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ABSTRACT 

A Deep Learning Approach to LncRNA Subcellular Localization 

Using Inexact q-mer 

Weijun Yi 

Long non coding Ribonucleic Acids (lncRNAs) can be localized to different cellular components, 

such as the nucleus, exosome, cytoplasm, ribosome, etc. Their biological functions can be 

influenced by the region of the cell they are located. Many of these lncRNAs are associated with 

different challenging diseases. Thus, it is crucial to study their subcellular localization. However, 

compared to the vast number of lncRNAs, only relatively few have annotations in terms of their 

subcellular localization. Conventional computational methods use q-mer profiles from lncRNA 

sequences and then train machine learning models, such as support vector machines and logistic 

regression with the profiles. These methods focus on the exact q-mer. Given possible sequence 

mutations and other uncertainties in genomic sequences and their role in biological function, a 

consideration of these changes might improve our ability to model lncRNAs and their localization. 

I hypothesize that considering these changes may improve the ability to predict subcellular 

localization of lncRNAs. To test this hypothesis, I propose a deep learning model with inexact q-

mers for the localization of lncRNAs in the cell. The proposed method can obtain a high overall 

accuracy of 94.7%, an average of 91.3% on a benchmark dataset, using the 8-mers with 

mismatches. In comparison, the exact 8-mer result was 89.8%. The proposed approach 

outperformed existing state-of-art lncRNA predictors on two different datasets. Therefore, the 

results support the hypothesis that deep learning models using inexact q-mers can improve the 

performance of computational lncRNA localization algorithms.  The lengths of the lncRNAs vary 

from hundreds to thousands of nucleotides. In this work, I also check whether the length of lncRNA 

will impact the prediction accuracy. The results show that when the lncRNA sequence's length is 

between 2000 and 3000 nucleotides, our model is more accurate.
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Chapter 1: Introduction 

Non-coding RNAs (ncRNAs) and protein-coding genes are two constituent parts of the human 

genome [1]. Usually, non-coding RNAs can be divided into small ncRNAs with lengths less than 

200 nucleotides and long non-coding RNAs (lncRNAs) with lengths greater than or equal to 200 

nucleotides [2]. Since lncRNAs were first discovered in the early 1990s, the family of lncRNAs 

has expanded rapidly. A recent study indicates that there are over 270,000 lncRNA transcripts in 

humans [3]. Unlike the protein-coding genes, which are functional units of heredity [4], non-

coding RNAs were once deemed non-functional. They were perceived as the product of spurious 

transcription [5]. However, the application of high-throughput sequencing technologies [6] has 

shed more light on the transcriptional units. Accumulative evidence shows that ncRNAs, 

specifically lncRNAs, exhibit biological functions. LncRNAs have been associated with biological 

processing, such as chromatin modification, cell cycling, protein transcription, and translation [7], 

[8]. LncRNAs also play essential roles in diseases, including cancer, autism, Alzheimer’s disease, 

and others [9]–[11]. A popular database of lncRNA-associated diseases, LncRNADisease [12], 

documents 10,564 experimentally supported lncRNA-disease associations. There are 451 unique 

disease names in the database, including various cancers, syndromes, nervous system disorders, 

etc., which underline the critical role of lncRNAs in many complex human diseases.   

Similar to proteins, the function of lncRNAs has been linked with their subcellular localization 

in the cell [13]. Therefore, understanding the subcellular localization of lncRNAs and their 

dynamic changes can also help to explain the function of newly discovered lncRNAs [14]. To 

study the RNA subcellular localization, a database, RNALocate v2.0 [15], was constructed in 2016 

and updated in 2021. 213,260 RNA subcellular localization entries validated by experimental 
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evidence.  Experimental results show RNAs can be located in the nucleus, cytoplasm, ribosome, 

exosome, nucleoplasm, chromatin, cytosol, endoplasmic reticulum, and plasma membrane. See 

[15]. The dataset contains 9,587 lncRNAs, some of them located in different components of the 

cell. Only 6728 unique lncRNAs were annotated. In 2017, another database, LncATLAS [16], for 

subcellular localization of lncRNAs was introduced by calculating the cytoplasmic/nuclear relative 

concentration index. 6768 lncRNAs were annotated.  Compared to the large number of lncRNAs, 

only a few lncRNAs have been annotated.  

Briefly, there are two general approaches to determine the subcellular localization of lncRNA: 

experimental biomedical methods and computational methods. Several practical methods for 

lncRNA localization include fluorescence in situ hybridization (FISH), APEX-RIP, Fluorescent In 

Situ RNA Sequencing, Multiplexed Error-Robust Fluorescence Situ Hybridization, RNA Zipcodes 

specifying subcellular destinations, etc. [14].  Biomedical experiments determine the subcellular 

localization by immunolabeling or tagging with a fluorescence microscope. These experiments are 

time-consuming and laborious [17]. Recent studies indicate that computational approaches can 

predict subcellular localization by using known subcellular localization datasets. These studies 

make predictions with high accuracy by extracting shot nucleotide segments (called q-mers or q-

grams) from lncRNA sequences and training machine learning models, such as Random Forest 

(RF), support vector machines (SVM), or deep neural network models [18]–[20].  

Traditional computational methods have focused on exact q-mers. However, given possible 

mutations in genomic sequences [21] and other uncertainties in biological systems, exact pattern 

matching may not be adequate to model problems in RNA localization. Thus, segments with 

inexact matches or mismatch(es) may provide equally biological information in the modeling. In 
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this work, I am interested in whether inexact q-mers can impact the computational prediction of 

lncRNA localization based on lncRNA sequences. I introduce a deep learning approach for 

lncRNA localization using inexact q-mers with a one-dimensional convolutional neural network 

(1D CNN). The length of the lncRNA sequences vary from hundreds to thousands. In this work, I 

also test whether the length of the lncRNA sequences will impact the prediction on the localization. 
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Chapter 2: Background and Literature Review 

2.1 DNA, RNA, and Gene 

Deoxyribonucleic acid (DNA) is the genetic material present in humans and almost all other living 

things. DNA is a double-helix molecule (nucleotides). It is made up of stacked pairs of nitrogenous 

bases (adenine (A) and cytosine (C) for purines; guanine (G), or thymine (T) for pyrimidines)[22]. 

The double-stranded DNA molecule may store genetic information in either strand. A gene is a 

segment in one of the DNA molecule chains containing genetic data [23], [24]. According to the 

central dogma of molecular biology, DNA is transcribed into Ribonucleic acid (RNA). Genes 

served as templates in the synthesis of RNA molecules, the message RNA (mRNA). Message RNA 

carries the instructions for making proteins, the functional units of the cell, and is eventually 

converted into protein (translation) by RNA polymerases. Thus, the genetic information flows 

from DNA to RNA and then to protein. RNA polymerases synthesize RNA molecules by 

complementing one strand of the DNA with the replacement of thymine (T) by uracil (U)[22].  

For decades, RNA was only deemed to be the messenger between DNA and proteins. However, 

the rapid progress in DNA/RNA sequencing technologies has revealed that most regulatory 

RNAs’ functions do not involve protein translation. Instead, RNAs play roles in the regulation of 

gene expression, cell cycle control[25], [26].  

2.2 Coding vs. Noncoding Genes 

After the genes are transcribed into single RNA molecules, mRNA, they are translated into protein. 

These kinds of genes are protein-coding genes. The intermediate, message RNA, is the protein-

coding RNA. There are also genes for RNA molecules that are not translated. These genes are non-

coding genes. The RNA molecules produced from non-coding genes are non-coding RNAs 
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(ncRNAs). A genome is the genetic material of an organism. It includes the genes and ncRNAs. 

For many years, non-coding genes and non-coding RNAs were treated as “genetic junk” and non-

functional. In contrast, scientists have proved that non-coding genes and RNAs play vital roles in 

protein synthesis. Non-coding RNAs help form a protein by assembling the protein building blocks 

into a chain. In addition, non-coding genes contain many types of regulatory functions, such as 

assisting activate transcription[5], [27]–[29]. 

People divide Non-coding RNAs into two major categories: structural or housekeeping RNAs and 

regulatory RNAs. The transfer RNAs and ribosomal RNAs are structural. They play roles in 

mRNA translation. The regulatory RNAs are involved in various aspects of cellular processes, 

from transcriptional regulation to control of translation.  Regulatory RNAs usually come in 

different sizes: small ncRNAs with nucleotides less than 200 and long ncRNAs (lncRNAs) with 

the length of nucleotides greater or equal to 200. Small ncRNAs include small interfering RNAs 

(siRNAs) that function as gene regulation, microRNAs (miRNAs) that function as post-

transcriptional regulation, piwi-interacting RNAs (piRNAs) that regulate genetic elements in germ 

cell lines. The rest of the ncRNAs with lengths greater than or equal to 200 are lncRNAs [2], [25], 

[28], [30]. 

2.3 Long non-coding RNAs 

A conventional opinion is that less than 2% of 3 billion DNA bases of the human genome 

encode proteins, and most of the other genomes are functionally unknown[31], [32]. Long non-

coding RNA is a relatively new class found functional in biological processing among these rest 

genomes. 
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Long non-coding RNAs (lncRNAs) are defined as ncRNAs with lengths greater than or equal 

to 200 nucleotides [2]. Since lncRNAs were first discovered in the early 1990s, the family of 

lncRNAs has expanded rapidly. A recent study indicated that there are over 270,000 lncRNA 

transcripts in humans [3]. Unlike the protein-coding genes, which are functional units of 

heredity[4], non-coding RNAs were once deemed non-functional. They were perceived as the 

product of spurious transcription [5]. However, the application of high-throughput sequencing 

technologies [6] has shed more light on the transcriptional units. Accumulative evidence shows 

that ncRNAs, specifically lncRNAs, exhibit biological functions. LncRNAs have been associated 

with biological processing, such as chromatin modification, cell cycling, protein transcription, and 

translation[8], [25]. LncRNAs also play essential roles in diseases, including cancer, autism, 

Alzheimer's disease, and others [9]–[11].  

A popular database of lncRNA-associated diseases, LncRNADisease[12], documents 10,564 

experimentally supported lncRNA-disease associations. There are 451 unique disease names in 

the database, including various cancers, syndromes, nervous system disorders, etc., which 

underline the critical role of lncRNAs in many complex human diseases.   

To fully understand the functionality of lncRNA, it is critical to identify and annotate lncRNA 

from the sea of human genomes. There are two major kinds of methods to identify the function 

and mechanisms of lncRNA. The experimental methods identify lncRNA-protein interactions[33]. 

The experimental methods are time-consuming and professional knowledge is highly demanded. 

The others are computational methods. These methods extract sequence features relationship from 

experimentally verified lncRNA-protein interacting pairs and then use machine learning methods 

or deep learning methods to predict novel lncRNAs[34]–[38].  
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Similar to proteins, the function of lncRNAs has been linked with their subcellular localization 

in the cell [13]. Therefore, understanding the subcellular localization of lncRNAs and their 

dynamic changes can also help to explain the function of newly discovered lncRNAs[39]. 

2.4 Subcellular localization 

RNAs play crucial roles in cellular processes, including translating genetic information, 

regulating gene activity, and cellular differentiation [40]. These functions are determined by RNAs’ 

location in the cell [14], [41]. The cell of eukaryotic organisms can be divided into functionally 

distinct membrane-bound compartments [40](See Figure 1.), which are linked with different 

phases of biological processes[42]. To understand the function of RNA, we need to understand its 

subcellular localization.  

Experiment methods, such as FISH, APEX-RIP, Fluorescent In Situ RNA Sequencing, 

Multiplexed Error-Robust Fluorescence In Situ Hybridization, RNA Zipcodes Specifying 

Subcellular Destinations [14], which map RNAs to their subcellular localization, require 

knowledge of molecular chemistry, specialized instruments, and techniques. These experiments 

are time-consuming and laborious[17]. 

Unlike the coding RNAs, which have been studied widely, lncRNAs are more challenging to 

explore, given their low expression levels [43]. Thus, using information from known datasets to 

predict the subcellular localization of lncRNAs has become a significant challenge. To study the 

RNA subcellular localization, a database, RNALocate V2.0 [15], was constructed in 2016 and 

updated in 2021. It documents 213260 curated RNA subcellular localization entries with 

experimental evidence.  Experimental results show RNAs can locate in the nucleus, cytoplasm, 

ribosome, exosome, nucleoplasm, chromatin, cytosol, and endoplasmic reticulum. 

https://en.wikipedia.org/wiki/Cell_(biology)
https://en.wikipedia.org/wiki/Eukaryote
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Figure 1. The structure of an animal cell. The key target lncRNA localizations in most datasets 

are the nucleus, exosome, ribosome, and cytoplasm (indicated in red). 

In 2017, another database, LncATLAS [16], was built for the subcellular localization of 

lncRNAs. 6768 lncRNAs were annotated. Compared to the enormous volume of lncRNAs, the 

annotated lncRNAs are very small. Most of them are still functionally unknown. 

Recent studies indicate that subcellular localization can be predicted from known subcellular 

localization dataset with computational approaches. Machine learning is applied when making the 

prediction. These studies annotate lncRNAs with subcellular localizations, such as cytoplasm, 

nucleus, ribosome, exosome, etc. They extract pseudo nucleotide (q-mer) segments from lncRNA 

sequence and train Random Forest (RF), support vector machine (SVM), or deep neural network 

models[18]–[20].  

From known datasets to predict the new lncRNAs’ subcellular localization is becoming a hot 

issue. With known annotation, prediction on subcellular localization can be treated as a 

classification problem. For coding RNAs, there are many predictors of protein, which have been 

developed since 1990s[39]. Many take computational approaches, using machine learning or deep 

learning methods. In contrast to protein-coding RNAs, only a few methods have been proposed 

predicting lncRNAs subcellular localization.   
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2.5 Prior work on lncRNA subcellular localization 

Research shows that we can represent RNA sequence in a discrete model: pseudo-k-tuple 

nucleotide composition (PseKNC) [44]. In the PseKNC model, q-length substrings (q-mers) are 

extracted from the RNA sequence. Each substring can be treated as an RNA motif that contains 

some biological information. Then, the RNA sequence is decomposed into a set of small-sized 

segments, which are typically more efficient to analyze than long RNA sequences. Along this line 

of thought, Kirk et al. [45]  showed that profiles based on such q-mers could be used to analyze 

lncRNAs subcellular localization. They create q-mer profiles for all lncRNAs in human and mouse 

GENECODE databases[46]. They compare the similarity between lncRNA sequences by 

computing the Pearson’s correlation of the sequences’ q-mer profiles and dividing lncRNAs into 

five communities. By analyzing the distributions of nuclear ratios between communities, they 

conclude that q-mer content provides information about the lncRNA subcellular localization. 

These make it reasonable to annotate subcellular localization of new lncRNA from the known 

database with a computational approach. 

General computational methods predict the localization of lncRNAs by extracting q-mer 

features from the lncRNA sequence. They select particular nucleotide segments as features and 

then train a prediction model, such as random forest, support vector machine, or deep neural 

network, to make a prediction. 

In LncLocator[18], Cao et al. created an annotated subcellular localization dataset of lncRNAs 

from RNALocate [47]. The dataset contained 612 lncRNAs which are allocated in 5 locations in 

the cell, including nucleus, cytoplasm, cytosol, ribosome, and exosome (see Table 1). They 

extracted q-mer (q=4,5,6) segments from lncRNA sequences. Considering the low discrimination 

of small segments, they feed 4-mer features into a stacked autoencoder model to automatically 
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create high-level feature representation. Since the dataset is imbalanced, they used a supervised 

over-sampling strategy to expand the minority sample size. They train machine learning models, 

namely, random forest and support vector machines with raw q-mer features and autoencoder-

based features. These resulted in four prediction models, which are then combined using a stacked 

ensemble model for final prediction. They tested their data in various scenarios. The overall 

accuracy was 59.8% on the five-class dataset.   

The iLoc-lncRNA [19] predicts lncRNAs subcellular localization by feeding octamer features 

into SVM. They build a 4-class dataset from RNALocate [47]. The classes correspond to the 

following localizations: nucleus, cytoplasm, ribosome, and exosome. There are 655 lncRNAs in 

the dataset (see Table 1). First, they extract 8-mer features from the lncRNA sequences. Then, 

because high dimensional features will produce several problems such as over-fitting and 

redundant noise, they selected features based on the 8-mer feature distribution probability. They 

finally picked 4107 8-mer features and then trained the SVM model with the extracted features. 

The overall accuracy was 86.72% on the 4-class dataset. 

Gudenas et al. [20] built a two-class dataset from the ENCODE [31] project. First, they 

quantified the lncRNA transcript differences between nuclear and cytosolic, applying log2 fold-

change threshold to allocate 8678 lncRNAs to cytosolic and nuclear, 4380 for cytosolic, and 4298 

for nuclear. They then extracted q-mer features (q=2,3,4,5) from the lncRNA sequences. Next, 

they added RNA-protein binding motifs to the feature map, and passed these to a deep neural 

network. They obtained an accuracy of 72.4%.  

In lncLocPred [48], built a four-class dataset from the RNALocate database [47]. The database 

contains 396 lncRNAs. They use this dataset as an independent dataset and dataset in iLoc-lncRNA 
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[19] as the benchmark dataset. First, they collect features using q-mers (q=5,6,8), triplet, and 

PseDNC. They then trained a logistic regression model using the selected features. They finally 

got highest accuracy of 92.37%. 

In Locator-R [49], Ahmad et al. use the n-gapped l-mer composition and l-mer composition as 

features and train support vector machines. As a result, they get an overall accuracy of 90.09%. 

In KD-KLNMF, they introduce a novel statistical model using k-mer incorporated with 

dinucleotide-based spatial autocorrelation as the feature map and apply synthetic Minority over-

sampling technique to deal with the imbalance dataset. They then train support vector machines 

and get an overall accuracy 97.24%. 

These methods both use the data from the iLoc paper as a benchmark dataset; the KD-KLNMF 

is slightly different. They both focus on the exact q-mer profiles. However, they apply various 

feature selection methods, and both get excellent performance. 

  

  
Recent computation-based approaches to LncRNA Localization  

LncLocator 

[18] 

iLoc-

lncRNA[19] 
lncLocPred[48] 

Locate-

R[49] 

KD-

KLNMF[50] 
Gudenas[20] 

Nucleus 152 156 156 156 154 cytosolic 4380 

Cytoplasm 301 426 426 426 417 nuclear 4298 

Cytosol 91 --- --- --- ---     

Ribosome 43 43 43 43 43     

Exosome 25 30 30 30 30     

Total 612 655 655 655 644    8678 

OA(%) 66.5 86.72 92.37 90.69 97.24   72.4 
 

Table 1.Recent computation-based approaches to LncRNA Localization 
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Chapter 3 Methodology 

This work examines the impact of inexact q-mer profiles on the prediction performance on multi-

label lncRNA subcellular localization. In this paper, both exact and inexact q-mer profiles are 

extracted from the lncRNA sequences to build feature maps, and then a 1D convolutional neural 

network (1D CNN) model is trained. To compare the performance of this method with the existing 

state-of-the-art techniques, we use the datasets from LncLocator [18]with 5-components and iLoc-

lncRNA [19]. The workflow is as Figure 2 shows. First, I will extract the feature map from the 

lncRNA sequences, then apply data preprocessing, feature selection, and finally, feed our 

preprocessed data into a 1-dimensional convolutional neural network to predict localization.  

 

Figure 2. Wrokflow of this work. 

3.1 Localization as a classification problem  

The datasets of lncRNAs subcellular localization have been annotated by experimental methods. 

Each lncRNA sequence is linked to one location in the cell. We can treat the localization as a 

supervised classification problem.  

3.2 Dataset 

I tested the datasets from the lncLocator [18], iLoc-lncRNA [19]. Both of them obtained lncRNA 

sequences from RNALocate [47]. Four subcellular localizations (classes), nucleus, cytoplasm, 

exosome, and ribosome, are retained in iLoc-lncRNA. And five in lncLocator, nucleus, cytoplasm, 
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cytosol, exosome, and the ribosome. The subcellular localizations include the nucleus, cytoplasm, 

cytosol, ribosome, and exosome (See Figure 1). The dataset is as Table 2 shows. Each row is a 

lncRNA sequence. The first column is the information of lncRNA. The second column is the 

sequence of lncRNA. The third column is the location of lncRNA in the cell. The Fourth column 

is the length of the lncRNA.  The lengths of the lncRNA sequences vary from hundreds to 

thousands of nucleotides. I divided the lncRNA sequences into four groups. The length is less than 

1000 nucleotides, between 1000 and 2000 nucleotides, between 2000 and 3000 nucleotides, and 

greater than 3000 nucleotides. The lncRNA sequence distribution is as table 3 shows.  

 

Table 2. dataset of the lncRNA subcellular localization. See text. 

Length of lncRNA 
Number of sequences 

lncLocator[18] iLoc[19] 

length < 1000 142 154 

1000 ≤ length < 2000 185 215 

2000 ≤ length <3000 142 146 

length > 3000 143 140 

Total  612 655 
 

Table 3. The lncRNA sequence length distribution of the datasets. 

3.3 Feature representation  

LncRNA is transcribed from DNA. LncRNA consists of a string of nucleotides bases. These 

bases are adenine (A), guanine (G), uracil (U), and cytosine (C). The sequence of lncRNA can be 

represented as: 
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S = S1S2…Si…Sn, with Si  ∈ {A, G, C, U} 

Here n is the length of the sequence, and Si is ith nucleotide base, 1≤ i ≤ n. 

3.3.1 q-mer profile  

The q-mer is a substring of a sequence with length q. A possible q-mer will be a q-length 

substring with one of the A, C, G, U symbols from a lncRNA sequence. There are 4q possible 

different q-mers in one lncRNA sequence. We build the feature map with the q-mer profile, which 

captures the probability distribution (or frequency of occurrence) of each given possible q-mer.  

For the q-mer profile, typically, each row corresponds to one lncRNA, and each column 

corresponds to one of the possible q-mers. Each cell is a feature value that represents the frequency 

of the q-mer in the given sequence. The class is the localization of the lncRNA sequence. We 

compute the feature value by running a q-length window with stride one across the sequence. If 

the segment is in the sequence, then the frequency of the segment is set to its feature value. 

Otherwise, the feature value is 0. Based on this, we define the feature map (FM) of a lncRNA 

sequence as FM(S) = {Qi: fi}, 1≤ i ≤ N}, Here S is the sequence, Qi is the ith q-mer, fi is the 

corresponding feature value, and N is the number of possible unique q-mers in the sequence.  For 

example, we can compute the 3-mer feature map for the sequence S=AGCUAGUA. First, we find 

all the 3-mer combinations of A, G, C, and U. Then, we map the frequency of each 3-mer. Finally, 

we get the feature map: FM(S)={AAA:0, AAG:0, ▪▪▪, AGC:1, ▪▪▪, AGU:1, ▪▪▪, UUU:0}.   The 

feature map of the dataset will be as Table 4 shows. 

 
Table 4. Feature map of the dataset (Using 3-mer, for example). 

AAA AAG ••• AGU ••• UUU Class

lncRNA 1 0 0 ••• 1 ••• 0 Nuclear

lncRNA 2 2 4 ••• 5 ••• 3 Ctytoplasm

lncRNA n 2 5 ••• 7 ••• 9 Exosome

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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3.3.2 Inexact q-mer profiles.  

In this work, I introduce the idea of inexact q-mer profile. I focus on the q-mers with k-

mismatch(es), also called the (q, k)-mismatch kernel, which provides the idea of mismatching in 

biological interest [51], [52]. Given a q-mer, we compute the frequency of other matching q-mers, 

where a match is allowed to admit at most k-mismatches, here k < q. Each matching q-mer is still 

required to have the same length of q, just like the given q-mer. Thus, for a given q-mer, say Q, 

the result of (q, k)-mismatch is thus a set of q-mers, such that each feature (q-mer) in the collection 

has the same length as Q, and there are at least q-k base(s) that have an exact match with bases in 

the given q-mer, Q. For example, for the q-mer sequence Q=AGCUAGUA, the (8, 1)-mismatches 

are shown in Table 5. We use the hamming distance to measure the mismatch. Row 1 is the original 

sequence. From rows 2 to 9, each row denotes a mismatch that happened at a different location of 

the original sequence. The asterisk indicates one of three bases that is other than the original base, 

respectively. Thus, for each row, there are three possible mismatch q-mers. Hence, in this example, 

there are 24 possible mismatch q-mers. We then set the frequency value of 8-mer, AGCUAGUA, 

with 25 (24 mismatches + 1 match). This work uses a naïve method to compute the (q, k)-mismatch 

feature map. There exist efficient data structures using suffix trees and suffix arrays[53] to 

calculate the feature map. 

 
Table 5. (8, 1) mismatch for example 

A naïve method to compute the (q, k) mismatch feature map is as follows: 

 1 A G C U A G U A 

2 * G C U A G U A 

3 A * C U A G U A 

4 A G * U A G U A 

5 A G C * A G U A 

6 A G C U * G U A 

7 A G C U A * U A 

8 A G C U A G * A 

9 A G C U A G U * 
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1. Feature counts = M x N matrix (M is the number of lncRNAs, N is the number of 

possible q-mer profiles, N = 4q.  Column name is the q-mer profile.) 

2. Increment = 1 

3. For sequence in dataset: 

4.       counts = default dictionary 

5.       Length = sequence.length 

6.       For i in range (1, Length-q+1): 

7.               qmer = sequence[i:i+q] 

8.               if qmer in counts: 

9.                       Continue 

10.               else: 

11.                        for j in range(1, length-q+1): 

12.                              if hamming_distance (qmer, sequence[j:j+q])  <= k: 

13.                                       counts[qmer] += Increment 

14.   Map counts to Feature counts 

 

3.3.3 Data preprocessing 

The feature maps of the lncRNA sequences in the two datasets are counts of the q-mers. First, I 

normalized the counts according to the length of lncRNA sequences, respectively. I then split the 

dataset into training and testing sets with a ratio of 4: 1 and did z-score normalization on the 

training and test sets. The formula is as follows: 𝑧𝑖 = (𝑥𝑖 − 𝜇)/𝜎.  Here zi is the score of i-th q-

mer feature, xi is the count of q-mer, μ is the mean q-mer count of all lncRNA sequences, and σ is 

the standard deviation.  

3.3.4 Feature selection.  

The dimension of the feature map is 4q. It grows exponentially when q increases. A high-

dimension features map means more noise, which will reduce the accuracy of a predictor. Second, 

a high dimension will lead to over-fitting [54], which does not accurately predict. Third, high 

dimensional features will exhaust the computational capacity. I test 3 to 8-mer and some q-mer 
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fusions (see Table 6). The dimension of 7-mer is 47, that is 16384, and 8-mer is 65536. For 7-mer, 

to reduce the feature map size, we applied the X2 test feature selection method from scikit-learn 

[55] to get a feature rank and then selected the optimal subset. I started with a subset with the first 

feature in the rank and added eight features into the subset per time. I tested the performance of 

the model and took the subgroup with the highest accuracy. I tried the 4107 features in the iLoc-

lncRNA [19] dataset on 8-mer.  

 

Feature Dimension of feature 

3-mer 64 

4-mer 256 

5-mer 1024 

6-mer 4096 

7-mer 1120/7976* 

8-mer 4107** 

3 and 4-mer fusion 310 

4 and 5-mer fusion 1280 

5 and 6-mer fusion 5120 

3, 4, and 5-mer fusion 1344 

3, 4, 5, and 6-mer fusion 5440 

Table 6. Feature Dimension. For 7-mer, I use 1120 features on the lncLocator dataset and 7976 on iLoc dataset. The iLoc paper 

post 4107 features on 8-mer. I will test these features. 

3.3.4 Data preprocessing 

The feature maps of the lncRNA sequences in the two datasets are counts of the q-mers. First, I 

normalized the counts according to the length of lncRNA sequences, respectively. I then split the 

dataset into training and testing sets and did z-score normalization on the training and test sets. 

The formula is as follows: 𝑧𝑖 = (𝑥𝑖 − 𝜇)/𝜎.  Here zi is the score of i-th q-mer feature, xi is the 

count of q-mer, μ is the mean q-mer count of all lncRNA sequences, and σ is the standard deviation.  
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3.4 Deep learning architecture 

3.4.1 1D CNN 

The convolutional neural network is a class of deep neural networks that employs a 

mathematical operation called convolution in at least one of its layers [54]. With convolution, a 

new feature map from the input feature is detected. Unlike 2D CNN, which is broadly used to 

operate 2-dimension data such as images and videos, 1D CNN is designed to operate one-

dimensional signals such as time series digital signal processing (DSP).  It is used in time domain 

analysis and frequency domain analysis. A typical 1D CNN architecture includes an input layer, 

convolutional layers (feature extractor section), Multilayer Feed Forward (MLFF) layers 

(classification section), and output layer [56]. 

3.4.2 Elements of 1D CNN 

A typical 1D CNN architecture includes an input layer, convolutional layers (feature extractor 

section), Multilayer Feed Forward (MLFF) layers (classification section), and output layer. In 

addition, there are several operations and terminologies involved in the CNN structure.   

The essential element of the network is convolution. In mathematics, applying convolution to 

one function will change its shape. For a given lncRNA sequence, we can define 1D convolution 

as S = f * g, S denotes the convolution, f is the input lncRNA sequence, g is the kernel, and * is 

the convolution operation. In CNN, the kernel is a feature detector. It is a vector of weights of the 

model. The output S is also known as the feature map [54]. Suppose the length of the lncRNA 

sequence is m, and the size of the kernel is n, then the element of S, 𝑆(𝑖) = ∑ (𝑓(𝑖 + 𝑘 −
𝑛

𝑘=1

1) 𝑋 𝑔(𝑘)) , here 1 ≤ i ≤ m-n. The figure shows the process computing convolution. f is input 

lncRNA sequence, from f1 to f8 are the features in f. g is the kernel, the kernel size is 3 x 1. From 

g1 to g3 are the weights in the kernel. According to the definition, the results of convolution S(1) 
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= f1 × g1 + f2 × g2 + f3 × g3. (See figure 3). We move the window 1 step (the stride) along the 

sequence to compute S(2) until the window reaches the end of the lncRNA sequence. The shape 

of S is m – n + 1 = 8-3+1 = 6. The value in the two ends, f1 and f8, is used only once. When doing 

convolution, we may lose some information on the border. To keep the information, we add 0’s to 

both ends. We call this method padding. With padding, the output shape of convolution is the same 

as the input.  

      

Figure 3. (a) shows the convolution without padding. (b) shows the convolution with padding. 

After convolution, the CNN model uses an activation function, called Rectified Linear Unit 

(ReLU) [54], to the output of convolution. The function is defined as f(x) = max(0, x).  

To prevent overfitting [54], we usually apply a pooling layer and dropout operation after the 

convolution layer. In this paper, we use max-pooling. Max-pooling reduces the feature map size 

by taking the maximum value of the elements in a stride window. For example, the max-pooling 

result of digital sequence 2,3,5,1,2,6,8,5, with stride 2, is 3,5,6,8. Dropout is used to randomly set 

the weights of some neural units in the network to 0 during training time. We also take early 

stopping [57] to prevent overfitting.  

After several convolution layers, the output feature map is a multiple dimension matrix. Then, 

we need to transform them into a vector with the required output shape. First, we apply a fully 

connected layer (flatten), which converts the output matrix of convolution lays into a 1-
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dimensional vector. And then, a dense layer is used to change the dimension of the result of 

flattening.  

The output layer applies the softmax activation function to map the output probability of each 

class in the range [0, 1]. The sum of the possibilities of all the classes is 1. For a multiclass 

classification task, output n-dimension vector with one-hot encoding. One-hot encoding represents 

categorical variables with binary vectors. The categorical values are mapped to integer values. In 

binary vector, all the values are zeros except the according integer is 1. For 4-class, one-hot 

encoding can be represented as: 

Class 1: [1,0,0,0] 

Class 2: [0,1,0,0] 

Class 3: [0,0,1,0] 

Class 4: [0,0,0,1] 

3.4.3 Architecture used in paper 

The feature map of the lncRNA dataset has two attributes: 1) The feature is with a fixed length, 

and 2) only the feature frequency is considered. Furthermore, the location of each q-mer feature is 

ignored. Thus, a 1D CNN model is suitable for this scenario.  In this work, I build the 1D CNN 

model with Keras [58].   

Figure 4 shows the proposed architecture for the 1D CNN model. Using the 6-mer profile, I can 

describe the CNN model architecture for a 4-classes task as follows: 

1) Input layer: hold the raw values of q-mer features with the input shape 4096 x 1.  

2) 1st Convolution layer: 64 filters, kernel-size is 3x1, padding=’same’, stride=1, followed 

by Rectified Linear Unit (ReLU) operation. The output feature maps are 64×4096×1. 

3) The 1st convolution layer is followed by Max-Pooling operation, with pool size 2 and 25% 

dropout to avoid overfitting. The output feature maps  64×2048×1. 



21 
 

4) 2nd Convolution layer: 128 filters, kernel-size is 3x1, padding=’same’, stride=1, followed 

by ReLU operation. The output feature map is 128×2048×1. 

5) The 2nd convolution layer is followed by Max-Pooling operation, with pool size 2 and 25% 

dropout. The output feature maps 128×1024×1. 

6) 3rd Convolution layer: 256 filters, kernel-size is 3x1, padding=’same’, stride=1, followed 

by ReLU operation. The feature map is 256×1024×1. 

7) The 3rd convolution layer is followed by Max-Pooling operation, with pool size 2 and 25% 

dropout. The output feature maps are 256×512×1. 

8) After the convolution layer, there is a flatten layer. The flattening layer transforms the 

entire pooled feature map matrix into a single column. We then will feed this column to 

the neural network for processing. The output shape of the feature map is 131072 x 1. 

9) We then use a dense layer, followed by ReLU, which serves as a classification section. The 

dense layer is followed by a 25% dropout. The output shape of the feature map is 32 x 1. 

10) Output layer. A nonlinear Softmax operation was applied. Finally, output the results of 

classification.  
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Figure 4. 1D CNN architecture used in this work. We were using 6-mer profile as an example. The second and third convolution 

layer blocks have the same structure as the first one: a convolution layer followed by a max-pooling layer with 0.25 dropout. See 

text. 

3.5 Evaluation 

I use overall accuracy (OA), sensitivity (Sn), specificity (Sp), Matthew’s correlation coefficient 

(MCC) and F1-score to evaluate the performance of the 1D CNN model, which are computed with 

the equation OA = (TP + TN) / (TP + TN + FP + FN), Sn = TP / (TP + FN), Sp = TN / (TN + 

FP), MCC = (TP × TN – FP × FN) /sqrt ((𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)), F1-score = 

2TP/(2TP+FP+FN). Here TP is the true positive, the number of positive samples we predict 

correctly. TN is the true negative, the number of negative samples we predict correctly predicted. 

FP is false positive, the number of negative samples we incorrectly predict as positive. FN is the 

false negative, the number of positive samples predicted as negative, and sqrt is the square root.  
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Chapter 4 Experiments & Results 

I tested 1D CNN model on the 5-class dataset from the lncLocator [18] and the 4-class dataset 

from the iLoc [19]. I tried some q-mer combinations and q-mer (q=3, 4, 5, 6, 7, 8) with various 

mismatches. Given the randomness of the CNN model [59], I did experiments ten times for 

different scenarios on the two datasets. Finally, I calculated the average of the performance. The 

results showed that our model performed better on the 4-class iLoc dataset than the 5-class 

lncLocator dataset, and the q-mer with mismatch(es) could improve the classification performance. 

4.1 Results on exact q-mer 

The overall accuracy using exact q-mers on the two datasets is shown in Table 6. The table 

shows that our model performed better on the 4-class (iLoc-lncRNA) dataset, when compared with 

the 5-class (lncLocator) dataset. The reason is that the lncLocator dataset has 5 class which has 1 

more class than the iLoc dataset, while the total number of lncLocator is 612, which is less than 

iLoc. It means there will be more noise than the iLoc dataset for each class in the lncLocator dataset. 

Meanwhile, few data can hard to extract sufficient information to make an accurate prediction.  

With q increasing, the overall accuracy on the iLoc-lncRNA dataset rose from around 64% 

(for 3-mer) to 89.85% (for 8-mer), and from about 53% (for 3-mer) to 71.38% (for 8-mer) on the 

lncLocator dataset. It indicates that the longer the segments might provide more discriminative 

features for determining the lncRNA subcellular localization. Combining different q-mers using 

fusion did not seem to improve the result (Table 7). 

  3 mer 4 mer 5 mer 6 mer 7 mer 8 mer 

iLoc-lncRNA 64.35 64.89 64.27 65.5 68.78 89.85 

lncLocator 53.33 54.72 56.1 54.96 53.58 71.38 
 

Table 7. Performance of exact q-mers, showing overall accuracy(%). 
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Figure 5 shows an upward trend. The proposed method did a better job on four classes dataset 

than the five classes dataset. 

 
Figure 5. The performance of exact q-mer shows upward trend. 

4.2 Results on combined q-mer 

The results (Table 8) show that when different lengths q-mer are combined, the model’s 

performance has slight changes.    

  34mer 45mer  56mer 345mer 456mer 3456mer 

iLoc-lncRNA 64.35 64.89  65.42 65.95 65.11 65.42 

lncLocator 55.61 55.53  54.47 55.69 54.88 55.2 
 

Table 8. Performance on combined q-mers 

Figure 6 shows there is no significant change when using a different q-mer combination. 

 
Figure 6. Performance on combined q-mers 
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4.3 Results on inexact q-mer 

4.3.1 Results using q-mers with k-mismatch 

I experimented on q-mers (q=3, 4, 5, 6, 7, 8) with k mismatches (0 ≤ k ≤ q-1) on the lncLocator 

dataset. Table 9 shows the overall accuracy (mean ± standard deviation) when using q-mer with k 

mismatch(es) on the lncLocator [18] dataset. The table shows the overall accuracy of the prediction 

in different scenarios. For example, we can have the utmost seven mismatches in 8-mer. When the 

number of mismatches is greater than 2, there is a slight improvement in the overall accuracy. The 

overall accuracy increases from 0.714 to 0.734. However, for smaller q-mers, e.g., q=3, 4, and 5, 

increasing the number of mismatches did not necessarily lead to increased accuracy and perhaps 

add more noise in the model. This may point to the need for a more detailed study of the interplay 

between q and k in this (q, k)-mismatch model.  

 0 miss 1 miss 2 miss 3 miss 4 miss 5 miss 6 miss 7 miss 

8 mer 0.714±0.03 0.703±0.03 0.711±0.045 0.734±0.024 0.72±0.037 0.711±0.035 0.726±0.026 0.716±0.04 

7 mer 0.536±0.044 0.521±0.025 0.548±0.036 0.555±0.037 0.554±0.028 0.542±0.033 0.554±0.036  

6 mer 0.55±0.03 0.55±0.03 0.546±0.036 0.534±0.031 0.52±0.049 0.566±0.037   

5 mer 0.561±0.033 0.55±0.047 0.536±0.03 0.524±0.031 0.548±0.031    

4 mer 0.547±0.019 0.518±0.033 0.531±0.028 0.509±0.026     

3 mer 0.533±0.034 0.531±0.02 0.515±0.028      

Table 9. Performance of q-mers with mismatch(es) on the 5-class lncLocator dataset. 

Figure 7 shows that 6, 7, and 8-mer have an upward trend. 

 
Figure 7. Performance of q-mers on lncLocator dataset. 
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The proposed method can get the highest overall accuracy of 0.772 (see Table 10) and an 

average of 0.734 with a standard deviation of 0.024 (see Table 11) for ten times tests on the 5-

class lncLocator dataset when taking 8-mer with 3 mismatches. 

 
Table 10. The best performance on the lnLocator dataset. 

  Sn Sp Preci MCC F1-score OA 

Nucleus 0.748±0.106 0.928±0.042 0.794±0.083 0.692±0.054 0.762±0.042 0.734±0.024 

Cytoplasm 0.885±0.047 0.719±0.087 0.755±0.052 0.615±0.055 0.813±0.024 

Ribosome 0.767±0.161 0.975±0.02 0.736±0.163 0.723±0.13 0.735±0.122 

Exosome 0.34±0.237 0.991±0.012 0.553±0.331 0.403±0.224 0.387±0.221 

Cytosol 0.3±0.221 0.958±0.031 0.428±0.256 0.292±0.214 0.34±0.228 
 

Table 11. The average performance on the lncLocator dataset. 

4.3.2 Results on iLoc-lncRNA dataset 

Table 12 shows the corresponding results for the iLoc dataset [19].  We can see the overall 

accuracy is improved with k > 3 using 8-mers. The highest score is 0.921±0.024 when using 8 mer 

with 6 mismatches, which is 0.028 higher than the exact 8-mer. There are also significant 

improvements in using q= 5, 6, 7 with the k-mismatches. Thus, we can conclude that q-mer with 

mismatches performs better than the exact q-mer on this dataset.  

Table 12. Performance of q-mers with mismatch(es) on the 4 class iLoc dataset. 

  0 miss 1 miss 2 miss 3 miss 4 miss 5 miss 6 miss 7 miss 

8 mer 0.893±0.025 0.899±0.02 0.891±0.021 0.91±0.017 0.895±0.032 0.901±0.029 0.921±0.024 0.916±0.021 

7 mer 0.688±0.031 0.702±0.016 0.711±0.018 0.706±0.028 0.714±0.027 0.71±0.042 0.705±0.03   

6 mer 0.655±0.023 0.659±0.023 0.673±0.035 0.663±0.023 0.653±0.022 0.652±0.034     

5 mer 0.643±0.017 0.651±0.031 0.655±0.013 0.663±0.023 0.649±0.031       

4 mer 0.649±0.011 0.638±0.017 0.644±0.023 0.633±0.037         

3 mer 0.644±0.02 0.644±0.016 0.65±0.004           

Sn Sp Preci MCC F1-score OA

Nucleus 0.806 0.913 0.758 0.705 0.781 0.772

Cytoplasm 0.900 0.762 0.783 0.667 0.837

Ribosome 0.778 0.982 0.778 0.760 0.778

Exosome 0.400 0.992 0.667 0.501 0.500

Cytosol 0.389 0.981 0.778 0.502 0.519
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Figure 8 visualizes the q-mer with mismatches results on the iLoc dataset. We can see the 

improvements on 5, 6, 7, 8-mer.  

Figure 8. Performance of q-mers with mismatch(es) on iLoc dataset. 

The proposed method can get a maximum accuracy of 0.947 (See Table 13) and an average of 

0.921±0.024 (See table 14) of 10 times tests on the iLoc-lncRNA dataset when we take 8-mer with 

7 mismatches. 

Table 13. The best performance on te iLoc dataset using 8 mer with  mismatches. 

  Sn Sp Preci MCC F1-score OA 

Nuclear 0.884±0.048 0.975±0.012 0.917±0.038 0.87±0.046 0.9±0.036 0.921±0.024 

Cytoplasm 0.962±0.02 0.861±0.038 0.928±0.019 0.839±0.042 0.945±0.014 

Ribosome 0.922±0.071 0.992±0.01 0.907±0.108 0.905±0.066 0.909±0.063 

Exosome 0.517±0.229 0.996±0.005 0.79±0.3 0.622±0.243 0.612±0.243 

Table 14. The average performance of 8 mer with 7 mismatches. 

4.4 Comparison with existing state-of-the-art predictors  

Table 15 exhibits the difference between the proposed method and lncLocator [18]. The 

proposed method did a good job on the 5-classes.  

Sn Sp Preci MCC F1-score OA

Nucleus 0.935 0.970 0.906 0.896 0.921

Cytoplasm 0.988 0.913 0.955 0.916 0.971

Ribosome 1.000 1.000 1.000 1.000 1.000

Exosome 0.333 1.000 1.000 0.568 0.500

94.7
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Table 15. A comparison between the proposed method and lncLocator. The data is extracted from iLoc-lncRNA [19]. 

Table 16 shows a performance comparison between the proposed method in this work and the 

iLoc-lncRNA. The proposed method uses 8-mer with 7 mismatches. The average accuracy of our 

approach is 92.1%±2.4%, which is 5.38% higher than iLoc-lncRNA. 

                   
Table 16. A comparison between the proposed method and iLoc-lncRNA 

From the tables and figures shown above, we can see a general tendency that the accuracy increases 

with q increases. The deep learning method did an excellent job on subcellular localization. In (q, 

k) mismatch model, we can improve the prediction accuracy. When we take 8-mer with 7 

mismatches, we can get the overall accuracy, an average of 0.921±0.024 and the highest 0.947 on 

iLoc dataset. The inexact q-mer may add more crucial biological information to the segments. And 

this can help to recognize the location where lncRNA resides in the cell.  

4.5 The impact of length of lncRNA sequence 

I checked prediction accuracy based on the lncRNA sequence lengths. There are 131 lncRNA sequences in 

the iLoc test set and 105 in the lncLocator dataset. Table 17 shows an average prediction accuracy, of 10 

runs, of different length lncRNA sequences on the lncLocator dataset with 8-mer. The  “Correct” in the 

table means the predicted class is the same as the actual class; incorrect otherwise.  When the length of 

lncRNA sequences is between 2000 and 3000, the prediction accuracy is the highest, 76.7%.  Figure 9 

Nucleus Cytoplasm Ribosome Exosome Cytosol Nucleus Cytoplasm Ribosome Exosome

Sn 0.748±0.106 0.885±0.0470.767±0.161 0.34±0.237 0.3±0.221 0.3815 0.8801 0.07 0.04

Sp 0.928±0.042 0.719±0.087 0.975±0.02 0.991±0.0120.958±0.031 0.9217 0.3636 0.9753 0.9727

MCC 0.692±0.054 0.615±0.055 0.723±0.13 0.403±0.2240.292±0.214 0.357 0.288 0.07 0.015

OA 0.734±0.024 66.50%

1D CNN + inexact q-mer lncLocator

Nucleus Cytoplasm Ribosome Exosome Nucleus Cytoplasm Ribosome Exosome

Sn 0.884±0.048 0.962±0.02 0.922±0.071 0.517±0.229 0.7756 0.9906 0.4651 0.1667

Sp 0.975±0.012 0.861±0.038 0.992±0.01 0.996±0.005 0.9759 0.6768 0.9983 1

MCC 0.87±0.046 0.839±0.042 0.905±0.066 0.622±0.243 0.796 0.742 0.652 0.4

OA

1D CNN + inexact q-mer iLoc

92.1%±2.4% 86.72%
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shows the performance associated with the length of the sequence. Table 18 shows, when using 8 mer, 

the group of length between 2000 and 3000 can get the best performance, 95.01%, on the iLoc dataset. 

Figure 10 visualizes the performance associated with the length of the lncRNA sequence. From the results 

on the two datasets, we can conclude that when the lncRNA sequence length is between 2000 and 3000, 

the sequence will provide more information for the prediction on lncRNA subcellular localization on the 

two datasets.  

lncLocator < 1000 1000~2000 2000~3000 > 3000 

Correct 16.8 26.3 21.7 23 

Incorrect 10.4 9.9 6.9 8 

Total 27.2 36.2 28.6 31 

Accuracy % 61.74 73.28 76.7 74.2 

Table 17. The prediction accuracy associated with length of lncRNA sequence on lncLocator dataset. Correct See text. 

 

Figure 9. The performance associated with the length of lncRNA sequence on lncLocator dataset.  

 
Table 18.The prediction accuracy associated with the length of lncRNA sequence on iLoc dataset. 

0% 20% 40% 60% 80% 100%

< 1000

1000~2000

2000~3000

> 3000

8 mer  Lnclocator

Correct Incorrect

iLoc <1000 1000~2000 2000~3000 >3000

Correct 24.2 39.1 27.6 26.1

Incorrect 6.2 4.5 1.5 1.8

Total 30.4 43.6 29.1 27.9

Accuracy % 79.85 89.67 95.01 93.79
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Figure 10.The performance associated with the length of lncRNA sequence on iLoc dataset.  

0% 20% 40% 60% 80% 100%

<1000

1000~2000

2000~3000

>3000

8 mer iLoc

Correct Incorrect
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Chapter 5: Conclusion & Discussion 

LncRNAs can exist in different parts of the cell and show some crucial biological functions that 

may cause diseases. Therefore, understanding their subcellular localization becomes an urgent task. 

However, compared to the vast lncRNA family, people have annotated very few of them with their 

subcellular localization. The property of the lncRNA sequence makes it possible to annotate the 

lncRNAs subcellular localization using computational methods based on the existing lncRNA atlas.  

The conventional computational methods annotate the lncRNA subcellular localization by 

extracting q-mer profiles from the lncRNA sequence. Then, they train Machine Learning models 

with q-mer profiles and get impressive results. Given the gene mutation, there may be some 

changes in the lncRNA sequence, and these changes exhibit various biological functions which 

can cause diseases. We hypothesize the changes may affect the subcellular localization.  

In this paper, to test the hypothesis, we train a 1D CNN model with q-mer profile. To compare the 

performances, we try q-mer with various mismatches. The results show an upward trend in overall 

accuracy when the number of mismatches increased. It turns out that the mismatch on q-mer profile 

can improve the prediction performance. The proposed approach surpasses the state-of-the-art 

methods in predicting subcellular localization of lncRNAs. 

The length of lncRNA sequence is proved to work on predicting the subcellular localization. When 

the sequence length is between 2000 and 3000 nucleotides, our model can get the best performance 

than other groups. Given the datasets are relatively small, this conclusion need to be justified in 

future work. 

We acknowledge some potential limitations in this work. First, the datasets used are relatively 

small. Only hundreds of lncRNAs are contained in these datasets. It is hard to extract sufficient 
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information from a small dataset to predict new unannotated lncRNAs. Second, the dataset is 

unbalanced. With unbalanced datasets, a model may perform well at predicting the majority classes 

while doing poorly in minority classes. More specific attention to this data imbalance problem 

could improve the results further. Third, the length of the lncRNA sequences varied from hundreds 

to thousands which may cause a significant difference in the sparsity of the feature map. How to 

extract a helpful q-mer profile from this potentially sparse feature space could pose a significant 

challenge. Fourth, the CNN model is flexible. We can easily add the different modules to the 

network, but getting the optimal model with appropriate hyperparameter tuning is still a key 

challenge in deep learning.  Finally, as acknowledged earlier, computational challenges abound 

concerning time and space with the potential exponential increase in the feature space as q 

increases. These issues make a strong case for possible feature direction using this idea of inexact 

q-grams, especially given the improved comparative performance over state of the art. Advanced 

data structures and algorithmic techniques could be brought to bear on the computational 

challenges.  
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