102 research outputs found

    Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences

    Get PDF
    We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian (\u27marsupial\u27) species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation. ©2007 Nature Publishing Group

    Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1

    Get PDF
    Background: Scant genomic information from non-avian reptile sex chromosomes is available, and for only a few lizards, several snakes and one turtle species, and it represents only a small fraction of the total sex chromosome sequences in these species. Results: We report a 352 kb of contiguous sequence from the sex chromosome of a squamate reptile, Pogona vitticeps, with a ZZ/ZW sex microchromosome system. This contig contains five protein coding genes (oprd1, rcc1, znf91, znf131, znf180), and major families of repetitive sequences with a high number of copies of LTR and non-LTR retrotransposons, including the CR1 and Bov-B LINEs. The two genes, oprd1 and rcc1 are part of a homologous syntenic block, which is conserved among amniotes. While oprd1 and rcc1 have no known function in sex determination or differentiation in amniotes, this homologous syntenic block in mammals and chicken also contains R-spondin 1 (rspo1), the ovarian differentiating gene in mammals. In order to explore the probability that rspo1 is sex determining in dragon lizards, genomic BAC and cDNA clones were mapped using fluorescence in situ hybridisation. Their location on an autosomal microchromosome pair, not on the ZW sex microchromosomes, eliminates rspo1 as a candidate sex determining gene in P. vitticeps. Conclusion: Our study has characterized the largest contiguous stretch of physically mapped sex chromosome sequence (352 kb) from a ZZ/ZW lizard species. Although this region represents only a small fraction of the sex chromosomes of P. vitticeps, it has revealed several features typically associated with sex chromosomes including the accumulation of large blocks of repetitive sequences

    Inferencia de los genes del ancestro de los amniotas y su relación con el origen del huevo

    Get PDF
    ABSTRACT: Amniotes are the first fully terrestrial vertebrate animals with several evolutionary innovations in their common ancestor that allowed them to become fully independent of the aquatic environment, including a more complex egg with shell and additional structures. During evolution, organisms’ form and functions evolve, and so do their genomes, which are the ultimately responsible for the observed changes. In fact, genomes are evolutionarily labile and experience changes in gene content and structure. This Project aims to investigate the genomic basis for the origin of amniotes and their evolutionary innovations. From a bioinformatic point of view, this work involves: (i). choosing the highest quality vertebrate genomes to use in our analysis; (ii). estimating the genes that originated in the common ancestor of reptiles, birds and mammals by searching for sequence similarity and clustering of homologous genes; (iii). functionally characterizing the novel genes that originated in the common ancestor of amniotes and identifying any relationship with the origin of the amniote egg.RESUMEN: Los amniotas son los primeros animales vertebrados completamente terrestres con varias innovaciones evolutivas en su ancestro común que les permitió independizarse totalmente del entorno acuático, entre ellos un huevo más complejo con cáscara y estructuras adicionales. Durante la evolución, el aspecto y la función de los organismos evolucionan, al igual que sus genomas, que son los responsables de las transformaciones observadas. De hecho, los genomas están constantemente sometidos a cambios debido a la evolución y experimentan modificaciones en el contenido y la estructura de los genes. El objetivo principal de este proyecto es investigar la base genómica del origen de los amniotas y sus innovaciones evolutivas. Desde un punto de vista bioinformático, este trabajo implica: (i). seleccionar los genomas de vertebrados de mayor calidad para usarlos en nuestro análisis; (ii). Estimar los genes nuevos que se originaron en el ancestro común de reptiles, aves y mamíferos mediante la búsqueda de similitud de secuencias y agrupamiento de genes homólogos; (iii). caracterizar funcionalmente los genes inferidos como nuevos en el ancestro de los amniotas e identificar una posible relación con el origen del huevo amniota.Máster en Ciencia de Dato

    Anchoring genome sequence to chromosomes of the central bearded dragon (Pogona vitticeps) enables reconstruction of ancestral squamate macrochromosomes and identifies sequence content of the Z chromosome

    Get PDF
    We report here the first genome assembly and annotation of the human-pathogenic fungus Scedosporium aurantiacum, with a predicted 10,525 genes, and 11,661 transcripts. The strain WM 09.24 was isolated from the environment at Circular Quay, Sydney, New South Wales, Australi

    Minimal Conflicting Sets for the Consecutive Ones Property in ancestral genome reconstruction

    Full text link
    A binary matrix has the Consecutive Ones Property (C1P) if its columns can be ordered in such a way that all 1's on each row are consecutive. A Minimal Conflicting Set is a set of rows that does not have the C1P, but every proper subset has the C1P. Such submatrices have been considered in comparative genomics applications, but very little is known about their combinatorial structure and efficient algorithms to compute them. We first describe an algorithm that detects rows that belong to Minimal Conflicting Sets. This algorithm has a polynomial time complexity when the number of 1's in each row of the considered matrix is bounded by a constant. Next, we show that the problem of computing all Minimal Conflicting Sets can be reduced to the joint generation of all minimal true clauses and maximal false clauses for some monotone boolean function. We use these methods on simulated data related to ancestral genome reconstruction to show that computing Minimal Conflicting Set is useful in discriminating between true positive and false positive ancestral syntenies. We also study a dataset of yeast genomes and address the reliability of an ancestral genome proposal of the Saccahromycetaceae yeasts.Comment: 20 pages, 3 figure

    Limited Lifespan of Fragile Regions in Mammalian Evolution

    Full text link
    An important question in genome evolution is whether there exist fragile regions (rearrangement hotspots) where chromosomal rearrangements are happening over and over again. Although nearly all recent studies supported the existence of fragile regions in mammalian genomes, the most comprehensive phylogenomic study of mammals (Ma et al. (2006) Genome Research 16, 1557-1565) raised some doubts about their existence. We demonstrate that fragile regions are subject to a "birth and death" process, implying that fragility has limited evolutionary lifespan. This finding implies that fragile regions migrate to different locations in different mammals, explaining why there exist only a few chromosomal breakpoints shared between different lineages. The birth and death of fragile regions phenomenon reinforces the hypothesis that rearrangements are promoted by matching segmental duplications and suggests putative locations of the currently active fragile regions in the human genome

    Molecular cytogenetic and genomic insights to chromosomal evolution

    Get PDF
    This review summarizes aspects of the extensive literature on the patterns and processes underpinning chromosomal evolution in vertebrates and especially placental mammals. It highlights the growing synergy between molecular cytogenetics and comparative genomics, particularly with respect to fully or partially sequenced genomes, and provides novel insights into changes in chromosome number and structure across deep division of the vertebrate tree of life. The examination of basal numbers in the deeper branches of the vertebrate tree suggest a haploid (n) chromosome number of 10–13 in an ancestral vertebrate, with modest increases in tetrapods and amniotes most probably by chromosomal fissioning. Information drawn largely from cross-species chromosome painting in the data-dense Placentalia permits the confident reconstruction of an ancestral karyotype comprising n=23 chromosomes that is similarly retained in Boreoeutheria. Using in silico genome-wide scans that include the newly released frog genome we show that of the nine ancient syntenies detected in conserved karyotypes of extant placentals (thought likely to reflect the structure of ancestral chromosomes), the human syntenic segmental associations 3p/21, 4pq/8p, 7a/16p, 14/15, 12qt/22q and 12pq/22qt predate the divergence of tetrapods. These findings underscore the enhanced quality of ancestral reconstructions based on the integrative molecular cytogenetic and comparative genomic approaches that collectively highlight a pattern of conserved syntenic associations that extends back ∼360 million years ago
    • …
    corecore