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Abstract

Jumbo, the second-largest supermarket chain in the Netherlands, uses a fully automated warehousing
system to fulfill customer orders. With this system, order picking can be performed fast, efficiently, safe
and with less sensitivity to errors. However, the system still shows some flaws, as currently more than
1 000 cases fall during the process on a weekly basis. Consequently, Jumbo loses more than e10 000 per
week as these cases cannot be sold anymore. On top of that, fallen cases incur additional cleaning costs,
potentially result in machine downtime and decrease the service quality of the warehouse. Therefore,
this thesis focused on developing a method to minimize the number of fallen cases. A Random Forest
and Multilayer Perceptron were used to predict the likelihood of cases falling and to detect potential
causes. The results showed that especially the number of partially depalletized pallets adversely affects
the number of fallen cases. A bi-objective Mixed-Integer Non-Linear Program was formulated, to find
new replenishment strategies with minimal partial depalletizations. Comparing this new replenishment
strategy with Jumbo’s actual replenishment strategy, proved that a reduction in partial depalletizations
indeed resulted in a reduction in fallen cases.
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Executive Summary

Jumbo, the second-largest supermarket chain in the Netherlands, was one of the first Dutch retailing
companies to own a fully automated warehousing system. With this system, Jumbo is able to fulfill
customer orders fully automated, such that order picking can be performed fast, efficiently, safe and with
less sensitivity to errors. This automated warehousing system is located in Jumbo’s central distribu-
tion centre (CDC) in Nieuwegein, where currently 12 000 slow and medium moving Stock Keeping Units
(SKUs) are handled in the category of dry groceries. Customer orders are picked within this CDC, which
are shipped directly to the Jumbo stores or to another, cross-docking, distribution centre first. The CDC
operates (in general) six days a week for 24 hours per day and realized an average weekly volume of more
than 1.8 million cases in the first 40 weeks of 2022.

By achieving such volumes, the demand of stores is met in general. However, the automated ware-
housing system still shows some flaws. Inconveniently, a lot of cases fall due to either manual or machine
errors during certain steps in the process. Jumbo lost e131 559 in 2021 due to cases falling, as these
cases could not be sold anymore. This estimate is based on manual registration of broken cases and
corresponds to more than 200 cases per week. Even though this amounts to only 0.01% of the average
weekly volume, it is quite a substantial amount in absolute terms. Moreover, it brings more disadvan-
tages than the direct lost cost of fallen cases.

To start, the fallen cases need to be manually removed from the CDC. This requires additional
cleaning time and thus labor costs, especially if the broken cases consider items that are hard to clean
properly (e.g. oil or rice). Moreover, SKUs potentially harm the machines when they break, which
might result in machine errors and/or machine downtime, which adversely affects the productivity of
the CDC and consequently yields (indirect) additional costs as well. Finally, fallen cases worsens the
service quality of the CDC. If a case falls closer to the end of the process, the missing case potentially
cannot be immediately replaced by a new case of the same SKU. As stores do not receive their ordered
SKUs on the desired day, this adversely affects the service quality of the CDC. Concluding, fallen cases
bring many disadvantages and therefore the goal of this thesis was to minimize the number of fallen cases.

As indicated in the previous paragraph, Jumbo’s current estimates are based on manual registration of
fallen cases. However, these manual registrations are often neglected or not performed properly. Con-
sequently, these estimates are likely to underestimate the true number of fallen cases. Therefore, the
processes in the CDC were analysed to find more accurate estimates. Order picking of customer demand
is done via three different subsystems: OPM, CPS and DPS. In the OPM, nearly all process steps are
mechanised, whereas manual labour is required in the other two subsystems. Hence, when a case falls
in the CPS or DPS, this is often due to human errors. In contrast, no human interaction is usually
required in the OPM, such that the problem is caused by different reasons. The focus of this thesis was
to minimize the number of fallen cases in the OPM solely. In particular, all processes up to actual order
picking were considered, as preliminary analyses showed that the problem is largest here. To properly
understand the concepts of this thesis, it is important to get a better insight in these processes.

SKUs enter the CDC on pallets via an infeed station, where the number of cases on the pallet are
measured. The pallets are stored in the highbay warehouse (HBW) before being handled. After some
time, the pallets are send to one of the DEPALs, which vacuums each layer separately from the pallet
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and puts all cases of that layer on a conveyer belt. A pallet can be either fully or partially depalletized,
where in the latter scenario the remaining number of layers is send back to the HBW and called later
again for further depalletization. On the conveyer belt, tray-loading occurs at the tray merge, where
each case is individually put on a tray. At this point, the inventory is measured again, as the tray merge
counts how many cases were actually put on a tray. After tray-loading has taken place, each tray is
stored in the tray warehouse (TWH). Work orders are assigned to the DEPALs based on the current
stock in this TWH: if the current inventory level of an SKU drops below a certain reorder point, a work
order for this SKU is assigned to the DEPALs.

To find new estimates for the number of fallen cases within the described processes, the information
obtained by the infeed stations was compared with the information obtained by the tray merge. If there
were discrepancies between the measured inventory at these steps, the missing cases were considered as
fallen. Hence, the processes from inbound to tray merge were considered as a black box, of which the
input and output streams were of particular interest. Using this approach, the number of fallen cases
was estimated to be nearly 1 000 cases each week, corresponding to a loss of more than e10 000 per
week. Hence, the results confirm the problem of Jumbo’s CDC in Nieuwegein and emphasize the need
to establish methods to decrease the number of fallen cases.

First, two prediction models were implemented to accurately predict the likelihood of cases falling and to
detect potential causes. The problem is highly imbalanced, as much more pallets are handled from which
no cases fell than the opposite. Therefore, a method to account for this imbalance was implemented in
combination with the prediction models. Many different combinations of models and hyperparameter
values were tested, which eventually showed that a Random Forest (RF) on a fully undersampled dataset
provided the best results. This model provided the right predictions for 64% of the pallets with fallen
cases on an unseen test dataset. Given the fact that the data is likely to contain a lot of noise (e.g. cases
fall due to an incidentally badly stacked pallet or just bad luck), the prediction model was still able to
find generalizable patterns.

Analysis of the feature importance of the RF model, showed that the number of partial depalleti-
zations adversely affects the number of fallen cases. Additionally, smaller cases and (consequently) more
cases on a pallet increase the likelihood of falling. This effect can be devoted to two things: (i) a pallet
with many small cases is likely to be more unstable and (ii) pallets with more inventory are more likely
to be partially depalletized. Hence, these two findings go hand in hand: pallets with more inventory are
more likely to be partially depalletized, which reduces the stability of the pallet and thereby increases
the likelihood of falling. To minimize the number of fallen cases, the number of partial depalletizations
should thus be minimized and the stability of the pallets should be ensured at all times. The latter
can be achieved by judging the pallets at different steps in the process and, if necessary, improving the
stability by adding additional stretch wrapping or re-stacking the pallet. To minimize the number of
partial depalletizations, a mathematical model was introduced.

This mathematical model was based on a standard (R, s, nQ) inventory management system, as intro-
duced in Section 2.3. This system was used to find initial order quantities (i.e. the demand) for the
TWH. Then, the mathematical model adjusts these initial quantities by rounding them up or down to
full pallets, to minimize the number of partial depalletizations. However, if too many order quantities are
rounded down, the service quality of the TWH would be decreased significantly. As this is an undesired
effect, the mathematical model was formulated as a bi-objective MINLP, which minimizes (i) the number
of partial depalletizations and (ii) the total unmet demand of the TWH. A further explanation of the
MINLP, with adherent constraints, is provided in Section 5.

The MINLP proved to find solutions that decrease the number of partial depalletizations as com-
pared to the actual replenishment strategy, where 4759 pallets were partially depalletized in two weeks
time. As the figure below shows, the number of partial depalletizations could already decrease signifi-
cantly at only a limited number of intentionally postponed demanded layers. Eventually, the preferred
replenishment strategy should be based on the desired trade-off between these two objectives: less par-
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tially depalletized pallets results in less fallen cases, whereas less postponed layers results in a higher
service quality of the TWH.
In the current analysis, the MINLP was solved for two days at once. Then, six MINLPs were solved

sequentially to obtain a replenishment strategy for two weeks of operation. As each individual MINLP
finds an optimal strategy for only two days, it finds short-term optimal decisions. The figure above shows
that these models already find promising results, but increasing the time period of one MINLP might
even yield more beneficial results on the long-term. However, the formulated MINLP is computationally
expensive, such that solving for a longer time period at once might become intractable. Therefore, a
suggestion for future research would be to formulate a heuristic for this matter.

Using the replenishment strategy of the MINLP, it was tested whether a reduction in partially de-
palletized pallets indeed results in a number of fallen cases. Feeding a new dataset based on the MINLP
replenishment strategy in the trained RF, showed that a decrease in partially depalletized pallets, de-
creased the number of predicted pallets with fallen cases. Hence, these results confirmed that minimizing
the number of partially depalletized pallets, minimizes the number of fallen cases.

Altogether, there is a potential for Jumbo to decrease the number of fallen cases, by employing a new
replenishment strategy that minimizes the number of partially depalletized pallets.
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Chapter 1

Introduction

1.1 Company Introduction

In this section, general information about Jumbo Food Group is presented, after which Jumbo Nieuwegein
- the distribution center where this research is conducted - is introduced.

1.1.1 Jumbo Food Group

The family business Jumbo was founded in 1921 and initially started as a wholesaler of groceries. The
first real supermarket named Jumbo was opened in 1983 and from this point on the company has grown
a lot. Over the years, Jumbo acquired multiple Dutch supermarket chains, with Super de Boer (in 2009)
and C1000 (in 2012) being the largest takeovers. At the end of 2021, Jumbo was the second-largest
supermarket chain in the Netherlands, having a market share of 22% and an annual turnover of e9.91
billion. Both numbers have shown an increasing trend over the past years. In total, Jumbo comprised
705 supermarkets at the end of 2021. Besides the standard brick and mortar supermarket stores, Jumbo
also started selling its products online from 2014 onward; a market that cannot be left out in current
lifestyles. Moreover, Jumbo added the food market concept to their market channels in 2013, where
customers can find the largest food assortment in the Netherlands at the lowest price. In addition to the
weekly standard groceries, customers can buy healthy and fresh meals prepared by chefs and specialists
here.

The headquarter of Jumbo is located in Veghel. The company has three central distribution centers
(CDCs), which distribute items to supermarkets and other distribution centers (DCs) on a national
level. In addition, the company has four regional distribution centers (RDCs), which distribute items to
supermarkets on a regional level. Finally, the company has three e-fulfilment centers and fifteen hub’s
which are used to fulfill all online customer orders. In total, the company employed approximately 100000

persons end of 2021. The Jumbo employees contain the so-called Jumbo DNA, meaning that they work
according to three key values:

• Together : Jumbo employees work together and help each other if necessary.
• Entrepreneurship: Jumbo employees see and take opportunities and like to show initiative.
• Win: Jumbo employees want to improve every day and are thrilled to find the best solution or

idea for customers and colleagues.

Moreover, all employees are committed to the same mission: “Everything for the most pleasant shopping
experience”. To achieve this, Jumbo works according to the following formula: best service, largest as-
sortment and lowest price. In 1996 Jumbo translated this formula into seven guarantees for its customers:
(i) not satisfied? Money back, (ii) your wishes are most important, (iii) for all your groceries, (iv) euros
cheaper, (v) fluent shopping, (vi) fresh is really fresh and (vii) service with a smile, which are still lived
upon to date.
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1.1.2 Jumbo Nieuwegein

Jumbo Nieuwegein is one of the three CDCs, which handles the slow and medium movers in the category
of dry groceries. This means that each Stock Keeping Unit (SKU) handled at the CDC has a shelf life of
at least twelve days and at most four complete pallets are redistributed per week. In addition, the CDC
in Nieuwegein handles all hazardous goods Jumbo sells. The total number of SKUs currently handled
in the CDC is nearly 12000; potentially the CDC could handle up to 16000 SKUs. This CDC was first
located in Elst, where every customer order was manually picked. In 2020 Jumbo opened the doors
of their new plant in Nieuwegein: a distribution center of 43230 m2 equipped with a fully automated
warehousing system. By opening this plant, Jumbo was one of the first Dutch retailing companies to
own such an automated warehouse system. In contrast to the CDC in Elst, customer orders can also be
fulfilled fully automated here. The CDC operates six days per week for 24 hours per day; on the seventh
day maintenance is performed on the system. In peak weeks, additional operating hours can be made on
this seventh day and thus it also provides some slack. With this standard operating scheme, an average
weekly volume of more than 1.8 million cases (i.e. one package of an SKU) was achieved in the first 40
weeks of 2022.

The automated warehousing system was built by Witron; one of the worldwide market leaders in
the realization of dynamic warehouse- and order picking systems. Witron employees work in-house at
Nieuwegein, which operate, repair and maintain the automated warehousing system of the DC. This
way, Jumbo employees can focus on all manual activities needed in the remainder of the processes of the
CDC. Hence, Jumbo and Witron employees work closely together in Nieuwegein to fulfill all customer
orders either with manual or automated order picking. Due to the automation, it is possible to work fast,
efficiently, safe and handle more SKUs as compared to the old CDC in Elst. Moreover, the mechanized
system is less sensitive to errors (i.e. picking the wrong SKU or in a wrong quantity) than manual order
picking.

1.1.3 Distribution Process

This section elaborates on both the manual and mechanical processes conducted at Jumbo Nieuwegein
to redistribute SKUs. In addition, it provides insights into the current performance of the site. Figure
1.1 depicts the floor map of the site, demonstrating the location of each of the processes.

The distribution process starts with placing orders for goods by the suppliers, which is done by
the headquarter. Those suppliers then ship their goods directly to the CDC on pallets at pre-arranged
times. Each pallet is allowed to carry only one particular SKU. The supplier is required to put a barcode
on each pallet, containing relevant information such as the total number of cases on the pallet, total
number of layers, the dimensions and weight of a case, etc. It is desired to maximize the number of
cases on a pallet, as the time required to handle a pallet at inbound is independent of the number of

2
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cases on it. Hence, it is most beneficial to handle as many cases at once as possible. To realize this, it
is preferred to order an SKU in full pallets (i.e. with a maximum number of layers set by the supplier).
If a full pallet carries more than six weeks of demand (based on historical data) for a particular SKU,
then a partial pallet is ordered, containing a certain number of complete layers. In both cases, the SKU
is thus ordered in a fixed batch size of either a full pallet or a complete layer. For some SKUs (7.1% of
the total number), the demand is so low that even a complete layer corresponds to more than six weeks
of demand. For these SKUs, an arbitrary number of cases is ordered instead of a fixed batch size. For all
SKUs, the order quantity is chosen such that the forecasted demand can be met till the next (potential)
delivery of that SKU. As most SKUs are ordered in batch sizes, the order quantity is set equal to the
minimum integer multiple of the batch size to meet this demand.

SKUs that arrive at the CDC all follow the same main processes: it is received, stored, handled and
shipped. The steps for receiving, storing and shipping are the same for each SKU, but the way a SKU is
handled depends on the type of SKU, as depicted in Figure 1.2. For the receiving process, a supplier’s
truck driver is assigned to one of the eighteen receiving docks. After truck unloading, the pallets are in-
troduced to the system via one of the six pallet infeed stations. These stations perform height and weight
checks, to check if the information of the barcode corresponds to the physical measures. If an infeed
station accepts a pallet, an additional Jumbo-owned pallet (with a unique barcode) is placed below the
supplier’s pallet to ensure high pallet quality and increase stability. Subsequently, the pallets are send
to the Highbay Warehouse (HBW) where in total 27637 pallets can be stored. The storage locations can
be distinguished in four different heights. Different strategies can be implemented to allocate a certain
pallet to a storage location, of which maximizing the used volume (i.e. allocating lower pallets to lower
storage locations and higher pallets to higher storage locations) is most often used.

Depending on the demand rate of the SKU, after some time the pallet is collected from the HBW
for handling. The CDC receives demand from Jumbo stores and collects all demanded SKUs in roll
cages (i.e. the handling process). Each roll cage contains goods for one particular store solely. As Figure
1.2 indicates, the order picking of SKUs can be done via three different subsystems: via the Order Picking
Machinery (OPM), the Dynamic Picking System (DPS) and the Car Picking System (CPS). These three
subsystems are discussed in more detail in the following subsections.

OPM

In the OPM, nearly all process steps from receiving to shipping are mechanized, as the picking of roll
cages is fully automated with the help of Case Order Machinery’s (COMs). The handling process starts
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Figure 1.3: Example of a sizing matrix for a roll container

with transporting a pallet from the HBW to a stretch wrap removal workstation via a pallet conveyor
connection. For each pallet, a pre-defined number of layers are handled at a time, which might be less
than the total number of layers on the pallet. An employee is therefore required to only remove the
stretch wrapping of the layers that are planned to be processed. After completing this, the pallet is sent
to one of the twelve depalletizers (DEPALs). A DEPAL vacuums each layer separately from the pallet
and puts all cases of that layer on a conveyer belt. On this belt, tray-loading occurs at the tray merge,
where each case is put individually on either a small or large tray. The large tray is twice the size of
a small tray and is only used for cases that do not fit on a small tray. If increased stability is required
(e.g. for bottles of soda), one of the DEPALs can tilt a case before it is placed on a tray. In addition,
two DEPALs can also be used for manual depalletizing in case errors occur due to an incomplete layer,
bad stacking of cases, etc.

Each tray has an individual barcode, which is linked to the SKU placed on it at the tray merge.
After tray-loading has taken place, each tray is stored in the Tray Warehouse (TWH); in total 533141
small trays can be stored here. The storage racks of the TWH are designed as channels of (generally) four
small trays. In each channel, only trays containing the same particular SKU are allowed. Work orders
are assigned to the DEPALs based on the current stock in this TWH, which is monitored continuously.
If the current inventory level of an SKU drops below a certain reorder point, a work order for this SKU is
assigned to the DEPALs. Each work order has a certain priority, based on the timing the SKU is needed
to fulfill an order. This means that SKUs demanded on short notice are assigned a higher priority than
SKUs demanded at a later point in time. Within the TWH, an optimal allocation principle is used such
that (among other things) items with a higher demand rate are located closest to the picking location,
to minimize handling transactions and travel distance.

As stated earlier, order picking in roll cages is done per customer order. When an order arrives,
the system calculates the best allocation of SKUs over and in the roll cages, based on (i) the store’s
layout, (ii) the best weight distribution in the roll cage (i.e. no heavy items placed on top of lightweight
items) and (iii) the optimal loading and stability of the roll cage. From this calculation, a sizing matrix
is derived, such as the example roll cage depicted in Figure 1.3. Based on this calculation and sizing
matrix, the trays are collected from the TWH and sent to one of the 31 tray sequencers. Here, as the
name suggests, the trays dedicated to a certain roll cage are sequenced such that the items that need
to be placed on the bottom arrive first and the items that need to be placed on top arrive last. These
sequence buffers enable a sequenced outbound to the COM connected to that tray sequence (i.e. each
tray sequence serves one COM). At the COMs, a fully-automated picking process takes place; each COM
pushes the cases one-by-one into the designated location in the roll cage. The ready-picked roll cages
are removed by one of four transfer cars and transported to one of four stretch wrappers. These transfer
cars also replenish the COMs with empty roll cages (empties). After stretch wrapping and labeling, the
roll cage is transported to the right shipping section. Figure 1.2 provides a schematic overview of the
just described processes.
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DPS

The DPS uses an integrated picking and storage system and can especially reach high pick performances
with a large number of small volume articles. In the DPS, SKUs are handled which (i) are too small
for the OPM, (ii) have packaging that is not suitable for the OPM (e.g. due to its shape) or (iii) have
multiple cases packed together, which need manual unpacking before they can be stored separately.
Besides, some of the SKUs handled in the DPS could also be handled in the OPM. This offers some
flexibility as such SKUs can be moved from one subsystem to the other. This is especially advantageous
in peak weeks with high volumes or if the OPM works sub-optimal due to machine errors. Similar to
the OPM, the handling process starts with transporting a pallet from the HBW to one of the twelve
DPS repack workstations via a pallet conveyor connection. At these workstations, a pre-defined number
of layers are manually depalletized; only for these layers the stretch wrapping should be removed by an
employee. Then, these layers are manually repacked into multiple empty totes. The replenishment of
these empty and the shipping of repacked totes is done fully automatically. After repacking, the totes
are transported to the tote warehouse. This warehouse has 77956 storage locations, of which 11956 also
serve as picking locations. Order picking thus takes place within the tote warehouse, at 30 workstations
on three levels (nearly 400 picking locations per workstation). The picking principle in the DPS is based
on a combination of goods-to-man and man-to-goods: orders are manually picked but the allocation of
repacked totes to the pick front is done such that the walking distance for the picker is minimized. In
addition, fast movers are permanently allocated to a picking location, meaning that if a tote becomes
empty, a new tote of the same SKU is replenished to the same or a new picking location. Conversely, slow
movers are dynamically allocated, meaning that an empty tote is not necessarily immediately replenished
with a new tote of the same SKU. The replenishment of the totes is performed by automated cranes.

At the DPS, the customer orders are collected in totes as well; the system directs an order tote
via the workstations where the SKUs needed to fulfill that order are stored. Picking is performed with
pick-by-light: if an order tote enters a workstation, the picking locations of all SKUs in the order light
up and indicate the number of cases to be picked. The picker turns off the light after picking a particular
SKU. As the SKUs allocated to each workstation differ, order totes might cross multiple workstations.

Finished order totes are transported via a conveyor network to one of the six order consolidation
buffers (OCB), such that the totes adherent to the same customer order are stored in the same OCB rack.
Buffering of finished order totes takes place until an entire roll cage of twelve totes can be palletized.
The totes are stacked by a vertical stacker and then mechanically loaded into roll cages. These complete
shipping units are labeled and transported to the right shipping section. In case a customer order does
not comprise a multiple of twelve totes (i.e. not all roll cages will be complete), the remaining totes
are transported to the OPM for further consolidation with other SKUs. These totes then appear at the
bottom of a roll cage such that other cases can be placed on top of it by the COMs or an order picker.
In Figure 1.2 a schematic overview of the just described processes is depicted.

CPS

In the CPS, so-called ‘uglies’ are handled: all hazardous goods and all SKUs which are not suitable for
OPM, but are too large to effectively be handled in the DPS. SKUs are classified as not suitable for
OPM if (i) the packaging material is weak (i.e. quickly opens or breaks), (ii) the packaging is too large
to be effectively handled by the OPM, (iii) the packaging is not suitable for the OPM (e.g. due to its
shape) or (iv) high associated cleaning costs and time if a case breaks (e.g. for oil products). Similar
to the DPS, the CPS is an integrated picking and storage system and is located within the HBW. In
Figure 1.4 a graphical representation of the CPS is depicted, showing that the pick fronts are located
below the storage locations. This way, the SKUs located at pick front locations are easily accessible by
order pickers. The CPS contains 1103 picking locations, distributed over five aisles. Replenishment of
the pick front locations is done automatically via cranes.

The picking principle of the CPS is based on a man-to-goods principle: an order picker visits the
picking locations and manually collects each order in roll cages. Order pickers drive through the aisles
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Figure 1.4: Graphic representation of the highbay warehouse and the Car Picking System

on order picking trucks which can carry up to four different roll cages, allowing for parallel order picking.
Similar to the OPM and the DPS, each roll cage can only contain cases devoted to one particular store.
Hence, an order picker can simultaneously collect orders for at most four different stores. For each work
order (comprising one to four roll cages), the order picker follows the same route through the CPS. The
SKUs are allocated along this route such that an order picker first passes the hazardous goods and heavy
items, which are best placed at the bottom of a roll cage. The pickers carry a pick-by-voice technology,
which navigates them to the right picking locations and indicates the number of cases to be picked on
which roll cage. After collecting all cases for all roll cages, the order picker manually labels each finished
roll cage and transports it to the right shipping section.

At the shipping section, all roll cages devoted to a specific store are stored together at one of the 62

shipping lanes. When the complete store order is collected, the roll cages are redistributed by trucks
to either (i) the store directly or (ii) an RDC, depending on the size of a store’s order and its location.
At an RDC, the roll cages are merged with roll cages collected in the RDC and the combined order is
subsequently shipped from the RDC to the store. Hence, the RDC serves as a cross-dock for the CDC
roll cages. After shipping the roll cages, the process of redistributing SKUs is completed.

Current Performance

This subsection elaborates on some current figures of the CDC. First, Figure 1.5 shows the weekly
outbound volumes (measured in the number of cases redistributed) of the CDC for 40 weeks. On
average, more than 1.8 million cases were redistributed each week. Besides the total volume of outbound
cases, the figure also highlights by which subsystem the cases were collected. The figure indicates that
more than half of all volumes were collected via the OPM and only a small percentage was handled via
the CPS. This closely corresponds to the (average) percentage of SKUs that are currently handled by
each subsystem, being 11.7%, 31.5% and 56.7% for the CPS, DPS and OPM, respectively.

In Figure 1.6, the utilization rate of each storage location is depicted for the first 40 weeks of 2022.
From the figure can be derived that especially the utilization rate of the CPS is remarkably high, as it
is nearly equal to the upper limit of 100% in all weeks. In addition, it shows that the utilization of the
channels in the TWH used to be close to the maximum value as well, but decreased significantly due to
expansion of capacity of the TWH in week 20. The utilization rate of all storage locations in the TWH
is the lowest for all periods: on average only 64.2% of all individual storage locations were used. The
discrepancy between the channel and location utilization in the TWH is explained by the fact that in
each channel (equalling four storage locations in general) only one particular SKU is allowed. Hence,
while many channels are occupied, this does not necessarily imply that all locations in each channel are
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Figure 1.5: The inbound and outbound volumes of CDC Nieuwegein for 40 weeks
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Figure 1.6: The utilization of different storage locations in CDC Nieuwegein for 40 weeks

occupied. Consequently, the utilization of the channels will usually be higher than the utilization of all
storage locations. The utilization rates of the DPS storage and picking locations are nearly equal, which
is a sensible effect. As more SKUs or more cases of SKUs are transferred to the DPS, it makes sense
that they are distributed accordingly over both the picking and storage locations.

1.2 Problem Motivation

As stated in Section 1.1.2, the CDC realized an average weekly volume of more than 1.8 million cases.
By achieving such volumes, in general the demand of stores are met. Even though the system works well
in general, it still shows some flaws. For example, during certain steps in the process, a lot of cases fall
due to either manual or machine errors. In 2021, the total amount of money lost due to cases falling was
equal to e131559, as these cases broke and could not be sold anymore. Converting the loss in Euro to
cases, this means that each week more than 200 cases break due to falling (using the fact that on average
a case costs Jumbo e12.50). This amounts to approximately only 0.01% of the average weekly volume,
but in absolute terms it is quite a substantial amount. In fact, besides those broken cases, there are
also situations where cases fall but can still be sold. Even though the costs are not lost for these cases,
additional registration is necessary to introduce such cases back into the system, requiring additional
working hours and thereby yielding indirect costs. Unfortunately, as no proper registration is yet present
for such scenarios, it is unknown how many cases did exactly fall in 2021.

Both broken and non-broken cases need to be manually removed from multiple locations in the
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warehouse. This requires a lot of additional cleaning time and costs, especially if the broken cases con-
sider items that are hard to clean properly (e.g. oil or rice). Moreover, the proper cleaning of some
machines might take several hours. In fact, in the initial design of the warehouse, each day ten reg-
ular Jumbo employees (i.e. not specialized in cleaning) were scheduled for cleaning purposes. In the
mean-time, this number has increased to 26 employees cleaning the warehouse each day, all hired from a
certified cleaning company. Still, one of the main tasks of these employees is cleaning the consequences
of broken cases. Hence, part of the additionally incurred labor costs can be appointed to the broken
cases.

In addition to the increase in cleaning time and costs, SKUs potentially harm the machines when
they break. This might result in machine errors or even machine downtime, which adversely affects
the productivity of the CDC and consequently yields additional costs. On top of that, as the problem
comprises (among other things) food items, broken cases might attract vermin. This brings even more
disadvantages, as vermin might also damage the machinery and is very hard to extrude once present
in the warehouse. Moreover, to meet the International Featured Standards to ensure food safety, the
probability of vermin should be minimized.

Not only does the problem of broken or fallen cases increase the costs, it also worsens the service
quality of the CDC. If a case falls closer to the end of the process, the problem might not be rectifiable
(i.e. the missing case cannot immediately be replaced by a new case of the same SKU). In such situations,
stores do not receive ordered SKUs on the desired day, which adversely affects the service quality of the
CDC.

If a case breaks due to falling, Jumbo Nieuwegein has certain protocols that require proper registra-
tion. Because of such registrations, Jumbo knows that in 2021 e131559 was lost due to cases breaking.
However, in reality it appears that these protocols are not always performed (properly). If a broken case
is not registered, the differences in stock can never be translated back to its direct cause. Moreover, if
a case falls but does not break, the case is introduced back into the system without any further regis-
tration. Hence, the total number of cases falling is known to be larger than 200 cases per week, but no
information is available on the exact number. As it is more or less based on luck whether a case breaks
or not after falling, it is important to limit the total number of cases falling, including both the broken
and non-broken cases. This way, the direct cause of the problem is tackled.

The above-mentioned problem can be summarized in the following problem statement:

Currently, more than 200 cases fall every week in Jumbo’s fully automated warehouse located in
Nieuwegein. It is yet unknown what the exact size of the problem is, as currently no proper registration

of fallen cases is performed. Fallen cases adversely influence cleaning, product and employee costs,
machine productivity and service quality. Hence, it is desired to minimize the number of cases that fall.

1.2.1 Research Questions

This section introduces several research questions to tackle the problem as introduced in Section 1.2,
which will guide the research. The main research question can be defined as:

How to minimize the total number of cases falling during the process?

This question can be further decomposed into three sub-questions. First, to properly answer the main
research question, it is important to gather information about the current (as-is) situation. By gauging
the size of the problem, a starting point is defined, from whereon improvements can be implemented to
reduce the problem. Hence, the first sub-question is defined as:

1. What is the current size of the problem? Which particular SKUs fall, at which step in the process
and in what quantities?
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When it is known which SKUs fell in certain quantities in the past, this data can be used to build a
prediction model to predict the likelihood of falling for cases handled in the future. From this prediction
model, potentially SKU- (e.g. packaging material), process- (e.g. number of calls at DEPAL) or machine
(e.g. speed of conveyer belt) related characteristics that caused a certain case falling can be derived. As
such, the second sub-question is defined as:

2. How can the likelihood of falling be predicted? What SKU-, process- and machine characteristics
influence this likelihood?

The relevant characteristics obtained by answering this sub-question provide the main directions of
improvement strategies. Certain SKU- and machine characteristics can potentially be adjusted directly to
minimize the number of cases falling, while for other characteristics this is less straightforward. Especially
for process-related characteristics, minimizing the number of cases falling might conflict with other
objectives (e.g. maximize utilization or minimize costs),which should be kept in mind as well.

One of the important decisions made in the process is the number of layers to be depalletized at a
DEPAL or a repack station, as this balances the inventory between (i) the HBW and (ii) the TWH or
the tote warehouse. Moreover, if a pallet is not depalletized at once, it makes more movements through
the warehouse, leading to more opportunities to drop cases. On top of that, the stability of the pallet
decreases after partial depalletization, as some of its stretch wrapping was removed. Therefore, the
decision to partially depalletize is believed to be among the factors that adversely affects the number of
fallen cases. As the goal is to minimize the number of fallen cases, the third and final sub-question is
defined as:

3. How can the number of fallen cases be minimized by influencing the number of layers to be
depalletized at once?

1.2.2 Scope

To ensure the feasibility of the project plan given the available resources (e.g. time horizon) and to
properly address the research problem, a project scope is defined in this section.

Subsystems

As indicated in Section 1.1.3, the CDC uses three subsystems in handling the SKUs. Picking orders in
the CPS and DPS is performed manually, while this is done automatically in the OPM. Hence, when
a case falls in the CPS or DPS, this is often due to human errors. In contrast, in the OPM usually no
human interaction is required, such that the problem is caused by machine-related errors. Reducing the
number of human errors is probably best solved by better training of employees, rather than by analyzing
the data and building a prediction model. Therefore, this thesis will focus on minimizing the number
of cases falling in the OPM subsystem solely. Consequently, all research questions will be answered for
OPM-related processes only.

SKUs

Approximately 56.7% of all SKUs handled by CDC Nieuwegein are currently handled by the OPM, as
stated in Section 1.1.3. All of them will be taken into consideration when analyzing the problem.

Processes

To gauge the current size of the problem, physical input and output data are necessary. Inventory checks
are performed at the infeed stations, at the tray merge and just before a case enters one of the COMS.
If a case passes this last check, it is assumed that the ordered case reaches its dedicated store. Hence, if
a case falls after this point, this is not registered by the system. To ensure complete and reliable data,
only processes up to this point will be taken into account.
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Based on the measurement points, two processes can be distinguished for which input and output
data is available: (i) from infeed stations till tray merge and (ii) from tray merge till COMs. Some early
analyses for these processes showed that the problem of fallen cases is much greater in the first process
than in the second. Therefore, the focus will be on minimizing the number of fallen cases between the
infeed stations and the tray merge. The process between tray merge and the COMs will be disregarded
in the remainder of this thesis.

In addition, Research Question 3 reflects one decision that adversely affects the number of fallen
cases. However, it should be noted that other decisions in the process could have this effect as well (e.g.
placement of a case on a roll container or whether the case is tilted or not before put on a tray at tray
merge). Such decisions are not addressed in this question and will be disregarded in this thesis.

1.3 Outline

The remainder of this thesis is structured as follows: Chapter 2 discusses relevant literature for answering
the research questions. Subsequently, Chapter 3 discusses how relevant data was collected and analysed
to gauge the current size of the problem. Then, this data was used to build the prediction models
presented in Chapter 4, to be able to predict whether cases will fall off a pallet. Chapter 5 outlines a
method to minimize the number of fallen cases by influencing the number of layers to be depalletized
at once. Finally, Chapter 6 contains the conclusions, recommendations, limitations and suggestions of
future work.
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Chapter 2

Theoretical Background

In the previous chapter, CDC Nieuwegein and its distribution processes were introduced and the problem
context was discussed. The focus of this chapter is to gain insights into the literature that is relevant
in minimizing the number of fallen cases. First, in Section 2.1 the literature devoted to automated
warehousing systems is discussed. Then, in Section 2.2, several Machine Learning techniques are provided
that can be used to predict whether cases will fall off a pallet. Section 2.3 highlights several Inventory
Management Systems, from which an inventory policy can be derived that optimizes the number layers
to be depalletized at once. Finally, Section 2.4 discusses the research gap of this thesis.

2.1 Automated Warehousing Systems

The automation of warehouses dates back to 1960 and has known a lot of growth since then. Over
the years, more and more technologies aroused to automate several steps in the process and eventually
Witron was the first to combine multiple technologies to fully automate the entire process (Azadeh et
al., 2019). Due to all these innovations and increased interest, a lot of literature has been devoted to
automated warehousing systems. Several review papers summarize parts of this literature. For instance,
Boysen et al. (2021) summarizes automated warehousing systems applicable for brick-and-mortar retail
chains, whereas Boysen et al. (2019) does the same for e-commerce retailers. Both review papers provide
insightful information on the types of available automated warehousing systems, how they operate and
in which situation they are most suited. Similarly, Azadeh et al. (2019) review the relatively new
developments in the automated warehousing systems literature, thereby indicating directions for future
research to further optimize vital warehouse decisions (such as design layout, order batching, picker
routing, etc.) with the introduction of a new system.

Besides such review papers, many studies focus on the optimization or improved performance of
certain parts of an automated warehouse. Generally speaking, most studies are concerned with:

(i) Optimizing the warehouse design (e.g. Küçükyaşar et al. (2021); Tompkins et al. (2010))
(ii) Optimizing the allocation of SKUs to storage locations (e.g. Yang et al. (2021); Mirzaei et al.

(2021))
(iii) Optimizing the order picking performance (e.g. Bertolini et al. (2019); Claeys et al. (2016); Andri-

ansyah et al. (2014); Ko & Han (2022); Boysen et al. (2018))
(iv) Optimization of crane or automated vehicle movements (e.g. Amato et al. (2005); Li et al. (2022);

Emde et al. (2021))
(v) Improved performance measurement (e.g. Faveto et al. (2021))

All the optimization policies disregard the fact that inventory losses can occur due to machine mal-
functioning (i.e. by dropping cases). Hence, the problem at hand is not discussed in literature yet.
Therefore, current literature on automated warehousing systems can be enriched by developing methods
to minimize the number of fallen cases. The next sections discuss several concepts that are relevant in
developing such a method.
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2.2 Machine Learning

The goal of the second sub-question is to predict the likelihood of falling for cases of a certain SKU. Such
a prediction model can be built by using Machine Learning (ML) techniques. Therefore, this section
elaborates on several ML techniques applicable to the problem under consideration.

ML techniques are tools to better understand a given dataset, by finding generalizable patterns in the
data (Nasteski, 2017). The goal of ML is to accurately predict an outcome y for an observation, based on
a certain function f of its input features x, i.e. y = f(x) (Athey & Imbens, 2019). In ML, algorithms are
built to create good estimates of this function f , without being concerned with finding the true model
or estimating the right parameters of this function (James et al., 2013). In contrast, the focus is solely
on finding the most accurate out-of-sample predictions (Athey & Imbens, 2019). The main strength of
ML techniques is that they can fit flexible and complex functions on a wide variety of data structures
(Mullainathan & Spiess, 2017).

Usually, the best estimate of f is obtained in three subsequent steps. First, a set of training (in-
sample) data is used as input to build the model and estimate the function f : the training process.
Subsequently, the model is validated using a different (validation) dataset, to select the best model and
choose the best hyperparameters. Finally, the model is applied to test (out-of-sample) data to evaluate
the model’s performance (Varian, 2014).

In supervised ML problems, the training, validation and test data used to estimate and evaluate f

contains (x, y) pairs; for each observation in the data the outcome is known (Jordan & Mitchell, 2015).
In contrast, in unsupervised ML problems, the data only contains information about the input features
x, which are grouped into clusters to estimate the best function f . If the outcome feature to be predicted
is real-valued, one speaks of regression models; if the goal is to assign it to a pre-defined class, one speaks
of classification models (Nasteski, 2017).

The problem at hand as introduced in Section 1.2 can be classified as a binary classification prob-
lem, as the goal is to predict whether or not cases will fall from a pallet of a given SKU. Moreover, the
first goal of this thesis is to collect data to gauge the size of the problem. That is, the data will contain
observations that indicate whether cases fell from a certain pallet and in what quantities. Consequently,
supervised ML techniques can be applied. Current estimates suggest that at least 0.01% of Jumbo’s
weekly volume in CDC Nieuwegein falls, indicating that the outcome feature is extremely imbalanced.
To accurately predict an imbalanced outcome feature, standard ML techniques might need to be modi-
fied (Chawla et al., 2004). The following subsections discuss two standard supervised ML techniques to
predict the outcome feature, which were both implemented to accurately predict the binary classification
problem. Moreover, in subsection 2.2.3, several adjustments to these ML techniques are suggested, such
that they can better handle imbalanced data.

2.2.1 Random Forests

The first supervised ML technique is very commonly used and is called random forests (RF), which is
an extension of the single regression tree algorithm (Breiman, 2001). RF appears to be very effective in
ignoring irrelevant features, require relatively little tuning, have a high out-of-sample performance and
work especially well on highly nonlinear data (Athey & Imbens, 2019; Varian, 2014). The idea of RF is
that it averages over a large number of single regression trees. In a single regression tree, the training
sample is split into distinct regions, such that every observation that falls in a certain region receives
the same prediction, based on a majority vote (Oshiro et al., 2012). Every split in the tree is based
on a single feature exceeding a certain threshold value (James et al., 2013). At each split, the feature
and threshold value are selected that improve the split criterion the most (Hastie et al., 2009). Two
commonly used split criterions are discussed in Appendix A.

The main problem with using a single decision tree solely is that decision trees have the tendency
of overfitting the training data, limiting generalization to new datasets (Varian, 2014; Park & Lek, 2016).
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As the goal is to find accurate out-of-sample predictions, it is important to find a model that works well
out-of-sample and does not overfit the in-sample data (Mullainathan & Spiess, 2017). Averaging over a
large number of single regression trees helps in countering this effect.

In RF, each single regression tree differs from each other due to two things: (i) the tree is grown
on a bootstrap sample of the original data (choosing, with or without replacement, a sample of size n

(Breiman, 1996)) and (ii) at each split made in the tree, only a random subset m of all features could be
chosen, which changes at every split (Breiman, 2001). Each tree is grown independently until a forest of
T trees is obtained. The final prediction ŷi for each observation i equals the majority vote over all trees,
which is obtained as follows (Probst & Boulesteix, 2017):

Let ŷi,t be the predicted value for observation i for tree t = 1, . . . , T . Averaging over the predictions
of all trees yields a probability:

p̂i =
1

T

T∑
t=1

I(ŷi,t = 1), (2.1)

where I(ŷi,t = 1) is the indicator function which takes value 1 if ŷi,t = 1 and 0 otherwise. The final
prediction for observation i is based on the majority vote, defined as:

ŷi =

{
1 if p̂i > 0.5

0 otherwise
(2.2)

To assess the performance of an RF, the predicted outcomes ŷi are compared to the actual outcomes yi.
In section 2.2.3, several relevant performance measures are highlighted.

RF significantly improves the out-of-sample predictive power as compared to a single decision tree.
However, this increase comes at the expense of interpretability. As the RF is an average of many trees,
it is impossible to make a graphical representation of the forest and easily interpret its results. Still, an
RF can be interpreted utilizing the feature importance. As stated, at each split in a tree the feature and
threshold value are selected that improve the split criterion the most (Hastie et al., 2009). The size of
the split criterion improvement is attributed to this particular feature. A feature’s importance is then
defined as the sum of the split criterion improvements over all trees. Clearly, the higher the importance,
the more important a feature is in predicting the outcome feature. In that sense, the feature importance
can be used to perform feature selection, as it reveals the subset of important features to predict the
outcome feature (Varian, 2014).

To prevent the model from overfitting and to find the most accurate out-of-sample predictions,
some hyperparameter tuning is required. An RF requires relatively little tuning as compared to other ML
techniques, but still a few hyperparameters need to be set by the user. Several important hyperparameters
are highlighted in Appendix A.

2.2.2 Multilayer Perceptron

The second type of ML that is applied is called a multilayer perceptron (MLP), which is a feed-forward
artificial neural network (ANN) (Kavzoglu & Mather, 2003). ANNs can automatically learn underlying
rules from a given set of examples (Jain et al., 1996) and proved to work very well for representing highly
nonlinear relationships between a large number of input features and the outcome feature (Qi et al.,
2019; Abraham, 2005). However, the technique requires more tuning of the parameters of the model
relative to other ML techniques such as RFs (Athey & Imbens, 2019).

An MLP contains three kinds of layers, all consisting of a certain number of neurons: an input
layer, an output layer and several so-called hidden layers between these two (Choi et al., 2020). Figure
2.1 illustrates an MLP with one hidden layer, with three, four and two neurons in the input, hidden
and output layers, respectively. In feed-forward ANNs, the signal flow is strictly fed forward from input
to output neurons: no recursive feedback connections are present (Abraham, 2005). In an MLP, all
neurons in neighboring layers are connected via weights (i.e. a fully connected network), which represent
the importance of an input to an output (Nielsen, 2015). These weights are free parameters of the
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Input layer

Hidden layer

Output layer

Figure 2.1: Example of a multilayer perceptron (Abraham, 2005)

model, which is trained such that the out-of-sample performance is maximized (Qi et al., 2019). The
number of neurons in the input layer usually corresponds to the number of input features p of the
dataset (Park & Lek, 2016). The number of hidden layers and the number of neurons in each hidden
layer are hyperparameters of the model that require tuning (Abraham, 2005). The neurons in the output
layer correspond to the classes of the problem; a binary classification problem has two output neurons
(Kavzoglu & Mather, 2003).

Modelling the neurons

The neurons in an MLP are often modeled as perceptrons or sigmoid neurons. A perceptron has multiple
input neurons (xj for all input neurons j) and all yield a single binary output (Nielsen, 2015). The output
of a single perceptron is calculated as the weighted sum of the input values

∑
j wjxj (or w · x in vector

terms) plus an overall bias term b (Abraham, 2005). Its final output is modified by an activation function,
being the step-function for perceptrons:

output perceptron =

{
0 if w · x+ b ≤ 0

1 otherwise
(2.3)

That is, if the output is below a certain threshold −b, the observation is classified as 0 and if it exceeds
the threshold it is classified as 1 (Nielsen, 2015). As all outputs are binary, the perceptrons in the hidden
layer can be interpreted as partial classifications. The perceptrons in the output layer subsequently
combine all partial classifications from the hidden layer (by applying new weights and biases) to find a
final classification for an observation (Krogh, 2008).

The problem with perceptrons is that a small change in the weights or bias terms (being the free
parameters of the model) can cause a major change in the behavior of the entire network, where the
prediction for many observations is flipped from 0 to 1 or vice versa (Nielsen, 2015). This results in
an unstable network, which is an undesirable effect. Moreover, the step function shown in Equation
(2.3) is discontinuous and thus not differentiable, which turns out to be a problem when the model is
trained (Jain et al., 1996). To overcome this problem, a different activation function, being continuous
and differentiable, can be applied. The most commonly used activation function for MLPs is the sigmoid
function, defined as (Yonaba et al., 2010):

σ(z) =
1

1 + e−z
(2.4)

Instead of a binary output, the output of the sigmoid function is allowed to take on any real value between
0 and 1, where the extreme values can only be reached asymptotically (Rojas, 1996). To find the output
of a sigmoid neuron, z = w · x + b is inserted in the sigmoid function, as illustrated in Equation (2.5).
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Due to the smoothness of the sigmoid function, small changes in the weights and bias terms of neurons
only cause small changes in the output values, resulting in a more stable network (Nielsen, 2015).

output sigmoid neuron =
1

1 + exp(−w · x− b)
(2.5)

As indicated earlier, a binary classification problem has two output neurons. Using Equation (2.5),
each of these neurons yields an output between 0 and 1. These outputs can be captured in a two-
dimensional vector âi, representing the predicted values for observation i. The final classification given
to this observation is based on the highest element in this vector (Nielsen, 2015). The performance of the
MLP can be assessed by comparing the predicted output âi with the actual output yi. The actual output
can also be represented with a two-dimensional vector, where yi = (1, 0)T and yi = (0, 1)T represent a
negative and positive sample, respectively.

The goal is to find a model that accurately predicts this outcome feature y. Maximizing the model’s
performance requires finding the optimal combination of parameters of the MLP (being the weights and
biases), which together best approximate the true function of y (Rojas, 1996). To find the optimal values,
training of the MLP is required, by iteratively presenting new observations with known classifications.
Then, for each observation, the MLP’s output âi is compared with the actual output yi and the weights
and biases are updated such that the performance of the model is improved (Krogh, 2008). This process
is known as the backpropagation algorithm (Rumelhart et al., 1986).

Backpropagation algorithm

First, let wl
kj denote the weight from the jth neuron in layer l− 1 to the kth neuron in layer l, such that

Wl denotes the k × j weight matrix of layer l containing all these weights. In addition, let blk denote
the bias of the kth neuron in layer l, such that bl denotes the k-dimensional bias vector of layer l. Note
that l takes on values between 2 (the first hidden layer) and L (the output layer). As indicated, the
individual weights wl

kj and biases blk are the free parameters of the model and should be optimized by
the model to accurately predict the outcome feature y (Rojas, 1996).

The backpropagation algorithm starts with randomly initialized weights wl
kj and biases blk, such

that it yields a first output for all observations fed into the model (Rojas, 1996). Based on the initial
weights and biases, the output neurons in the model yield a first prediction for each observation i. To
assess the performance of the model, the values of the output neurons âi are compared to the actual
outputs yi by applying a cost function. The mean squared error (MSE)1 is a commonly used cost
function, which is defined as the sum of the squared difference of predicted and actual outputs (Nielsen,
2015):

C(xi,W
l,bl) =

1

2n

n∑
i=1

||yi − âi||2 (2.6)

where n represents the total number of training samples and ||v|| represents the norm of the vector v.
Note that all predicted outputs âi are dependent on the input features of an observation xi, the weight
matrix Wl and the bias vector bl of each layer l = 2, . . . , L. Clearly, the smaller the MSE, the better
the performance of the model (Krogh, 2008). Hence, the model should set the weights and biases such
that this cost function is minimized.

To reach a (global or local) minimum of the cost function, the gradient descent rule is applied.
That is, the partial derivative of the cost function with respect to each weight in Wl and each bias in
bl is calculated, to obtain the gradient vector:

∇C(Wl,bl) =

(
∂C(xi,W

l,bl)

∂Wl
,
∂C(xi,W

l,bl)

∂bl

)T

(2.7)

1Note that the MSE is a function of the weight matrix Wl and bias vector bl of each hidden and output layer l = 2, . . . , L.
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A change in the cost function ∆C(xi,W
l,bl) is defined as the product of the gradient vector ∇C(Wl,bl)

and the vector of (small) changes in weights and biases (∆Wl,∆bl)T :

∆C(xi,W
l,bl) ≈ ∇C(Wl,bl) · (∆Wl,∆bl)T (2.8)

Now, the small changes in weights ∆Wl and biases ∆bl should be set such that the change in the cost
function is negative (i.e. ∆C(xi,W

l,bl) ≤ 0, causing a decrease in C(xi,W
l,bl)). To ensure this, the

changes in weights and biases can be set as follows (Nielsen, 2015):

(∆Wl,∆bl)T = −η∇C(Wl,bl) (2.9)

where η represents the learning rate, being a positive (hyper)parameter of the model. The learning rate
determines the step size of the adjustments in weights and biases, such that the model moves towards
the global minimum of the cost function (Kavzoglu & Mather, 2003). Inserting Equation 2.9 in Equation
(2.8), gives ∆C(xi,W

l,bl) ≈ −η||∇C(Wl,bl)||2, which indeed ensures that ∆C(xi,W
l,bl) ≤ 0 as both

η and ||∇C(Wl,bl)||2 are positive terms.
After adjusting the weights and biases using Equation (2.9), the model calculates a new prediction

for each observation i. Then, the performance of the model is evaluated again by inserting these new
predictions in the cost function, yielding a new gradient vector. Based on the new gradient, the weights
and biases are adjusted again to reach a minimum of the cost function. This process of iteratively
evaluating the performance of the model and adjusting the weights and biases is repeated until a certain
stop criterion is reached (Kavzoglu & Mather, 2003).

As for an RF, hyperparameter tuning for an MLP is required to prevent the model from overfitting
and to find the most accurate out-of-sample predictions. The most important hyperparameters for an
MLP are highlighted in Appendix A.

2.2.3 Imbalanced data

Imbalanced data refers to a dataset where the observations are disproportionately distributed over the
classes, such that, in a binary classification setting, you have a clear majority and minority class (Yijing
et al., 2016). This problem has many applications, such as fraud detection, risk management and medical
diagnosis (Chawla et al., 2004), but also applies to Jumbo’s problem of cases falling. The problem with
standard ML techniques is that the goal is to maximize the predictive accuracy, being the number of
correctly classified observations among all observations (Provost, 2000; Kaur et al., 2019). However,
applying such techniques to an imbalanced dataset will very likely result in a model that classifies all
observations in the majority class (Loyola-González et al., 2016). Consider for example the case at
Jumbo, where only 0.01% of the observations are known to be in the minority class. A model that
guesses the majority class for all observations yields a predictive accuracy of 99.99%. However, all
minority observations were misclassified, while these observations have high associated costs. Therefore,
a model is required that has a fairly high accuracy in classifying the minority class.

A model is selected and evaluated based on certain performance measures. Binary classification
problems can be evaluated by using a confusion matrix, as depicted in Table 2.1 (Chawla et al., 2002).
In the remainder of this thesis, the Positives refer to the minority class and the Negatives refer to the
majority class and these terms are used interchangeably. The TN (TP) indicate that the actual negative
(positive) observations are also predicted as negative (positive). On the other hand, the FN (FP) indicate
that actually positive (negative) observations are misclassified as negative (positive).

Using the confusion matrix, several performance measures can be calculated. As indicated,
predictive accuracy might not be the best performance measure in imbalanced data settings, such that
models need to be selected based on other measures. In Equations (2.10) till (2.13), several other
frequently used performance measures are presented (Kaur et al., 2019). The TPR (also known as
sensitivity or recall) shows the fraction of positive observations that are correctly classified by the model.
Similarly, the TNR (also known as specificity) shows the fraction of negative observations that are
correctly classified by the model. As indicated, in imbalanced settings the goal is to find a model that
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Table 2.1: Confusion Matrix (Chawla et al., 2002)

Predicted Negative Predicted Positive

Actual Negative True Negatives (TN) False Positives (FP)
Actual Positive False Negatives (FN) True Positives (TP)

accurately predicts the minority class, i.e. a model with a high TPR. To achieve this, a slightly lower TNR
is accepted as misclassifying majority observations generally results in lower associated costs (Chawla et
al., 2002).

In a Receiver Operating Curve (ROC), the trade-offs between accuracy on positive observations and
errors on negative observations are depicted. The area under the ROC curve (AUC) indicates whether
the model can discriminate well between the two classes: a larger AUC indicates a better discrimination
(Probst & Boulesteix, 2017). In Equation (2.13), FRP represents the False Positive Rate, being the
fraction of negative observations that are misclassified by the model (Kaur et al., 2019).

Predictive Accuracy =
TP + TN

TP + TN + FP + FN
(2.10)

True Positive Rate (TPR) =
TP

TP + FN
(2.11)

True Negative Rate (TNR) =
TN

TN + FP
(2.12)

AUC =
1 + TPR− FPR

2
(2.13)

As stated, many standard ML techniques try to maximize the total accuracy of the model. To improve
the other performance measures to accurately classify the minority class, the ML approaches need some
modifications. Two commonly used approaches are based on (i) Resampling and (ii) Cost-Sensitive
Learning (CSL) (Chawla et al., 2004).

Applying a resampling method is part of the data preparation and thus independent of the ML
technique (López et al., 2013). These methods rebalance a given sample before it enters the model, to
diminish the skewed distribution over the two classes (Haixiang et al., 2017). Three kinds of resampling
methods can be applied:

(i) Over-sampling methods: add new minority class samples to the dataset. The two most commonly
used techniques are to randomly duplicate existing minority class samples (i.e. sample with re-
placement) and the Synthetic Minority Oversampling Technique (SMOTE). The latter approach
introduces “synthetic examples along the line segment joining any/all of the k minority class near-
est neighbors” (Chawla et al., 2002, p.328). That is, new synthetic samples are generated that are
closely related, but not necessarily equal, to already existing samples in the minority class.

(ii) Under-sampling methods: remove majority class samples from the dataset. The most effective
method appears to be random undersampling, which randomly selects the majority class samples
to be eliminated (Tahir et al., 2009).

(iii) Hybrid methods: a combination of an over- and under-sampling method (Haixiang et al., 2017).

All of the above resampling techniques can resample the data to any desired ratio; which ratio works best
is dependent on the data and the model (Haixiang et al., 2017; L. Zhou, 2013). Consequently, both the
resampling method and the ratio of resampling can be considered a hyperparameter of the implemented
model. If the dataset contains hundreds of minority observations, undersampling the data is preferred
as it reduces the computational time significantly. Otherwise, SMOTE appeared to work better than
random oversampling (Napierala & Stefanowski, 2016; Loyola-González et al., 2016). This method is
also better able to ignore the noise in the data.

Instead of using a resampling method as a preparation technique, CSL adjusts the cost function
of a ML algorithm. A cost term is added, such that the model is penalized more for misclassifying a
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minority class observation than for misclassifying a majority class observation (Chawla et al., 2004).
That is, a misclassification cost term ck is added to the split criterion function for RF (Equation (A.2)
or (A.3)) and the cost function for an MLP (as a two-dimensional vector in Equation (2.6) or as term in
Equation (A.6)), with c1 > c0.

Setting the misclassification costs right appears to be a difficult task and should be based on expert
opinions (Krawczyk et al., 2014). As a first estimate, C. Castro & Braga (2013) set the misclassification
costs for the majority class equal to 1 (c0 = 1) and the misclassification costs for minority class equal to
the ratio of imbalance (IR):

c1 = IR =
Number of observations in majority class
Number of observations in minority class

(2.14)

Still, the misclassification cost for the minority class is a hyperparameter that should be optimized.

2.3 Inventory Management Systems

The goal of Research Question 3 is to minimize the number of fallen cases by influencing the number
of layers to be depalletized at once. The number of layers to be depalletized affects both the inventory
in the HBW and the TWH, as it moves the stock from the first location to the second. One pallet
occupies only one location in the HBW, whereas each case on this pallet occupies a single location in
the TWH. Customer orders (i.e. demand from Jumbo stores) are picked from the TWH; if the inventory
here is insufficient to meet all demand, the lead time of an order increases significantly as first a new
pallet should be depalletized. Therefore, the division of inventory over these two warehouses reflects an
important trade-off: inventory stored in the TWH requires much more storage space as compared to the
HBW, but the stock is immediately accessible for order picking.

For both storage locations, an inventory management system is used to ensure high service quality
and simultaneously use the storage space efficiently. This section discusses commonly known inventory
management systems, which will serve as a starting point for modeling the problem. The Lecture Notes
for the course Stochastic Operations Management (Van Donselaar & Broekmeulen, 2017) were used as
the main reference within this section, which serves as a supplement to standard textbooks regarding
Inventory Management.

First, it is important to note that replenishment decisions are based on the inventory position IP (t)

of a system at a given time t. The inventory position equals the total inventory on hand I(t) minus the
outstanding backorders BO(t) plus the inventory in transit IT (t) (inventory ordered at an earlier point
in time that did not yet arrive). In the current situation, demand from stores that cannot be met from
stock is not backordered. Conversely, the stores are required to re-order unmet demand at a later point
in time. That is, the unmet demand is visible in the demand levels of succeeding days. Hence, the
backorders at the TWH equal zero in all periods and any unmet demand is lost for that period.

Inventory management systems are generally classified based on two things: (i) either periodic
or continuous review of the inventory systems to make replenishment decisions and (ii) whether the
replenishment quantity is fixed or is allowed to be chosen arbitrarily. Based on these classifications, four
inventory management systems can be distinguished, as depicted in Table 2.2.

Table 2.2: Classification of Inventory Management Systems

Periodic Review Continuous Review

Fixed replenishment quantity (R, s, nQ) (s, nQ)

Variable replenishment quantity (R, s, S) (s, S)

At each review period R, the (R, s, nQ) system checks whether or not the inventory position dropped
below the reorder level s. If this is true, the system chooses the smallest integer n such that n times a
fixed batch size Q raises the inventory position back to or above the reorder level s. If the inventory po-
sition is still above the reorder level s at a review period, no replenishment decision is made. The (s, nQ)
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system works similarly, although the replenishment decision can be made at any point in time due to
continuous review of the inventory position. In a similar way, the (R, s, S) policy makes a replenishment
decision at each review period R if the inventory position drops below the reorder level s. Conversely,
this system chooses the order quantity such that the inventory position equals the order-up-to level S
after ordering; the replenishment quantity is thus allowed to be chosen arbitrarily. The (s, S) policy
works the same but as for the (s, nQ) system, the replenishment decisions can be made at any point in
time instead of at dedicated time periods only. Both continuous review systems can be modeled as their
corresponding periodic review system by setting the review period to a very small number.

The inventory management system applicable to the HBW is the (R, s, nQ) policy, as each supplier
has a pre-arranged time interval between deliveries. The stock of an SKU can only be replenished during
such deliveries and thus only needs to be reviewed periodically. All SKUs of the same supplier have the
same review period; the review periods of distinct suppliers might differ. Moreover, it is most common
to order complete layers or full pallets of an SKU, indicating that the batch size Q is fixed (being the
number of cases per layer or the number of cases per pallet). For each review period, the minimum
number of complete layers or pallets n should be chosen such that the inventory position of the HBW
is raised to or above the reorder level s. The (s, nQ) system applies to the TWH, as the inventory of
the TWH is continuously reviewed and orders to one of the DEPALs can be sent at any point in time.
Moreover, the DEPAL only depalletizes complete layers by default. Hence, the batch size Q corresponds
to (a multiple of) one layer and for each work order the minimum number of such batches n should be
chosen such that the inventory position for an SKU in the TWH is raised to or above the reorder level
s. As stated above, the (s, nQ) can be modeled in the same way as the (R, s, nQ) system by setting the
review period R to a very small number.

The HBW and TWH correspond to a two-stage serial inventory system, where customer demand arises
at stage 1 (the TWH) and stage 2 (the HBW) replenishes stage 1, which itself is replenished from outside
suppliers (Chen & Zheng, 1994). In (two-stage) serial systems, the reorder levels and batch sizes are
preferably set such that the total inventory management system results in a system-wide optimal cost
(Shang et al., 2009). Hence, the optimal policy parameters (being the review periods R, reorder levels
s, and batch sizes Q) for each single stage are preferably based on centralized decisions.

A lot of literature has been devoted to the control of serial inventory systems. Especially systems
where each stage follows an (s, nQ) policy received a lot of attention. Most studies focused on either
evaluation of this inventory management system, optimization of the policy parameters (i.e. s and Q) or
developing a heuristic for that matter. For instance, Chen & Zheng (1994) evaluated the (s, nQ) policy
for a serial system and derived steady state inventory levels for each stage. Chen (2000) formulated a
method to find optimal reorder levels for serial systems with fixed batch sizes, whereas Shang & Song
(2007) provided approximations to optimize both the reorder levels and the batch sizes for the entire
system, by optimizing these parameters individually for each single stage. Furthermore, Axsäter &
Rosling (1993) evaluated the difference between centrally setting reorder levels and batch sizes (i.e. such
that the system wide cost is minimized) and optimizing them for each stage solely, and found that a
system wide solution is superior in general. Instead of a continuous review policy, Shang & Zhou (2010)
studied a serial system where each stage orders according to an (R, s, nQ) system. They proposed an
optimal and heuristic solution to find batch sizes and review periods that minimize the total average
cost per period.

The problem at hand is a valuable extension on the current literature on two-stage serial inventory
systems. Even though most studies are concerned with finding the optimal policy parameters R, s, and
Q, these parameters are considered to be fixed in the current analysis. Then, the logic of the standard
(s, nQ) system will be used to determine the order quantity of the TWH at the HBW for a given SKU.
Using these order quantities as a starting point, a method can be formulated that adjusts these order
quantities such that less pallets will be partially depalletized, as this is believed to reduce the number
of fallen cases. Hence, the goal is still to find an optimal balance of inventory over the two stages, but
the approach is slightly different. To the extent of my knowledge, no other study targeted this problem
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in a similar way. Therefore, the current study is a valuable addition to the literature on two-stage serial
inventory management systems.

As stated earlier, the number of layers to be depalletized represents a trade-off between storing
the inventory at the HBW (requiring fewer locations) and storing it at the TWH (being accessible for
order picking). This trade-off should be acknowledged when modeling the problem: the model should
be prevented from pushing too much inventory to the TWH. Simply fixing the batch size to full pallets
instead of (a multiple of) one layer for all SKUs will not result in a satisfactory solution, as the available
capacity in the TWH will not be used efficiently. Therefore, Chapter 5 introduces a mathematical model,
which optimizes which pallets should be partially depalletized and which pallets should not.

2.4 Research Gap

Since the problem at hand is not discussed in recent literature yet (as indicated in Section 2.1), a
straightforward research gap is present. Solving the problem by developing methods to minimize the
number of fallen cases will enrich the current literature on automated warehousing systems. In addition,
predicting whether cases will fall off a pallet is a new application of standard prediction theories and
represents a new setting of imbalanced data. Finally, the order quantities obtained by a standard
inventory management policy will be reviewed and potentially altered to ensure more pallets will be
fully depalletized at once, thereby minimizing the number of fallen cases. This new approach to balance
inventory in a two-stage serial inventory system is believed to be a valuable addition to the current
literature on inventory management systems.
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Chapter 3

Current size of the problem

The goal of Research Question 1 is to gauge the size of the problem and to build a dataset containing
observations that indicate whether one or more cases of a certain SKU fell off a pallet between inbound
and tray merge. This dataset was used as input for the prediction models discussed in the next chapter.
As the performance of a prediction model is only as good as the data used to train it (a phenomenon
known as “garbage in, garbage out”), the data was selected carefully and several data preparation tech-
niques were applied to clean the data (Brownlee, 2022). The data preparation techniques are listed in
Appendix C, whereas the data collection and preliminary data analyses are discussed in the following
sections.

3.1 Data Collection

As indicated in Section 1.2, the current data on fallen cases is inaccurate. If a case falls, the missing
case should be manually registered in the system. However, this registration is often neglected in current
practice, yielding incomplete and unreliable data. Therefore, other data sources were used to estimate
the number of fallen cases between inbound and tray merge.

As explained in Section 1.1.3, SKUs enter the CDC on pallets containing only that particular SKU.
They are introduced to the system at one of the infeed stations, which measures the height and weight of
a pallet. This information is used to calculate the total number of cases and number of layers on a pallet.
If the physical measurements correspond to the data known by the system (within some tolerable limit),
the pallet is accepted and send to the HBW. Based on replenishment calls from the TWH, the pallet
will be sent to one of the DEPALs. After depalletization, each case is individually put on a tray at tray
merge. This is where the second physical check of a pallet takes place, as a height check is performed
for each case. This way, the tray merge counts how many cases of a particular SKU coming from a
particular pallet are put on a tray.

From the previously described processes, a black box can be derived where especially the input and
output of the system are of interest, whereas the inner workings of the system can be slightly disregarded
(Cuadra & Katter, 1967). In Figure 3.1 a visual representation of a black box is depicted. In the current

Black Box
Input Output

Clearing station

Figure 3.1: Visualisation of the black box method
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context, the information from the infeed stations serves as input and the information from tray merge
serves as the output. No physical measurements are conducted between these two steps and therefore all
processes performed here are considered as a black box. The difference between input and output gives
an indication of the number of cases that were lost somewhere in this black box. This number is used as
an estimate for the number of fallen cases between inbound and tray merge.

Besides the tray merge, one additional output stream requires consideration. Some “missing” cases
(i.e. cases that do not pass a tray merge) were sent to a clearing station instead. From this clearing
station, the missing cases are re-introduced to the system, either independently on trays (such that they
are sent to the TWH directly) or on a pallet, with multiple cases of the same SKU (such that it is
sent back to HBW). This stream is used for multiple reasons, such as badly stacked layers for pallets or
an unintended tilted case for trays. In such circumstances, the system or an employee sends the cases
to a clearing station, where a Witron operator decides if and how the case should be re-introduced to
the system. This decision is registered in a report called IN32. Based on the decision, the subsequent
steps adherent to the decision made are performed manually. As these streams are potentially used for
different reasons than a fallen case, they are considered as output of the black box as well, as depicted
in Figure 3.1.

Data was collected for a time frame of fifteen weeks. Pallets were included in the dataset according
to the following criteria:

• Only pallets for which inbound information was present in report INB14 were included in the data.
This report contains real information on the number of cases and the number of layers on a pallet.
As pallets usually spend some time in the HBW before being handled for the first time, information
from this report is included during the stated time frame and two weeks in advance. These time
frames are visualized in Figure 3.2. If a pallet entered the system more than two weeks before the
time frame of interest, it was thus neglected.

• Only pallets for which outbound information was present in report TL10 were included in the data.
This report contains the number of cases put on trays from a certain pallet. Information from this
report was only included during the stated time frame.

• Pallets are not necessarily depalletized at once: they can be sent back to HBW and called again
at later points in time for further depalletization. To have complete output data, only pallets
were considered which were fully depalletized (at once or in several times) within the stated time
frame. This information was extracted from a report called OP48a, which contains all DEPAL
transactions and reveals how many layers were picked at each transaction. Information from this
report was only included during the stated time frame. Despite the restriction, still more than
21 000 partially depalletized pallets were included in the dataset. This was believed to suffice for
the analysis on partial depalletization.

Some assumptions were needed regarding the alternative output streams, where cases are re-introduced
to the system on pallets or trays. For both streams, information is present on the type of SKU, the
number of cases of that particular SKU and the time at which the re-introduction took place. However,
it is not known from which pallet the SKU originated, as the complete pallet is usually not present at
the clearing station. Since both input and output data were checked for each pallet individually, the
re-introduced cases should be linked to a particular pallet to get a complete overview. To do this, the
time period in which a case of a particular SKU should be re-introduced to the system was constrained.
This way, it is believed that the re-introduced cases originate from the pallet that was handled a given
period earlier.

Pallet re-introduction typically takes longer than tray re-introduction. For both streams two dif-
ferent periods were tested, indicated with the parameters ttr and tpal for trays and pallets, respectively,
both expressed in hours. Two scenarios are considered: Scenario 1 with values ttr = 12 and tpal = 24

hours and Scenario 2 with values ttr = 24 and tpal = 48 hours. As re-introduction streams can take
place up to two days after the pallet was handled at a DEPAL, information from IN32 is included till
two days after the stated time frame, as depicted in Figure 3.2. Clearly, the number of cases on a new
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Time frame inbound data

Time frame of interest: 15 weeks

Time frame data for re-introduction streams

2 weeks 2 days

Figure 3.2: Time frame data collection

(re-introduced) pallet should be less than or equal to the number of cases missing from the origin pallet.
The data collected according to the previously mentioned criteria and assumptions is referred to

as raw data (Brownlee, 2022). The raw data contains information about pallets entering and leaving the
system (i.e. passing the tray merge), including the number of cases that fell during this process. Each
row in the data represents an observation, which corresponds to a particular pallet in the system. Each
column represents a certain feature of the observations, including information about the pallet, the SKU
and the machine settings. The relevant features were selected along with Witron and Jumbo employees
and are discussed in Appendix B. The features originate from three data sources: (i) features from
Witron Master data (mostly machine related features), (ii) features from Jumbo Master data (mostly
SKU-related features) and (iii) features from inbound or tray merge, based on physical measures (pallet-
specific features).

Besides the features extracted from existing data sources, some new features were added. Some of
these features were added to include more information about the process between HBW and the tray
merge. The inner workings of the black box were thus not fully disregarded, as the processes within the
black box were analyzed to obtain these features (e.g. Number of Calls DEPAL and DEPAL i, using
report OP48a). These features and how they are defined are listed in Appendix B as well. The feature
Fallen cases Binary reflects if cases fell off a pallet or not and is the feature of interest. That is, the
goal is to predict this feature accurately using the ML techniques discussed in Section 2.2. The column
containing this information is referred to as the output feature, whereas all other columns are referred
to as input features.

3.2 Data Analysis

Data was collected for a period of fifteen weeks according to the criteria listed in Section 3.1. Before
the collected raw data can be used as input for ML techniques, it usually needs to be transformed
by applying certain data preparation techniques. Preparing the raw data well is very important and
potentially has a big influence on the performance of a prediction model (Hadley & Whitin, 1963). For
instance, many algorithms require that all input features are transformed into numeric features, even
though they appear as categorical, ordinal or binary features in the raw data. Moreover, some ML
techniques have specific requirements or characteristics, such as performing worse when two features
are highly correlated (Brownlee, 2022). Appendix C lists all data preparation techniques applied to the
dataset of interest.

As stated, two different scenarios were tested for the time-periods of the re-introduction streams;
the obtained estimates for the number of fallen cases are listed in Table 3.1. The datasets contained
120 626 observations, cases fell off 4.2% and 4.1% of these pallets for Scenario 1 and 2, respectively.
Moreover, these estimates indicate that each week, nearly 1 000 cases fell between inbound and tray
merge, which corresponds to 0.12% and 0.11% of the inbound volume (Cases Pallet) for Scenario 1 and
2, respectively. The monetary value of these fallen cases equalled e164 735 and e163 880 for Scenario 1
and 2 respectively, corresponding to more than e10 000 per week. Note that Jumbo’s current estimates,
based on manual registration, suggest that each week approximately 200 cases fall in the entire warehouse
(including all OPM, CPS and DPS processes). Due to inaccurate manual registration, Jumbo highly
underestimates the real number of fallen cases.
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Table 3.1: Number of fallen cases for Scenario 1 (ttr = 12 and tpal = 24 hours) and Scenario 2 (ttr = 24 and tpal = 48

hours)

Fifteen weeks of data

Cases Pallet 12 903 103

Cases Tray Merge 12 886 339

Difference 16 764

Scenario 1 Scenario 2

Re-introduced cases on trays 1 487 1 654

Re-introduced cases on pallets 319 225

Fallen cases 14 958 14 830

Fallen cases Binary = Yes 5 045 4 960

For both scenarios, first the cases re-introduced on trays were added to the output and subsequently
the cases re-introduced on pallets were added. As one would expect, the number of re-introduced cases on
trays is higher for Scenario 2 than for Scenario 1, as a longer period is allowed for the re-introduction. A
similar effect would be expected for the number of re-introduced cases on pallets, but the reverse is true.
Apparently, cases for some SKUs are re-introduced both on trays and pallets in Scenario 2. After adding
the re-introduced trays to the output for these SKUs, the remaining number of missing cases appears to
be less than the number of cases on a re-introduced pallet. Consequently, the latter stream is not added
to the output and the remaining number of cases for these SKUs are considered as fallen. Conversely, in
Scenario 1 the re-introduced trays were not added to the output as the re-introduction took longer than
12 hours. As a result, the remaining number of missing cases is less than or equal to the number of cases
on a re-introduced pallet, such that this stream could be added to the output. This situation shows that
the applied method is not completely accurate. Still, the re-introduction streams cannot be redirected
to a given pallet in any other way, meaning that there is no possible way to overcome this inaccuracy.
In the remainder of this thesis, all analyses will be performed using the dataset from Scenario 2.

To analyse the data, the dataset was separated based on the Fallen cases Binary feature, to visually
check if pallets with fallen cases (i.e. minority class) have different characteristics from pallets without
fallen cases (i.e. majority class). That is, the distribution of all features was analyzed for the majority
and minority classes separately. The figures visualising those distributions are depicted in Appendix D.

From these figures can be derived that cases of SKUs in the minority class tend to be small, such
that more cases fit on a single pallet. That is, the distribution of all features indicating the size of a
single case (e.g. Length Case, Height Case, etc.) is more shifted to the left for the minority class than for
the majority class. Furthermore, the distribution of features related to the number of cases on a pallet
(e.g. Cases Pallet, Layers) is more shifted to the right for the minority class. Consequently, pallets with
fallen cases appear to have more cases on them when they enter the warehouse. This is a sensible effect,
as a pallet with many small cases is likely to be more unstable than a pallet with fewer large cases.

In addition, the Number of Calls DEPAL feature appeared to be greater for minority class observa-
tions than for majority class observations. Apparently, making more movements through the warehouse
results in more fallen cases. This finding is closely related to the previous finding, as pallets with more
inventory on it, are more likely to be partially depalletized. Hence, besides the fact that smaller cases
could result in more unstable pallets, they also result in more partial depalletizations and thus more
movements through the warehouse, increasing the risk of falling even more.

Not surprisingly, the distributions show that minority class observations pass DEPAL 6 and DEPAL
7 more often than majority class observations. These DEPALs can also be used for manual depalletiza-
tion. Therefore, pallets with errors (e.g. due to fallen cases) are often sent to these DEPALs. Finally, the
largest percentage of minority class observations originated from the Sodas (Dutch: Frisdrank) group,
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which is not true for the majority class observations. Apparently, SKUs in this group have a higher risk
of falling.

The data collection method described in this chapter appeared to be effective in finding an estimate for
the number of fallen cases, given the available data sources. These estimates indicate that each week,
nearly 1 000 cases fell between inbound and tray merge solely, which is much higher than Jumbo’s current
estimates. These fallen cases cost Jumbo more than e10 000 on a weekly basis, and bring additional
cleaning cost, potential machine downtime and decreased service quality. As such, the collected data
confirmed the problem of Jumbo’s CDC in Nieuwegein and emphasizes the need to establish methods to
decrease the number of fallen cases.

As indicated, the applied method is not completely accurate, due to the discrepancy in the re-
introduction streams. To increase the accuracy of the data, additional information could be added to
report IN32, to better clarify the reason of a re-introduction. In the current report, no information
is present that clearly distinguishes one re-introduction stream from another. Therefore, additional
assumptions were needed to re-direct re-introduced cases to particular pallets. By better clarifying the
reason of a re-introduction, the re-introducted cases can be easily linked to a pallet and no additional
assumptions are needed.
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Chapter 4

Prediction model

The goal of Research Question 2 was to build a prediction model that accurately predicts whether cases
will fall off a new pallet entering the system (i.e. for out-of-sample data). Moreover, the goal is to find
SKU-, process-, and machine related characteristics that influence the likelihood of falling.

To build the prediction models, the dataset discussed in the previous chapter was used, contain-
ing approximately 120 000 observations. Of this dataset, 80% of the observations was used to train the
model, 10% was used to validate the model and select the best hyperparameter values, and the remaining
10% was used to test the model. The samples in each dataset were randomly selected, whilst ensuring
a constant ratio of imbalance among all datasets. The goal of the prediction models is to accurately
predict the Fallen Cases Binary feature. As this feature was derived from the Fallen Cases feature, this
latter feature is a perfect estimator of the output feature. Therefore, this feature was removed when
training the models. As such, a dataset was left with 120 (transformed) input features.

Two ML techniques were applied to find accurate out-of-sample predictions: an RF and an MLP.
Moreover, in Section 2.2.3, Resampling and CSL were introduced as methods to account for the imbal-
anced dataset, to improve the predictions of the ML techniques. Both Resampling as CSL were applied
in combination with RF and MLP, to find the best model for the current application. Sections 4.1
and 4.2 discuss how the RF and MLP models were build, respectively, and how they performed. The
performance of both methods is compared in Section 4.3.

4.1 Random Forest

In Section 2.2.1 and Appendix A the inner workings of an RF and the important hyperparameters
were discussed, respectively. Based on this information, several RF models were build with different
hyperparameter values, which are listed in Table 4.1. First, Oshiro et al. (2012) proved that the number
of trees T in an RF is not necessarily a hyperparameter that needs to be optimized: choosing a large
number of trees appears to work well in general. Hence, this parameter was set equal to 1000 trees for all
models. The size of the random subset m was set equal to √p, with p being the number of input features.
This is a commonly used value used for classification problems and appeared to work well in practice
(Bernard et al., 2009). For each model, the entire training dataset was used (i.e. full sample). The
samples used in each single tree in a forest were drawn with or without replacement from the training
sample (potentially after resampling was performed). Three values were tested for the maximum depth
of the tree d, to measure its effect on the performance of an RF and prevent overfitting. The Gini
function was used in all models, since Tangirala (2020) showed that the split criterion function does not
affect the performance of an RF. Lastly, the scaling method was added as a hyperparameter to the RF
models, as it highly depends on the dataset whether standardization or normalization of the numerical
features works better (Brownlee, 2022).

First, an RF was fit for all above-mentioned hyperparameters combinations without accounting
for the imbalanced dataset. Subsequently, the effects of Resampling the data beforehand and CSL
(i.e. adding a minority class cost to the split-criterion function) were tested. For Resampling, both
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Table 4.1: Hyperparameter values tested for RF

Hyperparameter Number
of values

Tested values

Number of trees T 1 1000
Size of random subset m 1 √

p

Sample size n 1 Full sample
Sampling with replacement 2 With and without
Maximum depth d 3 10, 25, 50
Split-Criterion 1 Gini index
Scaling method 2 Standardization, normalization

No method to account for imbalance 1
Resampling method 2x3 Random undersampling, SMOTE

with fractions 1
3 , 2

3 , 1
Cost Balance 3 Minority cost equals 0.75IR, IR, 1.25IR

undersampling of the majority class (using Random Undersampling) and oversampling of the minority
class (using SMOTE) were tested, with three different fractions of resampling. For CSL, three different
values were tested for the misclassification cost of the minority class. In C. Castro & Braga (2013), this
cost was set equal to the IR. To evaluate the effect of this parameter, 25% below and above this ratio
was tested as well.

A separate model for each combination of hyperparameters was implemented in Python using
the scikit-learn library, which allows for quick and easy implementation of an RF. That is, 12 models
were tested without accounting for the imbalance in the data, 72 models were tested with Resampling
(using the imblearn library) and an additional 36 models were tested with CSL. All models were trained
on the training dataset and evaluated on the validation dataset. From all these models, the model that
performed best on the validation dataset was selected. Moreover, the feature importance of the best
performing models was analysed, to select the subset of features that were most relevant in predicting
the output feature. Subsequently, the best model was fit again on this subset of features, to check if the
performance improves without the presence of irrelevant features. Based on these results, the best model
and best subset of features were selected to evaluate the performance on the test set.

Results

Figure 4.1 visualizes the performance on the validation dataset of all models with different hyperparame-
ter combinations. Three performance measures are depicted: the overall accuracy, the recall (TPR) and
the AUC. The goal is to find a model that scores reasonably well on all three performance measures.
To achieve this, the model with the highest AUC should be selected, as this measure indicates whether
the model is able to discriminate well between the minority and majority class (Probst & Boulesteix,
2017). That is, the AUC score represents a trade-off between recall and accuracy. As such, higher levels
of the AUC could result in higher levels for the other two measures as well, which is a desired effect.
Conversely, in imbalanced data settings, higher accuracy scores could result in lower recall scores, and
vice versa.

This effect is visualised in Figure 4.1. All models on the imbalanced dataset achieved an accuracy
of 96%, but scored very badly on recall. Apparently, these models were not able to distinguish the
minority class observations. Consequently, the AUC performance is close to its minimum value (0.50) as
well. As the goal is to accurately predict those observations (and thus achieve a high recall and AUC)
these models were not applicable for the current context. The different hyperparameter settings had
little influence on the performance of these models: due to the imbalanced dataset all models were not
able to distinguish the minority class observations.

27



Imbalanced Resampling CSL0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

(a) Accuracy

Imbalanced Resampling CSL0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

(b) Recall

Imbalanced Resampling CSL0.0

0.2

0.4

0.6

0.8

1.0

AU
C

(c) AUC

Figure 4.1: Box plots of three performance measures for results on validation dataset, for RF models without accounting
for the imbalance in the data (Imbalanced), with Resampling or with CSL.

In contrast, several models using Resampling or CSL were better able to predict the minority class:
these models achieved a maximum AUC of 71% and 69% with an adherent recall of 66% and 66%,
respectively. Figure 4.1 clearly shows the trade-off between these two measures and the accuracy: to
achieve higher recall and AUC performances, a slight drop in the accuracy should be accepted. The
figure shows that on average, the Resampling models scored better on recall and AUC than the CSL
models. Still, the performance of the best model of both methods is comparable.

To understand the effect of the hyperparameter settings, the performance of all models using Resampling
or CSL was visualized in pairwise plots, which are depicted in Appendix E. That is, in each pairwise
plot the levels of two hyperparameters were changed, whereas the values of all other hyperparameters
were kept constant. From these pairwise plots could be derived that the scaling method and whether
the samples were drawn with or without replacement only had little influence on the performance of all
models. In general, normalization of numerical features performed slightly better in terms of recall and
AUC than standardization and sampling without replacement performed slightly better than sampling
with replacement.

For the models using Resampling, the maximum depth and whether the dataset was over- or
undersampled greatly influenced the performance of the models. All models with undersampled data
achieved higher recall and AUC performances than all models with oversampled data, for all different
tree depths and resampling fractions. Moreover, completely under- or oversampling the dataset (i.e. a
resampling fraction of 1) appeared to work better than a lower resampling fraction. Finally, RFs with
more shallow trees resulted in better recall and AUC scores on all oversampled datasets, while this was
only true if the dataset was fully undersampled. Otherwise, the ability of the model to predict the
minority class decreased as the maximum depth of the tree decreased.

In all models using CSL, RFs with more shallow trees outperformed RFs with higher depth trees.
For every value of the minority class cost, the trees with more depth were not able to distinguish the
minority class observations well. In addition, the recall and the AUC of the RFs with a maximum depth
of ten increased as the minority class cost increased. Hence, a higher minority class cost proved to work
better than a lower minority class cost.

As stated, the final goal is to find a model with a reasonable score on all three performance measures.
To achieve this, the best models were selected based on the highest AUC. For the models with resampling,
the best Resampling model was a completely undersampled model (i.e. resampling fraction of 1) with
a maximum depth of 10 splits. The best CSL model had a maximum depth of 10 splits and a minority
class cost of 30 (i.e. 1.25 times the IR). Both models had normalized numerical features and all samples
were drawn without replacement. The performance of these models are listed in Table 4.2, from which
can be derived that the best Resampling model slightly outperforms the best CSL model: having the
same accuracy, the Resampling model is able to achieve a higher recall and AUC score.
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Table 4.2: Performance of best RF models on the validation and test dataset for different sets of features, with a maximum
depth of 10 splits, sampling without replacement, normalized numerical features and (i) trained on a fully undersampled
majority class (Resample model) or (ii) with a minority class cost of 30 (CSL model).

Accuracy Recall AUC Number of
features

Results best Resampling model

Full model 0.74 0.67 0.71 120
Feature importance above 0.001 0.74 0.66 0.70 85
Feature importance above 0.01 0.75 0.65 0.70 29
Feature importance above 0.02 0.75 0.61 0.68 16

Results best CSL model

Full model 0.74 0.65 0.70 120
Feature importance above 0.001 0.74 0.64 0.69 77
Feature importance above 0.01 0.77 0.61 0.69 30
Feature importance above 0.02 0.76 0.62 0.69 14

Results on test set

Resampling 0.01 model 0.72 0.64 0.68 29
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Figure 4.2: Ordered feature importance of 120 input features of the best RF models

The feature importance of the best Resampling and CSL models are visualized in Figure 4.2. These
figures show that the importance decreases drastically in the number of features; only a few features
have high importance values as compared to all other features. Moreover, the importance of a large
number of features is close to zero in both models. Consequently, a large set of features seems to be
irrelevant in predicting the outcome feature.

Based on these figures, three cutoff values for the feature importance were derived to find three
subsets of relevant features: a higher cutoff value excludes more features from the subset. The best
Resampling and CSL models were fit again on these subsets of features: the obtained performances are
listed in Table 4.2. The table shows that for both models, the recall and AUC performances slightly de-
creased as the number of features decreased, but the performance is still comparable to the performance
of the full models. Apparently, fitting both models on only a small subset of all features still yields
reasonable results. Moreover, the subsets of most important features were nearly equal for both models.

Considering the results listed in Table 4.2, the Resampling model on the subset of features having an
importance above 0.01 (Resampling 0.01 model) was selected as the final best model. This model has
a negligible difference in performance as compared to the full model, whereas the number of features
in the model was reduced with more than 75%. Moreover, the recall and AUC performance of this
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model is equal to the performance of the full CSL model, whilst achieving a better accuracy. Hence, the
performance of this model is higher than the performance of all CSL models. The subset of features used
for this model is listed in Figure 4.6 and will be discussed in more detail in Section 4.3.

To assess the final performance of the RF, the Resampling 0.01 model was fit on the test set, which
performance is listed in Table 4.2. The table shows that the performance on all three measures on the
test set is slightly lower, but still comparable to the performance on the validation set. Consequently,
the model is believed to perform reasonably well on out-of-sample data and does not overfit on in-sample
data.

4.2 Multilayer Perceptron

The way an MLP learns and the adherent important hyperparameters were introduced in Section 2.2.2
and Appendix A, respectively. In addition to this information, several results from the RF models
were used to build the MLP models. First, the best RF models showed that the performance was not
significantly affected when the model was fit on only a subset of relevant features. Therefore, the best
RF model (Resampling 0.01 model) was used as feature selection method and all MLP models were fit
on the subset of features listed in Table 4.6. Additionally, RF models with normalized numerical features
performed slightly better than RF models with standardized numerical features. To limit the number of
hyperparameter values, the numerical features were normalized in all MLP models.

All other hyperparameter values are listed in Table 4.3. Only one hidden layer was used in all
models, as such configurations appeared to be able to approximate a large set of functions (Athey &
Imbens, 2019; Lippmann, 1987). The number of neurons included in this hidden layer is an important
parameter, as it affects the performance and the complexity of the model (Abraham, 2005). To measure
the effect of the number of neurons in this layer, three values were tested: 2p/3 ≈ 19 (Wang, 1994),
2p = 58 and 3p = 87 (Kanellopoulos & Wilkinson, 1997) neurons. To properly train the model, the
minimum number of training samples should be five times the number of free parameters in the model
(Messer & Kittler, 1998). As the entire dataset contains approximately 120 000 observations, this was
true for most hyperparameter settings. However, if a dataset is undersampled, the number of training
samples decreases significantly. Consequently, the undersampled datasets were too small for the largest
configuration (i.e. 87 neurons in the hidden layer). Therefore, only two configurations were tested for
the undersampled datasets: 19 and 58 hidden neurons.

The sigmoid function was used as an activation function in all models. This is the most commonly
used function and appears to work well in many contexts. The weights and biases were initialized as
normally distributed random variables, as depicted in Table 4.3. For comparison, the same initialization
(i.e. starting point) was used in all models. However, as was explained in Section 2.2.2, the exact starting
point potentially influences the performance of the model. To account for this, ten different initializations
were tested for the best model. Following the approach of Nielsen (2015), the order of magnitude of the
learning rate η was obtained by trial and error; a learning rate between 0.001 and 0.01 appeared to
work well for the current data and configurations. A similar approach was used for the regularization
parameter λ, which showed that a maximum value of 10 worked well. To test the effect of regularization,
no regularization was applied in some models (i.e. λ = 0).

As designated in the previous subsection, the model with the highest AUC should be selected, as
this performance measure takes both the accuracy and the recall of the model into account. For similar
reasons, the AUC was used in the stopping criterion, which was set such that the algorithm terminates
if the AUC on the validation set did not improve in the last 50 epochs. Finally, to speed up the process,
the stochastic gradient descent rule was used in the backpropagation algorithm. An explanation of this
rule is included in Appendix F.

Similarly as for the RF models, a separate MLP was fit for all above-mentioned hyperparameter
combinations, together with (i) no method to account for the imbalanced dataset, (ii) Resampling or
(iii) CSL. The tested values for Resampling and CSL were equal to those tested for the RF models.
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Table 4.3: Hyperparameter values tested for MLP

Hyperparameter Number
of values

Tested values

Number of hidden layers 1 1 layer
Number of neurons in hidden layer k 3 (2) 19, 58, 87
Activation function 1 Sigmoid function
Initialization of weights and biases 1 (10) Weights ∼ N (0, 1√

nl
)

Biases ∼ N (0, 1)

Learning rate η 3 0.001, 0.005, 0.01
Regularization λ 3 0, 5, 10
Cost function 1 Cross entropy function
Stop criterion 1 No AUC improvement in the last 50 epochs
Scaling method 1 Normalization

No method to account for imbalance 1
Resampling method 2x3 Random undersampling, SMOTE

with fractions 0.33, 0.67, 1
Cost Balance 3 Minority cost equals 0.75IR, IR, 1.25IR
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Figure 4.3: Box plots of three performance measures for results on validation dataset, for MLP models without accounting
for the imbalance in the data (Imbalanced), with Resampling or with CSL.

Consequently, 27 models were tested without accounting for the imbalance in the data, 54 and 81 models
were tested for undersampled and oversampled datasets, respectively (using the imblearn library), and
81 models were tested with CSL. All models were trained on the training dataset and evaluated on the
validation dataset. The model that performed best on the validation dataset was fit on the test dataset
to assess the final performance of an MLP.

Results

In Figure 4.3 the performance of all models with different hyperparameter combinations are summarized
in box plots. The figure shows that all models on the imbalanced dataset and with CSL performed badly.
These models achieved a high accuracy, but scored extremely low on recall and AUC. Hence, these mod-
els were not able to distinguish the minority class observations well and are therefore not applicable for
the current context. Apparently, the MLP configurations tested here only worked well if the data was
resampled beforehand, as the figure shows that the models with Resampling performed much better on
average. It appears that the different hyperparameter settings influenced the performance significantly,
as some models achieved a recall of 0% while others achieved 100%. To understand the effect of the
hyperparameter settings for the models with Resampling, pairwise plots were used, which are listed in
Appendix G.

From the pairwise plots could be derived that especially the fraction of resampling greatly influ-
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enced the performance of the MLPs. Especially for all models where the minority class was oversampled,
no other hyperparameter significantly influenced the performance. For these models, the recall scores
increased as the resampling fraction increased, whereas the AUC score remained relatively stable. Hence,
these plots clearly show that the AUC reflects a trade-off between accuracy and recall: at the same level
of AUC, a higher accuracy score results in a lower recall score. Therefore, a model with a high AUC is
desired, as this results in a higher value for the other two measures as well.

If the majority class was undersampled instead, the learning rate η also played a role in the model’s
performance. Again, the recall and AUC scores of these models increased as the resampling fraction
increased, but also as the learning rate η increased. Especially η = 0.001 resulted in a low performance,
whereas the performance appeared to be indifferent for the higher values. For all sampling fractions,
oversampling the minority class worked better than undersampling the majority class.

The MLP model with the highest AUC score was a completely oversampled model (i.e. resampling
fraction of 1), with learning rate η = 0.01, no regularization (i.e. λ = 0) and 87 neurons in the hidden
layer. As suggested in the beginning of this section, ten different weight and bias initializations were
tested for this model, to test whether a particular initialization would affect the performance of the
model. The average performance of these ten initializations on the validation set is listed in Table 4.4.
All runs achieved the same AUC score of 66%, an accuracy between 67% and 72% and a recall score
between 60% and 65%. Hence, these results reflect once again that the AUC score represents a trade-off
between accuracy and recall. As the algorithm was terminated if the AUC score did not improve, it
seems that an AUC of 66% was the maximum score this MLP configuration could attain. As the dif-
ferent weight and bias initializations resulted in some variations in accuracy and recall score, the final
performance on the test set was also evaluated for ten different initializations. The average performance
of these models is listed in Table 4.4. These results show that the AUC on the test set increased as
compared to the performance on the validation set. The same holds for the recall score, whereas the
average accuracy slightly decreased. All runs achieved an AUC score of 67%, an accuracy between 64%
and 68% and a recall between 66% and 71%. Consequently, the accuracy performance is slightly lower
than on the validation set, whereas the recall performance is slightly higher. Apparently, even though no
regularization was applied in the MLP, the model was still prevented from overfitting on the in-sample
data.

Table 4.4: Average performance of best MLP model on validation and test dataset, trained on a completely oversampled
minority class, with learning rate η = 0.01, no regularization and 87 neurons in the hidden layer, for ten different weight
and bias initializations.

Model Accuracy Recall AUC

Average score Validation set 0.69 0.62 0.66
Average score Test set 0.65 0.69 0.67

4.3 Performance of prediction models

The goal of the prediction models was to accurately predict the minority class observations, whilst si-
multaneously achieving a reasonable accuracy and AUC score. In Table 4.5 the performance of the best
RF and MLP models are summarized, which shows that both models achieved a similar score on AUC,
whereas the best RF model scored better on accuracy and the best MLP scored better on recall. In
addition, it should be noted that an RF requires little tuning, while for an MLP many parameters need
to be set by the user. Considering that an RF is easier to implement and the fact that the best RF
model achieved a higher AUC value, this technique is preferred over an MLP.

Remarkable is that for the RF models, undersampling the majority class proved to work better,
while for the MLP models oversampling the minority class gave better results. Yet, for both models
complete under- or oversampling appeared to work better than models with a lower resampling fraction.
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Table 4.5: Performance of best RF and MLP model.

Accuracy Recall AUC

Best RF model 0.72 0.64 0.68
Best MLP model 0.65 0.69 0.67

Moreover, CSL with a relatively high minority class cost worked well for the RF models, but not at all
for the MLP models, as these results were similar to the models without CSL.

Besides accurately predicting the minority class observations, the goal of the second subquestion was to
find SKU-, process- and machine related characteristics that influence the likelihood of falling. The fea-
ture importance of the best RF model was used to find the subset of relevant features, which are listed in
Table 4.6. Many of the features in this list showed a significant difference in distribution for the majority
and minority class, as depicted in Appendix D. To start, the most important feature appeared to be
Number of Calls DEPAL, indicating that a partial depalletization (and thus more movements through
the CDC) increases the likelihood of falling. Furthermore, the SKU-related characteristics mainly relate
to the size of a single case or the number of cases on a pallet. Apparently, smaller cases (and consequently
more cases on a pallet) have a higher risk of falling. As indicated in the previous chapter, this can be
devoted to the fact that a pallet with many small cases is probably more unstable than a pallet with
fewer large cases, or to the fact that pallets with more inventory on it are more likely to be partially de-
palletized. In the latter scenario, the Number of Calls DEPAL is the indirect true cause of the increased
likelihood of falling.

Whether a given pallet was send to DEPAL 6 or DEPAL 7 for depalletization appears to be im-
portant as well. However, pallets with problems (such as cases falling) are often send to these DEPALs
as they allow for manual depalletization. As such, it could be true that these DEPALs are not the
cause of falling but are used to solve the issue instead. Still, the reason of falling can also be due to
malfunctioning of these DEPALs and therefore these features were kept in the dataset.

Furthermore, Table 4.6 shows that Weight Difference Pallet and Height Difference Pallet had a
high importance in predicting the outcome feature as well. Nevertheless, looking at the distribution of
these features in Appendix D, no significant difference could be found for the majority and minority
class. Still, these two features are one of the few features in the dataset that are pallet specific, as
they are based on physical measures. That means that the values for these features are unique for each
observation, which potentially explains why they are important in predicting the outcome feature.

A higher demand rate also resulted in a higher risk of falling. This is a sensible effect, as more
pallets were handled in the stated time frame, indicating more possibilities for cases to fall. A similar
line of reasoning can be applied to the features indicating the size of the supplier (Weekly Pallets and
SKUs Supplier): a larger supplier ships more pallets, which also increases the risk of falling. Finally, the
most important machine related features appeared to be Fix next layer, Skirt Touch Height and Vacuum
Pressure. These three features also show small differences in distribution for the majority and minority
class.

Concluding, the Number of Calls DEPAL feature appeared to be most important in predicting the
likelihood of falling. Consequently, minimizing the number of partial depalletizations will minimize the
number of fallen cases as well. To achieve this, a mathematical model is introduced in the next chapter.
Moreover, many important features relate to the size of a single case and the number of cases on a pallet.
As these pallets are more likely to be partially depalletized (and thus make more movements through
the warehouse) and are relatively unstable, they should be handled with more care. At different steps
in the process (i.e. the infeed stations, each visit at a DEPAL, etc.), the stability of the pallet should be
judged by an operator and, if necessary, improved by adding additional stretch wrapping or re-stacking
the pallet. That way, the number of fallen cases can be limited as much as possible.
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Table 4.6: Subset of features having a feature importance above 0.01 in best RF model

Feature Importance Feature Importance

Number of Calls DEPAL 0.088 Weight Tolerance 0.020
Volume Case 0.076 Height Tolerance 0.020
Cases Pallet 0.066 Height Width Ratio 0.019
DEPAL 6 Yes 0.045 Fix next layer 0.019
Cases layer 0.044 Weekly Pallets 0.018
Length Case 0.035 Length Width Ratio 0.018
Width Case 0.034 SKUs Supplier 0.017
Weight Case 0.031 Maximum layers 0.016
Weight Difference Pallet 0.030 Skirt Touch Height 0.015
Height Case 0.027 DEPAL 7 Yes 0.015
Weight Pallet 0.025 Layers 0.015
Height Difference Pallet 0.024 Demand rate Sign 0.014
Height Pallet 0.024 Vacuum Pressure 0.012
Demand rate 0.023 Distance between products 0.010
Pallet Area Fill rate 0.022

Finally, as higher values for the Weight Difference Pallet and Height Difference Pallet features
appeared to increase the likelihood of falling, it might be valuable to use lower values for the Weight
Tolerance and Height Tolerance features. That way, pallets with a higher difference between physical-
and expected measures are not immediately allowed to enter the system, but require a manual check
beforehand. These additional checks can be used to judge the stability of the pallets and check if the
physical inventory really corresponds to the information in the system. As lowering these tolerance
levels will result in an increase in manual labour, the tolerance levels should be set such that a desired
balance is obtained between performing too little (possibly resulting in fallen cases) and too much checks
(labour-intensive).
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Chapter 5

Minimize Partial Depalletizations

The goal of this chapter is to establish a method to minimize the number of partial depalletizations (i.e.
reduce the feature Number of Calls DEPAL). Visually analysing the data in Section 3.2 already revealed
that this feature adversely affects the number of fallen cases, as pallets in the minority class appeared
to be partially depalletized more often (52.7% of all pallets in this class) than pallets in the majority
class (25.6% of all pallets in this class). Not surprisingly, the prediction models introduced in Chapter 4
showed that this feature is most important in predicting the Fallen Cases Binary feature. As such, the
number of fallen cases can be reduced by minimizing the number of partial depalletizations.

The next section sheds a light on the current replenishment strategy for the TWH and the resulting
distribution of the Number of Calls DEPAL feature. Then, in Section 5.2 a mathematical model to
minimize the number of partial depalletizations is presented, followed by the implementation and the
obtained results. In Appendix J, a summary is included with all variables, parameters and sets used
within this chapter.

5.1 Current Replenishment Strategy

As stated, the inventory management system in the TWH corresponds to an (s, nQ) system. That is,
the stock in the TWH is continuously monitored such that if the current stock for a given SKU falls
below the reorder level, a new replenishment is triggered. Each reorder level is based on a certain batch
size, which are both dynamically set and differ per day for each SKU. The currently used definition for
the reorder levels is included in Appendix H. The batch size Qca

i,t for an SKU i on day t is based on the
forecasted customer demand F ca

i,t for the upcoming days, using the following rule:

Rule Batch Size: If the number of cases on a full pallet corresponds to less than RFP days
of forecasted demand, the batch size equals the number of cases on a full pallet. Otherwise,
the batch size equals the maximum of (i) the number of cases on one layer and (ii) the
maximum number of layers such that the total number of cases corresponds to less than
RPP days of forecasted demand.

Here, RFP reflects the maximum days of stock on a full pallet and RPP reflects the maximum days of
stock on a partial pallet. The current strategy uses RFP = 5 and RPP = 3 days. Now, suppose the
forecast for the following five days equals 10 cases per day for a given SKU i. Moreover, suppose that the
number of cases on a full pallet FP ca

i equals 60 cases, having P ca
i = 12 cases per layer. As FP ca

i = 60

corresponds to more than five days of forecasted demand (i.e.
∑5

i=1 F
ca
i,t = 50), the batch size is not

set equal to a full pallet. Following the second part of the rule, the batch size is set equal to two layers
instead (2P ca

i = 24). That way, the maximum batch size is chosen, such that it corresponds to less than
three days of forecasted demand (

∑3
i=1 F

ca
i,t = 30). Note that if the forecasted demand in the following

three days would be less than 12 cases in total (i.e.
∑3

i=1 F
ca
i,t < 12), the batch size would still be set

equal to one layer, as this is the minimum batch size by definition.
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Figure 5.1: Empirical analysis of Number of Calls feature

Mathematically, this rule can be expressed as:

Qca
i,t =

FP ca
i if

∑RFP
t=1 F ca

i,t ≥ FP ca
i

max{P ca
i , ⌊

∑RPP
t=1 F ca

i,t

P ca
i

⌋} otherwise,
(5.1)

where ⌊x⌋ means rounding x down to the nearest integer. Concluding, the batch size Qca
i,t of SKU i on

day t corresponds to the number of cases on (i) one layer, (ii) a multiple of complete layers or (iii) a
full pallet, where the latter is the preferred option. Consequently, the largest share of pallets is fully
depalletized at once.

In standard (s, nQ) systems, the replenishment quantity equals nQ, where n corresponds to the
minimum number of batches Q required to increase the inventory position above the reorder level.
Jumbo uses a similar system, with an additional rule that favors the replenishment of half of a pallet
over other partial pallets. Consequently, replenishment quantities of only a few layers are rounded up
to half pallets, such that the entire pallet is depalletized in only two calls instead of more calls. The
explanation of the rule is included in Appendix H and the effect is visible in Figure 5.1a. This figure
shows the percentage of cases picked in the first call (excluding fully depalletized pallets) and clearly
visualises that this percentage often lies between 50% and 60%. That is, the replenishment quantity in
the first call corresponds to (nearly) half a pallet for many observations.

Even though Jumbo already implemented several rules to favor full depalletization over partial
depalletization and to limit the number of partial depalletizations, there is room for further improvement.
Figure 1.6 shows that the utilization in the TWH is on average 77.5% and 64.2% for channels and
locations, respectively, indicating that additional capacity is available to shift more inventory to the
TWH and partially depalletize less. Furthermore, the current system still shows some inefficiencies.
To start, Figure 5.1a also shows that the number of cases picked in the first call equals up to 95%
for some observations, indicating that some pallets were send back to the HBW with only one layer
left. Especially for such replenishments, a partial depalletization seems to be redundant and should be
prevented. Besides, Figure 5.1b shows the number of days between the first and the last call, which
equals only a few days on average. As the remaining inventory on a pallet is picked within short notice,
shifting to a full depalletization at once seems to be more efficient. The following section introduces a
mathematical model that minimizes the total number of partial depalletizations, to minimize the number
of fallen cases and simultaneously overcome such inefficiencies.

5.2 New Replenishment Strategy

The mathematical model was build to make decisions on a tactical level (e.g. which SKUs should be
replenished in what quantities during period |T |?) rather than on an operational level (e.g. which pallet
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should be send to which DEPAL at what time?). The model was based on historical data, such that the
solutions could be compared with the actual replenishment strategy. In reality, the replenishments of the
TWH are based on the (s, nQ) logic, where a replenishment is immediately triggered if the inventory po-
sition drops below the reorder level. However, as the mathematical model makes replenishment decisions
on a daily level, the (R, s, nQ) logic was followed instead (explained in Section 2.3), using a review period
of R = 1 day. This logic was used to calculate initial replenishment quantities (say: order quantity) nQ.
Then, the model adjusts these order quantities such that the total number of partial depalletizations is
minimized. Preferably, the order quantities are rounded up to full pallets, but a replenishment quantity
lower than the order quantity is allowed as well. Due to limited TWH capacity, the model might decide
to postpone (part of) the order quantity for one SKU, such that pallets of other SKUs can be fully
depalletized at once. As a lower replenishment quantity potentially worsens the service quality of the
TWH, the model also minimizes the number of postponed layers.

5.2.1 Assumptions

The mathematical model was based on the following assumptions:

Replenishments from HBW to TWH have zero leadtime. In the model, the inventory on hand
is measured at the end of the day, triggering replenishment decisions. Even though the replenishment
decisions are made at the end of the day, it is assumed that they are evenly spread throughout the day
(which is true in reality) and can be finished at the end of the day. That way, the replenished quantities
can be immediately added to the inventory on hand of the next day.

Order of decisions. The inventory on hand is checked at the beginning of day t, for both the HBW
and the TWH. Customer demand takes place during the day. At the end of the day, a replenishment
decision is triggered if the inventory position (being the inventory on hand at the beginning of the day
minus the demand during the day and the outstanding backorders) dropped below the reorder level.
The replenishment quantities are immediately added to the inventory of the TWH for the next day
and immediately fulfill outstanding backorders. Moreover, new inventory delivered by external suppliers
during a given day, is added to the inventory of the HBW at the beginning of the next day.

Customer demand is deterministic. To properly compare the replenishment decisions made by the
model with the actual replenishment decisions made by the system, historic (deterministic) demand data
was used.

Customer demand can be fulfilled on the same or following day and is backordered instead.
In reality, customers are supposed to re-order an SKU on a subsequent day if the current stock is
insufficient to meet all demand. That is, the demand is not backordered but considered as lost sales
instead. However, as the model is based on historic (real) demand, the demand data already reflects
these corrections: if a demand could not be fulfilled from stock on day t, it is not visible in the data
on day t. Consequently, the demand data reflects what was actually picked on a given day. To ensure
no demand is lost and to mimic the behaviour of the actual system, the demand that could not be met
from stock immediately or with a delay of at most one day was added to the demand of the following
day. This corresponds to a system with backorders.

TWH demand can only be replenished during the same day and is lost instead. The TWH
demand refers to the order quantities obtained by the standard (R, s, nQ) logic. If the TWH demand
cannot be met due to insufficient inventory in the HBW or because the model decides to postpone (part
of) it due to limited capacity, the unfulfilled demand is not backordered. That is, a new replenishment
decision will be triggered in a subsequent day for the postponed layer(s).
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Reorder levels and batch sizes are dynamically set. The logic presented in Section 5.1 and
Appendix H was used to set all batch sizes and reorder levels. These parameters are used to calculate
the order quantities using the standard (R, s, nQ) logic.

FIFO handling of pallets is not a requirement. This is not necessarily true in reality, as most
products have an expiration date. However, CDC Nieuwegein only handles products that have a shelf
life of at least twelve days, so this relaxation can still be applied.

Each SKU has a fixed number of cases per layer. This assumption holds in the actual replen-
ishment strategy as well.

A fraction of α of the DEPAL and TWH capacity is reserved for high priority replenishment
orders. If the actual demand appears to be much higher than forecasted demand (and the stock in
the TWH appears to be insufficient to fulfil all demand), sufficient capacity should be available to
immediately depalletize pallets for these SKUs.

A fraction of β of the channel capacity is lost due to inefficient use of the channels. All
other channels are used efficiently (i.e. only one partial channel per SKU).

Only one SKU is allowed per channel. This is generally true in practice. Occasionally, a channel
contains more than one SKU due to certain re-allocations, but this is not desired.

Each week has six operation days. This corresponds to CDC Nieuwegein’s standard operating
scheme. However, occasionally customer orders are picked and TWH replenishments are performed on
the seventh day. Demand picked during that day is neglected in the model.

5.2.2 Mathematical model

This section introduces the mathematical model with all its parameters, variables and constraints. The
indices used in defining the variables all belong to a specific set, which are listed in Table 5.1. Moreover,
the superscripts indicate whether the variable is expressed in cases (all variables relating to the TWH)
or in layers (all variables relating to the HBW).

Table 5.1: Description of sets used in MINLP

Sets Description

I Set of SKUs i that have a batch size less than a full pallet and are included in the
MINLP.

Ifp Set of SKUs i that have a batch size equal to a full pallet during the entire period of
interest and are excluded from the MINLP.

T Set of days t considered in one period.
Xi Set of pallets x of SKU i present in the CDC during time period |T |

The first objective of the model is to minimize the total number of partially depalletized pallets during
a given time period of length |T |. The decision variable Θi,t,x is modeled as a binary variable, which
equals 1 if pallet x from SKU i was partially depalletized on day t and 0 otherwise.

min
∑
i∈I

∑
t∈T

∑
x∈Xi

Θi,t,x (5.2)
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The second objective is to minimize the total unmet demand of the TWH at the HBW (i.e. the “lost
sales”) during a given time period of length |T |. That is, the objective is to minimize the total number
of layers LSl

i,t that were ordered to replenish SKU i in the TWH but were not sent due to insufficient
inventory at the HBW or limited capacity in the TWH (such that the model decided to postpone the
demand).

min
∑
i∈I

∑
t∈T

LSl
i,t (5.3)

Any feasible solution to the problem complies with the following set constraints. To start, Constraint
(5.4) initializes the inventory on hand at the TWH (Icai,t) for day t = 1 as the start inventory in the TWH
SIcai .

Icai,1 = SIcai ∀i ∈ I (5.4)

Constraint (5.5) represents the inventory balance equation for the TWH for all other days. The inventory
on hand on day t+1 equals the inventory on hand of the current day (Icai,t), minus the customer demand
during that day (Dca

i,t), minus the unmet demand of the previous day (BOca
i,t−1) plus the unmet demand of

the current day (BOca
i,t) and plus the replenishment quantity of that day. As the replenishment quantity

(
∑

x∈Xi
REl

i,t,x) is expressed in layers, it is converted to cases by multiplying with the number of cases
per layer (P ca

i ).

Icai,t+1 = Icai,t −Dca
i,t −BOca

i,t−1 +BOca
i,t + P ca

i

∑
x∈Xi

REl
i,t,x ∀i ∈ I, t ∈ T (5.5)

Constraint (5.6) ensures that demand of day t (being the actual demand Dca
i,t plus the unmet demand

of the previous day BOca
i,t−1) is backordered if and only if the inventory on hand (Icai,t) is insufficient to

meet all demand. The variable Ωi,t is modeled as a continuous variable with values between 0 and 1 and
reflects the fraction of demand that is truly unmet.

This constraint also reflects that demand can be fulfilled on the same or following day. That is,
Ωi,t and BOca

i,t can both have value zero, even though the inventory on hand is insufficient to fulfill all
demand (i.e. Dca

i,t + BOca
i,t−1 > Icai,t). Constraint (5.5) ensures that this behavior can only happen if the

replenishment quantity can immediately be used to meet the remaining demand1.

Ωi,t (D
ca
i,t +BOca

i,t−1 − Icai,t) ≥ BOca
i,t ∀i ∈ I, t ∈ T (5.6)

It should be noted that the current constraint on the number of backorders is different than traditional
formulations. Oftentimes, this constraint is formulated as BOca

i,t ≥ Dca
i,t + BOca

i,t−1 − Icai,t (and defining
BOca

i,t as a non-negative variable). However, given the current formulation of the problem (i.e. the fact
that the model minimizes the total unmet demand of the HBW), this formulation potentially resulted
in solutions were (parts of) demand was backordered, even though there was ample inventory on hand2.
That way, higher levels of inventory on hand could be attained, triggering less replenishment decisions.
As this behavior is not desired in practice, the constraint was modified to Constraint (5.6), such that
demand was backordered if and only if the inventory on hand was insufficient to meet all demand.

Constraint (5.7) initializes the number of backorders of day 0 (i.e. the day before replenishment decisions
are made by the model) at zero. That is, the model starts with no outstanding backorders.

BOca
i,0 = 0 ∀i ∈ I, t ∈ T (5.7)

1Suppose Dca
i,t = 13, BOca

i,t−1 = 2 and Icai,t = 10. As such, the current inventory on hand is insufficient to meet the
total demand. Now, suppose the replenishment quantity equals 30 cases (i.e. P ca

i

∑
x∈Xi

REl
i,t,x = 30). This quantity

can immediately be used to fulfill the unmet demand of the current day. That way, the model is allowed to set Ωi,t = 0

and BOca
i,t = 0, such that the inventory on hand of the following day equals Icai,t+1 = 10 − 13 − 2 + 0 + 30 = 15 cases. If

the replenishment quantity would be less than 5 cases, the model is forced to assign a positive value to Ωi,t and BOca
i,t, to

ensure Icai,t+1 remains non-negative.
2Suppose Dca

i,t = 15, BOca
i,t−1 = 0 and Icai,t = 20. Then Dca

i,t +BOca
i,t−1 − Icai,t = −5, but BOca

i,t can still be positive.
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Constraint (5.8) determines the number of occupied (full and partial) channels (Ichi,t ) in the TWH for
each SKU. Each channel comprises four locations and each case of SKU i takes up Li locations.

Ichi,t ≥
Li I

ca
i,t

4
∀i ∈ I, t ∈ T (5.8)

Constraint (5.9) ensures that the total number of occupied channels does not exceed the TWH capacity
(Kch). From this capacity, α% is reserved for high priority replenishments, whereas β% of the capacity
is lost due to inefficient usage of the channels (i.e. multiple partial channels per SKU).∑

i∈I
Ichi,t ≤ (1− α) (1− β)Kch ∀t ∈ T (5.9)

Constraint (5.10) determines the order quantity (in cases) of the TWH placed at the HBW based on the
standard (R, s, nQ) logic. The total order quantity corresponds to a multiple ni,t of the current batch
size Qca

i,t. An order is placed if the inventory position (being equal to Icai −Dca
i −BOca

i,t−1) at the TWH
drops below the current reorder level scai,t.

ni,t Q
ca
i,t ≥ scai,t − Icai,t +Dca

i,t +BOca
i,t−1 ∀i ∈ I, t ∈ T (5.10)

Constraint (5.11) defines the unmet demand of the TWH as the difference between the order quantity
ni,t Q

ca
i,t (converted to layers) and the total replenishment quantity (

∑
x∈Xi

REl
i,t,x). As the objective is

to minimize the total unmet demand (i.e. minimize the sum of all LSl
i,t), the unmet demand will equal

zero if the replenishment quantity is greater than the ordered quantity.

LSl
i,t ≥

ni,t Q
ca
i,t

P ca
i

−
∑
x∈Xi

REl
i,t,x ∀i ∈ I, t ∈ T (5.11)

Similar as for the TWH, Constraint (5.12) initializes the start inventory for the HBW for day t = 1. The
inventory in the HBW (I li,t,x) is expressed in layers and defined for each pallet x ∈ Xi separately, as each
pallet potentially has a different number of layers on it.

I li,1,x = SI li,x ∀i ∈ I, x ∈ Xi (5.12)

Constraint (5.13) reflects the inventory balance equation for the HBW. The inventory on hand on pallet
x at day t + 1 is defined as the number of layers on a pallet on the current day (I li,t,x), minus the
replenished layers to the TWH during that day (REl

i,t,x), plus new inventory (in layers) delivered by
external suppliers (IT l

i,t,x). If a new pallet x enters the HBW on a given day t̂ > 1, then IT l
i,t̂,x

> 0

and IT l
i,t,x = 0 for all other t ∈ T . Moreover, as pallet x was not present at the HBW before day t̂, the

constraint ensures that I li,t,x = 0 for all t < t̂ and I li,t,x ≥ 0 for all t ≥ t̂.

I li,t+1,x = I li,t,x −REl
i,t,x + IT l

i,t,x ∀i ∈ I, t ∈ T , x ∈ Xi (5.13)

Constraint (5.14) ensures that the replenishment quantity from pallet x (REl
i,t,x) is less than or equal

to the total number of layers on that pallet x (I li,t,x). The variable Φi,t,x is modeled as a binary variable
which equals 1 if pallet x was send for depalletization and 0 otherwise. Hence, if pallet x was not send
for depalletization, the replenishment quantity from that pallet equals zero.

REl
i,t,x ≤ Φi,t,x I

l
i,t,x ∀i ∈ I, t ∈ T , x ∈ Xi (5.14)

Constraint (5.15) ensures that Θi,t,x equals 1 if a partial depalletization has taken place (i.e. REl
i,t,x ≤

I li,t,x) and 0 otherwise.

Θi,t,x ≥ 1−
REl

i,t,x

Φi,t,x I li,t,x
∀i ∈ I, t ∈ T , x ∈ Xi (5.15)
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Constraints (5.16) till (5.18) represent the maximum capacity of the DEPALs, as they can only depalletize
a given number of cases (Cca), layers (Cl) and pallets (Cp) per day. Note that α% of the capacity is
reserved for high priority replenishments.∑

i∈I

∑
x∈Xi

P ca
i REl

i,t,x ≤ (1− α)Cca ∀t ∈ T (5.16)

∑
i∈I

∑
x∈Xi

REl
i,t,x ≤ (1− α)Cl ∀t ∈ T (5.17)

∑
i∈I

∑
x∈Xi

Φi,t,x ≤ (1− α)Cp ∀t ∈ T (5.18)

Finally, Constraints (5.19) till (5.22) define all decision variables as (i) a continuous variable, (ii) a binary
variable or (iii) a non-negative integer.

Ωi,t ∈ [0, 1] ∀i ∈ I, t ∈ T (5.19)

Θi,t,x, Φi,t,x ∈ {0, 1} ∀i ∈ I, t ∈ T , x ∈ Xi (5.20)

Icai,t , Ichi,t , BOca
i,t, LSl

i,t, ni,t ∈ N0 ∀i ∈ I, t ∈ T (5.21)

I li,t,x, REl
i,t,x ∈ N0 ∀i ∈ I, t ∈ T , x ∈ Xi (5.22)

5.2.3 Implementation

The model presented in Section 5.2.2 is formulated as a Mixed-Integer Non-Linear Programming (MINLP),
as most decision variables are formulated as either an integer or binary variable. The model was im-
plemented on a system with an Intel(R) Core(TM) i5-6200 CPU processor and 8.00 GB RAM memory.
The implementation was done in Python using Gurobi, a well-known optimization solver that is able to
handle MINLPs. However, Gurobi is not able to handle constraints that include a multiplication of three
decision variables or division by a decision variable. Therefore, Constraint (5.15) needed to be slightly
adjusted. In fact, a dummy variable Zi,t,x ∈ N0 was introduced, such that Constraint (5.15) could be
replaced by the following two constraints:

Zi,t,x = Φi,t,x I
l
i,t,x ∀i ∈ I, t ∈ T , x ∈ Xi (5.23)

Θi,t,x Zi,t,x ≥ Zi,t,x −REl
i,t,x ∀i ∈ I, t ∈ T , x ∈ Xi (5.24)

The remaining problem still contains quadratic constraints, which Gurobi handles by the use of Mc-
Cormick envelopes. That is, the solver applies convex relaxation by replacing each bilinear term (here:
Φi,t,x I

l
i,t,x and Θi,t,x Zi,t,x) with a new variable and four linear inequality constraints (P. Castro, 2015).

As both bilinear terms involve binary variables, the relaxation still provides an exact reformulation to
the problem.

The introduced MINLP is formulated as a bi-objective problem. This problem can be solved by
applying a pre-defined weight to both objectives, which adds up to one:

minλ
∑
i∈I

∑
t∈T

∑
x∈Xi

Θi,t,x + (1− λ)
∑
i∈I

∑
t∈T

LSl
i,t (5.25)

If λ = 1, the model is focused on minimizing the number of partial depalletizations solely. This model
results in a solution where only full pallet replenishments are accepted and all other replenishments are
denied. Consequently, the solution to this problem results in a minimum number of partial depalletiza-
tions and a maximum total unmet demand of the TWH. Conversely, setting λ = 0 results in a solution
where nearly each pallet is partially depalletized. Hence, this solution corresponds to a maximum num-
ber of partial depalletizations and a minimum total unmet demand of the TWH. As the solutions to
both extrema are not desired, λ should be tuned such that reasonable values for both objectives can
be attained. As both objectives have a different unit of measurement, they should be normalized by
dividing them by there maximum values.
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In total, 6801 SKUs are currently handled via the OPM. Depending on the period length |T | and
the number of pallets that were kept in the HBW during this period for each SKU i (i.e. |Xi| for all
i), the number of decision variables can become extremely large. In fact, up to 70 pallets of the same
SKU can be simultaneously present in the HBW. Consequently, solving an MINLP such as the one
formulated in Section 5.2.2 generally takes a lot of time and might even become intractable. To limit
the computational time of the problem, the model was terminated if an optimality gap of at most 3%
was reached. That way, the problem was limited from very slow convergence to optimality, but close to
optimal solutions could still be attained. Furthermore, all integer decision variables were relaxed into
non-negative continuous decision variables, except for the number of batches ni,t and the number of
occupied channels Ich. This way, it was still guaranteed that the ordered quantity at the TWH was
expressed in full layers and the occupied channels were assigned correctly. Due to the fact that all ni,t

variables were kept integer, the values for all other decision variables were often expressed as integers
as well. Still, some decision variables were expressed as floats. As this is not a possibility in reality
(e.g. depalletize half a layer or store half a case), the results of the model require some pre-processing
to ensure feasibility of the non-relaxed model. To achieve this, all floats in the obtained solutions were
rounded to the nearest integer, and all decision variables for subsequent days were re-defined based on
the rounded values.

Besides this modification to limit the computational time, the model size of the problem was limited
as well. As shown in the previous section, the batch sizes Qca

i,t used in the replenishment logic preferably
correspond to a full pallet. All SKUs with a batch size corresponding to a full pallet on day t, will
only have fully depalletized pallets during that day. Hence, pallets of these SKUs already attain the
minimum value of the objective presented in Equation (5.2). Therefore, it was decided to leave these
SKUs (represented with the set Ifp) out of scope of the mathematical model. For this set of SKUs, the
standard (R, s, nQ) logic was followed to find replenishment quantities. No replenishment was postponed
to a later day (provided that there is sufficient inventory in the HBW). Consequently, for these SKUs the
minimum value for the objective presented in Equation (5.3) is attained as well. It should be noted that
even though these SKUs attain their individual minima for both objectives, this does not necessarily
imply that this solution also corresponds to the global minimum. It might be the case that postponing
the order quantity of one of these SKUs results in less partial depalletizations for several other SKUs,
yielding a better global solution. Still, removing these SKUs from the model decreases the computational
time significantly, such that this decision was still made.

Replenishment for the SKUs i ∈ Ifp requires TWH and DEPAL capacity. The used capacity for
these replenishments was subtracted from the parameters Kch, Cca, Cl and Cp (after subtracting α%
and β% of capacity), to find the remaining capacity for all other replenishments.

Preferably, the MINLP is solved for a long time period |T |, such that it reflects long term steady-
state solutions. However, given the computational complexity of the problem, the MINLP was solved for
a limited time period of |T | = 2 days at once. Then, the model was sequentially solved for six periods
of two days (corresponding to two operating weeks), such the effect over time could still be measured.
Hence, the model was implemented as a rolling horizon, where the final inventory in the TWH and
HBW of a previous period was used as the start inventory for the following period. Moreover, the final
backordered customer demand of a previous period was added to the demand for the following period.
As the end inventories and backordered demand differ per λ, they should therefore be set accordingly.
In Appendix I, a pseudo-code is included for the implementation of this rolling horizon.

Even though the rolling horizon allows to measure the effect of the model over time, solving the
MINLP for a time period of |T | = 2 days will result in short-term optimal solutions. These solutions can
be used to check whether the number of partially depalletized pallets can be (significantly) decreased
and how it relates to the total unmet demand of the TWH. However, considering a longer time period,
will more likely result in better solutions on the longer term. To evaluate the effect of lengthening the
time period, the MINLP was solved for a time period of |T | = 4 days as well. To guarantee that this
MINLP could still be solved within a reasonable amount of time, it was implemented on a small subset
of 10% of all SKUs solely.
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Lastly, it should be noted that the objective reflected in Equation 5.3 considers the total unmet
demand of the HBW. That is, it considers (i) the part of demand that could not be met due to insufficient
stock in the HBW (i.e. LSl

i,t > 0 because
∑

x∈Xi
I li,t,x < ni,t Q

ca
i,t) and (ii) the part of demand that is

postponed by the model due to limited capacity in the TWH (because other pallets were fully depal-
letized at once). As the number of postponed layers are of particular interest in the current analysis,
the part of demand that could no be met due to insufficient stock was subtracted from the objective
value. The remainder of this section will focus on the number of postponed layers solely, unless stated
otherwise.

5.2.4 Results

For the baseline model on the entire set I and |T | = 2, the following parameter settings were used:
RFP = 5 days, RPP = 3 days, α = 0.05 and β = 0.03. These values correspond to currently used
settings or are believed to be reasonable values. The effect of all parameters was tested and will be
discussed later in this section. Furthermore, a separate MINLP was solved for λ ∈ [0, 0.2, 0.4, 0.6, 0.8, 1].
With RFP = 5, the batch size of 1940 SKUs corresponded to a full pallet during the entire period of
interest (i.e. |Ifp| = 1940). These SKUs were kept out of the scope of the MINLP and the standard
(R, s, nQ) logic was applied to find the daily replenishment quantities. The pre-processed solutions of
the MINLP were added to these solutions to find the complete solution for all SKUs i ∈ I ∪ Ifp.

Efficient Frontier Baseline Model

Figure 5.2a depicts the results of the baseline model for different values of λ, for the complete two week
operating scheme (i.e. twelve subsequent days). The values for λ = 0 and λ = 1 are omitted in the
figure, as the extrema were far out of range of all other solutions. The figure clearly shows the trade-off
between the two objectives: to achieve a lower value for one objective, a higher value for the other should
be accepted. Furthermore, changing λ = 0.6 to λ = 0.8 yields a very large difference in solutions: the
number of partial depalletizations decreases drastically, but also causes a large increase in the number
of postponed layers. Exploring more solutions on this line might be interesting, to better reflect the
trade-off between the two objectives.

Noteworthy, the figure also shows that the solution of the MINLP with λ = 0.4 outperforms the
solution with λ = 0.2, as it achieves a lower value on both objectives. This effect can be explained by
the fact that the figure visualises the number of postponed layers (as explained in the previous section),
whereas the mathematical model minimizes the total unmet demand. In fact, the total unmet demand
is 2.8% higher for the MINLP with λ = 0.4 than for the one with λ = 0.2. Apparently, the MINLP
with λ = 0.4 makes slightly different choices, which eventually results in a lower number of postponed
layers. The figure shows that at this small increase in unmet demand (and thus a small decrease in
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Figure 5.2: Results of MINLP with Baseline parameter settings.
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postponed layers), the number of partial depalletizations could be decreased with 15.1%. Hence, at a
small increase (decrease) in unmet demand (postponed layers), the number of partial depalletizations
can already decrease significantly.

Considering this effect, it would make sense to solely minimize the number of postponed layers
instead of the total unmet demand, as this is the variable of interest. However, to achieve this, the
variable LSl

i,t should be splitted in two distinct variables, where one reflects the postponed layers of a
given pallet (i.e. additional three-dimensional variables) and the other reflects the part of demand that
could not be met from stock (i.e. additional two-dimensional variables). Moreover, additional constraints
(and additional binary variables) would be required, to ensure that the parts of TWH demand that are
not met are assigned correctly to these variables. Hence, modeling the problem this way increases the
complexity of the problem (and so the computational time) enormously. Therefore, it was decided to
minimize the total unmet demand instead. The solutions of the λ = 0.2 and λ = 0.4 are closely related,
so that this behavior could happen. However, for all other solutions, the number of postponed layers
and the total unmet demand increases as λ increases, being in line with expectations.

In the actual replenishment strategy, 4759 pallets were partially depalletized during the two weeks
of operation. Consequently, all solutions obtained by the MINLP reduced the number of partial depal-
letizations as compared to the actual replenishment strategy. The actual number of postponed layers
could not be determined, as the reorder levels used in the MINLP were approximations of the (unknown)
reorder levels used in the actual analysis (as explained in Appendix H).

Besides the efficient frontier, Figure 5.2b depicts the computational time of solving each individual
MINLP, for six periods in total. As stated earlier, the program was terminated if an optimality gap
of at most 3% was reached. The figure shows that the computational time increases as λ increases.
Apparently, shifting to a solution with less partial depalletizations is more computationally expensive
than a solution with less postponed layers. Still, the optimality gap prevented slow convergence of the
model, as all models could be solved within 45 minutes.

Key Performance Indicators

Figure 5.3 shows the behavior of the actual replenishment strategy and the MINLP solutions over time,
for six Key Performance Indicators (KPIs). To start, Figure 5.3a depicts the number of partial depalleti-
zations per day. The MINLP finds solutions where most pallets are partially depalletized at the beginning
of the period and few pallets at the end of the period. This is a sensible effect, as a partially depalletized
pallet in the beginning of a period can be fully depalletized at a following day. In contrast, the number
of partial depalletizations remains more stable throughout the days in the actual replenishment strategy.
Increasing the number of days in one period (i.e. increase |T |), will likely result in a more smooth pattern
as well, as the partial depalletizations will probably be distributed more evenly throughout the period.

Figure 5.3b shows the number of postponed layers per solution and clearly depicts the large differ-
ence between the solution of the MINLP with λ = 0.8 and all other solutions. For this model, the number
of postponed layers appears to increase over time, while this is not true for all other models. Hence,
this solution keeps postponing layers to later days, such that some replenishments might be postponed
endlessly. This behaviour is not desired and therefore the solution to this MINLP is not applicable in
reality.

Figures 5.3c till 5.3f show the used TWH and DEPAL capacity of the solutions. Not surprisingly,
the MINLP pushes (at least) one of these capacities to its maximum value, as the capacity constraints
limit the MINLP from fully depalletizing all pallets. All solutions show that the TWH capacity was
pushed to its maximum value on all days. Figures 5.3d till 5.3f show that a large number of replen-
ishments are performed on the first day, such that the inventory in the TWH (Figure 5.3c) reaches its
maximum value immediately on the second day. From that point onward, the capacity in the TWH re-
mains close to the maximum value, whereas the number of replenished pallets, layers and cases decrease
to a lower rate. Remarkably, the behavior of the MINLP with different values of λ is nearly the same
for all KPIs, except for the number of depalletized pallets. As λ increases, less pallets were send for
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depalletization, but more pallets were fully depalletized. As such, all solutions still depalletize a similar
number of layers and cases. Finally, these figures show that the actual replenishment strategy uses less
TWH capacity (as was already clear from figure 1.6), but in many periods more DEPAL capacity. Due to
the fact that the MINLP pushes a lot of inventory towards the TWH on the first day, less replenishments
could be performed on subsequent days. Hence, the optimal solution of the MINLP for the first period,
turns out to be sub-optimal over the entire period. That is, a lot of (slow moving) inventory was sent to
the TWH on the first day, that limits the model from replenishing pallets on later days. If the number of
days in one period |T | increases, the optimal solutions obtained in each individual period will probably
be more optimal on the long-term as well.
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Figure 5.3: Effect over time of MINLP with Baseline parameter settings, for six KPIs.

Sensitivity Analysis

To test the effect of the parameters used in the MINLP, four additional models were tested with different
settings, as depicted in Table 5.2. To start, the RFP was increased to six days, such that the batch size
of more SKUs was fixed to full pallets. In fact, 334 additional SKUs were left out of scope of the MINLP
in this setting. Then, a model was tested were the batch size of each SKU equalled either (i) a full pallet
or (ii) one layer, by setting RPP to zero days. Furthermore, the effect of increasing α and β, and thus
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decreasing the TWH and/or DEPAL capacity, was tested. The obtained results of the MINLPs with
different parameter settings are visualized in Figure 5.4.

From the figure can be derived that the model with an RFP equal to six days outperforms all
other models. That is, fixing the batch size of more SKUs to full pallets resulted in both a decrease in
partial depalletizations, as well as a decrease in postponed layers, as compared to the baseline model.
In contrast, increasing α and β provided worse results for both objectives. This is a sensible effect, as
both parameters limit the TWH capacity, which was binding in all solutions with the baseline settings.
Conversely, a reduction in (one of) these values will likely result in better solutions. Finally, the model
with an RPP of zero days performed comparable or slightly better than the baseline model.

Model RFP RPP α β

Baseline 5 days 3 days 0.05 0.03
Test RFP 6 days 3 days 0.05 0.03
Test RPP 5 days 0 days 0.05 0.03
Test α 5 days 3 days 0.08 0.03
Test β 5 days 3 days 0.05 0.05

Table 5.2: Parameter settings for different MINLPs
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Besides the effect of these parameters, the behavior of the MINLP was analysed over a longer period
of time of |T | = 4 days. As indicated in the previous subsection, this model was solved for a random
subset of 10% of all SKUs. To obtain the solutions for a two week operating scheme, a separate MINLP
was solved for three consecutive periods of four days, using the rolling horizon algorithm depicted in
Appendix I. As only 10% of all SKUs were included in the model, the TWH and DEPAL capacities
were adjusted with the same ratio. The new MINLP was implemented using the parameter values of
the baseline model. Figure 5.5 shows the effect of four KPIs over time. Similar as for the MINLPs with
|T | = 2, most pallets were partially depalletized at the beginning of a period (i.e. on day 1, 5 and 9) and
fewer pallets at the end of a period. The number of postponed layers also shows a similar behaviour, as
they increase over time in the solution obtained by λ = 0.8. In this solution, the same seems to happen
in the solution obtained by λ = 0.6, but this could also be due to the particular SKUs in the random
subset.

In line with expectations, Figure 5.5c shows that the MINLP pushes the TWH capacity immediately
to its maximum value, which remains constant on all days. This behavior is similar as in the baseline
model, shown in Figure 5.3c. However, Figure 5.3d showed that a lot of pallets were replenished on the
first day, such that fewer pallets could be replenished on later days. Figure 5.5d shows that this behavior
can be prevented with a larger time period |T |. That is, even though the model again immediately
pushes the TWH capacity to its maximum value, it makes different (and better) replenishment choices
on the first day, such that the replenishment rate can remain more stable. Hence, this indicates that
using a larger |T | results in a more beneficial long term solution.

Prediction model

Finally, the MINLP was introduced to minimize the number of partial depalletizations, as the prediction
models in Chapter 4 showed that this feature adversely affects the number of fallen cases. To test whether
a reduction in partial depalletizations indeed results in less predicted pallets with fallen cases, the actual
values for the Number of Calls DEPAL feature were substituted with the values obtained by the MINLP
with λ = 0.4 or λ = 0.6 and the parameter settings of the baseline model. First, a new (test) dataset
was build for the two weeks of operation according to the criteria listed in Section 3.1. Additionally,
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Figure 5.5: Effect over time of MINLP with Baseline parameter settings, for six KPIs, for a small subset of SKUs and a
larger time period |T |.

pallets that were not replenished in both MINLP solutions were removed from the dataset, to allow for
accurate comparison between the three strategies. Ultimately, a dataset with 14 377 observations was
left, of which 3 419 pallets were partially depalletized in the actual replenishment strategy. The number
of calls for each pallet x ∈ Xi of SKU i ∈ I from the MINLP solutions was obtained as follows:

Number of Calls DEPAL MINLP =
∑
j∈J

∑
t∈T

Φi,t,x (5.26)

where J refers to the set of periods for which the model was consecutively solved. Hence, the total
number of calls were summed over the entire period of twelve days. For each pallet in the dataset
of a given SKU i, a pallet x ∈ Xi in the MINLP solution was randomly assigned, where each pallet
could only be assigned once. Substituting the actual Number of Calls DEPAL with the Number of Calls
DEPAL MINLP values, decreased the number of partial depalletizations significantly, as shown in Table
5.3. This large decrease can be devoted to the fact that the dataset contains only pallets that were
fully depalletized (in one or more calls) during the time period of two weeks. As such, these numbers
show that the actual replenishment strategy contains many partially depalletized pallets that were fully
depalletized on quite short notice (i.e. within two weeks). In contrast, the time between subsequent calls
in the solution of the MINLP appears to be much greater in general, as much fewer pallets were fully
depalletized in multiple calls within this period.

To obtain the predictions, the best RF model was trained on the same training dataset as in
Chapter 4. Then, the new test dataset with the actual Number of Calls DEPAL feature was first fed into
the model, to obtain corresponding predictions. Subsequently, the dataset with the substituted Number
of Calls DEPAL MINLP feature for both λ = 0.4 and λ = 0.6 was fed into the model, to obtain new
predictions for comparison. The number of predicted pallets with fallen cases are listed in Table 5.3,
which shows that a decrease in partial depalletizations indeed results in a 15.9% and a 17.1% decrease in
positive predictions for λ = 0.4 and λ = 0.6, respectively. Hence, this confirms that a decrease in partial
depalletizations also results in a decrease in fallen cases.
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Table 5.3: Predictions obtained by best RF model on dataset with actual Number of Calls DEPAL feature and substituted
Number of Calls MINLP features

Number of partial Predicted pallets with
depalletizations fallen cases Improvement

Number of Calls DEPAL 3419 3870
Number of Calls DEPAL MINLP λ = 0.4 941 3256 -15.9%
Number of Calls DEPAL MINLP λ = 0.6 772 3207 -17.1%

Table 5.4: Performance of actual replenishment strategy and MINLP with Test RFP parameter settings and λ = 0.4 or
λ = 0.6

Number of partial Number of postponed
depalletizations layers

Actual Replenishment strategy 4759 ?
Strategy of MINLP model with λ = 0.4 3154 237
Strategy of MINLP model with λ = 0.6 1853 1526

Conclusion

To conclude, the introduced MINLP proved to find solutions with fewer partial depalletizations than
the actual replenishment strategy. Even at only a limited increase in postponed layers, the number of
partial depalletizations could already decrease significantly. However, the solution from the MINLP with
λ = 0.8 showed that a model that focuses too much on minimizing the number of partial depalletizations
is not desired, as the number of postponed layers then increases over time, which in turn decreases the
service level of the TWH. Furthermore, the efficient frontiers depicted in Figures 5.2a and 5.4 showed
that MINLPs with λ = 0.4 outperformed the solutions obtained by λ = 0.2, as the number of partial
depalletizations decreases significantly at only a small increase in unmet demand (and potentially even
a decrease in postponed layers).

Furthermore, Figure 5.4 showed that the MINLP with RFP = 6 days was able to decrease both
the number of partial depalletizations as well as the number of postponed layers as compared to the
baseline model. Considering the solutions obtained by this model, especially the MINLPs with λ = 0.4

or λ = 0.6 found reasonable solutions, as they both decreased the number of partial depalletizations
drastically, against a limited increase in postponed layers, as shown in Table 5.4. The choice between
these solutions depends on the desired trade-off between the two objectives: less partially depalletized
pallets results in less fallen cases, whereas less postponed layers results in a higher service quality of the
TWH.

Solving the model for a longer time period |T | indicated to find better long term solutions. However,
this comes at the cost of increased computational time. Even though the models with |T | = 2 days find
short-term optimal solutions, they already showed that the number of partial depalletizations can be
significantly decreased without yielding a high increase in the number of postponed layers. Moreover,
these MINLPs could be solved within a reasonable amount of time for the entire set of SKUs i ∈ I.
Therefore, these models are believed to provide valuable starting points.

Finally, Table 5.3 showed that by solely decreasing the Number of Calls DEPAL feature, the
predicted pallets with fallen cases was already decreased by more than 15%. These results thus confirm
that minimizing the number of partial depalletizations is effective in minimizing the number of fallen
cases.
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Chapter 6

Discussion

Within this final chapter, each research question is addressed separately. For each research question,
the findings and the conclusions are discussed, some recommendations for Jumbo are provided, several
limitations of the study are highlighted and directions for future work are suggested.

6.1 Research Question 1: Current size of the problem

Chapter 3 described a data collection method to estimate the number of fallen cases between inbound
and tray merge, given the available data sources. The system was considered as a black box, where
its input and output streams were compared to estimate the number of fallen cases. These estimates
indicated that nearly 1 000 cases fell between inbound and tray merge, costing Jumbo more than e10 000
on a weekly basis. On top of that, additional cleaning cost were incurred to fix the consequences of the
fallen cases. Moreover, the fallen cases potentially caused machine downtime and a decreased service
quality. The estimates also indicate that Jumbo currently highly underestimates the number of fallen
cases, as Jumbo’s current (manual) registrations indicated that 200 cases fell on a weekly basis in the
entire CDC. The collected data thus confirmed the problem of Jumbo’s CDC in Nieuwegein and show
that the problem is much greater than initially thought. Hence, the results emphasized the need to
establish methods to decrease the number of fallen cases.

The distribution of all features was analysed in Chapter 3, for the minority and majority class
separately. These analyses showed that pallets in the minority were partially depalletized more often
than pallets in the majority class. Moreover, SKUs in the minority class tend to be small, such that
more cases fit on a single pallet. These findings are closely related, as pallets with more inventory on it
are more likely to be partially depalletized. Therefore, the data analyses confirmed that this step in the
process is important to consider when minimizing the number of fallen cases.

The data collection method still shows some flaws, due to the discrepancy in the re-introduction streams.
However, given the available data sources, it was not possible to overcome these flaws. Cases are re-
introduced to the system at different steps in the process, for different reasons, even though this is
currently not visible in the data. The accuracy of the data collection method can be improved by adding
this information to report IN32, such that it is clarified why and where cases are re-introduced to the
system. That way, the re-introduced cases can easily be linked to a pallet, such that the number of fallen
cases can be estimated more accurately.

The data collection was focused on estimating the number of fallen cases between inbound and
tray merge solely. However, a similar approach, where part of the system is considered as a black box
and physical measures are used as input and output streams, could be applied to other processes in the
CDC as well. As such, the number of fallen cases could be estimated between tray merge and the COMs,
between the HBW and the repack stations (i.e. the manual depalletizers for the DPS subsystem) and
between the repack stations and order picking in the DPS as well. Consequently, all estimates would be
based on data generated by the system, instead of relying on manual registrations, which appeared to
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highly underestimate the number of fallen cases. Using this approach, Jumbo can better monitor how
many cases fell and what the effect of potential migitation strategies is.

6.2 Research Question 2: Prediction Model

In Chapter 4, two prediction models were introduced to accurately predict whether cases will fall off a
new pallet entering the system: an RF and an MLP. For both prediction models, several hyperparameter
values were tested to find the best out-of-sample predictions. In addition, Resampling and CSL were
introduced as methods to account for the imbalanced dataset, to further improve the predictions of the
ML techniques. The best performing RF models were used to perform feature selection, to find the
subset of features most relevant in predicting the outcome feature. Moreover, this subset of features was
analysed to find SKU-, process-, and machine related characteristics that increase the likelihood of cases
falling.

The results emphasized the importance of implementing a method to account for the imbalanced
data, as both the RF as MLP models were not able to distinguish the minority class observations oth-
erwise. Moreover, applying a Resampling method to the dataset beforehand proved to work better than
incorporating CSL in both prediction models. Furthermore, the best RF model (fit on a fully undersam-
pled dataset) was preferred over the best MLP model (fit on a fully oversampled dataset). First, the RF
model achieved a higher accuracy and AUC value than the MLP model. In addition, an RF requires
little tuning, whereas many parameters of an MLP need to be set by the user. Therefore, the RF is
easier to implement an preferred over an MLP.

The best RF model showed that using only a small subset of all features still yields reasonable
predictions. From this subset could be derived that especially the Number of Calls DEPAL feature is
important in predicting the likelihood of falling. Additionally, many features in this subset relate to the
size of a single case and the number of cases on a pallet. Apparently, smaller cases and (consequently)
more cases on a pallet increase the likelihood of falling. As stated in Chapter 4, this effect can be
devoted to two things: (i) a pallet with many small cases is likely to be more unstable and (ii) pallets
with more inventory are more likely to be partially depalletized. Hence, these two findings go hand in
hand: pallets with more inventory are more likely to partially depalletized, which reduces the stability
of the pallet and thereby increases the likelihood of falling. To minimize the number of fallen cases,
the number of partial depalletizations should thus be minimized. Moreover, the stability of such pallets
should be ensured at all times. That is, the stability of the pallet should be judged at different steps in
the process and, if necessary, improved by adding additional stretch wrapping or re-stacking the pallet.
Finally, the Weight Difference Pallet and Height Difference Pallet appeared to increase the likelihood
of falling. A potential improvement could be to use lower values for the Weight Tolerance and Height
Tolerance features, such that pallets with higher differences between physical- and expected measures
are more often manually checked. With these additional checks, stability of the pallets and correctness
of the data can be ensured. However, as lowering these tolerance levels results in an increase in manual
labour, a balance should be found between performing too little (i.e. possibly resulting in fallen cases)
and too much (i.e. labour-intensive) checks.

From the results could be derived that both ML techniques were not able to achieve an AUC score above
68% on the test set, such that both the recall and accuracy could also retain a higher level. Potential
reasons for this could be the level of noise in the data. Occasionally, cases fall off a pallet due to an
incidentally badly stacked pallet or just bad luck. Such situations are a one-time occasion, for which no
particular reason will be present in the data. These observations are hard to filter from the data, but also
limit the models to properly learn the underlying rules that do affect the probability of cases falling. Yet,
this emphasizes the need to ensure stability of the pallets, by potentially performing additional manual
checks.

Besides the noise in the data, another reason could be that many features in the dataset are ob-
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tained from master data and SKU specific. That means that the values for these features are equal for all
pallets of that particular SKU. Now it is true that for all SKUs having pallets from which cases fell off,
other pallets of the same SKU were handled without cases falling off. In other words, all SKUs having
observations in the minority class, also have observations in the majority class. As such, the dataset
contains several very similar observations with different outcome labels, making it harder for the ML
techniques to assign these observations to the right class. Consequently, the presence of double labels
worsens the ability of the models to learn the underlying rules. One potential way to handle this could
be to assign all SKUs to the class where most observations belong to and remove all observations of that
SKU in the other class. However, for the current dataset, only 3% of all SKUs with observations in both
classes have more observations in the minority class than in the majority class. Removing all observations
with double labels, would result in an even more imbalanced dataset. Therefore, all observations were
kept in the dataset.

In total, 120 RF and 243 MLP models were implemented, with different hyperparameter combinations.
However, the number of potential hyperparameter combinations was not exhausted, and many more
models could be tested. Especially considering an MLP, the effect of adding additional hidden layers,
using different activation or cost functions or a different stop criterion could be tested. Besides different
hyperparameter values, different methods to account for the imbalanced dataset could be tested as well.
For instance, a combination of several oversampling and undersampling methods could be implemented,
to test whether the performance of the ML techniques can be improved even further.

Another possibility would be to fit the prediction models on more different subsets of features.
The best RF model was fit on the full model and on three subsets of relevant features of different size.
In contrast, the MLP was only fit on the subset of features listed in 4.6. However, it is yet unknown
whether different subsets of features would result in a higher performance for both models. Therefore,
using different feature selection methods to select subsets of relevant features might be interesting. Lastly,
the problem was currently modeled as a binary classification problem. Alternatively, more classes could
be distinguished (e.g. no fallen cases, few fallen cases and many fallen cases) or the the problem could
be targeted as a regression problem, to check if such prediction models are better able to predict the
(number of) fallen cases.

6.3 Research Question 3: Minimize Partial Depalletizations

As the results of the previous two research questions showed that the number of partial depalletizations
adversely affects the number of fallen cases, Chapter 5 introduced a mathematical model to minimize the
number of partial depalletizations. The mathematical model was build to make replenishment decisions
of the TWH on a daily basis and used the (R, s, nQ) logic to find initial order quantities. Then, the
model adjusts these order quantities, such that the total number of partial depalletizations is minimized.
Preferably, the order quantities are rounded up to full pallets, but a lower replenishment quantity is
allowed as well. In such circumstances, the model decides to postpone several ordered layers, such that
other pallets can be fully depalletized. However, as a decreased order quantity potentially worsens the
service quality of the TWH, the model also minimizes the total unmet demand of the TWH (including
the number of postponed layers).

The resulting mathematical model was formulated as a bi-objective MINLP. To limit the computa-
tional time of the model, the set of SKUs Ifp having a batch size equal to a full pallet during the entire
period of interest was left out of scope of the MINLP. The standard (R, s, nQ) logic explained in Section
2.3 was followed to find replenishment quantities for these SKUs, which were eventually added to the
solution obtained by the MINLP. In addition, the MINLP was solved for a time period of |T | = 2 days
at once. Then, the model was sequentially solved for six periods of two days using the rolling horizon
algorithm depicted in Appendix I, such that the effects over time could still be measured. Even though
the individual MINLPs find short-term optimal solutions, the results still provide valuable insights in
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whether the number of partial depalletizations can be decreased and what the effect is on the total unmet
demand of the TWH.

The MINLP proved to find solutions with fewer partial depalletizations as compared to the ac-
tual replenishment strategy. Even at a limited number of intentionally postponed layers, the number
of partial depalletizations could already decrease significantly. However, the results also showed that
putting too much weight on the minimization of partial depalletizations is not desired as well, as this
results in a high number of postponed layers over time. Eventually, this will decrease the service level
of the TWH drastically. Especially the MINLPs with λ = 0.4 and λ = 0.6 found reasonable solutions,
as Table 5.4 showed that the resulting replenishment strategies significantly decreased the number of
partial depalletizations against a limited increase in postponed layers. The preferred solution should be
based on the desired trade-off between these two objectives: less partially depalletized pallets results in
less fallen cases, whereas less postponed layers results in a higher service quality of the TWH. To better
explore this trade-off, more solutions could be obtained with 0.4 < λ < 0.6.

Furthermore, a sensitivity analysis was performed where different values were tested for all param-
eter values used in the MINLP. These results showed that increasing the RFP appeared to be beneficial,
as the solutions to these MINLPs achieved lower values on both objectives. Conversely, an increase in
α and β provided worse results for both objectives. This is a sensible effect, as both parameters limit
the TWH capacity, which was binding in all solutions with the baseline settings. Hence, lower values
for these parameters would likely yield more beneficial results. Alternatively, the capacity of the TWH
might be used more efficiently by removing ample stock of slow movers. That way, more space is avail-
able to reduce the number of partial depalletizations and the number of postponed layers for all SKUs
with higher demand rates. It should be noted that all parameters were only individually changed and
the effect of changing multiple parameters at once was not tested. To further explore the effect of these
parameters and/or better tune them, a more extensive sensitivity analysis would be needed.

The results also showed that MINLPs solved for a longer time horizon |T | yield better long-term
solutions. Due to the complexity of the model, a time period of two and four days was tested solely.
However, in the ideal situation, an even longer period would be considered, to find better steady-state
solutions. One potential way to model this, would be to aggregate t to multiple days or weeks, such
that the length of set T does not increase significantly. Alternatively, besides removing the pallets with
a batch size equal to a full pallet, slow movers could be left out of scope of the MINLP as well, as the
order quantity for these SKUs often corresponds to only one layer. Then, the MINLP could be used to
minimize the number of partial depalletizations for all other SKUs, for a longer period of time.

To test if a reduction in the number of partial depalletizations indeed results in a decrease of fallen
cases, the Nr of Calls DEPAL feature was substituted with the number of calls obtained by the MINLP
solutions. The substituted dataset was fed into the best prediction model of Chapter 4, which showed
that the number of positively predicted observations decreased with more than 15% by solely reducing
the number of partial depalletizations. Hence, this confirmed that the number of fallen cases can be
minimized by minimizing the number of partial depalletizations. Moreover, the findings of the previous
chapters indicated that some of the relevant features for predicting the outcome variable might interact.
For instance, the results showed that smaller cases (and consequently more cases on a pallet) have a
higher risk of falling. However, pallets with more inventory on it are also more likely to be partially
depalletized. As such, the importance of these features potentially aroused from the same cause, being
a partial depalletization. Hence, if the number of partial depalletizations are reduced, the importance of
these other features might be diminished as well. In the current analysis, the Number of Calls DEPAL
feature was substituted solely, whereas the values for all other features was kept constant. However,
when the prediction model would be trained on a new dataset with fewer partial depalletizations (and
consequently fewer fallen cases), the decrease in positive predictions might be amplified.
Finally, there are several suggestions for future work:

• As indicated, solving the MINLP is computationally expensive and might become intractable when
solved for a large number of SKUs or a long time period. Therefore, it might be valuable to
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formulate a heuristic that finds a feasible solution which closely approaches to the optimal solution
of the MINLP. Then, the heuristic can be used to find good solutions for larger sets of SKUs and
longer time periods.

• The MINLP was formulated to make tactical decisions: for each day, it decides which pallets to
replenish in what quantities. In reality, such decisions are made at an operational level: at which
point in time should a certain pallet be depalletized? To find such decisions, the index t could be
reduced from days to a couple of hours. Regarding the unmet demand of the TWH, it might be
beneficial to switch to a system with backorders. That way, a small delay (e.g. one time period) can
be allowed in fulfilling the TWH demand, in a similar fashion as for the customer demand (which
can be fulfilled on the same or following day in the current formulation). However, to switch to
a system with backorders, the variable LSl

i,t should become pallet specific and requires addition
constraints, which increases the size and the complexity of the problem.

• The current MINLP was based on an (R, s, nQ) inventory management system, where the batch
size Q was equal to either (i) a full pallet, (ii) a multiple of layers or (iii) one layer. Alternatively, the
model could be based on an (R, s,MOQ, IOQ)-policy, where MOQ represents a minimum order
quantity and IOQ represents an incremental order quantity (Hill, 2006). That is, if the inventory
position drops below the reorder level s, the order quantity equals MOQ+n IOQ with n being the
minimum number of additional IOQ-batches to increase the inventory position above the reorder
level. Especially for SKUs with a batch size corresponding to a multiple of layers, this policy might
be more effective. For instance, suppose Q = MOQ = 3 layers, and four layers are needed to
raise the inventory position above the reorder level again. Then, following the (R, s, nQ) logic, the
order quantity would be six layers. However, following the (R, s,MOQ, IOQ) logic with IOQ = 1

layer (being the minimum batch size by definition), the order quantity would be set to exactly four
layers. Hence, this logic might result in lower order quantities and therefore lower values of unmet
TWH demand. As such, the MINLP might likely find a different and potentially more beneficial
replenishment strategy. However, the disadvantage of implementing this policy, is the fact that
it would increase the complexity of the MINLP, as additional variables and constraints would be
needed. Therefore, the increase in complexity should be balanced by a substantial increase in
performance.

• Instead of solely considering pushing more inventory to the TWH, an alternative would be to order
less layers on a pallet at the supplier. That way, full pallets carry less inventory, requiring less
storage space in the TWH. Consequently, more pallets could be fully depalletized. The drawback
of this option is that many suppliers only deliver on full pallets. Moreover, the storage space of the
HBW would be used less efficiently, as potentially more pallets (with less cases on it) need to be
ordered, requiring more capacity.

• The current formulation of the MINLP is based on the assumption that FIFO handling of pallets
is not a requirement of the model. As several SKUs have a limited shelf life, the effect of relaxing
this assumption could be analysed.

• The MINLP uses historic, deterministic demand, such that the solutions could be compared with
the actual replenishment strategy. However, the actual demand will not be known beforehand
in reality. Therefore, implementing the model using stochastic demand might provide interesting
insights.
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Appendix A

Description hyperparameters ML techniques

A.1 Random Forest

The number of trees T in the forest. Breiman (2001) proved by the Law of Large Numbers that
the error rate (being the mean number of misclassifications) of an RF converges to a limit (depending
on the dataset) as the number of trees in the forest becomes large. Considering several other relevant
performance measures and their (non-)monotonicity, Oshiro et al. (2012) showed that using a large
number of trees (whilst staying computationally feasible) is sufficient for (binary) classification problems
and further tuning of this hyperparameter is not necessarily required.

The size of the random subset m of features to be chosen at each split in a tree. A low value
leads to very distinct trees, which ensures stability of the results when averaging over many of such trees.
However, all individual trees will have a lower performance on average, as trees are potentially grown
on unimportant features. Hence, the choice for this hyperparameter is a trade-off between stability and
accuracy (Probst et al., 2019). For classification problems, a commonly used size of the random subset
equals m =

√
p, with p being the number of input features (Hastie et al., 2009). This appears to be a

reasonable value in practice (Bernard et al., 2009).

The sample size n for each tree and whether each sample is drawn with or without re-
placement. Similar to the size of the random subset of features, selecting the sample size is a trade-off
between stability and accuracy. Using a smaller sample size leads to more distinct trees, but usually
decreases the performance since fewer observations are used to grow each tree (Probst et al., 2019). More-
over, a lower sample size reduces the runtime (Martínez-Muñoz & Suárez, 2010). In Breiman (2001)’s
original formulation of the RF, the samples of observations were drawn with replacement. However, Jan-
itza et al. (2016) and Strobl et al. (2007) showed that for specific cases, this leads to lower performance
as compared to sampling without replacement. Hence, both the sample size as sampling with or without
replacement are hyperparameters of an RF.

The maximum depth d of the tree, being the maximum number of splits in every single
tree. This hyperparameter is strongly related to several other hyperparameters limiting the size of the
tree, such as the minimum number of observations in each node and the maximum number of nodes
in each tree (Probst et al., 2019). Setting this parameter to a lower value decreases the runtime for
large datasets significantly, without causing a substantial loss in the model’s performance (Segal, 2004).
Moreover, it limits every single tree from overfitting on the training data (S. Zhou & Mentch, 2021).

The split criterion used. This is not necessarily considered a hyperparameter, but more as a char-
acteristic of an RF (Probst et al., 2019). For classification problems, the Gini index and Entropy are
the most commonly used split criteria (Kingsford & Salzberg, 2008; Tangirala, 2020). Suppose Qz de-
notes the set of observations at node z, including in total nz observations. Moreover, let pzk denote the
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proportion of class k observations in node z, which is defined as:

pzk =
1

nz

∑
y∈Qz

I(y = k), (A.1)

where I(y = k) is the indicator function which takes value 1 if y = k and 0 otherwise. Note that for
binary classification problems, k is either 0 or 1. Then, the Gini index and Entropy functions are defined
as:

Gini = 1−
∑
k

p2zk (A.2)

Entropy = −
∑
k

pzk log(pzk) (A.3)

Tangirala (2020) showed that the choice of split criterion does not affect the performance of a single
decision tree; both functions gave the same results.

A.2 Multilayer Perceptron

The number of hidden layers. Usually, an MLP comprises one input layer, one or two hidden layers
and one output layer (Kavzoglu & Mather, 2003). Many applications showed that an MLP with only a
single hidden layer can already approximate a large set of functions, especially for classification problems
(Athey & Imbens, 2019; Lippmann, 1987).

The number of neurons in a hidden layer k. This parameter has a large influence on the per-
formance and complexity of the model (Abraham, 2005). An adequate number of neurons is needed
to be able to separate the data well over the different classes and achieve a reasonable performance.
However, if the number of neurons is set too large, the model will be less able to generalize to new data
(i.e. overfitting the data), which decreases the out-of-sample performance (Kavzoglu & Mather, 2003).
Hence, the number of neurons in the hidden layer(s) should be set deliberately.

Several heuristics have been proposed to estimate the optimal number of neurons, but none has
been universally accepted. Several rules of thumb used in practice are based on the number of input
features p (Kavzoglu & Mather, 2003), such as: 2p or 3p (Kanellopoulos & Wilkinson, 1997), 2p + 1

(Hecht-Nielsen, 1987), 2p/3 (Wang, 1994) or p/2 + 1 (Ripley, 1993).
The maximum number of neurons in the hidden layer is dependent on the amount of available

training data. To accurately estimate all free parameters, the training samples should at least be five
times the number of free parameters in the model (Messer & Kittler, 1998). As the number of free
parameters in the MLP increases in the number of neurons in each hidden layer, the amount of available
training samples defines an upper bound on the number of hidden layer neurons.

The activation function. As stated earlier, the sigmoid function is the most commonly used activa-
tion function in MLPs. Still, other activation functions are applicable as well, such as the symmetrical
sigmoid S(z) (Rojas, 1996) or the rectified linear neuron R(z) (Nielsen, 2015) functions, defined as:

S(z) =
1− e−z

1 + e−z
(A.4)

R(z) = max(0, z) (A.5)

Based on the problem at hand, one activation function might outperform another in terms of computa-
tional time and prediction performance.
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Initialization of weights and biases. As indicated in the previous paragraph, the backpropagation
algorithm starts with randomly assigned initial weights and biases. This is a starting point, from whereon
the model should move as quickly as possible towards a global minimum of the cost function (Kavzoglu
& Mather, 2003). Hence, each initialization requires a different route to this global minimum. However,
several routes may contain local minima, where the algorithm gets stuck. Consequently, the gradient
descent method is not guaranteed to find the global minimum from all starting points (Krogh, 2008).
As this affects the performance of the model, it can be beneficial to test the same network configuration
whilst using multiple initializations of the weights and biases (Kolen & Pollack, 1990).

In addition, Nielsen (2015) stated that the pace of the learning process can change significantly
for different starting points. Especially for large initial weight values, the learning process is likely to
saturate quickly. To prevent this behavior, Nielsen (2015) proposed to initialize the weights as normally
distributed random variables with mean 0 and standard deviation 1/

√
nl, with nl being the number of

input neurons to the lth layer. The biases can be initialized as normally distributed random variables
with mean 0 and standard deviation 1 as these initial values appear to have little influence on the learning
pace of the model.

The learning rate η. As stated, the learning rate determines the step size of the adjustments in
weights and biases, such that the model moves towards the global minimum of the cost function (Nielsen,
2015). It can be considered one of the most important hyperparameters of an MLP because it influences
both the performance and the speed of learning (Kavzoglu & Mather, 2003). If the learning rate is set
too large, the local or global minima will be overstepped constantly, causing a slow convergence of the
model. If the learning rate is set too low, the model will improve very slowly, requiring a high number of
iterations to yield reasonable results (Abraham, 2005). Moreover, it increases the likelihood of getting
stuck at a local minimum (Kavzoglu & Mather, 2003).

As the best value for η is highly problem dependent, Nielsen (2015) suggests finding the best
learning rate by trial and error: try different orders of magnitudes and select the highest learning rate at
which the costs decrease during the first few epochs. Then, the learning rate can be further optimized
by trying several values in this order of magnitude.

The regularization parameter λ. To prevent the model from overfitting, Nielsen (2015) proposed
to add an L2 regularization term to the cost function C(xi,W

l,bl):

λ

2n

L∑
l=2

∑
Wl

(wl
k,j)

2

where λ ≥ 0 denotes the regularization parameter, n denotes the total number of training samples and
Wl denotes the weight matrix for layer l.

The regularization term penalizes the model for selecting large weights, as this adversely affects the
stability of the network and the ability to generalize to new data. That is, a model having large weight
values is more likely to change if the input changes and thus more likely to overfit the training data. As
the regularization term reflects a preference for smaller weights, this behavior is prevented. Moreover,
due to the penalization, the exact initialization of the weights plays a less crucial role, as it decreases
the probability of getting stuck at a local minimum.

The regularization parameter λ defines a trade-off between the minimization of the cost function
and the preference for a more stable network (by penalizing larger weights). Similarly as for the learning
rate η, the best value for λ highly depends on the problem context and the values for all other hyperpa-
rameters. Therefore, the best order of magnitude should be selected by trial and error for each setting.
Subsequently, the parameter can be further refined by trying different values in this order of magnitude.

The cost function C(xi,W
l,bl). As the goal of the backpropagation algorithm is to minimize the

cost function, the way an MLP model learns is highly dependent on the choice of this function. The MSE
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introduced in Equation (2.6) is a very commonly used cost function, which minimizes the total error of
the model. As an alternative, the cross-entropy cost function can be implemented, defined as (Nielsen,
2015):

C(xi,W
l,bl) = − 1

n

n∑
i=1

1∑
k=0

[yi,k ln(âi,k) + (1− yi,k) ln(1− âi,k)] (A.6)

where yi,k is the actual outcome and âi,k is the predicted outcome of observation i for the kth output
neuron. As stated earlier, binary classification problems have two output neurons (i.e. k is either 0 or 1).
Even though the MSE is used more in practice, the cross-entropy function turns out to perform better
in many contexts, as it is less sensitive to the exact starting point of the weights and biases and the
(Nielsen, 2015). That is, the algorithm is less likely to get stuck at a local minimum of the cross entropy
cost function.

The stop criterion. As indicated above, the backpropagation algorithm continues training the model
until a certain stop criterion is reached. The number of iterations or training epochs should be set
carefully, as terminating the algorithm too early results in lower performance (underfitting), whereas
the algorithm should also be prevented from training too long such that overfitting occurs (Park & Lek,
2016).

A clear sign of overfitting is no improvement (or even decrease) in the performance of the model on
the validation dataset, whilst the performance on the training dataset still increases (Kavzoglu & Mather,
2003). To prevent such overfitting, the algorithm should thus be terminated when the performance on
the validation set does not improve over an earlier epoch. However, the performance of the model may
stabilize for a while, after which it improves again (Nielsen, 2015). To capture this behavior, the learning
algorithm can be terminated if the performance on the validation set has not improved during the last X
epochs. This formulation reflects the trade-off between terminating the algorithm too soon and waiting
too long for improvements.
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Appendix C

Data Preparation

As indicated in Section 2.2, a prediction model should be built on a training set, the model should be
validated on a validation set and its performance should be tested on a test set (Varian, 2014). When
observations from the validation or test set would also be used to train the model, one speaks of so-
called (direct) data leakage (Brownlee, 2022). If the model is then evaluated on the same data, the
performance of the model will likely be overestimated due to the advantage of making better predictions
(Zheng & Casari, 2018). Running the same model later on a dataset that was not known beforehand
will probably yield worse results. Similarly, applying all data preparation techniques to all available
data simultaneously could result in (indirect) data leakage (Kuhn & Johnson, 2019). For instance,
scaling or normalizing a numerical feature requires the mean or global minimum and maximum of a
feature, respectively. These statistics potentially yield different values for the training, validation and
test dataset. Hence, if this transformation is applied to the entire dataset, features have been transformed
by the global statistical values and some information about the validation or test set is leaked into the
training dataset. To prevent this, some data preparation techniques should be performed on the training,
validation and test set independently (Brownlee, 2022). The remainder of this chapter discusses several
data preparation techniques that should be performed on the entire dataset or the training, validation
and test set independently.

Preparation techniques for entire dataset

Missing values Some of the input features originate from Jumbo master data (report MA57 ) and
generally regard SKU-specific information. However, some (newly introduced) SKUs do not appear in
this report yet, resulting in missing values for the pallets containing these SKUs. As missing values are
not allowed in ML techniques, these observations (rows) are removed from the dataset.

Errors For each pallet, the number of cases entering the system (input) is compared with the number
of cases leaving the system (output). If these numbers differ, it is assumed that the cases fell somewhere
in the process. However, for some pallets this difference yields a negative value, indicating a surplus in
cases. Clearly, this observation is impossible in reality. Therefore, pallets with negative differences were
considered to be errors and removed from the dataset.

Two other features in the dataset appeared to have unfeasible values. By definition, the Pallet Area
Fill Rate and Pallet Height Fill Rate should not have values exceeding 1, as the dimensions of the pallet
then exceed its maximum value. Yet, the dataset contains observations where either one of these fill rates
exceeds 1. The Pallet Height Fill Rate is calculated using the Maximum Layers feature, which value
is specified by the supplier and known for each SKU separately. However, this information might have
become outdated, such that in reality additional layers could potentially be fit on the pallet. A similar
line of reasoning can be applied for the Pallet Area Fill Rate. If this value exceeds 1, this might be due
to incorrect information in the master data. This fill rate is calculated by using the Length Case, Width
Case, Cases per Layer and Pallet Length features. All these features are included in the master data,
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but are subject to changes over time, potentially resulting in a Pallet Area Fill Rate above 1. Hence,
the observations with a fill rate above 1 contain incorrect information for some features. Usually, such
observations should be removed from the data. However, in the current context, the incorrectness of the
data potentially results in system errors as some calculations are based on these values. In turn, these
system errors could result in cases falling. If the observations with incorrect data would be removed from
the dataset, the model is limited from detecting this as a cause of cases falling. Therefore, instead of
removing these observations, two binary features were added to the dataset indicating for either fill rate
whether its value was feasible; Error Height Fill Rate and Error Area Fill Rate. If not, this implies that
the current information in the master data was incomplete. In addition, the infeasible values for Pallet
Height Fill Rate or Pallet Area Fill Rate above 1 were set equal to 1.

Outliers Raw data potentially contains outliers for some features, which are rare or distinct values
that are outside the range of all other values (Brownlee, 2022). Detecting these outliers is important, as
ML techniques potentially perform better when such outliers are removed from the dataset. By visually
checking the dataset, outliers were detected for two features. First, in Maximum Layers some outliers
were present. For three SKUs, the Maximum Layers value equaled 70, 80 or 160 layers, whereas this value
is below 34 for all other SKUs. Considering the Layers feature of these SKUs, the actual number of
layers for these SKUs was always less than or equal to 7, 8 or 16 layers for the respective SKU. Therefore,
the outliers are believed to be a typo and changed to the latter values.

Second, the Fallen cases feature seems to have some outliers. For most pallets, the value for Fallen
cases is between 0 and 25, but for some observations the value exceeds 100 cases. However, occasionally
a complete pallet falls in HBW, resulting in a high number of fallen cases. Therefore, these outliers are
not considered errors and are not removed from the data.

Transforming features All binary and categorical features need to be transformed into numeric
features. All binary features are transformed into labels, where each observation having a value "Yes"
or "True" is assigned a 1 and each observation having a value "No" or "False" is assigned a 0. For
categorical features one-hot encoding is used, meaning that each value of the feature becomes a unique
column. That is, for each value a dummy binary feature is added to the dataset. In total, the dataset
has 23 binary features (excluding the output feature) and 10 categorical features. By encoding these
features into numeric features, the dataset increases from 66 features to 120 features.

Correlated features Not surprisingly, the features Cases Pallet and Cases Tray Merge are perfectly
correlated. As only 0.01% of the inbound volume is lost due to fallen cases, these features have nearly
the same values for all observations. Therefore, the Cases Tray Merge feature could be removed from
the dataset. In addition, the features Pallet Length and Supplier Pallet Type appear to be extremely
related. This is a sensible effect, as the Pallet Length feature is derived from the Supplier Pallet Type.
Consequently, the Pallet Length feature could be removed from the dataset as well.

Selecting features The number of features present in the data adversely affects the computational
time of the prediction models. Moreover, it is unlikely that all features are relevant for predicting the
output feature; including these features in the model might decrease the performance of the model, as
it adds uncertainty to the predictions (Kuhn et al., 2013). Hence, the goal is to select the best subset of
all features to predict the outcome feature. The feature importance listed by a RF can be used for this
matter, by selecting the subset of features having the highest importance (Brownlee, 2022; Varian, 2014).
That is, first a RF can be fit on the data including all features. Then, based on the feature importance
in this model, a new RF can be fit on a subset of all features.
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Preparation techniques for each separate dataset

Transforming numerical features The numeric values in the dataset have different units. For
instance, the dimensions of cases are expressed in mm, whereas the weight is expressed in g and the
volume in l. Moreover, some features are dimensionless, whereas others are expressed in number of
cases. As many alternative units are present in the data, the mean values of the features might have very
different scales. This increases the complexity of the problem and might adversely influence the model’s
performance (Brownlee, 2022). To counter this, the data should be scaled by means of standardization
or normalization. If standardization is applied, each value is subtracted by the mean and divided by the
standard deviation of the feature:

xnew =
xold − µ

σ
(C.1)

This way, the distribution of the feature is shifted towards a normal distribution having a mean of zero
and a standard deviation of one (Witten & Frank, 2002). If normalization is applied instead, all features
are scaled to have a value between zero and one by subtracting the minimum and dividing by the range
of the feature:

xnew =
xold −min
max−min

(C.2)

Whether standardization works better than normalization or vice versa highly depends on the dataset
(Brownlee, 2022). Therefore, the effect of both scaling methods was tested.

Resampling Many pallets in the dataset have zero cases missing. Consequently, the output feature
is highly imbalanced, meaning that the number of observations in the majority class (no fallen cases) is
much greater than the number of observations in the minority class (fallen cases) (Yijing et al., 2016).
By using one of the resampling methods introduced in Section 2.2.3, the skewed distribution over the
two classes can be diminished (Haixiang et al., 2017). That way, the model will be better able to predict
the minority class. Note that this preparation technique should only be applied to the training dataset
and not to the validation and test datasets.
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Appendix D

Data analysis
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(6) Height Tolerance

Distribution of features for pallets with and without cases missing
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(14) Number of Calls DEPAL

Distribution of features for pallets with and without cases missing
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(22) Length Width Ratio

Distribution of features for pallets with and without cases missing
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Distribution of features for pallets with and without cases missing
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(37) Group

Distribution of features for pallets with and without cases missing
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Appendix E

Pairwise plots Hyper parameters RF
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(a) Undersampling

10 25 50
Maximum depth tree

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

The resampling fraction was 0.33

Accuracy
AUC
Recall

10 25 50
Maximum depth tree

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

The resampling fraction was 0.67

Accuracy
AUC
Recall

10 25 50
Maximum depth tree

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

The resampling fraction was 1

Accuracy
AUC
Recall

(b) Oversampling

Pairwise plot of Maximum Depth and Sampling fraction for the performance of an RF on the validation set, trained on an
under- and oversampled dataset. Numerical features were normalized and samples were drawn without replacement.
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(a) Undersampling
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(b) Oversampling

Pairwise plot of Sampling with or without replacement and Maximum Depth for the performance of an RF on the validation
set, trained on an under- and oversampled dataset. The datasets were completely rebalanced and numerical features were
normalized.
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(b) Oversampling

Pairwise plot of Sampling with or without replacement and Sampling fraction for the performance of an RF on the validation
set, trained on an under- and oversampled dataset. The trees had a maximum depth of 10 splits and numerical features
were normalized.
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(b) Oversampling

Pairwise plot of Scaling method and Maximum Depth for the performance of an RF on the validation set, trained on an
under- and oversampled dataset. The datasets were completely rebalanced and samples were drawn without replacement.
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(b) Oversampling

Pairwise plot of Scaling method and Sampling fraction for the performance of an RF on the validation set, trained on an
under- and oversampled dataset. The trees had a maximum depth of 10 splits and samples were drawn without replacement.
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Pairwise plot of Maximum Depth and Misclassification cost of minority class for the performance of an RF on the validation
set. Numerical features were normalized and samples were drawn without replacement.
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(a) Maximum Depth
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(b) Minority class cost

Pairwise plots of Sampling with or without replacement and Maximum Depth or Minority class cost for the performance
of an RF on the validation set. The numerical features were normalized.
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(b) Minority Class cost

Pairwise plots of Scaling method and Maximum Depth or Minority class cost for the performance of an RF on the validation
set. The samples were drawn without replacement.
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Appendix F

Stochastic Gradient Descent

As Equation (2.6) indicates, the total cost function is calculated by summing the costs over all training
observations i = 1, . . . , n. In each training iteration (or epoch), the gradient ∇C(Wl,bl) is estimated
by averaging over the separate gradients for each observation:

∇C(Wl,bl) =
1

n

n∑
i=1

∇Ci(W
l,bl)

However, as the number of training observations n becomes large, computing all separate gradients takes
a lot of time (Nielsen, 2015). To limit the computational time, the gradient ∇C(Wl,bl) can be estimated
by averaging over only a random sample of size m (the so-called mini-batch size) of the gradients:

∇C(Wl,bl) ≈ 1

m

m∑
i=1

∇Ci(W
l,bl)

This process is known as stochastic gradient descent (Bottou et al., 1991). During each training epoch,
the model is trained by iteratively picking a randomly selected mini-batch of samples, calculating the
adherent gradient and updating the weights and biases. This process is repeated until all mini-batches
(or: samples) have been used. This way, the weights and biases can be updated more frequently, speeding
up the process of learning.

When m is chosen large enough, the mini-batches will provide a good estimate of the average over
all separate gradients, whilst being able to train the model more quickly. However, if it is set too large,
the weights and biases are not updated often enough (Nielsen, 2015). In all MLPs in this thesis, a
mini-batch size of 20 samples was used.
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Appendix G

Pairwise plots Hyper parameters MLP
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(b) Oversampling

Pairwise plot of Learning rate η and Sampling fraction for the performance of an MLP on the validation set, trained on an
under- and oversampled dataset. The models contained 87 neurons in the hidden layer and no regularization was applied.

84



0.001 0.005 0.010
Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

No regularization

Accuracy
AUC
Recall

0.001 0.005 0.010
Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Regularization parameter of 5

Accuracy
AUC
Recall

0.001 0.005 0.010
Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Regularization parameter of 10

Accuracy
AUC
Recall

(a) Undersampling

0.001 0.005 0.010
Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

No regularization

Accuracy
AUC
Recall

0.001 0.005 0.010
Learning rate

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

Regularization parameter of 5

Accuracy
AUC
Recall

0.001 0.005 0.010
Learning rate

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Regularization parameter of 10

Accuracy
AUC
Recall

(b) Oversampling

Pairwise plot of Learning rate η and Regularization parameter λ for the performance of an MLP on the validation set,
trained on an under- and oversampled dataset. The datasets were completely rebalanced and the models contained 87
neurons in the hidden layer.
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(b) Oversampling

Pairwise plot of number of neurons in hidden layer and Regularization parameter λ for the performance of an MLP on the
validation set, trained on an under- and oversampled dataset. The datasets were completely rebalanced and the learning
rate η was 0.05.
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(b) Oversampling

Pairwise plot of Learning rate η and number of neurons in the hidden layer for the performance of an MLP on the validation
set, trained on an under- and oversampled dataset. The datasets were completely rebalanced and no regularization was
applied.
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(b) Oversampling

Pairwise plot of number of neurons in hidden layer and Sampling fraction for the performance of an MLP on the validation
set, trained on an under- and oversampled dataset. The models contained 87 neurons in the hidden layer and no regular-
ization was applied.
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(b) Oversampling

Pairwise plot of Regularization parameter λ and Sampling fraction for the performance of an MLP on the validation set,
trained on an under- and oversampled dataset. The models contained 87 neurons in the hidden layer and the learning rate
η was 0.05.
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Appendix H

Reorder Levels TWH

The reorder levels used in the TWH are based on an average sales quantity, a target quantity and a
batch size. To start, the average sales quantity (ASQca

i,t) for each SKU i is defined as the average of six
days of historic (real) demand Dca

i,t and four days of forecasted demand1 F ca
i,t :

ASQca
i,t =

1

10

(
0∑

t=−5

Dca
i,t +

4∑
t=1

F ca
i,t

)
,

where t = 1 corresponds to the current day. The target quantity for each SKU reflects, as the name
suggests, the desired stock level in the TWH for each SKU. This parameter is based on the average sales
quantity and a so-called replenishment constant RC. This constant reflects the TWH properties and is
defined as:

RC ≈ Kl∑
i Li
· K

l

D̄ca
,

where Kl represents the total number of locations in the TWH, Li represents the number of locations
one case of SKU i takes in and D̄ca represents the average daily demand of stores for all SKUs handled
by the OPM. Consequently, the first term reflects the average number of cases per SKU which fit in
the TWH and the second term reflects the average DOS in the TWH. The replenishment constant was
rounded to 160 for all SKUs i and all days t. Then, the target quantity TQca

i,t is defined as:

TQca
i,t =

√
RC ·ASQca

i,t,

The definition of the batch sizes Qca
i,t are presented in Section 5.1. Finally, the reorder levels scai,t are

defined as:
scai,t = TQca

i,t −
Qca

i,t

2

A replenishment is triggered if the inventory position for an SKU i in the TWH drops below the reorder
level. Then, the order quantity corresponds to nQca

i,t, where n equals the minimum number of batches
Qca

i,t needed to raise the inventory position above the reorder level. An additional rule is implemented
that favors the replenishment of half full pallets over other partial pallets. This rule is based on a certain
minimum quantity MQca

i,t for each SKU, which is defined as:

MQca
i,t =

F ca
i,t

3

Then, the rule that potentially rounds replenishment quantities up to half of a pallet is defined as:
1In this formulation of the average sales quantity, the forecasted and historic demand all receive the same weight.

However, in reality different weights are assigned to these values, where historic demand receives higher weights than
forecasted demand and days closer to the actual day receive higher weights than days further in the future or in the past.
However, the actually assigned weights were unknown, such that the average sales quantity was approximated as just the
average of all values.
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Rule Half Full Pallets: If the difference between the target quantity and the minimum
quantity is less than half of a pallet (i.e. TQca

i,t −MQca
i,t ≤ 1

2FP ca
i ) and the inventory on

half of a pallet corresponds to less than RFP = 5 days of forecasted demand (i.e. 1
2FP ca

i ≤∑RFP
t=1 F ca

i,t ): nQca
i,t is rounded up to a half of a pallet (or the nearest integer of full layers).

where FP ca
i reflect the number of cases on a full pallet of SKU i and RFP reflects the maximum reach

of a full pallet.
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Appendix I

Algorithm Rolling Horizon MINLP

Algorithm 1: Implementation Mathematical Model

Data: Λ, set of objective weights;
TWHλ, replenishment strategy over entire period of interest for certain value of λ;
Kca

fp, used TWH capacity of SKUs in Ifp;
Cp

fp, C
l
fp, C

ca
fp, used DEPAL capacity (in pallets, layers, cases) of SKUs in Ifp;

Sets I, Ifp, J , T , Xi, explanations are provided in Appendix J;
Parameters SI li,x, SI

ca
i ,Kch, Cp, Cl, Cca, α, β, explanations are provided in Appendix J;

Result: Solution TWHλ ∀λ ∈ Λ

for j ∈ J do
Solution FPj ← Solution of standard (R, s, nQ) policy ∀i ∈ Ifp, t ∈ T ;
return Solution FPj , Kch

fp, C
p
fp, C

l
fp, C

ca
fp;

Kch ← (1− α)(1− β)Kch −Kch
fp;

Cp ← (1− α)Cp − Cp
fp;

Cl ← (1− α)Cl − Cl
fp;

Cca ← (1− α)Cca − Cca
fp;

for all λ ∈ Λ do
if j = 1 then

Icai,1 = SIcai ∀i ∈ I;
I li,1,x = SI li,x ∀i ∈ I, x ∈ Xi;
BOca

i,0 = 0 ∀i ∈ I;
else

Icai,1 = Icai,|T | ∀i ∈ I, obtained from Solution MINLPλ,j−1;
I li,1,x = I li,x,|T | ∀i ∈ I, x ∈ Xi, obtained from Solution MINLPλ,j−1;
BOca

i,0 = BOca
i,|T | ∀i ∈ I, obtained from Solution MINLPλ,j−1

end
Solution MINLPλ,j ← Solution of MINLP for λ, Icai,1, I li,1,x and BOca

i,0;
return Solution MINLPλ,j ;

end
Solution TWHλ ← Solution FPj + Solution MINLPλ,j ;
return Solution TWHλ;

end
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Appendix J

Nomenclature Mathematical Model

Description of decision variables

Decision
variable

Description

Θi,t Binary variable indicating whether a replenishment of SKU i on day t

included a partially depalletized pallet (1) or not (0).
Ωi,t Continuous variable indicating the part of customer demand that is lost

for SKU i on day t.
Φi,t,x Binary variable indicating whether a certain pallet x of SKU i was (fully

or partially) depalletized on day t.
Icai,t Inventory on hand of SKU i on day t in TWH, expressed in cases.
Ichi,t Inventory on hand of SKU i on day t in TWH, expressed in occupied

channels.
I li,t,x Inventory on hand of SKU i on day t on pallet x in HBW, expressed in

layers.
LSca

i,t Lost sales (i.e. postponed demand) of customers at TWH, for SKU i on
day t, expressed in cases.

LSl
i,t Lost sales (i.e. postponed demand) of TWH at HBW, for SKU i on day

t, expressed in layers.
ni,t Ordered number of full batches of TWH at HBW for SKU i at day t.
REl

i,t,x Replenishment quantity from HBW to TWH for SKU i on day t, from
a certain pallet x, expressed in full layers.

Zl
i,t Dummy variable for each SKU i on day t, expressed in layers.
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Description of parameters

Parameter Description

α Percentage of DEPAL and TWH capacity reserved for high priority re-
plenishments.

β Percentage of TWH capacity lost due to inefficient usage of channels.
λ Weight applied to minimization of partial depalletizations.
ASQca

i,t Average sales quantity for SKU i on day t, expressed in cases.
Cca Total daily maximum capacity of the DEPALs, expressed in cases.
Cl Total daily maximum capacity of the DEPALs, expressed in layers.
Cp Total daily maximum capacity of the DEPALs, expressed in pallets.
Dca

i,t Customer demand for SKU i on day t, expressed in cases.
D̄ca Average daily demand of stores for all SKUs handled by the OPM, ex-

pressed in cases.
F ca
i,t Forecasted customer demand for SKU i on day t, expressed in cases.

FP ca
i Cases per full pallet for SKU i, expressed in cases.

IT l
i,t,x Inbound quantity from external suppliers for SKU i on day t on pallet

x, expressed in layers.
Kch Capacity of TWH, expressed in channels.
Kl Capacity of TWH, expressed in locations.
Li Number of locations one case of SKU i fills.
MQca

i,t Minimum quantity for SKU i on day t, expressed in cases.
P ca
i Cases per layer for SKU i, expressed in cases.

Qca
i Batch size for SKU i on day t, expressed in cases.

RC Replenishment constant TWH.
RFP Maximum days of stock of a full pallet, expressed in days.
RPP Maximum days of stock of a partial pallet, expressed in days.
scai,t Reorder level at TWH for SKU i on day t, expressed in cases.
SIcai Start inventory TWH for SKU i, expressed in cases.
SI li,x Start inventory HBW for SKU i on pallet x, expressed in layers.
TQca

i,t Target quantity for SKU i on day t, expressed in cases.

Description of sets

Sets Description

Λ Set of objective weights that are used to solve the MINLP.
I Set of SKUs i that have a batch size less than a full pallet and are

included in the MINLP.
Ifp Set of SKUs i that have a batch size equal to a full pallet during the

entire period of interest and are excluded from the MINLP.
J Set of periods j for which the MINLP is consecutively solved using the

rolling horizon algorithm.
T Set of days t considered in one period.
Xi Set of pallets x of SKU i present in the CDC during time period |T |.
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