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Abstract There are lots of different software metrics discovered and used for de-
fect prediction in the literature. Instead of dealing with so many metrics, it would
be practical and easy if we could determine the set of metrics that are most impor-
tant and focus on them more to predict defectiveness. We use Bayesian networks
to determine the probabilistic influential relationships among software metrics and
defect proneness. In addition to the metrics used in Promise data repository, we
define two more metrics, i.e. NOD for the number of developers and LOCQ for
the source code quality. We extract these metrics by inspecting the source code
repositories of the selected Promise data repository data sets. At the end of our
modeling, we learn the marginal defect proneness probability of the whole soft-
ware system, the set of most effective metrics, and the influential relationships
among metrics and defectiveness. Our experiments on nine open source Promise
data repository data sets show that response for class (RFC), lines of code (LOC),
and lack of coding quality (LOCQ) are the most effective metrics whereas coupling
between objects (CBO), weighted method per class (WMC), and lack of cohesion
of methods (LCOM) are less effective metrics on defect proneness. Furthermore,
number of children (NOC) and depth of inheritance tree (DIT) have very limited
effect and are untrustworthy. On the other hand, based on the experiments on
Poi, Tomcat, and Xalan data sets, we observe that there is a positive correlation
between the number of developers (NOD) and the level of defectiveness. However,
further investigation involving a greater number of projects is needed to confirm
our findings.

Keywords Defect prediction, Bayesian networks

1 Introduction

Developing a defect free software system is very difficult and most of the time
there are some unknown bugs or unforeseen deficiencies even in software projects
where the principles of the software development methodologies were applied care-
fully. Due to some defective software modules, the maintenance phase of software
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projects could become really painful for the users and costly for the enterprises.
That is why, predicting the defective modules or files in a software system prior
to project deployment is a very crucial activity, since it leads to a decrease in the
total cost of the project and an increase in overall project success rate.

Defect prediction will give one more chance to the development team to retest
the modules or files for which the defectiveness probability is high. By spending
more time on the defective modules and no time on the non-defective ones, the
resources of the project would be utilized better and as a result, the maintenance
phase of the project will be easier for both the customers and the project owners.

While making a critique of the software defect prediction studies, Fenton and
Neil [15] argue that although there are many studies in the literature, defect predic-
tion problem is far from solution. There are some wrong assumptions about how
defects are defined or observed and this causes misleading results. Their claim
can be understood better when we notice that some define defects as observed
deficiencies while some others define them as residual ones.

When we look at the publications about defect prediction we see that in early
studies static code features were used more. But afterwards, it was understood
that beside the effect of static code metrics on defect prediction, other measures
like process metrics are also effective and should be investigated. For example,
Fenton and Neil [15] argue that static code measures alone are not able to predict
software defects accurately. To support this idea we argue that, if a software is
defective this might be related to one of the following:

– The specification of the project may be wrong either due to contradictory
requirements or missing features. It may be too complex to realize or not very
well documented.

– The design might be poor, it may not consider all requirements or it may reflect
some requirements wrongly.

– Developers are not qualified enough for the project.
– There might be a project management problem and the software life cycle

methodologies might not be followed very well.
– The software may not be tested enough, so some defects might not be fixed

during the test period.

None of the above factors are related to code metrics and all of them may
very well affect defect proneness. So, the question is which factors or metrics are
effective on defectiveness and how can we measure their effect?

In defect prediction literature, there are many defect prediction algorithms
studied like regression [43] [10] [40], rule induction [40], decision tree approaches
like C4.5 [42], case-based reasoning (CBR) [23] [22] [40], artificial neural networks
[24] [44] [21] [40], linear discriminant analysis [31], k-nearest neighbour [6], k-star
[25], Bayesian networks [12] [35] [46] and support vector machine based classifiers
[26] [19] [20] [41]. According to the no free lunch theorem [45], there is no algorithm
which is better than other algorithms on all data sets. That is why, most of the
time it is difficult to generalize the performance of one algorithm and say that it
is the best technique for defect prediction. According to Myrtveit et al. [32], “we
need to develop more reliable research procedures before we can have confidence in
the conclusion of comparative studies of software prediction models”. Furthermore,
Shepperd et al. [40] argues that the accuracy of a specific defect prediction method
is very much dependent on the attributes of the data set like its size, number of
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attributes and distribution. That is why, it is better to ask which method is the
best in a specified context rather than asking which one is the best in general.

Bayesian network is a graphical representation that shows the probabilistic
causal or influential relationships among a set of variables that we are interested
in. There are a couple of practical factors for using Bayesian networks. First,
Bayesian networks are able to model probabilistic influence of a set of variables on
another variable in the network. Given the probability of parents, the probability
of their children can be calculated. Second, Bayesian networks can cope with the
missing data problem. This aspect of Bayesian networks is very important for
defect prediction since some metrics might be missing for some modules in defect
prediction data sets.

Looking at the defect prediction problem from the perspective that all or an
effective subset of software or process metrics must be considered together besides
static code measures, Bayesian network model is a very good candidate for tak-
ing into consideration several process or product metrics at the same time and
measuring their effect. In this paper, we build a Bayesian network among metrics
and defectiveness, to measure which metrics are more important in terms of their
effect on defectiveness and to explore the influential relationships among them.
As a result of learning such a network, we find the defectiveness probability of
the whole software system, the order of metrics in terms of their contribution to
accurate prediction of defectiveness, and the probabilistic influential relationships
among metrics and defectiveness.

Menzies and Shepperd explain the possible reasons behind the conclusion in-
stability problem [29]. In their analysis, they state that there are two main sources
of conclusion instability, (i) bias showing the distance between the predicted and
actual values and (ii) variance measuring the distance between different prediction
methods. The bias can be decreased by using separate training and validation data
sets and the variance can be decreased by repeating the validation many times. We
use different stratified training and test sets in each experiment to avoid conclusion
instability.

In another research, Menzies et al. show what appears to be useful in a global
context is often irrelevant for particular local contexts in effort estimation or defect
prediction studies. They suggest to test if the global conclusions found are valid
for the subsets of the data sets used [27]. We repeat our experiments 20 times
with 2/3 rd subsets of each data set to check if our results suffer from conclusion
instability.

Posnett et al. explains the ecological inference risk which arises when one builds
a statistical model at an aggregated level (e.g., packages), and infers that the re-
sults of the aggregated level are also valid for the disaggregated level (e.g., classes),
without testing the model in the disaggregated level [39]. They show that modeling
defect prediction in two different aggregation levels can lead to different conclu-
sions. To be on the safe side in terms of ecological inference risk, we not only
perform our experiments at class level rather than file, package or module levels,
but we also test our proposed method with the subsets of the data sets we use,
before making a generalization.

This paper is organized as follows: In Section 2, we give a background on
Bayesian networks. In Section 3, we present a brief review of previous work on soft-
ware defect prediction using Bayesian networks. We explain our proposed method
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in Section 4 and give the experiments and results in Section 5 before we conclude
in Section 7.

2 Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG), composed of E edges and
V vertices which represent joint probability distribution of a set of variables. In
this notation, each vertex represents a variable and each edge represents the causal
or associational influence of one variable to its successor in the network.

Let X = {X1, X2, ...Xn} be n variables taking continuous or discrete values.
The probability distribution of Xi is shown as P (Xi|axi) where axi ’s represent
parents of Xi if any. When there are no parents of Xi, then it is a prior probability
distribution and can be shown as P (Xi).

The joint probability distribution of X can be calculated using chain rule:

P (X) = P (X1|X2, X3, ..., Xn)P (X2, X3, ..., Xn)

= P (X1|X2, ..., Xn)P (X2|X3, ..., Xn)P (X3, ..., Xn)

= P (X1|X2, ..., Xn)P (X2|X3, ..., Xn)...P (Xn−1|Xn)P (Xn)

=
n∏

i=1

P (Xi|Xi+1, ..., Xn) (1)

Given the parents of Xi, other variables are independent from Xi, so we can write
the joint probability distribution as

P (X) =
n∏

i=1

P (Xi|axi) (2)

On the other hand, Bayes’ rule is used to calculate the posterior probability
of Xi in a Bayesian network based on the evidence information present. We can
calculate probabilities either towards from causes to effects (P (Xi|E)) or from ef-
fects to causes (P (E|Xi)). Calculating probability of effects from causes is called
causal inference whereas calculating probability of causes from effects is called di-
agnostic inference [2]. Figure 1 shows a sample Bayesian network and conditional
probability tables. Assume that we would like to investigate the effect of using
experienced developers (ED) and applying unit testing methodology (UT) on de-
fectiveness (FP). Furthermore, each variable can take discrete values of on/off,
that is developers are experienced or not, unit testing used or not used. Suppose
we would like to make a causal inference and calculate the probability of having
a fault prone software if we know that the developers working on the project are
experienced. We shall calculate

P (FP |ED) = P (FP |ED,UT )P (UT |ED) + P (FP |ED,∼ UT )P (∼ UT |ED)

We can write P (UT |ED) = P (UT ) and P (∼ UT |ED) = P (∼ UT ) since the
variables ED and UT are independent. Then we have,

P (FP |ED) = P (FP |ED,UT )P (UT ) + P (FP |ED,∼ UT )P (∼ UT )
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Fig. 1 A sample Bayesian network to illustrate Bayesian inference

Feeding up the values in the conditional probability table, P (FP |ED) is calcu-
lated as 0.34. Assume that we are asked to calculate the probability of having
experienced developers given the software is fault prone, i.e. P (ED|FP ).

Using Bayes’ rule we write

P (ED|FP ) =
P (FP |ED)P (ED)

P (FP )
(3)

We can also write

P (FP ) = P (FP |UT,ED)P (UT )P (ED)

+ P (FP |UT,∼ ED)P (UT )P (∼ ED)

+ P (FP | ∼ UT,ED)P (∼ UT )P (ED)

+ P (FP | ∼ UT,∼ ED)P (∼ UT )P (∼ ED) (4)

Since P (FP |UT,ED), P (FP |UT,∼ ED), P (FP | ∼ UT,ED), and P (FP | ∼
UT,∼ ED) can be read from the conditional table, the diagnosis probability
P (ED|FP ) can also be calculated. As it can be seen in these examples of causal
and diagnostic inferences, it is possible to propagate the effect of states of variables
(nodes) to calculate posterior probabilities. Propagating the effects of variables to
the successors, or analyzing the probability of some predecessor variable based on
the probability of its successor is very important in defect prediction since software
metrics are related to each other and that is why the weight of a metric might be
dependent on another metric based on this relationship.
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2.1 K2 Algorithm

In Bayesian network structure learning, the search space is composed of all of the
possible structures of directed acyclic graphs based on the given variables (nodes).
Normally, it is very difficult to enumerate all of these possible directed acyclic
graphs without a heuristic method. Because, when the number of nodes increases,
the search space grows exponentially and it is almost impossible to search the whole
space. Given a data set, the K2 algorithm proposed by Cooper and Herskovits,
heuristically searches for the most probable Bayesian network structure [8]. Based
on the ordering of the nodes, the algorithm looks for parents for each node whose
addition increases the score of the Bayesian network. If addition of a certain node
Xj to the set of parents of node Xi does not increase the score of the Bayesian
network, K2 stops looking for parents of node Xi further. Since the ordering of the
nodes in the Bayesian network is known, the search space is much more smaller
compared to the entire space that needs to be searched without a heuristic method.
Furthermore, a known ordering ensures that there will be no cycles in the Bayesian
network, so there is no need to check for cycles too.

K2 algorithm takes a set of n nodes, an initial ordering of the n nodes, the
maximum number of parents of any node denoted by u and a database D of m
cases as input and outputs a list of parent nodes for every node in the network.
The pseudo code of the K2 algorithm is given in Algorithm 1. For every node in
the network, the algorithm finds the set of parents with the highest probability
taking into consideration the upper bound u for the maximum number of parents
a node can have. During each iteration, the function Pred(xi) is used to determine
the set of nodes that precede xi in the node ordering.

1 for i← 1 to n do
2 πi := 0;
3 Pold := f(i, πi) (See Equation 5);
4 OKToProceed := true;
5 while OKToProceed and |πi| < u do
6 let z be the node in Pred(xi)− πi that maximizes f(i, πi ∪ {z});
7 Pnew := f(i, πi ∪ {z});
8 if Pnew > Pold then
9 Pold := Pnew;

10 πi := πi ∪ {z}
11 else
12 OKToProceed := false
13 end

14 end
15 write(Node: xi, Parent of xi : πi)

16 end

Algorithm 1: The K2 algorithm [8]

The algorithm calculates the probability that the parents of xi are πi using
the following equation:

f(i, πi) =
qi∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk! (5)
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Table 1 List of software metrics we used in our modeling

Metric Metric full name
WMC Weighted method per class [7]
DIT Depth of inheritance tree [7]
NOC Number of children [7]
CBO Coupling between objects [7]
RFC Response for class [7]
LCOM Lack of cohesion of methods [7]
LCOM3 Lack of cohesion in methods [18]
LOC Lines of code
LOCQ Lack of coding quality

where πi is the set of parents of xi, qi = |φi| where φi is the set of all possible
instances of the parents of xi for database D. Furthermore, ri = |Vi| where Vi is
the set of all possible values of the xi. On the other hand, Nijk is the number of
instances in database D for which xi is instantiated with its kth value, and the
parents of xi in the set πi are instantiated with the jth instantiation in the set φi.
And lastly,

Nij =
ri∑

k=1

Nijk

gives the number of instances in D where the parents of xi are instantiated with
the jth instantiation in φi.

3 Previous Work

Pai and Dugan [35] use Bayesian networks to analyze the effect of object oriented
metrics [7] on the number of defects (fault content) and defect proneness using
KC1 project from the Nasa metrics data repository. They build a Bayesian network
where parent nodes are the object oriented metrics (also called C-K metrics) and
child nodes are the random variables fault content and fault proneness. After the
model is created, they make a Spearman correlation analysis to check whether the
variables of the model (metrics) are independent or not. They have found that
SLOC, CBO, WMC, and RFC are the most significant metrics to determine fault
content and fault proneness. They discover that the correlation coefficients of these
metrics (SLOC, CBO, WMC, and RFC) with fault content are 0.56, 0.52, 0.352,
and 0.245 respectively. On the other hand, they also find that neither DIT nor
NOC are significant and depending on the underlying model, LCOM seems to be
significant for determining fault content.

According to Zhang [46], Bayesian networks provide a very suitable and use-
ful method for software defect prediction. They suggest to build a Bayesian net-
work that reflects all software development activities like specification, design,
implementation, testing and consider Bayesian network generation in three steps:
defining Bayesian network variables, defining the causal relationships among the
network variables and generating the probability distribution of each variable in
the network and calculating the joint probability distribution of the hypothesis
variables.



8 Ahmet Okutan and Olcay Taner Yıldız

Fig. 2 Bayesian network suggested by Fenton et al. (2002)

Fenton et al. [12] suggest to use Bayesian networks for defect, quality, and risk
prediction of software systems. They use the Bayesian network shown in Figure
2 to model the influential relationships among target variable “defects detected”
(DD) and the information variables “test effectiveness” (TE) and “defects present”
(DP). In this network, DP models the number of bugs/defects found during test-
ing. TE gives the efficiency of testing activities and DD gives the number of defects
delivered to the maintenance phase. For discretization, they assign two very simple
states to each variable namely low and high. Using the Bayesian network model,
Fenton et al. show how Bayesian networks provide accurate results for software
quality and risk management in a range of real world projects. They conclude that
Bayesian networks can be used to model the causal influences in a software devel-
opment project and the network model can be used to ask “what if?” questions
under circumstances when some process underperforms [12].

Furthermore, Gyimothy et al. use regression and machine learning methods
(decision tree and neural networks) to see the importance of object oriented metrics
for fault proneness prediction [16]. They formulate a hypothesis for each object
oriented metric and test the correctness of these hypotheses using open source
web and email tool Mozilla. For comparison they use precision, correctness and
completeness. They find that CBO is the best predictor and LOC is the second.
On the other hand, the prediction capability of WMC and RFC is less than CBO
and LOC but much better than LCOM, DIT, and NOC. According to the results,
DIT is untrustworthy and NOC can not be used for fault proneness prediction.
Furthermore, the correctness of LCOM is good although it has a low completeness
value.

On the other hand, Zhou and Leung use logistic regression and machine learn-
ing methods (naive Bayes network, random forest, and nearest neighbor with gen-
eralization) to determine the importance of object oriented metrics for determining
fault severity [47]. They state a hypothesis for each object oriented metric and test
them on open source Nasa data set KC1 [1]. For ungraded severity, they observe
that SLOC, CBO, WMC, and RFC are significant in fault proneness prediction.
Furthermore, LCOM is also significant but when tested with machine learning
methods the usefulness of NOC is poor and the result is similar for DIT.

Bibi et al. use iterative Bayesian networks for effort estimation by modeling
the sequence of the software development processes and their interactions. They
state that Bayesian networks provide a highly visual interface to explain the rela-
tionships of the software processes and provide a probabilistic model to represent
the uncertainty in their nature. They conclude that Bayesian networks could be
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used for software effort estimation effectively [4]. Furthermore Minana and Gras
use Bayesian networks to predict the level of fault injection during the phases
of a software development process. They show that Bayesian networks provide a
successful fault prediction model [37].

Amasaki et al. propose to use Bayesian networks to predict the quality of a
software system. To generate a Bayesian network they use certain metrics collected
during the software development phase like product size, effort, detected faults, test
items, and residual faults. They conclude that the proposed model can estimate
the residual faults that the software reliability growth model can not handle [3].

Fenton et al. review different techniques for software defect prediction and
conclude that traditional statistical approaches like regression alone is not enough.
Instead they believe that causal models are needed for more accurate predictions.
They describe a Bayesian network, to model the relationship of different software
life cycles and conclude that there is a good fit between predicted and actual defect
counts [14]. In another study, Fenton et al. propose to use Bayesian networks to
predict software defects and software reliability and conclude that using dynamic
discretization algorithms while generating Bayesian networks leads to significantly
improved accuracy for defects and reliability prediction [13].

In another research, Dejaeger et al. compare 15 different Bayesian network clas-
sifiers with famous defect prediction methods on 11 Data sets in terms of the AUC
and H-measure. They observe that simple and comprehensible Bayesian networks
can be constructed other than the simple Naive Bayes model and recommend to
use augmented Bayesian network classifiers when the cost of not detecting a de-
fective or non defective module is not higher than the additional testing effort
[9]. Furthermore, as future work, they propose to discover the effects of different
information sources with Bayesian networks which is something we consider by
defining two extra metrics i.e. LOCQ and NOD and measuring their relationship
with other metrics and defectiveness.

Regarding the effects of the number of developers on defect proneness there are
contradictory findings in the literature. For example Norick et al. use eleven open
source software projects, to determine if the number of committing developers af-
fects the quality of a software system. As a result, they could not find significant
evidence to claim that the number of committing developers affects the quality
of software [34]. Furthermore, Pendharkar and Rodger investigate the impact of
team size on the software development effort using over 200 software projects and
conclude that when the size of the team increases, no significant software effort
improvements are seen [36]. On the other hand, Nagappan et al. define a metric
scheme that includes metrics like number of engineers, number of ex-engineers,
edit frequency, depth of master ownership, percentage of organization contribut-
ing to development, level of organizational code ownership, overall organization
ownership, and organization intersection factor to quantify organizational com-
plexity. They use data from Windows Vista operating system and conclude that
the organizational metrics predict failure-proneness with significant precision, re-
call, and sensitivity. Furthermore, they also show that organizational metrics are
better predictors of failure-proneness than the traditional metrics used so far like
code churn, code complexity, code coverage, code dependencies, and pre-release
defect measures [33]. Furthermore Mockus et al. use two open source projects, the
Apache web server and the Mozilla browser to define several hypotheses that are
related to the developer count and the team size. They test and refine some of
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these based on an the analysis of Mozilla data set. They believe that when several
people work on the same code, there are many potential dependencies among their
work items. So they suggest that regarding to the team size, around an upper limit
of 10-15 people, coordination of the work for the team becomes inadequate [30].

4 Proposed Approach

4.1 Bayesian network of Metrics and Defect Proneness

It is very important to model the associational relationships among the metrics and
defect proneness. We first generate a Bayesian network among software metrics
and defect proneness and then using this network, we calculate an overall marginal
defectiveness probability of the software system. This network provides us two very
important results:

– The dependencies among the metrics we choose. Which metrics are affected by
other metrics and which ones are the most effective on defect proneness.

– The defect proneness probability of the software system itself. By learning
from the data set, the Bayesian network tells us the marginal defectiveness
probability of the whole system and one can interpret this as the probability
of having at least one or more defects in a software module that is selected
randomly.

In defect prediction studies, using static code metrics alone may ignore some
very crucial causes of defects like poor requirement analysis or design, lack of qual-
ity of design or coding, unexperienced developers, bad documentation, managerial
or financial problems. Although all of these factors could lead to an increase in de-
fect proneness, static code metrics do not consider them effectively. Using Bayesian
networks might be much more meaningful when additional data on causal, ex-
planatory variables are available and included in the model. Unfortunately, it is
not too easy to measure these causal and explanatory variables when there is no
information regarding the software development processes. By inspecting project
repositories of some data sets, we add two metrics i.e. LOCQ and NOD to our
Bayesian model, in order to measure the effect of lack of coding quality and the
number of developers.

We introduce a new metric we call lack of coding quality (LOCQ) that mea-
sures the quality of the source code. We run PMD source code analyzer plugin in
Netbeans, to generate the LOCQ values for each class of the open source Apache
projects listed in Table 3. PMD inspects the given source code and looks for po-
tential problems like possible bugs, dead code, suboptimal code, overcomplicated
expressions, and duplicate code. It counts the number of detected problems for
each class and package in the software system. We believe that this measurement
gives an idea about the quality of the source code and has a relationship with
defectiveness. That is why, we include the LOCQ metric in our experiments and
try to understand how it is related with the defect proneness and other well known
static code metrics in the literature.

We ask if for a specific class or file, the number of developers is positively related
with the extent of defectiveness or not? Receiving inspiration from famous idiom
“too many cooks spoil the broth” we wonder if a higher number of developers for a
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certain class or file, leads to a more defective or messed up source code? For some
of the data sets listed in Table 3 that have developer information in the source
code files, we generate the number of developers (NOD) metric, which shows the
number of distinct developers per each class in the software system. Then we learn
a Bayesian network from each of these data sets and extract the relationship of
the NOD metric with defectiveness.

One problem to reach a clear conclusion on this issue is the conclusion instabil-
ity problem. We think that conclusion instability comes from an inherent property
of software engineering data sets; i.e. real world data is noisy. To remove noise from
the data sets and draw more accurate conclusions, we cross check our results on 10
subsets of each data set. While generating the subsets, we stratify the data with
different seeds and include 67 percent of the data each time. For the remaining
data sets like Ant, Lucene, and Synapse, there was no developer information in the
source code repositories, so we could not generate the NOD metric for them. Since
the developer information is not available for all data sets but just for a subset of
them, we present the experiments carried out with the NOD metric separately in
Section 5.6.

While we model the influential relationships among different product and pro-
cess metrics, we learn the Bayesian network from the data set. Figure 3 shows
the general form of our model. In this Bayesian network, we see the interactions
among different product, process or developer metrics. We may see that a met-
ric is not affected by any other metric whereas some metrics may be affected by
one or more product metrics (like Metric5). According to this Bayesian network
Metric5, Metric6, and Metric7 are the most important metrics since they af-
fect defectiveness directly. On the other hand, Metric1, Metric2, Metric3, and
Metric4 are less important since they are indirectly related with defectiveness.

As a summary, the Bayesian network we propose is a graph G of E edges and V
vertices where each Vi represents a metric and each Ej represents the dependency
between two metrics or between a metric and defectiveness. If an edge E is present
from metric m2 towards metric m1, then this would mean metric m1 is effective
on metric m2. Similarly, if there is an edge from defectiveness to metric m1, then
it would mean that metric m1 is effective on defectiveness. This way, we determine
the metrics that affect defectiveness directly or indirectly.

Fig. 3 Proposed Bayesian network to model the relationships among metrics
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Table 2 The order of software metrics used during Bayesian network construction

Metric Groups Order (left to right)
Group1 LOC CBO LOCQ
Group2 WMC RFC
Group3 LCOM - LCOM3 DIT NOC

4.2 Ordering Metrics for Bayesian Network Construction

In order to learn a Bayesian network with K2 algorithm, it is necessary to specify
the order of the nodes. That is why, we decide to order the software metrics con-
sidering their effect on defectiveness, prior to the generation of Bayesian networks.

We believe that as the size of a software system gets larger, the probability of
having fault prone classes increases, since more effort would be needed to ensure a
defect free software. We also believe that besides size, complexity of the software
is also very important because as the design gets more complex, it would be more
difficult for developers to ensure non-defectiveness. That is why, for the initial
ordering of the metrics, we decide to give LOC and CBO as the first metrics since
LOC is the best indicator of software size and CBO shows how much complex a
software system is by counting the number of couples for a certain class where
coupling means using methods or instance variables of other classes. As one would
easily accept, as coupling increases, the complexity of the software system would
also increase. Furthermore, as everybody can accept, when the quality of the source
code increase, the probability of having a defective software decreases. So, we
introduce the LOCQ metric as the third metric in the first group after LOC and
CBO.

Although, RFC may explain complexity to some extent, it may not be the
case if a class is using internal methods or instance variables only. That is why,
RFC together with WMC are entitled as the second group of metrics. On the
other hand, NOC indicates the number of children of a class and is not a good
indicator for both size and complexity, since the parent-child relationship does not
contribute to the complexity if there is no caller-callee relationship between them
which is the case for most of the time. Due to similar reasons DIT also does not
explain size or complexity alone. So, we decide to give DIT and NOC as the last
metrics in the initial ordering.

Following our reasoning, we generate three groups of metrics where LOC, CBO,
and LOCQ are in Group1, WMC and RFC are in Group2 and LCOM, DIT, and
NOC are in Group3. Group1 metrics are more important than Group2 metrics
and Group2 metrics are more important than Group3 metrics in terms of their
effect on defectiveness (See Table 2).

5 Experiments and Results

5.1 Experiment Setup

In our experiments, we use Bayesian networks to determine the influential or asso-
ciational relationships among the software metrics and defectiveness and identify
the most effective metrics by giving them scores considering their effect on de-
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fect proneness. While choosing the data sets from Promise data repository, first
we look at the data sets that are large enough to perform cross validation. So,
we eliminate some of the data sets in the repository that are small in terms of
size. Second, to extract additional metrics LOCQ and NOD, we need the source
repositories of the data sets. That is why, we prefer the data sets in Promise data
repository whose source code is available in the open source project repositories.
For instance the Log4j data set has defect data for versions 1.0, 1.1, and 1.2 in the
Promise data repository, but the sources corresponding to these exact versions are
not present in the Apache repository. We eliminate some data sets whose sources
are not available or are skewed which could affect the learning performance of
the Bayes net classifier. Based on these criteria we select public data sets Ant,
Tomcat, Jedit, Velocity, Synapse, Poi, Lucene, Xalan, and Ivy from Promise data
repository [5] (See Table 3 for the details of the datasets).

We use Weka [17] for Bayesian network structure learning where we learn the
network structure from the data sets and use SimpleEstimator while constructing
Bayesian networks for defect proneness. Furthermore, we select K2 as the search
algorithm and use predefined ordering of nodes of LOC, CBO, LOCQ, WMC,
RFC, LCOM, LCOM3, DIT, and NOC.

Table 3 Brief details of data sets used in the experiments

Data Set Version No. of Instances % Defective Instances
Ant 1.7 745 22.28
Tomcat 6.0 858 8.97
Jedit 4.3 492 2.24
Velocity 1.6 229 34.06
Synapse 1.2 256 33.59
Poi 3 442 63.57
Lucene 2.4 340 59.71
Xalan 2.5 741 48.19
Ivy 2.0 352 11.36

It is a common way to look at the error rates of classifiers while making com-
parisons. But, this is not true in real life, because first, the proportions of defective
and non defective classes are not equal. For instance, in defect prediction, most of
the time the proportion of defective modules is quite different from the proportion
of non defective ones. Furthermore, the cost of false positives (FP) and false nega-
tives (FN) are not the same i.e. FN is more costly than FP. ROC analysis is used
in the literature and considers TP rate (also called sensitivity) and FP rate (also
called false alarm rate) together [11]. ROC curve is a two dimensional graphical
representation where TP is the y-axis and FP is the x-axis. It is always desirable
to have high sensitivity and small false alarm rate. So, as the area under the ROC
curve (AUC) gets larger, the classifier gets better. That is why, we use AUC while
comparing the performance of the Bayesian networks in our experiments.
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5.2 Results

Table 4 shows the AUC values for each Bayesian network. The results show that
Ivy dataset has the highest AUC value whereas Xalan data set has the smallest
AUC value. A high AUC value implies that the data set used is able to define
the structure of the Bayesian network better. The AUC values found in our ex-
periments are relatively high and we believe that this makes our results more
important and reliable.

Table 4 The AUC values of the Bayesian networks in our experiments

Data Sets AUC
Ant 0.820
Tomcat 0.766
Poi 0.845
Jedit 0.658
Velocity 0.678
Synapse 0.660
Lucene 0.633
Xalan 0.624
Ivy 0.846

We obtain the Bayesian network shown in Figure 4 for Ant data set. The met-
rics LOC and LOCQ are the most effective whereas CBO, WMC, RFC, LCOM,
and LCOM3 are indirectly and less effective on defectiveness. However, DIT and
NOC are not effective at all on the bug attribute. When we look at the condi-
tional probability table of LOC, we observe that there is a positive correlation
between LOC and defect proneness. For instance the non-defectiveness probabil-
ity is 0.678 for small LOC, whereas it is 0.096 for high LOC which means that as
the LOC increase the probability of defectiveness increases too. We observe a sim-
ilar relationship between LOCQ and defectiveness also where the defect proneness
probability is high for high LOCQ values. Furthermore, we observe that when the
LOC is high, the probability of having a high CBO is also high which means that
there is a positive correlation between LOC and CBO too.

The Bayesian network for Tomcat data set shows that LOC and CBO are
directly effective on defect proneness, whereas WMC, LOCQ, RFC, LCOM, and
LCOM3 are indirectly effective. But DIT and NOC metrics are not effective in de-
termining the defect prone classes (See Figure 5). Furthermore, when both LOC
and CBO are high, defectiveness probability is higher (0.9) compared to the case
when either one of them is small. Similarly, when both are low, the non defective-
ness probability is higher (0.793) compared to cases when either one of them is
high.

The Bayesian network obtained for Poi data set is shown in Figure 6. First of
all, CBO, LOC, LOCQ, WMC, and LCOM are the most effective metrics since
they are directly connected with defectiveness. RFC, DIT, and LCOM3 are indi-
rectly effective on fault proneness. On the other hand, NOC is not effective at all.
Similarly, from the conditional probability table of CBO, we see that there is also
a positive correlation between CBO and defect proneness. Furthermore, we ob-
serve that when both LOC and CBO are high, the defect proneness probability is
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Fig. 4 Bayesian network showing the relationships among software metrics in Ant version 1.7

the highest (0.904). This shows that the size and the complexity metrics together
affects defectiveness more compared to the effect of either size or complexity alone.

For the remaining 6 data sets, Bayesian networks generated are shown in Figure
7. For Synapse data set, DIT, NOC, and LCOM3 metrics are not effective on
defect proneness. On the other hand, LOC is the most effective metric and LOCQ,
CBO, WMC, RFC, and LCOM are indirectly effective on defect proneness. The
probability of having a defect free software is 0.839 for small LOC, whereas it is
0.161 for higher LOC values. We also observe that there is a positive correlation
between LOC and LOCQ metrics. For instance, when the LOC is small, LOCQ
is also small with a probability of 0.942. Similarly, the probability of having both
LOC and LOCQ high is 0.877.

We observe a similar result for Lucene data set also where LCOM3, DIT, and
LOC are not effective on defect proneness whereas CBO and LOC are the most
effective metrics. For higher CBO values, the defect proneness probability is 0.743
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Fig. 5 Bayesian network showing the relationships among software metrics in Tomcat version
6.0

whereas it is only 0.257 for smaller CBO. That means as the coupling between
objects increase, the probability of defectiveness increases also. On the other hand,
LOCQ, WMC, RFC, and LCOM are indirectly effective on defect proneness.

Similar to the previous findings, for Velocity data set, DIT, NOC, WMC, and
LCOM found to be independent of defect proneness where LOC is directly effec-
tive on defectiveness. On the other hand, CBO, LOCQ, RFC, and LCOM3 are
indirectly and less effective compared to LOC. When we look at the conditional
probability table for LOC, we observe that the defectiveness probability is 0.64 for
higher LOC whereas it is 0.36 for smaller LOC values.

For JEdit data set, metrics DIT and NOC are independent from defect prone-
ness whereas LOC, CBO, WMC, and LCOM3 are effective. On the other hand,
LOCQ, RFC, and LCOM are indirectly and less effective compared to LOC, CBO,
WMC, and LCOM3 metrics.

We observe that LOC and LCOM3 metrics are directly effective on defect
proneness whereas DIT, NOC, CBO, and LCOM are not effective for Xalan data
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Fig. 6 Bayesian network showing the relationships among software metrics in Poi version 3.0

set. On the other hand, LOCQ, WMC, and RFC are indirectly effective on defec-
tiveness. Furthermore, for a lower LOC, the probability of having a lower LOCQ
is 0.967 whereas the probability of a higher LOCQ is 0.033. Similarly, for a higher
LOC, the probability of having a higher LOCQ is 0.568, whereas the probability
of a lower LOCQ is 0.432.

For Ivy data set, LOC, CBO, and LOCQ are the most important metrics,
whereas DIT, NOC, and LCOM3 are not effective on fault proneness. Furthermore,
WMC, RFC, and LCOM are less effective on defectiveness compared to LOC,
CBO, and LOCQ. Similar to the previous findings, when both LOC and CBO are
high, the defectiveness probability is the highest (0.983).

To measure the effect of metrics quantitatively, we give scores to the metrics
in each experiment. If a metric is affecting defectiveness (directly or indirectly)
we assign it a score of 1, if it has no relationship with defectiveness it is assigned
a zero score. Table 5 shows the scores of metrics assigned in each experiment.
According to the average scores, LOC, CBO, LOCQ, WMC, and RFC are the most
effective metrics, whereas DIT and NOC are the least effective ones. Furthermore,
DIT and NOC are untrustworthy since their effectiveness is not consistent in all
experiments. For instance, DIT is effective in Poi whereas it has no importance
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Fig. 7 Bayesian networks showing the relationships among software metrics and defect prone-
ness (bug) in different data sets

in other data sets. Similarly, NOC is independent from defect proneness in all
experiments. Moreover, we observe that LCOM and LCOM3 are more effective
compared to DIT and NOC and less effective compared to others.
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Table 5 The scores of metrics obtained

Data Sets LOC CBO LOCQ WMC RFC LCOM LCOM3 DIT NOC
Ant 1 1 1 1 1 1 1 0 0
Tomcat 1 1 1 1 1 1 1 0 0
Poi 1 1 1 1 1 1 1 1 0
Jedit 1 1 1 1 1 1 1 0 0
Velocity 1 1 1 0 1 0 1 0 0
Synapse 1 1 1 1 1 1 0 0 0
Lucene 1 1 1 1 1 1 0 0 0
Xalan 1 0 1 1 1 0 1 0 0
Ivy 1 1 1 1 1 1 0 0 0
Average 1 0.89 1 0.89 1 0.78 0.67 0.11 0

5.3 Conclusion Instability Test

Some times the results found for a data set, might not be valid for its subsets
due to some uncommon local attributes [27]. So, we check if the results shown
in Table 5 are valid for the subsets of the data sets too. Therefore, we make 20
experiments with different 2/3rd subsets of each data set and calculate the average
score for each metric based on these 20 experiments. While generating the subsets,
we stratify the data and use a different seed to ensure each subset is different from
the previously generated ones. For each data set, the average scores we find at the
end of 20 experiments are listed in Table 6. When we look at the average scores
of the metrics on all data sets, we observe that although the results are slightly
different from the results presented in Table 5 in terms of ordering, there are very
strong similarities. For instance, still LOC, CBO, LOCQ, WMC, and RFC are
the most important metrics. Furthermore DIT and NOC are the least effective
and untrustworthy metrics. Similar to the results shown in Table 5, LCOM and
LCOM3 are more effective compared to DIT and NOC and less effective compared
to other metrics.

Table 6 The average scores of the metrics obtained for 20 different subsets of Ant, Tomcat,
Poi, Jedit, Velocity, Synapse, Lucene, Xalan, and Ivy.

Data Sets LOC CBO LOCQ WMC RFC LCOM LCOM3 DIT NOC
Ant 1.00 1.00 1.00 1.00 1.00 0.90 0.70 0.10 0.00
Tomcat 1.00 1.00 0.90 0.90 1.00 1.00 0.50 0.10 0.10
Poi 1.00 0.70 1.00 0.90 1.00 0.80 0.80 0.40 0.00
Jedit 0.60 0.50 0.30 0.60 0.50 0.40 0.00 0.00 0.00
Velocity 0.90 0.50 0.50 0.40 0.90 0.10 0.30 0.00 0.00
Synapse 0.70 0,80 0.60 0.60 0.70 0.60 0.00 0.00 0.00
Lucene 0.30 0.70 0.60 0.80 0.90 0.60 0.20 0.00 0.00
Xalan 1.00 0.10 0.95 0.55 0.95 0.65 0.50 0.05 0.10
Ivy 1.00 0.90 1.00 1.00 0.95 0.70 0.50 0.00 0.00
Average 0.83 0.69 0.76 0.75 0.88 0.64 0.39 0.07 0.02
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5.4 Effectiveness of Metric Pairs

We look at the 180 Bayesian networks (generated for 20 subsets of 9 data sets), in
terms of which metric pairs are the most effective on defectiveness. For a specific
Bayesian network, if both of the metrics in the pair have a relationship with
defectiveness we assign a score of 1 to the metric pair. If either or neither of the
metrics is related with defect proneness we assign a zero score for the metric pair.
The sum of the scores of the metric pairs calculated for all subsets of the data
sets are shown in Table 6 (Only the most effective ten metric pairs are included in
the list). We observe that metric pairs LOC-RFC, RFC-LOCQ, RFC-WMC are
the most effective pairs and their scores are 145, 136, and 133 respectively. We see
that the metric pairs that have the highest scores are composed of metrics that
got the highest score in the previous evaluation where each metric is considered
alone (See Table 5). For instance the metric pair LOC-RFC got the highest score
and we see that metrics LOC and RFC alone are among the metrics that got the
highest scores in Table 5.

Table 7 The scores of metric pairs obtained for the 20 subsets of Ant, Tomcat, Poi, Jedit,
Velocity, Synapse, Lucene, Xalan, and Ivy data sets.

Metric Pairs Total Score
LOC-RFC 145
RFC-LOCQ 136
RFC-WMC 133
LOC-LOCQ 131
LOC-WMC 121
RFC-CBO 120
LOCQ-WMC 119
WMC-CBO 109
LOC-CBO 108
LOCQ-CBO 106

5.5 Feature Selection Tests

Using Bayesian network model, it is possible to make probabilistic causal or diag-
nostic inferences about the effectiveness of a metric on another metric or on the
defectiveness. At the end of learning a Bayesian network, we not only determine
the set of most important metrics but also find the relationship among them and
the probability of their effect on defect proneness. Therefore, with Bayesian net-
works we are able to model the uncertainties better, compared to other machine
learning methods. Although they do not give the extent of influential relation-
ships among metrics and defectiveness, using Feature selection methods, we can
determine the most important metrics and make a cross check with the results of
Bayesian network model.

At the end of our experiments with Bayesian networks, we observe that con-
sidering all data sets we use in our experiments, LOC, CBO, LOCQ, WMC, and
RFC are the most effective metrics and DIT and NOC are the least effective ones
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(See Tables 5 and 6). We run two feature selection algorithms CFS (CfsSubsetEval
attribute evaluator with BestFirst search method) and Relief (ReliefFAttributeE-
val with Ranker search method) to see which metrics are selected as the most
important attributes and whether the results of the feature selection experiments
are different from the results shown in Table 5. For CFS tests, for each data set,
each metric is assigned a score of 1 if it is among the selected metrics and it is
assigned 0 otherwise. Table 8 shows the results of feature selection tests with CFS.
When we look at the average scores of the metrics, we observe that LOC, CBO,
LOCQ, and RFC are among the most important features and DIT and NOC are
the least important ones. So, although the ordering found at the end of feature
selection is slightly different from the ordering shown in Table 5, except WMC,
we can say that there is a coherence between the feature selection test and our
experiments in terms of the most and least effective attributes.

Table 8 The results of feature selection tests with CfsSubsetEval and BestFirst search method
where a metric is assigned a score of 1 if it is selected and is assigned zero score otherwise.

Data Sets LOC CBO LOCQ WMC RFC LCOM LCOM3 DIT NOC
Ant 1 1 1 0 1 1 0 0 0
Tomcat 1 1 1 0 1 0 0 0 0
Poi 0 1 1 0 1 1 1 0 0
Jedit 0 0 0 0 1 0 0 0 0
Velocity 1 1 0 0 1 0 1 0 0
Synapse 1 1 0 1 1 0 0 0 0
Lucene 0 1 1 0 1 1 0 0 1
Xalan 1 0 1 0 1 0 1 0 0
Ivy 1 1 1 0 1 0 1 0 0
Average 0.67 0.78 0.67 0.11 1 0.33 0.44 0 0.11

We repeat the feature selection test with Relief where Ranker is used as the
search method. Relief gives the rankings of the attributes for each data set. When
we take the average of the rankings for each metric on all data sets, we observe
that except for DIT metric, the results of the feature selection tests with Relief are
coherent with our results shown in Table 5. For instance, still LCOM, LCOM3,
and NOC are less effective compared to other metrics. Similar to the results shown
in Table 5, metrics RFC and CBO are the among most effective metrics. Although
the average rankings found for LOC, LOCQ, and WMC are not so good, they are
still more important compared to LCOM, LCOM3, and NOC (See Table 9).

5.6 Effectiveness of the Number of Developers (NOD)

Among the data sets listed in Table 3, we use Poi, Tomcat, and Xalan to extract
the number of developers since developer names could be retrieved from their
source code repositories. We count the number of distinct developers (NOD) for
each class of each data set. We use the NOD metric together with the metrics
listed in Table 1 and learn a Bayesian network for each data set, to extract its
relationship with other metrics and the extent of defect proneness. Furthermore,
we select K2 as the search algorithm and use predefined ordering of nodes of LOC,
NOD, CBO, LOCQ, WMC, RFC, LCOM, LCOM3, DIT, and NOC. To see the
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Table 9 The results of feature selection tests with ReliefFAttributeEval and Ranker search
method where the rankings of the metrics are shown for each data set (If the average ranking
of a metric is smaller, then it means the metric is more important).

Data Sets LOC CBO LOCQ WMC RFC LCOM LCOM3 DIT NOC
Ant 5 6 3 4 2 9 8 1 7
Tomcat 5 2 4 6 3 9 8 1 7
Poi 6 5 3 1 2 7 9 4 8
Jedit 5 3 6 4 2 7 8 1 9
Velocity 5 2 6 4 1 7 9 3 8
Synapse 2 3 6 5 1 7 8 4 9
Lucene 7 2 5 4 3 8 1 9 6
Xalan 1 3 5 2 4 7 6 9 8
Ivy 5 2 4 6 3 9 8 1 7
Average 4.56 3.11 4.67 4.00 2.33 7.78 7.22 3.67 7.67

relationship of NOD and the level of defectiveness better, we define three states for
defect proneness. All class instances where bug is zero are accepted as defect free
classes. The classes that have 1 or 2 bugs, are marked as less defective, and the
classes that have more than 2 bugs are accepted as more defective. As a result, we
simply define three defect proneness states which are, defect free, less defective,
and more defective. There is nothing special for the threshold values we use to
define the level of defectiveness, someone else might use different thresholds or
define more levels for defect proneness. The Bayesian networks we obtain at the
end of our experiments are shown in Figure 8.

For all Bayesian networks learned, NOD is directly effective on defect proneness
and we observe a positive correlation between NOD and the level of defectiveness.
For instance for Poi data set, we see that as the number of developers increases,
the defectiveness increases too. If the number of developers are less than 3, the non
defectiveness probability is 0.997, but it is 0.003 if there are more than 3 developers
per class. For Tomcat data set, we observe that if the number of developers is
more than 1, the probability of a defect free class is 0.167. But the probabilities of
having a less or more defective class are 0.514 and 0.812 respectively. For Xalan, we
observe a similar relationship between NOD and the level of defectiveness, where
if the number of developers is less than 2 then the non defectiveness probability is
0.705. If NOD is 2 or 3 then the non defectiveness probability is 0.276 and if NOD
is greater than 3 then it is only 0.019. Apparently, as the number of developers
increases, the non defectiveness probability decreases or the level of defectiveness
increases.

To be sure that our results do not suffer from conclusion instability, and our
observations are valid for the subsets of the data sets too, we repeat our exper-
iments with the 10 subsets of each data set. Each data set is stratified and 67
percent of its data is included in the subsets. Furthermore, for each stratification
a different seed is used. For the Bayesian network obtained in each experiment, a
metric is assigned 1, if it has a relationship with defectiveness and assigned zero
otherwise. The average scores of the metrics for Poi, Tomcat, and Xalan data sets
are shown in Table 10. In 7 experiments for Poi, in all experiments for Tomcat,
and in 7 experiments for Xalan, NOD is directly effective on defectiveness and
there is a positive correlation with the developer count and defectiveness. Further-
more, supporting the results observed in the previous experiments (Tables 5 and



Software Defect Prediction Using Bayesian Networks 23

Fig. 8 Bayesian networks showing the relationship of the number of developers with the level
of defectiveness in Poi, Tomcat, and Xalan data sets.

Table 10 The average scores of metrics obtained at the end of runs on 10 subsets of Poi,
Tomcat, and Xalan data sets (If a metric affects defectiveness we assign it a score of 1, if it
has no relationship with defectiveness it is assigned a zero score.)

Data sets
Metrics Poi Tomcat Xalan Average
NOD 0.7 1 0.7 0.80
LOC 1 1 1 1.00
CBO 1 1 0.9 0.97
LOCQ 1 1 0.9 0.97
WMC 1 0.9 0.9 0.93
RFC 1 1 1 1.00
LCOM 1 0.9 1 0.97
LCOM3 1 0.6 0.6 0.73
DIT 0.7 0 0 0.23
NOC 0 0 0 0.00

6), LOC and RFC are the most effective metrics whereas DIT and NOC are the
least effective ones.

We compare the non defectiveness probabilities of two cases i.e. when the num-
ber of developers is 1 (NOD = 1) and when it is greater than 1 (NOD > 1). Figure
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9 shows the non defectiveness probabilities of these two cases, for 30 experiments
carried out on 10 stratified subsets of Poi, Tomcat, and Xalan (3 experiments for
Poi and 3 experiments for Xalan data sets where NOD is not related with defec-
tiveness are not included). To check for the statistical significance of the results, we
apply a t-test (in 95 % confidence interval) to the non defectiveness probabilities
of the two cases and show that the non defectiveness probability when NOD = 1
is better with a p value of zero.

Fig. 9 The non defectiveness probabilities of two cases i.e. when the number of developers is
1 (NOD = 1) and when it is greater than 1 (NOD > 1)

We conclude that as the number of developers increases for a specific class,
the class tends to be more defective and show that the common idiom “too many
cookers spoil the broth” is valid for Software Engineering. At the end of our ex-
periments, we observe that too many developers make a class more defect prone.
This is due to the fact that when too many developers work on the same piece
of code, the number of potential dependencies among their work items increases.
We recommend project managers to explore the cost benefit curve of NOD versus
defectiveness level where the value of adding more developers should be controlled
with respect to the introduced number of defects. We must emphasize that this
conclusion is based on the experiments on the data sets used and other researchers
should make more experiments on more data sets to justify our findings.

6 Threats to Validity

According to Perry et al. there are three types of validity threats that should be
considered in research studies. We briefly explain the methodology we follow to
alleviate these threats [38].

An internal validity threat might arise if a cause effect relationship could not
be established between the independent variables and the results. We address this
issue by cross checking our results on different subsets of the data sets. During our
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experiments, not only we use 10 fold cross validation, but we also replicate all of
the experiments on 20 different subsets of all the data sets.

Construct validity threats might be observed when there are errors in the mea-
surements. To mitigate this threat, first we automatize the metric extraction pro-
cess and minimize the manual interventions, second we cross check the extracted
metrics and try to find if any abnormal values exist.

External validity threats might arise if the results observed for one data set
are not valid for other data sets. To mitigate external validity, we test our pro-
posed method on several data sets and replicate the experiments on their subsets.
Although our results are promising since metric effectiveness is investigated on
more than one data set, further research with more data sets and more search
algorithms is needed to justify our findings.

7 Conclusion

In this paper, we propose a novel method using Bayesian networks to explore the
relationships among software metrics and defect proneness. We use nine data sets
from Promise data repository and show that RFC, LOC, and LOCQ are more
effective on defect proneness. On the other hand, the effect of NOC and DIT on
defectiveness is limited and untrustworthy.

The main contributions of this research are:

– This paper uses Bayesian networks to model the relationships among metrics
and defect proneness on multiple data sets. For instance Gyimothy et al. [16]
used Mozilla data set whereas Zhou et al. and Pai and Dugan used KC1 data set
from Nasa repository [47,35]. The results obtained using one data set might
be misleading since a metric might perform well on one data set but poor
on another one. As Menzies et al. suggest, it is not adequate to assess defect
learning methods using only one data set and only one learner, since the merits
of the proposed techniques shall be evaluated via extensive experimentation
[28]. Our work is a good contribution to the literature, since we determine
the probabilistic causal or influential relationships among metrics and defect
proneness, considering 9 data sets at the same time.

– We introduce a new metric we call Lack of Coding Quality (LOCQ) that can be
used to predict defectiveness and is as effective as the famous object oriented
metrics like CBO and WMC.

– We extract the Number of Developers (NOD) metric for data sets whose source
code include developer information and show that there is a positive correlation
between the number of developers and the extent of defect proneness. So, we
suggest project managers to be careful while assigning more than one developer
to one class or file.

– It was found that in most experiments NOC and DIT are not effective on
defectiveness.

– Furthermore, since LOC achieves one of the best scores in the experiments,
we believe that it could be used for a quick defect prediction since it can be
measured more easily compared to other metrics.

– LCOM3 and LCOM are less effective on defect proneness compared to LOC,
CBO, RFC, LOCQ, and WMC.
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As a future direction, we plan to refine our research to include other software
and process metrics in our model to reveal the relationships among them and to
determine the most useful ones in defect prediction. We believe that rather than
dealing with a large set of software metrics, focusing on the most effective ones
will improve the success rate in defect prediction studies.
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