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ABSTRACT Inventory backorder prediction is widely recognized as an important component of inventory
models. However, backorder prediction is traditionally based on stochastic approximation, thus neglecting
the substantial amount of useful information hidden in historical inventory data. To provide those inventory
models with a big data-driven backorder prediction, we propose a machine learning model equipped with
an undersampling procedure to maximize the expected profit of backorder decisions. This is achieved
by integrating the proposed profit-based measure into the prediction model and optimizing the decision
threshold to identify the optimal backorder strategy. We show that the proposed inventory backorder
prediction model shows better prediction and profit function performance than the state-of-the-art machine
learning methods used for large imbalanced data. Notably, the proposed model is computationally effective
and robust to variation in both warehousing/inventory cost and sales margin. In addition, the model predicts
both major (non-backorder items) and minor (backorder items) classes in a benchmark dataset.

INDEX TERMS Big data, inventory backorder, machine learning, prediction.

I. INTRODUCTION
In customers’ purchasing pattern forecasting, it is discov-
ered that consumers favor their demands to be backordered
when inventory goes in shortfalls. In government bodies like
military systems and distribution channels, this phenomenon
mostly happens [1]. Moreover, it also occurs in monopo-
lized commodities and luxury products. The customers who
acquire goods from government control marketplaces are
ready to stay for the precious object even if it is out of stock
at that point of the day. Once the next supply arrives, the
particular product order is issued; therefore, the demand in
such cases does not misplace.

Prediction accurateness is a critical factor for, among other
things, lessening the production costs and ensuring better
inventory services. Precise prediction tasks are significant
for inventory management operations. However, modelers
should concentrate not only on reducing the prediction error
but also on exploring the economic gain of the predictions.
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Moreover, inaccurate material backorder prediction may
worsen the operations of inventory management and produc-
tion systems. Li & Wang assert that erroneous predictions
cost vendors as much as 10 percent of their revenue [2].
Therefore, a sound material prediction minimizes inventory
backorder risk that is a rare event task in the accounting
domain.

In accounting and inventory management literature,
the existing experimental works focus on either inventory
control or inventory planning issues. Bearing in mind about
dissimilar systematic solutions of control, the earlier study
tries to settle on its choice about when to order and howmuch
quantity should order [3]. In this line of research, a recent
study recommends an inventory control system to reduce the
mean manufacturing expenditure, together with the material
holding expenses and the backorder charges [2]. Afterward, a
number of material planning mechanisms are proposed based
on the highest life of the products [4]. Moreover, the major-
ity of the analytical techniques suggested hitherto articulate
the inventory management issues as a multi-objective opti-
mization problem, that is to say, the order placement and
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material holding expenses should keep to a minimum level,
while the degree of utility (e.g., profit) needs to maintain
as much as feasible. In the literature, expected backorders
are usually stochastically approximated on the basis of the
base stock level [5]. Recently, a stock-out prediction model
was proposed that uses inventory levels at all nodes of
multi-echelon networks [6]. Time series forecasting repre-
sents an alternative approach to predict the inventory level [7].
However, a substantial amount of information is hidden in
inventory databases, such as prior stock amount, amount of
stock overdue and risk flags indicating news events related
to operational issues [8]. Applications of these big data are
challenging problems in operations and supply chain man-
agement [9]–[11]. Indeed, big data analytics generate com-
petitive advantages by mining important information from
the high-volume databases. Big data applications mainly
assist enterprises to formulate feasible business decisions
and improve their strategy, operational effectiveness, supply
chain sustainability and economic efficiency [12]. Moreover,
big data analytics also assists in deep comprehend of enter-
prises’ dynamics, escalates customer attachment, optimizes
routine operations, and generates new sources of organi-
zational profit [11]. These are the reasons why big data
analytics has received increasing attention in supply chain
management [11].

After reviewing many previous studies of inventory back-
order prediction [2]–[4], [13]–[19], to the best of our knowl-
edge, no big data-driven inventory backorder prediction
model that maximizes profit function has been presented,
which is a gap in the literature that this study bridges. Based
on these experiences, this study aims to investigate the ques-
tion of how a profit function-maximizing inventory backorder
prediction system provides quantitative insights into the eco-
nomic merit of optimal backorder strategy, particularly in the
era of big data.

A difficulty emerges in this specific kind of machine learn-
ing classifier. In typical supply chain management, the num-
ber of goods which are in backorder (positive or minority
class) carries entirely few instances relative to the number of
lively products or non-backorder items (negative or majority
class). This scenario is recognized as the class imbalance
event. In many real-life prediction domains, for example,
loan approval data modeling [20], corporate bankruptcy pre-
diction [21] or credit card anomaly detection [22]; class
skewed scenarios are prevalent. In class inequity data mod-
eling, the minority positive instances are more significant
than the majority class examples. Therefore, the principal
objective of a class skewed event is to optimize a feasible
tradeoff between the majority and minority instances which
will exploit the contributions of the positive data class. The
different costs associated with incorrect predictions of the
backorder and non-backorder product is another problem that
needs to overcome.

To address the abovementioned issues, this study pro-
poses a novel system for predicting inventory backorders
to optimize organizations’ backorder strategy in terms of

economic performance. The novelty of the proposed sys-
tem is that it integrates data undersampling and a profit
function-maximizing ensemble classifier, allowing for big
inventory data utilization. The proposed model predicts
inventory instances at risk of backorder before shortages hap-
pen, thus providing the inventory manager with an appropri-
ate period of time to respond. By predicting backorder items
before customers’ orders placed, the manufacturing depart-
ment can regulate their production, which in turn, it may
reduce lead times and the cost efficiency of holding inventory.
The inventory management predictive systems applied in
this paper facilitate the utmost materials to acquire in the
hands of corporate users or individual customers at the lowest
possible charge to the production house. As a result, the out-
come would be win-win; explicitly, organizations augment
sales margin while end-users obtain to enjoy the goods they
demand. To evaluate prediction performance, we develop a
profit-based measure that takes into account the economic
effects of managerial decisions based on the different cutoff
points. We also show the implications of different inventory
strategies on the economic performance of the inventory
backorder prediction system. Eventually, this study asserts
that the proposed prediction model outperforms the existing
machine learning methods applied over an extremely imbal-
anced big data.

The rest of the paper follows five sections. Section II
briefly reviews the related literature on inventory models
with backorders, big data analytics in inventory management
and the imbalanced class distribution problem. Section III
outlines the proposed inventory backorder prediction model.
In Section IV, the benchmark dataset is presented and used.
Section V illustrates experimental results and their applica-
tions. Lastly, Section VI concludes the study.

II. RELATED LITERATURE
A. INVENTORY MODELS WITH BACKORDERS
An extensive literature integrates the prediction, pricing, and
material control decisions of backorder systems; for outstand-
ing reviews, see [23] and [24]. This line of empirical research
dates to Rosling [25], with further refinements optimizing
material backorder issues presented by many academicians.

Van Foreest et al. [26] proposed a base-stock policy derived
reservation with an ongoing material review and favorable
lead-times. Their model follows the modification of regular
backorder policies using the Poisson principle. They claimed
that their method significantly increases the inventory back-
order rate, which minimizes total inventory costs.

Two integrated mixed-integer programming techniques for
assembling a production routing problem with backorder-
ing were suggested [27]. The proposed hybrid algorithm
was applied to solve a supply chain management problem
by considering multiple item lot-sizing decisions and vehi-
cle routing decisions to the points of sale. Their findings
show that the combined heuristic provides better prediction
results and training times than existing algorithms. Similarly,
two conflicting objective functions, inventory level and the
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number of backorders, were combined in a reinforcement
learning model to obtain optimal production/maintenance
control policy [28].

Feng et al. [29] formulated the generalized additive model
for the dynamic inventory backorder and pricing control
problem. They asserted that their model overcomes the short-
comings of several demand models, including the frequently
utilized base stock list price policy of existing studies. In their
experiment, the base stock list price ensures optimality under
a set of constraints, and the findings are validated by applying
constrained maximum likelihood estimation.

Wee et al. [30] suggested a generalized production lot size
model with backordering. Their experiments focused on the
permissible shortage backordering and the impact of chang-
ing backordering costs. All parameters, including an expected
net profit, backordering cost and percentage increase in profit,
are optimized in their model. Sadeghi et al. [31] generalized a
feasible solution to the material order size problem ensuring
the maximum backorder quantities. The hybrid imperialist
competitive algorithm was trained to generate their results.
A cash flow-based profit-maximizing net present valuemodel
was derived by Ghiami and Beullens [32]. This model con-
firmed a feasible inventory policy that integrated backorder
costs, sales costs, and holding costs.

Trapero et al. [33] applied parametric GARCHmodels and
non-parametric kernel density estimation to generate safety
material stock levels. They found that the normality assump-
tion is more significant and the kernel density estimation is
the most appropriate for shorter lead times, whereas paramet-
ric models are more suitable for longer lead times. To capture
the temporal dynamics among multiple inventory level time
series, a joint prediction model was proposed in [7]. Most
recently, a machine learning-based model was developed for
predicting stock-outs in multi-echelon supply chains [6]. This
model employs a deep neural network using information from
all the nodes in the multi-echelon network.

After reviewing related studies, this paper finds that the
material backorder prediction based on big data character-
istics and its profitability occurring from misclassification
have not been considered in previous studies. Explicitly,
big data imbalance scenarios are a vital issue that signifi-
cantly degrades material backorder policy and has an adverse
effect on inventory management. Based on these scenarios,
this study reveals the skewed material backorder data traits
that offer sound data-balancing techniques for establishing
a feasible trade-off between costs and profits. As our inven-
tory backorder prediction system is specifically designed for
highly imbalanced big data in real-world scenarios, a brief
summary of the theoretical background on the big data ana-
lytics in inventory management and imbalanced class distri-
bution problem is provided in the next two subsections.

B. BIG DATA ANALYTICS IN INVENTORY MANAGEMENT
A variety of high-volume data is generated in ERP sys-
tems, including inventory size, lead times, historic orders or
cost of placing the orders. Moreover, inventory levels vary

depending on the diverse organizational and customer needs
causing fluctuations in supply and demand [11]. Three types
of big data analytics have been used to assist in inventory
management, namely descriptive, predictive and prescriptive
analytics [11], [34], [35]. Descriptive analytics was used to
provide insight into what has happened in complex retail
and multi-channel inventory systems. For example, the per-
ceived performance of several material planning methods
in different inventory settings was investigated using the
dataset from more than two hundred manufacturing and dis-
tribution companies [36]. Predictive analytics is aimed at
predicting what might happen, including the accurate fore-
casts of inventory needs. Such predictions, often based on
customer demand, resulting in a substantial reduction in
inventory costs. It was demonstrated that the accuracy of
inventory prediction systems can be enhanced using the time
series analysis of each component’s demand [37]. A statis-
tical multi-period prediction system was proposed by [38]
to consider demand uncertainty and satisfy demand with
minimal operating costs, which is achieved by incorporating
a dynamic programming model for the optimal inventory
policy determination. Gumus et al. [39] employed a neuro-
fuzzy system to predict demand and lead time to deploy the
inventory efficiently. Finally, prescriptive analytics seeks to
provide the optimum solution among various alternatives,
given the known restrictions. Wang and Lei [40] proposed an
optimization system that assigns both suppliers and demand
points to distribution centers to ensure that the total shipping
costs and the number of unfulfilled orders are minimized.
Network capacity and deadline were the constraints con-
sidered in their model. The optimal inventory policy was
found for a multi-product multi-echelon system that consid-
ers stochastic demand and batching [41]. In their system,
both the service level and ordering constraint was respected.
Another optimization model using genetic algorithms was
developed to find the best inventory policy for perishable
items in a three-stage supply chain [42].

In summary, previous studies have demonstrated the effec-
tiveness of utilizing big data analytics in various inventory
management problems. However, several issues must be con-
sidered when dealing with big data in this domain [9]. First,
the data volume and variety, closely associated with their het-
erogeneity and statistical biases, require developing suitable
analytics models. This, in turn, leads to high computational
costs and instability of traditional statistical methods when
dealing with big inventory data. Therefore, more adaptive
and robust models must be developed to overcome these
problems [43].

C. IMBALANCED CLASS DISTRIBUTION PROBLEM
Considering the significance of class imbalance issues,
numerous methods have been applied to raise the accuracy
of the trained algorithms. Skewed data learning algorithms
can be categorized into three groups [44]. On the first hand,
algorithmic approaches propose a new learning technique
or amend existing algorithms to intensify and concentrate
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FIGURE 1. Big data analytics framework for inventory backorder management.

on the implication of positive classes [45]. Then, data-level
solutions apply sample pre-processing techniques to generate
a balanced database; these deal with undersampling and over-
sampling methods [21]. The third case combines both these
schemes and assigns different misclassification costs to each
group in the training stage [22]. In addition, ensembles (com-
binations) are designed to augment the performance of a
single algorithm using numerous learning models and merg-
ing their results into a single class label [46]. Specifically,
data-level solutions are extensively applied in the literature
since they propose a skewed data pattern before training the
algorithms. Moreover, sample pre-processing techniques are
self-supporting learning systems compared with classifiers.
Finally, data-level solutions integrating into ensembles of
classifiers outperform other techniques [47].

As for the sample pre-processing technique, data-level
solutions can be differentiated into oversampling [48], [49]
and undersampling methods [50], [51]. The oversampling
method increases the number of positive instances inminority
samples to generate a balanced training set. SMOTE [48] is
the best-known oversampling algorithm used widely in the
literature. SMOTE generates artificial positive instances in
minority examples by choosing some of the adjacent positive
neighbors of a minority object (called S) and produces new
positive class instances along the lines between S and all
adjacent positive neighbors. SMOTE outperforms random
oversampling techniques based on its well-known traits. Hav-
ing solved the overfitting problems, it lessens unequal sample
allocation in datasets. However, it may cause overgeneraliza-
tion as it ignoresmajority class objects and generates artificial
positive data in minority class samples.

Alternatively, the random undersampling (RUS) method
aims to lower the number of instances with the majority
class, as there are more instances of one group than the
other group in the extreme class allocation problem. If T =
{training example set}, N = {majority class instances} and
P = {minority class instances}, then an extreme class allo-
cation problem reduces the skewed allotment of N and P

by decreasing the size of N . As databases and their fea-
tures have been progressively growing, the undersampling
method should thus be a better option than its oversampling
counterpart [47].

Undersampling techniques decrease the size of majority
instances to generate a rebalanced sample size. The RUS
method can remove potentially meaningful information from
the majority class example set, which is a major shortcoming
of this data sampling approach. To allow more significant
instances in the majority class, the clustering approach has
therefore been proposed as an undersampling technique [44],
[50], [52]. The central idea of the clustering procedure is to
combine identical instances into equivalent clusters, and the
data points in their respective clusters are dissimilar based on
their various illustrations. Moreover, clustering-based under-
sampling (CBUS) techniques [44], [52] divide majority or
minority instances using the k-means algorithm [53], and
the existing literature typically either fixes the number of
clusters (k) or k is equivalent to the number of minority class
objects in the dataset. The k-means methodology trained on
the majority (or minority) instances subsequently generates
k cluster centers. These cluster centers are applied to restore
the whole dataset. Accordingly, the experimental datasets are
rebalanced owing to the identical number of instances for
both classes.

III. MODEL FOR INVENTORY BACKORDER PREDICTION
USING BIG DATA ANALYTICS
A. BIG DATA ANALYTICS FRAMEWORK
The critical role of big data analytics in inventory backorder
management is highlighted in Figure 1. Firstly, relevant data
sources should be identified at the level of items (orders).
These data sources include data from suppliers, sales trans-
actions and warehouses [9]. Distributed data sources are the
cause of data variety in inventory management. Weekly time
buckets should be used for the data because higher fill-rates
(without backorders) can be achieved for lower inventory
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FIGURE 2. Model for profit function-maximizing inventory backorder prediction.

levels [54]. Data collection at a more disaggregated level and
frequent updates increase data volume and velocity, respec-
tively. As a result, data are generated for individual orders
and weekly time buckets. Data are recorded via Internet of
Things (IoT) devices and passed to the big data warehouse
using a suitable transmission mechanism (via IoT gateway
cloud). In the big data warehouse component, raw input data
are stored and organized for efficient processing. Storage
virtualization is recommended to provide a scalable interface
to real-time stream processing and big data analytics [55].
Big data analytics for backorder prediction is the core com-
ponent of the framework. Note that the proposed profit-
function-maximizing inventory backorder prediction system
represents a combination of predictive and prescriptive ana-
lytics. On one hand, it is used to perform the one-week-
ahead prediction of backorder/non-backorder items. On the
other hand, it provides a decision-maker with an optimal
backorder strategy using a profit-based measure. To increase
the accuracy of the backorder prediction system, training data
should be selected using a clustering algorithm so that the
backorder and non-backorder classes of items are balanced.
Then, a machine learning algorithm should be employed to
perform the prediction task. To increase the efficiency of
the decision support system, traditional classification perfor-
mance metrics should be replaced by a profit-based objective
function in the training process. In addition, the decision
support system must be able to project the outcomes of
different backorder strategies represented by different cutoff
points. Big data analytics should be deployed in real-time to
generate outputs for real-time data-driven decision-making
on backorder strategy. Therefore, low training times of the
backorder prediction system are required to enable real-time

stream processing. The details on the big data analytics com-
ponent are presented in the following subsection.

B. PROFIT FUNCTION-MAXIMIZING INVENTORY
BACKORDER PREDICTION SYSTEM
This section defines the model proposed for profit function-
maximizing inventory backorder prediction (Figure 2). This
model modifies CBUS to maximize the expected profit of
backorder decisions. To achieve this objective, it is necessary
to employ an algorithm that accurately predicts the need for
inventory backorders. To optimize the economic effects of
backorder decisions, a profit-based measure is integrated into
the prediction algorithm. In addition, to help decision-makers
easily recognize the optimal decision cutoff, a search proce-
dure is used to maximize the expected profit.

The CBUS method was proposed to overcome the prob-
lem of the trade-off between prediction performance and
complexity present in earlier approaches to the imbalance
problem [44], [52]. To achieve high prediction performance
while bounding time complexity, the k-means algorithm is
first used to cluster the instances in the minority class. For
each cluster, the method selects the same number of instances
from the majority class to balance the training dataset.

A classifier is then trained on the balanced training
dataset [44] or cluster-specific classifiers are used to max-
imize accuracy on the given data subsets [52]. As a result,
the time complexity of the method is bound by the number of
instances in the minority class. To further improve the effec-
tiveness of this method, we modify it in two directions. First,
the C4.5 decision tree classifier was used in original CBUS
approaches [44], [52]. To overcome the potential problem
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TABLE 1. Confusion matrix for inventory backorder prediction.

of overfitting, we propose replacing the C4.5 decision tree
classifier with the Random Forest classifier, which solves
this problem by introducing an ensemble of diverse base
decision trees trained on the training data subsets. The pre-
diction performance of the Random Forest classifier is further
improved by randomly sampling a feature subset. Thus, fea-
ture selection is embedded directly into the classifier and the
performance on imbalanced big data can be improved [56].
The second modification is the use of profit function max-
imization as the objective function of the Random Forest
classifier. The problem ofmaximizing classification accuracy
in original CBUS approaches is that it assumes that the costs
associated with type I errors (false positive; the wrong pre-
diction of a backorder item) and type II errors (false negative;
the wrong prediction of an item that is not on the backorder
list) are equal. However, this is an erroneous assumption in
the inventory backorder prediction model because different
benefits and costs are produced by different classifications in
a confusion matrix (Table 1). The benefit from TP classifi-
cation is zero because this item was not sold due to lack of
demand, whereas items in the TN category produce a profit
from revenue (sales margin). Similarly, FN items generate
warehousing and inventory costs (demand is not present),
while no cost is generated when incorrectly classifying the
items as FP.

To consider these benefits and costs in the objective func-
tion of the Random Forest classifier, we use a profit-based
classification measure π defined as follows [57]:

π = b0×TNR− c1×FNR, (1)

where TNR = TN / (TN + FP) and FNR = FN / (FN + TP).
For the sake of simplicity and improve the interpretability
of the results, b0 and c1 are assumed to be constant over all
the items in the dataset. Another advantage of this measure
is that it can be expressed in relative terms (as a percentage
of the item price), which enables the easy comparison of the
results obtained by different prediction systems over different
datasets.

The modified CBUS can be defined as follows:
1. Cluster the instances from the minority (backorder) class

using the k-means algorithm into k clusters.
2. Undersample the majority (non-backorder) class by

selecting the same number of instances as in the clusters
of minority class instances. The selection is performed
using the Euclidean distance to the cluster centers. If the
same instance from the majority class is assigned to mul-
tiple clusters, the closest cluster is selected and additional
instances are selected to balance the remaining clusters.

3. Train the Random Forest classifier to maximize the
profit-based classification measure π on the balanced
training dataset.

4. Optimize the cutoff value. The optimal cutoff is deter-
mined using the genetic algorithm as the value with the
maximum profit measure π .

The computational complexity of the modified CBUS
is given by the sum of the k-means algorithm complexity
O(nminor

m×(k+1)
×log(nminor)) and the classifier complex-

ity O(ntrees × ms × n×log(n)), where n is the number of
instances, nminor is the number of instances in the minor-
ity class, k is the number of clusters produced by the
k-means algorithm, m is the number of features, ms is
the number of randomly sampled features by the Ran-
dom Forest and ntrees is the number of decision trees in
the Random Forest. The complexity of the original CBUS
approaches is O(nminor

m×(k+1)
×log(nminor) + k × m ×

nminor×log(nminor)) [52] and O(nmajor
m×(k+1)

×log(nmajor) +
m × n×log(n)) [44], respectively. Therefore, the classifier
complexity in the proposed model increases by about ntrees.
However, it can still be considered to be computationally
effective because compared with C4.5, no pruning is nec-
essary to avoid overfitting and ms can also substantially
decrease complexity when high feature reduction is achieved.

Overall, the pseudo-code of the proposed profit-max
CBUS algorithm can be expressed as follows:

Algorithm 1 Profit-Max CBUS
Input: training set T , T = N∪ P, the number of clusters

k , sales margin b0, warehousing and inventory cost
c1, the number ntrees of decision trees in RF

Output: trained profit function maximizing prediction
system Cluster P into k clusters;

For j = 1 to k {
Select nminor instances from N using
minimum distance from the j-th cluster center;

}
For b = 1 to ntrees {

Create an ms-dimensional bootstrap replicate Tb
from the undersampled T ;
Construct a base learner Lb on Tb by
maximizing π ;

}
Combine base profit function maximizing learners Lb,
b = 1,2, . . . , ntrees into RF by majority voting;
Determine the optimal cutoff value of RF by
maximizing π ;

IV. DATA
This study validates the profit function-maximizing inven-
tory management policy by applying a real-world mate-
rial backorder big dataset. It comes from the Kaggle’s
contest, namely Can You Predict Product Backorders?
(https://github.com/rodrigosantis1/backorder_prediction). It
is a highly skewed dataset having 1:137 imbalance ratios.
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It carries 13,981 positive samples (i.e., the material goes on
backorder), while 1,915,954 negative samples are not in the
backorder position. It also has 22 attributes, including a class
variable. The data traits reveal that about 99.28% of inventory
is ready for sale and only a minor proportion (0.72%) goes on
backorder.

The example dataset belongs to the historical sample for
the eight weeks before the week that this study is trying
to classify. The instances were acquired as a weekly snap-
shot at the beginning of each week. The dataset includes
the following attributes: item identification (stock keeping
unit, sku; used to track inventory levels), present inventory
size (national_inv), registered transit time (lead_time), item
quantity in transit (in_transit_qty), sales forecasts (fore-
cast_3_month, forecast_6_month, forecast_9_month), prior
sales volumes (sales_1_month, sales_3_month, sales_6_
month, sales_9_month), minimum amount of stock
recommended (min_back), source issue for item identi-
fied (potential_issue), amount of overdue from source
(pieces_past_due), prior source performance (perf_6_month_
avg, perf_12_month_avg), amount of stock overdue
(local_bo_qty), risk flags (deck_risk, operating entities con-
straint oe_constraint, production part approval process risk
ppap_risk, stop_auto_buy, rev_stop) and a response variable
(went_on_backorder). Table 2 presents the basic descrip-
tive statistics of the dataset. The dataset was pre-processed
through attribute standardization and missing value impu-
tation using the fuzzy k-means algorithm, as recommended
by [58] under general assumptions.

V. EMPIRICAL EVALUATION
This section illustrates the adoption of the proposed profit
function-maximizing inventory backorder prediction system.

A. EXPERIMENTAL SETTING
The experiments were performed to empirically demon-
strate both the economic effectiveness of the proposed
system and its prediction performance compared with
state-of-the-art approaches to the imbalanced class dis-
tribution problem. Consistently with previous studies,
we consider the area under the ROC (Receiver Operating
Characteristics) to evaluate prediction performance. In addi-
tion, the proposed profit-based measure is used for economic
evaluation. To obtain reliable performance estimates, the data
were divided into training and testing sets using 10-fold
cross-validation.

In the first step, the backorder instances (minority class) in
the training sets were clustered using the k-means algorithm
(the Statistics and Machine Learning ToolboxTMfunction
kmeans was used to find the solution). As indicated by [52],
to avoid model overfitting it is advisable to use a small num-
ber of clusters in the k-means algorithm. Following this rec-
ommendation, we set the number of clusters to two. As shown
below, we also examined a larger number of clusters, but the
performance was not improved. In the second step, the cor-
responding non-backorder instances were assigned to the

TABLE 2. Basic descriptive statistics of the dataset.

two clusters using the minimum Euclidean distance to the
cluster centers. In the third step, the Random Forest classifier
was trained to maximize the profit-based classification mea-
sure π . To determine the values of the parameters in (1), we
used the industry average values (without financials) reported
in [59] and [60]. Specifically, the sales margin was set to
b0 = 8.01 % [59] and the warehousing and inventory cost
to c1 = 25% [60]. Hence, the profit-based classification
measure π was calculated as,

π = 0.0801× TNR − 0.25× FNR. (2)

This measure was also used as the fitness function for all
the compared methods.

B. EXPERIMENTAL RESULTS
Figure 3 and Figure 4 depict the effect of the number of
clusters on the performance of the proposed prediction sys-
tem on the testing data. To compare the performance of
the system with competitive methods, alternative classifiers
were used, including traditional Logistic Regression (LR) and
k-Nearest Neighbor (kNN) classifiers, as well as the classi-
fiers used in earlier studies of CBUS [44], [52]: C4.5 Deci-
sion Tree, Support Vector Machine (SVM) and Multi-Layer
Neural Network (NN). For all the classifiers, we used their
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FIGURE 3. The effect of the number of clusters in k-means on the
performance of the classifiers in terms of area under ROC.

FIGURE 4. The effect of the number of clusters in k-means on the
performance of the classifiers in terms of profit.

implementation in the Weka 3.8.1 program environment due
to the simple implementation of the profit-based measure.
Figure 3 and Figure 4 show that the best performance was
obtained by the Random Forest classifier, with an average
area under ROC of 91.57 and expected profit π = 4.00% for
the two clusters. The C4.5 decision tree was the second-best
choice, whereas the remaining classifiers performed rela-
tively poorly in terms of both performance measures. In this
first set of experiments, the decision cutoff was set to 0.5 for
the sake of comparability. In other words, it was not optimized
for any of the tested classifiers.

To statistically compare the results, we employed the
Wilcoxon signed-rank test. The results of this test confirmed
two points. First, significant differences were found between
the performance of the Random Forest classifier and those
achieved by the remaining classifiers at P < 0.05 for both
performance measures irrespective of the number of clusters.
Second, the Random Forest performed significantly better
when only two clusters were used to produce a balanced
training dataset.

To demonstrate the robustness of the proposed model to
variation in both sales margin and warehousing/inventory
cost, the expected profit was calculated for different values of

FIGURE 5. Robustness of the classifiers to variation in sales margin (left)
and warehousing/inventory cost (right).

b0 and c1, respectively. More precisely, we examined the sen-
sitivity of the profit-based measure to both sales margin b0 =
{4%, 6%, . . . , 12%} for c1 = 25% and warehousing /inven-
tory cost c1 = {15%, 20%, . . . , 35%} for b0 = 8%. These
experiments were performed to simulate real-world inventory
management scenarios. The results in Figure 5 show that the
profit-max CBUS with Random Forest performed the best
under all the scenarios considered here, providing a positive
profit function even for low values of sales margin.

To demonstrate the robustness of the proposed model to
variation in both sales margin and warehousing/inventory
cost, the expected profit was calculated for different values of
b0 and c1, respectively. More precisely, we examined the sen-
sitivity of the profit-based measure to both sales margin b0 =
{4%, 6%, . . . , 12%} for c1 = 25% and warehousing /inven-
tory cost c1 = {15%, 20%, . . . , 35%} for b0 = 8%. These
experiments were performed to simulate real-world inventory
management scenarios. The results in Figure 5 show that the
profit-max CBUS with Random Forest performed the best
under all the scenarios considered here, providing a positive
profit function even for low values of salesmargin. Interesting
behavior patterns can be observed for kNN and NN. The
performance of kNN regarding the profit function is highly
sensitive to the change in c1 and b0 values. In contrast to
kNN, the performance of NN remains stable regardless of
the effect of the profit function components. Similar behavior
can be observed in previous studies on cost-sensitive learning.
The high sensitivity of kNN can be explained by the fact
that the k nearest neighbors represent only a small subset of
the training data space [61]. Alternative k values or distance
functions for the identification of the nearest neighbors are
recommended to control this behavior [61]. The consistently
poor performance of NN can be attributed to the use of the
undersampling method. Indeed, training cost-sensitive NNs
with undersampling is reportedly worse compared with the
other skewed data learning methods, such as oversampling or
threshold moving [62].

To further examine the effect of CBUS on the perfor-
mance of the classifiers, we compared the results from the
first set of experiments with those obtained using alterna-
tive approaches to the imbalanced class distribution problem,
namely SMOTE [48], RUS [47], EasyEnsemble [63] and
XGBoost [64]. The original dataset (without any manipula-
tion) was used as the baseline approach. The balanced train-
ing datasets obtained by SMOTE and RUS were classified
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using the same classifiers as the proposed profit-max CBUS.
Experiments with SMOTE (with the five nearest neighbors)
and RUS were performed in Weka 3.8.1. EasyEnsemble
employs C4.5 as its base classifier by default and its imple-
mentation in the Keel 3.0 program environment with four
bags (and 10 classifiers in each bag) was used in this study.
XGBoost was trained using 100 base classifiers with a max-
imum depth of 5 in the Knime 3.7.1 open platform program
environment.

Table 3 shows that XGBoost and RUS+RF performed
statistically similar to the proposed prediction system in
terms of area under ROC, suggesting that (1) ensemble learn-
ing was more effective than individual classifiers and (2)
undersampling was more effective than oversampling or no
manipulation.

TABLE 3. Area under ROC for the compared approaches to the
imbalanced class problem.

Regarding the profit-based measure presented in Table 4,
no other approach achieved statistically similar perfor-
mance to that of the proposed prediction system. Indeed,
most classifiers performed well only in the majority
class, resulting in poor profit-based performance. Only
EasyEnsemble and XGBoost performed well in terms of the
profit measure, providing additional evidence for the effec-
tiveness of ensemble-based approaches in predicting inven-
tory backorders.

TABLE 4. Expected profit [%] for the compared approaches to the
imbalanced class problem.

To show the computational effectiveness of the proposed
method, training times for the compared methods are pre-
sented in Table 5. Note that only the best methods (in terms
of profit) were selected from all the approaches to the imbal-
anced class problem. TheWilcoxon signed-rank test indicates

TABLE 5. Training times for the compared approaches.

that our method was significantly faster than the compared
approaches.

Recall that the decision cutoff was not optimized in the
previous experiments (it was set to 0.5 by default). How-
ever, as demonstrated in related business decision support
systems [20], [57], the optimization of the decision cutoff
may substantially improve the performance of classifiers.
This can be demonstrated on the example of one of the
training/testing data partition. Figure 6 shows the trade-off
between the TNR and FNR associated with different decision
thresholds. The optimal backorder strategy can be found
between two extremes, namely ‘‘backorder everything’’ for
cutoff=0 (at the cost of high warehousing and inventory
costs) and ‘‘backorder nothing’’ for cutoff=1 (at the cost of
a low sales margin). To find the optimal strategy, the profit-
based measure can be used, as indicated in Figure 7. For this
specific data partition, the optimal cutoff value was greater
than 0.5, suggesting that a more conservative backorder strat-
egy is preferable in this case.

FIGURE 6. The effect of the cutoff on TNR and FNR.

To assist decision-makers with the selection of the cutoff,
a search procedure was used to maximize the profit-based
measure. More precisely, a standard genetic algorithm (with
a population of 20 individuals, crossover rate of 0.8 and
mutation rate of 0.01; trained in the xlOptimizer environment)
was employed to search the space of cutoff points using
the profit measure π as the fitness function. The optimal
cutoff point over the 10 training datasets was 0.548±0.076,
ranging from 0.401 to 0.661. Figure 8 shows that the average
expected profit obtained after this cutoff optimization pro-
cedure increased to 4.14%, significantly outperforming the
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FIGURE 7. The effect of the cutoff on expected profit.

FIGURE 8. The effect of decision cutoff optimization.

prediction system with the baseline cutoff (at P < 0.05 using
the Wilcoxon signed-rank test).

To test the robustness of the profit-based CBUS classi-
fier to variations in present inventory size and registered
transit time, the values of both variables were converted
to deciles and average profit measure was calculated for
each decile (Figure 9). As expected, higher profit measure
can be achieved for larger values of present inventory size
and registered transit time because the percentage of backo-
rders decreases with increasing inventory size and lead time,
respectively.

Based on the above experimental results and discussion,
the study findings are as follows:

a) Irrespective of the number of clusters, Random For-
est derived inventory backorder prediction system generates
robust results that provide area under ROC curve of 91.57
and 4% of economic benefits. In contrast, NN was the worst
choice in terms of the two criteria.

b) The varying sales margin and inventory cost ascertain
the reliability of the proposed profit-max CBUS technique.
The proposed system is also robust to variations in present
inventory size and registered transit time.

FIGURE 9. Robustness of the profit-max CBUS classifier to variations in
present inventory size and registered transit time.

c) Undersampling is the most useful big inventory data
balancing system in the current settings compared with other
competitors, such as SMOTE and EasyEnsemble, indicating
that the proposed profit-max CBUS enhances the competence
of our prediction system.

d) The proposed prediction system also ensures the training
efficiencies by generating the lowest computational time.

Thereby, the current application provides quantitative
insights into the profit function-maximizing inventory backo-
rder prediction system using big data analytics. It adds several
novel points in the production and accounting domains to
show the financial merits of optimal backorder strategy, and
it provides a roadmap about how a firm can generate mon-
etary gains by implementing an effective material backorder
forecasting system.

VI. CONCLUSION
In contemporary inventory management systems, it is crucial
to develop and optimize all stages of production as markets
are extremely competitive. Material backorder is an intrinsic
trait of inventory systems under unpredictable demand and
pertinent supply risk. Inventory-associated profit and cost
constitute a major part of managing supply chain profitabil-
ity, highlighting the interest in inventory backorder predic-
tion problems. In related literature, irrespective of the rich
body of studies in inventory management that inspects dif-
ferent aspects of material backorders, shortages or stock-outs,
no studies have thus far pointed out the data-driven prediction
of inventory backorders based on profitability maximization.

Based on the above scenarios, a profit function-
maximization methodology was incorporated into an inven-
tory backorder prediction system that optimizes the economic
effects of backorder decisions. The proposed approach fol-
lowed four steps. First, a modified version of the CBUS
method was established that applies the k-means algorithm to
balance inventory backorder instances. Second, a profit-based
classification measure was ascertained that trades off the
inventory backorder benefits and costs. After that, machine
learning algorithms were trained on the balanced training
dataset or cluster-specific classifiers were used to maximize
the accuracy of the given data subsets. Finally, a genetic
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algorithm-based search procedure was finally applied to
optimize the profitability measure.

To compare the performance of the system with other
methods, alternative machine learning classifiers were used.
To further examine the effect of CBUS on the performance
of the classifiers, we compared the results obtained by the
proposed prediction model with those given by alternative
approaches to the imbalanced class distribution problem.
The profit function-maximizing methodological setup was
validated using a real-world inventory backorder imbalanced
big dataset. Hence, we demonstrated the effectiveness of the
proposed approach.

Our findings suggest that in the absence of decision cutoff
optimization, the best performance is shown by the Ran-
dom Forest classifier, while the C4.5 Decision Tree is the
second-best choice. This finding is consistent with exper-
imental findings on imbalanced big data in other business
domains. Specifically, Random Forest significantly outper-
formed SVM in insurance big data analysis [56], as well as
C4.5 Decision Tree in credit scoring [20] and customer churn
prediction [65].

Considering the CBUS performance over the classifiers,
XGBoost and RUS+RF show statistically similar perfor-
mance, signifying that ensemble learning is more efficient
than individual learners and undersampling is more suc-
cessful than its counterparts. Furthermore, the profit mea-
surement shows that EasyEnsemble and XGBoost perform
well, generating additional evidence for the usefulness of
ensemble-based approaches for predicting inventory back-
orders. For the problem discussed in this study, the feasi-
ble cutoff point is above 0.5, advocating that a more con-
servative backorder strategy is desirable for the company.
Lastly, applying the cutoff optimization procedure, the profit
measure under the inventory backorder prediction system
increased compared with the default cutoff threshold. This
finding suggests that the expected profit from a backorder
strategy can be optimized using the proposed system.

The proposed profit function-maximizing inventory back-
order prediction system may add several insights into the
accounting and inventory management literature. This study
adopts the profit metric as an appraisal measure for the val-
idation process rather than as an intention to be optimized
in the training of the classifier, which corresponds to a sig-
nificant contribution, particularly in the inventory backorder
prediction domain. In addition, our methodology contributes
by modifying CBUS-based imbalance learning and integrates
it into the profit metric, which overcomes the skewed data
problem by maximizing its profitability. The findings of this
study can assist managers and stakeholders to formulate a
balanced decision on inventory backorder assessment based
on dissimilar data traits. Further, the method applied in this
study not only enhances the accuracy and efficiency of supply
chain operations but also supports stable production systems.

The experiments performed in this study were investigated
using static inventory policies, assuming stationary customer
demand. However, as indicated in the big data analytics

framework for inventory backorder management, the inven-
tory policy can be easily changed in real-time due to the
computational efficiency of the proposed backorder predic-
tion system. In addition, the use of the IoT-based system
enables effective inventory control under a dynamic envi-
ronment of changing customer orders [66]. Further studies,
which use longer time-series data, will need to be undertaken
to investigate the proposed system under dynamic inventory
policy. A huge volume of spatiotemporal data generated by
the IoT-based system represents another significant challenge
posed upon machine learning models. Other notable source
for usable datasets represents the Retail Product Stockouts
Prediction problem available on GitHub.

Future research should also aim to replicate the current
methodology but applying additional example sets to diverse
inventory portfolios. The research could also consider the
sensitivity of the profit objective. Moreover, additional inves-
tigation is to be done in this area, specifically in terms of
the assumptions made about how the revenue/loss factors
of expected profit are generated as well as how they vary
over prediction horizons. The proposed profit metric can also
be further elaborated. For example, both the sales margin
and the warehousing and inventory cost can be calculated
in an item-dependent way (i.e., for each item separately)
to improve its accuracy. Furthermore, the compensations of
customers for their pending orders can be incorporated [67].
Finally, it might be promising to evaluate the performance
of genetic algorithm-derived classifiers using other advanced
optimization models such as salp swarm algorithm or grey
wolf optimizer.
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