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Introduction: System-wide identification of both on- and off-targets of

chemical probes provides improved understanding of their therapeutic

potential and possible adverse effects, thereby accelerating and de-risking

drug discovery process. Given the high costs of experimental profiling of the

complete target space of drug-like compounds, computational models offer

systematic means for guiding these mapping efforts. These models suggest

the most potent interactions for further experimental or pre-clinical evalua-

tion both in cell line models and in patient-derived material.

Areas covered: The authors focus here on network-based machine learning

models and their use in the prediction of novel compound--target interactions

both in target-based and phenotype-based drug discovery applications. While

currently being used mainly in complementing the experimentally mapped

compound--target networks for drug repurposing applications, such as

extending the target space of already approved drugs, these network

pharmacology approaches may also suggest completely unexpected and

novel investigational probes for drug development.

Expert opinion: Although the studies reviewed here have already demon-

strated that network-centric modeling approaches have the potential to

identify candidate compounds and selective targets in disease networks,

many challenges still remain. In particular, these challenges include how to

incorporate the cellular context and genetic background into the disease

networks to enable more stratified and selective target predictions, as well

as how to make the prediction models more realistic for the practical drug

discovery and therapeutic applications.

Keywords: cell-based models, drug repositioning, drug--target interactions, machine learning,

network pharmacology, phenotypic screening, target validation

1. Introduction

Traditionally, decisions on adopting chemical lead molecules into drug develop-
ment and clinical trials were made mainly based on their ability to generate desired
physiological changes in pre-clinical models, without paying that much attention to
the underlying mechanism of action of the chemical probes. However, the rapidly
developing genomic, proteomic, and metabolomic technologies have facilitated
the targeted drug discovery approach by enhancing our understanding of the molec-
ular basis of complex disease processes and/or drug action, and thereby enabling us
to pinpoint their key molecular players. It is known that drug-like compounds
execute their actions mainly by modulating cellular targets, usually proteins, and
instead of focusing on physiological or other phenotypic effects, the emphasis in
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target-based approaches was directed toward designing

selective chemical agents, each binding with maximal affinity

to an individual molecular target involved in a particular

disease, the concept often referred to as ‘one drug -- one

target -- one disease’ paradigm.
However, despite the continuous increase in the number of

promising therapeutic targets, the amount of new drugs

approved by US FDA per billion dollars (inflation-adjusted)

spent on R&D has halved every 9 years since 1950 [1].

A large number of drug candidates fail in clinical trials due to

their lack of efficacy and safety. It has been shown in many

cases that high binding affinity of a ligand is not -- as initially
thought -- associated with its therapeutic efficacy [2], and drugs

acting on single targets are rather an exception [3]. Instead,

most of the FDA-approved drug molecules exhibit polyphar-

macological properties, which may also contribute to their

therapeutic efficacy [4]. Although a large part of compounds’

adverse side effects can be attributed to their off-targets, it has

also become clear that diseases are driven by multiple molecular

abnormalities, and thereby modulating single targets is unlikely

to result in long-lasting therapeutic effect. Cellular networks

are very robust to perturbing their individual components,

due to compensatory signaling and metabolic pathways, and

therefore complex multifactorial disorders, such as cancers, car-

diovascular diseases, and mental disorders, should be ideally

treated by simultaneous modulation of multiple targets or

pathways. These observations have led to a recent paradigm

shift from target-centered to systems-driven drug discovery [5-9].

However, what still remains missing are systematic approaches

and practical modeling frameworks to deal with this polyphar-

macological complexity.

The concept of network pharmacology allows a broader,
systems-level perspective on drug mode of action (MoA) by
placing molecules in the context of underlying biochemical
processes and mechanisms governing interactions between
chemical compounds and their cellular targets [10-14]. In this
framework, a network can be depicted as a connected graph,
where each node represents an individual molecular entity,
for instance, a drug compound, its protein target, a modifier
molecule within a biological process, or target pathway,
whereas an edge models either a direct or indirect interaction
between the two molecules. Ultimately, both the efficacy and
toxicity of a drug are a consequence of complex interplay
among different cellular components, and therefore a
system-scale perspective is needed to aid modern drug discov-
ery. For instance, while many off-target effects were initially
classified as unwanted adverse reactions, some of them might
be beneficial for achieving desired therapeutic effect, perhaps
in other than original indication. An illustrative example is
the case of thalidomide, which in the 50s was prescribed to
treat insomnia and nausea in pregnant women, but was
turned out to cause severe skeletal defects in newborns, and
was therefore quickly withdrawn from the market; nowadays,
however, it is being used in the treatment of leprosy by
inhibiting TNF-alpha protein [15].

Network pharmacology models have the potential to help
us to better understand the MoA of promiscuous drugs, and
to identify new therapeutic uses of approved, abandoned, or
preclinical compounds. Such drug repositioning opportuni-
ties can greatly reduce the increasing cost, time, and risk asso-
ciated with the drug discovery and development processes [16].
As an example, a phenotype-based repurposing approach
recently identified a VEGFR tyrosine kinase inhibitor axitinib
as a selective and effective treatment for patients with BCR-
ABL1(T315I)-driven chronic myeloid leukemia [17]. This is
a great example how comprehensive drug sensitivity testing
of patient-derived cancer cells, combined with their target
selectivity information, can lead to unexpected personalized
treatment strategies. However, since the experimental map-
ping of all the possible compound--target interactions is an
infeasible task, even with the current technologies, computa-
tional approaches are needed to accelerate the experimental
work by prioritizing the most promising drugs and targets
for further experimental validation.

In the past decade, machine learning models have drawn
an increasing attention in the field of drug discovery. In
particular, a lot of work has been devoted to methods based
on quantitative structure--activity relationship (QSAR), which
aim to relate structural properties of the chemical molecules to
their bioactivity profiles [18]. Such in silico prediction models
can be used, among other things, to predict cancer growth
inhibition potential of drug compounds [19], or their potency
against a given cellular target [20]; for instance, regression-
based machine learning algorithms have been used to infer
quantitative bioactivity signatures [21], while in a classification
setup, the task is to predict whether a particular compound is

Article highlights.

. System-level network pharmacology models, combined
with computational machine-learning algorithms, offer a
powerful approach for systematic identification of
candidate compounds and their cellular targets.

. One of the biggest computational challenges is how to
better use the genetic background information in the
pharmacogenomic models to provide more stratified or
even personalized predictions in the future.

. Experimental validation using functional, binding, or
phenotypic assays is the only way how to really
demonstrate the practical utility of the model
predictions in practical drug discovery applications.

. Tissue-specific interaction networks provide improved
insights into complex molecular interplays behind
diseases, critical for modeling and predicting
compounds’ mode of action and potential side effects.

. Open data and information sharing from
compound--target interaction mapping efforts will
provide a valuable knowledgebase for many exciting
drug discovery and repurposing applications in the
future.

This box summarizes key points contained in the article.

A. Cichonska et al.

Expert Opin. Drug Discov. (2015) 10 (12)1334

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

el
si

nk
i]

 a
t 0

0:
43

 2
3 

M
ar

ch
 2

01
6 

http://informahealthcare.com/journal/EDC


active or not [22]. Instead of focusing on single targets or
compounds only, we argue that the development of rational,
effective, and safe therapies requires a network perspective of
the system-wide cellular components, combined with a
proteome-wide profile of drug--target interactions (DTIs),
including both on- and off-targets. In this framework, given
a set of promising therapeutic intervention points in the
disease network, in silico approaches can then be used to sug-
gest the small molecules that may target these network nodes,
together with their potential off-target effects. There exist
recent reviews on computational compound--target interac-
tion prediction methods [20,23,24], which give an excellent
overall and theoretical view of the different algorithms.

Here, we focus on computational models for drug
compound identification using large-scale ligand--target inter-
actions mapping in which the network perspective plays a
central role. In contrast to previous works, we place a specific
emphasis on describing the practical aspects of how such
network pharmacology approaches to predicting com-
pound--target interactions could lead to exciting drug repur-
posing opportunities, as well as to novel candidates for
target-based drug discovery, after a careful experimental
validation. Furthermore, we offer our personal view of the
current challenges and the key future opportunities in this
emerging field, including the use of findings from genome-
wide association studies as safe drug target candidates, and
the application of new genome editing techniques to testing
and further optimizing the drug target inhibition at the pre-
clinical level. We also shortly discuss the recent progress
made in modeling of tissue-specific networks as well as their
important role in therapeutic target identification. We argue
that many of the current limitations are related to the ques-
tion how to make the computational models more realistic
for the practical drug discovery and therapeutic applications,
and that experimental validation is the only way to really
demonstrate their practical utility.

2. Experimental approaches to ligand--target
interaction mapping

Experimental identification of novel drug candidates and
repurposing opportunities typically relies on ligand profiling
assays, which can be roughly divided into three main catego-
ries: binding, functional, and phenotypic assays. Binding
and functional assays are of particular interest here, as they
directly facilitate compound--target interaction mappings. In
the phenotype-based screening, the measured signal (or
readout) corresponds to a phenotypic response to drug pertur-
bation, such as IC50, which equals to the concentration that
results in half-maximal inhibition of cell proliferation or
viability.

Binding assays aim to understand a direct physical interac-
tion between two molecules. The readout corresponds to a
value characterizing the binding affinity between the ligand
and target, for example, dissociation constant KD, which

measures the tendency of a larger molecular complex to disso-
ciate reversibly into the component molecules. A functional
bioassay, on the other hand, measures the signal induced by
an activation or suppression of a pre-defined function. In
functional kinase assays, for instance, the activity of a kinase
enzyme is a parameter of interest affected by binding of a
drug compound. A typical readout is Ki, the concentration
of the inhibitor that causes 50% inhibition of the reaction
-catalyzed by the enzyme of interest.

The studies by Davis et al. [25] and Metz et al. [26] are illus-
trative examples of large-scale binding and functional assays,
respectively, both generating kinome-scale compound--target
interaction maps. Davis et al. profiled 72 clinically relevant
compounds against 442 kinases, in their mutated and
wild-type forms, providing a broad overview of selectivity of
established kinase inhibitors across over 80% of the known
catalytically active human kinome. In the study of
Metz et al., a larger collection of 3,858 chemical probes was
tested against 172 kinases, followed by a statistical analysis
of the resulting dataset, which enabled the construction of a
comprehensive kinome interaction network. However, in
such mechanistic in vitro assays, molecules are treated as iso-
lated entities taken away from their cellular context, which
may affect compound’s potency. For instance, differences in
the in vitro and in vivo concentrations of ATP can lead to
unrealistic profiling results of the kinase inhibitors, which
are known to be ATP competitive [27].

The work of Taipale et al. was one of the first attempts to
establish a high-throughput compound--target interaction
profiling approach in living cells, utilizing chaperones as ther-
modynamic sensors of binding strength [27]. This method was
initially applied to screen 30 kinase inhibitors against > 300
wild-type and mutated kinases, but it could be extended also
to other protein targets that either naturally or when
engineered associate with chaperons. Recently, Savitski et al.
devised a more general approach for proteome-wide monitor-
ing of protein--ligand binding directly in living cells by
combining the technique of cellular thermal shift assay with
quantitative mass spectrometry (MS) [28]. Their thermal
proteome profiling method enables the identification of not
only direct interaction partners of over 7,000 proteins embed-
ded in the cellular network, but also downstream effectors as
potential markers for drug efficacy and toxicity.

Although experimental bioactivity profiling is critical to
characterize a compound’s MoA, and proteome-wide
ligand--target interaction mapping under various conditions
has become feasible owing to recent technological advances
(see [29] for a comprehensive review), computational
approaches can greatly help to accelerate the process of explor-
ing the enormous size of the chemical universe. It is estimated
that there are approximately 1020 -- 1024 molecules exhibiting
good pharmacological properties [30]. In silico methods enable
suggesting the most potent interactions that should then be
subjected to further experimental validation. To facilitate
such computational--experimental approaches, there are
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several publicly available databases containing ligand--target
interaction data and other resources useful for building
computational models (Table 1).
However, it is also important to understand the potential

limitations of the drug and target databases for the modeling
purposes. For instance, the overlap in compounds and targets
between distinct repositories may sometimes be relatively lim-
ited, and even for the overlapping compound--target pairs, the
types of bioactivity measurements and annotations of the
molecules might differ drastically. The bioactivity data are
often incomplete, vast, and complex, and some erroneous or
contradictory interactions are bound to occur [31]. These
issues need to be carefully considered when collecting and pre-
paring the data for computational modeling. We encourage
the use of multiple data sources to make the full advantage
of the available bioactivity information, as well as tools like
UniChem [32], which facilitate cross-referencing of chemical
structures and their identifiers between different repositories.

3. Computational prediction of
compound--target interaction networks

Network-based approaches to compound--target interaction
inference hold a great promise to aid modern drug discovery.
Computational prediction methods enable large-scale, sys-
tematic pre-screening of chemical agents, providing thereby
insights into the potency of investigational compounds as
well as potential new indications for already approved drugs,
examples of which are given later in this section. The network
concept allows one to abstract, integrate, and organize the
data from large-scale experiments, facilitating the extraction
of useful information from complex biological systems. In
such analyses, a network graph can represent different types
of relationships, depending on the system being modeled,
for example, protein--protein interactions (PPIs), gene co-
expression interactions, metabolic interplays, or DTIs. Figure 1

illustrates the main components of the DTI prediction meth-
ods described in this section (see Table 2 for the summary).

3.1 The use of DTI network topology in the DTI

prediction
The topology of the experimentally mapped interaction net-
work can provide important insights into the system under
investigation, hence enabling the prediction of new com-
pound--target links. For instance, van Laarhoven et al. intro-
duced a Gaussian Interaction Profile (GIP) kernel -- a
similarity metric defined on binary vectors, each encoding
the presence or absence of an interaction of a drug (respec-
tively target) with every target (drug) in the considered DTI
network [33]. New compound--target links can be inferred by
Regularized Least Squares model using a Kronecker product
of constructed drug and target kernels. This study demon-
strated that known interactions themselves constitute an
important information source for the prediction algorithms.
However, employing additionally structural knowledge about
the molecules further improved the GIP method’s
performance [33,34].

A different approach was taken by Cheng et al. who com-
bined the principles of recommender systems theory with
topological features of drug--target bipartite graph in their
network-based inference (NBI) algorithm for predicting new
connections between compounds and targets [35]. NBI oper-
ates on the bipartite graph, where drug compounds and tar-
gets constitute two disjoint sets of nodes, and an edge is
drawn between drug and target if they are known to interact
with each other. Given a target (respectively drug) node,
resources, analogs to the mass in physics, are initially allocated
in all drugs (targets) linked with it. Then, predictive scores are
calculated for each drug (target), using a network diffusion
process, corresponding to the mass diffusion in physics.
Finally, the nodes are sorted in descending order based on
their scores, thereby forming the recommendation list of

Table 1. A list of representative compound and target databases.

Database Content Website

ChEMBL [80] Quantitative bioactivity data for drug-like small molecules www.ebi.ac.uk/chembl
DrugBank [81] Detailed drug data with comprehensive target information www.drugbank.ca
BindingDB [82] Binding affinities of proteins with small drug-like ligands www.bindingdb.org
STITCH [83] Known and predicted compound-protein interactions http://stitch.embl.de/
KEGG BRITE [84] Information on various biological objects, including drug--target relationships www.genome.jp/kegg/brite.html
PubChem [85] Compound chemical and bioactivity information https://pubchem.ncbi.nlm.nih.gov/
BRENDA [86] Comprehensive enzyme information www.brenda-enzymes.org
DGIdb [87] Drug--gene interaction database http://dgidb.genome.wustl.edu
DrugKiNET Detailed target information on kinase inhibitors www.drugkinet.ca
TTD [88] Information on the therapeutic targets http://bidd.nus.edu.sg/group/ttd
SuperTarget [89] Drug--target interactions http://insilico.charite.de/supertarget
MATADOR [89] Data on a subset of more extensively annotated drugs from SuperTarget http://matador.embl.de
PDSP [90] Binding affinities (Ki) of psychoactive compounds http://pdsp.med.unc.edu/kidb.php
ZINC [91] Database of purchasable compounds http://zinc.docking.org/

A. Cichonska et al.

Expert Opin. Drug Discov. (2015) 10 (12)1336

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

el
si

nk
i]

 a
t 0

0:
43

 2
3 

M
ar

ch
 2

01
6 

http://www.ebi.ac.uk/chembl
http://www.drugbank.ca
http://www.bindingdb.org
http://stitch.embl.de/
http://www.genome.jp/kegg/brite.html
https://pubchem.ncbi.nlm.nih.gov/
http://www.brenda-enzymes.org
http://dgidb.genome.wustl.edu
http://www.drugkinet.ca
http://bidd.nus.edu.sg/group/ttd
http://insilico.charite.de/supertarget
http://matador.embl.de
http://pdsp.med.unc.edu/kidb.php
http://zinc.docking.org/
http://informahealthcare.com/journal/EDC


Known drug-target
interaction (DTI) map

Target space

Drug space

Target-target
connections

Chemical  structures Transcriptional
responses 

Protein sequence
similarities

Protein-protein
interaction networks

Side effects

Gene Ontology
classifications

New DTI
predictions 

Drug-drug
connections

classificationscations

Figure 1. The components of the drug--target interaction prediction methods.

Table 2. Summary of representative in silico methods for compound-target interaction prediction described in

Section 3.

Method Information source

Compound-target

interaction network

topology

Compound

chemical

structures

Target

structures

Transcriptional

responses

PPI

network

Others, for example,

Gene Ontology,

side effects

GIP [33] x
NBI [35] x
NWNBI, EWNBI [36] x
Wang and Zeng [37] x
SEA [38] x
Yamanishi et al. [40] x x x
DT-Hybrid [43] x x x
NRWRH [44] x x x
TL_HGBI [45] x x x x
Campillos et al. [47] x x
Ravindranath et al. [50] x x
drugCIPHER [51] x x x x
Laenen et al. [52] x x
SITAR [53] x x x x x
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drugs (targets). Drugs (targets) from the top of the list are
more likely to interact with a given target (drug), and these
are used as new DTI predictions.
NBI was first validated on four popular benchmark datasets

of drug--target proteins (enzymes, ion channels, nuclear
receptors, and G-protein-coupled receptors), collected from
KEGG BRITE, BRENDA, SuperTarget, and DrugBank,
where it showed high true positive and low false positive rates.
Importantly, experimental validation of the model predictions
in vitro confirmed montelukast as a new inhibitor of dipeptidyl
peptidase-IV, and four other drugs, including simvastatin,
diclofenac, ketoconazole, and itraconazole, to effectively bind
estrogen receptors ERb and/or ERa. Moreover, both ketoco-
nazole and simvastatin showed antiproliferative potency in
human MDA-MB-231 triple-negative breast cancer cell
line [35]. These experimental validations demonstrated that
NBI is useful for extending DTI maps, as well as providing
novel repositioning suggestions.
In the follow-up work, Cheng et al. introduced node- and

edge-weighted versions of the NBI method (termed NWNBI
and EWNBI, respectively) [36]. EWNBI allows one to weight
links between drugs and targets by their quantitative binding
affinity values, such as Ki (see Section 2), whereas NWNBI
provides a more realistic scheme for the resource distribution,
compared to the original NBI algorithm, where the informa-
tion was evenly distributed across all the neighboring nodes.
The above-mentioned approaches can predict only binary

DTIs, providing no additional information on their nature.
To address this limitation, Wang and Zeng proposed an algo-
rithm based on a two-layer graphical model, known as
restricted Boltzmann machine, which is capable of differenti-
ating direct from indirect DTIs, as well as predicting binding,
activation, and inhibition types of connections [37]. The adop-
tion of such annotations of the edges in the network makes
the method useful not only for compound--target interaction
profiling and identifying starting points for drug reposition-
ing, but also for providing practical insights into molecular
basis of drug’s MoA, for instance, distinguishing direct
physical binding of the two molecules from an indirect inter-
action being a consequence of cellular perturbations caused by
the drug molecule.

3.2 The use of chemical and genomic profiles in the

network-based DTI inference
A drawback of the methods relying merely on topological
information of compound--target networks is their inability
to predict interactions for such drug candidate compounds
that have no known target information in the training data.
Supervised approaches that incorporate additional sources of
information, such as chemical and genomic profiles of the
molecules, can effectively address this problem by introducing
drug--drug and target--target inter-relationships into the pre-
diction task. A prime example is the Similarity Ensemble
Approach by Keiser et al., in which DTIs are inferred

statistically by comparing structural similarities between drugs
and known set of ligands for a given target [38,39]. In one of the
first machine learning models utilizing both chemical and
genomic profiles, Yamanishi et al. proposed a supervised
learning framework for binary DTI inference based on simul-
taneous integration of drug chemical structures, protein target
amino acid sequences, and known drug--target bipartite net-
work topology into a unified pharmacological space [40]. Moti-
vated by the observed correlations between compound
structure similarity, protein sequence similarity, and com-
pound--protein interaction network topology, the modeling
framework of supervised bipartite graph inference from chem-
ical, genomic, and pharmacological data has been further
developed and applied in the follow-up studies [41,42].

Since the seminal work of Keiser et al. [38] and
Yamanishi et al. [40], the available sources of chemical and
genomic information have become more accurate and
systematic, and these are being commonly used in the com-
pound--target interaction network predictions. For instance,
Alaimo et al. extended the NBI recommendation framework
by including additional biological knowledge in the form of
chemical similarities among drugs and amino acid sequence
similarities among targets [43]. These similarities were incorpo-
rated into the function that defines how the resource
transfer takes place in the drug--target network. The resulting
domain tuned-hybrid (DT-Hybrid) method was found to out-
perform the original NBI algorithm, which utilized only DTI
network topology in the inference. However, no novel
compound--target interaction predictions were validated
experimentally in this computational work.

Chemical and genomic information sources were also used
in the method named Network-based Random Walk with
Restart on the Heterogeneous network (NRWRH) [44].
Specifically, drug--drug and protein--protein similarity
networks, as well as known drug--protein interaction network,
were integrated into a heterogeneous graph on which a ran-
dom walk was applied to infer new DTIs. In contrast to the
above methods, NRWRH computes drug--drug (respectively
target--target) associations as a weighted sum of chemical
structure (protein sequence) similarity matrix and similarity
matrix constructed based on the number of known targets
(drugs) shared by each pair of drugs (targets). The underlying
idea is that molecules sharing many common targets (drugs)
should be considered similar, and in some cases this similarity
might not be well captured by structural features only, for
example, due to the fact that even a minor structural differ-
ence between two chemical compounds can cause a dramatic
change in their activity. NRWRH demonstrated an excellent
performance on the benchmark datasets, but the need for
the user to select five parameter values can be considered as
practical weaknesses.

It is known that chemical agents achieve their therapeutic
effects as a consequence of modulating, either directly or indi-
rectly, the molecular targets relevant to a disease process.
Although drug target prediction and drug repurposing are

A. Cichonska et al.
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naturally interconnected, they are typically treated as two
subsequent but separate tasks in the prediction approaches.
However, Wang et al. introduced a network-based method
that integrates these two tasks into a unified framework,
termed Triple Layer Heterogeneous Graph Based Inference
(TL_HGBI) [45]. This is achieved through a heterogeneous
network model, composed of three distinct types of nodes rep-
resenting targets, drugs, and diseases, while edges capture their
inter- and intra-relationships. Drug--target and drug--disease
connections are constructed based on the prior knowledge
from established databases, such as DrugBank and
OMIM [46]. Drug--drug, target--target, and disease--disease
edges are derived from chemical structure, amino acid
sequence, and phenotypic description similarities, respectively.

In TL_HGBI, drug repurposing is formulated as missing
drug--disease link inference problem, solved using iterative
algorithm that propagates information across the three-layer
graph. Moreover, TL_HGBI extends the druggable space, as
new drug--target connections are predicted simultaneously.
A case study on five disorders (Huntington disease, non-
small-cell lung cancer, alcohol dependence, small-cell lung
cancer, and polysubstance abuse) demonstrated that
TL_HGBI can be useful in practice for identifying new
drug repositioning opportunities, since many of the top-
ranked drugs were supported by the recent literature, and
some of them have even already been tested in vivo in clinical
trials. For instance, carboplatin and temozolomide are cur-
rently under evaluation for treating small-cell lung cancer
(www.clinicaltrials.org).

3.3 Integration of interaction networks for drug

candidate and target prediction
Computational methods for compound--target interaction
prediction by means of utilizing drug--target network topol-
ogy as well as additional chemical and genomic profiles of
the molecules have become a standard in the field. However,
integrating additional network-centric knowledge into the
models, for example, in the form of gene co-expression
patterns and PPIs, offers even broader perspective for the
identification of new potential drug candidates and reposi-
tioning opportunities. A well-known example of employing
additional pharmacological information to the prediction
task is the seminal work of Campillos et al., where the authors
used phenotypic side-effect similarities in the inference of
compound--target connections, several of which were tested
and confirmed with in vivo assays [47].

A development of the Connectivity Map (CMap)
resource [48], containing a public collection of gene expression
profiles from human cell lines treated with over 1,000 diverse
compounds, has facilitated the use of transcriptional signa-
tures in the in silico drug discovery. For instance, Iorio et al.
exploited CMap datasets in the approach called Mode of
Action by NeTwoRk Analysis, and successfully inferred
MoA of nine anticancer compounds. Importantly, they also

experimentally verified a surprising prediction of fasudil, a
drug with well-established safety profile, as a promoter of
cellular autophagy, thus providing a novel repurposing oppor-
tunity [49]. In the more recent work, Ravindranath et al. inte-
grated drug target predictions from probabilistic chemical
similarity-based algorithm with the gene expression data
from CMap in order to provide more in-depth understanding
of MoA of compound clusters under the assumption that
compounds modulating similar targets will also trigger similar
genes and related pathways [50].

The network of PPIs constitutes another comprehensive
source of information for in silico drug discovery. Zhao and
Li used PPIs in their drugCIPHER framework for predicting
DTIs on a genome-wide scale [51]. The algorithm models
DTIs using linear regression that relates compound space to
genomic space. The compound space consists of drugs’ thera-
peutic similarity computed using the Anatomic Therapeutic
Chemical (ATC) classification codes, and drugs’ structural
similarity. The genomic space, on the other hand, is defined
as drug--protein closeness established on the basis of the PPI
network and known drug--protein interactions. Although the
aspects of protein druggability or cellular location were not
considered in this work, drugCIPHER has a potential to
provide genome-wide insights into novel drug--protein con-
nections, enabling the identification of starting points for
drug repositioning and understanding adverse drug reactions,
especially with the future improvements in the quality and
completeness of the PPI networks.

Toward more multi-omics approach, Laenen et al. demon-
strated the power of integrating both transcriptional signa-
tures and protein association network in a genome-wide
scale DTI inference [52]. Specifically, differential expression
values (drug-treated vs non-treated cells) were projected
onto the PPI network, and then expression signals were
diffused to the subnetwork around each protein. The resulting
scores of the nodes allow one to prioritize proteins as potential
drug targets. A somewhat different integrative approach was
taken by Perlman et al., who also used transcriptional drug
response profiles and PPIs, as well as compound structures,
ATC codes, side effects, protein amino acid sequences, and
Gene Ontology classes to compute multiple drug--drug and
target--target similarity measures integrated in the logistic
regression-based SITAR (Similarity-based Inference of drug-
TARgets) framework for DTI inference [53].

Although the in silico approaches described above were
shown to have good predictive performance, and therefore
may provide novel insights into the identification of drug
and target candidates, modeling of tissue-specific networks
holds perhaps the greatest promise to aid drug discovery, since
many disorders manifest only in certain tissues, whereas
inhibiting the same targets in the other tissues may lead to
adverse side effects. Such context-specific approaches are
needed to better account for the differences in drug’s MoA
across various tissue and cell types. In one of the first studies,
Magger et al. used tissue-specific gene expression data to
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construct PPI networks, and demonstrated that utilizing these
networks, instead of the conventional approach of ignoring
differences between tissues, indeed improved the prioritiza-
tion of candidate disease-causing target genes [54].
Along the same lines, Liu et al. built and analyzed 30 tissue-

specific networks based on protein expression profiles, and
showed that their topological features differ from those of
generic networks [55]. Recently, Greene et al. developed a
Bayesian framework for the construction of tissue-specific
protein interaction networks by integrating plethora of het-
erogeneous datasets, and used these to build 144 tissue- and
cell lineage-specific maps, which were demonstrated to be
capable of predicting tissue-specific gene functions and
responses to pathway perturbations [56]. Moreover, such
maps were also shown to improve the identification of disea-
se--gene associations, under the introduced network-wide
association study framework, when compared to the standard
genome-wide association study (GWAS) alone [56]. It is likely
that tissue-specific interaction networks will also prove useful
for the computational inference of therapeutic targets and
MoA proteins [57], and that new tissue-specific target
prediction methods are likely to emerge in the near future.

4. Future directions: incorporating genetic
variation into the pharmacogenomic models

Considering the genetic background of the patient sub-
populations is an important part of a modern drug develop-
ment process (so-called precision or stratified medicine).
However, incorporating the personal genomic information
into the computational network-based approaches has been
challenging, given the complexity and different nature of the
genetic profiles, compared with the biochemical or cell-based
compound and target profiles. There are, however, several
emerging approaches that aim to link the genetic information
obtained from large-scale patient cohorts to pharmacological
information obtained either from clinical or pre-clinical
studies, as well as from electronic healthcare records. Such
pharmacogenomic models, once implemented efficiently, are
likely to provide a more comprehensive network view of the
molecular mechanisms behind disease processes, toward
enabling more accurate predictions of the system-level pheno-
typic responses to both genetic and chemical perturbations.

4.1 Genome-wide associations for drug repurposing

and drug candidate identification
A relatively straightforward approach is to take the top
variants from GWAS for a particular disease phenotype, and
then use the identified disease susceptibility genes as leads in
therapeutic target selection. There exist pilot studies showing
the potential of GWAS findings for generating hypotheses
about potential drug--disease links for both drug repurposing
or target validation applications [56,58-60]. However, adding
functional and structural network information is critical to

reduce the false positives from the genetics-only-based
approaches when searching for effective and personalized
drug candidates or disease-relevant targets [61-63]. Further,
since GWAS data are often limited to one or maximally a
few disease phenotypes, there has been recent interest in using
large-scale phenome-wide association studies (PheWAS) to
identify susceptibility genes simultaneously for thousands of
disease traits, extracted from electronic medical records in
large patient cohorts, thereby expanding the phenotypic space
and capturing the pleiotropic effects among the diseases [64,65].
However, regardless of the association approach used, these
genetics-based drug repurposing applications rely heavily on
the availability of comprehensive and accurate DTI networks
for confirming the druggability of the selected targets.
Although the initial focus in these pilot studies has been
more on drug repositioning applications, it should be possible
to predict also not yet approved compounds that target the
disease risk-modifying genes, which might offer novel leads
for future drug discovery efforts.

Since the published GWAS or PheWAS variants often lack
a more detailed functional characterization of their disease
biology and toxicity profiles across various tissue types, infor-
mation on the pathogenesis of a disease and the drug’s MoA is
required for better understanding both its therapeutic and
potential side effects [66]. In particular, neutral or even protec-
tive loss-of-function (LoF) variants that can be tolerated in a
homozygote state in humans are of particular interest as
potential safe targets for therapeutic inhibition. Isolated pop-
ulations, including Finns, with recent bottlenecks, have been
instrumental for discovering low-frequency LoF variants, by
taking advantage of such unique population genetic history
combined with harmonized data from large population
cohorts and national medical records [67]. Beyond genomics
only, more comprehensive profiling of the patient cohorts
using, for example, transcriptomics, proteomics, metabolo-
mics, or even epigenetics platforms will be needed for more
accurate safety and specificity estimates. Also, genome editing
tools, such as RNAi or CRISPR/Cas9 systems, facilitate pre-
clinical target discovery and validation [68,69], using either
comprehensive panels of cell line models across tissue types
or patient-derived cell samples in genetically selected patient
populations. These exciting genome-engineering tools may
even provide effective and safe therapeutic applications in
the future, provided that RNAi-based delivery or CRISPR/
Cas9 systems can be improved in terms of their fidelity and
selectivity to target a specific part and tissue context of the
disease network only [70,71].

4.2 Prediction of drug response profiles based on

genomic and molecular signatures
A more direct way of utilizing genomic profiles in drug devel-
opment and treatment selection is to study the influence of
genetic variation on the individual drug efficacy and side
effect profiles in large cohorts of individuals [72]. Despite
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successful examples of such pharmacogenetic findings that

have led to clinical applications, perhaps best exemplified in

the field of cancer treatment [73], the prediction of responding

and non-responding patients is highly challenging, even when

using large patient cohorts and high-density panels of genetic

variants, not to mention going into more continuous predic-

tion of treatment efficacies or toxicities using a panel of only

a few genetic markers. The rather low predictive accuracies

seen for many complex diseases may be due to the lack of

low-frequency and rare variants in the genomic data, which

should carry predictive signal for individual patients or patient

subgroups, instead of studying population-level averages.

While measuring the whole spectrum of genetic variation,

using, for example, next-generation sequencing (NGS)-based

genomic profiling technologies, is likely to improve the pre-
diction of the treatment responses, these data pose also

many computational challenges. However, once fully imple-

mented and tested in clinical trials, NGS-based clinical

genomics should facilitate more systematic and unbiased

understanding of the genotype-specific mechanisms behind

drug action, resistance, side effects, and other treatment phe-

notypes at the level of individual patient, hence enabling the

translation of the genotype--phenotype relationships into

precision medicine.
Pre-clinical models are also increasingly being used to model

and predict the response of drugs based on panels of genomic

and molecular markers. In addition to animal models, cell-

based models, such as those based on established cell lines or
patient-derived samples, make it possible to profile the

response patterns to a comprehensive set of drug-like com-

pounds. In a recent community-based effort in cancer cell

line models, it was shown that modeling of non-linearities

was a common component of the top-performing prediction

approaches, and that most predictive molecular features were

constructed based on gene expression and protein activity

profiles [19]. However, there is still much room for improve-

ment as the best prediction accuracies were only slightly better

than random guessing. Enhanced knowledge of the com-

pound--target interaction networks, which effectively connect

the molecular and pharmacological spaces, should also lead

to more predictive models. Indeed, a few theoretical works

have already demonstrated the power of compound--target
interactions in drug sensitivity prediction [74,75]. We should

learn from these lessons when moving toward more individual-

ized treatment prediction, either in patient-derived samples or

in the clinical practice. Most likely single markers are not

enough in the majority of practical cases to predict drug

sensitivity, resistance, or toxicity. Therefore, machine learning

algorithms for in-depth mining of the most predictive panels

of markers, using, for example, Exome-seq, RNA-seq, or

MS-based profiles, should prove beneficial for understanding

network-level mechanisms and the key players behind the

observed drug sensitivity and resistance patterns for future

clinical translation.

5. Conclusions

System-level network pharmacology models, combined with
computational machine learning algorithms, offer a powerful
means for prioritization of the most potent compound--target
pairs for further experimental evaluation, thereby reducing the
massive search spaces spanned by candidate compounds and
their cellular targets. At the moment, these methods are
mainly used for providing suggestions for filling the gaps in
the experimentally mapped compound--target networks, but
once made more realistic and efficient, they may enable
prediction of extended target space for a lead compound of

interest (phenotype-based drug discovery), or even identifica-
tion of new candidate compounds that selectively inhibit a
particular target under investigation (target-based drug dis-
covery). Mapping of the full spectrum of interactions between
compounds and their cellular targets, including both the com-
pound’s intended primary targets as well as its secondary or
‘off-targets’, is a critical part of the drug discovery efforts, as

it enables us not only to explore the therapeutic potential of
the agents but also to better understand their possible adverse
reactions prior to the actual clinical trials, thereby de-risking
and accelerating the drug development process.

Currently, due to the lack of better treatment alternatives,
there exist many chemotherapies used in the clinical practice,
despite their known associations with important off-target
toxicities or causing other severe side effects. An illustrative
example is methotrexate, a folate analog metabolic inhibitor,
which is being used as a predominant first-line therapy for

rheumatoid arthritis (RA). Methotrexate has been reported
as a highly toxic chemotherapy, which is associated with,
among others, hepatotoxicity, lung infections, renal damage,
bone marrow changes, and skin tumors [76]. However, since
RA is a chronic disease with no cure, the benefit of preventing
progressive joint damage prevails the downsides of the meth-
otrexate therapy. This example demonstrates that in many

cases, even if a therapeutic option exists, there is an urgent
need for more effective and safer therapeutic alternatives,
and we anticipate that in silico network pharmacology
approaches will play an important role in the development
of increasingly targeted and selective drug treatments.

One of the current computational challenges is how to
better use the available genetics information in the prediction
models. In the personalized medicine setting, for instance, we
often need to consider also the protein variants, not only the
wild-type targets, to fully realize the power of these models.

Going back to the motivating example of axitinib, which
was shown to inhibit BCR-ABL1(T315I) in a mutation-
selective binding mode [17], making predictions for such
mutated targets requires more in-depth modeling of the struc-
tural and molecular properties of both the compounds and
protein variants, respectively, something that still poses chal-
lenges to the current QSAR or docking-based approaches. If

proven successful, however, such improved machine learning
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approaches could greatly aid the experimental phenotype-
based drug repositioning efforts, for instance, by proving a
straightforward approach to prioritize the most potent and
safe compounds that provide effective killing of the cancer
cells harboring specific mutations, while having minimal
side effects in the other cell types lacking the mutations.
Integrated modeling approaches are being developed for

combining functional information obtained either from the
large-scale compound screening or from RNAi/CRISPR/
Cas9 systems with the complementary information obtained
from personal genomic profiling. While still at their early
phases, such pharmacogenomics approaches have the poten-
tial to improve both the safety and efficacy of the individual-
ized treatment strategies in the future. Beyond monotherapies,
network pharmacology models offer effective means also for
predicting synergistic drug combinations. In particular, tar-
geted combinatorial therapies may be less vulnerable to drug
resistance and even show fewer side effects by targeting disease
networks through interacting or complementary pathways [9].
However, due to the exponentially increasing number of com-
binations, effective computational approaches are required for
exploring the most potent multi-target regimens on a network
level [11]. Another exciting application area involves multi-
targeted mixtures of natural products, where network phar-
macology approaches may enable systematic mapping of yet
unexplored target space of natural compounds [77].

6. Expert opinion

Phenotype-based drug discovery using comprehensive com-
pound collections and their systematic target mappings is
starting to result in unexpected drug repurposing opportuni-
ties and novel lead compound discoveries, thereby effectively
complementing the current NGS-driven target-based drug
discovery approaches that have their limitations in translating
the genomic detections into clinically actionable therapeutic
strategies. However, critical improvements are required not
only in the compound profiling setups, such as those based
on high-content screening and more realistic 3D cell-based
or disease-relevant assays, but also in the downstream analyses
of the candidate probes that show the desired phenotypes; the
key challenges range from the system-level MoA determina-
tion using biochemical or cell-based assays, to safety and
efficacy testing in pre-clinical models or in patient-derived
material, all the way to clinical trials and compound optimiza-
tion for genetically defined patient populations. Network
modeling and machine learning approaches, such as those
described in this review, can help in each of these challenges.
Nevertheless, despite their great potential, there remain both
computational and experimental issues that will need to be
addressed so that we can make the most of these emerging
approaches toward exciting drug discovery applications.
Many of the current computational limitations are related

to the question how to make the model predictions more real-
istic. We argue that experimental validation is the only way

how to really show the practical utility of the model predic-
tions. Too often the compound--target interaction models
are being evaluated under theoretical settings that do not
reflect the practical applications, therefore leading to over-
optimistic prediction accuracies [78]. We also argue that
compound--target prediction should be formulated as a
continuous regression problem, to quantify the full activity
spectrum of chemical compounds across their potential target
space, instead of the standard binary classification setup (i.e.,
interaction or no interaction). It is also important to acknowl-
edge that each supervised prediction model is limited in appli-
cability by the data used in its training. At the moment, we
feel that one can make fairly accurate and realistic predictions
within a particular drug and target family only (local models).
However, with the increasing coverage of the interaction maps
in the future, we may be able to extend these models across
multiple compound or target families (global models). Such
experimental and computational developments should lead
to more comprehensive network models of compounds’
MoA, an important step toward safer and more effective
therapeutic applications in the future.

From the application point of view, we believe that perhaps
the best repurposing and discovery opportunities will originate
from pre-clinical ‘orphan compounds’, that is, de-prioritized
targeted agents and tool compounds that currently are not
under further development by Pharma or Biotech companies.
There already exist a number of pre-competitive, public--private
research partnerships, such as the one built on Structural Geno-
mics Consortium, inviting open-source collaboration among
academia, industry, hospitals, and patient groups to improve
the predictive utility of the current assays based on patient-
derived primary cells [79]. We highly encourage such open data
and information sharing between all the parties also in the con-
text of compound--target interaction mappings. Along these
lines, we have recently initiated a community-driven effort,
with the aim to collectively extract, manage, and curate high-
quality compound--target bioactivity data from public data-
bases, literature, and other resources. We anticipate that such
an open environment, with an increasing number of research
groups and pharmaceutical companies joining this crowdsourc-
ing effort, will provide valuable knowledgebase for many excit-
ing applications, including combinatorial target identification,
drug discovery, and novel repurposing opportunities using
system-level compound--target interaction networks.
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