were regulated and 55 genes were non-

regulated. Similarly, for LFY, out of 7 genes 4 were regulated and 3 were non-regulated in the 

PPI network analysis. These genes were labeled as novel genes which can regulate the 

expression of other known floral regulators during the flowering transition phase. For 

identification of genes regulated by FLC or LFY, node connections were studied by filtering out 

genes connected with FLC or LFY. 
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Figure 4.5: Expression profiles of common genes from Cuffdiff-DESeq-edgeR overlap showing 

correlation to FLC and LFY genes. (a) shows DEGs showing higher correlation to FLC and 

regulation by FLC, (b) shows DEGs showing higher correlation to LFY and regulation by LFY, 

(c) and (d) shows correlations of DEGs to FLC and LFY respectively. 

4.2.5 Identification of lncRNA sequences 

Using the TAIR10 annotation data in the A. thaliana reference dataset, 458 lncRNA sequences 

were identified. Using the iRF classifier, these lncRNA sequences were used as a test set to 

observe the prediction performance of the sequence features and classification accuracy. 

Using all 73 features, iRF successfully identified 283 lncRNA sequences with prediction 

accuracy of 79.18% with AUC of 91.96. Sensitivity of 98.94% shows that the percentage of 
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correctly identified protein-coding sequences are much higher than the correctly identifying 

lncRNA sequences. The test generated specificity of 99.37% with no lncRNA sequence 

predicted as “protein-coding”. Approximately 60% of the lncRNA sequences were correctly 

identified as “lncRNA” and remaining 40% were identified as “protein-coding”. The classification 

produced an F1-score of 73.91 with PPV of 98.94 and NPV of 70.79. The test generated an 

MCC value of 0.638 which is comparatively closer to perfect prediction value of +1. 

Feature selection using LiRF-FS was applied to obtain a list of optimal features producing 

similar prediction accuracy. With λ"#$%& = 10*+ , λ,--%& = 0.1, λ/0%-*/12% = 10*+ and 

3456789:6 = 0.3; 57 features were selected having prediction accuracy of 79.49% with 

sensitivity of 98.95%, specificity of 99.37%, F1-score of 74.41, PPV of 98.95, NPV of 71.10 

and MCC of 0.643. The tolerance values parameter controls the selection of features. Using a 

given tolerance value, the accuracy of the features is compared to the feature set producing 

maximum prediction accuracy (maxPredAccEFGHIJFKFH). The feature set having prediction 

accuracy within the differenceValue is selected based on the following condition: 

maxPredAccEFGHIJFKFH − PredAccEFGHIJFKFH = differenceValue, (4.1) 

where differenceValue ≤ tolerance. 

The feature set having accuracy difference value below the tolerance value is selected to 

contain optimal feature set. From the analysis, 57 features were selected which identified 286 

lncRNA sequences. These 57 features are Hexamer Score,ORF Length, Mean ORF coverage, 

ORF coverage, Transcript Length, GC content, Fickett Score, Fop, CUB, RCB, EW, SCUO, 

TTTRSCU, TTCRSCU TTARSCU TTGRSCU CTTRSCU CTCRSCU CTGRSCU ATCRSCU ATARSCU , , , , , , , , 

ATGRSCU , GTCRSCU , GTARSCU , GTGRSCU , TCTRSCU , TCCRSCU , TCARSC , TCGRSCU , CCGRSCU , 

ACARSCU , ACGRSCU , GCTRSCU , GCCRSCU , GCARSCU , GCGRSCU , TATRSCU , TACRSCU , CATRSCU , 

CACRSCU , CAARSCU , AACRSCU , AAARSCU , AAGRSCU , GACRSCU , GAGRSCU , TGCRSCU , TGGRSCU , 

CGTRSCU, CGARSCU AGTRSCU AGCRSCU AGARSCU AGGRSCU GGTRSCU GGCRSCU , , , , , , and 

GGGRSCU . 

The performance of the lncRNA identification using iRF, RF and SVM classifiers were 

compared and evaluation metrics were calculated for each. Using 73 features on 478 lncRNA 

sequences as the negative test set and 478 protein-coding sequences as the positive test set 

(Table 4.2); iRF identified predicted lncRNAs with 74.2% accuracy whereas RF predicted with 

77.46% accuracy. SVM on the other hand, gave prediction accuracy of 70.07% with difference 

of 4.13% against iRF and 7.39% against RF. Sensitivity as well as specificity produced by RF 
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was comparatively higher than iRF classifier. Sensitivity by iRF was comparatively lower with 

SENS value of 73.98. Compared to iRF, SVM obtained lower sensitivity of 69.48% with 

difference of 7.61 and 3.11 from RF sensitivity prediction. Additionally, higher F1, PPV, NPV 

and MCC values were detected with RF classification. 

Performance comparison with 57F, 31F and 7F feature sets were compared with 73F using 

iRF (Table 4.2), RF and SVM classifiers. Both the 31F and 7F displayed higher accuracies of 

75.12% and 75.87% respectively with iRF. Whereas 31F showed greater accuracy value of 

77.02% using RF when compared against 57F and 7F. 7F showed lower accuracy of 75% with 

RF. SVM showed the lowest prediction performance of 69.83% for 57F, 70.11% for 31F and 

66.89% for 7F feature sets. Performance of iRF and RF in 31F showed comparatively higher 

values in all the metrics. Both SENS and SPEC indicates that RF produced a greater chance 

of obtaining true negatives and true positives from a given dataset of FASTA sequences. 

Additionally, the results also display significantly higher performance against SVM in obtaining 

true positives and negatives. For the subsequent analysis and validation on test set sequences, 

31F feature set was selected as an optimal feature set. 

Table 4.2: Prediction performance of iRF, RF and SVM classifiers with 73F, 57F, 31F and 7F 

feature sets on A. thaliana apical shoot test set data. 

Feature 
set 

Classifier ACC SENS SPEC F1 PPV NPV MCC 

73F iRF 74.20 73.98 75.62 73.34 73.98 74.40 0.48 
73F RF 77.46 77.09 77.85 77.46 78.49 76.41 0.55 
73F SVM 70.07 69.48 70.68 70.07 71.31 68.83 0.40 
57F iRF 74.16 74.04 75.77 73.25 74/04 74.27 0.48 
57F RF 76.67 76.55 76.79 76.67 77.57 75.74 0.53 
57F SVM 69.83 69.95 69.70 69.83 70.77 68.85 0.39 
31F iRF 75.12 74.59 75.85 74.47 74.59 75.62 0.50 
31F RF 77.02 75.38 78.74 77.02 78.81 75.31 0.54 
31F SVM 70.11 71.81 68.32 70.10 70.39 69.80 0.40 
7F iRF 75.87 74.90 75.69 75.47 74.90 76.83 0.51 
7F RF 75 74.92 75.08 75 75.92 74.05 0.50 
7F SVM 66.89 75.15 58.22 66.63 65.36 69.08 0.34 
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4.2.6 Performance benchmarking results on TAIR10 lncRNA sequences against CPC Tools 

Performance of the framework with 478 lncRNA sequences was benchmarked against state-

of-the-art coding potential tools: PLEK (Li, Zhang and Zhou, 2014), lncScore (Zhao, Song and 

Wang, 2016), CPAT (Wang et al., 2013), and CPC2 (Kang et al., 2017). A 10-Fold Cross 

Validation (CV) accuracy benchmarking was performed on non-randomized (D1) and 

randomized (D2) datasets. Results from accuracy benchmarking on A. thaliana D1 data (Figure 

4.6a) show that the framework achieved an average accuracy of 74.95%, whereas PLEK, 

CPAT, lncScore and CPC2 achieved a mean accuracy of 63.02%, 52.55%, 68.22% and 

51.05%, respectively. 

On fold-2, the framework achieves the highest accuracy of 79.27%. CPAT produced the lowest 

accuracy of 48.08% followed by CPC2 producing accuracy of 51.61% whereas PLEK produced 

63.78% and lncScore produced 67.2%. The framework generated the lowest accuracy of 

70.42% on fold-2 among the accuracies produced in the 10 folds. However, the accuracy 

generated by the framework is comparatively higher than PLEK, CPAT, lncScore and CPC2 

by differences of 10.77%, 19.62%, 3.83% and 22.84% for PLEK, CPAT, lncScore and CPC2, 

respectively. In the rest of the folds from fold-3 to fold-10, the accuracy of the framework was 

between 74.09% to 75.75%. 

While lncScore produces the highest accuracy of 71.28% in fold-3, the prediction accuracy 

decreases in subsequent folds, which fluctuates between 69.57% to 64.48%; with fold-10 being 

the lowest. PLEK shows a similar pattern as produced by lncScore, however the accuracy 

values are lower than lncScore. CPAT did not showed any variation in the prediction values 

and generated a similar accuracy value from fold-2 to fold-10. The prediction values produced 

by CPC2 ranged between 46.88% to 53.63% from folds-1 to 9. Comparatively higher prediction 

accuracy of 55.53% was detected in fold-10. 

A second 10-Fold CV benchmarking was performed (Figure 4.6b) by randomizing and mixing 

the lncRNA and protein-coding sequences to perform a fair comparison of the performances 

of various tools. The framework produces a mean accuracy of 78.2% whereas PLEK, CPAT 

and lncScore produce mean accuracies of 63.6%, 55.5% and 68.98%, respectively. With the 

D2 data, the performance of the framework and the tools display non-variable consistent 

accuracies. Among all the tools, the framework generated the highest prediction accuracies 

with accuracies ranging between 76.66% and 80.22%. CPAT accuracies ranged between 

55.05% and 56.46%, PLEK ranged between 61.3% and 65.37%, whereas lncScore ranged 
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between 66.41% and 70.6%. CPC2 produced a mean accuracy of 49.75% from all the folds 

with accuracy fluctuating between 48.05% and 52.37%. 
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Figure 4.6: Performance benchmarking of the framework with known CPC tools on A. thaliana 

TAIR10 annotated (a) D1 non-shuffled dataset, and (b) D2 shuffled dataset. 
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The differences in the individual accuracies at each fold was computed in the D1 and the D2 

datasets (Figure 4.7). Results from the 10-Fold CV benchmarking on D1 dataset (Figure 4.7a) 

clearly shows that the framework produces highest difference of 28.82% with the CPC2 on 

fold-3 followed by a mean difference of 23.6%. A significant difference of 27.37% was observed 

with CPAT on fold-1 with mean difference of 21.51% on all the folds. Difference with PLEK 

showed a mean of 11.62% whereas with lncScore showed difference of 6.42%. The difference 

with lncScore was comparatively higher on fold-1 and fold-10 with values of 8.25% and 10.97%, 

respectively. 

Comparison of the results on the D2 dataset (Figure 4.7b) shows consistent difference in all 

the folds. The mean differences between the accuracies produced by the framework and other 

CPC tools were 14.6%, 22.7%, 9.2% and 28.47% for PLEK, CPAT, lncScore and CPC2, 

respectively. 

Results from the 10-Fold CV shows that the framework performed comparatively better on both 

the non-randomized and the randomized datasets with superior performance in the prediction 

accuracies. Results from the other CPC tools fail to predict the lncRNA sequences generating 

lower prediction performance in the prediction performance tests. The 10-Fold CV test is 

performed to benchmark and test the robustness of a tool against a variable dataset. Results 

clearly show that the framework performed accurately on all the folds with consistently similar 

accuracies on both datasets which clearly validates the robustness of the framework. 
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Figure 4.7: Bar chart showing accuracy differences of the framework against CPC tools with 

A. thaliana TAIR10 (a) D1, and (b) D2 datasets. 
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4.2.7 Performance benchmarking results on A. thaliana EST lncRNA sequences 

To further evaluate the robustness of the framework in identifying the lncRNA sequences, 

optimal features obtained from feature selection from 6-plants dataset are examined. 31 

features were obtained with 3456789:6 = 0.3, λ"#$%& = 10*+ , λ,--%& = 0.1 and λ/0%-*/12% = 10*+ . 

The performance of the model with 31 features was benchmarked against the sequences 

derived from PLncDB database (Jin et al., 2013). Apart from the lncRNA sequences annotated 

in TAIR10 database, the PLncDB database also contains lncRNA sequences obtained from 

the Expressed Sequence Tags (EST) analysis. From the EST analysis, 4828 lncRNA 

sequences in A. thaliana have been identified. For performance benchmarking, a random set 

of 2000 lncRNA sequences were extracted and the accuracy was compared against the 

popular CPC tools as performed in the Section 6.2.6. 

A density distribution comparison of transcript lengths in TAIR10 lncRNA sequences and EST-

derived sequences (Figure 4.8) demonstrates that sequences derived from TAIR10 range from 

204 bp to 7697 bp with represented by log(transcript length) where majority of the sequences 

having transcript length between 200-1000 bp. The sequences are clustered with log(transcript 

length) ranging between 5–9. Sequences from EST-derived data, however, show a different 

density distribution pattern with the majority of the sequences ranging between 200-10000 bp. 

The density distribution of sequences demonstrates large amount of sequences lying between 

5 and 9.5 forming a long tail where sequences are clustered between 11–13. Sequences 

forming the long tail comprises large proportion of sequences with transcript lengths above 

10000 bp with sequence length ranging between 1×10+ to 7.8×10+ derived from PLncDB 

database. However, the test set used for benchmarking contains 148 sequences having 

sequence lengths greater than 50000 bp. Such extremely long lncRNA sequences are 

generally mis-classified as protein-coding transcripts, due to which the overall prediction 

accuracy decreases. To evaluate and measure the performance of the framework, a 

comparative analysis was conducted using these extremely longer transcript sequences in the 

training and test set with the set of maximal optimal features obtained from LiRF-FS approach. 

205 



	
	

 

         

        

 

	

             

            

             

          

           

          

        

           

              

           

             

       

        

          

            

           

Figure 4.8: Density distribution of transcript lengths of lncRNA sequences in A. thaliana 

TAIR10-annotated and EST-predicted results. X-axis is log of transcript lengths and y-axis is 

density. 

Figure 4.9 shows the 10-Fold CV performance of the framework against CPC2, PLEK, CPAT 

and lncScore tools on non-shuffled and shuffled datasets. 10080 sequences were used as the 

training set and 1120 sequences were used as the test set in each fold. Results from the non-

shuffled dataset Figure 4.10a exhibits significant differences in the accuracies obtained from 

the tools. In each fold, the framework displays remarkable performance than other tools. Where 

the framework produces an accuracy of 72.59%, PLEK and lncScore generates similar 

accuracies of 63.75% and 63.66%, respectively. As the fold increases, accuracy of the 

framework increases to 75.44% on Fold-3 whereas accuracy for PLEK decreases to 62.41%. 

lncScore exhibits a slight increase of 0.62% with accuracy to 64.28% in Fold-3. 

Accuracies of the framework in folds-6, 7 and 8 varies between 73.79% to 75.35% whereas 

PLEK generates a further decrease in the accuracies with stable values in the range of 60.94% 

± 0.07%. lncScore also exhibits stable accuracy values however, a steady decrease can be 

observed where the accuracy decreases from 65.65% to 64.96%. Among all the tools, CPAT 

and CPC2 exhibited worst prediction performance with average accuracies of 50.76% and 

50.57% respectively. A notable difference between the tools can be observed in fold-9 and 10. 

These folds consist of lncRNA sequences from EST analysis. When EST-derived lncRNA 
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sequences are used as test set sequences, the framework identifies these sequences with 

68.48% and 68.69% accuracy in fold-9 and fold-10, respectively. However, when the same 

sequences are tested against other CPC tools, the prediction performance decreases to 

49.91% and 52.01% for lncScore; and, 52.15% and 54.33% for PLEK in fold-9 and fold-10, 

respectively. CPAT however, exhibits an increase in the prediction accuracy from 50% to 

53.66% and 53.44% in the last two folds. CPC2 on the other hand, showed increase in the 

accuracy in fold-9 whereas a decrease from 52.14% to 49.33% was observed in fold-10 (Figure 

4.9a). 

The results from 10-fold CV performance benchmarking on the shuffled dataset can be 

observed in Figure 4.10b. In this analysis, the EST-derived lncRNA sequences have been 

shuffled to detect the performance of the tools in this scenario. Results indicate that the 

framework produces highest prediction accuracies among other tools an all the folds. By 

shuffling the lncRNA sequences, it can be clearly observed that the difference between the 

accuracies becomes much higher than the one observed in the D1 dataset. The graph 

demonstrates that, when lncRNA sequences are shuffled, the accuracies do not vary 

significantly. The framework produces an average accuracy of 76.03% whereas PLEK 

generates an average of 61.72%. lncScore on the other hand, shows an average of 62.75%, 

CPAT and CPC2 displayed an average of 53.57% and 49.45%.         

Slight differences in the performance variation can be observed in folds-3, 4, 6 and 7 where 

lncScore and PLEK show contrasting accuracies when compared to previous folds. It is 

interesting to note that as the prediction accuracy for lncScore increases, the accuracy for 

PLEK decreases, and vice versa. These differences can be mainly attributed to the features 

extracted in the two CPC tools. The graph also shows that the framework produces pattern 

similar to lncScore in folds-5 to 10. Although the pattern is similar, the accuracy values 

produced by the framework are much higher than lncScore. 
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Figure 4.9: Performance benchmarking of the framework using 10-Fold CV with 31 features 

against CPC tools on A. thaliana EST annotated (a) D1 non-shuffled dataset, and (b) D2 

shuffled dataset. 

The differences between the prediction accuracies can be observed by plotting a histogram of 

the difference between the accuracies obtained by the framework against other CPC accuracy 

values in subsequent folds (Figure 4.10). In the D1 dataset (Figure 4.10a), the highest 
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difference between the accuracies can be observed between the framework and CPC2 with 

average difference of 22.78% followed by CPAT with a mean difference of 22.59%. PLEK and 

lncScore generated differences of 12.54% and 11.46%, respectively. Whereas, in the D2 

dataset (Figure 4.10b), the average difference between framework and CPAT remains similar 

when compared to D1 dataset producing 22.63%. Difference between the framework and 

CPC2 increased to 26.75% in D2 dataset. PLEK and lncScore, however, show an increase in 

the difference by 1.81% for PLEK and 1.86% for lncScore.   
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Figure 4.10: Bar chart showing accuracy differences of the framework against CPC tools with 

A. thaliana EST (a) D1, and (b) D2 datasets. 

To evaluate the efficiency of the features produced by LiRF-FS approach, prediction accuracy 

benchmarking was performed between the feature sets selected from LiRF-FS approach. 

Evaluation of the prediction accuracy with 7F, 31F and 57F feature sets obtained from selection 

of minimal and maximal optimal features were compared against 73F feature set (Figure 4.11). 

Evaluation of the D1 dataset (Figure 4.11a) shows that the accuracies obtained from 73F, 57F 

and 31F do not display similar profiles. However, the accuracy profile generated by 7F exhibits 

significant differences. For each fold, the accuracy obtained from 7F has consistent difference 

of ~2% when compared to 73F except folds-6 and 10. 

Accuracies obtained from the shuffled D2 dataset (Figure 4.11b) display a dissimilar pattern as 

observed in D1 dataset. Results show that accuracies from 31F display comparatively higher 
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accuracies in folds-2, 3, 5, 8 and 10. In fold-1, 73F produces 77.14% whereas 31F produces 

76.07%. In fold-2, the prediction accuracy from 31F increases to 78.17% whereas 73F 

generates 76.74% for the same fold having a difference of 1.43%. In fold-3, 31F shows a higher 

prediction performance among the rest of the selected feature sets displaying an accuracy of 

77.14%. Next significant difference can be observed in fold-5 where 31F shows an accuracy 

of 75.8% whereas 73F generated accuracy of 74.73%. In fold-5, accuracy from 7F produced a 

difference of 1.88% with 73F and 2.95% with 31F. In the subsequent folds, 31F accuracy does 

not vary appreciably; however, it does exhibit increased accuracies in folds-8 and 10. 
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Figure 4.11: Performance comparison of selected features from LiRF-FS on A. thaliana (a) 

EST D1 non-randomized dataset, and (b) EST D1 randomized dataset. 

Results from feature selection on ATH and 6-plants datasets resulted in three feature sets: 

1. 7 optimal features obtained from LiRF-FS on the 6-plants dataset. (7F) 

2. 31 optimal features obtained from LiRF-FS on the 6-plants dataset. (31F) 

3. 57 optimal features obtained from LiRF-FS on the ATH apical-shoot TAIR10 dataset. 

(57F) 

The 7F feature set was obtained by selecting the least number of optimal features having the 

differenceValue (Equation 2.23) less than 0.3 in the negative direction from the maximum 

accuracy λ value. The 31F feature set was obtained by selecting the maximum number of 

features having the differenceValue less than 0.3 in the positive direction. The negative 

direction implies that least number of features are obtained having a prediction accuracy within 

the threshold value, and the positive direction implies that maximum features are obtained 

having prediction accuracy within threshold value. As described in Table 2.7 (Algorithm 3), the 

minimal optimal features are obtained as having number of features less than the feature set 

producing highest prediction accuracy (maxPredAccEFGHIJFKFH), whereas the maximum optimal 

features are obtained having number of features greater than maxPredAccEFGHIJFKFH. 57 features 

were obtained from the feature selection performed on the TAIR10 dataset which was tested 

on EST-derived sequences. 
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Results indicate that the 31 features selected from LiRF-FS produces similar prediction values 

as observed by 73 features. Accuracies obtained from 31 features displayed a tradeoff between 

the accuracy values obtained from 73F and those obtained from 57F. Accuracy values from 

31F exhibits higher accuracies than 73F or 57F. Accuracies from 7F display lower values when 

compared to 73F, 57F and 31F feature sets and therefore should not be considered, as these 

values lead to under-fitting of the model. Usage of 57F feature set has been derived from the 

feature selection of TAIR10 lncRNA data and therefore, using the selected features can lead 

to over-fitting of the model. The 31F feature set produces similar accuracies as those detected 

by 73F feature set. The accuracy values do not deviate significantly and also displays greater 

performance in some folds. 

The 31F feature set consists of 7 sequence-based features: Hexamer Score, ORF Length, 

Mean ORF Coverage, ORF Coverage, Transcript Length, GC content and Fickett Score; 5 

codon-bias features: Fop, CUB, RCB, EW and SCUO; and, 19 codon-bias RSCU features: 

ATTRSCU ATCRSCU ATARSCU , TCCRSCU , CCARSCU , ACCRSCU , ACARSCU , GCTRSCU , GCARSCU , , , 

GCGRSCU , CATRSCU , CACRSCU , AACRSCU , AAARSCU , AAGRSCU , TGCRSCU , CGTRSCU , AGGRSCU and 

GGARSCU . Since the majority of the selected features are RSCU features, this indicates the 

significance of the synonymous codon usage in distinguishing the lncRNA and protein-coding 

sequences. 

4.2.8 Repeated K-Fold Cross-Validation analysis of A. thaliana lncRNA transcripts 

In order to evaluate the model and avoid overfitting of the data, a 10-Fold repeated CV was 

performed to evaluate the robustness of the framework and the optimal features selected from 

LiRF-FS analysis. A repeated CV is performed in order to avoid overfitting during model 

training. A 10-Fold CV was performed 50 times with repeated shuffling of the sequences on 

each repetition. The performance of the prediction accuracy, precision and recall of the 31F 

optimal feature set was evaluated by repeated K-Fold CV on TAIR10 and EST-annotated 

datasets. The accuracy values vary between 77.1% and 78% on TAIR10 dataset (Figure 4.12), 

whereas precision and recall values displayed identical profiles varying between 78% and 

78.7%. 
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Figure 4.12: Repeated 10-Fold CV plots of Accuracy, Precision and Recall on A. thaliana 

TAIR10 dataset. 

The prediction accuracy, precision and recall values on A. thaliana EST-annotated dataset 

(Figure 4.13) exhibited similar profiles with values fluctuating between 74.7% and 75.5%. 

Figure 4.13: Repeated 10-Fold CV plots of Accuracy, Precision and Recall on A. thaliana EST 

dataset. 
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The results show that the accuracy values fluctuated between 74% and 79% for TAIR10 and 

EST-annotated datasets which exhibits consistent prediction accuracies. This shows that the 

framework predicts the lncRNAs in the A. thaliana dataset and does not display overfitting of 

the data. 
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Figure 4.14: Performance benchmarking of the framework using repeated k-fold CV against 

CPC tools on (a) A. thaliana TAIR10, and (b) A. thaliana EST annotated datasets. Mean 

accuracy values are plotted with error bars representing standard deviation. 
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The performance of the framework was further benchmarked against CPAT, PLEK, lncScore 

and CPC2 tools using repeated 10-fold CV with data shuffling (Figure 4.14). Five repetitions 

were performed to evaluate the robustness of the framework in accurately identifying the 

lncRNA sequences. Results from the analysis on A. thaliana TAIR10 (Figure 4.14a) annotated 

lncRNA sequences shows that the framework achieves a mean accuracy value of 78% in all 

the repetitions with with standard deviations (SD) values of 78.07±1.67%. Both PLEK and 

lncScore displays consistent accuracies displaying average accuracies of 63% and 68% 

respectively. Comparatively lower prediction accuracies values were observed for CPAT and 

CPC2 with values in the range of 52.9% – 55.5% for CPAT and 49.7% – 51.06% for CPC2. 

Prediction accuracies from A. thaliana EST-annotated dataset (Figure 4.14b) demonstrate 

consistently superior performance of the framework in all the repetitions having average 

accuracy of 76.26%. CPAT and CPC2 exhibited similar profiles where lower accuracies were 

detected with values ranging between 49.4% – 53.5%. CPAT generated average accuracy of 

51.31% whereas CPC2 displayed a mean value of 50.36%. Furthermore, PLEK and lncScore 

also generated similar profiles with average accuracy values of 61% for PLEK and 62.3% for 

lncScore. Slight variations in SD values were detected in the folds with SDs of ±2.2 and ±2.03 

for PLEK and lncScore respectively. Comparison of repeated 10-fold CV analysis (Figure 4.12 

and 4.13) with performance benchmarking results (Figure 4.14) demonstrates insignificant 

deviation of prediction accuracy values of framework and other CPC tools as represented by 

SD values around the mean. The framework identifies the lncRNA sequences of varying 

lengths with reasonable accuracy where the prediction accuracy as well as sensitivity and 

specificity does not drop beyond 75%. Furthermore, comparison of accuracy and SD values 

(Figure 4.14) produces an approximate straight line across five repetitions. The small deviation 

in SD indicates that the accuracy generated by the tools are consistent across varying data 

and hence exhibits superiority in sequence identification of the framework over other tools. 

4.2.9 Sub-classification analysis of A. thaliana lncRNA transcripts 

Using the PBC algorithm as mentioned in Section 2.12, 478 lncRNA transcript sequences 

derived from the TAIR10 dataset were classified into five different types: Sense-overlap, 

Antisense-overlap, Antisense RNA (ANT), Intergenic (INT) and Bidirectional promoter (BDP). 

The Sense-overlap and the Antisense-overlap classes were further sub-classified into Sense-

Overlap Intronic (SOI), Sense-Overlap Exonic (SOE), Antisense-Overlap Intronic (AOI) and 

Antisense-Overlap Exonic (AOE). Overall, seven transcript sequences have been classified 

into seven different classes. 

215 

http:10-foldCVanalysis(Figure4.12
http:and�2.03
http:of78.07�1.67
http:withdatashuffling(Figure4.14


	
	

      

             

              

         

            

              

             

       

 

           

   

         

       

        

       

             

         

               

 

         

        

       

    

        
        
        

 

        

         

         

     

           

        

The classification was performed based on the two rules mentioned in Chapter-3 Section 3.7. 

Table 4.3 shows the number of transcript sequences classified into one of the seven classes. 

Results indicate that only 2 and 3 sequences have been classified as SOE and SOI using 

Rules-1 and 2 (as mentioned in Section 3.7), respectively. Whereas the number of sequences 

classified into AOE and AOI are much higher than the Sense-overlap class. Sequences were 

also classified into the ANT class. Since this classification is purely based on the strand 

information, lncRNA sequences located on the antisense strand are classified into the ANT 

class. This classification is independent of the rules applied on Sense-overlap and the 

Antisense-overlap categories. 

Classification of transcript sequences as AOE and AOI classes using Rule-2 shows much 

higher proportion when compared to those observed using Rule-1. 122 and 121 sequences 

were classified into AOE and AOI categories, respectively, which show an increase of 

additional 50 sequences. Rule-2 classification considers the location of exonic (E) and intronic 

(I) lncRNA sequences on the sense strand, whereas Rule-1 classification is restricted to 

searching the E and I sequences on the antisense strand. 

The number of transcript sequences classified into the INT class is much lower with only 5 

sequences in this category. Whereas 306 sequences have been classified into the BDP class. 

As illustrated from the statistics, the INT and the BDP classes are independent of the rules 

applied on the Sense and Antisense overlap classes. 

Table 4.3: Sub-classification statistics of the A. thaliana apical-shoot lncRNA transcript 

sequences based on Rule-1 and Rule-2. (SOE: Sense-Overlap Exonic, SOI: Sense-Overlap 

Intronic, AOE: Antisense-Overlap Exonic, AOI: Antisense-Overlap Intronic, ANT: Antisense 

RNA, BDP: Bidirectional Promoter). 

Rules SOE SOI AOE AOI ANT INT BDP 
Rule-1 2 2 70 69 252 5 306 
Rule-2 3 3 122 121 252 5 306 

The lncRNA transcript sequences annotated in the TAIR10 database have been classified into 

two classes: Intergenic (LincRNA; Long intergenic non-coding RNA) and Antisense RNA 

(NATs; Natural Antisense Transcripts). The annotation set consists of 36 LincRNA sequences 

and 225 NAT sequences. These sequences were intersected with the results obtained from 

PBC analysis. By intersection of the PBC results with TAIR10 annotation set using Rules-1 and 

2, two LincRNA sequences were found as common sequences. Intersection of LincRNA 

216 



	
	

        

             

         

         

	

      

        

      

        

        

   

        

           

   

          

        

       

         

      

	
sequences with Rules-1 and 2 produced two matches out of 36 sequences. However, 

intersection of NAT sequences produced 151 matches out of 226 sequences using Rule-1, and 

194 matches out of 226 sequences using Rule-2. The results of ANT overlap sequences 

indicate an accuracy of 66.81% using Rule-1 and 85.84% using Rule-2. 
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Figure 4.15: Accuracy comparison of Rule-1 and Rule-2 sub-classification using PBC 

approach on A. thaliana dataset for identification of NATs on individual chromosomes. 

Results from the sub-classification analysis exhibits that a higher matching percentage can be 

obtained for the ANT class, whereas a lower proportion of matching INT sequences were 

obtained. Since the PBC approach relies on the genomic coordinates i.e. start position, end 

position and strand information, the sequences are purely classified based on the overlapping 

of the E and I sequences which are derived from the ORF for each sequence. These 

coordinates are derived from the PLncDB and TAIR databases which confirms the location of 

each transcript sequence. 

Results from the PBC analysis were compared against the annotated lncRNA sequences from 

the TAIR10 database. Since the annotation in TAIR10 consists mainly consisted of NATs, the 

NAT annotation results from the PBC Rule-1 and Rule-2 analysis were compared (Figure 4.15). 

Overall analysis demonstrates that annotation results obtained from Rule-2 indicate a higher 

prediction accuracy as compared to Rule-1. For the first two chromosomes, the difference 
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between the accuracies is 9.8% and 9.3% whereas for chromosomes 3, 4 and 5, the difference 

sharply increases to 13.52%, 10.35% and 25.72%. The accuracy for chromosomes 3, 4 and 5 

increases steeply, which shows that the PBC algorithm can efficiently identify the various 

genomic sub-classes in A. thaliana species. 

Apart from the matching lncRNA sequences, the algorithm also identifies various other sub-

classes such as SOE, SOI, AOE, AOI and BDP which have not been annotated and reported 

in the A. thaliana lncRNA sequence data. 

4.2.10 Function determination of lncRNA genes based on co-expression data 

Using the BMRF approach, function prediction of 478 lncRNA sequences was performed. 

14776 protein-coding sequences were used for computing correlations of lncRNA Relative 

Gene Expression (RGE) values with protein-coding RGE values. 

Using a threshold of PCC ≥ 0.8 and PCC ≤ -0.8, 156735 correlations were obtained. These 

consisted of 118672 positive correlations and 38063 negative correlations. Results from 

Cuffdiff analysis shows that many lncRNA sequence FPKM values consisted of “NULL” values. 

Therefore, these lncRNA sequences were removed from the matrix by applying a cutoff of 70%. 

This means that those lncRNA sequences were removed from the analysis having 70% of the 

RGE values equal to NULL. This resulted in 402 lncRNA sequences having 156735 

correlations with 9674 protein-coding genes forming the LPCS matrix. 

The PPI matrix was constructed based on the protein-coding identifiers extracted from the 

LncRNA-Protein Co-expression Similarity (LPCS) matrix. The matrix was constructed between 

FPKM values of each pair of lncRNA and mRNA gene and retaining only those lncRNA-protein 

pairs whose PCC ≥ 0.9 and ≤ -0.9 This resulted in 998566 protein-protein interactions having 

the interaction strength ≥ 800. The LPCS and the PPI matrices were combined to generate a 

LPCS-PPI matrix. Filtered protein-coding geneset from the LPCS-PPI matrix was extracted 

and applied on the 251297 protein-GOTerm association data. This generated a total of 63326 

protein-GOTerm association values. BMRF method was applied on the LPCS-PPI matrix and 

the filtered protein-GOTerm association data which produced 1076958 probabilistic GOTerm 

associations for the lncRNA sequences. 

Results from the BMRF analysis were filtered based on the probability values. 203295 lncRNA-

GOTerm connections were obtained having association probability ≥ 0.8. Whereas 814938 

connections were found to have probability < 0.1. With probability > 0.1 and probability < 0.8, 
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the proportion decreases to 58725. This shows that most of the GOTerm connections were 

associated with lower probability. These were removed from the analysis and only the 

connections having the probability ≥ 0.8 were retained for downstream analysis. This resulted 

in 111783 GOTerms-function association for 401 lncRNAs. 

Table 4.4: Number of lncRNA sequences predicted to have association with function type. 

Function Type Associated lncRNAs 
DNA or RNA metabolism 159 
DNA gap filling 157 
DNA or RNA binding 158 
Gap-filling 157 
Nucleic acid binding 143 
Nucleotide binding 3 
Other binding 266 
Protein binding 270 
Receptor binding or activity 238 
Transcription 137 
5-bisphosphate binding 53 
Exonucleolytic 86 
Flowering 84 
Nucleus 351 
Other molecular functions 371 
Signal sequence recognition 128 
Extracellular 79 

Results from the function prediction and GOTerm annotation provide resulted in association of 

several nuclear and cytoplasmic functions with lncRNA sequences (Table 4.4). Results 

demonstrate that a greater number of lncRNA sequences (371 and 351 associations) have 

been associated with “other molecular functions” and “Nucleus”. Molecular functional 

association includes association with “transcription co-factor activity”, “transcription coactivator 

activity”, “serine-type endopeptidase inhibitor activity”, “cysteine-type endopeptidase inhibitor 

activity”, “protein kinase activator activity” and “DNA polymerase processivity factor activity”. 

4.2.11 Filtering functions based on plant experimental data 

Results from the BMRF analysis predicted molecular functions similar to the protein-coding 

genes. However, from published experimental studies, it is now known that lncRNA sequences 

are mainly involved in the regulatory mechanisms. To determine the lncRNA-function 

association based on the experimental data obtained from the model plant species, the 

keyword-filtering algorithm was applied on the A. thaliana apical-shoot data. The algorithm was 

applied on protein GOTerms-function association data. 
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Based on the function annotation obtained from BMRF analysis, the predicted functions were 

stored in the keyword list. This list was then applied on the protein-coding annotated gene-

GOTerm function association data for extracting gene-function pair containing the keyword. 

Results from the experimental studies on plant species suggests several regulatory 

mechanisms such as “promoter methylation”, “translational enhancer”, “antisense 

transcription” and “alternative splicing regulators” which are specifically associated with nuclear 

processes as mentioned in Table 2.9. Based on the experimentally-derived functions of plants, 

keyword-filtering algorithm was applied to construct list of keywords from the function list 

consisting of “Histone modification”, “Promoter interference”, “Promoter methylation”, 

“Chromatin association”, “Target mimicry”, “Translational enhancer”, “Antisense transcription”, 

“Alternative splicing regulators”, “Chromatin loop dynamics” and “nucleus”. 

Based on the function prediction results from co-expression analysis, the filtering algorithm was 

applied on 111783 GOTerms-function associations for 401 lncRNAs. This resulted in 283 

lncRNA transcript association with 22 GOTerms. A heatmap analysis of the lncRNA-function 

association revealed that majority of the lncRNAs were predominantly associated with negative 

regulation of translational initiation (Figure 4.16). 42 lncRNA genes are AT1G01448, 

AT1G26558, AT1G22403, AT1G27921, AT1G34844, AT1G49952, AT1G48315, AT1G67105, 

AT1G68568, AT1G69572, AT1G72852, AT1G75295, AT1G78265, AT1G79075, AT2G07042, 

AT2G15128, AT2G35637, AT2G33815, AT2G33051, AT2G42485, AT2G42365, AT3G04485, 

AT3G27990, AT3G46658, AT3G56408, AT3G57157, AT3G60972, AT3G63445, AT4F12917, 

AT4G22233, AT4G23205, AT4G31248, AT4G37553, AT4G38552, AT4G40065, AT5G07152, 

AT5G24205, AT5G24735, AT5G28262, AT5G34871, AT5G36002 and AT5G54569 have been 

found to be associated with transcription factor binding, histone binding, promoter anti-sense 

binding, chromatin re-modeling, heterochromatin assembly, chromatin silencing, DNA binding 

transcription factor activity, regulation of transcription factor catabolic process, 

posttranscriptional gene silencing, regulation of chromatin silencing, regulation of histone H3-

K9 methylation, regulation of histone methylation, transcriptional elongation of RNA 

polymerase II promoter and rRNA transcription. 
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Figure 4.16: Heatmap of lncRNA sequences associated with experimentally determined 

functions in A. thaliana apical-shoot dataset. Function association is represented by dark blue 

colour. The complete heatmap is broken down to five maps (a – e). The genes are associated 

with molecular functions. Each molecular function is represented by a specific colour. The 

legend (f) provides description and association of each colour with its molecular function. 

The function association of these 48 lncRNA genes shows that these are broadly classified into 

transcriptional regulation and histone/chromatin modification. 38 lncRNA genes, namely, 

AT1G11175, AT1G18745, AT1G25098, AT1G26208, AT1G33615, AT1G46554, AT1G60505, 

AT1G64563, AT1G74545, AT1G77992, AT2G01422, At2G16245, AT2G31902, AT2G26692, 

AT2G35945, AT2G37362, AT3G19002, AT3G21755, AT3G26612, AT3G52072, AT3G52535, 

AT3G59765, AT4G01593, AT4G04221, AT4G13918, AT4G26488, AT4G26582, AT4G28652, 

AT4G38545, AT5G07322, AT5G19221, AT5G43403, AT5G65575, AT5G59732, AT5G63195, 

AT5G59662, AT5G54569 and AT5G53048 were found to be associated with post-

transcriptional gene silencing, regulation of chromatin silencing, H3-K9 methylation, regulation 

of histone methylation and transcriptional elongation of RNA polymerase II promoter. As 

discussed above, the functional association was associated with either gene silencing or 

chromatin silencing or transcriptional regulation. 

From the lncRNA heatmap cluster, 12 lncRNA genes were found to be annotated with the 

regulation of histone H3-K9 methylation. These are AT1G07119, AT1G08592, AT1G53233, 

AT1G60525, AT1G60545, AT1G77138, AT2G09795, AT2G21187, AT3G07215, AT3G53365, 

AT4G13918 and AT5G15022. 
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Function association by heatmap analysis also reveals that genes AT1G10682, AT1G64563 

and AT5G59662 were annotated with histone binding, regulation of chromatin silencing, 

regulation of histone H3-K9 methylation and regulation of histone methylation. All the function 

association primarily represents an identical regulatory mechanism. Therefore, the lncRNA 

genes are associated with histone/chromatin regulation. 

4.2.12 Function prediction of DE sequences based on co-expression data 

For identification of functions for DE lncRNA sequences, DGE results from the Cuffdiff (Trapnell 

et al., 2012) analysis was performed. Results from the analysis were filtered based on the q-

value metric. Sequences were filtered having cutoff of q-value ≤ 0.05 in ≥ 4 sample pairs. This 

resulted in 1532 protein-coding genes and 18 lncRNA sequences having significant gene 

expression values in ≥ 4 sample pairs. 5923 correlations were obtained containing positive and 

negative lncRNA-protein co-expression connections. 4193 protein-protein interactions were 

obtained having interaction strength ≥ 0.8. The LPCS matrix and the PPI matrix were 

concatenated to generate LPCS-PPI matrix consisting of 10116 correlation values. 

From the BMRF analysis, 5502 lncRNA-GOTerm associations were obtained using the 

probability cutoff of 0.8. Function annotation was performed on the GOTerms which resulted 

in 10116 lncRNA-GOTerm-Function associations. By filtering the unique functions, 574 

functions and 40 function types have been found to be associated with 18 lncRNA sequences. 
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Figure 4.17: Heatmap of lncRNA sequences associated with function type in A. thaliana 

dataset. Number of lncRNA sequences associated with the function type is represented by 

“value”. Lighter colours represent larger lncRNA association whereas darker colours represent 

lesser lncRNA sequences associated with a function type. 

A heatmap of the lncRNA-gene type association was constructed to observe the number of 

lncRNA sequences associated with each gene type (Figure 4.17). Results from the heatmap 

analysis show that the majority of the lncRNA genes are associated with “other cellular 

processes”. Particularly, 15 out of 18 genes showed higher association with various functions 

of “other cellular processes” having frequencies ranging between 150 and 200. The second 

higher association can be observed in “other metabolic processes” and “other intracellular 

components” where frequencies ranging between 50 and 100. Other function types such as 

“developmental processes”, “cell organisation and biogenesis”, “DNA or RNA metabolism”, 

“Hydrolase activity”, “nucleus”, “other biological processes”, “response to abiotic or biotic 

stimulus”, “response to stress”, “signal transduction” and “transport” showed moderate 

association frequencies. 

Function annotation results from the BMRF analysis of DE lncRNA dataset were filtered based 

on dictionary of keywords extracted from the experimentally-derived lncRNA regulatory 

functions. The keyword-filtering algorithm was applied for filtering the Gene-Function 

associations. From the analysis, 16 lncRNA genes were found to have association with 34 

regulatory functions, some of which included histone modification, regulation of transcription 

from RNA polymerase II promoter, DNA-templated transcription initiation, single-stranded DNA 

binding and alternative RNA splicing. This approach was implemented to identify genes with 

similar functions. 

Heatmap analysis (Figure 4.18) of the lncRNA sequences demonstrated the degree of 

association/non-association of lncRNA genes to regulatory mechanisms. 16 lncRNA 

sequences were primarily associated with 6 functions, namely, translational elongation, 

regulation of vesicle targeting, posttranscriptional gene silencing, heterochromatin assembly, 

transcription coactivator activity and chromatin binding. 15 lncRNAs were associated with 8 

regulatory functions, namely, rRNA transcription, RNA splicing, regulation of transcription 

elongation, histone phosphorylation, histone H3-K36 methylation, histone acetylation, single 

stranded DNA endodeoxyribonuclease activity and single-stranded DNA binding. 
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Figure 4.18: Heatmap of lncRNA-function association based on keyword filtering approach in 

A. thaliana dataset. X-axis shows the lncRNA genes and the y-axis shows the function name. 

Value represents number of lncRNA genes associated with the function. “Light blue” colour 

represents association and “dark blue” colour represents non-association. 

None of the lncRNA sequences except AT1G76892 were found to play a role in 9 regulatory 

functions. AT1G76892 was found to play a significant role in the regulation of histone H3-K9 

methylation, regulation of chromatin silencing, protein targeting, positive regulation of 

transcription, negative regulation of sequence-specific DNA binding transcription factor activity, 

histone modification, DNA-templated transcription, covalent chromatin modification and 

histone acetyltransferase activity. To summarize, AT1G76892 was primarily involved in the 

regulation of transcription activity or chromatin modification or histone modification. A summary 

of the number of lncRNA sequences associated with intra-nuclear molecular function has been 

provided in Table 4.5. 
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Table 4.5: Number of lncRNA sequences predicted to have association with experimentally 

determined regulatory functions in A. thaliana dataset. 

Molecular function Number of associated 
lncRNAs 

has single-stranded DNA endodeoxyribonuclease activity 15 
involved in RNA splicing, via endonucleolytic cleavage and ligation 13 
functions in chromatin binding 16 
has chromatin binding 16 
functions in single-stranded DNA binding 15 
has single-stranded DNA binding 15 
has transcription coactivator activity 16 
has histone acetyltransferase activity 2 
involved in DNA-templated transcription, initiation 1 
has DNA-templated transcription, initiation 1 
involved in regulation of transcription from RNA polymerase II 
promoter 

4 

involved in transcription from RNA polymerase II promoter 9 
involved in translational elongation 16 
involved in protein targeting 1 
involved in rRNA transcription 15 
involved in histone H3-K36 methylation 15 
involved in posttranscriptional gene silencing 16 
involved in chromatin modification 3 
involved in covalent chromatin modification 1 
involved in histone modification 1 
involved in histone methylation 3 
involved in histone phosphorylation 15 
involved in histone acetylation 15 
involved in heterochromatin assembly 16 
involved in regulation of chromatin silencing 1 
involved in histone H2B ubiquitination 6 
involved in regulation of transcription elongation from RNA 
polymerase II promoter 

15 

involved in histone lysine methylation 3 
involved in posttranscriptional gene silencing by RNA 16 
involved in transcription factor import into nucleus 5 
involved in negative regulation of sequence-specific DNA binding 
transcription factor activity 

1 

involved in positive regulation of transcription, DNA-templated 1 
involved in regulation of vesicle targeting, to, from or within Golgi 16 
involved in regulation of histone H3-K9 methylation 15 

Table 4.6 indicates that the lncRNA-function association is broadly divided into three clusters. 

The first cluster consists of the lncRNA sequences involved in DNA or chromatin binding or 

transcriptional silencing activities. The second cluster contains sequences between 5 and 14 
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which have been associated with transcription, ubiquitination or in the import of transcription 

factor into nucleus. The third cluster contains less than 5 sequences which are associated with 

transcriptional regulation, protein targeting, histone modification and in the regulation of 

sequence-specific DNA binding. Based on this broad classification, a generalized functional 

association can be performed. 

4.2.13 Experimental validation of lncRNA functions from BMRF analysis 

Results of BMRF analysis in A. thaliana apical-shoot data were verified from the experimentally 

reported lncRNA function association data of A. thaliana. A summary of experimentally 

reported lncRNA-function association data presented by Liu et al. (2015) were used for 

validation of the results. Results from the experimental studies show that some of the lncRNA 

sequences such as, COLD ASSISTED LONG ANTISENSE INTRAGENIC RNAs (COOLAIR) 

and COLD ASSISTED INTRONIC NONCODING RNA (COLDAIR) has been found to be 

primarily involved in histone modifications via epigenetic regulation and promoter interference 

(Csorba et al., 2014; Kim, Xi and Sung, 2017). 

Experimental data also shows that certain lncRNAs found in A. thaliana, O. sativa and S. 

lycopersicum such as IPS1, Cis-NATPHO1;2, OsPI1 and TPS11 have been found to be involved 

in phosphate homeostasis as translational enhancer (Liu, Muchhal and Raghothama, 1997; 

Wasaki et al., 2003; Franco-Zorrilla et al., 2007; Jabnoune et al., 2013). ASCO-lncRNA found 

in A. thaliana was found to act as alternative splicing regulator in lateral root development 

(Bardou et al., 2014) whereas APOLO lncRNA has been involved in chromatin loop dynamics 

in auxin controlled development (Ariel et al., 2014). Furthermore, asHSFB2a lncRNA in A. 

thaliana has been found to be involved in vegetative and gametophytic development 

(Wunderlich, Groß-Hardt and Schöffl, 2014). 

Table 4.6: List of lncRNA sequences associated with experimentally verified molecular 

functions. 

Molecular Function GO Term Number of associated 
lncRNAs 

Average probability 
of association 

Cellular phosphate ion 
homeostasis 

GO:0030643 89 0.943 

Post-embryonic root 
development 

GO:0048528 30 0.803 

Chromatin organisation GO:0006325 402 0.002 
Chromatin silencing GO:0006342 1 0.963 
Developmental 
vegetative growth 

GO:0080186 156 0.967 
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The lncRNA-function association results from the BMRF analysis were verified by matching 

the GOTerms corresponding to the functions mentioned above. Results from the experimental 

verification analysis (Table 4.6) of the lncRNAs and molecular functions demonstrate that there 

is a reasonable number of matching lncRNA sequences with experimentally verified molecular 

functions. 89 lncRNA sequences were predicted to be involved in cellular phosphate ion 

homeostasis with an average probability of 0.943. Whereas only 30 lncRNA transcripts were 

found to be involved in post-embryonic root development. Dicot plants such as A. thaliana, Z. 

mays, H. vulgare and O. sativa consists of shoot-borne crown roots that branches sequentially 

and form a herringbone-like structure (Orman-Ligeza et al., 2013). The crown and lateral root 

formation in maize and barley includes post-embryonic developmental processes through 

which root nodes arise. 

Post-embryonic root development function association results show that 30 lncRNA sequences 

were found to be associated with probability of 0.803. However, none of the lncRNA sequences 

were predicted to have chromatin organisation function association. 402 lncRNAs were 

predicted with probability of 0.002. In contrast to GO:0006325 association, only one lncRNA 

(AT1G29785) was predicted to be involved in chromatin silencing with probability of 0.963. 

LncRNA sequences predicted to be associated with developmental vegetative growth showed 

a much higher proportion of 156 with average probability of 0.967. These results confirm that 

lncRNAs which are co-expressed along with protein-coding genes share a similar molecular 

function. 

Heatmap analysis of the molecular function association (Figure 4.19) shows that a large cluster 

of the genes are primarily associated with developmental vegetative growth (GO:0080186). 

The second largest cluster of genes is associated with cellular phosphate ion homeostasis 

(GO:0030643). These two clusters primarily have genes with higher probability values. 

Whereas the number of genes in the third cluster is much smaller with probability values 

ranging from 0.5 to 0.8. It can be observed that most of the genes share the same functions as 

the above-mentioned two GOTerms but some do not. 

To broadly specify a molecular function to the lncRNA genes, the molecular function having 

lowest associated lncRNA genes are given the higher preference. The second preference is 

given to the function having third highest number of genes. The number of genes associated 

in this cluster is subtracted from the genes present in the fourth cluster. For calculating gene 

association in the second cluster, genes are subtracted from the genes present in the third and 
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fourth clusters. Similarly, gene subtraction in cluster-1 is performed by subtracting genes from 

previous clusters. 

GO:0006342 consists of only one lncRNA gene (i.e. AT1G29785), therefore there is a higher 

probability of association. GO:0048528 consists of 30 genes and does not have any overlap 

with GO:0006342. Thus, 30 genes are associated with post-embryonic root development 

function. Genes belonging to GO:0030643 have 89 genes. Many genes have overlaps with 

GO:0048528, consequently an intersection of these genes is performed, and non-matching 

genes are extracted. Gene-function filter algorithm was implemented for separating the 

overlapping and non-overlapping clusters. From the analysis, genes associated with post-

embryonic root development and cellular phosphate ion homeostasis were compared. Since 

the algorithm finds the lowest number of gene-function association cluster, 30 genes were 

associated with post-embryonic root development. Based on the size of the gene-function 

association cluster, the algorithm selects the second smallest cluster and removes any 

overlapping genes matching with the cluster having smallest gene-function association (i.e. 

genes associated with embryonic root development). This resulted in 71 non-overlapping 

genes having role in cellular phosphate ion homeostasis. In the next iteration, the algorithm 

selected the genes associated with developmental vegetative growth. Removal of genes 

overlapping with “embryonic root development” and “cellular phosphate ion homeostasis” from 

the 156 gene-function cluster produced 128 genes functionally associated with developmental 

vegetative growth function. 
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c d 

Figure 4.19: Heatmap of lncRNA sequences associated with experimentally verified molecular 

function in A. thaliana dataset. The x-axis shows the GO terms and the y-axis shows the gene 

names. Function association is represented by dark blue colour. The complete heatmap is 

broken down to four maps (a – d). The genes are associated with molecular functions. Each 

molecular function is coloured represented by a specific colour. The legend in (d) provides 

description and association of each colour with the GOTerm. 
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Results from function prediction based on co-expression analysis are filtered based on higher 

correlation displaying association of lncRNA genes with several molecular and regulatory 

functions as well as demonstrating similarity with experimentally-published results. The 

analysis was undertaken for investigating function association based on Pearson correlation 

analysis. Since, determination of lncRNA and protein interactions are crucial for governing 

accurate biological functions, NRLMF analysis was conducted for deriving the LPI pairs. 

Results from NRLMF were compared against co-expression data, thereby providing degree of 

correlation between the results. 

4.2.14 Function prediction of the lncRNA sequences based on NRLMF and BMRF analysis 

For predicting the functions of the lncRNA sequences, a subset of 50 lncRNA transcripts and 

402 protein-coding sequences were selected from a pool of 478 known lncRNAs and 35343 

protein-coding sequences. For predicting the functions of lncRNAs, NRLMF analysis was 

conducted for obtaining physical interactions between lncRNA and protein-coding genes. A 

sequence similarity matrix was constructed between A. thaliana and H. sapiens sequences 

generating lncRNA-lncRNA and protein-protein similarity matrices as mentioned in Section 

2.13.1. From H. sapiens, the 50 lncRNAs and 402 protein-coding sequences were selected. 

An adjacency matrix was formed between the lncRNA and protein-coding genes (i.e. a 100 × 

804 matrix). 

Results from the NRLMF analysis generated 3192 interactions having scores between 0.8865 

and 0.1801. These were filtered to obtain the interactions between lncRNAs and protein-coding 

sequences in A. thaliana species. Based on a threshold value of 0.7, 184 novel interactions 

were obtained between 50 lncRNAs and 6 protein-coding genes having scores ranging 

between 0.7 and 0.8865. 

Correlation analysis of lncRNA and protein-coding co-expression data shows correlations ≥ -

0.5 for lncRNA sequences (Figure 4.20). Figure 4.20 illustrates relative expression of the 

NRLMF-derived lncRNA and protein-coding genes predicted to have interactions with scores 

> 0.8. The relative expression of genes suggests that most of the protein-coding genes were 

highly expressed during the transition phase (i.e. S9 to S13). LncRNA sequences on the other 

hand, displayed an increase in expression during the transition phase having peak value at S7-

S13 (Figure 4.20c–f). AT1G17255 and HTR12 (Figure 4.20a) exhibited unique expressional 

profiles producing opposite values at S7-S11, S7-S13 and S7-S14 samples. However, 
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AT1G17255 exhibits similar expression values for S7-S8, S7-S9, S7-S10, S7-S12, S7-S15 and 

S7-S16 which demonstrates co-expression during the majority of the floral transition period. 

a b 

AT1G17255-HTR12  AT1G01448-AT1G03230  

1 1 
0.9 0.9 

R
EL
A
TI
V
E 
EX

PR
ES
SI
O
N

 
R
EL
A
TI
V
E 
EX

PR
ES
SI
O
N

R
EL
A
TI
V
E 
EX

PR
ES
SI
O
N

 
R
EL
A
TI
V
E 
EX

PR
ES
SI
O
N

 

0.8 0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

00 

SAMPLES SAMPLES 

AT1G17255 AT1G01448 AT1G03230 

c d 

HTR12 

AT1G08592-KCS1  AT1G18415-GATL5  

1 1 
0.9 0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 

0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 0.2 

0.1 0.1 
0 0 

SAMPLES SAMPLES 

AT1G08592 KCS1 AT1G18415 GATL5 

232 



	
	

	 	

          

        

          

          

         

             

            

            

            

         

        

  

	 	

e f 

AT1G06265-SR34  AT1G04425-HTR12  

1 1 

0.9 0.9 

0.8 0.8 

0.7 

R
EL
A
TI
V
E 
EX

PR
ES
SI
O
N

 

0 

0.1 

0 

0.1 

R
EL
A
TI
V
E 
EX

PR
ES
SI
O
N

0.7 

0.6 0.6 
0.5 0.5 
0.4 0.4 
0.3 0.3 
0.2 0.2 

SAMPLES SAMPLES 

AT1G06265 SR34 AT1G04425 HTR12 

Figure 4.20: Relative gene expression of lncRNA and protein-coding genes predicted to have 

interactions in A. thaliana dataset. 

An analysis of the sequence similarities of lncRNA and protein-coding sequences in A. thaliana 

shows that highest similarities range between 51–56% for A. thaliana (lncRNA) and H. sapiens 

(lncRNA) (Figure 4.21a), and 50–59% for A. thaliana (proteins) and H. sapiens (proteins) 

(Figure 4.21b). The analysis was performed by matching single A. thaliana sequence against 

n HS sequences (where n=402). The H. sapiens sequence producing the highest similarity was 

selected and plotted on the scatter plot. The computation of LPI scores fundamentally depend 

on the highest matching similarity of lncRNA and protein sequences. Since the analysis has 

been performed on a subset of lncRNA and protein-coding sequences, a higher sequence 

similarity is likely to be observed on a much larger set of sequences. 

233 

http:Figure4.20


	
	

  

          

       

            

            

         

          

            

         

           

          

             

      

            

  

            

            

          

                

          

  

a b 

Figure 4.21: Scatter plots of sequence similarities in A. thaliana dataset. (a) lncRNA-lncRNA 

SSM plot, and (b) protein-protein SSM plot. 

Using the BMRF approach, function prediction for 50 lncRNA sequences was performed. A 

PPI matrix was constructed based on the protein-coding identifiers extracted from the LPI 

matrix which resulted in 1035 protein-protein interactions. The LPI and the PPI matrix were 

combined to generate a LPI-PPI matrix as mentioned in Section 2.12.3. Filtered protein-coding 

geneset from the LPI-PPI matrix was extracted and applied on the 251297 protein-GOTerm 

association data. This generated a total of 745 protein-GOTerm association values. The BMRF 

method was applied on the LPI-PPI matrix and the filtered protein-GOTerm association data 

which produced 5520 probabilistic GOTerm associations for the lncRNA sequences. 

Results from the BMRF analysis were filtered based on the probability values. 184 lncRNA-

GOTerm connections were obtained having association probability ≥ 0.8. The lncRNA 

sequences were found to be associated with two functions: (1) located in cytosol, and (2) 

located in nucleus. 

Results from the LPI analysis using NRLMF produced 184 interactions. Functions of the 

protein-coding genes shows that the majority of the genes are annotated with “located in 

cytosol ribosome”, “located in chromatin”, “located in nucleus”, “located in golgi appratus”, 

“located in plant type cell wall”, “located in response to salt stress” and “located in extracellular 

region” functions. Results from BMRF analysis shows that similar functions have been 

assigned based on protein-GO association data. 
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Another analysis for determination of LPIs and functions using BMRF was conducted with a 

different set of protein-coding genes for identifying intra-nuclear regulatory functions. 2434 

novel LPIs were obtained having score ≥ 0.7 where 50 lncRNA genes were found to interact 

with 75 proteins. Using protein-coding genes as IDs, 2481 PPIs were retained having 

interaction score ≥ 0.5. Altogether, 4914 relationships were produced containing lncRNA-

protein and protein-protein interactions. 

Figure 4.22: Heatmap of lncRNA sequences associated with functions in A. thaliana with 

probability above 0.7. Number of lncRNA sequences associated with the function type is 

represented by “value”. Lighter colours represent larger lncRNA association whereas darker 

colours represent lesser lncRNA sequences associated with a function type. 

From the BMRF function prediction analysis, 427 gene-function-probability associations were 

obtained. The gene-function association can be visualized through a heatmap of gene names 

and functions (Figure 4.22). Results demonstrate that all lncRNA genes were found to be 

located in nucleus, involved in heterochromatin assembly, involved in cell differentiation, 

expressed in nucleus and located in proteasomal complex with probability values ranging 

between 0.7 and 1.0 (Appendix A, Table A.1). Twelve genes were found were associated with 

“regulation of DNA replication”, “expressed only during cell proliferation”, “has sequence-

specific DNA binding transcription factor activity”, “cellular protein modification process”, and 

located in “proteasome regulatory particle”. Five lncRNA genes were found to be particularly 

associated with “vernalization response”, “histone methylation”, and “peptidase activity”. From 
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the BMRF analysis, function association can be derived which provides more insights into 

specific roles of lncRNAs in the genome. Additionally, AT1G15405.1 and AT1G10682.1 were 

found to be DE expressed during the floral transition phase. AT1G15405.1 was found to be 

associated with the following functions: (1) expressed in nucleus, (2) involved in cell 

differentiation, (3) involved in heterochromatin assembly, (4) subunit of proteasome complex, 

(5) located in chloroplast stroma, (6) located in nucleus, and (7) located in proteasome 

complex. Whereas AT1G10682.1 has been found to associated with the following functions: 

(1) expressed in nucleus, (2) functions in DNA binding, (3) has peptidase activity, (4) has 

sequence-specific DNA-binding transcription factor activity, (5) involved in cell differentiation, 

(6) involved in cellular protein modification process, (7) involved in histone H3-K9 methylation, 

(8) involved in mitotic spindle assembly checkpoint, (9) involved in regulation of cell cycle, (10) 

involved in DNA replication, (11) involved in vernalization response, and (12) located in 

proteasome complex. These function annotation results of DE lncRNA genes clearly 

demonstrates primary roles in transcription factor regulation and histone methylation of lncRNA 

AT1G10682.1. LncRNA AT1G15405.1 has been predicted to be located in proteasome 

complex which help in degradation of intracellular proteins. 

Results from the NRLMF-based LPI prediction demonstrates lower to moderate correlation in 

the co-expression of the genes. The results exhibit mismatch between the LPI pairs derived 

from the co-expression-based analysis and those derived from NRLMF analysis. This suggests 

that prediction of functions should not be made exclusively on the basis of co-expression-based 

analysis. To strengthen the function prediction approach, computing the LPI pairs is essential 

for increasing true positive LPI pairs and reducing false positive LPI pairs. 

4.2.15 LPI-PPI network analysis of A. thaliana apical-shoot dataset 

Regulatory network constructed for function prediction of lncRNA and protein-coding 

sequences were analysed using Cytoscape. Analysis of the 50 lncRNA and 402 protein-coding 

sequences was performed with Cytoscape to observe the distribution of nodes and connectivity 

of the edges in the regulatory network. To evaluate the node degrees in the network, 

Betweenness Centrality (BC), Closeness Centrality (CC) and node degree distribution were 

analysed. BC is a measure of centrality of nodes in the network (Prountzos and Pingali, 2013). 

It is equal to number of shortest paths that emerge from the nodes to other nodes in the 

network. BC reflects the amount of control a node exerts over the interaction of other nodes in 

the network. CC is a measure of centrality and is computed by the sum of shortest path length 

between the nodes in the network (Sabidussi, 1966). The centrality measures were computed 
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for each node in the network. The BC and CC values for each node were calculated for 

measuring the degree of closeness of each node and its interaction with other nodes in the 

network. 

Analysis of the network topology was compared to scale-free topology by fitting a power-law 

distribution. An examination of the node degrees in the regulatory network revealed a power-

law distribution with a slope of -0.925 and R2 = 0.674 (Figure 4.23). Correlation analysis of the 

number of nodes in the network exhibited a PCC of 0.957 (Figure 4.23a). This advocates that 

the nodes in the network follow the slope of the fitted power-law distribution with inverse 

proportionality i.e. the number of nodes decreases with increase in the degree. The node 

degree represents the number of connections of a node with other nodes in the network. This 

is represented by neighbourhood connectivity. It can be observed that greater proportion of 

nodes possess single connectivity to other nodes. Smaller proportion of nodes with degree > 

10 and < 100 have ~50-75 connections. These are called hub-nodes which regulate the 

expression of multiple genes and hence are crucial in the gene-regulatory network (Figure 

4.23a). Most connections have degrees between 1 and 10. This suggests that large number of 

nodes in the network have 3-4 interacting partners. Regulatory network of the lncRNA genes 

advocates that a single lncRNA gene interacts with protein. The protein regulates another 

protein with protein through binding or catalysis events. Thus single gene possess at least two 

to three interacting partners which can be observed from the node degree distribution analysis. 

237 

http:distribution.An


a 
D
eg
re
e 

300 

250 

200 

150 

100 

50 

0 
0 50 100 150 200 250 300 

Neighbourhood	connectivity 

	
b 

	
Figure 4.23: Illustrations of the regulatory network characteristics in A. thaliana dataset. The 

(a) node degree distribution and (b) shortest path length distribution of the regulatory network 

shown as independent plots.   

An analysis of shortest path length was conducted for measuring the average number of steps 

along the shortest paths in the network. The shortest path length data demonstrated that ~230 

edges have path length equal to 3.5, whereas relatively smaller number of edges displayed 

path lengths of 2-2.5. The network also produced edges possessing path lengths of 3 with 

frequency > 50 and < 100. These results indicate that approximately 2 – 4 steps are required 
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for traversal between the nodes. BC and CC analysis of the nodes in the LPI-PPI dataset can 

be observed from the Figure 6.1 The network produced BC values ranging between 0.0 and 

0.95 (Figure 4.24a) having an average BC of 0.475. It can also be seen from the graph that 2 

nodes displayed BC above 0.25 with BC of 0.28 and 0.94 exhibiting their central position in the 

network as compared to other nodes. CC analysis of the nodes displayed large cluster of nodes 

having CC between 0.25 and 0.55 (Figure 4.24b). As compared to CC, the BC values were 

much lower showing lower centrality. This demonstrates that the nodes possess less control 

over the other nodes and is comparatively have smaller number of inter-connections. The 

clustering of nodes is directly correlated with the correlation values obtained from the co-

expression data. The correlation values indicate greater percentage of protein-coding genes 

possess highly similar expression values, the CC values directly reflects the correlations. The 

smaller the CC value, the higher is the correlation, following an inverse proportionality.   
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Figure 4.24: Illustration of (a) betweenness centrality and (b) closeness centrality in ATH 

dataset. 

These results indicate that the co-expression regulatory network is similar to many biological 

networks which is well characterized by co-expression regulatory principles which 

distinguishes it from randomly generated networks (Nacher and Akutsu, 2007). 

4.3 Case study 2: Z. mays inbred line B73 RNA-seq dataset 

4.3.1 Identification of lncRNA sequences 

Prediction performance of the features extracted from the Z. mays B73 RNA-seq dataset was 

tested on the test set sequences. The test set contains 5022 transcript sequences. Out of 5022 

sequences, 50% of these are protein-coding (2511 sequences) and remaining 50% are lncRNA 

(2511 sequences). The training set consists of 13758 sequences, out of which 50% are protein-

coding (6879 sequences) and remaining 50% are lncRNA (6879 sequences). A Random Forest 

model was trained using iRF classifier. 400 RF were generated to predict the class for each of 

the test sequence. The 6879 lncRNA sequences included in the training set were extracted 

from the Refseq reference dataset. Whereas the 6879 protein-coding sequences were 

extracted from the RNA-seq dataset. 

Using the parameters mentioned in Section 2.8.1, 13758 sequences were trained using iRF 

classifier with 400 RFs. Prediction on 5022 test set sequences reveals an overall accuracy of 
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89.05%, sensitivity of 90.5%, specificity of 90.84%, F1-score of 88.84%, PPV of 90.5%, NPV 

of 87.69% and MCC of 0.78. 

4.3.2 Performance benchmarking results on Z. mays lncRNA sequences 

A 10-Fold CV analysis was performed on Z. mays B73 RNA-seq dataset to evaluate the 

prediction accuracy of the framework against the known CPC tools. 13758 training set 

sequences and 5022 test set sequences were used performing cross validation analysis. 

These sequences were concatenated to generate 18780 transcript sequences out of which 

9390 were protein-coding sequences and remaining 9390 were lncRNA transcript sequences. 

For creating the folds, 10% of the sequences were used for creating each fold which resulted 

in 1878 test set sequences and 16902 training set sequences. Prediction accuracy of each fold 

was benchmarked on the framework, PLEK, CPAT, lncScore and CPC2 tools. Since, lncScore 

failed to generate the prediction results, the performance benchmarking results of the 

framework were compared against PLEK, CPAT and CPC2 on the non-shuffled and the 

shuffled datasets. Therefore, lncScore has been excluded from the analysis. Based on the 

feature selection results obtained from LiRF-FS analysis, 31F feature set was used for 

performing benchmarking analysis. 

Results from the 10-Fold CV show that the prediction accuracy of the framework with 31 

features shows superior performance when compared against PLEK, CPAT and CPC2 on all 

the folds (Figure 4.25). In the D1 dataset (Figure 4.25a), Prediction accuracies of CPAT show 

2.79% difference on the first fold. On the second fold, this difference increases to 3.05%. 

Whereas prediction accuracy difference between the framework and PLEK is comparatively 

much higher with an average difference of 11.58% against the framework from Folds-1 to 7. 

However, folds-8 to 10 displayed smaller differences in accuracy with an average of 2.32%. 

In fold-8, the accuracy of the framework decreases from 97.55% to 93.23% whereas for CPAT, 

the accuracy also decreases from 95.6% to 88.37%. PLEK, however, shows an increase in the 

accuracy from 85.98% to 90.33%. Folds-9 and 10 do not show significant changes for the 

framework and PLEK, but the accuracy for CPAT decreases further to 80.32%. CPC2, on the 

other hand, exhibited lowest prediction accuracies in folds-1 to 7 with a mean value of 47.1%. 

The accuracies increased to 68.63% and 70.64% in folds 9 and 10 with accuracy differences 

of 51.14%, 37.06% and 22.42% against the framework. 
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Figure 4.25: Performance benchmarking of the framework using 10-Fold CV with 31 features 

against CPC tools on Z. mays B73 annotated (a) D1 non-shuffled dataset, and (b) D2 shuffled 

dataset. 
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Results from D2 dataset (Figure 4.25b) also demonstrate a higher performance of the 

framework when compared with PLEK, CPAT and CPC2 tools. With randomized dataset, the 

lncRNA sequences in the last three folds were evenly dispersed which resulted in non-deviating 

values in all the folds. Accuracy results obtained from the framework generated a least 

prediction accuracy of 94.78% in the first fold, where CPAT, PLEK and CPC2 generated 

accuracies of 92.49%, 87.27% and 50.74% respectively. CPC2 displayed slight increase in the 

accuracy in fold-2 with a value of 54.03%. However, the value decreased again in successive 

folds exhiniting a mean accuracy of 50.69%. The accuracy of the framework increased in the 

subsequent folds to 97.65% in fold-8 where other tools also showed the similar pattern. In fold-

8, a difference of 2.96% was observed between the framework and CPAT, whereas a 

difference of 8.44% was observed for the framework and PLEK. D1 dataset displayed an 

average accuracy of 95.93% for the framework, 87.12% for PLEK, 91.48% for CPAT and 

52.51% for CPC2 whereas D2 dataset exhibited an average of 96.24% for the framework, 

88.24% for PLEK, 93.33% for CPAT and 51.03% for CPC2. 
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Figure 4.26: Performance comparison of optimal features from LiRF-FS on Z. mays dataset. 

(a) D1 non-randomized dataset, and (b) D1 randomized dataset. 

Results from LiRF-FS were compared to evaluate the prediction performance of different 

feature sets in Z. mays dataset. Three feature sets, namely, 73F, 31F and 7F were compared 

amongst each other using 10-fold CV analysis on two datasets (Figure 4.26). Accuracy results 

demonstrate non-significant differences between the feature sets. However, minor deviation in 

accuracy can be observed between the accuracies obtained between these sets. Accuracy 

obtained from 31F feature set shows identical performance as observed by 73F whereas the 

accuracy from the 7F feature set shows marginal differences in some folds (Figure 4.26a). 

These differences can be noticed in folds-8, 9 and 10 where the difference of more than 1% 

occurs. 

The shuffled D2 dataset, however, shows a slightly dissimilar trend in contrast to D1 (Figure 

4.26b). The difference between the 31F and 7F ranges from 0.3% to 0.8% in folds-2 to 9. folds-

1 and 10 does not display any change in the accuracy between the different feature sets. 

Optimal features from the feature selection of 6-plants were implemented on Z. mays dataset. 

Resulting 7F and 31F feature set were extracted and labelled prediction was performed. 

Results from the Z. mays B73 RNA-seq dataset using 31F feature set suggests that the 

framework exhibited superior performance in predicting the lncRNA sequences in the non-

shuffled and the shuffled datasets. 
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4.3.3 Repeated K-Fold Cross-Validation analysis of Z. mays lncRNA transcripts 

As discussed in Section 4.2.8, a repeated 10-fold CV was performed on Z. mays Ensembl 

Genomes 39 AGPv4-annotated dataset to evaluate the predictive power and performance 

evaluation of the 31F feature set in the framework. Results from repeated 10-fold CV analysis 

(Figure 4.27) shows that the accuracy values fluctuated between 96.10% and 96.3% producing 

an average accuracy of 96.2%. The precision and recall values were comparatively higher 

generating values between 96.45% and 96.7%. The results clearly display that the framework 

identified the lncRNA sequences in Z. mays dataset with greater accuracy and precision in 

recognising true positive sequences. 

Figure 4.27: A repeated 10-Fold CV plots of Accuracy, Precision and Recall on Z. mays 

dataset. 
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Figure 4.28: Performance benchmarking of the framework using repeated k-fold CV against 

CPC tools on Z. mays lncRNA annotated dataset. Mean accuracy values are plotted with error 

bars representing standard deviation. 

Results from repeated 10-fold CV performed on Ensembl annotated sequences in Z. mays 

dataset shows relatively higher prediction accuracies of 96.27% by the framework. Whereas 

comparatively lower and stable accuracy values for CPAT were observed with maximum SD 

1.06 thereby displaying an average accuracy of 89.07%. PLEK displayed a mean accuracy of 

79.58% with an accuracy difference of 16.69% against the framework. Noticebly, in the third 

repetition, a larger SD was generated with accuracy values in the range 89.06±3.73%. CPC2 

exhibited lowest accuracy values among all the tools under comparison where an average 

accuracy of 59.92% was produced. An accuracy difference of 36.35% was observed between 

the framework and CPC2 thereby presenting highest accuracy differences and greater 

precision in identification of lncRNAs in Z. mays dataset. Comparison with lncScore was 

excluded as lncScore failed to generate the prediction results. Comparative analysis of 

repeated k-fold CV with 50 iterations (Figure 4.27) and benchmarking performance (Figure 

4.28) demonstrates that the accuracy of the framework fluctuates insignificantly with minute 

SD around the mean accuracy value. This pattern has been observed for other CPC tools also 

which is represented by a straight line. This validation test clearly indicates that with random 

selection of data, the prediction accuracy does not drop below a specific threshold value. 

Therefore, this test also provides a reliable measure for evaluating the performance when 

compared with other tools. 
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4.3.4 Sub-classification analysis of Z. mays lncRNA transcript sequences 

Using the PBC algorithm, sub-classification analysis of lncRNA annotated obtained from 

Ensembl Genomes 38 database (version AGPv4). 2511 lncRNA sequences were obtained 

from the annotated GTF file for sub-classification analysis. Results were obtained based on 

Rules-1 and 2 of the PBC. Results from the PBC have been presented in Table 4.7. 

Rule-1 results show that equal number of SOE and SOI sequences were classified. Identical 

results can be observed in the AOE and AOI classes where equal number of sequences were 

classified. However, the number of sequences is much less than the sense-overlap class. 

Compared to sense and antisense-overlap classes, 909 sequences have been classified as 

ANT class. Sequences classified in the BDP class is much less than that observed than the 

ANT class. Sequences classified as INT have the highest proportion of lncRNA sequences 

among all other classes. 

Rule-2 reveals a higher proportion of SOE and SOI classified sequences as compared to those 

obtained from Rule-1 by increase of 64 sequences. Whereas the same cannot be detected for 

the antisense classes (AOE and AOI). The show minor increase of 11 sequences. Sequences 

classified as ANT, INT and BDP does not differ as the rules are only applicable for the sense 

and antisense overlap classification. 

Table 4.7: Sub-classification statistics of the Z. mays B73 lncRNA transcript sequences based 

on Rule-1 and Rule-2. 

Rules SOE SOI AOE AOI ANT INT BDP 

Rule-1 55 55 13 13 909 1682 166 

Rule-2 119 118 24 24 909 1682 166 

It can be clearly observed that classification results obtained from the A. thaliana dataset does 

not show similar pattern as observed in Z. mays classification. Results from the A. thaliana 

classification indicated higher proportion of INT sequences whereas the proportion of 

sequences classified as INT sequences is much higher for Z. mays data. 

Results from the PBC approach were compared against the annotated lncRNA sequences 

from the Z. mays Ensembl Genomes 38 AGPv4 data (Figure 4.29). The database consists of 

2551 lncRNA sequences with varying sequence lengths (i.e. sequence length < 200 bp and ≥ 

200 bp). All 2551 sequences are annotated as lincRNA sequences. Individual chromosomal 
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comparison shows a higher proportion of matching sequences in all the chromosomes. 

Chromosomes 1, 2, 4, 6, 7 and 9 shows significantly higher number of matching lincRNA 

sequences with an average matching percentage of 93.71% using Rule-1 and 2. 

Chromosomes 3, 5, 8 and 10 exhibits an average match of 85.34%. Overall the matching 

proportion of lincRNA sequences between the PBC analysis and Ensembl annotated results 

show an overall accuracy of 90.86%. 
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Figure 4.29: Prediction performance of PBC on Z. mays AGPv4 data for identification of 

lincRNAs in individual chromosomes using Rule-2. 

Results from the PBC analysis validate the experimental results with higher accuracy in the Z. 

mays dataset. Prediction accuracy from the analysis also indicates that the PBC method is 

efficient and robust to the variations in the sequence data obtained from different plant species. 

Results demonstrated consistently higher accuracy in both the annotated lncRNA sequences 

obtained from public databases. 

4.3.5 Function prediction based on co-expression data 

2511 lncRNA sequences obtained from the Ensembl Genomes 38 AGPv4 database were 

extracted for BMRF function prediction analysis. Based on correlation of lncRNA FPKM values 

with the protein-coding genes, 2183 sequences were retained having non-zero FPKM values 
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in ≥ 70% of sample pairs with PCC ≥ 0.9 and PCC ≤ -0.9. The LPCS matrix consisted of 378 

lncRNA sequences having 38260 correlations with 5940 protein-coding genes. 

PPI matrix consisted of 13940 protein-protein interaction pairs. BMRF analysis of the correlated 

lncRNA sequences produced 353 GOTerms which were associated with 376 lncRNAs. By 

applying a probability cutoff of 0.8, 287 lncRNAs displayed high association probability with 

264 GOTerms. 

Figure 4.30: Heatmap of lncRNA sequences associated with experimentally determines 

functions in Z. mays B73 dataset. X-axis shows the lncRNA genes and the y-axis shows the 

function name. “Light blue” colour represents association and “dark blue” colour represents 

non-association. 

Heatmap analysis was performed for detecting lncRNA sequence association with 

experimentally-determined functions in Z. mays B73 dataset (Figure 4.30). Results 

demonstrate that 50 sequences have been found to play primary roles in protein targeting and 

in the regulation of translational fidelity (Table 4.8). 47 genes were found to be associated with 

“histone modification”, whereas, 42 genes were found to be involved in “RNA splicing”. 37 
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genes were annotated with “transcription from RNA polymerase III promoter”, whereas 18 were 

found to have association with “DNA-dependent transcription, initiation”. 

Table 4.8: List of non-DE genes associated with experimentally-determined molecular 

functions. 

Molecular function Number of associated lncRNA genes 
Protein targeting 50 
Regulation of translational fidelity 49 
Histone modification 47 
RNA splicing 42 
Transcription from RNA polymerase III promoter 37 
DNA-dependent transcription, initiation 18 

4.3.6 Function prediction of DE sequences based on co-expression data 

Results from the DE analysis was performed on the Z. mays B73 dataset. Significantly 

expressed sequences with q-values ≤ 0.05 were extracted in ≥ 4 sample pairs. 103 lncRNA 

sequences were found to be DE whereas 7631 protein-coding sequences were DE from a total 

of 7989 DE transcript sequences. 

LCPS and PPI matrices were constructed to obtain results of the function prediction. FPKM 

values of the 103 lncRNA sequences were compared against 7631 protein-coding sequences. 

By applying a correlation cutoff of ≥ 0.8 and ≤ -0.8, 74710 positive correlations and 22733 

negative correlations were obtained. Overall, 93 lncRNA sequences were found to be 

correlated with 6140 protein-coding sequences. This generated a total of 97443 correlations. 

A PPI matrix was generated by obtaining the DE protein-coding sequences and obtaining 

significant interactions between other protein-coding genes. From the STRING database, 42 

unique protein-protein interactions were obtained. 

BMRF function prediction analysis was performed on 93 lncRNA sequences to obtain 

molecular function association. Based on a probability cutoff of 0.8, 93 lncRNA sequences 

were annotated with three GO function types: molecular function, biological process and 

cellular component. 10 GOTerms were found to be associated with 93 lncRNA sequences, 

which are: biosynthetic process, cellular amino acid metabolic process, dopamine 

neurotransmitter receptor activity, intracellular, oxidation-reduction process, pyridoxal 

phosphate binding, ribosome, ribosome biogenesis, structural constituent of ribosome and 

translation. 
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Heatmap analysis of the lncRNA-function association (Figure 4.31) shows that the majority of 

the lncRNAs were associated with 8 functions except association with “cellular amino acid 

metabolic process” and “dopamine neurotransmitter receptor activity”. Oxidation-reduction 

process consisted of much larger set of genes compared to other functions. The remaining 5 

functions consisted of approximately 93 genes (Table 4.9). 

Table 4.9: List genes associated with functions in DE Z. mays geneset. 

Function Associated lncRNA genes 

dopamine neurotransmitter receptor activity 24 
cellular amino acid metabolic process 14 
oxidation-reduction process 57 
biosynthetic process 4 
pyridoxal phosphate binding 92 
intracellular 93 
ribosome 93 
translation 93 
ribosome biogenesis 93 
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Figure 4.31: Heatmap of lncRNA sequences associated with functions in Z. mays B73 dataset. 

The complete heatmap is broken down to three maps (a – c). The genes are associated with 

molecular functions. 
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4.3.7 Function prediction of the lncRNA sequences based on NRLMF and BMRF analysis 

For predicting the functions of the lncRNA sequences, a subset of 51 lncRNA transcripts and 

400 protein-coding sequences were selected from a pool of 2511 known lncRNAs and 131496 

protein-coding sequences. NRLMF analysis was conducted for obtaining physical interactions 

between lncRNA and protein-coding genes. A sequence similarity matrix was constructed 

between Z. mays and H. sapiens sequences generating lncRNA-lncRNA and protein-protein 

similarity matrices. From H. sapiens, 50 lncRNAs and 400 protein-coding sequences were 

selected. An adjacency matrix was formed between the lncRNA and protein-coding genes (i.e. 

a 100 × 800 matrix). 

2762 interactions were obtained ranging between 0.9054 and 0.1591. Out of 2762, 280 novel 

interactions were obtained with scores ≥ 0.7. Correlation analysis of lncRNA and protein-coding 

co-expression data shows correlations ≥ -0.5 for lncRNA sequences (Figure 4.32). Figure 4.32 

illustrates relative expression of the NRLMF-derived lncRNA (blue coloured) and protein-

coding (orange coloured) genes predicted to have interactions with scores > 0.7. The relative 

expression of genes suggests that most of the protein-coding genes displayed variable 

expression when compared with lncRNAs during the growth phase. Protein-coding genes 

showed relatively lower expression whereas lncRNAs exhibited higher expression during 

Days-2 to 8 and Days-12 to 20 for Zm00001d001235, Zm00001d000547 and 

Zm00001d027131 (Figure 4.32b, c and f). Zm00001d026729 (lncRNA) Zm00001d030402 

(protein) showed similar profile generating PCC of 0.53. Results advocate that coexpression 

of lncRNA and protein-coding genes were particularly observed on Days-0, 2, 8 and 10 with 

significantly higher expression of both lncRNA and proteins. 
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Figure 4.32: Relative gene expression of lncRNA and protein-coding genes predicted to have 

interactions in Z. mays B73 dataset. 

As discussed in Section 4.2.14, sequence similarity in the scatter plot was computed by 

matching the one Z. mays sequence against n H. sapiens sequences (n=400) (Figure 4.33). 

The highest matching H. sapiens sequence was selected as having highest similarity. Scatter 

plots of the sequence similarities for Z. mays lncRNA sequences range between 50–58% 

whereas for protein-coding genes, the similarities lie between 52–57%. As mentioned 

previously, the computation of LPI pairs was performed on a smaller subset of data for 

evaluation and demonstration of function prediction approach using NRLMF, a larger set of 

sequences should yield higher sequence similarities. 
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Figure 4.33: Scatter plots of sequence similarities in Z. mays dataset. (a) lncRNA-lncRNA SSM 

plot, and (b) protein-protein SSM plot. 

Results from the BMRF analysis of the LPI interaction data obtained from NRLMF analysis 

produced function association with “ATP binding” for LPIs with scores ≥ 0.7. Filtering the LPIs 

with scores ≥ 0.5 generated in association of cellular component (CC) and biological process 

(BP) functions to the lncRNA genes. These were found to be associated with “integral to 

membrane” and “oxidation-reduction process” functions. 

Another analysis was conducted with dissimilar protein-coding sequences to obtain additional 

functions of lncRNA sequences. NRLMF analysis generated 182 novel LPIs with scores ≥ 0.7 

where 8 proteins were found to interact with 51 lncRNAs. 9191 PPIs were obtained from the 

protein-coding genes in LPIs. BMRF analysis generated 182 gene-GOTerm association with 

51 genes. However, all 51 genes were found to be associated with “ATP binding” molecular 

function having probability values of 1.0. Out of 51 lncRNAs, Zm00001d026838 and 

Zm00001d001466 were found to be DE. 

The protein-coding genes predicted to have stronger interaction with the lncRNA sequences 

are involved in the regulation of protein metabolic process, post-translational protein 

modification, transcription regulator activity, intracellular functions, DNA-dependent 

transcription initiation, ligand-activated sequence-specific DNA binding RNA polymerase II 

transcription factor activity, ribosome, structural constituent of ribosome, translation and 

response to freezing. A comprehensive review on the analysis of lncRNA cellular 
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mechanisms/functions provide an insight into the type of lncRNA-protein interactions and 

regulatory functions (Signal, Gloss and Dinger, 2016). These functions associated with the 

protein-coding genes imply similar functions of lncRNAs with regulatory mechanisms in 

transcriptional and translation activities. 

4.3.8 LPI-PPI network analysis of Z. mays B73 dataset 

An examination of the node degrees in the LPI-PPI regulatory network shows the power-law 

distribution with a slope of -0.827 and R2 = 0.537 (Figure 4.34a). Correlation analysis of the 

number of nodes in the network exhibited PCC of 0.964. The node degree distribution shows 

that 250–3000 nodes were found to be connected to 2–30 neighbouring nodes. Higher PCC 

and R2 value indicates that the data fitted across the power-law slope shows higher goodness 

of fit. From the Figure 4.34a, 1492 nodes were found to be connected to ~9 nodes, whereas 

5589 and 1427 nodes were found to be connected to ~1–2 neighbouring nodes. The gene 

regulatory network demonstrates that the network consists of single connections. However, 

fewer nodes with multiple connectivity were also identified which could potentially regulate the 

activity of other nodes/genes and could thus serve as important regulators in the biological 

process. 

Betweenness Centrality (BC) and Closeness Centrality (CC) analysis (Figure 4.35) of the data 

demonstrated higher degree of neighbours displayed BC between 0.0 and 0.95 whereas the 

CC values ranged between 0.25 and 0.5. The CC values clearly demonstrate large percentage 

of shortest paths between the nodes and all the other nodes in the network. The centrality 

measures obtained in Z. mays are identical to those centrality values obtained in A. thaliana 

LPI-PPI data. The distribution of the shortest path lengths (Figure 4.34b) reveals path length 

of 2.5 for majority of nodes connected in the network. This shows that the genes are highly 

interconnected regulating the expression of other genes. This shows that the lncRNA and 

protein-coding sequences regulate each other with a higher degree. The BC and CC profiles 

produced for the Z. mays dataset also displayed similarity and indicates greater similarity to 

many biological networks. 
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Figure 4.34: Illustrations of the regulatory network characteristics in Z. mays data. The (a) 

degree distribution and (b) shortest path length distribution of the regulatory network shown as 

independent plots. 
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Figure 4.35: Illustration of (a) betweenness centrality and (b) closeness centrality in Z. mays 

data. 

The centrality measures obtained from the LPI-PPI network demonstrates the closeness of the 

nodes and higher degree of connectivity between them. The high degree of connectivity 

indicates that a lncRNA gene can regulate more than one protein-coding genes or vice versa. 

The results obtained from the LPI-PPI network analysis clearly exhibits the non-randomness 

of the network connectivity and higher similarity to biological networks. 
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4.4 Summary 

In this chapter, two case studies have been conducted. The first case study involved 

identification of novel flowering genes from the RNA-seq A. thaliana apical-shoot dataset based 

on significant expression of genes during the flowering transition phase. The case study also 

involved demonstration of the use of computational framework in accurate classification and 

function prediction of lncRNA genes from the consensus transcript sequences. The second 

case study was focused on identification and function prediction of lncRNA genes from B73 Z. 

mays dataset. The performance of the framework was evaluated and compared against other 

state-of-the-art tools with varying lncRNA transcripts obtained from PLncDB and Ensembl 

databases. Results of the performance evaluation of the framework have been presented on 

lncRNA prediction and sub-classification. Results from the function prediction of lncRNA genes 

in Arabidopsis and Maize species were discussed. Filtration and validation of the function 

prediction results were comprehensively presented. 
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CHAPTER 5: VISUALISATION 

5.1 Introduction 

This chapter presents the results of a Javascript-based web application for visualisation of 

lncRNA sequences derived from RNA-seq datasets. It discusses the results of the visualisation 

and intermediate results obtained when producing the input files. 

5.2 Visualisation of lncRNA sequences from RNA-seq datasets 

For development of visualisation application for lncRNA sequences derived from RNA-seq 

datasets, lncRNA sequences were annotated using PBC and BMRF approaches. Table 5.1 

shows the resulting lncRNA annotation file. Results from the analysis consists of transcript ID, 

chromosome number, start and end positions of lncRNA sequence, gene name, strand (sense 

(‘+’) or antisense (‘-’)), chromosome length, lncRNA sub-class (i.e. gene type) and gene 

function. 
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Table 5.1: lncRNA annotation file from PBC sub-classification and BMRF approach. 

Transcript 
ID chr start end Gene name strand length Gene type 

Function 

AT1G01448 1 163431 166239 AT1G01448 + 30427671 
Bidirectional 
promoter 

involved in 
glycoprotein 
catabolic	 
process 

AT1G02952 1 665354 666367 AT1G02952 + 30427671 

AntiSense 
Overlap 
Exonic 

located in 
mitochondrial 
respiratory 
chain 

AT1G04295 1 1147781 1148435 AT1G04295 + 30427671 
Bidirectional 
promoter 

involved in 
negative 
regulation of	 
translational 
initiation 

AT1G07119 1 2184347 2186539 AT1G07119 + 30427671 

AntiSense 
Overlap 
Exonic 

required for	 
nuclear-
transcribed 
mRNA 
catabolic	 
process 

AT1G07728 1 2395461 2397345 AT1G07728 + 30427671 

AntiSense 
Overlap 
Intronic 

has L-
tyrosine:2-
oxoglutarate 
aminotransfer 
ase	 activity 

AT1G09421 1 3038631 3039326 AT1G09421 + 30427671 

AntiSense 
Overlap 
Intronic 

located in 
intracellular 
membrane-
bounded	 
organelle 

Annotated results were used an input for producing CSV file. The “format_annotation.py” script 

was used for producing D3-specific sequence annotation file for each chromosome (Figure 

5.1). These individual files were used by the “index.html” file for producing the visualisation. As 

described in Chapter-2 Table 2.11, the visualisation was constructed using D3.js Javascript 

library to produce a user interactive “index.html” webpage. 
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Figure 5.1: D3-specific lncRNA annotation data for visualisation. 

The results of the graphical visualisation can be observed in Figures 5.2, 5.3, 5.4 and 5.5 which 

demonstrates the visualisation of several lncRNA sub-classes. Figure 5.2 shows the overall 

view or zoomed-out chromosomal views of chromosomes-1 and 4. This view provides an 

overall picture of the several lncRNA sequences and their positions on the chromosomes. It 

can be observed that the lncRNA sequences are scattered across the chromosome. The 

picture shows relative alignment of lncRNA sequences which displays: 

(1) Intergenic lncRNA represented by brilliant arctic blue, 

(2) Antisense lncRNA represented by blue violet colour, 

(3) Antisense overlap exonic represented by burly wood colour, 

(4) Antisense overlap intronic represented by chartreuse colour, 

(5) Sense overlap exonic represented by dark cyan colour, 

(6) Sense overlap intronic represented by dark blue colour, 

(7) Bidirectional promoter represented by black colour. 

It shows how several lncRNA classes are relatively aligned on the chromosome. 

The current graphical implementation provides graphical visualisation on a single track thereby 

merging protein-coding RNAs and lncRNAs into single layer. 
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Figure 5.2: Visualisation of A. thaliana annotated lncRNA sequences showing chromosomal 

view of (a) chromosome 1, and (b) chromosome 4. 

The D3-based graphical application also provides sequence view visualisation and annotation 

of lncRNA sequences. Figure 5.3 displays a zoomed-in view of chromosome-1 genomic 

sequence. The view shows the capability of the application to display the annotation 

information. Figure 5.3a shows the gene name/transcript ID whereas Figure 5.3b shows the 

complete annotation information of the gene. When the user hovers over the sequence, the 
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gene name “AT1G54355” is displayed and the sequence is represented by orange colour. 

Upon right click on the sequence, complete annotation information is generated and exhibited 

which shows gene type as “Antisense RNA”, gene name as “AT1G54355” and function as 

“located in chloroplast nucleoid”. 

The visualisation also provides a navigational coordinate view and coordinate view. The 

navigational view can be observed above the sequence view whereas the coordinate view can 

be observed below the sequence view. The navigational view is displayed by a small grey box 

between the genomic coordinates 18,000,000 bp and 22,000,000 bp. The grey box denotes 

the navigation box which can be navigated across the chromosome whereas the coordinate 

view exhibits the start and end coordinates of the grey box. The coordinate view displays the 

sequence starting from 19,700,000 bp to 21,300,000 bp. 
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Figure 5.3: Visualisation of A. thaliana lncRNA sequences showing (a) semi-annotation of 

AT1G54355 sequence on chromosome 1, and (b) functional annotation of AT1G54355 

sequence on chromosome 1. 

As the user navigates the grey box, the sequence-view and coordinate view changes 

proportionately. The grey box can be resized to view a much larger portion of the genome 

which can be seen from the Figure 5.4. The screenshot illustrates that by resizing the grey 

navigational box, the sequence coordinates dynamically changes. The view also displays the 
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antisense overlap intronic, exonic and bidirectional promoter sequences represented by their 

respective colours. 

Figure 5.4: Visualisation of A. thaliana lncRNA sequences showing zoomed-in view of 

chromosome-4. 

Another feature of the visualisation application can be observed from Figure 5.5 which shows 

the relative alignment of sequences when the sequence is zoomed. Since the application 

constructs the visualisation based on sequence coordinates, a clustered view can be observed 

which places other lncRNA classes alongside Figure 5.4a. However, to observe an individual 

sequence, additional zoom is required which provides an independent sequence view Figure 

5.5b. From the results, it can be clearly observed that intergenic lncRNA represented by brilliant 

arctic blue is aligned next to antisense overlap and bidirectional promoter sequences. Since 

the distance between the sequences are less, a discrete sequence view cannot be observed. 

When the sequence is zoomed-in, an independent view can be produced. Figure 5.5b shows 

the lincRNA sequence “AT1G69252” annotated with adenosine kinase activity function.  
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Figure 5.5: Visualisation of A. thaliana lncRNA sequences showing (a) lincRNA sequence on 

chromosome 1, and (b) Antisense RNA sequences on chromosome 2. 

5.3 Summary 

A major challenge in the analysis of RNA-seq data is the identification of lncRNA sequences 

among the plethora of RNA transcripts. With the advent of NGS technologies, RNA-seq 

experiments have led to an increase in the catalogue of lncRNA sequences. Despite this, 

visualisation and interpretation of the RNA-seq data still represents an unresolved challenge 
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for the researchers looking for identification and functional characterisation of lncRNAs. 

Furthermore, a wide range of targeted softwares/tools have been developed for the 

visualisation of RNA-seq data, however, there has been significantly less emphasis on the tools 

responsible for visualisation of lncRNAs harboring functional annotation. 

Currently, there are number of tools available for visualisation of specific aspects of the data 

which can be broadly classified into three categories: (1) Track-based, (2) network-based, 

and (3) data analysis based. Track-based tools such as UCSC genome browser (Kent et al., 

2002), IGV (Thorvaldsdóttir, Robinson and Mesirov, 2013), Ensembl (Fernández-Suárez 

and Schuster, 2010), GBrowse (Stein, 2013) and Artemis (Rutherford et al., 2000) allow 

visualisation of mapped sequence reads, mutations and polymorphisms and continuous-

value characteristic data such as DNA methylation, ChIP-Seq enrichment data, etc. Usage 

of track-based tools is practically limited by the screen space available. Since, most of the 

developed tools are web-based and Java-based desktop applications, the applications do 

not require higher computational resources. On the other hand, network-based tools such 

as Cytoscape (Shannon et al., 2003) allow generation of two-dimensional or three-

dimensional representations of the interactions, thereby providing flexibility to overlay gene 

expression data. Data analysis based tools offer integrated analysis and visualisation of 

RNA-seq data such as iSeq (Zhang et al., 2018) and BrowserGenome.org (Schmid-Burgk 

and Hornung, 2015). Overall, while all the tools described above can be useful for 

visualisation and analysis of RNA-seq data typically rely on the availability of current lncRNA 

prediction tools for lncRNA identification and visualisation. Moreover, majority of the tools 

fail to provide comprehensive functional annotation of lncRNA genes. Therefore, tools that 

allow visualisation of annotated lncRNA sequences are still lacking. 

To address the above-mentioned factors with genome-wide exploration and annotation of 

lncRNA sequences, the computational framework integrates a Javascript application which 

allows visualisation of lncRNA sequences with annotated information. The annotated 

information includes gene name, gene type, sub-class and molecular/regulatory function. 

The application is similar in functionality to currently available genome browsers such as 

UCSC Human Genome Browser. Current implementation of the application includes easier 

identification of various lncRNA sub-classes represented by various colours, easier 

navigation of and visualisation of individual chromosomes, chromosomal navigation 

functionality allowing visualisation of individual genomic segments. The application merges 
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the protein-coding RNAs and lncRNA sequences into single layer or <div> element, due to 

which multiple samples cannot be visualised on a single track. 

The application directly integrates the annotation information generated from the PBC 

classification and BMRF analysis through a Python application, which creates a D3.js 

compatible web-based format. The output CSV file can then be used by the Javascript 

application for conversion to visual elements. The application offers several advantages 

over other applications. First, the application does not require higher computational 

resources and is light-weight since it is developed on a D3 Javascript platform which can be 

executed on a single core CPU-based system with browser-based environment. Second, 

the application does not integrate reference genomes for visualisation. Usage of reference 

genomes drastically increases the computation times for generation of graphical elements. 

The application however, retrieves the chromosomal coordinates and creates a scale for 

individual chromosomes based on its length. Third, the application colours various lncRNAs 

according to the sub-class which helps in easier identification and interpretation. Fourth, 

since the application creates a visualisation based on Python and Javascript scripts, the 

application can easily be downloaded and exported to another system. Fifth, the application 

can easily display data from other organisms (i.e. plants, bacteria, mammals, etc.) with 

appropriate user-provided annotation. 
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CHAPTER 6: DISCUSSION 

6.1 Introduction 

This chapter presents a general discussion on the work and also discusses briefly the impact 

of the framework in lncRNA identification, classification and function prediction in RNA-seq 

datasets. This study recognizes accurate identification of lncRNA sequences as an important 

component for sub-classifying and predicting their molecular regulatory mechanisms. It also 

acknowledged that identifying the optimal set of features is essential for accurate identification. 

On this backdrop and given the fact that lncRNA sequences can be identified from a mixed set 

of protein-coding and non-coding sequences, several sequence and codon-bias features were 

used for construction of machine learning feature groups. Features were extracted from FASTA 

sequences. Using a feature optimisation method, an optimal feature set was extracted. The 

optimal feature sets were used for identifying lncRNA transcript sequences from protein-coding 

sequences. 

The research employed a PBC algorithm for sub-classification of lncRNA sequences based on 

genomic coordinates. Results of the PBC algorithm were validated against the known lncRNA 

genomic annotations. Nevertheless, a function prediction algorithm was developed which 

employed a Bayesian network approach for predicting the regulatory mechanisms. Application 

of the tools and methods developed were applied on two plant RNA-seq datasets for 

comparison of developed methods with known coding potential computation tools. 

6.2 Overview of the lncRNA identification approach 

The present study introduced a computational framework for accurate identification, 

classification and function prediction of lncRNA sequences in plant RNA-seq datasets. An 

ensemble of 73 sequence and codon-bias features were constructed based on features 

identified in published experimental studies (Clarke, 1970; Fickett, 1982; Ikemura, 1982; Sharp, 

Tuohy and Mosurski, 1986; Karlin and Mrázek, 1996; Suzuki, Saito and Tomita, 2004; Wan et 

al., 2004; Roymondal, Das and Sahoo, 2009; Amit et al., 2012). The numerical features were 

constructed by extracting the data from individual FASTA sequence. The computational 

framework employed a feature optimisation method called LASSO-iterative Random Forests 

Feature Selection (LiRF-FS) for identifying an optimal feature set from training and validation 

sets. Using multiple FASTA sequences consisting of protein-coding and lncRNA genes, a 

feature matrix of 73 features and a binary class label was constructed using the feature 

extraction module of the framework. 
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LASSO employs a ℓ1-regularisation approach which leads to the generation of sparse features. 

At each value of λ, non-zero beta coefficients are generated which corresponds to the selection 

of features. LASSO shrinks the less important feature’s coefficients to zero which leads to 

removal of zero coefficient features from the corresponding feature set. The beta-coefficient 

values are calculated on each λ value. The selected features at each λ are iteratively tested on 

the validation set matrix to compute the prediction accuracy of identification of lncRNA 

transcripts from protein-coding transcripts. The optimal feature set is obtained by selecting the 

feature set that produces the prediction accuracy between the tolerance accuracy value and 

the maximum prediction accuracy value. The LiRF-FS algorithm integrates the ℓ1-

regularisation approach of LASSO with an iRF classification algorithm on every single λ value 

based on four parameters: λ`abFJ, λIccFJ, λdHFc*defF and 3456789:6. λ`abFJ and λIccFJ defines 

the lower and upper limits of λ values whereas λdHFc*defF defines the step size between each λ 

value. Tolerance defines the threshold value for selection of λ value. Based on maximum 

prediction accuracy, the algorithm constructs an array of λ values and searches for minimum 

and maximum number of features having prediction accuracy between the tolerance value and 

maximum prediction accuracy value. 

For obtaining the optimal feature set in plant species, training and validation sets were 

constructed from 6-plant species: A. thaliana, B. napus, B. rapa, B. oleracea, Z. mays and O. 

sativa. Non-zero g-coefficient values generated on training set sequences were used for 

iteratively predicting the lncRNA and protein-coding sequences in validation set on each λ 

value. The algorithm generated a liver-shaped plot (Figure 3.9) with accuracy values of the 

primary vertical axis, feature set on the secondary vertical axis and λ values on the horizontal 

axis. Based on a tolerance value of 0.5, the algorithm selected two optimal feature sets 

consisting of 7 and 31 features. Whereas for the mammals, the algorithm produced 11 and 21 

features with a peak accuracy values of 90.37%. The LiRF-FS method selected hexamer score, 

mean ORF coverage, ORF coverage, Fickett score, Fop, RCB and SCUO features in both the 

feature sets. The method additionally selected 5 codon-bias features and 10 RSCU codon-bias 

features along with 7 sequence-based features. 

Optimal features selected using the LiRF-FS method were used for identification of lncRNA 

transcripts in the A. thaliana and Z. mays RNA-seq datasets. The lncRNA sequence prediction 

was performed using an iRF classifier with 73F, 7F and 31F feature sets and benchmarked 

against popular CPC tools. Benchmarking was performed using a 10-fold CV and repeated 10-

fold CV. Results from the lncRNA prediction on both datasets demonstrated comparable 
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performance of the 31F and 73F feature sets, whereas a slightly lower prediction performance 

of the 7F feature set on the A. thaliana EST (Figure 4.11) and Z. mays B73 (Figure 4.26) 

datasets. The prediction accuracy of the 31F feature set in both the datasets produced higher 

accuracy values on some folds. Improved prediction performance of the 31F feature set 

indicates preferential selection of codon-bias RSCU features in 31F feature set. The 31F 

feature set also selected all the sequence and ORF-based features along with RSCU features 

which suggests that ORF length, ORF coverage, GC content, Hexamer score and Fickett score 

are important discriminating features for identifying the lncRNA sequences from coding and 

other non-coding sequences. 

6.3 Performance of the features for lncRNA identification 

The potential of lncRNA identification using sequence and codon-bias features was measured 

on 8 plants and 2 mammalian datasets. The prediction of test set sequences was performed 

using an iRF classifier and compared against RF and SVM classifiers. The results demonstrate 

similar performance metrics of iRF and RF classifiers, whereas a slightly lower metric values 

were observed using the SVM. Comparison of accuracy, precision, sensitivity and F1-score 

exhibit lower performance of SVM in B. Napus, B. rapa, B. oleracea, H. sapiens, M. musculus 

and 6-plants datasets. However, comparison of computational speed in the model training step 

demonstrates better performance of SVM than the iRF and RF classifiers. The prediction using 

RF classifier relies on random generation of several decision trees. Since the iRF classifier 

iteratively produces 9 decision trees in each iteration, the time required for model training will 

proportionately increase with an increase in the number of iterations. Results from the iRF 

classifier prediction indicates similar prediction accuracies when compared to those obtained 

from the RF classifier. 

Analysis of the AUC scores using iRF classifier in the plant and mammalian species showed 

higher true positive rate in plant species generating average AUC of 99.23. An average AUC 

of 96.82 was produced in H. sapiens and M. musculus species indicating greater accuracy in 

lncRNA identification as compared to mammalian species. 

The iRF classifier implements an RIT function (Shah and Meinshausen, 2014; Basu et al., 

2018) for determining prevalent feature combinations/interactions in genomics datasets. The 

method was implemented for identifying feature combinations in 6-plants and 2-mammalian 

species. Results from the RIT analysis can potentially provide the selection of important 

features for the identification of lncRNA sequences. The analysis produced maximum of 5 
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feature combinations in both datasets in which higher order feature combinations generated 

greater prediction accuracy values (Figure 3.6) as compared to lower order feature 

combinations. The analysis suggested ORF length, ORF coverage, Fickett score, RCB and 

SCUO predominantly produced higher accuracy in plants, whereas Hexamer score, ORF 

length, Fickett score and CGGRSCU produced higher accuracy in mammals. Removal of the 

features from the combination produced significantly lower accuracy values on order-3 and 

order-2 combinations. Since, RIT suggested an ensemble of feature combination, it failed to 

generate higher order combinations. This limits the analysis to detection of order-5 

combinations due to which potentially significant features remains hidden. However, the 

analysis suggested a list of features required for lncRNA identification. 

The performance of individual features was also measured using the iRF classifier to identify 

its prediction performance in plants and mammalian datasets (Figure 3.7). Results from the 

individual feature performance produced similar features obtained from RIT analysis. In 

addition, it generated a comprehensive map of individual prediction accuracies. The bar chart 

displayed higher accuracy values with several RSCU features in mammals. Selection of 

synonymous codon-bias features suggests that lncRNA prediction in mammalian datasets 

primarily depends on the frequency of synonymous codons observed in the transcript 

sequences. Whereas, in plants, identification of lncRNA sequences does not require selection 

of codon-bias features. 

Based on LiRF-FS feature selection, frequency of selection of individual features across 

various λ values was observed for correlating the frequency of features having non-zero 

coefficient values with selection of optimal features (Figure 3.14). From the frequency analysis, 

three clusters were obtained having features with different frequency ranges. Results from the 

analysis generated the majority of sequence-based features with highest frequency values in 

plants and mammals dataset, whereas RSCU codon-bias features were selected with 

moderate and lower frequencies. In both species, hexamer score, ORF coverage, mean ORF 

coverage, transcript length and Fickett score were found to have been commonly selected. 

Apart from the sequence-based features, certain commonly selected codon-bias features, 

namely, RCB, CUB, SCUO and GGGRSCU also displayed higher frequencies. Analysis of 

cluster-2 revealed 25 features with moderate frequencies which included GC content, 

GTGRSCU , CCGRSCU , TACRSCU , CACRSCU , AAARSCU , GACRSCU and TGGRSCU commonly found in 

plants and mammals. Cluster-3 contained 30 RSCU features with lower frequency in multiple 

species. Twelve out of 30 features were found to have been commonly selected in both the 
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species. Frequency of the features with non-zero coefficient values indicates higher selection 

of sequence-based features as compared to codon-bias features. 

From the LiRF-FS feature selection analysis on 6-plants and 2-mammals data, several optimal 

sequence and codon-bias features were obtained with a maximum number of optimal features. 

The selection of optimal features in the LiRF-FS approach is based on the accuracy of lncRNA 

prediction in validation set transcript sequences. Other feature selection methods such as 

mRMR, Chi-square, Information Gain and UDFS, assigns relevance score or rank to each 

feature by considering each feature separately, due to which dependency between the features 

is ignored during model fitting. This leads to poor generalisation and over-fitting. Whereas 

feature selection from the iRF-RIT method provides limited knowledge of feature combinations. 

Results from LiRF-FS feature selection and the application of selected features on prediction 

of lncRNA sequences extracted from RNA-seq datasets, demonstrated its wider application as 

well as potential to predict long non-coding RNA sequences in multiple plant species. The LiRF-

FS method computes the beta coefficient values of the features on each λ value. Selection of 

the optimal features is also based on its speed of shrinkage. The faster the shrinkage of the 

coefficient values toward zero, the less likely are their chances of selection in the final feature 

set. This is attributed to the diamond-shaped constraint region of the LASSO regression (Figure 

3.11). Whereas Ridge regression does not allow the shrinkage of the beta-coefficient values to 

zero due to its circle-shaped constrain region. The non-zero shrinkage behavior of Ridge 

regression prevents identification of optimal features. The trace path analysis of the coefficient 

values in 6-plants and 2-mammals species exhibits the points of beta-coefficient shrinkage 

(Figure 3.12). The majority of the features selected in the optimal feature set has been selected 

with |coef|/max|coef| values closer to zero. Features with greater |coef|/max|coef| values often 

do not get selected. This shows that the feature selection can also be derived based on 

frequency of shrinkage of coefficient values. 
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6.4 Performance of the framework against CPC tools 

The prediction accuracies obtained from performance bechmarking on reference datasets 

demonstrates comparable performance with the other CPC tools. Since the CPC tools were 

primarily designed and their performance was validated on GENCODE, NONCODE and 

Refseq datasets, the accuracy values confirm their performance on these datasets. In contrast, 

the performance of the framework was at par with the state-of-the-art CPC tools displaying 

higher accuracy values on plant datasets. 

The performance of the computational framework for prediction of lncRNA test set sequences 

was benchmarked against popular and powerful coding potential computation tools: CPAT, 

lncScore, PLEK and CPC2. To evaluate the robustness of the prediction accuracy of the 

framework, lncRNA sequences were extracted from several different sources. Transcript length 

distribution of TAIR10-annotated and EST-derived lncRNA transcripts demonstrate the degree 

of sequence length variation in lncRNA transcripts (Figure 4.8). Sequences derived from the 

TAIR10 annotation data ranges between 200 bp and 8000 bp whereas sequences derived from 

EST analysis ranges widely between 200 bp and 7.8×10+ bp. Additionally, ORF count of EST-

lncRNA sequences reveal counts greater than 700 ORFs per frame. Such extremely long 

lncRNA sequences are generally misclassified as protein-coding transcripts, due to which the 

overall prediction accuracy decreases. 

The efficiency and robustness of the framework was tested by predicting the test set sequences 

in shuffled and non-shuffled datasets. Results from the 10-fold CV benchmarking on the A. 

thaliana and Z. mays datasets indicate that the 31F set obtained from the LiRF-FS approach 

outperformed other tools with greater precision in identifying the lncRNA transcripts. The 31F 

set demonstrated an average difference of 14.6% with PLEK, 22.7% with CPAT, 9.2% with 

lncScore and 28.47% with CPC2 on A. thaliana TAIR10 D2 dataset. Both state-of-the-art tools, 

CPAT and CPC2 exhibited lowest prediction accuracies of 55.51% and 49.75% respectively, 

thereby exhibiting poor prediction performance on the TAIR10 and EST datasets respectively. 

EST datasets exhibited an average difference of 14.48% with PLEK, 22.61% with CPAT, 

13.45% with lncScore, and 26.75% with CPC2. The overall prediction accuracy difference 

ranged between 9% and 30% for A. thaliana whereas a significantly higher difference range of 

3% – 50% was observed for Z. mays. Comparison of prediction accuracy between the 73F, 

31F and 7F sets reveals better performance of 31F on some folds when compared with 73F in 

A. thaliana transcript sequences. In Z. mays, 31F and 73F displayed similar performance with 
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negligible differences, thus indicating better selection of maximal number of optimal features 

as compared to minimal number of optimal features by the LiRF-FS method. 

The robustness of the framework was further evaluated and benchmarked against CPC tools 

with repeated k-fold CV analysis. Results from the analysis clearly showed superior 

performance of the framework with stable accuracy values in TAIR10 and EST datasets. 

Results clearly demonstrate lower prediction accuracies in lncRNA prediction by lncScore, 

CPC2, CPAT and PLEK tools where a decrease was observed from TAIR10 to EST-annotated 

lncRNA sequences. The accuracy values from the framework showed an average marginal 

deviation of 1.81% between the datasets which certainly indicates its higher efficiency and 

robustness among currently popular CPC tools. Additionally, higher prediction accuracies of 

96.27% with 31F feature set in Z. mays dataset signifies its precision in identifying lncRNAs in 

plant species. 

6.5 lncRNA sub-classification of lncRNA transcripts 

For sub-classification of lncRNA transcript sequences into seven different types, a position-

based mapping algorithm has been developed. The algorithm classifies the lncRNA sequences 

based on overlapping and non-overlapping of genomic coordinates. The genomic coordinates 

of lncRNA exonic (E) and intronic (I) sequences are compared against the coordinates of the 

protein-coding exonic and intronic sequences. The classification is also based on additional 

parameters such as chromosome name and DNA strand. The algorithm extracts the ORFs 

from each transcript sequence. The E and I sequences used for coordinate overlapping are 

extracted from the ORF sequences. The mapping of lncRNA E and I coordinates against 

protein-coding E and I sequences provides greater precision and accuracy when applied on 

genome-wide scale. This allows identification of several lncRNA classes. 

The PBC algorithm was developed based on two rules: (1) Rule 1 classifies the lncRNA 

sequences based on position of transcript sequences on sense (lncRNA and mRNA on ‘+’ DNA 

strand) and antisense (lncRNA and mRNA on ‘-’ DNA strand) strands, and (2) Rule 2 classifies 

the lncRNA sequences based on position of transcript sequences on sense (lncRNA and 

mRNA on ‘+’ DNA strand or lncRNA and mRNA on ‘-’ DNA strand) and antisense (lncRNA on 

‘+’ and mRNA on ‘-’, or vice versa) strands. Based on these rules, classification was performed 

into seven different types, namely, Sense Overlapping Intronic (SOI), Sense Overlapping 

Exonic (SOE), Antisense Overlapping Intronic (AOI), Antisense Overlapping Exonic (AOE), 

Antisense (ANT), Bidirectional Promoter (BDP) and Intergenic (INT). The classification was 
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performed on HS and MM GENCODE sequences to identify the number of identical matches 

and additional classification of “Processed Transcript” and “To be Experimentally Confirmed” 

sequences. 

The PBC classification of H. sapiens lncRNA sequences generated a 61.18% match with 

GENCODE annotation whereas classification of M. musculus generated a match of 54% on 

different chromosomes. The dissimilarity of matching sequences between PBC and 

GENCODE results is attributed to the classification rules defined by the method. Density 

distribution analysis (Figure 3.17) of antisense lncRNA sequences from GENCODE does not 

classify the sequences based on their genomic annotation. PBC classification of lncRNA 

sequences is exclusively based on the genomic annotation and overlapping of sequences 

whereas the GENCODE annotation does not follow the genomic coordinate rules, due to which 

the match decreases. Classification based on Rule-2 generated a higher proportion of INT and 

ANT sequences in H. sapiens and M. musculus sequences. However, the proportion of 

sequences classified as INT was comparatively higher than the ANT class. Furthermore, a 

higher percentage of sequences classified as BDP were obtained in both the datasets. This 

demonstrates a large amount of sequences which were found to occur within 1000 bp of the 

transcriptional start sites of the mRNA sequences.    

To further evaluate the classification accuracy of the PBC approach, the classification was also 

performed on the TAIR10-annotated A. thaliana and Ensembl-annotated Z. mays RNA-seq 

derived transcript sequences. Classification results from the PBC annotation were compared 

against the experimentally annotated lncRNA transcripts from the TAIR10 and Ensembl 

Genomes 39 AGPv4 databases. Classification performance across the chromosomes 

measured an average accuracy of 72.55% for A. thaliana Natural Antisense Transcripts (NATs) 

and 90.86% for Z. mays with long intergenic lncRNAs (lincRNAs) sequences. Sub-classification 

analysis generated a higher matching percentage of ANT sequences in A. thaliana and INT 

sequences in Z. mays sequences. Analysis of annotation information shows a higher proportion 

of ANT sequences in A. thaliana and INT sequences in Z. mays which indicates greater 

accuracy and precision of PBC approach in plant species. Comparison of matching 

percentages of Rule-1 and Rule-2 generated greater precision with the Rule-2 based PBC 

approach. This clearly suggests partial-dependence of lncRNA strand-specific overlapping and 

hence, is dependent on the Rule-2 PBC approach. 

The sub-classification of lncRNA transcripts from the RNA-seq datasets has been previously 

conducted by Wucher et al. (Wucher et al., 2017). The authors developed an alignment-free 
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classifier tool called FEELnc for identifying and annotating lncRNAs based on an RF classifier. 

The tool filters out coding and other ncRNAs to retain probable lncRNA sequences based on 

GTF file derived from Cufflinks analysis (Trapnell et al., 2012), thereby constructing known 

mRNA and lncRNA GTF files. It identifies potential candidate lncRNAs based on intrinsic 

sequence features based on reference genome. The tool has two major drawbacks: (1) as the 

coding potential computation is performed primarily based on the reference sequence, 

accurate identification of lncRNA sequences in transcriptomic datasets cannot be achieved. 

(2) Since the tool predominantly classifies the sequences based on GTF information, precise 

determination of various sub-classes cannot be achieved. PBC-based approach attempts to 

solve the problem by classifying the transcripts based on sequences from BAM file. 

Furthermore, it evaluates the degree of overlap by aligning the lncRNA and mRNA E and I 

sequences using Smith-Waterman pairwise-sequence alignment algorithm (Pearson, 1991) 

and provides an alignment score. 

Pan et al. (2015) classified circular RNAs using Multiple Kernel Learning (MKL) approach. In 

addition, the tool performed multi-class classification based on known set of lncRNAs 

(antisense, lincRNA, circularRNA and processed transcripts). Multi-class classification 

generated lower prediction accuracy of 60.4% whereas an accuracy of 77.8% was achieved 

for identification of circular RNAs on the human test set sequences. Since, a limited number of 

lncRNA classes are involved in model training, a comprehensive identification of other lncRNA 

classes cannot be performed. Moreover, due to the unavailability of source codes and failure 

to execute on linux-based system, validation tests could not be conducted which additionally 

limits their usage. 

Results from the PBC classification generated a higher matching percentage of lncRNA 

transcripts of the plant species as compared to those obtained in humans and mice. 

Classification analysis generated a higher match with ANT and INT sequences in A. thaliana 

and Z. mays, respectively. The application of the PBC algorithm clearly demonstrates its 

applicability on the plant species. 

6.6 Identification of novel flowering genes in A. thaliana apical-shoot dataset 

Recent progress in determination of DGE in RNA-seq data using several bioinformatics tools 

enabled easier identification of genes from samples. A number of tools for processing and 

analyzing RNA-seq data have been developed. These include Cufflinks, edgeR, DESeq, 

RSEM and others which claim accurate identification of DEGs. However, the accuracy can only 
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be determined by comparison of results obtained from several computational tools with those 

obtained from published experimental studies. Using recently published tools for RNA-seq 

data, a comparative analysis of results obtained from Cufflinks-Cuffdiff2, DESeq and edgeR 

was performed and analysis of intersection of DEGs from two or more tools was recommended 

in order to obtain more robust results (Zhang et al., 2014). The framework integrates a 

computational pipeline for identification of novel DEGs from plant RNA-seq datasets. In this 

case study, a computational approach was developed for the identification of DEGs in A. 

thaliana RNA-seq time-series datasets which includes quality checking, adapter trimming, 

reference alignment, DEG analysis, alternative splicing classification, DEG merging, GO 

enrichment and pathway analysis (Figure 2.1). 

The first step in identification of DEGs is to perform accurate genome alignment. Inaccurate 

parameters often result in the generation of incorrect read counts from the data which could 

potentially result in erroneous downstream processing. Previous investigations used default 

values for processing RNA-seq data (A. V. Klepikova et al., 2015) which included similar 

minimum intron length values of 70 nt for plants and mammals (Goodall and Filipowicz, 1990). 

However, mean, medium and minimum intron length in A. thaliana and O. sativa were found to 

be much lower (Deutsch and Long, 1999; Wang and Brendel, 2006) than the previously 

identified and established value of 70 nt. Therefore, to correctly identify DEGs from the data, 

custom parameter values were applied to generate precise alignment of samples against the 

reference genome. 

The key step of RNA-seq data analysis is to identify DEGs using appropriate statistical models. 

Once the FPKM counts from the sequencing reads were obtained, these were used for finding 

DEGs using Cuffdiff, DESeq and edgeR. Usage of Cuffdiff, DESeq and edgeR methods 

increase statistical power and help in rationale comparison and thus confirming the suitability 

of the results. Results show that both Cuffdiff and edgeR displayed significant numbers of 

DEGs in the floral transition sample pairs S7-S10, S7-S12 and S7-S13 (Table 4.1). Expression 

profiles of the DEGs were compared against known flowering genes FLC and LFY. Consistent 

with the published experimental results, results obtained from the current study produced 

higher mean PCC of 0.86 and 0.88 for FLC and LFY, respectively which is consistent with 

published results (Michaels, 1999; A. V. Klepikova et al., 2015). Apart from the known flowering 

genes, several other experimentally-validated genes responsible for flower development in A. 

thaliana were found to be DE in the apical-shoot dataset. 
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By the overlapping of DEGs obtained from Cuffdiff, DESeq and edgeR, 690 genes were found 

to be commonly expressed. To identify the novel DE flowering genes, functional enrichment 

was conducted for identification of genes associated with highly enriched biological processes. 

Functional enrichment analysis resulted in determination of several gene associated with GO 

terms. The resulting gene-GOterm associations were filtered having q-value ≤ 0.05. The genes 

were found to be associated with several biological and molecular functions which include 

association with glucosinolate biosynthesis, mitosis, meiosis, cell cycle development, flower 

development, mismatch repair, etc. Additionally, a comparison of expression profiles against 

cell-cycle related genes was also carried out to obtain the degree of variation between those 

obtained from Klepikova et al. (2015) which included CDKA, CDKB, CDKC, CDKD, CDKP, 

CDPT and cyclin genes. Results from the comparison showed that most of the CDK genes 

exhibited moderate correlation with an average ranging between 0.60 – 0.70, while some CDKs 

displayed particularly higher correlation above 0.90. 15 genes were found to have poor 

correlation ranging between 0.20 – 0.60. The expression profiles of poorly correlated genes 

showed lower expression during transition phase from Klepikova et al. (2015). Experimental 

results clearly shows that certain genes such as CSK1 is constitutively expressed during mitotic 

and endoreduplication cycles (Jacqmard et al., 1999). 

Results from PPI network analysis showed most of the DEGs during the transition phase 

regulate other DEGs which provide induced resistance and protection against external factors 

such as stress, pathogens, herbivores, temperature variations, etc. A recent study on the 

relationship of glucosinolates to flowering in A. thaliana suggests that the presence of the 

MAM1 gene affects glucosinolate accumulation and flowering time in the absence of APOP2 

and APOP3 genes and leads to production of C3 glucosinolates (Jensen et al., 2015). Results 

from the PPI network analysis clearly show that MAM1 regulates several other genes in 

glucosinolates and displays a high expression profile correlation of 0.75 to FLC which supports 

the hypothesis of glucosinolate production and protection during flowering phase. 

To determine the similarities in the expression profiles of 690 genes and their degree of 

regulation by FLC and LFY genes, a correlation analysis was conducted. Apart from 

identification of genes involved in regulation of glucosinolate compounds, several novel 

flowering genes were identified by clustering of 690 commonly expressed DEGs. PPI network 

analysis revealed 76 novel genes showing stronger regulation and displaying the highest 

correlation in expression with FLC and LFY genes. Out of 76 genes, 55 and 3 genes showed 

no regulation by FLC and LFY, respectively. From the research study performed in RNA-seq 
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derived A. thaliana dataset, an approach has been proposed for determination of novel DEGs 

which were found to be involved in the regulation of flower development. 

6.7 lncRNA function determination in plant datasets 

Functional determination of lncRNA genes has been studied previously in mammalian species 

and several computational models have been proposed which includes determination of 

lncRNA functional similarities and lncRNA-disease associations using LRLSLDA (Chen and 

Yan, 2013), LncDisease (Wang et al., 2016a), IRWRLDA (Chen et al., 2016b), LFSCM (Chen, 

2015) and FMLNCSIM (Chen et al., 2016a). However, the studies conducted were mostly 

focused on the prediction of functional similarity and disease associations based on lncRNA-

disease association data and lncRNA-protein interaction data in mammalian genomes. 

Therefore, current prediction models limit their usage for predicting regulatory functions in 

plant species. 

The computational framework integrates NRLMF-based derivation of lncRNA-protein 

interaction in plant datasets for predicting the functions of lncRNAs. Novel interactions of 

lncRNA and proteins were determined with scores ranging between 0.7 and 0.9 

demonstrating strong probability of interaction. Interacting lncRNAs and proteins were 

utilized for function prediction using Bayesian-based regulatory network-based approach. 

Interactions were determined based on logistic matrix factorisation approach by employing 

sequence similarities between target lncRNA and protein sequences in plants and known 

lncRNAs and proteins in humans obtained from the NPInter database (Wu et al., 2006). 

NRLMF predicts the interactions by identifying neighbouring genes having higher sequence 

similarity with NPInter sequences. Based on the LPI pairs, PPI pairs and protein-associated 

GO terms, BMRF computes probability of association of GO term with the lncRNA gene. The 

proposed method inspired by Liu et al. (2017) extends the work for determination of potential 

LPI pairs and integrates with the Bayesian approach (Kourmpetis et al., 2010) for associating 

functions to lncRNAs. 

Based on Gene Co-expression Networks (GCNs) approach, candidate gene shares similar 

functionality when co-expressed with another gene (van Dam et al., 2017). This method has 

successfully been applied for associating potential regulatory roles in various diseases (Liu, 

Li and Li, 2014). The NRLMF-BMRF module of the framework integrates the transcriptional 

coexpression data of lncRNAs and proteins by reinforcing the results from NRLMF approach 

and provides an additional layer for generating reliable outcome. 
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Various research studies using co-expression analysis focused on plant datasets include 

determination of DE “stress-tolerant” lncRNA genes in modern and wild wheats based on 

co-expression with miRNA genes and identification of regulatory mechanisms of lncRNAs 

in Maize based on co-expression of lncRNA, mRNA and miRNA genes (Xu et al., 2017). 

However, currently known methods based on co-expression of genes do not focus on 

derivation of potential interactions between the two pair of genes. Failure to determine the 

interactions weakens the hypothesis due to which accurate predictions cannot be made. 

Results of LPI pairs derived from co-expression-based study reveals a mismatch with the 

results from NRLMF analysis. Co-expression-based analysis was primarily conducted based 

on the assumption of higher correlation in functional similarity of lncRNAs with protein-

coding genes. Although, the LPI pairs derived from higher correlation in co-expression 

showed considerable match with the experimentally-published results, results from the 

NRLMF-based analysis provides a more reliable approach for identifying the true-positive 

LPI pairs. 

Thus, identification of lncRNA interacted proteins is essential for understanding complex 

functions of lncRNAs (Derrien et al., 2012; Washietl, Kellis and Garber, 2014). Determination 

of reliable LPI pairs is dependent on greater sequence similarity scores of a target gene 

sequence with the known gene sequence. The higher the sequence similarity, the greater 

the chance of obtaining true positive pairs. Analysis of few LPI pairs from gene co-

expression correlation analysis (Figure 4.20 and 4.32) indicates that for a given LPI pair, 

considerable co-expression can be observed along with lower relative expression values 

which reduces the overall PCC ranging between -0.2 to 0.6. 

Using co-expression based NRLMF-BMRF approach, the lncRNA genes were found to have 

been associated with several regulatory mechanisms such as regulation of DNA replication, 

gene expression, cell division, DNA-templated transcription and vernalisation response. 

Results from the analysis showed that the lncRNAs in A. thaliana are primarily associated with 

nuclear functions, regulation in heterochromatin assembly, cell differentiation, regulation of 

proteasomal complex and sequence-specific DNA transcription factor activity (Figure 4.22). An 

analysis of Z. mays lncRNA data revealed regulatory function association in “ATP binding”. 

However, based on the LPI data, the lncRNA can also be associated with DNA transcriptional 

regulatory functions, translational regulation, regulation of protein metabolic process, and 

response to stress. A review of lncRNA functional mechanisms using computational techniques 

illustrates potential roles in DNA methylation/chromatin remodeling, RNA translation/splicing, 
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miRNA binding, protein scaffolding, protein modification through phosphorylation, protein 

stability by promoting the degradation of vimentin (Wang et al., 2015; Signal, Gloss and Dinger, 

2016). The roles identified and listed by Signal et al. (2016) correlates with the functions 

identified in ATH as illustrated in Figure 4.22 and Appendix Table A.1. Although the correlation 

in relative expression values obtained from co-expression analysis does not produce a 

reasonable match with those obtained from NRLMF approach, the functions predicted through 

both the methods indicates clear correlation of transcriptional and post-translational regulatory 

functions predicted using BMRF. 

Furthermore, an examination of the node degrees from the regulatory network analysis of the 

LPI-PPI datasets revealed power-law distributions with a slope ranging between -0.8 and -0.93 

and R2 ranging between 0.5 and 0.7. These results indicate that the regulatory network 

constructed is similar to many biological networks and is well characterised by co-expression 

regulation principles (Nacher and Akutsu, 2007). These parameters distinguish the generated 

regulatory network from the randomly generated networks. To identify the important vertices 

or hub nodes, BC and CC measures were performed which measures the centrality in a graph. 

Network analysis of the LPI-PPI ATH and ZM genesets revealed an average BC of 0.475 for 

the nodes. CC measures the centrality by computing the lengths of the shortest paths between 

the nodes in the network. The results clearly demonstrate smaller CC measures ranging 

between 0.25-0.5 in both the species, which indicates that the network consisted of nodes 

connected over shorter distances. 

The experimentally-published lncRNA functions were used for confirming function associations 

in A. thaliana and Z. mays datasets. Results from the LPI-PPI BMRF analysis produced 

association of several regulatory functions to lncRNA genes. Experimetally-published lncRNA 

functions (Liu et al., 2015; Signal, Gloss and Dinger, 2016) show that the lncRNAs 

predominantly functions as transcription and translational regulators, predicted to have 

potential roles in DNA methylation, heterochromatin assembly, cellular differentiation and in 

protein modification with the majority of functions associated in the nucleus of a cell. Results 

obtained from NRLMF-BMRF analysis thus validate their roles as identified from various 

computational and experimental studies published and reported. 
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6.8 Summary 

This chapter provided an overall discussion on the lncRNA identification implemented in the 

framework and the results obtained by its application on plant and mammalian reference 

and RNA-seq datasets. The performance of sequence and codon-bias features on multiple 

species was also discussed. This was followed by a discussion of the results on the 

performance evaluation of the framework against several coding-potential computation tools 

with emphasis on the prediction accuracy, sensitivity, specificity, F1-score, NPV and MCC 

metrics. Results from the sub-classification of the lncRNA sequences obtained from the 

GENCODE, Refseq and Ensembl databases were discussed providing details on the de-

novo classification performed on the lncRNA sequences from the datasets and intersection 

of the results from the PBC and database-annotated sequences. 

This chapter also provided results and detailed analysis of the identification of novel DE 

flowering genes from A. thaliana data. Furthermore, a discussion on function prediction of 

lncRNAs in A. thaliana and Z. mays was performed providing details of the results from the 

analysis and synopsis of the centrality measures for evaluating the regulatory network. It 

included interpretation of the results from the identification of novel lncRNA-protein 

interactions derived from NRLMF analysis in A. thaliana and Z. mays. Additionally, it 

discussed the results from co-expression based BMRF anlaysis and demonstration of 

filtering algorithm on co-expression derived data. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

In the preceding chapters it has been shown that the use of our proposed computational 

framework for identification, sub-classification and function annotation of lncRNA genes in plant 

species is beneficial. 

The motivation for the development of this framework was the identification of a gap in the area 

of lncRNA prediction and function annotation in plant genomes. The framework addresses this 

through accurate identification of lncRNA sequences in plant species. The work also presents 

a novel approach for the sub-classification of lncRNA sequences based on its genomic 

coordinates. Additionally, the work encompasses the computational prediction approach for 

identification of molecular/regulatory functions of lncRNAs in plants. Accurate prediction of 

lncRNAs remains one of the major open problems in plant genomes. Therefore, accurate and 

efficient computational methods are required to predict lncRNAs in plants to further investigate 

their roles. 

LncRNAs have been found to perform various functions in several biological processes. In 

order to interpret the lncRNA functionality, it is therefore convenient to classify the lncRNAs. 

Current methods developed for classification of lncRNAs rely on the construction of learning 

models. The data obtained for generating the training set is, in particular, derived from an 

annotated set of lncRNA sequences obtained from human and mouse genomes. Due to the 

limited availability of annotated lncRNA sequences for constructing the training set, current 

methods cannot be applied for classification of lncRNA sequences in the plant genomes. The 

proposed method provides instead a learning-free approach and classifies the lncRNA 

transcripts based on its FASTA sequence derived from transcriptomic datasets and their 

relative coordinates with protein-coding genes. 

Furthermore, current methods for prediction of molecular functions typically focus on the 

mammalian genomes and potential roles in diseases. Less attention has been given to the 

development of computational methods for function annotation of lncRNAs in plants. The 

proposed framework incorporates a computational pipeline for predicting the functions based 

on lncRNA-protein interactions and co-expression of genes derived from transcriptomic data. 

In the present chapter, the results of the complete study have been summarised and the 

directions for the future course of actions/work have been outlined. 
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A detailed analysis of the computational framework included comparison of plants and 

mammalian transcript sequences based on GC content, transcript lengths and number of 

individual base pairs. The analysis included comparison of different classifiers for the 

classification of mRNA and lncRNA sequences obtained from the GENCODE and Refseq 

databases. Results showed comparable performance of the RF and iRF classifiers and ability 

of the features to classify the sequences obtained from multiple species. Results from the LiRF-

FS method generated two separate optimal feature sets. The selection of optimal features 

primarily depends on its prediction accuracy lying above the threshold value. Selection of the 

features was performed on a mixed set of transcript sequences obtained from 6 plants and 2 

mammalian species to account for sequences with varying characteristics. A comparison of 

individual features was also performed to identify their performance using an iRF classifier. 

Intersection of the results from the feature selection and individual feature performance 

indicated reliable selection by the LiRF-FS method. Results from the LiRF-FS were compared 

against other feature selection methods and showed comparable performance offering better 

selection of features generating higher prediction accuracy. Finally, an in-depth analysis of the 

PBC classification algorithm was conducted on humans and mouse annotated FASTA 

sequences for comparison of PBC-based classification results. Results demonstrated a match 

of ~60% with Rule-2 classification. The mismatch in the classification is primarily attributed to 

the rules defined for classification of the sequences. Contrastingly, PBC successfully classified 

the “Processed Transcripts” and “To be Experimentally Confirmed” lncRNA transcripts into 

seven different classes. 

Furthermore, a detailed analysis of the framework was conducted on A. thaliana and Z. mays 

transcript sequences for performance evaluation and prediction of potential regulatory 

functions of lncRNAs. Benchmarking evaluation of the framework on A. thaliana and Z. mays 

datasets against popular CPC tools demonstrated superior performance based on 10-fold CV 

and repeated 10-fold CV exhibiting accuracy difference of 8-30% increase in A. thaliana data, 

whereas 3-50% increase in the accuracy was observed in Z. mays data. LncRNA sequences 

obtained from TAIR10 and EST-derived sources typically ranges widely between 200 bp and 

7.8×105 bp. Identification of such extremely long sequences becomes trivial however they are 

often misclassified with protein-coding genes. 

Results from the benchmarking analysis showed improved performance with feature selection. 

Results demonstrate that prediction accuracy of the maximum optimal features is higher than 

that obtained from the minimum optimal features with an observable difference of 2-3% 
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between both the feature sets. The selection of codon-bias features improves the classification 

performance and therefore presents species-specific preferential selection of codons. Based 

on the sequence similarities of lncRNA and protein-coding genes, novel lncRNA and protein 

interactions were derived using the NRLMF approach. Top scoring interactors were used for 

predicting the functions using the BMRF approach which calculates the probability of function 

association from the network of connected genes. The experimentally-determined molecular 

functions from plant species provide a list of most probable regulatory functions associated 

with lncRNA. Based on the known RNA-Protein interactions from the NPInter database, novel 

interactions in plants were derived which demonstrated their potential role in the regulation of 

several biological processes such as DNA transcription, methylation, cell cyle processes, DNA 

damage repair, chromatin modification, DNA replication and gene expression. 

Application of a keyword-filtering algorithm on the co-expression of lncRNA and protein-coding 

genes showed association of several lncRNA genes in A. thaliana and Z. mays serving as 

transcriptional regulators, splicing regulators, involved in histone acetylation, phosphorylation, 

methylation and ubiquitination, translational elongation, and in post-translational gene 

silencing. A single lncRNA gene can be associated with multiple functions, however, it is 

essential to determine the most probable function from these. By utilizing the function list as a 

bag-of-words, the keywords can be matched against the list of predicted molecular functions 

of lncRNA genes. This generated a close match with the experimentally-verified function list 

having higher association probability. 

The validity of the regulatory network has been confirmed by assessing the Betweenness 

Centrality and Closeness Centrality measures. Studies revealed a power-law distribution with 

an average R2 of 0.75 indicating a relatively good fit. Small variations in the centrality values 

would not affect the statistical accuracy of the regulatory network model significantly. Overall, 

the NRLMF-BMRF approach provided reasonable results, which were in line with the 

betweenness and closeness centrality measures as presented in Chapter 6. 

Overall, deploying the framework offers several benefits over the currently used methods. First, 

apart from commonly known distinguishing sequence-based features such as ORF length, GC 

content and Fickett score, it takes advantage of codon-biased features to increase 

discriminative power. Second, it implements a powerful semi-supervised optimisation approach 

for selection of principal features which can be applied to any species. Third, an integrative 

approach of LiRF-FS and codon-biased features provides insights into preferential selection of 

species-specific synonymous codons in the classification process. Fourth, implementation of 
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coordinate-based mapping algorithm for sub-classification provides valuable insights into 

different features of lncRNAs and their underlying functional mechanisms in non-model 

species. Fifth, the model determines novel interactions between lncRNA and proteins based 

on sequence similarities and logistic matrix factorisation approach. Sixth, it provides functional 

annotation for the predicted lncRNAs using integrated NRLMF and BMRF analysis which takes 

advantage of lncRNA-protein interactions and co-expression data obtained from RNA-seq 

data. Application and filtering the LPI pairs based on co-expression analysis strengthens the 

function prediction approach and assists in determining true positive LPI pairs, thereby 

providing accurate function prediction. 

One of the drawbacks of the framework is that in order to generate species-specific optimal 

features, a comprehensive range of λ values are required which is dependent on the 

adjustment of the λIccFJ, λ`abFJ and λdHFc*defF parameters. An adjustment of these parameters 

is required since the β coefficient values are dependent on the values of λ. Another drawback 

is the adjustment of the tolerance value for the computation of threshold prediction accuracy 

values. Smaller tolerance values restrict the scanning of optimal λ values producing reasonably 

similar accuracy with minimal difference from the maximum prediction accuracy, whereas 

larger tolerance values create a large array of optimal λ values having a range of prediction 

accuracies with larger difference. With an increase in the parameter values mentioned above, 

the time required for the scanning the non-zero β coefficient values increases. However, a 

wider range of λ values provides a larger search space which increases the efficiency of feature 

selection. Since the lncRNA function prediction was performed on a random subset of lncRNA 

sequences in A. thaliana and Z. mays datasets, moderate sequence similarities were observed 

due to the limitation of data analysis on a smaller subset. 

The lncRNA identification and classification is predominantly based on the extraction of the 

consensus FASTA sequences, based on the variants identified by the bcftools which are 

computed based on the alignment of the reads against the reference genome. The consensus 

FASTA sequence obtained therefore provides a probable FASTA sequence of the lncRNA or 

mRNA transcript associated with certain probability. This does not guaranty it will represent the 

exact genomic sequence of the species-specific sample. The sub-classification of lncRNAs is 

primarily based on the relative position of the lncRNA with the protein-coding sequences. For 

accurately classifying the lncRNA genes, a comprehensive genome-wide array of protein-

coding genes is required. An incomplete list of protein-coding genes would lead to false positive 

results and inaccurate classification. Current implementation of the PBC algorithm classifies 

290 

http:parameters.An


	
	

           

          

              

    

          

        

             

       

     

        

          

       

             

           

        

           

           

       

    

               

            

           

         

             

           

         

             

            

            

         

         

           

the lncRNA sequences using a single processor which significantly increases the computation 

time. Similarly, the time required for computation of sequence similarities for deriving novel 

lncRNA and protein interactions is limited to single processor. This can be improved by 

scripting for a multi-processor environment. 

Regarding lncRNA visualisation, an attempt has been made for construction of an integrated 

solution to provide a browser-based light-weight visualisation application. However, the current 

implementation has few limitations which could be addressed in the near future. One current 

limitation associated with the lncRNA visualisation is the lack of an online web-based 

visualisation suitable for content sharing with other users. As mentioned and discussed in 

Section 5.3, the application does not allow visualisation of multiple RNA-seq samples for 

comparative analysis. However, an advantage with an offline web-based version is faster 

generation of graphical elements and quicker navigation of the data. 

Overall, the original aims/targets of the thesis have been fulfilled. It has been demonstrated 

that the proposed methods can be used for genome-wide identification, classification and 

annotation of the lncRNA and mRNA genes in plant species. The proposed methods suggest 

the use of a computational pipeline which is flexible and user-friendly that may find application 

in the area of genomics. Therefore, the proposed methods should be considered as an 

alternative to currently developed tools for DE mRNA and lncRNA identification, classification 

and function annotation where accuracy is of prime importance. 

The ideas presented in this work can be further developed in several ways. Since, current 

implementation of the framework excludes non-coding RNAs shorter than 200 bp, one direction 

of future work is to integrate identification of other non-coding RNA types which include miRNA, 

siRNA, piRNA, snRNA, snoRNA and Circular RNA. A computational pipeline developed for the 

identification of DE mRNA genes was applied on A. thaliana apical shoot dataset. The pipeline 

can thus be applied on other non-model species such as Brassica Napus, however fine-tuning 

of the parameters for sequence alignment, transcript quantification and DGE is required. 

The current work undertaken for the identification of DEGs involved sequence mapping using 

Tophat2 mapper (Kim et al., 2013). The currently developed method can be updated by 

replacing Tophat2 with other mappers such as STAR (Dobin et al., 2013) or HISAT2 (Kim, 

Langmead and Salzberg, 2015). Similarly, the differential expression analysis step can also be 

updated and strengthened by integrating other tools such as DESeq2 (Love, Anders and 

Huber, 2014). The lncRNA sub-classification and LPI analysis can be accelerated with the 
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integration of multi-processing Python and R libraries. The algorithm can be designed to utilize 

multiple processors for faster computation. The function prediction analysis of lncRNA 

sequences using NRLMF and BMRF methods can be undertaken on larger datsets which 

should likely yield higher sequence similarity values between lncRNA-lncRNA and protein-

protein sequences. 

Development of the computational framework offers the potential to identify genome-wide 

lncRNA transcript sequences in model and non-model plants. Furthermore, it offers 

identification of several classes of lncRNAs currently unexplored in several species which could 

provide a catalogue of annotated lncRNA sequences similar to the currently available 

mammalian databases. One of the major and crucial contributions includes derivation of novel 

lncRNA-protein interactors, and selection of interactors based on co-expression of genes, 

which can potentially help in determination of lncRNA regulatory functions providing insights 

into their molecular mechanisms and relationships in several biological processes. 
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b 
Some materials have been removed due to 3rd party copyright. The unabridged 
version can be viewed in Lancester Library - Coventry University.

Figure A.1: Protein-protein interaction network and Functional Grouped Network (FGN) of 
CGenes (in A.thaliana apical-shoot dataset) obtained from Cuffdiff-DESeq-edgeR overlap 
(Anders and Huber, 2010; Robinson, McCarthy and Smyth, 2010; Trapnell et al., 2012). (a) 
PPI network obtained from GeneMania (Montojo et al., 2010) showing interconnection and 
regulation of genes displayed by nodes which are coloured in blue and edges coloured in 
grey, (b) FGN obtained from ClueGO (Bindea et al., 2009) with GOTerms as nodes linked 
based on kappa score where node size represents enrichment significance. 
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Table A.1: BMRF function annotation results of 50 lncRNA sequences in A. thaliana apical-
shoot dataset. 

Genename GO Term probability Function 
AT1G10682.1 GO:0000502 0.999985 is subunit of proteasome complex 
AT1G10682.1 GO:0000502 0.999985 located in proteasome complex 
AT1G08592.1 GO:0000502 0.99799 is subunit of proteasome complex 
AT1G08592.1 GO:0000502 0.99799 located in proteasome complex 
AT1G26558.1 GO:0000502 0.95731 is subunit of proteasome complex 
AT1G26558.1 GO:0000502 0.95731 located in proteasome complex 
AT1G04425.1 GO:0000502 0.99799 is subunit of proteasome complex 
AT1G04425.1 GO:0000502 0.99799 located in proteasome complex 
AT1G25175.1 GO:0000502 0.95731 is subunit of proteasome complex 
AT1G25175.1 GO:0000502 0.95731 located in proteasome complex 
AT1G22403.1 GO:0000502 0.99974 is subunit of proteasome complex 
AT1G22403.1 GO:0000502 0.99974 located in proteasome complex 
AT1G26208.2 GO:0000502 0.923123 is subunit of proteasome complex 
AT1G26208.2 GO:0000502 0.923123 located in proteasome complex 
AT1G18735.1 GO:0000502 0.999985 is subunit of proteasome complex 
AT1G18735.1 GO:0000502 0.999985 located in proteasome complex 
AT1G07119.1 GO:0000502 0.95731 is subunit of proteasome complex 
AT1G07119.1 GO:0000502 0.95731 located in proteasome complex 
AT1G07128.1 GO:0000502 0.999681 is subunit of proteasome complex 
AT1G07128.1 GO:0000502 0.999681 located in proteasome complex 
AT1G17255.1 GO:0000502 0.99799 is subunit of proteasome complex 
AT1G17255.1 GO:0000502 0.99799 located in proteasome complex 
AT1G01448.1 GO:0000502 0.99799 is subunit of proteasome complex 
AT1G01448.1 GO:0000502 0.99799 located in proteasome complex 
AT1G07728.2 GO:0000502 0.95731 is subunit of proteasome complex 
AT1G07728.2 GO:0000502 0.95731 located in proteasome complex 
AT1G18415.1 GO:0000502 0.99799 is subunit of proteasome complex 
AT1G18415.1 GO:0000502 0.99799 located in proteasome complex 
AT1G05562.1 GO:0000502 0.947952 is subunit of proteasome complex 
AT1G05562.1 GO:0000502 0.947952 located in proteasome complex 
AT1G18382.1 GO:0000502 0.999966 is subunit of proteasome complex 
AT1G18382.1 GO:0000502 0.999966 located in proteasome complex 
AT1G25098.2 GO:0000502 0.923123 is subunit of proteasome complex 
AT1G25098.2 GO:0000502 0.923123 located in proteasome complex 
AT1G11592.2 GO:0000502 0.965041 is subunit of proteasome complex 
AT1G11592.2 GO:0000502 0.965041 located in proteasome complex 
AT1G21529.1 GO:0000502 0.999972 is subunit of proteasome complex 
AT1G21529.1 GO:0000502 0.999972 located in proteasome complex 
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AT1G16635.1 GO:0000502 0.99974 is subunit of proteasome complex 
AT1G16635.1 GO:0000502 0.99974 located in proteasome complex 
AT1G03545.1 GO:0000502 0.95731 is subunit of proteasome complex 
AT1G03545.1 GO:0000502 0.95731 located in proteasome complex 
AT1G07728.1 GO:0000502 0.95731 is subunit of proteasome complex 
AT1G07728.1 GO:0000502 0.95731 located in proteasome complex 
AT1G02952.1 GO:0000502 0.99974 is subunit of proteasome complex 
AT1G02952.1 GO:0000502 0.99974 located in proteasome complex 
AT1G06265.1 GO:0000502 0.99799 is subunit of proteasome complex 
AT1G06265.1 GO:0000502 0.99799 located in proteasome complex 
AT1G11175.1 GO:0000502 0.99974 is subunit of proteasome complex 
AT1G11175.1 GO:0000502 0.99974 located in proteasome complex 
AT1G20515.1 GO:0000502 0.838972 is subunit of proteasome complex 
AT1G20515.1 GO:0000502 0.838972 located in proteasome complex 
AT1G06265.2 GO:0000502 0.947952 is subunit of proteasome complex 
AT1G06265.2 GO:0000502 0.947952 located in proteasome complex 
AT1G11185.1 GO:0000502 0.999985 is subunit of proteasome complex 
AT1G11185.1 GO:0000502 0.999985 located in proteasome complex 
AT1G16489.1 GO:0000502 0.947952 is subunit of proteasome complex 
AT1G16489.1 GO:0000502 0.947952 located in proteasome complex 
AT1G17232.1 GO:0000502 0.923123 is subunit of proteasome complex 
AT1G17232.1 GO:0000502 0.923123 located in proteasome complex 
AT1G13448.1 GO:0000502 0.999949 is subunit of proteasome complex 
AT1G13448.1 GO:0000502 0.999949 located in proteasome complex 
AT1G04295.1 GO:0000502 0.996972 is subunit of proteasome complex 
AT1G04295.1 GO:0000502 0.996972 located in proteasome complex 
AT1G20691.1 GO:0000502 0.95731 is subunit of proteasome complex 
AT1G20691.1 GO:0000502 0.95731 located in proteasome complex 
AT1G22403.2 GO:0000502 0.984439 is subunit of proteasome complex 
AT1G22403.2 GO:0000502 0.984439 located in proteasome complex 
AT1G18745.1 GO:0000502 0.99974 is subunit of proteasome complex 
AT1G18745.1 GO:0000502 0.99974 located in proteasome complex 
AT1G01448.3 GO:0000502 0.887787 is subunit of proteasome complex 
AT1G01448.3 GO:0000502 0.887787 located in proteasome complex 
AT1G26218.1 GO:0000502 0.947952 is subunit of proteasome complex 
AT1G26218.1 GO:0000502 0.947952 located in proteasome complex 
AT1G15002.1 GO:0000502 0.999985 is subunit of proteasome complex 
AT1G15002.1 GO:0000502 0.999985 located in proteasome complex 
AT1G24068.1 GO:0000502 0.999972 is subunit of proteasome complex 
AT1G24068.1 GO:0000502 0.999972 located in proteasome complex 
AT1G01448.2 GO:0000502 0.947952 is subunit of proteasome complex 
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AT1G01448.2 GO:0000502 0.947952 located in proteasome complex 
AT1G26208.1 GO:0000502 0.965041 is subunit of proteasome complex 
AT1G26208.1 GO:0000502 0.965041 located in proteasome complex 
AT1G14518.1 GO:0000502 0.999949 is subunit of proteasome complex 
AT1G14518.1 GO:0000502 0.999949 located in proteasome complex 
AT1G06002.1 GO:0000502 0.99974 is subunit of proteasome complex 
AT1G06002.1 GO:0000502 0.99974 located in proteasome complex 
AT1G25098.1 GO:0000502 0.923123 is subunit of proteasome complex 
AT1G25098.1 GO:0000502 0.923123 located in proteasome complex 
AT1G23052.1 GO:0000502 0.99974 is subunit of proteasome complex 
AT1G23052.1 GO:0000502 0.99974 located in proteasome complex 
AT1G15175.1 GO:0000502 0.887787 is subunit of proteasome complex 
AT1G15175.1 GO:0000502 0.887787 located in proteasome complex 
AT1G09421.1 GO:0000502 0.999949 is subunit of proteasome complex 
AT1G09421.1 GO:0000502 0.999949 located in proteasome complex 
AT1G11592.1 GO:0000502 0.923123 is subunit of proteasome complex 
AT1G11592.1 GO:0000502 0.923123 located in proteasome complex 
AT1G15405.1 GO:0000502 0.996972 is subunit of proteasome complex 
AT1G15405.1 GO:0000502 0.996972 located in proteasome complex 
AT1G19968.1 GO:0000502 0.999972 is subunit of proteasome complex 
AT1G19968.1 GO:0000502 0.999972 located in proteasome complex 
AT1G18735.1 GO:0003677 0.762754 functions in DNA binding 
AT1G18735.1 GO:0003677 0.762754 has DNA binding 
AT1G11185.1 GO:0003677 0.762754 functions in DNA binding 
AT1G11185.1 GO:0003677 0.762754 has DNA binding 
AT1G10682.1 GO:0003677 0.762754 functions in DNA binding 
AT1G10682.1 GO:0003677 0.762754 has DNA binding 
AT1G15002.1 GO:0003677 0.762754 functions in DNA binding 
AT1G15002.1 GO:0003677 0.762754 has DNA binding 

AT1G18382.1 GO:0003700 0.98441 
has sequence-specific DNA binding transcription 
factor activity 

AT1G13448.1 GO:0003700 0.985994 
has sequence-specific DNA binding transcription 
factor activity 

AT1G24068.1 GO:0003700 0.990161 
has sequence-specific DNA binding transcription 
factor activity 

AT1G16635.1 GO:0003700 0.957817 
has sequence-specific DNA binding transcription 
factor activity 

AT1G18745.1 GO:0003700 0.957817 
has sequence-specific DNA binding transcription 
factor activity 

AT1G14518.1 GO:0003700 0.985994 
has sequence-specific DNA binding transcription 
factor activity 

AT1G02952.1 GO:0003700 0.957817 
has sequence-specific DNA binding transcription 
factor activity 
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AT1G11185.1 GO:0003700 0.995881 
has sequence-specific DNA binding transcription 
factor activity 

AT1G04425.1 GO:0003700 0.827086 
has sequence-specific DNA binding transcription 
factor activity 

AT1G07128.1 GO:0003700 0.959959 
has sequence-specific DNA binding transcription 
factor activity 

AT1G21529.1 GO:0003700 0.990161 
has sequence-specific DNA binding transcription 
factor activity 

AT1G01448.1 GO:0003700 0.827086 
has sequence-specific DNA binding transcription 
factor activity 

AT1G23052.1 GO:0003700 0.957817 
has sequence-specific DNA binding transcription 
factor activity 

AT1G17255.1 GO:0003700 0.827086 
has sequence-specific DNA binding transcription 
factor activity 

AT1G18735.1 GO:0003700 0.995881 
has sequence-specific DNA binding transcription 
factor activity 

AT1G06002.1 GO:0003700 0.957817 
has sequence-specific DNA binding transcription 
factor activity 

AT1G15002.1 GO:0003700 0.995881 
has sequence-specific DNA binding transcription 
factor activity 

AT1G10682.1 GO:0003700 0.995881 
has sequence-specific DNA binding transcription 
factor activity 

AT1G22403.1 GO:0003700 0.957817 
has sequence-specific DNA binding transcription 
factor activity 

AT1G19968.1 GO:0003700 0.990161 
has sequence-specific DNA binding transcription 
factor activity 

AT1G08592.1 GO:0003700 0.827086 
has sequence-specific DNA binding transcription 
factor activity 

AT1G06265.1 GO:0003700 0.827086 
has sequence-specific DNA binding transcription 
factor activity 

AT1G04295.1 GO:0003700 0.758852 
has sequence-specific DNA binding transcription 
factor activity 

AT1G18415.1 GO:0003700 0.827086 
has sequence-specific DNA binding transcription 
factor activity 

AT1G09421.1 GO:0003700 0.985994 
has sequence-specific DNA binding transcription 
factor activity 

AT1G11175.1 GO:0003700 0.957817 
has sequence-specific DNA binding transcription 
factor activity 

AT1G01448.1 GO:0005634 0.86913 located in nucleus 
AT1G01448.1 GO:0005634 0.86913 expressed in nucleus 
AT1G14518.1 GO:0005634 0.903581 located in nucleus 
AT1G14518.1 GO:0005634 0.903581 expressed in nucleus 
AT1G01448.3 GO:0005634 0.817821 located in nucleus 
AT1G01448.3 GO:0005634 0.817821 expressed in nucleus 
AT1G10682.1 GO:0005634 0.914013 located in nucleus 
AT1G10682.1 GO:0005634 0.914013 expressed in nucleus 
AT1G04425.1 GO:0005634 0.86913 located in nucleus 
AT1G04425.1 GO:0005634 0.86913 expressed in nucleus 
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AT1G16635.1 GO:0005634 0.888665 located in nucleus 
AT1G16635.1 GO:0005634 0.888665 expressed in nucleus 
AT1G07128.1 GO:0005634 0.885801 located in nucleus 
AT1G07128.1 GO:0005634 0.885801 expressed in nucleus 
AT1G09421.1 GO:0005634 0.903581 located in nucleus 
AT1G09421.1 GO:0005634 0.903581 expressed in nucleus 
AT1G22403.2 GO:0005634 0.84814 located in nucleus 
AT1G22403.2 GO:0005634 0.84814 expressed in nucleus 
AT1G01448.2 GO:0005634 0.827943 located in nucleus 
AT1G01448.2 GO:0005634 0.827943 expressed in nucleus 
AT1G17232.1 GO:0005634 0.822941 located in nucleus 
AT1G17232.1 GO:0005634 0.822941 expressed in nucleus 
AT1G11592.1 GO:0005634 0.822941 located in nucleus 
AT1G11592.1 GO:0005634 0.822941 expressed in nucleus 
AT1G15002.1 GO:0005634 0.914013 located in nucleus 
AT1G15002.1 GO:0005634 0.914013 expressed in nucleus 
AT1G26208.2 GO:0005634 0.822941 located in nucleus 
AT1G26208.2 GO:0005634 0.822941 expressed in nucleus 
AT1G17255.1 GO:0005634 0.86913 located in nucleus 
AT1G17255.1 GO:0005634 0.86913 expressed in nucleus 
AT1G11592.2 GO:0005634 0.835929 located in nucleus 
AT1G11592.2 GO:0005634 0.835929 expressed in nucleus 
AT1G24068.1 GO:0005634 0.908932 located in nucleus 
AT1G24068.1 GO:0005634 0.908932 expressed in nucleus 
AT1G06002.1 GO:0005634 0.888665 located in nucleus 
AT1G06002.1 GO:0005634 0.888665 expressed in nucleus 
AT1G23052.1 GO:0005634 0.888665 located in nucleus 
AT1G23052.1 GO:0005634 0.888665 expressed in nucleus 
AT1G26218.1 GO:0005634 0.827943 located in nucleus 
AT1G26218.1 GO:0005634 0.827943 expressed in nucleus 
AT1G18735.1 GO:0005634 0.914013 located in nucleus 
AT1G18735.1 GO:0005634 0.914013 expressed in nucleus 
AT1G04295.1 GO:0005634 0.863822 located in nucleus 
AT1G04295.1 GO:0005634 0.863822 expressed in nucleus 
AT1G18745.1 GO:0005634 0.888665 located in nucleus 
AT1G18745.1 GO:0005634 0.888665 expressed in nucleus 
AT1G07728.2 GO:0005634 0.833534 located in nucleus 
AT1G07728.2 GO:0005634 0.833534 expressed in nucleus 
AT1G13448.1 GO:0005634 0.903581 located in nucleus 
AT1G13448.1 GO:0005634 0.903581 expressed in nucleus 
AT1G02952.1 GO:0005634 0.888665 located in nucleus 
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AT1G02952.1 GO:0005634 0.888665 expressed in nucleus 
AT1G08592.1 GO:0005634 0.86913 located in nucleus 
AT1G08592.1 GO:0005634 0.86913 expressed in nucleus 
AT1G11175.1 GO:0005634 0.888665 located in nucleus 
AT1G11175.1 GO:0005634 0.888665 expressed in nucleus 
AT1G07119.1 GO:0005634 0.833534 located in nucleus 
AT1G07119.1 GO:0005634 0.833534 expressed in nucleus 
AT1G20691.1 GO:0005634 0.833534 located in nucleus 
AT1G20691.1 GO:0005634 0.833534 expressed in nucleus 
AT1G06265.1 GO:0005634 0.86913 located in nucleus 
AT1G06265.1 GO:0005634 0.86913 expressed in nucleus 
AT1G03545.1 GO:0005634 0.833534 located in nucleus 
AT1G03545.1 GO:0005634 0.833534 expressed in nucleus 
AT1G11185.1 GO:0005634 0.914013 located in nucleus 
AT1G11185.1 GO:0005634 0.914013 expressed in nucleus 
AT1G07728.1 GO:0005634 0.833534 located in nucleus 
AT1G07728.1 GO:0005634 0.833534 expressed in nucleus 
AT1G25175.1 GO:0005634 0.833534 located in nucleus 
AT1G25175.1 GO:0005634 0.833534 expressed in nucleus 
AT1G06265.2 GO:0005634 0.827943 located in nucleus 
AT1G06265.2 GO:0005634 0.827943 expressed in nucleus 
AT1G22403.1 GO:0005634 0.888665 located in nucleus 
AT1G22403.1 GO:0005634 0.888665 expressed in nucleus 
AT1G18415.1 GO:0005634 0.86913 located in nucleus 
AT1G18415.1 GO:0005634 0.86913 expressed in nucleus 
AT1G05562.1 GO:0005634 0.827943 located in nucleus 
AT1G05562.1 GO:0005634 0.827943 expressed in nucleus 
AT1G25098.1 GO:0005634 0.822941 located in nucleus 
AT1G25098.1 GO:0005634 0.822941 expressed in nucleus 
AT1G25098.2 GO:0005634 0.822941 located in nucleus 
AT1G25098.2 GO:0005634 0.822941 expressed in nucleus 
AT1G21529.1 GO:0005634 0.909878 located in nucleus 
AT1G21529.1 GO:0005634 0.909878 expressed in nucleus 
AT1G18382.1 GO:0005634 0.907501 located in nucleus 
AT1G18382.1 GO:0005634 0.907501 expressed in nucleus 
AT1G26558.1 GO:0005634 0.833534 located in nucleus 
AT1G26558.1 GO:0005634 0.833534 expressed in nucleus 
AT1G15405.1 GO:0005634 0.865146 located in nucleus 
AT1G15405.1 GO:0005634 0.865146 expressed in nucleus 
AT1G20515.1 GO:0005634 0.810878 located in nucleus 
AT1G20515.1 GO:0005634 0.810878 expressed in nucleus 
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AT1G19968.1 GO:0005634 0.909878 located in nucleus 
AT1G19968.1 GO:0005634 0.909878 expressed in nucleus 
AT1G16489.1 GO:0005634 0.827943 located in nucleus 
AT1G16489.1 GO:0005634 0.827943 expressed in nucleus 
AT1G15175.1 GO:0005634 0.817821 located in nucleus 
AT1G15175.1 GO:0005634 0.817821 expressed in nucleus 
AT1G26208.1 GO:0005634 0.835929 located in nucleus 
AT1G26208.1 GO:0005634 0.835929 expressed in nucleus 
AT1G02952.1 GO:0006260 0.714657 involved in DNA replication 
AT1G11175.1 GO:0006260 0.714657 involved in DNA replication 
AT1G16635.1 GO:0006260 0.714657 involved in DNA replication 
AT1G23052.1 GO:0006260 0.714657 involved in DNA replication 
AT1G22403.1 GO:0006260 0.714657 involved in DNA replication 
AT1G07128.1 GO:0006260 0.729471 involved in DNA replication 
AT1G18745.1 GO:0006260 0.714657 involved in DNA replication 
AT1G06002.1 GO:0006260 0.714657 involved in DNA replication 
AT1G23052.1 GO:0006270 0.719565 involved in DNA replication initiation 
AT1G16635.1 GO:0006270 0.719565 involved in DNA replication initiation 
AT1G07128.1 GO:0006270 0.733036 involved in DNA replication initiation 
AT1G22403.1 GO:0006270 0.719565 involved in DNA replication initiation 
AT1G06002.1 GO:0006270 0.719565 involved in DNA replication initiation 
AT1G02952.1 GO:0006270 0.719565 involved in DNA replication initiation 
AT1G18745.1 GO:0006270 0.719565 involved in DNA replication initiation 
AT1G11175.1 GO:0006270 0.719565 involved in DNA replication initiation 
AT1G11175.1 GO:0006275 0.794229 involved in regulation of DNA replication 
AT1G14518.1 GO:0006275 0.858233 involved in regulation of DNA replication 
AT1G11185.1 GO:0006275 0.835148 involved in regulation of DNA replication 
AT1G23052.1 GO:0006275 0.794229 involved in regulation of DNA replication 
AT1G13448.1 GO:0006275 0.858233 involved in regulation of DNA replication 
AT1G15002.1 GO:0006275 0.835148 involved in regulation of DNA replication 
AT1G24068.1 GO:0006275 0.847047 involved in regulation of DNA replication 
AT1G10682.1 GO:0006275 0.835148 involved in regulation of DNA replication 
AT1G06002.1 GO:0006275 0.794229 involved in regulation of DNA replication 
AT1G07128.1 GO:0006275 0.799039 involved in regulation of DNA replication 
AT1G18745.1 GO:0006275 0.794229 involved in regulation of DNA replication 
AT1G16635.1 GO:0006275 0.794229 involved in regulation of DNA replication 
AT1G18382.1 GO:0006275 0.850854 involved in regulation of DNA replication 
AT1G18735.1 GO:0006275 0.835148 involved in regulation of DNA replication 
AT1G22403.1 GO:0006275 0.794229 involved in regulation of DNA replication 
AT1G21529.1 GO:0006275 0.847047 involved in regulation of DNA replication 
AT1G09421.1 GO:0006275 0.858233 involved in regulation of DNA replication 
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AT1G19968.1 GO:0006275 0.847047 involved in regulation of DNA replication 
AT1G02952.1 GO:0006275 0.794229 involved in regulation of DNA replication 
AT1G11185.1 GO:0006464 0.996563 involved in cellular protein modification process 
AT1G06265.1 GO:0006464 0.893899 involved in cellular protein modification process 
AT1G06002.1 GO:0006464 0.976865 involved in cellular protein modification process 
AT1G18745.1 GO:0006464 0.976865 involved in cellular protein modification process 
AT1G14518.1 GO:0006464 0.992556 involved in cellular protein modification process 
AT1G15002.1 GO:0006464 0.996563 involved in cellular protein modification process 
AT1G01448.1 GO:0006464 0.893899 involved in cellular protein modification process 
AT1G10682.1 GO:0006464 0.996563 involved in cellular protein modification process 
AT1G04425.1 GO:0006464 0.893899 involved in cellular protein modification process 
AT1G16635.1 GO:0006464 0.976865 involved in cellular protein modification process 
AT1G18415.1 GO:0006464 0.893899 involved in cellular protein modification process 
AT1G07128.1 GO:0006464 0.973144 involved in cellular protein modification process 
AT1G02952.1 GO:0006464 0.976865 involved in cellular protein modification process 
AT1G19968.1 GO:0006464 0.994984 involved in cellular protein modification process 
AT1G18735.1 GO:0006464 0.996563 involved in cellular protein modification process 
AT1G09421.1 GO:0006464 0.992556 involved in cellular protein modification process 
AT1G23052.1 GO:0006464 0.976865 involved in cellular protein modification process 
AT1G13448.1 GO:0006464 0.992556 involved in cellular protein modification process 
AT1G22403.1 GO:0006464 0.976865 involved in cellular protein modification process 
AT1G17255.1 GO:0006464 0.893899 involved in cellular protein modification process 
AT1G15405.1 GO:0006464 0.856902 involved in cellular protein modification process 
AT1G24068.1 GO:0006464 0.994984 involved in cellular protein modification process 
AT1G21529.1 GO:0006464 0.994984 involved in cellular protein modification process 
AT1G11175.1 GO:0006464 0.976865 involved in cellular protein modification process 
AT1G04295.1 GO:0006464 0.856902 involved in cellular protein modification process 
AT1G18382.1 GO:0006464 0.994289 involved in cellular protein modification process 
AT1G08592.1 GO:0006464 0.893899 involved in cellular protein modification process 
AT1G10682.1 GO:0007094 0.851635 involved in mitotic spindle assembly checkpoint 
AT1G24068.1 GO:0007094 0.808349 involved in mitotic spindle assembly checkpoint 
AT1G14518.1 GO:0007094 0.756051 involved in mitotic spindle assembly checkpoint 
AT1G09421.1 GO:0007094 0.756051 involved in mitotic spindle assembly checkpoint 
AT1G15002.1 GO:0007094 0.851635 involved in mitotic spindle assembly checkpoint 
AT1G18735.1 GO:0007094 0.851635 involved in mitotic spindle assembly checkpoint 
AT1G19968.1 GO:0007094 0.808349 involved in mitotic spindle assembly checkpoint 
AT1G18382.1 GO:0007094 0.791929 involved in mitotic spindle assembly checkpoint 
AT1G11185.1 GO:0007094 0.851635 involved in mitotic spindle assembly checkpoint 
AT1G13448.1 GO:0007094 0.756051 involved in mitotic spindle assembly checkpoint 
AT1G21529.1 GO:0007094 0.808349 involved in mitotic spindle assembly checkpoint 
AT1G18735.1 GO:0008233 0.829943 has peptidase activity 
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AT1G09421.1 GO:0008233 0.77917 has peptidase activity 
AT1G21529.1 GO:0008233 0.806724 has peptidase activity 
AT1G19968.1 GO:0008233 0.806724 has peptidase activity 
AT1G13448.1 GO:0008233 0.77917 has peptidase activity 
AT1G24068.1 GO:0008233 0.806724 has peptidase activity 
AT1G15002.1 GO:0008233 0.829943 has peptidase activity 
AT1G10682.1 GO:0008233 0.829943 has peptidase activity 
AT1G11185.1 GO:0008233 0.829943 has peptidase activity 
AT1G18382.1 GO:0008233 0.798055 has peptidase activity 
AT1G14518.1 GO:0008233 0.77917 has peptidase activity 
AT1G14518.1 GO:0008283 0.725926 involved in cell proliferation 
AT1G14518.1 GO:0008283 0.725926 expressed only during cell proliferation 
AT1G22403.1 GO:0008283 0.810703 involved in cell proliferation 
AT1G22403.1 GO:0008283 0.810703 expressed only during cell proliferation 
AT1G11175.1 GO:0008283 0.810703 involved in cell proliferation 
AT1G11175.1 GO:0008283 0.810703 expressed only during cell proliferation 
AT1G18745.1 GO:0008283 0.810703 involved in cell proliferation 
AT1G18745.1 GO:0008283 0.810703 expressed only during cell proliferation 
AT1G07128.1 GO:0008283 0.819741 involved in cell proliferation 
AT1G07128.1 GO:0008283 0.819741 expressed only during cell proliferation 
AT1G18382.1 GO:0008283 0.701366 involved in cell proliferation 
AT1G18382.1 GO:0008283 0.701366 expressed only during cell proliferation 
AT1G16635.1 GO:0008283 0.810703 involved in cell proliferation 
AT1G16635.1 GO:0008283 0.810703 expressed only during cell proliferation 
AT1G02952.1 GO:0008283 0.810703 involved in cell proliferation 
AT1G02952.1 GO:0008283 0.810703 expressed only during cell proliferation 
AT1G13448.1 GO:0008283 0.725926 involved in cell proliferation 
AT1G13448.1 GO:0008283 0.725926 expressed only during cell proliferation 
AT1G23052.1 GO:0008283 0.810703 involved in cell proliferation 
AT1G23052.1 GO:0008283 0.810703 expressed only during cell proliferation 
AT1G06002.1 GO:0008283 0.810703 involved in cell proliferation 
AT1G06002.1 GO:0008283 0.810703 expressed only during cell proliferation 
AT1G09421.1 GO:0008283 0.725926 involved in cell proliferation 
AT1G09421.1 GO:0008283 0.725926 expressed only during cell proliferation 

AT1G02952.1 GO:0008540 0.959532 
located in proteasome regulatory particle, base 
subcomplex 

AT1G23052.1 GO:0008540 0.959532 
located in proteasome regulatory particle, base 
subcomplex 

AT1G06002.1 GO:0008540 0.959532 
located in proteasome regulatory particle, base 
subcomplex 

AT1G01448.1 GO:0008540 0.853289 
located in proteasome regulatory particle, base 
subcomplex 
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AT1G11185.1 GO:0008540 0.994131 
located in proteasome regulatory particle, base 
subcomplex 

AT1G07128.1 GO:0008540 0.953708 
located in proteasome regulatory particle, base 
subcomplex 

AT1G19968.1 GO:0008540 0.991086 
located in proteasome regulatory particle, base 
subcomplex 

AT1G04295.1 GO:0008540 0.814531 
located in proteasome regulatory particle, base 
subcomplex 

AT1G06265.1 GO:0008540 0.853289 
located in proteasome regulatory particle, base 
subcomplex 

AT1G08592.1 GO:0008540 0.853289 
located in proteasome regulatory particle, base 
subcomplex 

AT1G18415.1 GO:0008540 0.853289 
located in proteasome regulatory particle, base 
subcomplex 

AT1G14518.1 GO:0008540 0.98648 
located in proteasome regulatory particle, base 
subcomplex 

AT1G18382.1 GO:0008540 0.989756 
located in proteasome regulatory particle, base 
subcomplex 

AT1G15405.1 GO:0008540 0.814531 
located in proteasome regulatory particle, base 
subcomplex 

AT1G09421.1 GO:0008540 0.98648 
located in proteasome regulatory particle, base 
subcomplex 

AT1G04425.1 GO:0008540 0.853289 
located in proteasome regulatory particle, base 
subcomplex 

AT1G17255.1 GO:0008540 0.853289 
located in proteasome regulatory particle, base 
subcomplex 

AT1G15002.1 GO:0008540 0.994131 
located in proteasome regulatory particle, base 
subcomplex 

AT1G21529.1 GO:0008540 0.991086 
located in proteasome regulatory particle, base 
subcomplex 

AT1G16635.1 GO:0008540 0.959532 
located in proteasome regulatory particle, base 
subcomplex 

AT1G10682.1 GO:0008540 0.994131 
located in proteasome regulatory particle, base 
subcomplex 

AT1G13448.1 GO:0008540 0.98648 
located in proteasome regulatory particle, base 
subcomplex 

AT1G18735.1 GO:0008540 0.994131 
located in proteasome regulatory particle, base 
subcomplex 

AT1G24068.1 GO:0008540 0.991086 
located in proteasome regulatory particle, base 
subcomplex 

AT1G22403.1 GO:0008540 0.959532 
located in proteasome regulatory particle, base 
subcomplex 

AT1G11175.1 GO:0008540 0.959532 
located in proteasome regulatory particle, base 
subcomplex 

AT1G18745.1 GO:0008540 0.959532 
located in proteasome regulatory particle, base 
subcomplex 

AT1G02952.1 GO:0009570 0.793344 located in chloroplast stroma 
AT1G15405.1 GO:0009570 0.851548 located in chloroplast stroma 
AT1G24068.1 GO:0009570 0.759327 located in chloroplast stroma 
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AT1G22403.2 GO:0009570 0.901079 located in chloroplast stroma 
AT1G23052.1 GO:0009570 0.793344 located in chloroplast stroma 
AT1G11175.1 GO:0009570 0.793344 located in chloroplast stroma 
AT1G06002.1 GO:0009570 0.793344 located in chloroplast stroma 
AT1G14518.1 GO:0009570 0.767346 located in chloroplast stroma 
AT1G04425.1 GO:0009570 0.840113 located in chloroplast stroma 
AT1G07128.1 GO:0009570 0.797227 located in chloroplast stroma 
AT1G21529.1 GO:0009570 0.884511 located in chloroplast stroma 
AT1G04295.1 GO:0009570 0.851548 located in chloroplast stroma 
AT1G01448.1 GO:0009570 0.840113 located in chloroplast stroma 
AT1G13448.1 GO:0009570 0.767346 located in chloroplast stroma 
AT1G18735.1 GO:0009570 0.751868 located in chloroplast stroma 
AT1G16635.1 GO:0009570 0.793344 located in chloroplast stroma 
AT1G08592.1 GO:0009570 0.840113 located in chloroplast stroma 
AT1G11185.1 GO:0009570 0.751868 located in chloroplast stroma 
AT1G18382.1 GO:0009570 0.761926 located in chloroplast stroma 
AT1G17255.1 GO:0009570 0.840113 located in chloroplast stroma 
AT1G06265.1 GO:0009570 0.840113 located in chloroplast stroma 
AT1G15002.1 GO:0009570 0.751868 located in chloroplast stroma 
AT1G15175.1 GO:0009570 0.709498 located in chloroplast stroma 
AT1G19968.1 GO:0009570 0.884511 located in chloroplast stroma 
AT1G09421.1 GO:0009570 0.767346 located in chloroplast stroma 
AT1G20515.1 GO:0009570 0.729036 located in chloroplast stroma 
AT1G10682.1 GO:0009570 0.751868 located in chloroplast stroma 
AT1G22403.1 GO:0009570 0.793344 located in chloroplast stroma 
AT1G01448.3 GO:0009570 0.709498 located in chloroplast stroma 
AT1G18745.1 GO:0009570 0.793344 located in chloroplast stroma 
AT1G18415.1 GO:0009570 0.840113 located in chloroplast stroma 
AT1G19968.1 GO:0009965 0.737943 involved in leaf morphogenesis 
AT1G21529.1 GO:0009965 0.737943 involved in leaf morphogenesis 
AT1G11185.1 GO:0010048 0.798751 involved in vernalization response 
AT1G11185.1 GO:0010048 0.798751 required for vernalization response 
AT1G24068.1 GO:0010048 0.823808 involved in vernalization response 
AT1G24068.1 GO:0010048 0.823808 required for vernalization response 
AT1G10682.1 GO:0010048 0.798751 involved in vernalization response 
AT1G10682.1 GO:0010048 0.798751 required for vernalization response 
AT1G15002.1 GO:0010048 0.798751 involved in vernalization response 
AT1G15002.1 GO:0010048 0.798751 required for vernalization response 
AT1G18735.1 GO:0010048 0.798751 involved in vernalization response 
AT1G18735.1 GO:0010048 0.798751 required for vernalization response 
AT1G19968.1 GO:0016571 0.873479 involved in histone methylation 
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AT1G21529.1 GO:0016571 0.873479 involved in histone methylation 
AT1G10682.1 GO:0016571 0.865645 involved in histone methylation 
AT1G11185.1 GO:0016571 0.865645 involved in histone methylation 
AT1G15002.1 GO:0016571 0.865645 involved in histone methylation 
AT1G18735.1 GO:0016571 0.865645 involved in histone methylation 
AT1G18382.1 GO:0016571 0.876039 involved in histone methylation 
AT1G24068.1 GO:0030154 1 involved in cell differentiation 
AT1G07728.2 GO:0030154 1 involved in cell differentiation 
AT1G19968.1 GO:0030154 1 involved in cell differentiation 
AT1G25098.2 GO:0030154 1 involved in cell differentiation 
AT1G20691.1 GO:0030154 1 involved in cell differentiation 
AT1G16635.1 GO:0030154 1 involved in cell differentiation 
AT1G13448.1 GO:0030154 1 involved in cell differentiation 
AT1G07728.1 GO:0030154 1 involved in cell differentiation 
AT1G23052.1 GO:0030154 1 involved in cell differentiation 
AT1G11175.1 GO:0030154 1 involved in cell differentiation 
AT1G06265.1 GO:0030154 1 involved in cell differentiation 
AT1G03545.1 GO:0030154 1 involved in cell differentiation 
AT1G06002.1 GO:0030154 1 involved in cell differentiation 
AT1G22403.2 GO:0030154 1 involved in cell differentiation 
AT1G25175.1 GO:0030154 1 involved in cell differentiation 
AT1G18745.1 GO:0030154 1 involved in cell differentiation 
AT1G11592.2 GO:0030154 1 involved in cell differentiation 
AT1G07119.1 GO:0030154 1 involved in cell differentiation 
AT1G10682.1 GO:0030154 1 involved in cell differentiation 
AT1G01448.2 GO:0030154 1 involved in cell differentiation 
AT1G11185.1 GO:0030154 1 involved in cell differentiation 
AT1G15405.1 GO:0030154 1 involved in cell differentiation 
AT1G11592.1 GO:0030154 1 involved in cell differentiation 
AT1G15002.1 GO:0030154 1 involved in cell differentiation 
AT1G17255.1 GO:0030154 1 involved in cell differentiation 
AT1G08592.1 GO:0030154 1 involved in cell differentiation 
AT1G06265.2 GO:0030154 1 involved in cell differentiation 
AT1G26218.1 GO:0030154 1 involved in cell differentiation 
AT1G26558.1 GO:0030154 1 involved in cell differentiation 
AT1G04425.1 GO:0030154 1 involved in cell differentiation 
AT1G18415.1 GO:0030154 1 involved in cell differentiation 
AT1G25098.1 GO:0030154 1 involved in cell differentiation 
AT1G15175.1 GO:0030154 1 involved in cell differentiation 
AT1G18382.1 GO:0030154 1 involved in cell differentiation 
AT1G01448.1 GO:0030154 1 involved in cell differentiation 
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AT1G02952.1 GO:0030154 1 involved in cell differentiation 
AT1G09421.1 GO:0030154 1 involved in cell differentiation 
AT1G26208.2 GO:0030154 1 involved in cell differentiation 
AT1G07128.1 GO:0030154 1 involved in cell differentiation 
AT1G16489.1 GO:0030154 1 involved in cell differentiation 
AT1G04295.1 GO:0030154 1 involved in cell differentiation 
AT1G21529.1 GO:0030154 1 involved in cell differentiation 
AT1G26208.1 GO:0030154 1 involved in cell differentiation 
AT1G17232.1 GO:0030154 1 involved in cell differentiation 
AT1G22403.1 GO:0030154 1 involved in cell differentiation 
AT1G05562.1 GO:0030154 1 involved in cell differentiation 
AT1G18735.1 GO:0030154 1 involved in cell differentiation 
AT1G14518.1 GO:0030154 1 involved in cell differentiation 
AT1G01448.3 GO:0030154 1 involved in cell differentiation 
AT1G01448.2 GO:0031507 0.77795 involved in heterochromatin assembly 
AT1G15175.1 GO:0031507 0.777874 involved in heterochromatin assembly 
AT1G07128.1 GO:0031507 0.860208 involved in heterochromatin assembly 
AT1G25175.1 GO:0031507 0.777947 involved in heterochromatin assembly 
AT1G11175.1 GO:0031507 0.859386 involved in heterochromatin assembly 
AT1G22403.1 GO:0031507 0.859386 involved in heterochromatin assembly 
AT1G23052.1 GO:0031507 0.859386 involved in heterochromatin assembly 
AT1G02952.1 GO:0031507 0.859386 involved in heterochromatin assembly 
AT1G07728.2 GO:0031507 0.777947 involved in heterochromatin assembly 
AT1G11185.1 GO:0031507 0.848912 involved in heterochromatin assembly 
AT1G19968.1 GO:0031507 0.851069 involved in heterochromatin assembly 
AT1G06265.2 GO:0031507 0.77795 involved in heterochromatin assembly 
AT1G22403.2 GO:0031507 0.777902 involved in heterochromatin assembly 
AT1G25098.1 GO:0031507 0.777938 involved in heterochromatin assembly 
AT1G07728.1 GO:0031507 0.777947 involved in heterochromatin assembly 
AT1G04425.1 GO:0031507 0.870102 involved in heterochromatin assembly 
AT1G01448.1 GO:0031507 0.870102 involved in heterochromatin assembly 
AT1G26218.1 GO:0031507 0.77795 involved in heterochromatin assembly 
AT1G18745.1 GO:0031507 0.859386 involved in heterochromatin assembly 
AT1G15405.1 GO:0031507 0.873934 involved in heterochromatin assembly 
AT1G18735.1 GO:0031507 0.848912 involved in heterochromatin assembly 
AT1G16489.1 GO:0031507 0.77795 involved in heterochromatin assembly 
AT1G06002.1 GO:0031507 0.859386 involved in heterochromatin assembly 
AT1G14518.1 GO:0031507 0.85326 involved in heterochromatin assembly 
AT1G17232.1 GO:0031507 0.777938 involved in heterochromatin assembly 
AT1G18415.1 GO:0031507 0.870102 involved in heterochromatin assembly 
AT1G03545.1 GO:0031507 0.777947 involved in heterochromatin assembly 
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AT1G24068.1 GO:0031507 0.851069 involved in heterochromatin assembly 
AT1G08592.1 GO:0031507 0.870102 involved in heterochromatin assembly 
AT1G09421.1 GO:0031507 0.85326 involved in heterochromatin assembly 
AT1G06265.1 GO:0031507 0.870102 involved in heterochromatin assembly 
AT1G15002.1 GO:0031507 0.848912 involved in heterochromatin assembly 
AT1G17255.1 GO:0031507 0.870102 involved in heterochromatin assembly 
AT1G16635.1 GO:0031507 0.859386 involved in heterochromatin assembly 
AT1G20691.1 GO:0031507 0.777947 involved in heterochromatin assembly 
AT1G20515.1 GO:0031507 0.777679 involved in heterochromatin assembly 
AT1G13448.1 GO:0031507 0.85326 involved in heterochromatin assembly 
AT1G26208.1 GO:0031507 0.77794 involved in heterochromatin assembly 
AT1G10682.1 GO:0031507 0.848912 involved in heterochromatin assembly 
AT1G18382.1 GO:0031507 0.851795 involved in heterochromatin assembly 
AT1G26208.2 GO:0031507 0.777938 involved in heterochromatin assembly 
AT1G04295.1 GO:0031507 0.873934 involved in heterochromatin assembly 
AT1G25098.2 GO:0031507 0.777938 involved in heterochromatin assembly 
AT1G26558.1 GO:0031507 0.777947 involved in heterochromatin assembly 
AT1G01448.3 GO:0031507 0.777874 involved in heterochromatin assembly 
AT1G07119.1 GO:0031507 0.777947 involved in heterochromatin assembly 
AT1G05562.1 GO:0031507 0.77795 involved in heterochromatin assembly 
AT1G21529.1 GO:0031507 0.851069 involved in heterochromatin assembly 
AT1G11592.2 GO:0031507 0.77794 involved in heterochromatin assembly 
AT1G11592.1 GO:0031507 0.777938 involved in heterochromatin assembly 
AT1G09421.1 GO:0051567 0.870138 involved in histone H3-K9 methylation 
AT1G13448.1 GO:0051567 0.870138 involved in histone H3-K9 methylation 
AT1G11185.1 GO:0051567 0.797527 involved in histone H3-K9 methylation 
AT1G18382.1 GO:0051567 0.848776 involved in histone H3-K9 methylation 
AT1G10682.1 GO:0051567 0.797527 involved in histone H3-K9 methylation 
AT1G19968.1 GO:0051567 0.837054 involved in histone H3-K9 methylation 
AT1G21529.1 GO:0051567 0.837054 involved in histone H3-K9 methylation 
AT1G18735.1 GO:0051567 0.797527 involved in histone H3-K9 methylation 
AT1G24068.1 GO:0051567 0.837054 involved in histone H3-K9 methylation 
AT1G15002.1 GO:0051567 0.797527 involved in histone H3-K9 methylation 
AT1G14518.1 GO:0051567 0.870138 involved in histone H3-K9 methylation 
AT1G21529.1 GO:0051726 0.742142 involved in regulation of cell cycle 
AT1G02952.1 GO:0051726 0.773148 involved in regulation of cell cycle 
AT1G22403.1 GO:0051726 0.773148 involved in regulation of cell cycle 
AT1G11185.1 GO:0051726 0.815916 involved in regulation of cell cycle 
AT1G23052.1 GO:0051726 0.773148 involved in regulation of cell cycle 
AT1G15002.1 GO:0051726 0.815916 involved in regulation of cell cycle 
AT1G16635.1 GO:0051726 0.773148 involved in regulation of cell cycle 
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AT1G13448.1 GO:0051726 0.75084 involved in regulation of cell cycle 
AT1G06002.1 GO:0051726 0.773148 involved in regulation of cell cycle 
AT1G10682.1 GO:0051726 0.815916 involved in regulation of cell cycle 
AT1G24068.1 GO:0051726 0.822598 involved in regulation of cell cycle 
AT1G18745.1 GO:0051726 0.773148 involved in regulation of cell cycle 
AT1G11175.1 GO:0051726 0.773148 involved in regulation of cell cycle 
AT1G09421.1 GO:0051726 0.75084 involved in regulation of cell cycle 
AT1G18382.1 GO:0051726 0.824782 involved in regulation of cell cycle 
AT1G19968.1 GO:0051726 0.742142 involved in regulation of cell cycle 
AT1G07128.1 GO:0051726 0.77584 involved in regulation of cell cycle 
AT1G14518.1 GO:0051726 0.75084 involved in regulation of cell cycle 
AT1G18735.1 GO:0051726 0.815916 involved in regulation of cell cycle 
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