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Why Bayesian networks? 
Decision makers in all areas of life (including physicians, generals, scientists, bankers and politicians) 

must often assess and manage risk when there is little or no direct historical data to draw upon, or 

where relevant data is difficult to identify. The international credit  crisis was not predicted by the 

world’s leading financial analysts because they relied on models based on historical statistical data 

that could not adapt to new circumstances even when those circumstances (in this case the collapse 

of the mortgage sub-prime market) were foreseeable by experts with more intimate knowledge of 

the market place. The challenges are similarly acute when the source of the risk is novel: terrorist 

attacks, ecological disasters, major project failures, and more general failures of novel systems, 

market-places and business models. 

Even though we may have little or no historical data, there is often an abundance of expert (but 

subjective) judgement, as well as diverse information and data on indirectly related risks. These are 

the types of situation that can be successfully addressed using Bayesian Networks (BNs) [2] , even 

when data-driven approaches to risk assessment are not possible. BNs (see Fig 1) describe “webs” of 

causes and effects, using a graphical framework that provides for the rigorous quantification of risks 

and the clear communication of results. The ‘nodes’ of a BN represent variables (that may or may 

not be observed and so are generally ‘uncertain’) while the ‘links’ represent causal or influential 

relationships.  



 

 

a) The model structure b) The model showing probability results after 
some observations are entered 

 

Figure 1 Example of BN for assessing component safety 

 

BNs can combine historical data with expert judgement, using calculations that are based on a 

simple theorem by the Reverend Thomas Bayes dating back to 1763. The theorem provides the only 

rational and consistent way to solve the problem of how to update a belief in some uncertain event 

when presented with new evidence. 

Although Bayesian inference has been around for 250 years, it is only relatively recently that we 

have been able to actually use BNs for real-world problem solving. This is because the necessary 

Bayesian calculations are complex and quickly become infeasible. Indeed, it is know that exact 

probabilistic inference in BNs is “NP hard” [1] meaning that there is no efficient algorithm in the 

general case.  

However, a dramatic breakthrough in the late 1980s changed things. Researchers published 

algorithms [7, 9] that provided efficient propagation for a large class of BN models. These 

developments were the catalyst for an explosion of interest in BNs. The first commercial tool to 

implement an efficient propagation algorithm was developed in 1992 by Hugin. Other BN tools 

quickly followed, such as Netica, Microsoft’s MSBNX, and BayesiaLab. 

Improving the software support for BNs 
During the 1990s we were working primarily on the problem of assessing the reliability of critical 

software systems [3].  BNs improved on our previous methods of assessment for this problem 

because it enabled us to incorporate expert judgement (for example, about the software 

development process) with limited data from individual component testing and even more limited 

data from system testing. We used the mainstream BN tools to build the necessary models to make 

predictions of fault and failure probabilities.  Despite the difficulties of building such models their 



enormous potential was obvious and Agena was set up in 1998 initially as a consulting company to 

exploit these opportunities.. Increasingly however, clients wanted to be able to use and adapt the 

BN models without permanent reliance on external consultants.  Hence, more and more effort was 

spent on developing appropriate user interfaces to hide the underlying BN model complexity and 

access the underlying BN model(s) using the API of a standard BN toolset. Our experiences in 

building these types of system convinced us of the following: 

 There were many fundamental usability problems with the mainstream BN toolsets that 

made it hard even for Bayesian experts to build serious models. None of the available 

toolsets handled continuous variables properly.  This forced modellers to choose a static 

discretization of all such variables leading to unacceptable levels of inaccuracy.   

 The commonality in the end-user GUI requirements of our clients was such that it ought to 

be possible to have a generic BN toolset.  In other words, a different type of integrated BN 

toolset was required. 

Hence, in 2004 Agena secured significant external investment, including bank finance, to   develop 

its own BN platform and underlying inference algorithm (AgenaRisk),  employing a team of full-time 

software developers for this purpose. Thus, Agena became a ‘software plus consulting’ company 

rather than a ‘consulting plus software’ company.     

AgenaRisk development and deployment 
Approaching this as software engineering professors, the development effort posed numerous 

challenges, both in the interfaces and the underling inference engine.  It became obvious that an 

object oriented design was necessary to handle the complexity of modelling the generic BN 

structures.  The additional need for a cross-platform solution suggested Java as a natural choice for 

the target language. However, we always knew that there was a critical trade-off involved with this 

choice. While it supported good OO design and portability, we had to work much harder to achieve 

acceptable levels of efficiency for the underlying highly computational intensive algorithms than 

would have been the case had we chosen C. Moreover, the choice of Java also conflicted with the 

extremely demanding and extensive GUI requirements.  

We found that Java’s built-in swing library, for example, was generally inadequate for most of our 

needs and we ended up having to develop many of our own GUI and graphing components from 

scratch to achieve the required look and feel (Fig 2). However, the extra effort was certainly 

worthwhile, since most users of the software compare it extremely favourably in this respect to 

other BN tools. Moreover, in 2011, a company paid Agena a significant sum to acquire the rights to 

use one of the GUI libraries we had developed.  



 

Figure 2 AgenaRisk GUI 

We chose a lightweight version of UML and the Unified Process for design and development and this 

proved to be generally satisfactory.  However, the pressure of commercial development was such 

that even a project partly managed by professors who taught software engineering was unable 

always to ensure adherence to the best of software engineering practices (see, e.g. [4]. For example, 

it proved extremely difficult to ensure a clean separation between the GUI code and the underlying 

BN modelling and statistical code, while there were never sufficient unit tests defined.  However, the 

project has always maintained a rigorous online issues database (based on a tailored version of 

Bugzilla using a rigorous approach to fault and failure classification).  The challenge for us, like any 

start-up company was that building the perfectly engineered product correctly would result in 

delivering it later than clients were willing to wait to pay for it. We have long term goals; they have 

short term needs. Software engineering – as taught in universities - ignores these commercial 

pressures and consequential trade-offs. The necessary difficult decisions then impact day-to-day 

choices: deliver a system with known but tolerable faults now, and get paid, or deliver highest 

quality code late, but go bankrupt.  

The first commercial version of AgenaRisk was released in 2005. The marketing and pricing of this 

version was targeted at organisations with the same profile as those for whom we had previously 

developed bespoke solutions: defence, transport, banks, telecoms, and safety engineering 

companies; i.e. those who ‘owned’ systems that were critical in one way or another and for which 

quantitative risk assessment  was necessary. Because of highly cited published research and models 

we had done in the area of embedded software defect prediction [Fenton et al 2007], this version of 

AgenaRisk sold most successfully to telecoms companies (most of the major players bought it) who 



may have been especially attracted by the fact that the software came with an extensive set of fully 

documented reusable models. Most of the organisations buying AgenaRisk were doing so with the 

initial intention of developing a single model (sometimes with support from Agena consultants) to 

address a specific problem. In most cases the end users were just one or a small group of decision 

makers; however,  sometimes the models were deployed more widely across an organisation (for 

example, one bank used their model for risk assessment across their full range of IT systems and this 

required multiple users across many sites to access the model).   

Because of the sensitive nature of many of the applications for which AgenaRisk was being used it 

was extremely difficult to publicise the details of the applications, or to get public endorsements. 

However, in 2008, one of the major telecoms companies broadcast an internal company 

announcement that their use of a BN model in AgenaRisk – that enables them to manage the risks of 

replacing hardware components in the field, led to savings of $5 million per project. Descriptions of 

a large number of (mostly anonymised) case studies of the use of AgenaRisk can be found on 

agenarisk.com 

Versions and licensing 
There have been numerous subsequent releases of AgenaRisk (the latest being Version 6.0). The 

software growth in LOC is shown as Fig 3 and is comparable to (other refs in the series). 

 

Figure 3 Increase in Lines if Code in AgenaRisk 

In 2009, we released a version that implemented revolutionary algorithmic developments, such as 

the dynamic discretisation algorithm [8] and the ranked node method [6] that finally made it 

possible to easily build, respectively, accurate models containing continuous variables, and models 

involving ranked variables.  By now we were targeting a wider audience and to support this strategy 

we were offering a free full evaluation version for one month that was downloadable automatically 

from agenarisk.com once a user completed a simple online form. This process was managed using 

the same licensing scheme as for the full commercial version (at that time the paid licenses were for 

lifetime use).  The licensing scheme had been implemented by one of our own developers. While it 

was extremely effective in achieving its prime objective, for the end user it involved a non-trivial 



process to install the licence key (the process varied, for example, with each different version of 

Windows because of different default admin settings used by Microsoft). This process worked fine 

for the commercial sales, but was ultimately unsuitable for the ‘free trial’ market, since we were 

inundated with requests for license key installation support despite the explicit instructions on the 

website.  

With the release of Version 6.0 in 2012 we therefore changed our evaluation and licensing strategy 

as part of a switch in business model from perpetual licence to an annual subscription; while this 

impacted revenue in the short term our objective was to drive revenue growth in the medium term 

and support ongoing development of the software.  Instead of an evaluation version we now 

provided a perpetual free version that required no license but had restrictions on saving models that 

used the most advanced features of the tool. This version could be downloaded from agenarisk.com 

without even the need for registering.  

Fig 4 shows the cumulative number of registered downloads (i.e. it excludes downloads of the free 

version since 2012). 

 

Figure 4 AgenaRisk Registered Downloads (free downloads since 2012 are not registered)  

 

The future 
AgenaRisk has made it much easier for non-statistical experts to build BN models to address serious 

risk assessment problems. However, there is still a long way to go before BNs truly ‘cross the chasm’ 

into mainstream business use. This means that the vast majority of business users continue to rely 

on decision support and risk assessment tools that do not provide the power, accuracy and insights 

of BN solutions.  Agena continues to look for innovative methods of making both the development 

and use of BNs even more user-friendly. A web services deployment version is one obvious and 

attractive way forward; given the heavy processing that the algorithms demand of complex models, 

this involves addressing challenging problems of scale with multiple user access. However, it is clear 

that this is where the future lies.  
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