180 research outputs found

    Decision Support Software for Probabilistic Risk Assessment Using Bayesian Networks

    Get PDF

    Machine Learning Empowered Software Prediction System

    Get PDF
    Prediction of software defects is one of the most active study fields in software engineering today. Using a defect prediction model, a list of code prone to defects may be compiled. Using a defect prediction model, software may be made more reliable by identifying and discovering faults before or during the software enhancement process. Defect prediction will play an increasingly important role in the design process as the scope of software projects grows. Bugs or the number of bugs used to measure the performance of a defect prediction procedure are referred to as "bugs" in this context. Defect prediction models can incorporate a wide range of metrics, including source code and process measurements. Defects are determined using a variety of models. Using machine learning, the defect prediction model may be developed. Machine inclining in the second and third levels is dependent on the preparation and assessment of data (to break down model execution). Defect prediction models typically use 90 percent preparation information and 10 percent testing information. Improve prediction performance with the use of dynamic/semi-directed taking in, a machine learning approach. So that the results and conclusion may be sharply defined under many circumstances and factors, it is possible to establish a recreated domain to house the entire method. Computer-aided engineering (CAE) is being used to identify software defects in the context of neural networks. Neural network-based software fault prediction is compared to fuzzy logic fundamental results in this research paper. On numerous parameters, neural network training provides better and more effective outcomes, according to the recommended findings and outputs

    Penerapan Feature Selection Pada Bayesian Network Untuk Prediksi Cacat Perangkat Lunak

    Get PDF
    Pada perkembangannya penelitian pada bidang prediksi cacat perangkat lunak, semakin banyak diminati oleh para peneliti. Untuk mengurangi biaya perawatan dan menjaga kualitas perangkat lunak. Salah satunya dengan, pemilihan modul cacat dan tidak cacat pada perangkat lunak menggunakan machine learning. Salah satunya adalah machine learning Bayesian Network, yang memiliki kinerja lebih baik dari Naive Bayesian. Seperti yang telah dilakukan pada penelitian ini, bahwa Bayesian Network dengan mengintegrasikan algoritma pemilihan atribute seperti Chi Square, Information Gain dan Relief. Model tersebut dapat menghasilkan tingkat akurasi hingga 0,9 % pada salah satu dataset Nasa yang digunakan pada penelitian ini. Oleh karenanya kinerja dan tingkat akurasi Bayesian Network pada prediksi cacat perangkat lunak sangat baik

    A FRAMEWORK FOR SOFTWARE RELIABILITY MANAGEMENT BASED ON THE SOFTWARE DEVELOPMENT PROFILE MODEL

    Get PDF
    Recent empirical studies of software have shown a strong correlation between change history of files and their fault-proneness. Statistical data analysis techniques, such as regression analysis, have been applied to validate this finding. While these regression-based models show a correlation between selected software attributes and defect-proneness, in most cases, they are inadequate in terms of demonstrating causality. For this reason, we introduce the Software Development Profile Model (SDPM) as a causal model for identifying defect-prone software artifacts based on their change history and software development activities. The SDPM is based on the assumption that human error during software development is the sole cause for defects leading to software failures. The SDPM assumes that when a software construct is touched, it has a chance to become defective. Software development activities such as inspection, testing, and rework further affect the remaining number of software defects. Under this assumption, the SDPM estimates the defect content of software artifacts based on software change history and software development activities. SDPM is an improvement over existing defect estimation models because it not only uses evidence from current project to estimate defect content, it also allows software managers to manage software projects quantitatively by making risk informed decisions early in software development life cycle. We apply the SDPM in several real life software development projects, showing how it is used and analyzing its accuracy in predicting defect-prone files and compare the results with the Poisson regression model

    Подходы к диагностике согласованности данных в байесовских сетях доверия

    Get PDF
    Bayesian belief networks provide the ability to combine different types of information, e.g. statistical or expert data, allow working with incomplete or inaccurate information; they have clarity and other useful properties. Due to this, Bayesian belief networks have become a popular and highly effective tool in many fields of research. However, in many research areas data provided by the experts can be incoherent, and so in some tasks one should use tools to verify their coherence. The paper discusses examples of application of the Bayesian belief networks in medicine and public health, ecology, economics and risk analysis, functional safety, sociology, and other research areas, and shows the need to develop methods to check the coherence of initial data. The purpose of this work is to systematize problems and examples that illustrate the use of Bayesian belief networks by reviewing and to assess their use of data coherence diagnosis and its importance.Байесовские сети доверия предоставляют возможность объединения нескольких видов информации, например полученной от экспертов или статистически, позволяют работать с неполной или неточной информацией, обладают наглядностью и другими полезными свойствами. Благодаря этому они стали популярным и весьма эффективным инструментом. Однако во многих областях исследования исходные используются полученные от экспертов данные, которые могут быть не согласованы, и поэтому в некоторых задачах следует использовать инструменты для проверки их согласованности. В работе рассмотрены примеры применения аппарата байесовских сетей доверия в медицине и здравоохранении, экологии, экономике и риск-анализе, функциональной безопасности, социологии и других предметных областях и показана необходимость разработки методов для проверки согласованности исходных данных. Цель работы – систематизировать с помощью обзора примеры и задачи, в которых применяются байесовские сети доверия, чтобы оценить, в какой степени в этих задачах учитывается диагностика согласованности исходных данных, и насколько важным является ее применение

    Software defect prediction using Bayesian networks

    Get PDF
    There are lots of different software metrics discovered and used for defect prediction in the literature. Instead of dealing with so many metrics, it would be practical and easy if we could determine the set of metrics that are most important and focus on them more to predict defectiveness. We use Bayesian networks to determine the probabilistic influential relationships among software metrics and defect proneness. In addition to the metrics used in Promise data repository, we define two more metrics, i.e. NOD for the number of developers and LOCQ for the source code quality. We extract these metrics by inspecting the source code repositories of the selected Promise data repository data sets. At the end of our modeling, we learn the marginal defect proneness probability of the whole software system, the set of most effective metrics, and the influential relationships among metrics and defectiveness. Our experiments on nine open source Promise data repository data sets show that response for class (RFC), lines of code (LOC), and lack of coding quality (LOCQ) are the most effective metrics whereas coupling between objects (CBO), weighted method per class (WMC), and lack of cohesion of methods (LCOM) are less effective metrics on defect proneness. Furthermore, number of children (NOC) and depth of inheritance tree (DIT) have very limited effect and are untrustworthy. On the other hand, based on the experiments on Poi, Tomcat, and Xalan data sets, we observe that there is a positive correlation between the number of developers (NOD) and the level of defectiveness. However, further investigation involving a greater number of projects is needed to confirm our findings.Publisher's VersionAuthor Pre-Prin

    Amortising the Cost of Mutation Based Fault Localisation using Statistical Inference

    Full text link
    Mutation analysis can effectively capture the dependency between source code and test results. This has been exploited by Mutation Based Fault Localisation (MBFL) techniques. However, MBFL techniques suffer from the need to expend the high cost of mutation analysis after the observation of failures, which may present a challenge for its practical adoption. We introduce SIMFL (Statistical Inference for Mutation-based Fault Localisation), an MBFL technique that allows users to perform the mutation analysis in advance against an earlier version of the system. SIMFL uses mutants as artificial faults and aims to learn the failure patterns among test cases against different locations of mutations. Once a failure is observed, SIMFL requires either almost no or very small additional cost for analysis, depending on the used inference model. An empirical evaluation of SIMFL using 355 faults in Defects4J shows that SIMFL can successfully localise up to 103 faults at the top, and 152 faults within the top five, on par with state-of-the-art alternatives. The cost of mutation analysis can be further reduced by mutation sampling: SIMFL retains over 80% of its localisation accuracy at the top rank when using only 10% of generated mutants, compared to results obtained without sampling

    Requirement Risk Level Forecast Using Bayesian Networks Classifiers

    Get PDF
    Requirement engineering is a key issue in the development of a software project. Like any other development activity it is not without risks. This work is about the empirical study of risks of requirements by applying machine learning techniques, specifically Bayesian networks classifiers. We have defined several models to predict the risk level for a given requirement using three dataset that collect metrics taken from the requirement specifications of different projects. The classification accuracy of the Bayesian models obtained is evaluated and compared using several classification performance measures. The results of the experiments show that the Bayesians networks allow obtaining valid predictors. Specifically, a tree augmented network structure shows a competitive experimental performance in all datasets. Besides, the relations established between the variables collected to determine the level of risk in a requirement, match with those set by requirement engineers. We show that Bayesian networks are valid tools for the automation of risks assessment in requirement engineering
    corecore