205 research outputs found

    QAmplifyNet: Pushing the Boundaries of Supply Chain Backorder Prediction Using Interpretable Hybrid Quantum - Classical Neural Network

    Full text link
    Supply chain management relies on accurate backorder prediction for optimizing inventory control, reducing costs, and enhancing customer satisfaction. However, traditional machine-learning models struggle with large-scale datasets and complex relationships, hindering real-world data collection. This research introduces a novel methodological framework for supply chain backorder prediction, addressing the challenge of handling large datasets. Our proposed model, QAmplifyNet, employs quantum-inspired techniques within a quantum-classical neural network to predict backorders effectively on short and imbalanced datasets. Experimental evaluations on a benchmark dataset demonstrate QAmplifyNet's superiority over classical models, quantum ensembles, quantum neural networks, and deep reinforcement learning. Its proficiency in handling short, imbalanced datasets makes it an ideal solution for supply chain management. To enhance model interpretability, we use Explainable Artificial Intelligence techniques. Practical implications include improved inventory control, reduced backorders, and enhanced operational efficiency. QAmplifyNet seamlessly integrates into real-world supply chain management systems, enabling proactive decision-making and efficient resource allocation. Future work involves exploring additional quantum-inspired techniques, expanding the dataset, and investigating other supply chain applications. This research unlocks the potential of quantum computing in supply chain optimization and paves the way for further exploration of quantum-inspired machine learning models in supply chain management. Our framework and QAmplifyNet model offer a breakthrough approach to supply chain backorder prediction, providing superior performance and opening new avenues for leveraging quantum-inspired techniques in supply chain management

    Explainable product backorder prediction exploiting CNN: Introducing explainable models in businesses

    Get PDF
    Due to expected positive impacts on business, the application of artificial intelligence has been widely increased. The decision-making procedures of those models are often complex and not easily understandable to the company’s stakeholders, i.e. the people having to follow up on recommendations or try to understand automated decisions of a system. This opaqueness and black-box nature might hinder adoption, as users struggle to make sense and trust the predictions of AI models. Recent research on eXplainable Artificial Intelligence (XAI) focused mainly on explaining the models to AI experts with the purpose of debugging and improving the performance of the models. In this article, we explore how such systems could be made explainable to the stakeholders. For doing so, we propose a new convolutional neural network (CNN)-based explainable predictive model for product backorder prediction in inventory management. Backorders are orders that customers place for products that are currently not in stock. The company now takes the risk to produce or acquire the backordered products while in the meantime, customers can cancel their orders if that takes too long, leaving the company with unsold items in their inventory. Hence, for their strategic inventory management, companies need to make decisions based on assumptions. Our argument is that these tasks can be improved by offering explanations for AI recommendations. Hence, our research investigates how such explanations could be provided, employing Shapley additive explanations to explain the overall models’ priority in decision-making. Besides that, we introduce locally interpretable surrogate models that can explain any individual prediction of a model. The experimental results demonstrate effectiveness in predicting backorders in terms of standard evaluation metrics and outperform known related works with AUC 0.9489. Our approach demonstrates how current limitations of predictive technologies can be addressed in the business domain

    Research on the Comparison between the Different Policies by Service Level and Inventory Level Performance of Auto Parts in N.A.C.C. (North Automobile Components Company)

    Get PDF
    As after sales services become more and more popular, particularly preventive or corrective maintenance, the intervention and repair of the customer’s goods in a timely and efficient manner ensure customer satisfaction and contribute to the establishment of brand image in the market of the suppliers. The availability and quality of spare parts are key elements of this strategy while ensuring minimal management costs. The reuse of spare parts retrieved from customer systems is a growing maintenance strategy practice which impacts the traditional spare parts supply chain. This reuse is primarily driven by extending the economic life of goods, initially regarded as waste and therefore without added value, by transforming them into valuable spare parts that can be reused; secondly, for environmental or regulatory reasons, demanding responsibility for the treatment of products at the end of their life; and thirdly, to improve the availability of parts for maintenance, especially parts that the organization can no longer purchase or that are impacted by other issues. It also involves the analysis of their condition and their eventual return to working order as they are retrieved from the customer’s systems in a defective condition. In this paper, we will identify and classify the different customers and spare parts by estimating the critical level of rationing policy based on forecasts, identify the thresholds of inventory management policies, and finally, compare the different policies by service level and inventory level performance for the N.A.C.C. company

    Supply chain 4.0: a machine learning-based Bayesian-optimized lightGBM model for predicting supply chain risk

    Get PDF
    In today’s intricate and dynamic world, Supply Chain Management (SCM) is encountering escalating difficulties in relation to aspects such as disruptions, globalisation and complexity, and demand volatility. Consequently, companies are turning to data-driven technologies such as machine learning to overcome these challenges. Traditional approaches to SCM lack the ability to predict risks accurately due to their computational complexity. In the present research, a hybrid Bayesian-optimized Light Gradient-Boosting Machine (LightGBM) model, which accurately forecasts backorder risk within SCM, has been developed. The methodology employed encompasses the creation of a mathematical classification model and utilises diverse machine learning algorithms to predict the risks associated with backorders in a supply chain. The proposed LightGBM model outperforms other methods and offers computational efficiency, making it a valuable tool for risk prediction in supply chain management

    An Empirical Investigation Of Information Technology Mediated Customer Services In China

    Get PDF
    Information technology mediated customer service is a reality of the 21st century. More and more companies have moved their customer services from in store and in person to online through computer or mobile devices. Using 208 respondents collected from two Chinese universities, this paper investigates customer preference over two service delivery model (either in store or online) on five type of purchasing (retail, eating-out, banking, travel and entertainment) and their perception difference in customer service quality between those two delivery model. Results show that a majority of Chinese students prefer in store and in person for eating out. For ordering tickets for travel and entertainment, they prefer computer/mobile device. For retail purchasing and banking, less than half of the students prefer in person services. In general, the results show that ordering through computer/mobile devices has become more popular in China and has received higher rating for most of customer service quality except security compared to ordering in store. In addition, it is found that there exist a gender difference in purchasing preference and perception in service delivery quality in China

    Sustainable Inventory Management Model for High-Volume Material with Limited Storage Space under Stochastic Demand and Supply

    Get PDF
    Inventory management and control has become an important management function, which is vital in ensuring the efficiency and profitability of a company’s operations. Hence, several research studies attempted to develop models to be used to minimise the quantities of excess inventory, in order to reduce their associated costs without compromising both operational efficiency and customers’ needs. The Economic Order Quantity (EOQ) model is one of the most used of these models; however, this model has a number of limiting assumptions, which led to the development of a number of extensions for this model to increase its applicability to the modern-day business environment. Therefore, in this research study, a sustainable inventory management model is developed based on the EOQ concept to optimise the ordering and storage of large-volume inventory, which deteriorates over time, with limited storage space, such as steel, under stochastic demand, supply and backorders. Two control systems were developed and tested in this research study in order to select the most robust system: an open-loop system, based on direct control through which five different time series for each stochastic variable were generated, before an attempt to optimise the average profit was conducted; and a closed-loop system, which uses a neural network, depicting the different business and economic conditions associated with the steel manufacturing industry, to generate the optimal control parameters for each week across the entire planning horizon. A sensitivity analysis proved that the closed-loop neural network control system was more accurate in depicting real-life business conditions, and more robust in optimising the inventory management process for a large-volume, deteriorating item. Moreover, due to its advantages over other techniques, a meta-heuristic Particle Swarm Optimisation (PSO) algorithm was used to solve this model. This model is implemented throughout the research in the case of a steel manufacturing factory under different operational and extreme economic scenarios. As a result of the case study, the developed model proved its robustness and accuracy in managing the inventory of such a unique industry
    • …
    corecore