
Decision Support Software for Probabilistic Risk Assessment Using

Bayesian Networks
Fenton, NE; Neil, M

For additional information about this publication click this link.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6774326

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30697188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6774326

Decision support software for
probabilistic risk assessment using
Bayesian networks

Norman Fenton and Martin Neil

THIS IS A PRE-PUBLICATION VERSION OF THE FOLLOWING CITATION

Fenton, N. E., & Neil, M. (2014). "Decision Support Software for Probabilistic Risk Assessment

Using Bayesian Networks". IEEE Software, 31(2), 21–26. http://dx.doi.org/10.1109/MS.2014.32

Why Bayesian networks?
Decision makers in all areas of life (including physicians, generals, scientists, bankers and politicians)

must often assess and manage risk when there is little or no direct historical data to draw upon, or

where relevant data is difficult to identify. The international credit crisis was not predicted by the

world’s leading financial analysts because they relied on models based on historical statistical data

that could not adapt to new circumstances even when those circumstances (in this case the collapse

of the mortgage sub-prime market) were foreseeable by experts with more intimate knowledge of

the market place. The challenges are similarly acute when the source of the risk is novel: terrorist

attacks, ecological disasters, major project failures, and more general failures of novel systems,

market-places and business models.

Even though we may have little or no historical data, there is often an abundance of expert (but

subjective) judgement, as well as diverse information and data on indirectly related risks. These are

the types of situation that can be successfully addressed using Bayesian Networks (BNs) [2] , even

when data-driven approaches to risk assessment are not possible. BNs (see Fig 1) describe “webs” of

causes and effects, using a graphical framework that provides for the rigorous quantification of risks

and the clear communication of results. The ‘nodes’ of a BN represent variables (that may or may

not be observed and so are generally ‘uncertain’) while the ‘links’ represent causal or influential

relationships.

a) The model structure b) The model showing probability results after
some observations are entered

Figure 1 Example of BN for assessing component safety

BNs can combine historical data with expert judgement, using calculations that are based on a

simple theorem by the Reverend Thomas Bayes dating back to 1763. The theorem provides the only

rational and consistent way to solve the problem of how to update a belief in some uncertain event

when presented with new evidence.

Although Bayesian inference has been around for 250 years, it is only relatively recently that we

have been able to actually use BNs for real-world problem solving. This is because the necessary

Bayesian calculations are complex and quickly become infeasible. Indeed, it is know that exact

probabilistic inference in BNs is “NP hard” [1] meaning that there is no efficient algorithm in the

general case.

However, a dramatic breakthrough in the late 1980s changed things. Researchers published

algorithms [7, 9] that provided efficient propagation for a large class of BN models. These

developments were the catalyst for an explosion of interest in BNs. The first commercial tool to

implement an efficient propagation algorithm was developed in 1992 by Hugin. Other BN tools

quickly followed, such as Netica, Microsoft’s MSBNX, and BayesiaLab.

Improving the software support for BNs
During the 1990s we were working primarily on the problem of assessing the reliability of critical

software systems [3]. BNs improved on our previous methods of assessment for this problem

because it enabled us to incorporate expert judgement (for example, about the software

development process) with limited data from individual component testing and even more limited

data from system testing. We used the mainstream BN tools to build the necessary models to make

predictions of fault and failure probabilities. Despite the difficulties of building such models their

enormous potential was obvious and Agena was set up in 1998 initially as a consulting company to

exploit these opportunities.. Increasingly however, clients wanted to be able to use and adapt the

BN models without permanent reliance on external consultants. Hence, more and more effort was

spent on developing appropriate user interfaces to hide the underlying BN model complexity and

access the underlying BN model(s) using the API of a standard BN toolset. Our experiences in

building these types of system convinced us of the following:

 There were many fundamental usability problems with the mainstream BN toolsets that

made it hard even for Bayesian experts to build serious models. None of the available

toolsets handled continuous variables properly. This forced modellers to choose a static

discretization of all such variables leading to unacceptable levels of inaccuracy.

 The commonality in the end-user GUI requirements of our clients was such that it ought to

be possible to have a generic BN toolset. In other words, a different type of integrated BN

toolset was required.

Hence, in 2004 Agena secured significant external investment, including bank finance, to develop

its own BN platform and underlying inference algorithm (AgenaRisk), employing a team of full-time

software developers for this purpose. Thus, Agena became a ‘software plus consulting’ company

rather than a ‘consulting plus software’ company.

AgenaRisk development and deployment
Approaching this as software engineering professors, the development effort posed numerous

challenges, both in the interfaces and the underling inference engine. It became obvious that an

object oriented design was necessary to handle the complexity of modelling the generic BN

structures. The additional need for a cross-platform solution suggested Java as a natural choice for

the target language. However, we always knew that there was a critical trade-off involved with this

choice. While it supported good OO design and portability, we had to work much harder to achieve

acceptable levels of efficiency for the underlying highly computational intensive algorithms than

would have been the case had we chosen C. Moreover, the choice of Java also conflicted with the

extremely demanding and extensive GUI requirements.

We found that Java’s built-in swing library, for example, was generally inadequate for most of our

needs and we ended up having to develop many of our own GUI and graphing components from

scratch to achieve the required look and feel (Fig 2). However, the extra effort was certainly

worthwhile, since most users of the software compare it extremely favourably in this respect to

other BN tools. Moreover, in 2011, a company paid Agena a significant sum to acquire the rights to

use one of the GUI libraries we had developed.

Figure 2 AgenaRisk GUI

We chose a lightweight version of UML and the Unified Process for design and development and this

proved to be generally satisfactory. However, the pressure of commercial development was such

that even a project partly managed by professors who taught software engineering was unable

always to ensure adherence to the best of software engineering practices (see, e.g. [4]. For example,

it proved extremely difficult to ensure a clean separation between the GUI code and the underlying

BN modelling and statistical code, while there were never sufficient unit tests defined. However, the

project has always maintained a rigorous online issues database (based on a tailored version of

Bugzilla using a rigorous approach to fault and failure classification). The challenge for us, like any

start-up company was that building the perfectly engineered product correctly would result in

delivering it later than clients were willing to wait to pay for it. We have long term goals; they have

short term needs. Software engineering – as taught in universities - ignores these commercial

pressures and consequential trade-offs. The necessary difficult decisions then impact day-to-day

choices: deliver a system with known but tolerable faults now, and get paid, or deliver highest

quality code late, but go bankrupt.

The first commercial version of AgenaRisk was released in 2005. The marketing and pricing of this

version was targeted at organisations with the same profile as those for whom we had previously

developed bespoke solutions: defence, transport, banks, telecoms, and safety engineering

companies; i.e. those who ‘owned’ systems that were critical in one way or another and for which

quantitative risk assessment was necessary. Because of highly cited published research and models

we had done in the area of embedded software defect prediction [Fenton et al 2007], this version of

AgenaRisk sold most successfully to telecoms companies (most of the major players bought it) who

may have been especially attracted by the fact that the software came with an extensive set of fully

documented reusable models. Most of the organisations buying AgenaRisk were doing so with the

initial intention of developing a single model (sometimes with support from Agena consultants) to

address a specific problem. In most cases the end users were just one or a small group of decision

makers; however, sometimes the models were deployed more widely across an organisation (for

example, one bank used their model for risk assessment across their full range of IT systems and this

required multiple users across many sites to access the model).

Because of the sensitive nature of many of the applications for which AgenaRisk was being used it

was extremely difficult to publicise the details of the applications, or to get public endorsements.

However, in 2008, one of the major telecoms companies broadcast an internal company

announcement that their use of a BN model in AgenaRisk – that enables them to manage the risks of

replacing hardware components in the field, led to savings of $5 million per project. Descriptions of

a large number of (mostly anonymised) case studies of the use of AgenaRisk can be found on

agenarisk.com

Versions and licensing
There have been numerous subsequent releases of AgenaRisk (the latest being Version 6.0). The

software growth in LOC is shown as Fig 3 and is comparable to (other refs in the series).

Figure 3 Increase in Lines if Code in AgenaRisk

In 2009, we released a version that implemented revolutionary algorithmic developments, such as

the dynamic discretisation algorithm [8] and the ranked node method [6] that finally made it

possible to easily build, respectively, accurate models containing continuous variables, and models

involving ranked variables. By now we were targeting a wider audience and to support this strategy

we were offering a free full evaluation version for one month that was downloadable automatically

from agenarisk.com once a user completed a simple online form. This process was managed using

the same licensing scheme as for the full commercial version (at that time the paid licenses were for

lifetime use). The licensing scheme had been implemented by one of our own developers. While it

was extremely effective in achieving its prime objective, for the end user it involved a non-trivial

process to install the licence key (the process varied, for example, with each different version of

Windows because of different default admin settings used by Microsoft). This process worked fine

for the commercial sales, but was ultimately unsuitable for the ‘free trial’ market, since we were

inundated with requests for license key installation support despite the explicit instructions on the

website.

With the release of Version 6.0 in 2012 we therefore changed our evaluation and licensing strategy

as part of a switch in business model from perpetual licence to an annual subscription; while this

impacted revenue in the short term our objective was to drive revenue growth in the medium term

and support ongoing development of the software. Instead of an evaluation version we now

provided a perpetual free version that required no license but had restrictions on saving models that

used the most advanced features of the tool. This version could be downloaded from agenarisk.com

without even the need for registering.

Fig 4 shows the cumulative number of registered downloads (i.e. it excludes downloads of the free

version since 2012).

Figure 4 AgenaRisk Registered Downloads (free downloads since 2012 are not registered)

The future
AgenaRisk has made it much easier for non-statistical experts to build BN models to address serious

risk assessment problems. However, there is still a long way to go before BNs truly ‘cross the chasm’

into mainstream business use. This means that the vast majority of business users continue to rely

on decision support and risk assessment tools that do not provide the power, accuracy and insights

of BN solutions. Agena continues to look for innovative methods of making both the development

and use of BNs even more user-friendly. A web services deployment version is one obvious and

attractive way forward; given the heavy processing that the algorithms demand of complex models,

this involves addressing challenging problems of scale with multiple user access. However, it is clear

that this is where the future lies.

References
1. Cooper, G. F. (1990). The computational complexity of probabilistic inference using bayesian

belief networks . Artificial Intelligence, 42(2-3), 393–405.

2. Fenton, N.E. and M. Neil (2012), Risk Assessment and Decision Analysis with Bayesian Networks.

2012, CRC Press, ISBN: 9781439809105.

3. Fenton, N. E., & Neil, M. (1999). A critique of software defect prediction models. Software

Engineering, IEEE Transactions on, 25(5), 675–689.

4. Fenton, N. E. (2010). Rational software developers as pathological code hackers. In J. Rost & R. L.

Glass (Eds.), The Dark Side of Software Engineering: The Ethics and Realities of Subversion, Lying,

Espionage, and Other Nefarious Activities (pp. 264–268). Los Alamitos: Wiley-IEEE Computer

Society Press.

5. Fenton, N. E., Neil, M., Marsh, D. W. R., Hearty, P., Marquez, D., Krause, P., & Mishra, R. (2007).

Predicting software defects in varying development lifecycles using Bayesian nets. Information &

Software Technology, 49, 32–43

6. Fenton, N. E., Neil, M., & Gallan, J. (2007). Using Ranked nodes to model qualitative judgements

in Bayesian Networks. IEEE Transactions on Knowledge and Data Engineering, 19(10), 1420–1432

7. Lauritzen SL and Spiegelhalter DJ, Local computations with probabilities on graphical structures
and their application to expert systems (with discussion). Journal of the Royal Statistical Society
Series 50(2), 157-224 (1988).

8. Neil, M., Tailor, M., & Marquez, D. (2007). Inference in hybrid Bayesian networks using dynamic
discretization. Statistics and Computing, 17(3), 219–233.

9. Pearl J, Fusion, propagation, and structuring in belief networks. Artificial Intelligence 29(3), 241-

288 (1986).

