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Abhik Seal 

RANDOM WALK APPLIED TO HETEROGENOUS DRUG-TARGET 

NETWORKS FOR PREDICTING BIOLOGICAL OUTCOMES 

Prediction of unknown drug target interactions from bioassay data is 

critical not only for the understanding of various interactions but also 

crucial for the development of new drugs and repurposing of old ones. 

Conventional methods for prediction of such interactions can be divided 

into 2D based and 3D based methods. 3D methods are more CPU 

expensive and require more manual interpretation whereas 2D methods 

are actually fast methods like machine learning and similarity search 

which use chemical fingerprints. One of the problems of using 

traditional machine learning based method to predict drug-target pairs 

is that it requires a labeled information of true and false interactions. 

One of the major problems of supervised learning methods is selection 

on negative samples. Unknown drug target interactions are regarded as 

false interactions, which may influence the predictive accuracy of the 

model. To overcome this problem network based methods has become an 

effective tool in predicting the drug target interactions overcoming the 

negative sampling problem. 

In this dissertation study, I will describe traditional machine learning 

methods and 3D methods of pharmacophore modeling for drug target 

prediction and will show how these methods work in a drug discovery 

scenario. I will then introduce a new framework for drug target prediction 

based on bipartite networks of drug target relations known as Random 

Walk with Restart (RWR). RWR integrates various networks including drug–

drug similarity networks, protein-protein similarity networks and drug-

target interaction networks into a heterogeneous network that is capable 

of predicting novel drug-target relations. I will describe how chemical 

features for measuring drug-drug similarity do not affect performance in 

predicting interactions and further show the performance of RWR using 

an external dataset from ChEMBL database. I will describe about further 

implementations of RWR approach into multilayered networks consisting of 

biological data like diseases, tissue based gene expression data, protein-

complexes and metabolic pathways to predict associations between 
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human diseases and metabolic pathways which are very crucial in drug 

discovery. I have further developed a software tool package netpredictor in 

R (standalone and the web) for unipartite and bipartite networks and 

implemented network-based predictive algorithms and network properties 

for drug-target prediction. This package will be described. 
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CHAPTER 1 

 
INTRODUCTION 

 
 

1.1 BACKGROUND 
 
Despite many advances in the past decades, drug discovery is still a 

costly and time-consuming process. In recent years the rate of successful 

drug developed has decreased [1, 2] and in this light new indications for 

existing and abandoned drugs showing some promise [3]. Such a new 

strategy is called drug-repurposing [4]. Drug repositioning is also 

promising for shelved compounds because they failed in clinical trials 

and were not further investigated. These drugs could be quickly 

marketed for new indications [5, 6], thus reducing the attrition rates. 

These new interactions can also be useful for understanding causes of 

adverse effects of existing drugs. Traditional drug discovery follows a 

reductionist’s approach, where a large complex system is divided into 

multiple parts. For example, a medicinal chemist assumes that ligands 

and their structure have sufficient information to provide an 

understanding of the behavior of target interaction and pharmacology. 

Connecting cellular components to tissue or organ-level based on 

gene expression data helps to identify new targets. Similarly 

identifying disease-based pathways requires gene expression data 

from tissues/organs, which forms proteins complexes, which 
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connects metabolic pathway. This is because  different diseases 

like alzheimer’s, ulcers, ischemic heart disease and cirrhosis 

occurs which occurs in different tissues like brain, stomach, heart 

and liver have different level of protein expression respectively. 

Actions of drug are changing the way it was use to described earlier 

in figure 1.1. Today it is clear that an adverse event or a 

pharmacological event occurs due to coordination of number of 

biological components in the system describe in figure 1.2. Interactions 

between the different components and influences from the environment, 

give rise to network behavior, which are absent in the isolated 

components [7].  

  

 

  

 

 

Traditional approaches for drug target interaction prediction are generally 

based on virtual screening. Virtual screening or insilco screening is the use 

of high performance computing environments to screen compounds for drug 

candidates, which is classified into ligand-based and target-based 

approaches described in the next section. 

Off	-	target	

on-	target	

				Drug	

Therapeutic	
effect	

Adverse	
Effect	

                 Figure 1.1 Classic drug target pharmacology [95] 
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Ligand-based approaches screen candidate compounds or ligands to 

predict whether they interact with a given target based on the 

assumption that similar drugs interact with the same target. The 

similarity of two drugs is measured in different ways with respect to 

different aspects. Other than comparing drugs according to their 

chemical structures [8], side effect has also been used to measure the 

similarity between drugs [9]. Assuming that similar targets bind to the 

same ligand, target-based approaches, on the other hand, compare 

proteins to predict whether they bind to the given ligand, or whether they 

are the targets of the given drug or compound. More specifically, for a 

given drug, new targets are identified by comparing candidate proteins to 

the known targets of this drug with respect to certain descriptors such 

as amino acid sequence, binding sites, or ligands that bind to them. 

Supervised machine learning using ligand based methods [10–13] drug-

      Figure 1.2 Network view of drug action idea taken from Berger and 
Iyenger [95]  
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target pairs are labeled as positive or negative samples according to 

confirmed interaction between corresponding drug and target pairs.  The 

selection of negative samples is a common problem of all the supervised 

learning methods, as unknown drug–target interactions have been assumed 

as negative samples in the supervised learning methods. Selection of 

negative samples largely influences the predictive accuracy.  It’s difficult to 

decide the correct combination of datasets and fingerprints to prioritize 

targets. Selection of molecular descriptors plays a crucial role in drug 

discovery. Several fingerprints such as path based fingerprints (TT ad AP), 

substructure based fingerprints (MACCS and pubchem), circular fingerprints 

(ECFP, FCFP, PHFP) are used for prioritization of compounds. Performance of 

the fingerprints depends on different datasets. Mostly circular and path 

based fingerprints have high performance in retrieving active compounds 

than other types of fingerprints [95-98]. The random walk method with 

proper optimization of parameters discussed in chapter 2 of the dissertation 

will show how one can use any kind chemical fingerprints to get similar 

results for target prioritization. The random walk based method described in 

this dissertation overcomes the limitation for negative sampling problem and 

also it doesn’t require the labeled information of drug–target interaction. One 

can give unlabeled information of drugs and after computation the algorithm 

predicts the interactions.  In chapter four, another problem we are trying to 

address if the method of random walk with restart can be implemented using 

multipartite networks, which integrates a heterogeneous network structure 

contains more 3 kinds of networks. Chapter 5 discusses about the 

netpredictor standalone and web software which computes the network 
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properties and computes four different algorithms HeatS, network based 

inference (NBI), random walk with restart (RWR) and netcombo (NBI+RWR). 

The method, which is implemented in this dissertation, falls under ligand-

based approach. 

The next section describes about the traditional types of virtual screening. 

1.2 VIRTUAL SCREENING STRATEGIES 
 
Computational ligand (compound) design is divided into two strategies,  

ligand based and target based drug design that can be used together or 

independently. Ligand based drug design relies on set of active and 

inactive ligands where no 3D structural information of the target is 

available.  Structure based drug design is applicable when the target’s 

3D information is available along with the binding site information. Figure 1.3 

shows how virtual screening in classified. 

Depending upon structural and Bioactvity data available: 

•  One or more actives molecule known perform similarity searching. 

•  Several active known try to identify a common 3D pharmacophore and   

   then do 3D database search. 

•  Reasonable number of active and inactive known train a machine     

    learning model. 

•  3D structure of protein known use protein ligand docking. 

People working in pharmaceutical industry does not follow a specific route 

whatever information they have follow a hybrid of methods. Figure 1.4 shows 

how both the ligand based and structured based design can be integrated. 

While designing new ligands one starts with a database of chemical structures 
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and performs a search for similar structures based on 3D shape or 2D chemical 

fingerprints. Then if a 3D crystallographic protein structure is avail- able with a 

ligand attached then one can design a structure-based pharmacophore [14, 15]. 

If the 3D protein structure is missing one can go for the ligand based 

pharmacophore and then select some potential lead compounds. If there exists 

a 3D structure then one can use 3D docking tool to find the pattern of 

interactions. 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 1.3: Diagram showing Virtual screening pathways. 
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                    Figure 1.4: Diagram showing  hybrid Virtual screening  
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1.3 OVERVIEW OF THE STUDY 
 
1.3.1 RANDOM WALK WITH RESTART ON DRUG TARGET       

          HETEROGENOUS  NETWORK                               

Predicting novel drug–target associations is important not only for 

developing new drugs, but also for furthering biological knowledge by 

understanding how drugs work and their modes of action. Network based 

description and analysis not only give a systems-level understanding of 

drug action and disease complexity, but can also help to improve the 

efficiency of drug design. As more data about drugs, targets, and their 

interactions becomes available, computational approaches have become an 

indispensible part of drug target association discovery. In this chapter we 

apply random walk with restart (RWR) method to a heterogeneous network 

of drugs and targets compiled from drugbank database and investigate the 

performance of the methods under parameter variation and choice of 

chemical fingerprint methods. 

Random walk is a useful mathematical framework that provides a 

systematic way to measure importance of nodes in a network. The most 

widely known is the PageRank algorithm [29]. PageRank, developed for 

ranking web pages, measures page clicks of hypothetical web surfers who 

randomly click hyperlinks in the network of webpages. Since it is possible 

for the surfer to be trapped in a dead-end webpage that does not have 

any connection to the main network, at each time step the surfer may 

jump to a random webpage with a probability c. Interestingly, this 
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formulation also provides a simple way to define a random walk-based 

“distance” from a node a (or a set of nodes) to every other node, namely by 

allowing the random walkers to jump only to the source node a (or the 

source set of nodes) and restart from there. As a result, it is more likely 

to find the random walker at the vicinity of the source node than at a 

distant part of the network, and thus we are able to estimate the 

relevance (closeness) of each node with respect to the source node. The 

prediction method applies this idea to identify drugs and targets that are 

relevant to a set given set of drugs and targets. 

Consider an undirected, unweighted network G = (V, E), where  V     is the 

set of nodes and E is the set of links.  For each pair of nodes a,b�V we 

can assign a proximity score by executing the following procedure: 

– we start a random walker from a. 

– At each time step, with the probability 1 - c, the walker walks to 

one of the neighbors, b, according to the transition value matrix !"# =

	
&'(
)'

 where *"# is the adjacency matrix of the network and (*"#	equals 1  if 

node a and b are connected, 0 otherwise) +" denotes  the degree of a. 

– With probability c , the walker goes back to a. 

– After many time steps the probability of finding the random walker 

at node x converges to the steady-state probability which is our 

proximity score *"→-.  

 
The random walk with restart, whose updating equation is shown as 

follows: 

                                            pt+1  = (1-c)WT pt + cp0                              (1.1) 



	 10	

Keep updating p until convergence; the stationary distribution vector p 

can meet, 

                                       pt = (1 − c)(I − cW T )−1p0                   (1.2)  

We show that choice of chemical fingerprint does not affect the 

performance of the method when the parameters are tuned to optimal 

values. We use a subset of the ChEMBL15 dataset that contains 2,763 

associations between 544 drugs and 467 target proteins to evaluate our 

method, and we extracted datasets of bioactivity ≤ 1 and ≤ 10 µM activity 

cutoff. For 1 µM bioactivity cutoff, we find that our method can correctly 

predict nearly 47, 55, 60% of the given drug–target interactions in the test 

dataset having more than 0, 1, 2 drug target relations for ChEMBL 1 µM 

dataset in top 50 rank positions. For 10 µM bioactivity cutoff, we find that 

our method can correctly predict nearly 32.4, 34.8, 35.3% of the given 

drug–target interactions in the test dataset having more than 0, 1, 2 

drug target relations for ChEMBL 1 µM dataset in top 50 rank positions. 

We further examine the associations between 110 popular top selling 

drugs in 2012 and 3,519 targets and find the top ten targets for each drug. 

We demonstrate the effectiveness and promise of the approach—RWR on 

heterogeneous networks using chemical features—for identifying novel drug 

target interactions and investigate the performance. 
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1.3.2 DISEASE TO PATHWAY PREDICTION USING RANDOM WALK    

         WITH RESTART 

Besides identifying individual disease related genes, associating pathways 

to human inherited diseases is of great importance, because the disease 

conditions arise from the cooperative behavior of multiple proteins in 

protein interaction network which forms protein complexes

and plays an important role in disease pathways. Integrating pathway 

level data would play a key role in understanding mechanism of action 

of diseases. It is well known that genes within a cell do not function 

alone. They interact with each other to form complexes and form 

pathways to carry out biological functions. Also identifying the pathways 

could help in design and repurpose drugs of similar or unknown diseases 

with similar symptoms. Here in this chapter I have designed a system, 

which is composed, of disease data connected to 60 different tissues [30] 

based protein interaction network which is developed from the 

expression profiles of human proteome, and associate them with protein 

complexes to biological pathways. We propose a random walk based 

model to query a specific disease, which then loads the disease tissue, 

based protein-protein interaction network and its pro- teins complexes 

and identifies biological pathways associated with the disease. With several 

leave-one out validations we optimized the network to achieve best results. 

The results can be used to predict unknown pathways associated with 

the disease and would help in drug repurposing related to those 

pathways. 
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1.3.3 NETPREDICTOR SOFTWARE FOR NETWORK BASED   

         PREDICTION     

Searching missing associations between drug and targets is valuable to 

understand polypharmacology and as well as understand off-target 

mediated effects of chemical compounds in biological systems. Traditional 

machine learning algorithms like Naive Bayes, SVM and Random Forest 

have been successfully applied to predict drug target relations. However, 

using supervised machine learning method we need to label the drug- 

target pairs with negative and positive samples to understand the known 

relation between drug and target is known or not. Therefore, unknown 

drug target relations are regarded as negative and im   proper negative 

sample selection can largely affect the predictive accuracy. Network based 

models tries to avoid these kind of issues on negative sampling biases.

Cheng [31] developed a technique based on Network Based Inference 

(NBI) and developed three supervised methods on drug similarity, target 

similarity and network topology and showed superior performance of 

network topology based method. Alaimo [32] have extended Cheng’s 

method of network model to integrate Chemical and target similarity into 

account to show that the performance of the method superior to Cheng’s 

model. Chen [33] and Seal [27] have used random walk with restart 

(RWR) based method to predict drug target interactions on a 

heterogeneous network made up of drug-drug similarity, protein-protein 

similarity and bipartite graph between drugs and targets. Seal [27] have 

extended the method by optimizing a parameter η, which showed that the 
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performance of RWR is independent of the choice of using Chemical 

fingerprint features. The netpredictor package provides the implements 

the Random walk with Restart algorithm in a biparite and unipartie 

network and also implements the Alaimo’s algorithm of network-based 

inference. The algorithm also implements method to predict the 

unknown relations and the relations and perform permutations tests on 

the given network for predicted values. 

1.4    RELATED WORK 
 
Random walk with restart is being applied to many bioinformatics 

related problems in prioritization of diseases based on protein - protein 

interaction network [34] non-coding RNAs [35]. Campillos etal. [36] 

established a method using drug side-effect similarity to find diverse 

compounds binding a similar target. Cheng etal [37] developed three 

super- vised inference models namely drug-based similarity inference 

(DBSI), target-based similarity inference (TBSI) and network-based 

inference (NBI) to predict drug target interactions. DBSI and TBSI 

depends on chemical structure similarity and target sequence sim- 

ilarity, respectively, whereas NBI is only based on drug–target bipartite 

network topology similarity. Yamanishi [38] proposed a bipartite graph 

learning method to predict drug-target interactions by integrating

the chemical structure information, the sequence similarity information 

and known drug-target information into a supervised kernel-regression 

method to predict new drug-target interactions. He further proposed a 

pharmacological similarity based network [39] learning method where he 
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integrated pharmacological similarity into supervised bipartite graph 

model to identify new drug-target interactions. 

1.5    CONCLUSION 

	
In this dissertation we are using network based random walked with restart to 

predict biological outcomes.  One of the outcomes is prediction of drug target 

interactions and another one is prediction of metabolic pathways of diseases 

using tissue-based protein – protein interaction network and protein complexes 

information network. The paper from Chen etal described the way to performing 

RWR in bipartite network with chem-biological data. However there were certain 

limitations on that work.  The paper focused on prediction of drug targets based 

on certain groups of proteins like GPCR, Ion Channels, Enzymes and Nuclear 

Receptor. However, it didn’t consider the off class interactions of drugs. In order 

to check the off class cross prediction we created a full data of 3519 proteins 

and then we predicted the off class interactions with relative good performance. 

Testing drug target interactions at different activity endpoints is also very 

crucial in understanding lead compounds. We tested our methods with 

ChEMBL data at 10000 μM and 1000 μM and it showed very good performance.  

Another important fact that came out of this dissertation is we know chemical 

fingerprints plays a crucial role in prioritization of targets. We have optimized 

parameter η to 0.01, which controls the importance of two kinds of nodes, i.e. 

drug node and target node. When this parameter is optimized we can control 

the use of chemical similarity matrices. It means that whatever similarity 

matrices you use one can exactly same prioritization results. This will help in 

using open public version of fingerprints than commercial versions. Also Chen 
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etal didn’t release any kind of codes for there computation we have developed a 

standalone and web based application of the random walk with restart and 

network based inference methods for prioritization of targets and is freely 

available. 

Other than prioritization of drug targets, with the random walk framework can 

also be used to integrate multi partite networks and predict outcomes. We 

wanted to predict disease based metabolic pathways. Diseases occur in different 

tissues and organs also depend upon the protein expression levels. Diseaes 

such as Alzheimer’s, ulcer which occurs in brain and stomach respectively, the 

gene expression levels would also vary . In order to predict the disease based 

metabolic pathways we used four-layered network consisting of diseases, tissue 

based protein expression data, protein complex information and protein 

pathways network. The method can predict the biological pathways, the 

proteins which are involved and it can help to prioritize complex disease 

based pathways. 
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CHAPTER 2 

 
 

RANDOM WALK APPLIED TO DRUG TARGET BIPARTITE 

NETWORK 

2.1 INTRODUCTION 
 

Recent work has demonstrated the power of network-based approaches 

in drug discovery [33, 40, 41]. We have shown previously that a large 

semantic network of drug–target interactions provides a powerful framework 

for predicting new associations [42] and that an algorithm that predict drug-

target associations by using this network performs surprisingly well, even 

without training datasets or incorporating target preference [43]. zthis 

chapter, we apply a random walk-based link prediction algorithm based 

on Chen et al. [33] to a more extensive drug–target network from drug-

bank and evaluated its performance using an external bioactivity dataset 

from ChEMBL 15 database. We combine three networks drug-drug, target-

target, and drug-target to construct a heterogeneous network of drugs 

and targets. The links between drugs are obtained by quantifying molecular 

similarity with chemical fingerprints and examining the shared targets.  The 

links between targets are obtained by calculating local sequence similarity 

between proteins and again examining the links between shared drugs. 

2.2 METHODS 
 

We apply the RWR algorithm to a drug–target network and use an 

external dataset extracted from ChEMBL 15 (544 drugs and 467 proteins) 

at bioactivity cutoff points of 10µ M and 1 µ M to quantitatively evaluate 

the performance and robustness of the approach. 
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2.2.1   DATASETS 
 
For the drug dataset, I compiled a set of approved drugs from DrugBank 

database (Version 3.0) [44], consisting of 727 compounds and 3519 

protein targets. To construct the network between drugs, we incorporate 

two types of similarity measures: chemical (structural) similarity and 

target similarity. We calculate chemical similarity be- tween drugs by 

using the Jaccard Index (Tanimoto Coefficient) between their chemical 

fingerprints. The Jaccard Index is defined as the size of the intersection 

of two sets di- vided by the size of the union of the sets, ranging 

between 0 and 1. For binary vectors like chemical fingerprints, it is 

defined as C/(A + B-C) where C is the number of bits in common, A is 

the number of bits in one of the fingerprints, and B is the number of bits 

in the other fingerprint. We use four types of chemical features namely, 

MDL MACCS166 keys (fragmental descriptors) [45], ECFP6 fingerprints 

(extended connectivity fingerprint path 6) [46], 2D Pharmacophore 

fingerprints (PHFP4) [47] and ROCS program which uses Tanimoto combo 

similarity—which combines shape and color measures of a 

compound, we calculate them with ROCS program [48]. 

ECFP (extended connectivity fingerprint) encodes information on 

atom-centered fragments that is derived from the variant of the 

Morgan algorithm [49]. ECFPs are generated using the neighborhood 

of each non-hydrogen atom into multiple circular layers up to a 

given diameter. These atom-centric substructural features are then 

mapped into integer codes using a hashing procedure, which constitute 
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the extended-connectivity fingerprint. 

ECFP can, for instance, represent a very large number of features (over 4 

billion), do not rely on predefined dictionary of features, can represent 

stereochemical information, and can be interpreted as the presence of 

particular substructures. 2D pharmacophore fingerprints are calculated 

using topological (bond) distances. 

Pharmacophore fingerprints consist of pairs, triplets, or quartets of 

molecular features and the corresponding bond distances among them. 

We use PHFP 4 (quartets which includes number of bonds in the shortest 

path between the features) fingerprints for the calculation. The feature 

vectors of quartets involve four pharmacophoric features, six Euclidean 

distances separating those features, and an indication of chirality. For 

3D alignment and similarity we used ROCS 3.2, which is a shape-

similarity method based on the Tanimoto-like overlap of volumes. The 

alignment was developed using the Combo score, which combines the 

Tanimoto shape score with the color score that added the score for the 

appropriate overlap of groups with similar properties (donor, acceptor, 

hydrophobe, cation, anion, and ring) [http://docs.eyesopen.com 

/rocs/shapetheory.html] defined by SMARTS. Conformers for the data set 

is created using OMEGA [50], about 250 conformers with RMSD threshold 

of 0.6 is generated. ROCS performs shape-based overlay of conformers 

as atom-centered Gaussian functions. ROCS score performed in color 

optimization mode where it optimizes the molecular overlay to maximize 

both the shape overlap and the color overlap obtained by aligning 
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groups with the same properties that are contained in the color force field 

file. This overlay is then subsequently scored using the sum of shape 

Tanimoto for the overlay and the color score called Tanimoto combo 

score. We use Cs to refer the N-by-N chemical compounds similarity 

matrix. For the 727 drugs we used different chemical descriptors to 

calculate the Tanimoto similarity distribution to create a view of how 

similar the drugs look like. The distributions of different similarities 

Figure. 2.1 shows that for four finger- prints (166 MACCS Keys, PHFP4, 

3D ROCS, and ECFP6), 0.56% had a similarity above 0.7 for the MACCS 

keys, 0.31% had similarity above 0.4 for PHFP4, 0.88% had similarity 

above 1.2 Tanimoto Combo score for ROCS, 0.24% had similarity above 

0.3 for ECFP6. The mean similarity is 0.346, 0.019, 0.742, and 0.063 for 

MACCS, PHFP4, ROCS, ECFP6 fingerprints, respectively. This indicates 

how diverse chemical structures are in the drug dataset. 
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              Figure 2.1: Diagram showing distribution of chemical fingerprints.  

 

For the protein dataset, I extracted 3,519 target proteins across all 

available species and their sequences from the DrugBank database. As 

proteins in other species may provide useful information in our network-

based approach, we keep all the proteins regardless of species.  Note 

that, human proteins still dominate the dataset.  We calculate the 

sequence similarity matrix Ts  by using the R biostrings package and the 

normalization procedure proposed by Bleakley and Yamanishi [41]. 
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                                                ./ =
&0 1,13

&0 1,1 	 &0 13,13
,																																												(2.1)	

 

where SW (·, ·) means the original Smith–Waterman similarity score. 

We constructed the drug-target relationship matrix A whose element A(i,j) 

is 1 if drug i interacts with target j, otherwise 0. The matrix is sparse; 

the total number of connections among the drugs and targets is only 

2,557, with 687 drugs having at least one known target and with 628 

proteins having at least one drug. There are 73 connected components in 

the whole drug target network dataset. The largest connected component 

in this bipartite graph has 498 drugs and 279 proteins. The connections 

are concentrated to a small number of drugs (see Fig. 2.2a) that affect 

nervous systems mostly psychoanaleptics and psycholeptics have the 

largest number of interactions. As most drugs are metabolized by 

cytochrome p450, which serves as an important protein target and enzyme 

for the drugs, the interaction between important enzymes CYP3A4, 

CYP2D6 and CYP3A5 are not considered on the drug target interaction 

matrix except for the drug paliperidone, which has interactions to all 

the three cytochromes targets mentioned above. 

Figure 2.2b exhibits the targets that interact with most number of drugs. 

The top frequent targets are Muscarinic receptor (ACM1), Adrenoreceptor 

alpha 1A (ADA1A), Histamine receptors (5HT2A), and dopamine receptors 

(DRD2). In addition to the drug–drug similarity matrix Cs (based on 

chemical similarity) and target–target similarity matrix Ts (based on  
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Figure 2.2: Diagram showing the distribution of compounds and   
                   targets in drugbank dataset. 
 

sequence similarity), we introduce additional measure of drug–drug and 

target–target similarities based on the network structure. 4/5  is a drug–

drug similarity matrix based on the number of shared targets between 

drugs; ./5is a target–target similarity ma- trix based on the shared drugs.  

The similarity between two drugs di  and dj  is quantified by Jaccard 
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coefficient, which is defined by: 

 

                                 4/5(78, 79) = ;<(8,9)

;< 8,8 =;< 9,9 >;<(8,9)
	,																																																									 (2.2)					

where, Ml is the inner product of the drug-target interaction matrix. The 

similarity between targets is defined in the same manner. We define the final 

drug-drug similarity matrix Sd by taking a linear combination of the chemical 

similarity matrix (Cs) and target sharing similarity matrix (4/5). Similarly, the 

final target-target similarity matrix St is calculated using the sequence 

similarity matrix (Ts) and drug sharing similarity matrix (./5). 

2.2.2   RANDOM WALK WITH RESTART IMPLEMENTATION 
	
We combined drug-drug, drug-target, and target-target networks into a 

undirected heterogeneous network. Many nodes have connections to both drugs 

and targets and we call them bridge nodes. At a bridge node, a random walker 

may jump to a node with the other type or to a node with the same type. The 

probability to do so is λ and 1-λ respectively. For instance, if a random walker is 

at a drug node, it can jump to one of the connected target nodes with the 

probability λ, or jump to connected drug nodes with the probability 1- λ. We call 

the parameter λ the jumping probability. If λ is 0, a random walker will explore 

only one type of networks. Most importantly, the probability p∞ (i) is the 

probability of finding the random walker at node i in the steady state. It gives a 

measure of probability of source and target node (proximity) between node 

i  and the source nodes where the random walks restarts. 
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The transition matrix is represented by,  

                              

W= 
!?? !?@
!?@ !@@

 

 

Here WTT is the target to target transition matrix, WDD is the drug to drug 

transition matrix, WDT is drug to target transition matrix and WTD is target to 

drug transition matrix. The calculation of each of the transition matrix in 

discussed in Chen et al [3]. The calculation of each of the transition matrix in 

discussed in Chen [33] given below in equation 2.3, 2.4, 2.5 and 2.6. The 

random walk is implemented on the heterogeneous network using the Eq. 2.7 

given below, 

The transition values of target vertexes from ti to tj is defined as 
   

																																				WTT(i,j)		=

&A 8,9

/A 8,9B
																						CD	 E C, F = 09

H>I &A 8,9

/A 8,9 		B
																														JKℎMNOCPM

																							(2.3)	

The transition values of drug vertexes from di to dj is defined as 
	

																																													WDD(i,j)		=

&Q 8,9

/A 8,9B
																						CD	 E C, F = 09

H>I &Q 8,9

/Q 8,9 		B
																														JKℎMNOCPM

																					(2.4)	

	

The transition values from target vertex ti to drug vertex dj is defined as 
	

																																		WTD(i,j)		=	
IR 8,9

R 8,9B
																						CD	 E C, F ≠ 09

0																																												JKℎMNOCPM
																												(2.5)	
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The transition values from drug vertex di to target vertex tj is defined as 
	

																																																WDT(i,j)		=	
IR 9,8

R 9,8B
																						CD	 E F, C ≠ 09

0																																												JKℎMNOCPM
																		(2.6)		

	

                                        pt+1 = (1 ��c)W T pt + cp0                                             (2.7)                                  	

pt  is a vector in which ith elements holds the probability of finding the random 

walker at node i at time step t. Initial probability vector p0 controls the restart 

probability c.  

																																																									p0  =  (1 − ƞ)WX
ƞYX

 (initial probability matrix )   

u0 and v0 be the initial probability vectors for target network and drug network, 

respectively. Parameter ƞ controls the importance of two kinds of seed nodes, 

i.e. drug node and target node. We tested the importance parameter ƞ  for 

different values ranging from 0 to 1.  

After a number of iteration steps, the pt converges to a steady-state probability 

vector p∞, where  p∞  =  
WZ
YZ

.	In practice, we consider pt = p∞ if the change 

between pt and pt+1 (measure by the Frobenius norm) is less than 10-10.  

For finding novel targets for a given drug, we set the drug and the targets that 

are directly connected to the drug as our seed nodes. Suppose that there are six 

targets T1,…,T6 and four drugs D1, D2, D3, and D4. We focus on drug D3 and 

tries to find novel targets for D3. We already know that D3 interacts with T2 and 

T3. Then T1, T4, and T5  are candidate targets for drug D3. We set T2, T3,  and D3 

as the source nodes, namely 

                                      u0 = [0,1,1,0,0,0]T          and      v0=[0,0,1,0]T 
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The stationary probability p∞ represents the expected relevance of each 

drugs and targets regarding the source node set T2, T3 and D3. For instance, if 

the value for T1 is the largest among T1, T4 and T5, then we expect that T1 is 

most likely to interact with D3. 

 

2.3 RESULTS AND DISCUSSION 
 
2.3.1 EVALUATING PREDICTION PERFORMANCE USING LINK        

         PERTURBATION 

	
The network-based method aims to predict new targets for a given drug. 

We evaluated our approach using a perturbed network where we have 

removed some links to measure how well our approach re-identifies those 

removed links. There are five parameter to explore: the restart probability 

c, the jumping probability λ, the relative importance η, which controls the 

relative importance between two types of seeds, wd  and wt  that weigh 

the drug and target similarity matrices and network based similarity 

measure of the drugs and proteins, respectively. Among these five 

parameters, we have tested η because, to our knowledge, the restart 

probability c, jumping probability λ and wd and wt are not likely to affect 

the results in a significant way. First, it is known that in most cases

the choice of restart probability c does not affect performance of 

PageRank algorithm and other PageRank based algorithms. For 

instance, the results of PageRank are highly insensitive to the choice of 

restart probability [28, 51] It has been shown that the prediction results 

from RWR are also robust [52, 53]. Because of these evidences, we 
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simply adopt the previously used value of 0.3 [33]. Second, the 

robustness of λ (jumping probability) has already been discussed [52–

54].  It has been shown that the weight parameters wd  and wt  are 

robust among the prediction results [33]. 

In our drug target network 684 (94%) drugs have at least one target. I 

prepare a test network of 684 drugs where I remove one links from 684 

drugs with a total of 684 drug–target interactions. The links include drugs 

which has only one target in order to see if the method able to predict 

single known interaction. We checked how many missing links are in top N 

of the ranked list. We divided the number of actual targets that are in 

the top N lists by the number of tests (684) and call the fraction as 

‘recovered fraction’. I also used a random set to calculate the statistics 

with same parameters and found that the results are way better than 

random set. I tested our results with different values of wd and wt  

ranging from 0 to 1 and found that at extreme point like 0 and 1 the 

performances drops radically but the performance gets best on values of 

wd and wt of 0.5 given in Additional file 3: Sheet 3 

(http://www.jcheminf.com/content/7/1/40#sec5). We tested different 

values of η for the four different chemical fingerprints to identify the optimal 

value of η and the right of chemical features. We observed that the 

prediction performance becomes optimal when η is small but not 0. I 

found optimal performance at η=0.01. For all the other values of η(0.1-0.9) 

the prediction rate for all fingerprints is equal. We found nearly 28% of 

the true interactions out of 684 can be retrieved at the top 10 rank 

positions and more than 38% of the interactions can be retrieved at the 



	 28	

top 50 rank positions. We also prepare 10 test networks of drugs that 

have more than two targets links, where we randomly remove 100–1,000 

links. Using the 10 test networks we predicted the removed links. We 

repeat this process, from preparing a test network to calculating the 

recovered fraction, 50 times to obtain the ‘average recovered fraction’. 

From Table 1 we can see that if we remove 100 links it gave us the best 

prediction rates and as we increase the number of removed links to 1,000 

the prediction rates falls. From Table 2 shows the recovered fraction rates 

for top 10, 25, 50, 100, 200, 500, 1,000 retrieved targets we also find 

almost 32% of the true interactions can be retrieved at the top 10 rank 

positions for each of the test networks and more than 75% of the true 

interactions can be retrieved at the top 50 rank positions. This 

indicates that the method performs well if I remove links from drugs 

which are having at least two or more known interactions, since it uses 

the given interaction information in the network. I also measured the 

area under accumulation curve, area under ROC curve AUC (Top 10%), 

BEDROC and enrichment factor given in Table 1. The area under the 

receiver operating characteristic (ROC) curve (AUC) is widely used to 

evaluate the performance of the ranking method. The advantage of 

using AUC is, the value ranges from 0 to 1 with 0.5 corresponding to 

randomness. Another key criterion for measuring the success of 

ranking prediction is the enrichment of annotated associations among 

top ranking associations. The higher the percentage of annotated 

associations among the top ranking associations, the better the 

performance of the prediction. The enrichment criterion is evaluated by 
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enrichment factor (EF) [52, 53]. EF reflects the capability of a screening 

application to detect true links (true positives) compared to random 

selection. Thus, its value should always be greater than 1 and the 

higher it is, the better the enrichment performance. When we are 

predicting links it should rank true links in the top-ranking list. Metric 

likes ROC not sensitive to early recognition for example considering cases 

like where (1) true links are retrieved at beginning of a rank ordered list, 

(2) where true links are randomly distributed and (3) where true links, 

which are retrieved in the middle of the rank, ordered list. In all of the 

above cases ROC is 0.5 but in terms of early recognition we see that case 

(1) is better than (2) and (3). To overcome these limitations methods such 

as RIE and BEDROC have been proposed. By changing the tuning 

parameter, α, one can test whether the method is able to rank true 

l inks  ea r l y  o r  no t .  

 

 

 

 

 

 

 

 

 
Table 2.1: Shows the statistical metrics with the number of links removed 

 

Number of links 

removed 
AUAC AUC BEDROC EF AUC(top 10%) 

100 0.947 0.991 0.833 9.23 0.867 

200 0.938 0.995 0.827 9.100 0.857 

300 0.930 0.995 0.818 8.95 0.845 

400 0.920 0.991 0.805 8.79 0.830 

500 0.916 0.997 0.801 8.71 0.824 

600 0.908 0.995 0.789 8.56 0.812 

700 0.899 0.981 0.780 8.42 0.802 

800 0.885 0.997 0.761 8.20 0.783 

900 0.869 0.955 0.741 7.91 0.765 

1000 0.854 0.956 0.715 7.62 0.741 
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We found that the performance of the algorithm for ranking the 

targets by different chemical features is approximately same which 

indicates using this approach a user can identify protein targets with 

any one set of chemical features. We used public 166 MACCS keys, 

ECFP6, PHFP4 and 3D ROCS to perform the analysis and it is 

surprising that the commercial programs feature performance is same 

as the 166 public MACCS keys. 

As a baseline, we test how RWR results differ from the results of 

random set of interactions. We randomized the interactions and 

similarity matrices and performed RWR and found the random set 

prediction rate was way below our original prediction rate as given in 

Additional file 3: Sheet 1. 

( http://www.jcheminf.com/content/7/1/40#sec5) 

 

# of links  
 

removed 

TOP 10 TOP25 TOP50 TOP100 TOP200 TOP500 TOP1000 

100 32.24 78.24 87.76 90.74 91.92 93.22 93.88 

200 31.92 77.95 87.26 89.86 91.15 92.37 93.12 

300 32.14 78.31 86.82 89.48 90.68 91.8 92.63 

400 32.04 77.4 85.34 88.07 89.24 90.33 91.45 

500 32.62 77.39 85.04 87.56 88.7 89.95 91.1 

600 32.53 76.21 83.68 86.23 87.54 88.86 90.16 

700 32.5 75.64 82.69 85.18 86.57 87.89 89.33 

800 33.06 74.13 80.88 83.45 84.86 86.35 87.97 

900 33.58 72.14 78.49 81.04 82.77 84.57 86.38 

1000 33.71 69.81 76.008 78.31 80.22 82.12 84.42 

 
Table 2.2: Shows the recovered fraction rates values with the number of links 
removed. 
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2.3.2 EVALUATING PREDICTION PERFORMANCE USING    

        EXTERNAL  DATASET FROM CHEMBL 

	
In addition to the internal evaluation using link perturbation approach, 

we evaluate the performance of our method using an external dataset, 

namely ChEMBL version 15 database. From ChEMBL 15 data we extract 

all the drugs and targets that have activity values not more than 1 µM 

additional file 3 sheet (http://www.jcheminf.com/content/7/1/40#sec5) 

and and 10 µM additional file 3 sheet 4 (http://www.jcheminf.com/ 

content/7/1/40#sec5) with units IC50, Ki, Kd, EC50, AC50, LC50, and 

GI50. Our training model is based on DrugBank and UniProt database 

so we mapped the drugs and targets ChEMBL ids with the DrugBank ids 

and UniProt ids. We used pubchem mapping tool (http://pubchem. 

ncbi.nlm.nih,gov/idexchange)  to map ChEMBL ids to DrugBank ids 

and the UniProt mapping tool (http://www.uniprot.org/?tab=mapping) 

to map target ChEMBL ids to uniprot ids. It gives us 544 drugs and 

467 protein targets, with 3,463 and 564 drug target interactions those 

are below 10 and 1 µM, respectively. Naturally, there are lots of 

interactions that are present in both DrugBank and ChEMBL. We tested 

performance of parameter η at different values on ChEMBL 1 µM set and 

10 µM having which have more than 0, 1 and 2 target relations. Figures 

2.3 and 2.4 shows the recovered fractions against the rank with different 

η (eta) values for ChEMBL data at 1 and 10 µM cutoff with different 

fingerprints respectively. 
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Figure 2.3:  Showing the recovered fractions against the rank 

with different η (eta) values for ChEMBL datat at 1 µM cutoff. 

From Tables 2.3 and 2.4 we observe that RWR performance is better for 1 

µM target than 10 µM because at 10 µM we have lots off targets from 

different classes and as a result of that the prediction rate falls.  For 

ChEMBL 1 µM dataset, drugs having more than 0, 1 and 2 targets we 

achieve BEDROC score of 0.433, 0.553 and 0.611, respectively, which is 

much better than a random set of interactions.  To test whether random 

walk performs better than just a simple sequence similarity search we 

took the approved drugs and it’s known targets from the ChEMBL 10  
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Figure 2.4 Showing the recovered fractions against the rank with different η 
(eta)   

           values for ChEMBL datat at 10 µM cutoff. 

 

µM dataset and performed sequence similarity based such against 3,519 

targets and ranked them. We found RWR performance is way better in 

ranking targets than performing simple sequence based search. The 

results are shown on Tables 3 and 4. This is the first time that the 

random walk-based method is evaluated using a binding assay dataset. 
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Data types Number of targets AUAC AUC BEDROC EF AUC(Top  
10%) 

ChEMBL 1 uM (RWR) 

ChEMBL 1 uM (Seq) 

ChEMBL 1 uM (random RWR) 

ChEMBL 10 uM (RWR) 

ChEMBL 10 uM (Seq) 

ChEMBL 10 uM (random RWR) 

ChEMBL 1 uM (RWR) 

ChEMBL 1 uM (Seq) 

ChEMBL 1 uM (random RWR) 

ChEMBL 10 uM(RWR) 

ChEMBL 10 uM (Seq) 

ChEMBL 10 uM (random RWR) 

ChEMBL 1 uM(RWR)  

ChEMBL 1 uM (Seq) 

ChEMBL 1 uM 

ChEMBL 10 uM(RWR) 

ChEMBL 10 uM (Seq) 

ChEMBL 10 uM (random RWR) 

> 0 

> 0 

> 0 

> 0 

> 0 

> 0 

> 1 

> 1 

> 1 

> 1 

> 1 

> 1 

> 2 

> 2 

> 2 

> 2 

> 2 

> 2 

0.709 

0.67 

0.494 

0.596 

0.518 

0.394 

0.784 

0.652 

0.483 

0.613 

0.551 

0.514 

0.823 

0.701 

0.533 

0.632 

0.569 

0.521 

0.995 

0.67 

0.493 

0.837 

0.518 

0.364 

0.784 

0.651 

0.483 

0.61 

0.552 

0.514 

0.824 

0.705 

0.533 

0.633 

0.569 

0.521 

0.433 

0.396 

0.075 

0.323 

0.237 

0.036 

0.553 

0.39 

0.081 

0.353 

0.279 

0.075 

0.611 

0.513 

0.0671 

0.399 

0.298 

0.262 

5.058 

4.48 

1.09 

3.865 

2.641 

0.954 

6.286 

4.507 

1.29 

4.091 

3.084 

1.244 

6.866 

5.109 

1.465 

4.569 

3.03 

1.95 

0.455 

0.414 

0.079 

0.351 

0.2555 

0.029 

0.569 

0.412 

0.083 

0.378 

0.3 

0.088 

0.631 

0.469 

0.065 

0.422 

0.315 

0.125 

 

Table 2.3: Shows the types of data we used the drug target 

interaction having more than 1 and 2 drug interactions. 

2.4  CASE STUDY: PROFILING TOP SELLING DRUGS 
 

  Here, as a case study we investigate the target profiles of the popular 

top selling drugs in 2012 [54]. First, we consider u∞, the steady-state 

probability vector for the targets in our framework, as ‘target profile’ of 

a drug.  Then we examine the top 10 predicted targets for the top 

selling drugs. We find that some targets are associated with many drugs 

(see Table 2.5). For instance, adrenoceptor alpha 1A appears in 60% of 

drug’s top 10 target association lists; serotonin receptor 5HT2A appear 

in 43%; and adrenoceptor alpha 1B in 35%. Most drugs shown on the 
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Table 2.5 mostly belong to the rhodopsin class of GPCR’s. In Additional 

file 4, (http://www.jcheminf.com/content/7/1/40#sec5) predictions 

are provided for 110 drugs with 3,519 targets and Fig. 2.5 shows a 

bipartite network of 110 drugs with top 10 predicted targets for each drug. 

We took some random drugs and tried to find known binding 

associations to protein targets. We searched three databases ChEMBL 

[55], PDSP [56], and Pubchem [57] using the binding coefficients like 

IC50 and Ki. Table 2.6 lists the 10 predicted drug–target associations 

that we have identified evidence of binding interaction in other databases. 

These findings suggest that these targets may have many undiscovered 

interactions with existing drugs. Further investigation may have 

significant values on understanding side effects of existing drugs as well 

as repurposing them. 

 

 

 

 

 

 

 

 

 

 

 

 



	 36	

Data types Number of targets Top 10 Top 25 Top 50 Top 100 Top 200 

ChEMBL 1 uM (RWR) 

ChEMBL 1 uM (Seq) 

ChEMBL1uM(random RWR) 

ChEMBL 10 uM (RWR) 

ChEMBL 10 uM (Seq) 

ChEMBL 10 M (random RWR) 

ChEMBL 1 uM (RWR) 

ChEMBL 1 uM (seq) 

ChEMBL 1 uM ((random RWR) 

ChEMBL10uM (RWR) 

ChEMBL 10 uM (seq) 

ChEMBL 10 uM (Random RWR) 

ChEMBL 1 uM (RWR) 

ChEMBL 1 uM (seq) 

ChEMBL 1 uM 

ChEMBL 10 uM (RWR) 

ChEMBL 10 uM (seq ) 

ChEMBL 10 uM ((Random RWR) 

> 0 

> 0 

> 0 

> 0 

> 0 

> 0 

> 1 

> 1 

> 1 

> 1 

> 1 

> 1 

> 2 

> 2 

> 2 

> 2 

> 2 

> 2 

0.144 

0.164 

0.002 

0.11 

0.122 

0.014 

0.274 

0.189 

0.007 

0.22 

0.13 

0.014 

0.271 

0.19 

0.006 

0.233 

0.13 

0.012 

0.342 

0.315 

0.013 

0.247 

0.183 

0.023 

0.477 

0.35 

0.023 

0.277 

0.212 

0.023 

0.518 

0.393 

0.018 

0.297 

0.22 

0.028 

0.47 

0.394 

0.018 

0.324 

0.234 

0.035 

0.55 

0.428 

0.038 

0.348 

0.276 

0.035 

0.598 

0.53 

0.034 

0.353 

0.295 

0.04 

0.532 

0.42 

0.036 

0.386 

0.249 

0.048 

0.58 

0.472 

0.076 

0.417 

0.296 

0.048 

0.634 

0.56 

0.055 

0.4299 

0.316 

0.057 

0.607 

0.43 

0.021 

0.409 

0.254 

0.079 

0.614 

0.513 

0.091 

0.446 

0.302 

0.079 

0.677 

0.598 

0.08 

0.472 

0.324 

0.093 

 

Table 2.4: Table shows the hit rate for drugs having more than 1 and 2   

                 drug Interactions 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 Table 2.5: Table shows the hit rate for drugs having more than 1  and  
            2 drug interactions well as repurposing them. 

Targets 
% of drugs associated 
with the targets 

% of drug associations 
appearing in prediction. 

ADA1A 7.27% 60% 

5HT2A 4.54 43.63% 

ADA1B 7.27% 35.45% 

5HT1A 4.54% 33.63% 

ADRB1 5.45% 31.81% 

5HT1B 5.45% 30.90% 

5HT2C 3.63% 30% 

ACM2 9.09% 26.36% 

5HT3A 4.54% 25.45% 

5HT1D 5.45% 23.63% 

ACM3 9.09% 21.81% 

5HT7R 4.54% 18.18% 
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Finally, let us summarize the contributions of this paper. First, we offer 

a general approach that takes the whole drug target network into 

account without separating protein categories, in contrast to the 

previous study [33]. The following estimation corroborates our 

approach. Our drug-target dataset contains 727 drugs and 3,519 

proteins. The number of interactions between drugs and targets is 

2,557, which makes 684 drugs to have at least one known target and 

457 drugs to have two or more interactions. The proteins in the dataset 

are grouped under 15 different categories according to ChEMBL target 

classifications (https://www.ebi.ac.uk/chembl /target/browser). Out of 

3,519 proteins, 1,386 proteins belong to one of the categories and 

other proteins do not have category information. The number of drugs 

that have at least two interactions with proteins that are categorized is 

412. Among these 412 drugs, the number of drugs that have 

interactions with proteins from multiple groups is 169. In other words, 

we estimate that about 40% of drugs have interactions across multiple 

groups according ChEMBL dataset. Therefore, it is more reasonable to 

consider all proteins together, rather than running the prediction model 

separately for each category. 
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Figure 2.5: Shows the network of the top 10 predicted targets of 110 
drugs 
 

Protein Drug Source Activity Tpe Activity  M 

5HT2A Carvedilol Pubchem AID 625192 IC50 0.41 

5HT2A Desloratadine Pubchem AID 625192 IC50 0.033 

KCNH2 Lidocaine ChEMBL IC50 263.02 

ADRB1 Salmetorol ChEMBL IC50 0.501 

5HT1A Amphetamine PDSP database Ki 6.6 

HDAC2 Atorvastatin ChEMBL IC50 22.5 

ADA1A Duloxentine PDSP Ki 10 

ACM1 Montelukast Pubchem AID 625153 IC50 8.045 

SC6A4 Quetiapine PDSP Ki 10 

 
Table 2.6: Drug target interactions with association values from different     
             Databases 
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Second, we further investigate the methodology by presenting a benchmark 

of a parameter η in conjunction with the four chemical fingerprint types: 

MACCS 166 keys, ECFP6 fingerprints, PHFP4 fingerprints, and ROCS. In 

the previous study, the parameter space of η is not explored below 0.1, 

but we find that we can improve the performance by de- creasing η 

below 0.1. We also find that the performance is robust under the choice 

of chemical fingerprinting method, particularly when η is around the 

optimum (0.01). Very small η means the walk in the target network is 

much more important than the walk on the drug–drug network. In a 

sense, it indicates that drug network add some information but only 

marginally. And also the drug network is not very useful in prioritizing 

targets. 

2.5 CONCLUSION 
 
We have demonstrated that RWR approach provides a powerful way of 

predicting of drug–target interactions. There are two significant benefits 

of the approach. First, it provides a natural way to integrate multiple 

types of information such as drug–drug similarity, target–target 

similarity, and existing drug–target interactions into a coherent 

framework.  Second, in contrast to other approaches like short-path-

based methods, the random walk framework incorporates the network 

structure around a single or multiple points of interests extensively, 

taking into account not only the closeness of targets, but also the 

multitude of the paths to the targets. These properties allow us to 

predict novel targets even for the drugs that have no known target, by 
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connecting such drugs to the network through the drug–drug similarity. 

Still, the performance of RWR could be further improved by incorporating 

more known drug–target interactions. We have studied the performance 

of the method under the variations of η parameter and the choice of 

fingerprints methods, showing that while training the model one can use 

any of the chemical features as similarity matrix with parameter η=0.01 

to obtain the predicted results, without significantly affecting the 

outcomes. 
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CHAPTER 3 

 
 

SYSTEMIC IDENTIFICATION OF DISEASE ASSOCIATED 

PATHWAYS BY RANDOM WALK WITH RESTART 

 

3.1 INTRODUCTION 
	
One of the fundamental challenges in human health in elucidating the 

molecular basis of hereditary diseases. Pioneering studies by Goh [58, 

59] have resulted in the definition of Human Disease Network (HDN) 

which helped relate these diseases through shared genes, shared 

proteins, regulatory proteins, shared pathways and similar gene 

expression profile. Recent advances in genomics, molecular and cell 

biology, biochemistry have allowed us to visualize the organization of 

disease complexity at multiple scales involving - molecular data, proteins, 

tissues, pathways and organ level data. Understanding the relationships 

between different scales of organization will allows us to study drug 

interactions and its effects at molecular levels and organismal effects [60]. 

The biological function or the pharmacological effect can be studied based 

on an organ tissue based system where proteins are interacting with 

each other by non covalent interactions and forming complexes which 

takes part in biological pathways. If genetic variants occur in these 

protein complexes it can alter the function of entire complex and may 

alter the normal pathway to cause a disease. A pathway consists of 

series of related reactions, whereby the reactions are linked through 

common compounds (metabolic pathways) or through the common 
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macromolecular complexes (protein-protein interaction pathways). To 

understand the molecular basis of disease it is important to understand 

the biological pathways and how the proteins are coordinating among 

themselves in a network of protein-protein interactions. However, the 

interactions are condition and tissue specific i.e. for a particular tissue 

and disease some proteins are differentially expressed and have varied 

interactions among the proteins to activate various pathways [61]. 

It is common for the diseases to get associated with a specific tissue 

types. For example for metabolism of drugs, genes like Cytochrome 

P450 would differentially express in liver than in brain, thyroid, tonsil 

or skin. Similarly, genes for Parkinson’s disease would differentially 

expressed in brain rather than in liver or rectum. The idea here is to 

find associations of tissue specific disease pathways. This would 

empower us to select pathways where the disease genes are cooperating 

among themselves. Biological pathways represent biological reactions 

and its interaction network within a cell. Each reaction is identified by 

an enzyme, which is coded by a gene. Various Gene prioritization 

algorithms use protein interaction networks, ontologies, gene expression 

data to prioritize candidate genes for diseases [28, 62, 63]. However 

using only protein-protein interaction data or gene expression data it is 

not possible to detect the molecular basis of the disease and how 

symptoms are raised. It is very important to map expression of genes 

to the tissues and the tissues to diseases [64]. But to understand the 

molecular basis of disease we should emphasize in understanding the 

biological pathways and how the proteins are coordinating among 
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themselves inside a specific tissue. 

In the past methods were developed to map protein complexes to specific 

diseases and then use such information to facilitate prediction of disease 

genes. For example, Lage etal. [65] Identified aggregates of proteins 

connected to candidate protein in a PPI network as a protein complex 

infer association between the candidate protein and a query disease 

based on members of the protein complexes [66]. Vanunu etal. [67] 

proposed a random walk method where the edge weights are normalized 

by degree of the targets to prioritize protein complexes associated with the 

disease. Magger etal. [30] used 60 different tissue specific networks for 

finding disease related genes and found high precision in finding disease 

related genes. Tissue-specific networks can reflect the related diseases 

better than using normal global ppi networks. Most of them worked with 

disease – disease network, ppi network and a bipartite disease – protein 

network. None of them extended their algorithms beyond 2 layers of 

networks. This work attempts to extend the network layers to four layers 

namely disease, proteins, protein complexes and biological pathways. 

In this chapter we propose an approach for identification of biological 

pathways that are related to a query disease via a random walk model on 

a large heterogeneous network that is composed of disease-disease 

similarity layer, a tissue based protein-protein interaction layer, a protein 

complex layer and finally complex and pathway membership layer. 

Association between protein complexes and pathways are made based 

on interdependency measure between complex-proteins and protein-

pathways, and is described in detail in methods section. Starting from 
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the query at the disease layer the random walker travels in a four 

layered network and scores a biological pathway using the probability 

that the walker stays in the pathway layer at steady state and ranks 

the pathways according to the probability scores. We validate our 

method by cross validation technique in which from a query disease we 

removed all the associated proteins and tried to predict whether the 

given disease-pathway relation can be predicted using our method. 

 

 

Figure 3.1: Diagram showing the workflow of disease to pathway  
                  prediction. 
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3.2 METHODS 
 
3.2.1 DATASETS AND PRE-PROCESSING 

 

In this chapter we are dealing with four different types datasets namely 

diseases, protein- protein interactions, protein complexes and pathway 

information. We describe below how we use them in our model 

generation. For our work, we used 926 diseases and 60 tissue 

associations (DisT), which is provided by Jacquemin etal. [68] . Van Driel 

etal [69] used MeSH vocabulary to create a weighted vector composed of 

phenotype terms and quantified the similarity between the diseases based 

on the cosine similarity scores for 5080 diseases. We got the tissue specific 

PPI network data from Magger etal [30]. The PPI data consist of 9998 

proteins with 41,049 interactions. Magger used two types of networks one 

generated using the edge reweighted strategy and other node removal 

strategy [70]. In this chapter we used edge reweighted PPI network rather 

than the node removed network, because node removed network is a very 

strict method of eliminating unexpressed proteins, in which nodes

are removed from the network if the proteins are not expressed in 

the relevant tissue. This changes the topological property of the 

network consisting of multiple components. Edge reweight method 

assigns a continuous value for the interaction based on the 

expression of the two interacting proteins. It uses a penalty factor, 

which is multiplied to the original PPI network such that when it 

is 0 then we have node-removed network and when it is 1 we have 
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the full original PPI network. Magger used a network with penalty factor 

0.1 which achieved maximum precision in identifying disease genes and 

retaining its full network topology. Since the Node removed network is 

likely to be less robust to noisy data such as gene expression and hence 

we selected the edge reweighted PPI network in the current study. In 

order to see, weather using tissue based PPI network increases precision of 

disease pathways associations we created a non-tissue based PPI network 

by calculating the average of the edge weights of 60 different tissue based 

PPI networks. We extracted disease-protein associations using Biomart tool 

[71], obtaining a total of 6,015 associations between 4,085 diseases and 

3,418 proteins. We mapped the disease and proteins ids to the OMIM and 

PPI network proteins, which resulted in 1,670 diseases, and 1,338 proteins 

with 2,091 associations in all. We used protein complex information from 

the CORUM database [72] accessed (January 4th 2015) and extracted 

1826 human protein complexes, which has complex names and one of 

proteins in the complex can be mapped to PPI network of proteins.  We 

made a protein complex matrix containing 8268 binary associations. For 

the complex pathway relationship we downloaded all the pathways 

information from ConsensusPathDB database [73]. This database not only 

integrates information from KEGG [74] but also from several other 

resources like PharmGKB [75], SMPDB [76], Reactome [77], Wikipathways 

[78], HumanCyc [79], Biocarta [80], Netpath [81], and EHMN [82]. I had 

2145 proteins ids linked with 2531 pathways with 45,669 associations. 

For Complex pathway association we used an interdependency measure 

between the protein–complex and protein–pathways and associations 
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between them that are significantly interdependent were identified and 

kept in the complex pathway association contingency table. To compute 

the pathway and protein complex associations we first create a 

contingency table, which is shown in table 3.1 of M rows and N columns. 

In the table, Oij denotes the number of occurrences of proteins that are 

shared by complexes and pathways. 

 

	
	 pathway1 pathway2 pathway3 .... pathwayj 

P complex1 O11 O12 O13 ... O1j 

P complex2 O21 O22 O23 ... O2j 

P complex3 O31 O32 O33 ... O31 

P complex4 O41 O42 O43 ... O4j 

P complexi Oi1 Oi2 Oi3 ... Oij 

     
   Table 3.1: Protein Complexes and Pathway occurrence matrix   

 

Let ,  M\]89 =
^_`	^`B

?
  be the expected number of occurrence’s of Oij ,where 

Oi+ = ab
cdH ik  and  O+j = a;

cdH kj and T = ae,c lk  . An interdependency 

relationship is considered to exist if Oij is significantly different from expij. 

To calculate the significance we calculate an adjusted residual test 

statistic as discussed in Jong et al. [83] given below, 

	

																																																																						f789 = 	
g_B

(H>
h_`
i
) (H>

h`B
i
)

																																										(3.1)	
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where,  

																																																																						j89	 =
^_B>	k-l_B

k-l_B
																																																												(3.2)	

 and (1 −
^_`
?
) (1 −

^`B

?
)  is the maximal likelihood of Zij .  

adij has an approximate normal distribution of with mean zero and 

variance of approximately one. So if the absolute value exceeds 1.96 then 

it would be considered significant at alpha = 0.05. Based on equation 

(3.1) we can compute the interdependency relationship between complex 

and pathways and prepare a adjusted contingency table. There

we convert all the absolute values < 1.96 to 0 in the current adjusted 

contingency tables and create the final complex-pathway association 

matrix. 

 

3.2.2     OVERVIEW OF THE RWR METHOD  
	
	
We modeled pathways associated with the diseases as a random walk 

based prioritization method [84–87], in which given a query disease and a 

set of predefined pathways as seeds, we first identify the tissue to which 

the disease is most likely related and then get the associated network 

for that tissue. Once this step is done then we construct a tissue–specific 

disease-protein-complex–pathway network, which is a heterogeneous 

network composed of 4 layers. Then I apply the random walk with restart 

algorithm to this network to calculate the score for each pathway and 

rank the candidate pathways. The network I constructed consist of four 

different layers the top layer consisting of disease similarity (DDij )lxl , 
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where l is number of diseases We used two different methods to create 

similarity network first, with a K-nearest neighbor (KNN) strategy where 

we use 15, 20, 25, 30 nearest neighbors to build 4 different types KNN 

disease networks. Second, with a threshold cutoff of 0.3, 0.4, and 0.5 on 

the disease similarity network we build three types of threshold 

networks. In both the strategy we further consider two variations to keep 

the weights as unweighted. In both the cases we choose normalize the 

edge weights by degree of the nodes. For that we define a diagonal matrix 

L such that L(i, i) is a sum of row of i of similarity matrix S we set S’ = L-

1/2 S L-1/2 which gives us a symmetric matrix S’ij = 
&_B

@ 8,8 @(9,9)
 .  S’ij is also known 

as the normalized laplacian. 

We connect the disease layer to the protein-protein network layer (PPij)mxm using 

the disease–protein association matrix (DPij.)lxm where, m is total number of 

proteins. For each of the query disease we load the corresponding PPI network 

and normalize it by node degree.   

The next we connect the proteins from the PPI network to the protein 

complexes by using undirected edges to form a matrix (PCij)mxc where , c is the 

total number of complexes. We didn’t connect complexes between themselves 

and we normalize the adjacency matrix between complexes and proteins from 

the PPI network based on its degree of the nodes.  

The last and the bottom layer we connect the complexes to the pathways using 

weighted and unweighted edges to form a matrix (CPaij)cxp where , p is the total 

number of proteins. Also we left the pathways unconnected in the study. . If we 

put all the matrices together we get a large transition matrix W of 19435 x 

19435 elements given below as , 
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m =

nn no n4 nof
no? oo o4 oof
n4? o4? 44 4of
nof? oof? 4of? ofof

 

 

This matrix can be written as , 

m =

nn no 0 0
no? oo o4 0
0 o4? 0 4of
0 0 4of? 0

 

 

In the transition matrix W, 0 stands for a zero matrix indicating no transition 

between the nodes and superscript T stands for the transposition of the matrix. 

We used two types of normalization for the full network, 

� One is the column normalized where the edges are normalized by    

   column sums, 

� Laplacian based where the edge weights are normalized by source   

   and target degrees, 

We used two types of datasets, 

�  60 Tissue based PPI networks, 

•  global PPI network where we use the average of the confidence  

           scores of 60 different tissues and create a global network to    

        predict the associations. 

In total I used three type of datasets in order to check performance of 

the method and parameters, 

� Laplace normalized Tissue non-specific network 

� Laplace normalized Tissue based PPI network 

� Column normalized Tissue based Network. 
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3.2.2 RANDOM WALK PROCESS: 

The user gives the source disease and target pathway as the seed nodes. 

We initialize a query vector of seed nodes (Po)l+m+c+p which represents 

the prior probabilities when a random walker starts its journey. In this 

vector all the seed nodes are initialized to 1 and the remaining ones to 0, 

we then normalize the query vector. 

p0		=		
(1 − $)&'

0
0
$)'

	

u0 and v0 be the initial probability vectors for disease network and 

pathway network and we initialize the protein and complex vectors as 0. 

Parameter γ controls the importance of two kinds of seed nodes, i.e. 

disease node and pathways node. We tested the importance parameter γ 

for different values ranging from 0.5, 0.7 and 0.9.  We use (Pt)l+m+c+p  to 

represent the probabilities that the random walker stays on the nodes at 

time steps t.  After a number of iteration steps, the Pt converges to a 

steady-state probability vector P∞, where we represent the probability P∞ , 

the probability of finding the random walker in the steady state, which 

can be determined by change between Pt  and Pt + 1 (L1 norm) is less 

than 10−7 a random walker chooses the query of interest and at each 

time step of the walking process the walker may start a new journey with 

probability c or may move to its neighbor’s with probability 1 − c according 

the transition value matrix W . The random walk is implemented on the 

heterogeneous network using the equation given below, 

                                     Pt+1 = (1 − c)WT Pt + cP0                             (4.3) 
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After the steady state is achieved we normalize the scores and further rank 

the candidates in a decreasing order of the probability scores. As a 

baseline we also made randomized networks for each of the type of 

parameters and tested the performance as well as the significance. 

3.3 RESULTS AND DISCUSSION 
 
3.3.1 EVALUATING PREDICTION PERFORMANCE USING   

        LINK PERTURBATION: 

The network based method aims to predict new pathways for a given 

disease. To evaluate our method we created a test set consisting of 

associated diseases, tissues, proteins and pathways and a set of control 

objects as those that neither link to the disease and protein in the 

training data not in the test data.  Then we perturbed the network were we 

remove all the links between a disease and its associated proteins and 

calculate discriminant scores for both the test and the control objects, 

and we rank each test object against all control objects in non-ascending 

order according to their proximity scores.  Repeating the above ranking 

procedure for all test cases, we obtain a set of ranking lists and further 

calculate some accuracy measure like auc, auc top 10%, bedroc [53] and 

enrichment factor. 

The area under the receiver operating characteristic curve (AUC) is widely 

used to evaluate the performance of the ranking method. The advantage 

is, the value ranges from 0 to 1 with 0.5 corresponding to randomness.   

AUC has been criticized as an inappropriate method and is not sensitive to  

early recognition [52,88,89].
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A key criterion for measuring the success of ranking prediction is the 

enrichment of annotated associations among top ranking associations. The 

higher the percentage of annotated associations among the top ranking 

associations, the better the performance of the prediction. The enrichment 

criterion is evaluated by a numerical factor (EF) defined as, 

                             EFset   =  (Ha/Ht)/(A/D)                              (3.4) 

where , Ht total number of links retrieved, Ha is the total number of true 

links retrieved in the links list. A represents the total number of true links 

in the database and D stands for total number of interactions both positive 

and negative links. The enrichment factor reflects the capability of a 

screening application to detect true links (true positives) compared to 

random selection. Thus, its value should always be greater than 1 and 

the higher it is, the better the enrichment performance of the virtual 

screening. The EF overcomes this problem but it is dependent on the ratio 

of true links to non-links and the choice of X (ratio of the top ranked 

links). Similarly when we are predicting links it should rank true links in 

the top-ranking list. Metric likes ROC not sensitive to early recognition 

for example considering cases like where, 

 
� true links are retrieved at beginning of a rank ordered list, 

� where true links are randomly distributed 
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� where true links, which are retrieved in the middle of the rank, 

ordered list 

 

In all of the above cases ROC is 0.5 but in terms of early recognition we 

see that case (1) is better than (2) and (3). To overcome these limitations 

methods such as RIE [88] and BEDROC [52] have been proposed. By 

changing the tuning parameter,α, one can test whether the method is able 

to rank true links early or not.  In order to check performance we used 

two metric known as the relative rank and precision. For calculation of 

relative rank, we calculate the relative rank of all the predicted links for a 

particular disease by taking the ranks and dividing it by N (total number of 

true links) and then we calculate the average of the ranks for all the 

predicted pathway links for a queried disease. For precision criterion, we 

calculated the precision within the cutoff of top rank 100. In our test set 

a disease is associated with more than one pathway and proteins, for a 

particular disease we randomly select one of the pathway as the seed node. 

For a queried disease we remove all the disease – proteins links from the 

DP matrix, recalculate the transition value matrix in order to predict 

other associated pathways for the queried disease. As we remove all of the 

disease proteins links from the queried disease now the random walker 

will depend on nearest associated diseases and its associated proteins to 

make the walk and predict the pathways. We tested the parameters γ 

with different KNN and thresholds on the disease similarity network. We 

performed leave-one-out cross-validation experiment using this network.
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3.3.2  COMPARISON OF DIFFERENT STRATEGY FOR CONSTRUCTING   

          THE NETWORK 

We considered two different strategies for creating the disease similarity 

network as the top layer of the disease-protein-complex-pathway network: 

one K nearest neighbor (KNN) and other is δ-threshold strategy. Also we 

considered two strategy to construct the protein- protein interaction 

network: one used edge reweighted network which consists of network 

from sixty different tissues and the other one we took the average of all the 

networks from all tissue related network and considered a tissue non-

specific for prediction. We also checked the performance of the methods 

with different parameters and with different normalizations with a random 

network as a baseline. Table 1 and Table 2 represent the results of the 

KNN strategy and δ-threshold strategy respectively.   We didn’t present 

the full set of results. 

 
Table 3.2: Results of the K-nearest neighbor (KNN) based disease network 

using the parameters on table 3.2 and table 3.3 however, we shown the 

γ Relative  
Rank 
rrankRa
nk 

Precisio
n 

AUC AUCTO
P (10%) 

BEDROC EF Data Normalization KNN 

0.5 153.074 0.495 0.738 0.205 0.228 3.262 LaplaceNormalized tissue non-
specific 20 

0.5 157.564 0.499 0.733 0.202 0.223 3.267 Laplace Normalized Tissue Based  25 
0.5 213.128 0.364 0.669 0.167 0.183 2.581 Normalized Tissue based 20 
0.7 152.027 0.513 0.742 0.21 0.23 3.333 Laplace Normalized tissue non-

specific 25 
0.7 158.268 0.478 0.732 0.2 0.222 3.227 Laplace Normalized Tissue Based  30 
0.7 158.268 0.38 0.679 0.158 0.162 2.591 Normalized Tissue based  15 
0.9 156.937 0.498 0.737 0.202 0.224 3.328 Laplace Normalized tissue non-

specific 20 
0.9 155.982 0.496 0.735 0.202 0.222 3.265 Laplace Normalized Tissue Based 30 
0.9 210.23 0.36 0.675 0.158 0.177 2.535 Normalized Tissue based 15 
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KNN results and δ-threshold using different γ parameter values with best 

KNN value from different tissue based PPI networks and two types of 

normalizations. 

We observe that our method is quite robust to the number of 

neighboring diseases in the KNN-strategy and well as the γ-threshold 

strategy for both the Laplace normalized tissue specific network and as 

well as the Laplace normalized tissue non-specific network. For KNN-

strategy we have achieved a mean relative rank, AUC, AUCTOP, 

BEDROC, EF of 152.027, 0.742, 0.210, 0.230, 3.33 with Laplace 

normalization, using a tissue non- specific PPI network, KNN of 25 and γ 

of 0.7. We also found close scores for Laplace normalized tissue based 

PPI network with Relative Rank, AUC, AUCTOP, BEDROC, EF of 157.564, 

0.733, 0.202, 0.223, 3.267 with KNN of 25 and γ of 0.5. We observe that 

for a column normalized tissue based PPI the  Relative  Rank,  AUC,  

AUCTOP,  BEDROC, EF is well below the laplacian Normalized ones which 

illustrate that Laplacian normalized increases the prediction performance. 

We noticed that for δ-threshold strategy we get a better performing 

model than the KNN-strategy.  For δ-threshold of 0.3, we have achieved a 

mean relative rank, Precision, AUC, AUCTOP, BEDROC, EF of 149.012, 

0.521, 0.747, 0.220, 0.240, 3.494 using Laplacian normalized tissue based 

PPI network with γ of 0.9. The results obtained are almost same as γ of 0.9 

and δ-threshold of 0.3. Around these parameters the δ-threshold strategy 

holds the higher performance than KNN-strategy. Therefore we 

recommend to use δ-threshold strategy in disease similarity network 

along with laplacian normalization of matrices and for PPI we found 
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Tissue based PPI networks performance is higher than tissue non-specific 

one. 

Figure 3.2 shows the precision plots for both the threshold and KNN 

strategy compared against each other with different types of datasets 

along with a randomized dataset. For KNN at different γ parameter 

values, we found that at KNN = 25 and γ = 0.7 it achieves a precision of 

0.517 for top 100 rank pathways. In threshold strategy at different γ 

parameter values, we found that at threshold = 0.3 and γ = 0.9 it 

achieves a precision of 0.555 for top 100 rank pathways which confirms 

us that threshold strategy is suitable for our dataset. 

Also as a baseline we also make randomized networks and made 

predictions and checked the performance for KNN strategy and δ-

threshold at γ parameter values. The ROC plots are shown for both KNN 

and δ-threshold on figure 3.3 illustrate better predictive performance of 

laplacian normalized tissue based network against random network. 

The restart probability c determines the possibility of jumping from any 

node in the network back to the starting point of the query disease. With 

a large value of c, a random walker cannot go far away from the starting 

point and thus will mainly explore neighboring nodes of this point, while 

with a small value of c, the random walker is able to explore areas far away 

from the starting query disease. We computed Relative Rank, AUC, 

AUCTOP, BEDROC and Enrichment Factor for laplacian normalized tissue 

based PPI network with different Restarts from 0.1 – 0.9 as shown on table 

3.4 we observe that our method shows small variations, however at restart 

of c=0.9, we have best AUC of 0.747, AUC TOP (10%) of 0.22, BEDROC 
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(α=20) of 0.24 and enrichment factor (EF) of 3.493. From these observations 

we conclude that the selection of parameter c = 0.9 results in improved 

performance of our approach as shown in table 3.3 . 

 

Restart (c) Relative Rank AUC AUCTOP BEDROC Enrichment 

0.1 152.9424 0.721 0.184 0.193 3.173998 

0.2 155.0584 0.718 0.185 0.191 3.143087 

0.3 165.5083 0.7 0.159 0.167 2.88128 

0.4 166.8327 0.697 0.164 0.171 2.729648 

0.5 171.7294 0.689 0.162 0.167 2.674881 

0.6 159.7915 0.712 0.177 0.191 3.025033 

0.7 149.3544 0.74 0.205 0.226 3.244651 

0.8 149.0128 0.745 0.213 0.236 3.407035 

0.9 148.4792 0.747 0.22 0.24 3.494314 

 
Table 3.3: Results of Laplacian Normalized Tissue based PPI with different 
restarts values 
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Figure 3.2: Showing precision plots for different γ’s with KNN   
               strategy  and threshold 
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Figure 3.3: Showing ROC plots for different γ’s with KNN strategy   
                and threshold strategy. 
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3.4    CONCLUSION 
 
In this chapter we have proposed a method for identification Biological 

pathways related to a query disease via random walking on a 

heterogeneous network that is composed of four different layers the 

disease layer, protein layer, protein complex layer and the protein 

pathway layer. We have shown a good performance of our method via 

large-scale leave out cross validation approach and optimized the 

parameters c, γ for better results. We tested two different types of disease 

similarity network types like KNN and threshold based and showed that 

threshold of 0.3 gave us better performance with restart c of 0.9. We 

would like to predict the pathways, given a specific disease symptoms like 

cough, fever, headache etc. Human phenotype ontology (HPO) [90] 

provides symptoms data for different diseases integrating the data in our 

system will be a direction worth exploring and user can input symptoms 

and then it can predict the biological pathways, the proteins which are 

involved and it can easily identify what type of drugs is suitable for 

queried symptoms. 
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CHAPTER 4 

 
 

           NETPREDICTOR R PACKAGE 
 
 
4.1 INTRODUCTION 
	
Social and biological systems can be represented by graphs where nodes 

represent individuals, biological experiments (protein, genes, etc.)  web 

users and so on.  Networks allow methods of graph theory to be applied 

to the task of predicting links. Link prediction predicts missing links in 

networks or links in future networks, it is also important for mining and 

analyzing the evolution of networks.  Link prediction problem is a long-

standing challenge in modern information science, and a lot of algorithms 

based on Markov chains and computer science community has proposed 

statistical models. The link prediction problem is usually defined in 

unipartite graphs.  The netpredictor package is developed to solve the 

problem of bipartite link prediction using Random walk with restart 

(RWR) and network based inference methods (NBI). We plan to integrate 

variety of other algorithms in near future. All of the code is developed in R, 

which also provides parallel execution modes. 

 
To compute the R package for prediction of missing links in a bipartite 

network/graph. The package provides utilities to compute missing links in 

a bipartite and well as unipartite network based on HeatS, Random walk 

with Restart (RWR), Network based inference (NBI) and combination of 

RWR and NBI . The package also allows one to compute Bipartite 
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network properties and well visualize communities and make a 

permutations test based prediction. With the advent of R open source 

statistical programming language [91] and gaining popularity of very useful 

“Shiny” package [92,93] that lets the programmers to create applications 

online, a new opportunity has been shown itself for creating netpredictor 

Shiny web app. 

4.2 LINK PREDICTION IN NETWORKS 
 
Link prediction is a new field of research in networks science and was 

first demonstrated by early 90’s by Nowell-Kleinberg [16, 17]. They tried 

to evaluate set of different similarity measures between vertices of a 

graph in order to predict unknown edges (links). They are classified into 

two categories: 

� Neighborhood based metrics and 

� Path based metrics 

In the netpredictor package we developed the methods  below for finding 

missing links in a network. 

 
4.2.1 LINK PREDICTION BY NEIGHBOURHOOD-BASED METRICS 
 
The following are the methods for neighbourhood-based metrics. Let 

Γ(x) be the set of neighbors of node x, and let |Γ(x)| be the number of 

neighbors of node x. 

• Common Neighbors (CN): CN is defined as the total number of 

nodes that two nodes x and y have common interaction with. More the 

number of links more significant the relation. It is defined using,  
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                                               CN (x, y) = �Γ(x) ��Γ(y)������������������4.1) 

• Jaccard Coefficient (JC) [18]: This is the extension of the common 

neighbors where it shows a proportion of nodes that are common between 

nodes x and y among all the nodes between x and y. The value is usually 

normalized between 0-1. It is defined using, 

 

                                    !" #. % = 	
( ) ∩( +

( ) ∪( +
                         (4.2) 

• Cosine Similairity (CS): Cosine metric for two nodes x and y is defined 

as, 

    "- #, % =
|((1)∩((3)|

( ) .|((+)|
                             (4.3) 

• Hub promoted Index (HP) [19] : It defines the topological overlap 

between nodesx and y. The links adjacent to hubs are assigned high 

scores since the denominator is of lower degree of nodes. It is defined 

using the following equation,   

 

                                          4 #, % =
|((1)∩((3)|

567	(|((1)|,|((3)|)
                    (4.4) 

• Hub Depressed  Index   (HD):  This  is  similar  to  HP  index  but  

in  this  case  the denominator is determined by the higher degree of the 

nodes.  

                                                89 #, % =
|((1)∩((3)|

5:1	(|((1)|,|((3)|)
                   (4.5) 

 

• Adamic Adar Index (AA) [20]: This index is similar to counting of 

common neigh- bors by assigning more weights to lower connected 

neighbors. It is defined as , 
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                                        ;;(#, %) = 		 <

=>?	 |((@)|
@∈(())∩((+)               (4.6) 

• Preferential Attachment (PA) [21]: The PA metric indicates the new 

links will be more likely to connect higher degree nodes than lower ones. 

Since it does not need to know the neighborhood of each node, so it has 

minimal computational complexity. It is given using the following 

equation as, 

 

                                              4; #, % = Γ # 	. |Γ(%)|                          (4.7) 

• Resource Allocation (RA) [22]: The Resource allocation index is 

similar to the adamic adar index which assigns more weights to lower 

connected neighbors but RA performs better with nodes having high 

average degrees. It defined by, 

 

                                    C; #, % = 	
<

|((@)|
@∈( ) ∩((+)                      (4.8) 

• Leicht-Holme-Nerman Index  (LHN)  [23]:  This  index  assigns  high  

similarity  to node pairs that have many common neighbours between 

them where |Γ(x)|.|Γ(y)| is the expected number of common neighbors. It 

is defined by ,   

                                    			!" #. % = 	
( ) ∩( +

( ) ∪( +
                     (4.9) 

 
 4.2.2  LINK PREDICTION BY PATH-BASED METRICS 
 
Using path-based metrics one can compute paths between two nodes as 

similarity between node pairs. 

� Local Path (LP) [24]:  The local path based metric uses the path of 

length 2 and length 3. The metric uses the information of the nearest 
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neighbours and it also uses the information from the nodes within length 

of 3 distances from the current node. The paths of length 2 is more 

relevant that paths of length 3 so a parameter β is applied the value of 

which is close to 0. One can compute it using the Adjacency matrix 

using the equation given below,   

                                  LP = A2 + βA3                 (4.10) 

� Katz metric [25]:   Similarity measure based on all paths in a graph.  

This function counts all the paths between given pair of nodes with 

shorter paths counting more heavily. Parameters are exponential. 

|DEFℎ),+H  | is the set of all the paths between x and y with length  l  and β > 

0.  

                  IEFJ	 #, % = 	 KH. DEFℎ),+
H = K; + KM; +	KN;N + ⋯	

P
HQ<             (4.11) 

� Geodesic similarity metric:  This function calculates similarity 

score for vertices based on the shortest paths between x and y. Its given 

using the equation below, 

                           RSTUSVWX #, % = 	 |VℎTYSFVF	DEFℎV|),+
HP

HQ<        (4.12)   

•  Hitting time and Commute time [26]:  Hitting time is 

calculated based on a random walk starts at a node x and iteratively 

moves to a neighbor of x chosen uniformly at random. The hitting time 

Hx,y from x to y is the expected number of steps required for a random 

walk starting at x to reach y. Since this metric is not symmetric, for 

undirected graphs the commute time, Cx,y = Hx,y + Hy,x can be used. 
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• Random Walk with Restart [26–28]: Random walk is a useful 

mathematical framework that provides a systematic way to measure 

importance of nodes in a network. The most widely known is the 

PageRank algorithm [29]. PageRank, developed for ranking web pages, 

measures page clicks of hypothetical web surfers who randomly click 

hyperlinks in the network of webpages. Since it is possible for the surfer 

to be trapped in a dead-end webpage that does not have any outgoing 

link, at each time step the surfer may jump to a random webpage with 

a probability c. Interestingly, this formulation also provides a simple way 

to define a random walk-based “distance” from a node a (or a set of nodes) 

to every other node, namely by allowing the random walkers to jump only 

to the source node a (or the source set of nodes) and restart from there. 

As a result, it is more likely to find the random walker at the vicinity of 

the source node than at a distant part of the network, and thus we are 

able to estimate the relevance (closeness) of each node with respect to the 

source node. The prediction method applies this idea to identify drugs 

and targets that are relevant to a set given set of drugs and targets. 

Consider an undirected, unweighted network G = (V, E),where  V     is the 

set of nodes and E is the set of links.  For each pair of nodes a,b�V we 

can assign a proximity score by executing the following procedure: 

– we start a random walker from a. 

– At each time step, with the probability 1 - c, the walker walks to 

one of the neighbors, b, according to the transition value matrix Z[\ =

	
]^_

`^
 where -[\ is the adjacency matrix of the network and (-[\	equals 1  if 
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node a and b are connected, 0 otherwise ) I[ denotes  the degree of a. 

– With probability c , the walker goes back to a. 

– After many time steps the probability of finding the random walker 

at node x converges to the steady-state probability which is our 

proximity score -[→).  

 
The random walk with restart, whose updating equation is shown as 

follows: 

                                            pt+1  = (1-c)WT pt + cp0                              (4.13) 

Keep updating p until convergence; the stationary distribution vector p 

can meet, 

                                       pt = (1 − c)(I − cW T )−1p0                   (4.14)  

4.3 INSTALLATION 

 
A stable tested version of from github using the devtools package.  

Installing the package from github is given below, 

 

 

4.4 USING NETPREDICTOR STANDALONE R PACKAGE 

One can look at the properties,  which  can be calculated on unipartite 

graphs. 
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require(igraph) 
require(netpredictor) 
 
g1 <- upgrade_graph(erdos.renyi.game(100, 
1/100)) V(g1)$name <- seq(1,100,1) 
score_mat <- unetSim(g1,"aa") 
head(which(score_mat!=0, arr.ind = T)) 
 
## Common neighbors vertex similarity 
score_mat <- unetSim(g1,"cn") 
head(which(score_mat!=0, arr.ind = T)) 
 
## Jaccard Index similarity 
score_mat <- 
unetSim(g1,"jc") 
 
## Dice similarity 
score_mat <- unetSim(g1,"dice") 
 
## Katz Index similarity 
score_mat <- 
unetSim(g1,"katz") 
 
## Geodesic distance vertex similarity 
score_mat <- unetSim(g1,"dist") 
 
## Cosine vertex similarity/ Salton index 
score_mat <- unetSim(g1,"cosine") 
 
## Preferential attachment vertex similarity 
score_mat <- unetSim(g1,"pa") 
 
## Local Paths Index 
## This function counts the number of two-paths and 
## three-paths between 
nodes. score_lpsim <- 
unetSim(g1,"lp") 
 
## Hub promoted Index 
## This measures assigns higher scores to links adjacent to hubs 
## (high degree nodes). It counts common neighbors of two vertices 
## and weights the result. 
score_hpsim <- 
unetSim(g1,"hpi") 
 
## Similarity measure based on resource allocation process 
## (number of common neighbours weighted by the inverse of degrees) 
score_hpsim <- unetSim(g1,"ra") 

 

Next we look at the properties,  which can be calculated on bipartite 

graphs. 
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Next, we will use the different methods to predict links. Here we have shown 

examples based on drug target prediction. With the growing understanding 

of complex diseases, the focus of drug discovery has shifted away from “one 

target, one drug” model, to a new “multi-target, multi-drug” model. 

Predicting potential drug-target interactions from heterogeneous 

biological data is critical not only for better understanding of the various 

interactions and biological processes, but also for the development of 

novel drugs and the improvement of human medicines. To predict 

polypharmacology people use bayesian methods, SVM and Random Forest 

models, but in all of those algorithms the methods depends on labelled 

data to predict unknown links. Network based approaches does not rely 

on labelled data . Two of the algorihtms implemented in this package 

Random walk based Restart (RWR) and Network based Inference (NBI) to do 
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it. For performing RWR we used Drug target network, which is a bipartite 

graph in which every links connects drugs to proteins. 

 

 

In this example we attempt to use the dataseed file,  w h i ch  contains the 

pairs relations between targets and drugs. This can be useful when one 

is trying to investigate relations for a specific set of relations. The Drug 

names and proteins names should be included in the adjacency matrix 

when one uses the file option to provide dataseed. In the dataseed file 

the first column contains the proteins names and the second column the 

drug names. Ouput is a matrix of unique drugs against the number of 

targets in the adjacency matrix. 
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In this next example we will see how we can plot the significant 

communities of drugs from the final RWR computed matrix. For 

community detection we used the walktrap algorithm [13], which places 

nodes into communities based on neighborhood similarity from short 

random walks. We also input a list of drugs as vector and retrieve top 10 

interactions for each of those drugs. In this package after getting the 

results one can easily write the results in GML format for visualization in 

Gephi or cytoscape. It also support export to GEXF format (Gephi specific 

file format). Below shows the example of exporting to GML format. 

 

Drug Pnames score Type 

D00014 hsa2936 0.396969 True Interaction 

D00014 hsa2950 0.3973772 True Interaction 

D00014 hsa1719 0.0011479 Predicted Interaction 

D00014 hsa55312 0.0010483 Predicted Interaction 

D00014 hsa7172 0.0010385 Predicted Interaction 

D00014 hsa4128 0.0009746 Predicted Interaction 

 

    Table 4.1: Table shows the example of drug target interactions 
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Select a druglist to get the results for each of the drugs. 
 

 

The net.perf function samples and removes links from the adjacency matrix 

and predicts them and calculates area under accumulation curve, AUC, 

BEDROC (bdr), and Enrich- ment factor (EF). The area under the receiver 

operating characteristic (ROC) curve (AUC) is widely used metric for 

evaluation of predictive models.  The advantage of using AUC is that it is 

bounded, between 0 to 1 with 0.5 corresponding to random prediction. 

But AUC method has been critized in cheminformatics based virtual 

screening methods because it is not sensitive to early recognition 

compounds.  The EF tries to solve early recognition problem but it is 

dependent on the ratio of actives to inactives and the choice of subset X 

(fraction of active and inactive set). To try and overcome these limitations 

numerous other evaluation methods, such as robust initial enhancement 

(RIE) [10] and Boltzmann-enhanced discrimination of ROC (BEDROC) have 

been proposed [11]. Sheridan et al. developed an exponential weighted 

scoring scheme RIE which gives heavier weight in “early recognized” hits. 
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The BEDROC is constructed on top of RIE by, in essence, forcing the 

RIE to be bounded by 0 and 1, avoiding the dependence on the 

active/inactive ratio. In the example below we remove 50 links and 

repredict those links. While re-predicting them we calculate performance 

metrics like AUC, bedroc and enrichment factor. As the number of links 

(re- links) increases the performance of prediction drops. ’Calgo’ option uses 

different algorithms like NBI,RWR and netcombo. 

 

In 2010 Zhou et al. [], proposed a recommendation method based on the 

bipartite network projection technique implementing the concept of 

resources transfer within the network. The method developed here is 

based on Alaimo etal.[32]. The example given below one can use both the 

methods, using similarity matrices or  simply use heatS equation with the 

adjacency matrix. The nbiNet function is developed to perform the 

prediction. 
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Type AUAC AUC AUCTOP BECROC EFC 

RWR 0.932 0.976 0.606 0.520 9.206 

NBI 0.923 0.976 0.676 0.500 5.468 

NetCombo 0.936 0.976 0.602 0.520 9.087 

 

         Table 4.2: Results network performance using all the algorithms. 

 

I can also compute performance metrics using different algorithms like 

NBI, RWR and netcombo (fusion of results of NBI and RWR) to get auac 

auc, auctop, bdr and ef so that one can compare the performance using 

different algorithms. 

 

To calculate the significance of an interaction, I first compute the 

association score between drug a target and we want to found out 

whether the predicted association score is significant or not. We make 

1000 permutations of the association matrix and similarity matrix and 

compute NBI scores for 1000 random matrices and then we used a 
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normal distribution to calculate p-value. Then I convert the original 

compute score to an associated Z-score. Once the Z-score is found the 

probability that the value could be less the Z-score is found using the 

pnorm command.  Also for a two sided test we need to multiply the

result by two. Box  below gives an idea how we can achieve this.  We can 

create a significant network based on these significant associations found. 

The example give below shows the computation using network-based 

inference for 1000 permutations. 
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4.5 USING NETPREDICTOR R SHINY WEB APPLICATION 

The interface is consisted of two parts; web interface and web server. Both 

of these components are controlled by the code that is written within the 

framework of Shiny application in R. The building block of Shiny package 

is based on reactive programming. Since the ma- jor task of the web-

based  application is to get the inputs and produce outputs, the whole 

programming language is designed in a reactive programming approach 

so that a change in any input instantly change the end result. The Shiny 

application automatically updates the data tables and graphs in real-

time.  This is an advantage for the web applications that rely on user 

inputs. The shiny procedure can provide different outputs without the 

need to refresh the web page. Within the shiny package, ordinary 

controllers or widgets are provided for ease of use of application 

programmers. Many of the procedures like uploading files and refreshing 

the page for drawing new plots and tables are provided automatically. 

Websockets are exclusively important in situations where there is constant 

back and forth dialogue or data exchange between the clients and 

servers. The communication between the client and server is done over 

the normal TCP connection. The bulk of live data traffic that is needed for 

many of web applications (i.e. online games) between the browser and the 

server is facilitated over the websockets protocol. This protocol operates 

separately and only handshake between the client and server is done 

over the HTTP protocol. The duplex connection is open all the time and 

therefore the authentication is not needed when exchange is done. Figure 
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2.1 shows the web framework architecture for R shiny Web app. 

In order for a Shiny app to execute, we have to create a Shiny server 

installed in linux or CentOS. Shiny follows a pre-defined way to write R 

scripts. It consists of server.R and ui.R, which need to be in same 

directory location. If a developer want to customize the user interface 

shiny can also integrate additional CSS and JavaScript within the web 

application. The netpredictor shiny app is available at 

https://github.com/abhik1368/Shiny_NetPredictor . 

	

	
 

Figure 4.1: Diagram showing web architecture of NetPredictor Shiny 
app. 
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4.6 DESCRIPTION 
 
4.5.1 LOADING DATA 
 
One can load their own data or can use the given sample datasets given 

in the software. For the custom dataset option one needs to upload 

bipartite adjacency matrix along with the drug similarity matrix and 

protein sequence matrix. From the given datasets - enzyme, GPCR, Ion 

Channel and Nuclear Receptor in the application one can load the data 

and set the parameters for the given algorithms and start computations. 

Figure 4.2 shows the start page. 

 

4.5.2 RESULTS 
 
Once the data is loaded in the workspace and prediction button is pressed 

it instantly shows up network properties of the bipartite network in 

network properties tab and the predicted results of the given algorithm 

used. The results are easily downloadable as a csv file. It also shows up 

the interactive network plot it comes with true and predicted interactions 

in the network. The network can be downloaded as GML file. 
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Figure 4.2: Diagram starting page of NetPredictor Shiny app. 
 

 

Figure 4.3: Diagram showing results page of NetPredictor Shiny app. 
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Figure 4.4: Diagram shows network plot page NetPredictor Shiny app. 
 
 

4.5.3 ADVANCED ANALYSIS 
 
In the advanced analysis tab one can compute the different statistical 

metrics of your given data for three different algorithms NBI,RWR and 

NetCombo with given set of parameters. This can easily identify the 

performance of the network algorithms on your data.  Figure 4.5 shows 

the advanced analysis tab. A user can run number of times the 

algorithms with different sets of parameter settings. Two parameters are 

provided i.e removing the random links from a network with drugs 

having more than given frequency of targets. If the frequency of the 

targets is select as 0 then all the drug target relations are selected and 

if it is 2 only those drugs having more than 2 targets links will be 

removed from those drugs. The permutation testing can be also 
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performed using this tool. The method usually computes significant 

relations based on the number of random permutations with the original 

predicted matrix. One can select the significance level and get the results 

with significance level less than that given value. Figure 4.6 shows the 

results of prediction. 

 

 

Figure 4.5: Diagram shows advanced analysis page NetPredictor 
Shiny app. 
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Figure 4.6: Diagram shows Random permutations results page    
               NetPredictor Shiny app. 
 

CONLCUSION  

The netpredictor standalone package and shiny application helps in 

identification of missing links in bipartite and unipartite network. This 

application is not useful for biomedical domain but it can also be used in 

searching links in social informatics. The standalone is built using R and the 

web platform is built using R Shiny web, which integrates packages like 

shinythemes, shinysky, data.tables.js, vis.js, d3.js, gridster.js, igraph and 

reshape2. 
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CHAPTER 5 
 

FUTURE WORK AND SUMMARY 
 

5.1 Future Work 

Understanding polypharmacology is a critical problem in drug discovery 

especially of-class target polypharmacology which causes adverse effects and 

side effects. Random walk with restart has lot of potential in understanding of 

target-mediated effects and also will be useful for drug-repurposing 

applications. Other major areas where it can be used is in prioritization of 

candidate genes for various diseases, metabolic pathways, prediction of 

disease associated microRNAs, clustering of proteins based on protein-protein 

interactions, image segmentation and etc. 

5.2 Conclusion 

In this study, I examined the method of link prediction. Although the link 

prediction is not a new problem in informatics but it seems that the traditional 

methods have not been up with the recent development network science. One of 

biggest challenges in link prediction is using multi-dimensional and multi-

partite networks where each of the link associations could have a different 

meaning and consists of different classes of nodes in it respectively. For 

example, multiple relations can exist between a ligand and target, a drug binds 

to a protein target based on its activity, whether it is an inducer, activator or 

enhancer, it can show adverse events. In my opinion in-depth understanding, 

complex networks (example making use of the modular structure of the network 

and hierarchical organization) can help in the development of advanced link 
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prediction algorithms. In this work, I developed a novel technique of random 

walk with a restart to predict drug-target interactions and identification of 

metabolic pathways of a given disease condition. Studying drug target 

interaction using traditional techniques is time-consuming and needs some 

special software packages to understand potential interactions. However, we 

can reduce the time gap by using methods like random walk with restart to 

rank the interactions and then study significant interactions using special 

cheminformatics tools. Chapter 1 introduced some traditional ways of doing 

ligand based and target-based methods to study drug target interactions and 

introduced some link prediction methods in using neighborhood based and 

path-based metrics. Focusing on the path-based metrics, I introduced the 

concept of random walk with restart and how we can use to predict missing 

links in a network. Chapter 2 introduces random walk restart in heterogeneous 

drug target network where we integrated drug-drug chemical similarity 

network, drug-target network and target-target network based on protein 

sequence similarity. I thought using different chemical features would result in 

a different ranking of targets, but surprisingly I observed using four different 

chemical features and optimizing a parameter η I achieved similar kind of 

results, which indicated using commercial or open source chemical similarity 

fingerprints for drug network the results doesn't vary much. Next, Chapter 3 

focuses on the using RWR to a four-layered (disease layer, protein layer, protein 

complexes layer and the protein-biological pathway layer) network for 

identification Biological pathways related to a query disease. The protein layer 

consists of a ppi network from a tissue based gene expression, which connects 

to disease layer via association of disease tissues associations. Based on the 
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query disease a given tissue is selected, and a particular protein-protein 

network is loaded and then we generate the full four-layered network and get 

the pathway predictions. We tested two different types of disease similarity 

network using K-Nearest Neighbor and similarity threshold based and showed 

that threshold of 0.3 gave us better performance with restart c of 0.9.  

In chapter 4 we introduce the netpredictor package to compute properties and 

predict links in a bipartite and unipartite network. I also develop some 

functions to compute node centrality measures in two-mode networks using 

bipartite network projection. I have developed three algorithms to predict 

missing links in a bipartite network namely NBI, HeatS and RWR. Apart from 

using a standalone package a web-based software developed in R shiny. Shiny 

is a platform to develop web-based applications using R. The matrix 

computations are done using the Revolutions Analytics parallel package and 

later on upgraded to Revolutions R open which includes intel math kernel 

(MKL) which provides BLAS and LAPACK library functions. For Mac OSx users, 

it uses ATLAS blas library functions. MKL uses, as many parallel threads as 

there are number of cores. The shiny web app uses some javascript libraries 

like bootstrap.js for creating navbars and tabs, vis.js for developing the 

interactive network based visualization, data.tables.js for generating tables, 

gridster.js for moving the network properties grid around the page. It uses some 

packages like shinythemes, shinyBS, shinyjs, shinysky for look and feel of the 

web application. 
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