39 research outputs found

    Identifying scoliosis in population-based cohorts:automation of a validated method based on total body dual energy X-ray absorptiometry scans

    Get PDF
    Scoliosis is a 3D-torsional rotation of the spine, but risk factors for initiation and progression are little understood. Research is hampered by lack of population-based research since radiographs cannot be performed on entire populations due to the relatively high levels of ionising radiation. Hence we have developed and validated a manual method for identifying scoliosis from total body dual energy X-ray absorptiometry (DXA) scans for research purposes. However, to allow full utilisation of population-based research cohorts, this needs to be automated. The purpose of this study was therefore to automate the identification of spinal curvature from total body DXA scans using machine learning techniques. To validate the automation, we assessed: (1) sensitivity, specificity and area under the receiver operator curve value (AUC) by comparison with 12,000 manually annotated images; (2) reliability by rerunning the automation on a subset of DXA scans repeated 2–6 weeks apart and calculating the kappa statistic; (3) validity by applying the automation to 5000 non-annotated images to assess associations with epidemiological variables. The final automated model had a sensitivity of 86.5%, specificity of 96.9% and an AUC of 0.80 (95%CI 0.74–0.87). There was almost perfect agreement of identification of those with scoliosis (kappa 0.90). Those with scoliosis identified by the automated model showed similar associations with gender, ethnicity, socioeconomic status, BMI and lean mass to previous literature. In conclusion, we have developed an accurate and valid automated method for identifying and quantifying spinal curvature from total body DXA scans

    Machine learning in orthopedics: a literature review

    Get PDF
    In this paper we present the findings of a systematic literature review covering the articles published in the last two decades in which the authors described the application of a machine learning technique and method to an orthopedic problem or purpose. By searching both in the Scopus and Medline databases, we retrieved, screened and analyzed the content of 70 journal articles, and coded these resources following an iterative method within a Grounded Theory approach. We report the survey findings by outlining the articles\u2019 content in terms of the main machine learning techniques mentioned therein, the orthopedic application domains, the source data and the quality of their predictive performance

    Machine Learning in Orthopedics: A Literature Review

    Get PDF
    In this paper we present the findings of a systematic literature review covering the articles published in the last two decades in which the authors described the application of a machine learning technique and method to an orthopedic problem or purpose. By searching both in the Scopus and Medline databases, we retrieved, screened and analyzed the content of 70 journal articles, and coded these resources following an iterative method within a Grounded Theory approach. We report the survey findings by outlining the articles' content in terms of the main machine learning techniques mentioned therein, the orthopedic application domains, the source data and the quality of their predictive performance

    Epidemiological, Radiological and Genetic Aspects of Endocrine Bone Diseases

    Get PDF

    Epidemiological, Radiological and Genetic Aspects of Endocrine Bone Diseases

    Get PDF

    Model-based segmentation and registration of multimodal medical images

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Statistical anatomical modelling for efficient and personalised spine biomechanical models

    Get PDF
    Personalised medicine is redefining the present and future of healthcare by increasing treatment efficacy and predicting diseases before they actually manifest. This innovative approach takes into consideration patient’s unique genes, environment, and lifestyle. An essential component is physics-based simulations, which allows the outcome of a treatment or a disease to be replicated and visualised using a computer. The main requirement to perform this type of simulation is to build patient-specific models. These models require the extraction of realistic object geometries from images, as well as the detection of diseases or deformities to improve the estimation of the material properties of the studied object. The aim of this thesis was the design of a general framework for creating patient- specific models for biomechanical simulations using a framework based on statistical shape models. The proposed methodology was tested on the construction of spine models, including vertebrae and intervertebral discs (IVD). The proposed framework is divided into three well-defined components: The paramount and first step is the extraction of the organ or anatomical structure from medical images. In the case of the spine, IVDs and vertebrae were extracted from Magnetic Resonance images (MRI) and Computed Tomography (CT), respectively. The second step is the classification of objects according to different factors, for instance, bones by its type and grade of fracture or IVDs by its degree of degeneration. This process is essential to properly model material properties, which depends on the possible pathologies of the tissue. The last component of the framework is the creation of the patient-specific model itself by combining the information from previous steps. The behaviour of the developed algorithms was tested using different datasets of spine images from both computed tomography (CT) and Magnetic resonance (MR) images from different institutions, type of population and image resolution

    Natural course and comorbidities of lipodystrophy syndromes in Spain

    Get PDF
    Los síndromes lipodistróficos constituyen un grupo heterogéneo de enfermedades raras caracterizadas por la pérdida selectiva de tejido adiposo, que conlleva a un deterioro en la señalización de la insulina y otras funciones celulares, dando lugar a complicaciones metabólicas (diabetes, hipertrigliceridemia, esteatosis hepática, patología cardiovascular, etc.) que contribuyen a unas mayores tasas de mortalidad en estos pacientes. No obstante, la historia natural exacta de estos síndromes no está bien documentada, lo que lleva a grandes retrasos en el diagnóstico o incluso a diagnósticos erróneos. Así pues, la presente tesis constituye el primer estudio en vida real cuyo objetivo es el de evaluar el curso natural y las comorbilidades asociadas a lo largo de la vida de los pacientes con lipodistrofia generalizada y parcial en España (tanto adquirida como congénita) en un esfuerzo por contribuir a aumentar el conocimiento de estos síndromes infrecuentes

    2023 Medical Student Research Day Abstracts

    Get PDF
    Medical student research day is designed to highlight the breadth of research and scholarly activity that medical students have accomplished during their education at The GW School of Medicine and Health Sciences. All medical students are invited to present research regardless of the area of focus. Abstract submissions represent a broad range of research interests and disciplines, including basic and translational science, clinical research, health policy and public health research, and education-related research
    corecore