1,735 research outputs found

    Drug-therapy networks and the predictions of novel drug targets

    Get PDF
    Recently, a number of drug-therapy, disease, drug, and drug-target networks have been introduced. Here we suggest novel methods for network-based prediction of novel drug targets and for improvement of drug efficiency by analysing the effects of drugs on the robustness of cellular networks.Comment: This is an extended version of the Journal of Biology paper containing 2 Figures, 1 Table and 44 reference

    Non-parametric Bayesian modeling of complex networks

    Full text link
    Modeling structure in complex networks using Bayesian non-parametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This paper provides a gentle introduction to non-parametric Bayesian modeling of complex networks: Using an infinite mixture model as running example we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model's fit and predictive performance. We explain how advanced non-parametric models for complex networks can be derived and point out relevant literature

    RANDOM WALK APPLIED TO HETEROGENOUS DRUG-TARGET NETWORKS FOR PREDICTING BIOLOGICAL OUTCOMES

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics and Computing, 2016Prediction of unknown drug target interactions from bioassay data is critical not only for the understanding of various interactions but also crucial for the development of new drugs and repurposing of old ones. Conventional methods for prediction of such interactions can be divided into 2D based and 3D based methods. 3D methods are more CPU expensive and require more manual interpretation whereas 2D methods are actually fast methods like machine learning and similarity search which use chemical fingerprints. One of the problems of using traditional machine learning based method to predict drug-target pairs is that it requires a labeled information of true and false interactions. One of the major problems of supervised learning methods is selection on negative samples. Unknown drug target interactions are regarded as false interactions, which may influence the predictive accuracy of the model. To overcome this problem network based methods has become an effective tool in predicting the drug target interactions overcoming the negative sampling problem. In this dissertation study, I will describe traditional machine learning methods and 3D methods of pharmacophore modeling for drug target prediction and will show how these methods work in a drug discovery scenario. I will then introduce a new framework for drug target prediction based on bipartite networks of drug target relations known as Random Walk with Restart (RWR). RWR integrates various networks including drug– drug similarity networks, protein-protein similarity networks and drug- target interaction networks into a heterogeneous network that is capable of predicting novel drug-target relations. I will describe how chemical features for measuring drug-drug similarity do not affect performance in predicting interactions and further show the performance of RWR using an external dataset from ChEMBL database. I will describe about further implementations of RWR approach into multilayered networks consisting of biological data like diseases, tissue based gene expression data, protein- complexes and metabolic pathways to predict associations between human diseases and metabolic pathways which are very crucial in drug discovery. I have further developed a software tool package netpredictor in R (standalone and the web) for unipartite and bipartite networks and implemented network-based predictive algorithms and network properties for drug-target prediction. This package will be described

    Link prediction in drug-target interactions network using similarity indices.

    Get PDF
    BACKGROUND: In silico drug-target interaction (DTI) prediction plays an integral role in drug repositioning: the discovery of new uses for existing drugs. One popular method of drug repositioning is network-based DTI prediction, which uses complex network theory to predict DTIs from a drug-target network. Currently, most network-based DTI prediction is based on machine learning - methods such as Restricted Boltzmann Machines (RBM) or Support Vector Machines (SVM). These methods require additional information about the characteristics of drugs, targets and DTIs, such as chemical structure, genome sequence, binding types, causes of interactions, etc., and do not perform satisfactorily when such information is unavailable. We propose a new, alternative method for DTI prediction that makes use of only network topology information attempting to solve this problem. RESULTS: We compare our method for DTI prediction against the well-known RBM approach. We show that when applied to the MATADOR database, our approach based on node neighborhoods yield higher precision for high-ranking predictions than RBM when no information regarding DTI types is available. CONCLUSION: This demonstrates that approaches purely based on network topology provide a more suitable approach to DTI prediction in the many real-life situations where little or no prior knowledge is available about the characteristics of drugs, targets, or their interactions

    Drug Target Interaction Prediction Using Machine Learning Techniques – A Review

    Get PDF
    Drug discovery is a key process, given the rising and ubiquitous demand for medication to stay in good shape right through the course of one’s life. Drugs are small molecules that inhibit or activate the function of a protein, offering patients a host of therapeutic benefits. Drug design is the inventive process of finding new medication, based on targets or proteins. Identifying new drugs is a process that involves time and money. This is where computer-aided drug design helps cut time and costs. Drug design needs drug targets that are a protein and a drug compound, with which the interaction between a drug and a target is established. Interaction, in this context, refers to the process of discovering protein binding sites, which are protein pockets that bind with drugs. Pockets are regions on a protein macromolecule that bind to drug molecules. Researchers have been at work trying to determine new Drug Target Interactions (DTI) that predict whether or not a given drug molecule will bind to a target. Machine learning (ML) techniques help establish the interaction between drugs and their targets, using computer-aided drug design. This paper aims to explore ML techniques better for DTI prediction and boost future research. Qualitative and quantitative analyses of ML techniques show that several have been applied to predict DTIs, employing a range of classifiers. Though DTI prediction improves with negative drug target pairs (DTP), the lack of true negative DTPs has led to the use a particular dataset of drugs and targets. Using dynamic DTPs improves DTI prediction. Little attention has so far been paid to developing a new classifier for DTI classification, and there is, unquestionably, a need for better ones

    Performance Comparison of Data Sampling Techniques to Handle Imbalanced Class on Prediction of Compound-Protein Interaction

    Get PDF
    The prediction of Compound-Protein Interactions (CPI) is an essential step in the drug-target analysis for developing new drugs as well as for drug repositioning. One challenging issue in this field is that commonly there are more numbers of non-interacting compound-protein pairs than interacting pairs. This problem causes bias, which may degrade the prediction of CPI. Besides, currently, there is not much research on CPI prediction that compares data sampling techniques to handle the class imbalance problem. To address this issue, we compare four data sampling techniques, namely Random Under-sampling (RUS), Combination of Over-Under-sampling (COUS), Synthetic Minority Over-sampling Technique (SMOTE), and Tomek Link (T-Link). The benchmark CPI data: Nuclear Receptor and G-Protein Coupled Receptor (GPCR) are used to test these techniques. Area Under Curve (AUC) applied to evaluate the CPI prediction performance of each technique. Results show that the AUC values for RUS, COUS, SMOTE, and T-Link are 0.75, 0.77, 0.85 and 0.79 respectively on Nuclear Receptor data and 0.70, 0.85, 0.91 and 0.72 respectively on GPCR data. These results indicate that SMOTE has the highest AUC values. Furthermore, we found that the SMOTE technique is more capable of handling class imbalance problems on CPI prediction compared to the remaining three other techniques

    Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference

    Get PDF
    Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning

    Identification of drug candidates and repurposing opportunities through compound-target interaction networks

    Get PDF
    Introduction: System-wide identification of both on- and off-targets of chemical probes provides improved understanding of their therapeutic potential and possible adverse effects, thereby accelerating and de-risking drug discovery process. Given the high costs of experimental profiling of the complete target space of drug-like compounds, computational models offer systematic means for guiding these mapping efforts. These models suggest the most potent interactions for further experimental or pre-clinical evaluation both in cell line models and in patient-derived material.Areas covered: The authors focus here on network-based machine learning models and their use in the prediction of novel compound-target interactions both in target-based and phenotype-based drug discovery applications. While currently being used mainly in complementing the experimentally mapped compound-target networks for drug repurposing applications, such as extending the target space of already approved drugs, these network pharmacology approaches may also suggest completely unexpected and novel investigational probes for drug development.Expert opinion: Although the studies reviewed here have already demonstrated that network-centric modeling approaches have the potential to identify candidate compounds and selective targets in disease networks, many challenges still remain. In particular, these challenges include how to incorporate the cellular context and genetic background into the disease networks to enable more stratified and selective target predictions, as well as how to make the prediction models more realistic for the practical drug discovery and therapeutic applications.Peer reviewe
    • …
    corecore