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Summary 
 

Registration helps the surgeon to help overcome the limitation of relying on a single 

modality for image-guided surgery. There is a need for an accurate registration system 

which will improve surgical outcomes. The work described has involved the 

investigation and development of a new registration system based on computational 

model. Preoperative CT images of patient are segmented using an adaptive 

thresholding method, which takes into consideration the inhomogeneity of bone 

structure. A patient-specific surface model is then constructed and used in the 

registration process.  

We proposed and developed a new automatic surface-based rigid registration system 

using neural network techniques for CT/CT and CT/MRI registration. A multilayer 

perceptron (MLP) neural network is used to construct the bone surface model. A 

surface representation function has been derived from the resultant neural network 

model, and then adopted for intra-operative registration. An optimization process is 

used to search for optimal transformation parameters together with the neural network 

model. In CT/CT registration, since no point correspondence is required in our neural 

network (NN) based model, the intra-operative registration process is significantly 

faster than standard techniques.  

We proposed a weighted registration method for CT/MRI registration, which can 

solve the CT/MR registration problem and MR image segmentation problem 
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simultaneously. This approach enables fast and accurate CT/MR feature based 

registration, accurate extraction of bone surface from MR images, and fast fusion of 

the two different modalities. Since the bone surface in CT images can be extracted 

quickly and accurately, the CT segmentation result is used as the reference for MR 

image segmentation. The process starts with a coarse extraction of bone surface from 

MR images, and the coarse surface is then registered to the accurate bone surface 

extracted from CT images. The CT bone surface is re-sampled according to the 

registration result. It is used as the initial estimation for MR image segmentation. The 

MR segmentation result is subsequently registered to CT bone surface. The 

segmentation result of MR images is improved at each iterative step using the CT 

segmentation result. In the iterative segmentation-registration process, since the goal 

boundary is close to the initial one, only fine adjustment is needed. Computational 

time is hence saved and unreasonable segmentation due to poor scans can be 

effectively avoided. 

We also investigated the application of statistical methods to assist CT/CT and 

CT/MR registrations. CT/CT and CT/MRI registration methods were integrated into a 

generic software toolkit. The toolkit has been used in segmentation of various human 

and animal images. It has also been applied to register human bone structures for 

image-guided surgery. The successful completion of the weighted registration method 

greatly enhances the state-of-art for CT/MRI registration.  
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1 Introduction  

1.1 Motivation 

Many surgical procedures require highly precise localization, often of deeply buried 

structures, in order for the surgeon to extract the targeted tissue with minimal 

damage to nearby structures. Image-guided surgery is a solution to address this 

clinical need. Segmentation and registration are important sub-tasks in image-guided 

surgery. The region of interest is extracted in segmentation. Registration is the 

process used to match the coordinate system of preoperative imagery with that of the 

actual patient on the operating table. After registration, possible image-based 

applications include interactive pre-operative viewing, determination of the incision 

line and navigation during surgery.  

Traditional clinical practice utilizes only 2D magnetic resonance (MR) or computed 

tomography (CT) slices, and the surgeon must mentally construct the 3D object and 

compare the critical image information to the body of the patient. CT provides 

well-contrasted images of high-density biological objects such as bones and tumors 

but is usually not preferred for detailed soft tissue examination. MR imaging, with 

its moderate resolution and good signal-to-noise ratio is the modality of choice for 

soft tissues. Fusing CT and MR images will help overcome the limitation of relying 

on a single modality for image guided surgery. A typical fusion procedure comprises 

segmentation of the CT and MR images, followed by registration and spatial 

alignment/fusion. The region of interest in CT images (e.g., bone) or MR images 
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(e.g., kidney and liver) of a patient is first segmented. After spatial registration, the 

segmented CT and MR images are aligned to give a model comprising 

well-contrasted bone structure and the surrounding soft tissues. Such a composite 

model is important for surgical planning and education. For example, a vertebra, 

which is hard tissue, may have to be examined with the intervertebral disc, a soft 

tissue, for effective spinal surgery planning.  

The objective of this work was the development of a system to produce a 

patient-specific hybrid model of the spine for image guided spinal surgery. The 

system should comprise CT/MR image segmentation, CT/CT and CT/MR image 

registration. It may also be employed for different anatomies, e.g., the ankle. 

1.2 Background 

1.2.1 CT and MRI 

Quantitative Computed Tomography 

In CT imaging, the two-dimensional internal structure of an object can be 

reconstructed from a series of one-dimensional projections of the object acquired at 

different angles as outlined in Figure 1.1.   

The scanning for angles ranging from 0° to 360° is repeated so that sufficient data is 

collected to reconstruct the image with high spatial resolution. The reconstructed 

image is displayed as a two-dimensional matrix, with each pixel representing the CT 

number of the tissue at that spatial location. As the CT number and the attenuation 
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coefficient of a voxel related to the bone is a near-linear function of the bone density, 

CT imaging can be used to provide in-vivo quantitative analysis of bone density.  

 

Figure 1.1. Principles of computed tomography image generation (adapted from [1]). 

Magnetic Resonance Imaging  

Magnetic resonance imaging (MRI) is an imaging technique used primarily in 

medical settings to produce high quality images of the inside of the human body. 

MRI is based on the principles of nuclear magnetic resonance, a spectroscopic 

technique used by scientists to obtain microscopic chemical and physical 

information about molecules. The technique was called magnetic resonance imaging 

rather than nuclear magnetic resonance imaging (NMRI) because of the negative 

connotations associated with the word nuclear in the late 1970's. 

In MR imaging, in order to selectively image different voxels (volume picture 

elements) of the subject, orthogonal magnetic gradients are applied. Although it is 

relatively common to apply gradients in the principal axes of a patient (so that the 

patient is imaged in zyx and,  from head to toe), MRI allows completely 

flexible orientations for images. All spatial encoding is obtained by applying 
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magnetic field gradients which encode position within the phase of the signal. In one 

dimension, a linear phase with respect to position can be obtained by collecting data 

in the presence of a magnetic field gradient. In three dimensions (3D), a plane can be 

defined by "slice selection", in which an RF pulse of defined bandwidth is applied in 

the presence of a magnetic field gradient in order to reduce spatial encoding to two 

dimensions (2D). Spatial encoding can then be applied in 2D after slice selection, or 

in 3D without slice selection. Spatially-encoded phases are recorded in a 2D or 3D 

matrix; this data represents the spatial frequencies of the image object. Images can 

be created from the matrix using the discrete Fourier transform (DFT). Typical 

medical resolution is about 1 mm
3
, while research models can exceed 1 µm

3
. The 

three systems described above form the major components of an MRI scanner 

(Figure 1.2): a static magnetic field, an RF transmitter and receiver, and three 

orthogonal, controllable magnetic gradients. 

The MR method has been one of the most powerful tools in medical field as well as 

in biological studies since the middle of last century. Magnetic resonance imaging is 

attractive in that not only high-density objects (e.g. bones), but also the soft tissues 

(e.g. brain, kidney) can be imaged with fair resolution and good signal to noise ratio 

(SNR) [2]. More encouraging is the fact that magnetic resonance can be applied to 

the live body safely in spite of the relatively high magnetic field. 
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Figure 1.2. MRI scanner (adapted from [3]). 

1.2.2 Image-guided Therapies for Vertebral Disease 

In spinal surgery, it would be helpful for the surgeons to have a panoramic view of 

the vertebrae, the soft tissue, neural roots, and vessels around it. More care has to be 

taken in pre-surgery planning to reduce the possibility of damage during the actual 

operation. Thus there is a need to perform both CT and MRI scans on the patient. 

Due to the nature of CT and MRI, they provide advantages over each other under 

different circumstances. CT can give us well-contrasted images of high-density 

objects such as bones and tumors. However, it works poorly if we intend to examine 

soft tissue. MR images have the advantage under such circumstances in that both 

soft tissue and bones are visible, though the resolution and contrast is not as good as 

that of CT images. Thus these two modalities complement each other. After spatial 

registration, the results can be used to construct a model comprising clear bone 

structure and the surrounding soft tissues. This information can be used to plan the 

surgical procedure by the surgeon. It can also be used for education or training.   
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1.3 Proposed Medical Image Processing System 

The proposed and developed system comprises CT/MR image segmentation, CT/CT 

and CT/MR image registration. As shown in Figure 1.3, segmentation is first 

performed on CT images to separate the region of interest (bone) from its 

surroundings. The bone surface is then used to construct the bone surface model 

using a MLP neural network. An initial MR image segmentation captures the 

general shape of the target object (the vertebrae). A coarse registration result is 

obtained by registering the MR and CT surfaces with a weighted surface-based 

registration algorithm. With the registered CT surface model as the reference, we 

use the intermediate results of MR image segmentation and registration to iteratively 

refine the suboptimal MR image segmentation. This iterative process is carried out 

until the segmented CT and MR surfaces match within a specified tolerance. The 

registered MR and CT dataset can be fused after this iterative process. 
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Figure 1.3. Flowchart of feedback segmentation-registration system. 
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1.4 Thesis Contributions 

1.4.1 3D Adaptive Thresholding Segmentation 

A novel 3D adaptive thresholding segmentation method is proposed for 3D CT 

image segmentation. This fast and accurate method successfully segments the two 

kinds of bone structures (vertebrae and ankle) in our experiments. In 3D adaptive 

thresholding method, the thresholding of each voxel is updated up-to-date. For each 

voxel, a local window, which is a cylindrical region, is defined. The respective 

means and variances for bone and non-bone inside the corresponding region and 

similarly are calculated and used to classify all the voxels. The entire volumetric 

image is processed in an iterative process till it converges. 

1.4.2 3D CT/CT Surface-based Registration 

A novel automatic surface-based method using a neural network is used to perform 

the registration. The neural network is used to construct an invariant descriptor for 

human bone to speed up the registration process. Execution time and registration 

accuracy are the two important specifications for a registration system. The 

NN-based approach significantly improved computational.  

1.4.3 MR Image Segmentation and CT/MR Image Registration  

A new iterative methodology is proposed to perform fast and accurate multimodal 

CT/MR registration and segmentation of MR dataset in a concurrent manner. In MR 

image segmentation, we extend the ordinary single-front level set to the double-front 

level set. This effectively reduces computational time by limiting the search area 

around the target and enhances segmentation accuracy by avoiding leakage and 
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distraction by other objects. The iterative segmentation/registration method helps to 

refine the segmentation of MR images and the registration of MR to CT. The 

technique is fully automatic but still able to give results that are comparable to 

manual segmentation. 

1.4.4 Statistical Modeling of Vertebrae  

A statistical model-based framework is proposed to rapidly create FE meshes with 

patient-specific geometry using the CT images. These models can be used to create a 

human spine FE meshes especially lumbar FE meshes. A center firing searching 

method is implemented to find the correspondence control points for training the 

statistical shape model. This method has two advantages over conventional 

template-based mesh-generation methods. Firstly, a high mapping quality is ensured. 

A proper vertebral template is selected using statistical analysis of a pre-trained 

database instead of using a single template, which reduces the possibility of mapping 

error for a complex structure such as vertebra. Secondly, minimum preprocessing, 

e.g., pre-adjustment, is required. 

1.5 Thesis Organization 

This thesis brings together a 3D adaptive thresholding segmentation method in 

Chapter 3, CT/CT surface-based registration in Chapter 4, weighted CT/MR 

registration in Chapter 5 and statistical modeling of vertebrae in Chapter 6. These 

methodologies enable us to produce hybrid CT/MR model and the possible 

extension to spine structure. 
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In Chapter 2, the current image segmentation, registration and image-guided surgery 

are reviewed.  

In Chapter 3, the 3D adaptive thresholding segmentation method is described in 

detail. The implementation of this method is presented. The experimental results are 

presented. 

In Chapter 4, the surface-based registration method using neural network is 

presented. The coarse registration based upon principal-axes alignment method is 

described. Bone surface is modeled using MLP for registration. It is used to create a 

computationally efficient function for the cost calculation. This registration method 

achieves sub-voxel accuracy comparable to that of conventional techniques, and is 

significantly faster. These advantages are demonstrated using image datasets of the 

calcaneus and vertebrae. 

In Chapter 5, a system that performs CT/MR rigid registration and MR image 

segmentation is presented. The segmentation/registration process progressively 

refines the result of MR image segmentation and CT/MR registration. For MR 

image segmentation, we propose a method based on the double-front level set that 

avoids boundary leakages. In order to reduce the registration error from the 

misclassification of the soft tissue surrounding the bone in MR images, we propose a 

weighted surface-based CT/MR registration scheme. The registration method 

achieves accuracy compatible to conventional techniques while being significantly 

faster. Experimental results demonstrate the advantages of the proposed approach 

and its application to different anatomies. 



11 

In Chapter 6, a study is proposed on statistical model-based framework to rapidly 

create FE meshes with patient-specific geometry. A center firing searching method 

was implemented to find the corresponding control points for training statistical 

shape model. The proposed framework can be used to generate FE models of 

complex geometrical structure such as human vertebrae from medical images. 

Finally, the conclusion and recommendations for future work in this area of research 

are presented in Chapter 7. 
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2  Literature Review  

2.1 Image-guided Surgery 

Image processing is an important component of image guided surgery. Medical 

image analysis brings a revolution to the medicine of the 21
st
 century. It introduces a 

set of powerful new tools designed to better assist the clinical diagnosis and to 

model, simulate, and guide more efficiently the patient's therapy. Image-guided 

surgery also requires input from other traditional disciplines like computer vision, 

computer graphics, artificial intelligence and robotics. 

2.1.1 Simulation and Planning 

A surgical plan in reconstructive surgery needs information of the shape, symmetry, 

dimension, and function of hard and soft tissue. At present, surgical plans and 

surgical outcomes are analyzed on 2D and 3D radiographs and photographs. Much 

of the challenge in image-guided surgery lies in understanding the relative spatial 

positions of critical vascular, neural and other structures in relation to the underlying 

bone and the facial surface. The recent developments in imaging techniques have 

allowed more effective pre-surgical diagnosis and surgical planning using 

patient-specific data.  

Recently, much research emphasis has also been placed on computer-assisted 

surgical planning and augmentation systems. Scharver et al. [4] have developed an 

augmented reality system for craniofacial implant. A training system for simulating 
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temporal bone surgery was proposed by Agus et al. [5]. The system is based on 

patient-specific volumetric object models derived from 3D CT and MR imaging data. 

Real-time feedback is provided to the trainees via real-time volume rendering and 

haptic feedback. The performance constraints dictated by the human perceptual 

system are met by exploiting parallelism via a decoupled simulation approach on a 

multi-processor PC platform. Meehan [6] presented a system for 3D planning and 

pre-operative rehearsal of mandibular distraction osteogenesis procedures. Two 

primary architectural components are described: a planning system that allows 

geometric bone manipulation to rapidly explore various modifications and 

configurations, and a visuohaptic simulator that allows both general-purpose training 

and preoperative, patient-specific procedure rehearsal. 

Jolez [7] proposed a method which clearly enhances the ability of the neurosurgeon 

to navigate the surgical field with greater accuracy, to avoid critical anatomic 

structures with greater efficacy, and to reduce the overall invasiveness of the surgery 

itself. Fischer [8] developed a 2D augmented reality image overlay device to guide 

needle insertion procedures. This approach makes diagnostic high-field magnets 

available for interventions without a complex and expensive engineering entourage. 

In preclinical trials, needle insertions have been performed in the joints of porcine 

and human cadavers using MR image overlay guidance; in all cases, insertions 

successfully reached the joint space on the first attempt. There are also some studies 

using robotic devices to aid surgery like needle placement or insertion [9, 10]. 
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2.1.2 Validation 

The validation process in the context of image-guided surgery is diverse and 

complex. Image-guided surgery systems involve many processing components, e.g., 

segmentation, registration, visualization, and calibration. Each component is a 

potential source of errors. Therefore, validation should involve the study of the 

performance and validity of the overall system, the performance and validity of the 

individual components, and error-propagation along the overall workflow. Clinical 

validation of image guided surgery systems (in terms of large-scale multi-site 

randomized clinical trials) is difficult, since image guided surgery is a recent 

technology and the required randomization is an ethical problem. 

Validation is usually performed by comparing the results of a method or system with 

a reference that is assumed to be very close or equal to the exact solution. The main 

stages of reference-based validation are as follows. The first step is to clearly 

identify the clinical context and specify the validation objective. Then, the validation 

criteria to be studied and corresponding objective should be chosen, along with the 

associated validation metrics that quantify validation criteria. Validation data sets 

are chosen to provide an access to the reference. The method of computing the 

reference should be specified, as well as the format of the input and output of 

comparison between the reference and the results of the method applied to the 

validation data sets. The validation metric used for comparison is chosen according 

to its suitability for assessing the clinical validation objective. Quality indices are 

computed on the comparison output to characterize the properties of the error 

distribution. Finally, statistical tests are used to assess the validation objective. 
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A meta-analysis was conducted by Altedorneburg [11] out of clinical trials 

published between 1987 and 2001 in respect of the clinical pharmacology and safety 

as well as the diagnostic efficacy of gadolinium - Diethylene triamine pentaacetic 

acid (Gd-DTPA) for direct intra-articular injection before MRI examination. Binkert 

[12] compared the examination time with radiologist time and to measure radiation 

dose of CT fluoroscopy, conventional CT, and conventional fluoroscopy as guiding 

modalities for shoulder CT arthrography. Thakar [13] established their method 

validating the algorithm in an independent cohort of patients and black patients and 

compared two different definitions of renal outcome.  

2.2 Medical Image Segmentation 

There are several established methods for CT image segmentation [14] but a robust, 

fast and general solution is lacking for MR images. The main difficulties are: 

(1) Intrinsic limitations of image acquisition theory and system [15]. 

The spatial inhomogeneities in the radio-frequency (RF) gain lead to the overlapping 

of the intensities of two tissues, and thus blurred boundaries. On the other hand, the 

image acquisition system’s failure to provide sufficient spatial resolution will add to 

the boundary fuzziness.    

(2) Variability of object structure/shape/size/texture. 

Various shapes and sizes of tissues, complicated topology and different tissue 

texture make it almost impossible to find universal criteria.    

(3) Subject variability due to the operator. 
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This is due to the parameter settings in scanning and personal criteria of defining 

boundaries.    

(4) Artifacts and noise [16]. 

Noise and artifacts are introduced in the process of image acquisition. These may be 

due to the system, hardware, physics or even the patient himself/herself.     

All the variability and uncertainty contribute to the tremendous complications in 

medical image segmentation. Thus application-driven solutions are developed for a 

range of cases or even for some special cases. Most techniques are either 

region-based or surface-based, and can be further divided according to the 

information that is used and the classification method, e.g., intensity [15], 

morphology [17], probability [18, 19], clustering [20] and neural networks [21]. 

Surface-based techniques can be classified as parameter-based or geometry-based. 

There are also approaches that combine different techniques, within or across the 

classes.         

2.2.1 Region-based techniques 

Thresholding-based techniques are the most straightforward methods [19]. With a 

threshold value which is set manually or automatically, a point can be classified as 

object or background depending on its gray value. For example, in most MR images 

of the vertebrae, the intensity of the vertebral body is similar to the soft tissue and 

different from that of the spinal processes. Thresholding would thus classify the 

vertebral body and soft tissue into the same class and classifies the processes as 

another class. Nevertheless, it is highly subjective to set thresholding manually and 
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it is weak in error prevention. Much research has been conducted using adaptive 

thresholding. 

Morphology-based techniques [17] always include the following operations: 

convolution, binarization/thresholding, classification/labeling, morphological 

operation (dilation/erosion/opening/closing), connected components analysis/region 

filling, logical operation (AND, OR, NOT, XOR, etc.). The system often has the 

following problems: (1) convolution with various structuring elements sometimes 

leads to the loss of details, (2) much manual interaction is often needed, and (3) it is 

sensitive to noise. 

Probability-based techniques classify pixels according to the probability values or 

maximization of the expectation [18, 19]. Different constraints can be integrated to 

make the system more robust. However it still has difficulty in overlapped areas and 

thus misclassification may happen. 

Clustering-based techniques are iterative processes of re-assigning pixels to different 

classes according to some fuzzy membership functions [20]. Clusters need to be 

carefully selected as they have crucial effect to the performance. The results also 

heavily depend on manual setting of parameters, which is highly subjective. The 

vulnerability to noise and high computational requirements are also considered to be 

shortcomings of clustering-based techniques. 

Neural network-based techniques use training datasets to train a neural network for 

segmentation purposes [21]. However they are not adaptive - small changes in 

objects lead to re-training of the neural network, which is usually very time 

consuming. Therefore it is difficult to meet real-time requirements.  
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2.2.2 Surface-based techniques 

Parameter-based techniques are derived from the original 2-D deformable model - 

snakes [9]. The idea of parameter-based deformable model is to locate the active 

contour to a position that minimizes its energy, external and internal. External 

energy is represented by image properties, while the snake itself decides on the 

internal energy. The details of the algorithm will be discussed in later chapters. 

However the active contour has intrinsic defects in that it has difficulty in tracing 

convoluted shapes, shapes that are not convex, sharp corners and bends. Snakes are 

also easy to be caught in local minima and are highly sensitive to noise.     

Geometry-based techniques refer to Sethian’s level set function [22, 23] and its 

variations. The level set is a time evolving function, and the so called “zero level 

curve” corresponding to a propagating front. The details of this algorithm will be 

discussed in later chapters. The level set method can deal with convoluted shapes, 

sharp corners or bends. Yet it also has some weaknesses. It is not good at growing 

bi-directionally, i.e., when the expanding front exits the goal boundary, it may not be 

able to “shrink” back. Furthermore, it is prone to leak into the background at a fuzzy 

boundary. 

2.3 Medical Image Registration 

Various medical image registration methods have been proposed for current medical 

applications with regards to the dimensionality, subject, object and modalities 

involved. The method may be automatic, interactive and semi-automatic, but they 
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can all be classified based on the basis of registration, nature and domain of 

transformation and optimization procedure according to [24]. 

The basis of medical image registration methods can be either image-based or 

non-image based. Non-image based methods are seldom used because they use 

calibration to directly align two coordinate systems, thus requiring the patient to 

remain motionless between both acquisitions. Most existing methods are 

image-based and they can be further divided to either extrinsic or intrinsic methods.  

Extrinsic methods rely on artificial objects attached to the patient, which are 

designed to be visible and accurately detectable in all of the pertinent modalities, 

while intrinsic methods rely on patient generated image content only. Though 

extrinsic methods can make the registration comparatively easy, fast and usually 

automated, there is a need for intrinsic methods because of their noninvasive 

characteristic and improvement in patient comfort. 

Intrinsic registration methods can be further divided into the following three 

categories based on their choice of feature: (1) landmark-based registration, land 

markers are used to obtain accurate registration result; (2) voxel property-based 

registration, no segmentation is needed before registration and usually it takes longer 

time in registration process; (3) Feature-based registration, segmentation is needed 

before registration. 

2.3.1 Landmark-based Registration 

This approach requires the segmentation procedure to identify points at the locus of 

the optimum of some geometric property [25, 26] or anatomical landmarks [27, 28]. 
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By constraining the search space according to anatomical landmarks, mismatches 

are unlikely to occur, and the search procedure can be sped up significantly. 

However, due to the difficulties in computer recognition of landmarks, this kind of 

registration usually requires user-interaction. 

2.3.2 Voxel Property-based Registration 

This method uses image intensity for registration. There are two common 

approaches in this area. One approach attempts to reduce the image gray value 

content to representative scalars and orientations [29, 30], while the other uses the 

full image content throughout [31, 32]. 

2.3.3 Registration Based on Image Segmentation 

This method needs to first extract anatomically the same structures (mostly surfaces) 

from the images to be registered. These structures are the sole input for the 

alignment procedure. Surface-based registration is commonly used for the following 

reasons: (1) it is less computationally intensive compared to volume-based 

registration since there are fewer data points; (2) it can be used to perform 

multimodality registration provided the surfaces can be accurately extracted from 

different image modalities, which is typically not easy; and (3) the surface is 

relatively invariant over time, which is useful, for example, in monitoring 

progression of bone disease. Popular methods of rigid model-based approaches are 

the “head-hat” method [33] and the fast chamfer matching technique [34]. Since 

rigid model based methods are always easy to perform and the computational 

complexity is relatively low, they are used extensively in the clinical field. With 

deformable models, however, a template model that is defined in one image is 
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required. The template may be deformed to match the segmented structure in the 

second image [35, 36] or the second image may be used unsegmented [37, 38, 39]. 

Deformable curves appear in the literature as snakes, active contours or nets. 

Deformable model based methods are best suited to find local curved 

transformations between images, and less so for finding (global) rigid or affine 

transformations. A drawback of the segmentation- based method is that the 

registration accuracy is limited to the accuracy of the segmentation step. The 

registration step is commonly performed automatically while the segmentation step 

is performed semi-automatically most of the time. 

The transformation to be employed defines the nature of relationships between the 

coordinates of each point in one image (which is called the original image) and 

coordinates of the corresponding point in the other image (the reference image). It 

also decides the parameters to be found in the registration procedure. The nature of 

transformation can be rigid, affine, projective or elastic [24]. Only translations and 

rotations are allowed in rigid transformation. If the transformation maps parallel 

lines onto parallel lines, it is called affine. If it maps lines onto lines, it is called 

projective. Finally, if it maps lines onto curves, it is called curved or elastic. Figure 

2.1 illustrates different 2D transformations. 

The domain of the transformation is called global if it applies to the entire image, 

and local if regions of the image each have their own transformations defined. Local 

transformations are seldom used directly; the term is reserved for transformations 

that are composites of at least two transformations determined on sub-images that 

cannot be generally described as a global transformation. The most frequently used 
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transformation in registration applications is the global rigid transformation, because 

the rigid body constraint is a good approximation in many common medical images. 

             Original      Global        Local 

            

Figure 2.1. Examples of 2D transformations (adapted from [24]).  

In the optimization procedure used in existing registration methods, transformation 

parameters can be either computed or search for. If the parameters can be 

determined in an explicit fashion, then the parameters can be computed directly. 

Otherwise the parameters need to be determined by finding an optimum of some 

function defined on the parameter space, i.e., searched for. In the former case, the 

manner of computation is completely determined by the paradigm. In the case of 

searching optimization methods, most registration methods are able to formulate the 

paradigm in a standard mathematical function of the transformation parameters to be 

optimized. If the similarity function is well behaved (quasi-convex), one of many 

standard and well-documented optimization techniques [40] can be used. Many 

applications use more than one optimization technique, frequently a fast but coarse 

technique followed by an accurate yet slow one. In addition, multi-resolution and 
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multi-scale approaches can be used to speed up convergence or to reduce the number 

of transformations to be examined and to avoid local minima.  

2.3.4 CT Bone Registration 

Here we are interested in bone registration based on CT segmentation. The 

transformations found in bone images are all rigid, as they concern mainly the 

displacement of bones. CT modality is used since it has better contrast for bone 

structures compared to other modalities.  

Some special methods for bone registration were proposed by Münch [41], Jacq and 

Roux [42] and van den Elsen [43]. Münch performed an automatic registration by 

optimizing the cross-correlation of femural images; Jacq and Roux performed 

curved automatic registration on images of the humerus by minimization of the local 

grey value differences, and van den Elsen performed 3D rigid automatic registration 

in a full image content based way by optimizing the cross-correlation between a CT 

and MR image, where the CT gray values are first remapped using localized linear 

transforms. 

However, most registration methods are surface-based, since anatomical surfaces are 

usually explicitly identified with tomograhic data such as MRI and CT, and are often 

closed. In the case of rigid models, these methods are always easy to perform and 

the computational complexity is relatively low. Those surface-based methods differ 

in elaboration of surface representation, similarity criterion, matching and global 

optimization. Besl and McKay propose the iterative closest point method [44] to 

determine the closest point pairs followed by computing the transformation from 

these pairs with a quaternion technique. This method is also a common basis of 
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many other methods that followed. Hemler, Naper, and Sumanaweerea propose a 3D 

registration system on an automatically extracted, user corrected surface, on CT 

calcaneus images [45] and on CT and MR spinal images in [46, 47]. In this system, 

the corresponding surface to be registered is first identified in each image set, and a 

set of 2D polygon points is used to represent the surface in the other image set. A 

least-squares minimization technique is then used to determine the rigid-body 

transformation which minimizes a cost function related to the sum-square 

perpendicular distance between the two surfaces. Bainville [48] found a local curved 

spline deformation using the local closest point of the surfaces combined with a 

regularization term. However, these methods all incur heavy computational cost in 

searching for point correspondences. Though some methods, e.g. [49], have been 

proposed to accelerate the process, the speed is still a problem in real-time 

applications. 

Burel [50] has proposed a method for estimating the orientation of 3D objects 

without point correspondence information. It performs 3D registration by 

decomposing each surface into its spherical harmonics. The optimization is then 

done by using their special geometrical invariances. This method does not need 

point matching, it uses some direct linear algebra computations without an iterative 

search, and it is computationally fast. A crucial drawback of this method is that it is 

suitable for transformation which only has rotation. And it produces noticeable 

rotational error when the translation estimation is not accurate.  
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2.4 Statistical-based Modeling 

The potential use of finite element (FE) models to plan, evaluate and investigate 

surgical treatments has been recognized for a long time since the early 1980s [51, 52] 

for musculoskeletal, [53] for bone mechanics, and [54] for prosthetic design. These 

investigations mainly employed generic FE meshes based on average patient 

geometries. Nevertheless, anatomical structures have significant variations in 

geometrical shape and tissue properties among different individuals. The complex 

boundaries of anatomical structures, further complicated by pathologies such as 

scoliosis, is very difficult to be represented mathematically. Manual development of 

patient-specific FE models from medical images is therefore a laborious task. A 

focus of our research is on fast generation of patient specific lumbar spinal model 

for surgical simulation using FE methods.     

There is currently a variety of methods available for constructing patient specific FE 

meshes [55, 56, 57, 58]. Generally, these methods involve image segmentation to 

define the boundaries of the organ, geometrical modeling to reconstruct the surface 

of the organ from the boundaries, and discretization of the volume enclosed by the 

surface. In some published work, the latter two processes are combined into a single 

process. The direct-voxel conversion method by Keyak et al. [59, 60] converted the 

voxels from segmented CT images into hexahedral elements directly. Based on the 

structure model, Keyak et al. [61] further developed an accurate and precise method 

of predicting proximal femoral strength and fracture location for research and 

clinical studies of hip fracture related to osteoporosis and metastatic disease. 

Nevertheless, there might be inaccurate results at the surface of the structure after 
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the discretization process. Luboz et al. [62] proposed a method aimed at correcting 

irregularities of 3D model meshes in order to perform FE computations. The 

methodology is based on a mesh-matching method and a regularization technique 

using the Jacobian matrix transform related to the FE reference element and the 

current element. The marching cube algorithm [63] is used to improve the 

discretization process in our earlier work [57] to achieve better conformance to the 

boundaries. However, the resultant FE model has a large number of tetrahedral 

elements for a clinically relevant computational analysis.  

Constructing a practical FE model from medical images is clearly not trivial due to 

the significant inter-subject variability of anatomy and function. The template-based 

approach, more commonly known as the atlas-based approach in medical image 

computing, addresses this problem by defining a common reference space. Mapping 

data sets into this common reference space not only accounts for anatomical and 

functional variations of individual subjects, it also offers a powerful tool which 

facilitates comparison of anatomy and function over time, between subjects, and 

between groups of subjects. The mapping can be achieved using various methods 

such as mapping functions and the non-rigid deformation algorithm based on 

free-form deformation with hierarchical multi-resolution representation of a 

deformation spline [62, 64]. Rossa et al. [65] developed a deformation method using 

the thin plate spline model and the minutia point correspondences between pairs of 

fingerprint impressions. In order to obtain the template or “baseline” model that is 

representative of the population, probabilistic and statistical approaches which 

include information from a group of subjects were proposed in [66, 67, 68]. 
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3 Segmentation 

3.1 Introduction 

Segmentation is the image analysis process to isolate the object of interest from the 

background. The objective of segmentation is to identify which part of the data array 

makes up an object in the real world. Segmentation supports tasks such as 

measurement, visualization, registration, reconstruction and content-based search, 

each of them with specific needs. In the research work described in this Chapter, the 

role of segmentation is to separate the bone of interest from its surroundings, such as 

soft tissues. The segmentation results are then used to identify regions containing the 

3D surface of the bone, which is used for subsequent registration.  

There are various segmentation techniques developed. However, no standard 

segmentation technique can produce satisfactory results for all imaging applications. 

Automatic processing is desirable, but sometimes unattainable due to limitations 

imposed by image acquisition, abnormalities in the scene, or both [69]. The choice 

of a segmentation method is strongly dependent on the type and characteristics of 

the image. Likewise there is no universal segmentation method for bone images.  

3.2 Method 

Haralick and Shapiro [70] have established the following qualitative guideline for a 

good image segmentation: “Regions of an image segmentation should be uniform 
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and homogeneous with respect to some characteristic such as gray tone or texture. 

Region interiors should be simple and without many small holes. Adjacent regions 

of segmentation area should have significantly different values with respect to the 

characteristic on which they are uniform. Boundaries of each segment should be 

simple, not ragged, and must be spatially accurate.” Unfortunately, no quantitative 

image segmentation performance standard has been developed. 

Kass et al. [71] developed the snake method which models a closed contour to the 

boundary of an object. The snake model is a controlled continuity closed contour 

that deforms under the influence of internal forces, image forces and external 

constraint forces. 

Since bone structures are of high intensity levels in CT images, they can usually be 

separated from soft tissue using thresholding-based methods. However, simply 

employing global thresholding would fail due to the partial volume effect, beam 

hardening and intensity inhomogeneity of bone structures, and most segmentation 

methods are based on local (adaptive) thresholding. The local threshold can be 

selected based on local intensity distribution. Some methods use the mean plus 

standard deviation or mean of the maximum and minimum values [72, 73], while 

others use statistics based on local intensity gradient magnitude [74]. Nevertheless, 

those methods still do not perform well because of the partial volume effect and 

intensity inhomogeneity. In [75], a 2D iterative adaptive thresholding method, which 

is a variation of the ISODATA segmentation algorithm [76], is proposed for 

automatic and accurate segmentation of bone structures of CT images. However, it 

requires a lot of manual initialization work for volumetric images, and hence is not 

suitable for practical use. Here we have developed a 3D adaptive thresholding 
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method based on [75], which is near automatic, for the registration system. In this 

method, the 3D correlation of each object in the various slices is used to minimize 

the manual interactions. 

 

       

(a)                    (b) 

Figure 3.1. Spine structure. (a) A typical spine specimen. (b) Enlarged view of the 

vertebral body. 

Segmentation by global thresholding will fail because of the partial volume effect 

(due to insufficient sampling and detector response), beam hardening (due to 

polychromaticity of the X-ray beam), intensity inhomogeneity of bone structures, and 

high gray level of surroundings. A typical spine specimen is shown in Figure 3.1 to 

illustrate bone structure. There are two major types of bone: cortical bone and 

trabecular bone. Cortical bone forms the outer shell and trabecular bone forms the 

inner portion. Cortical bone is 5% to 30% porous, with trabecular bone being 30% to 

90% porous. The trabecular bone structures are of a branching pattern with marrow 

between them. The trabecular bone-marrow mixture is completely enclosed by a 

layer of cortical bone, which has a higher intensity.  

 

Cortical Trabecular Marrow 
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In the following example, we are interested in obtaining a set of disjoint regions that 

correspond to individual bone and background. A CT image of the spine (Figure 3.2 

(a)) is taken as an example to aid the explanation of the segmentation algorithm. A 

threshold that is too low is not sufficient to separate bone from the surroundings 

(Figure 3.2 (b)) and a threshold that is too high will misclassify bone regions that 

have gray level due to the partial volume effect (Figure 3.2 (c)). Our segmentation 

algorithm uses a local adaptive thresholding scheme that is capable of producing an 

accurate segmentation under these conditions (Figure 3.2 (d)). 

The method we developed comprises two main steps: initial segmentation and 

iterative adaptive thresholding. Figure 3.3 illustrates the entire procedure. We 

manually select a region of soft tissue near the bone (Figure 3.3 (a)), and then 

perform initial thresholding using the threshold estimated from that region (Figure 

3.3 (b)). A floodfilling procedure then gives us the result of initial segmentation 

(Figure 3.3 (c)). The final segmentation result is achieved after iterative adaptive 

thresholding (Figure 3.3 (d)). 
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   (a)                                    (b) 

   

             (c)                                     (d)       

Figure 3.2. (a) CT image of spine. (b) Image produced by low threshold. (c) Image 

produced by high threshold. (d) Image produced by using our adaptive thresholding 

method. 
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      (a)                                   (b) 

   

      (c)                                  (d) 

Figure 3.3. Illustration of segmentation procedure. (a) The pixels inside the white 

box are used to estimate the mean
f

 and the standard deviation
f

 of soft tissue. (b) 

Image produced by thresholding the CT image with a threshold of .2
ff

   (c) 

Non-bone region extracted by floodfilling the thresholded image: the result of initial 

segmentation. (d) Bone region after iterative adaptive thresholding. 
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3.2.1 Initial Segmentation 

We manually select a region (e.g., see Figure 3.2 (a)) of soft tissue near the bone to 

obtain estimates for the mean gray level 
f

 and standard deviation 
f

 of the soft 

tissue. We then produce an image by thresholding the CT image with a threshold 

ff
 2 (Appendix A). This image is used to classify each pixel of the CT image 

into two classes: B  (bone) and B (non-bone), that is, for a pixel x  with gray 

level )( xI , 

 






 



otherwiseB

xIifB

x
ff

 2)(

 ( 3.1 ) 

From Figure 3.2 (b), we note that the interior of each bone, which is a mixture of 

trabecular bone and marrow, has a gray level below the threshold and is 

misclassified as non-bone. The trabecular bone-marrow mixture is completely 

enclosed by a layer of cortical bone, which has a very high gray level and is always 

classified correctly as B . This means that regions of trabecular bone-marrow 

mixture are not connected to regions of true non-bone (soft tissue, fat, and air). 

Hence B can be written as 

 
n

T BBBBBB 
321

  ( 3.2 )  

where TB  is the true non-bone region and the 
i

B ’s are the 

trabecular-bone-marrow mixture regions and n  is the number of regions.  

To extract TB , we first locate any pixel TBu  . A pixel Bv   is connected to u  

if at least one of the following conditions is true: 

 v  is one of the 8-connected neighbors of u . 
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 v  is connected to Bw  and w  is connected to u . 

Thus v  is connected to u  if and only if TBv  . Hence, we can segment out TB  

by identifying all pixels in B  that are connected to u . We can then re-classify the 

trabecular bone-marrow regions to B  and rename TB  as B (Figure 3.2 (c)): 

 T
n

BBBBBBBBB /
321

   ( 3.3 ) 

TBB   

The segmentation result is used as the initial input for an iterative adaptive 

thresholding scheme that is described. 

3.2.2 Iterative Adaptive Thresholding Algorithm 

The regions after the initial segmentation are B and B . A pixel is said to be on the 

boundary of B and B if at least one of its connected neighbors does not belong to 

the same category ( B or B ) as the pixel. We gather all the boundary pixels in B to 

form a set 
B

E .  Next, we define )( xW , a window centered on pixel x . The 

iterative adaptive thresholding algorithm, which is a variation of the ISODATA 

segmentation algorithm, is described by the following steps: 

 Compute 
B

E  from the current segmentation ( B and B ). 

 For each pixel x  in 
B

E  

- assume that the CT data in )( xW come from a mixture of two Gaussian 

distributions (bone and non-bone) having respective means and variances 

( ),
2

bb
 and ( ),

2

nbnb
 , 

- classify )( xW using the Bayes decision rule (Appendix A), 

- add x  to the error class R  if x  is classified as non-bone. 
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 Update the current segmentation: RBB / , RBB   

 Iterate until convergence. 

By using the iterative adaptive thresholding algorithm with the initial segmentation, 

the final segmentation result that is shown in Figure 3.3 (d) is achieved.  

In practice, if we simply apply the above algorithm in a 2D case, a lot of manual 

work is needed to get the proper initial segmentation (as explained in section 3.3.1) 

for volumetric images. Hence, we require an automatic segmentation method, 3D 

adaptive thresholding, for the volumetric images. 

3.2.3 3D Adaptive Thresholding 

In medical applications, 2D images are stacked up to form a 3D dataset. This dataset 

can be treated as a digital representation of the region of interest. To maximize the 

3D correlation of each object in the various slices, we implement a 3D adaptive 

thresholding procedure. This procedure requires minimal manual interaction.  

In 3D adaptive thresholding, we use a 10-voxel neighborhood (Figure 3.4) to gather 

all the boundary pixels in B  to form a set 
B

E , which stores all the boundary 

pixels. To be specific, for each pixel x  belonging to B , if one of its 10-connected 

neighbors ( 10,3,2,1)( ixN
i

) does not belong to B , we put x  into the set
B

E . 

For each boundary pixel in 
B

E , we define the local window )( xW  for each 

boundary pixels to be a cylindrical region, as shown in Figure 3.5. We then compute 

the respective means and variances ( ),
2

bb
 and ( ),

2

nbnb
  for bone and 

non-bone inside the corresponding region and similarly reclassify all the voxels as 
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described in section 3.3.1 and section 3.3.2. The entire volumetric image is 

processed in each iteration. 

 

Figure 3.4. 3D neighborhood definitions. 
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Figure 3.5. 3D window definitions. 
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3.3 Experiments 

3.3.1 Dataset 

(a) Calcaneus 

CT scans using GE HiSpeed CT/i system from NASA Ames Research Center. 

Image volume contains 144 slices. Every slice has 512×512 voxels with voxel 

dimensions 0.3mm×0.3mm×0.5mm (the slice thickness), at 12 bits.  

(b) Spine 

Dataset 1: 

CT scans using Toshiba high-resolution multislice CT machine located at Johns 

Hopkins University, Dept of radiology. Image volume contains 295 slices. Every 

slice has an in-plane resolution of 512x512 voxels with voxel dimensions 0.8mm×

0.8mm×0.7mm (the slice thickness),at 16 bits. 

Dataset 2: 

CT scans using Siemens system, located at the National University Hospital of 

Singapore. Image volume contains 59 slices. Every slice has 512×512 voxels with 

voxel dimensions 0.488mm×0.488mm×0.4mm (the slice thickness), at 12 bits. 

3.3.2 Experimental Design 

The segmentation procedure may be broken down into three steps for 

implementation: 

(a) Initial thresholding 

(b) Automatic floodfilling 
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(c) Iterative adaptive thresholding 

Figure 3.6 shows the flowchart of this process. 

(a) Initial Thresholding 

Initial thresholding is the first step to get the initial contour of the 3D surface. The 

threshold is selected based on the region that is of lower gray level and uniform 

distribution. The mean 
f

 and standard deviation 
f

  of this region are used to 

calculate the threshold. Since the gray level is similar for all two-dimensional image 

slices, we can manually select a region just outside the bone (e.g. the soft tissues) of 

interest from any one slice. Then we perform global thresholding on the entire data 

set. 

(b) Automatic Floodfilling 

In order to obtain the initial contour for 3D surface, we need to do floodfilling. In 

section 3.3, we mentioned that if we simply applied the above algorithm, much 

manual work would be needed to obtain the proper initial segmentation. The 3D 

adaptive thresholding method was developed to minimize manual interaction for the 

volumetric images. We can find the reason here by comparing it with the 2D 

adaptive thresholding method.  

Figure 3.7 shows two consecutive slices after initial thresholding. When we select a 

seed at the top left corner of the image and perform floodfilling, we can get good 

results using 3D adaptive thresholding, while the boundary pixels inside the bone 

region could not be detected using 2D adaptive thresholding. This is because we can 

use information from the thN )1(   slice in the 3D case, while in the 2D case we 

cannot. Figure 3.8 and Figure 3.9 show the results using different seed selections for 
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the 2D case. Figure 3.10 shows the typical process and the final results for the 3D 

case. 
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Figure 3.6. Implementation procedure. 



40 

 

   

    (a)                                (b) 

Figure 3.7. Original initial thresholded images. (a) Nth slice. (b) (N+1)th slice. 

    

(a)                                (b) 

Figure 3.8. 2D adaptive thresholding result of Nth slice using automatic seed 

selection at the top left corner of image. (a) Initial contour, Nth slice, automatic seed 

selection. (b) Final result, Nth slice. 
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 (a)                                (b) 

Figure 3.9. 2D adaptive thresholding result of Nth slice using manual seed selection. 

(a) Initial contour, Nth slice, manual seed selection. (b) Final result, Nth slice. 

 

We can see from Figure 3.8 and Figure 3.9 that in the 2D case, manual selection of 

seed for floodfilling is needed for good results. However in the 3D case (Figure 

3.10), we only need to automatically select one seed from the background (for all 

CT images, the pixel located at (1,1) belongs to the background). And using the 

information from thN )1(   slice together with neighborhood definition described in 

Figure 3.4, the boundary pixels inside the bone region could be easily figured out for 

further processing. 

(c) Iterative adaptive thresholding  

At each iteration, we similarly reclassify all the pixels on the boundary using the 3-D 

definition of the window (cylinder). The algorithm will automatically process the 

entire volumetric data iteratively until convergence. 
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           (a)         (b) 

      

           (c)         (d) 

     

           (e)         (f) 

Figure 3.10. 3D adaptive thresholding result of Nth slice. (a) Initial contour, Nth 

slice. (b) Initial contour, (N+1)th slice. (c) 1st iteration, Nth slice. (d)1st iteration, 

(N+1)th slice. (e) Final result, Nth slice. (f) Final result, (N+1)th slice. 
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3.4 Results and Discussion 

We have developed this 3D adaptive thresholding method for CT images of bone 

structures and applied to CT scans of the calcaneus and spine.  

(a) Accuracy 

Figure 3.11 shows the results of the calcaneus. Figure 3.12 and Figure 3.13 show 

those of the spine.  

We assess the accuracy of the segmentation by comparing the segmentation result 

with the manual segmentation performed by an experienced radiologist. The 

volumetric overlap of these two segmentations is measured by the Hausdorff 

distance (HD) and mean distance shown in Table 3.1. The HD is calculated from 

 )}},({min{max),HD( qpQP
QqPp

D


 , (3.4) 

where P and Q represent the surface point clouds of two datasets; p and q , 

respectively, are points on the two surfaces, and D  is the distance between any two 

points. 

Table 3.1. Segmentation accuracy measurements. 

Datasets Minimum Distance 

(mm) 

Mean Distance 

(mm) 

Calcaneus  0.21 0.08 

Spine dataset 1 0.64 0.26 

Spine dataset 2 0.43 0.15 
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(a)                     (b) 

   

(c)                     (d) 

Figure 3.11.Calcaneus segmentation results. (a)-(c) An overlay of the detected 

surface results at different locations of calcaneus. (d) Reconstructed 3D image based 

on segmentation results. 
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(a)                     (b) 

  

(c)                     (d) 

Figure 3.12. Spine segmentation results, dataset 1. (a)-(c) An overlay of the detected 

surface results at different locations of spine. (d) Reconstructed 3D image based on 

segmentation results. 
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(a)                     (b) 

  

(c)                     (d) 

Figure 3.13. Spine segmentation results, dataset 2. (a)-(c) An overlay of the detected 

surface results at different locations of spine. (d) Reconstructed 3D image based on 

segmentation results. 
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(b) Processing time 

The segmentation time of each dataset are listed in Table 3.2. All simulations were 

running using Dell workstation with Pentium IV 2.6GHz, 2GB memory. Visual C++ 

(version 6.0), OpenCV library and IPPI (Intel® Integrated Performance Primitives: 

Image and Video Processing) were used to implement the above segmentation 

procedures for fast execution. 

Table 3.2. Processing time. 

 

 Calcaneus Spine, data set 1 Spine, data set 2 

Total time 1 hour 4 hours 25min 

Average time 25s 48s 25s 

We see that the 3D adaptive thresholding method is good for detection of the outer 

contour of these two kinds of bone structures. We have identified some limitations 

of this segmentation algorithm, e.g., narrow gaps between bones in Figure 3.14. This 

could be improved by the use of prior knowledge of bone structure to adjust the 

window definition to obtain sufficient statistical information for threshold selection. 

The processing time is applicable for the segmentation of preoperative scans, but 

directly applying the method is still time-consuming for intraoperative segmentation. 

Multi-resolution methods could help to achieve higher execution speeds in practice. 

3.5 Conclusion 

Due to the partial volume effect, beam hardening, intensity homogeneity of bone 

structures and high gray level of surroundings, simple thresholding techniques are 
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not able to extract the bone from normal CT images accurately and automatically. 

We have developed a semi-automatic 3D adaptive thresholding segmentation 

algorithm to extract bone structures from clinical CT data. The fairly good results 

can be achieved within a short period. 

 

Figure 3.14. Red line highlights the narrow gaps that were not detected. 
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4 Surface Based Registration 

4.1 Overview of Registration System 

Figure 4.1 shows the architecture of the proposed registration system and its 

interfaces with external entities. The registration system comprises two main 

processes: semi-automatic segmentation for both preoperative and intra-operative 

scans, and automatic real-time registration for intra-operative scans.  

S  e  g  m  e  n  t  a  t  i  o  n
S  u  r  f  a  c  e  

 M  o  d  e  l  i  n  g

I  m  a  g  e - G  u  i  d  e  d   

S  u  r  g  e  r  y

P  r  e  o  p  e  r  a  t  i  v  e

i  m  a  g  e  s

I  n  t  r  a  o  p  e  r  a  t  i  v  e

i  m  a  g  e  s

S  e  g  m  e  n  t  a  t  i  o  n
R a p i d  

R e g i s t r a t i o n

Figure 4.1. A registration system for image-guided surgery. 

Segmentation is first performed to separate the bone of interest from its 

surroundings. From this, we identify the bone surface that will be used in the 

registration procedure. Since CT imaging is a high-resolution modality, the set of 2D 

contours extracted slice by slice constitutes the 3D bone surface model. The 

preoperative and intra-operative image volumes are then aligned or registered into 

the same geometric space. The registration algorithm comprises two steps: 3D 



50 

surface modeling with a NN, and an optimization procedure to determine the 

transformation that best aligns the bone surfaces from the preoperative and 

intra-operative scans. The suitably registered datasets can then be employed for 

image-guided surgery [77, 78].  

We use the local adaptive thresholding scheme described in chapter 3 to segment the 

bone structures. An example of the final segmentation result is shown in Figure 4.2.  

    

(a)                     (b) 

Figure 4.2. Segmentation results. (a) Original CT image. (b) Bone region after 

iterative adaptive thresholding. 

The registration algorithm consists of two steps: coarse registration to obtain an 

initial estimate of the transformation followed by fine registration to achieve 

sub-pixel accuracy. The fine registration step achieves fast computation by reducing 

the computational requirement of the cost function. Using the transformed surface 

coordinates of the intra-operative dataset as input, the cost is the sum of the output 

of the forward-feed NN. Current registration techniques focus mainly on fast 

optimization routines to reduce the overall time for surface-based registration. 

However, the cost function used in surface-based registration is highly 
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computationally intensive. We employ a novel NN-based technique to achieve 

sub-pixel accuracy within a few minutes. This is sufficiently fast for intra-operative 

registration. The segmentation, coarse and fine registration procedures are described 

in the next section.  

4.2 Methods 

4.2.1 CT Image Segmentation 

Using the method mentioned in Chapter 3, segmentation is first performed to 

separate the bone of interest from its surroundings. From this, we identify the bone 

surface that will be used in the registration procedure. The set of 2D contours 

extracted slice by slice constitutes the 3D bone surface model. 

4.2.2 Coarse Registration and Neural-Network-based Registration 

It is assumed that the reference dataset and the current dataset are related by a rigid 

body transformation. We denote the reference data point by p and the 

intra-operative data point by q , where p and q  are 3D vectors. They are related 

by tRqp  , where R is a 33   rotation matrix and t a 3D translation vector. 

The aim of our registration algorithm is to obtain a quick and accurate estimate for 

R and t .  

(a) Coarse Registration 

The main function of coarse registration is to provide an initial approximate and 

robust estimate of the transformation. The registration should be fast and yet be able 



52 

to avoid local minima so that the estimated transformation parameters can be used as 

a good starting point for subsequent fine registration.  

If p denotes a point from the reference image data and q  the corresponding point 

from the intra-operative image data, p and q  are related by  

 tRqp   ( 4.1 ) 

With N corresponding point pairs, ),(),(
11 NN

qpqp  , equation (4.1) can be 

extended to  

 TRQP  , ( 4.2 ) 

where QP , and T  are N3 matrices defined by  

)(),(),(
2121

  



N

NN
and tttTqqqQpppP  . ( 4.3 ) 

By averaging over all the measured points, equation (4.2) can be written as  

 tqRp   ( 4.4 ) 

with 

 




N

i

i

N

i

i

NN 11

1
,

1
qqpp . ( 4.5 ) 

Equations (4.2) and (4.4) can be combined to give 

 )( QQRPP   ( 4.6 ) 

where P and Q  are N3  matrices 

 )(and)(

  



  



NN

qqqQpppP  . ( 4.7 ) 

Denoting PP  and QQ  by P
~

and Q
~

, respectively, the covariance of P
~

can be 

written as 

 
ttt

RQQRPP
~~~~

  ( 4.8 ) 
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with the superscript t denoting the transpose. In equation (4.6), 
i

p and 
i

q  have to 

be corresponding point pairs, whereas in equation (4.8), t

PP
~~

and t

QQ
~~

are the 

covariance of the surface points in the reference and current image coordinates, 

respectively, and there is no need to establish corresponding point pairs. In other 

words, t

PP
~~

and t

QQ
~~

can be constructed from independent sets of surface points 

from the reference and current surfaces. By expressing the SVD of t

PP
~~

and t

QQ
~~

as 

t

UU Λ
p

and t

VV Λ
q

, respectively, the rotation matrix R can be estimated by 

minimizing the expression 
F

2/12/1

qp
RV ΛU Λ  subject to IRR 

t

. The minimum 

is attained by setting 
t

UVR   [79], after which, the translation t  can be 

estimated using equation (4.4). 

The above technique is based upon principal-axes alignment method which is not 

commonly used in image registration. In summary, two independent sets of surface 

points ( P , Q ) are extracted from the reference and current surfaces. We next 

compute the centroids ( p , q ) and covariance matrices ( t

PP
~~

, t

QQ
~~

). The rotation 

matrix is estimated by the SVD computation of the covariance matrices and the 

translation matrix by using equation (4.8). As the number of extracted surface points 

is finite, there will inevitably be errors in determining the centroids and covariance 

matrices. However, this technique is computationally inexpensive and is capable of 

producing a coarse but robust estimate that can be used as a good starting point for 

the more accurate rigid registration method described in the following section. 
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(b) Surface Representation 

The cost function used in most surface-based registration techniques is a nonlinear 

function of the transformation parameters, the reference surface and the current 

surface. Denoting the transformation matrix by T , the cost of a transformation 

function may be written as  

 ))(,()(
cr

fC DTDT  , ( 4.9 ) 

where 
r

D  and 
c

D are the reference and current surfaces, respectively. The 

derivation of the nonlinear representation of the surface model is explained in the 

following section. The function achieves its minimum value when the transformed 

current surface is the closest, in terms of Euclidean distance, to the reference surface. 

This non-linear function is used as the criterion for selecting the best transformation 

parameters. Since, in typical image-guided clinical procedures, 
r

D is acquired prior 

to the operation, it may be used to create a computationally efficient function
r

f  for 

the cost calculation. We can write equation (4.9) as 

                ))(())(,()(
crcr

ffC DTDTDT  . ( 4.10 ) 

Neural networks [80] have been commonly used in image processing but not for 

surface representation. The advantages of using NNs for this purpose include:  (1) 

the ability to perform nonlinear modeling (suitable for complex surfaces such as 

vertebrae); (2) low computational requirements in cost calculation; (3) ease of 

implementation on hardware field-programmable gate array (FPGA); and (4) the 

ability to acquire 
r

D for extensive network training prior to the operation. 
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A neural network models the distance map of a point p  from the reference surface. 

Letting 
r

N  denote the NN model derived from the reference surface and 
c

p  the 

point from the current surface, the cost function can be computed by 

        

c
p

cr
NC ))(()( pTT . ( 4.11 ) 

This surface modeling procedure is explained in detail below. 

1)  Creation of training data: A function ),,( zyxd is defined as the signed 

distance from a point ),,( zyx to the reference surface. Points inside the reference 

surface have a negative distance while points outside the surface have a positive 

distance. Since a sample point on the surface satisfies 0),,( zyxd , the reference 

surface is defined implicitly as the zero set of this function. Within a spherical 

volume that encloses the entire reference surface, points are sampled uniformly for 

preparing the training data. The points satisfying 5),,( zyxd
 
will be used for 

training. This range was obtained empirically. From our observation, the registration 

error from coarse registration was less than 5 pixels. We only need to consider the 

5-pixel surrounding region of any point. Hence, the distance function is defined as 

less than 5. 

2) Surface modeling using MLP: The multilayer perceptron (MLP) is used to 

model the bone surface. This NN is computationally efficient and can be 

implemented efficiently using hardware [81]. Let the coordinates ),,( zyx of a point 

p  be the three input neurons of the MLP, and the distance d of p  to the reference 

surface be the output of the neuron in the last layer of the network. A multilayer 

network is constructed to map the relationship from the 3D Euclidean input space, 
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input point ),,( zyx , to a 1D Euclidean output space, the shortest signed distance to 

the reference surface. The activation function φ(·) is a hyperbolic tangent. The 

structure of the NN is shown in Figure 4.3. 

 

Figure 4.3. Network structure for surface function approximation. i  denotes the 

number of nodes in the first hidden layer; j  denotes the number of nodes in the 

second hidden layer. 

Our network structure employs two hidden layers for the following reasons. Though 

a single hidden layer is adequate for surface function approximation, the number of 

neurons of the hidden layer will be very large due to the complexity of the surface 

[82]. The problem is that the neurons therein will tend to interact with each other 

globally, which makes it difficult to improve the approximation at one point without 

worsening it at some other point. Consequently the calculation time of the cost 

function will be greatly increased and it will eventually affect the registration time. 

On the other hand, with two hidden layers, the approximation (curve-fitting) process 

becomes more manageable [83]. To achieve similar training accuracy, the learning 

time of the network constructed from two hidden layers is usually much shorter than 
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that from a single hidden layer. Furthermore, two hidden layers are usually sufficient 

in practice [84]. 

It has to be noted that there is no ideal number of neurons for every problem, and 

unless prior information is available of the problem, the fine-tuning of the number of 

neurons involves a rather qualitative than analytical approach, and is to be expected 

from system identification problems [85], such as the variation in bone structures. A 

feasible method is to search for the optimal number in each layer by experimenting 

on test datasets. Since the number of layers and the number of nodes represent the 

complexity of a surface function, these can be determined using a test dataset such 

as the Visible Human Dataset (VHD). For example, if it is obtained empirically that 

a 2-layer NN with 20 neurons for the first layer and 10 neurons for the second is 

optimum for the lumbar spine of the VHD, this setup can be assumed as optimum 

for the lumbar spine of the incoming patient. One common rule is that the number of 

neurons of the second layer cannot be more than that of the first layer because local 

features modeled by the first layer are usually more complex than the global features 

modeled by the second layer.  

3) Derivation of surface representation function:  From the above network 

structure definition, the surface representation function can be derived as:  

  

 

2 1

1

3

1

,2,13,,12,,11,,1,,2,3
0))))tanh((tanh((

n

j

n

i

jjiiiijj
bbbzWyWxWWW . ( 4.12 ) 

In the equation, 
1

n and 
2

n are the respective number of neurons of the first hidden 

layer and the second hidden layer, 
ji

W
,,1

the weights between the jth  node of the 

input layer and the ith  neuron of the first hidden layer, 
ij

W
,,2

the weights between 

the ith  neuron of the first hidden layer and the jth  neuron of the second hidden 
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layer, 
j

W
,3

the weights between the jth  neuron of the second hidden layer and the 

output layer, and 
1

b , 
2

b , 
3

b the respective biases for the first hidden layer, the 

second hidden layer and the output layer.  

(c) Optimization 

Using the start point obtained by coarse registration, fine registration is obtained by 

minimizing the cost function. A standard optimization method, the downhill simplex 

method [40], is used for this optimization to calculate the final rotation matrix R  

and the translation vector t . 

4.3 Experiments 

In this section, we describe the experiments and the datasets used to evaluate our 

registration algorithm. 

4.3.1 Datasets 

Two medical datasets that of a spine and a calcaneus, are used for testing the 

algorithm. 

1) Spine dataset: This dataset is obtained from the NASA Ames Research 

Center. A section of two vertebral bodies are firmly enclosed in a cage with linear 

structures. The entire structure is submerged in a cylindrical water bath and scanned 

using a GE HiSpeed CT/i system at three different orientations to give the datasets 

SA, SB and SC. The scanning parameters are: helical scan, pitch 1, detector width 

1mm, FOV 170mm, reconstructed at 1mm interval, pixel spacing 

0.332mm/0.332mm. Figure 4.4 shows a slice from both SA and SB. 
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2) Calcaneus dataset: This dataset is also from NASA Ames Research 

Center. A calcaneus bone is firmly attached to a cage with linear structures and 

submerged in a water bin. All scans were taken at the following CT scanner settings: 

120 kVp, 190 mA, reconstructed slice thickness 0.5 mm, pixel spacing 

0.352mm/0.352mm. Scanning was done using a GE HiSpeed CT/i system at five 

different orientations to give the datasets denoted by CA, CB, CC, CD and CE. 

Figure 4.5 shows two corresponding slices from CA and CB. 

4.3.2 Experiment Design 

1) Segmentation: In the experiment, we first extract the surfaces of the calcaneus in 

CA, CB, CC, CD and CE, and the surfaces of the spine in SA, SB and SC using the 

segmentation algorithm described in Chapter 3. Figures 4.6(a), (c) and (e) show the 

extracted surfaces of CA, SA and SB, respectively. 

2) Neural network modeling: The extracted surfaces from CA, SA (two surfaces) 

and SB (two surfaces) are modeled using neural networks. A 2-layer NN (first 

hidden layer: 20 nodes, second hidden layer: 10 nodes) is use to model the vertebral 

surface. Training process stops when the cumulative mean square error between the 

NN output and distance ),,( zyxd is less than 0.0001 of the total number of training 

points or the error does not decrease for 1000 successive iterations. This network is 

also used to model the calcaneus dataset. The NN modeled surface is used to register 

the corresponding surfaces from other datasets using the algorithm described in 

section 4.3. The extracted surfaces from SB and SC are registered to SA, and CB, 

CC, CD and CE are registered to CA.  
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(a)                          (b) 

Figure 4.4. Original images from different spine datasets. (a) 38th slice of SA. (b) 

38th slice of SB. 

    

(a)                     (b) 

Figure 4.5. Original images from different calcaneus datasets. (a) 90th slice of CA.  

(b) 90th slice of CB. 
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(a)                      (b) 

  

(c)                    (d) 

  

(e)                    (f) 

Figure 4.6. Surface modeling results. (a) CA (c) SA-V1 (e) SB-V1: Extracted 

surface. (b) CA (d) SA-V1 (f) SB-V1: NN surface model. 
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3) Registration accuracy: Execution time and registration accuracy are the two 

important specifications for a registration system. To assess the accuracy, we 

compare our results with that of a frame-based registration method [86] and the 

commonly used ICP surface registration technique [87]. We implement the 

frame-based registration algorithm [85] and use it to register CB, CC, CD and CE to 

CA. Similarly, we use our registration module to register CB, CC, CD and CE to 

CA. The results from the frame-based registrations are extremely accurate [85] and 

hence can be used as the ground truth to assess the accuracy of our registration 

system. SB and SC are registered to SA using our system and ICP methods. 

Similarly, we use frame-based registration to register SB and SC to SA and use the 

results to assess the accuracy of our registration system and ICP algorithm. 

In [85], with a reference rotation matrix R  and the translation vector t , for any 

transformation ( R


, t


), the largest absolute eigenvalue of )( RR 


is denoted by 

R
  

and 
2

tt 


is denoted by

T
 . The translation error has a constant value of 

T
  

throughout the volume of interest (VOI) while the rotational error varies with the 

distance from the center of rotation and its value is bounded by 
2

P
R

 , where 
2

P  

is the distance between the point of assessment and the center of the frame. With the 

availability of 
R

  and 
T

 , we can calculate the upper bound of the registration 

error for each point in any desired VOI. We can further determine the upper bound 

of the average or maximum registration error over the VOI. Thus 
R

  and 
T

 are 

used as the error measures to evaluate our registration system and the ICP algorithm.  

4) Speed: To compare the registration speed of our NN method and the ICP method, 

we record the execution times. All the procedures, including cost function 
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calculation, surface modeling and optimization, are implemented in C++ and 

executed on a dual XEON 3.06 GHz Pentium computer with a memory size of 2GB. 

Intel IPP libraries [88] are used whenever possible to shorten the execution time.  

4.4 Results and Discussion 

In this section, we present the registration results of our proposed algorithm on the 

CT spine and calcaneus datasets.  

Figure 4.6 shows the surface modeling results of CA, SA and SB. The registration 

results shown below are based on these models. We can see that the NN 

representations of the surface models are fairly similar to the extracted surfaces but 

with additional smoothing. The surface modeling time is listed in Table 4.1. It takes 

about 2 hours to train each dataset’s surface using about 40,000 training points. The 

accuracy of the surface model is evaluated using the following method. The real 

surface points are used as input of the NN. We use the average output of NN to 

evaluate the NN model. Ideally, the output should be zero since all the surface points 

have zero output in the training dataset. We note that the average cost for each 

dataset is less than 0.1, which means the NN model is less than 1 voxel away from 

the real CT surface. 

Table 4.1. Surface modelling results. 

Dataset CA SA-V1 SA-V2 SB-V1 SB-V2 

Modeling time (s) 8743 7200 7213 7210 7209 

Average cost (pixel) 0.015 0.053 0.034 0.042 0.065 

Table 4.2 shows that in the calcaneus registration experiment, the results of the 

NN-based registration are accurate when compared to the frame based method. The 
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maximum VOI error between the two methods is less than 0.5mm. This is smaller 

than the CT slice thickness, which means that our registration method achieves 

sub-voxel accuracy. Table 4.3 compares the results obtained with NN-based and ICP 

registration methods. The results of the two are similar, with the difference less than 

0.1mm. The registration accuracy map for a particular slice in SB for the SB to SA 

registration experiment is shown in Figure 4.7. 

From the error map (Figure 4.7), we notice that the center region has the smallest 

registration error, below 0.15 mm. This is because the displacement error due to the 

rotation error will increase with the distance from the rotation center. From Table 

4.3, we further note that the execution time of the NN-based method (1 min) is much 

shorter than that from ICP (15 mins), due mainly to the fact that the former requires 

no searching of point pair correspondence. Since the ICP method is a popular 

surface-based method that has been proven to be very accurate, we can conclude that 

the NN-based method is not only very accurate but is also extremely fast. 

In short, the experimental results demonstrate that the proposed NN-based method 

can register intra-operative data with pre-operative data efficiently and accurately.   

4.5 Conclusion  

We have described a 3-D surface-based rigid registration system for image-guided 

surgery on bone structures. This system includes near-automatic segmentation for 

both preoperative and intra-operative scans and automatic real-time registration for 

intra-operative scans. The segmentation algorithm is used to extract the 3-D bone 

surfaces for both preoperative and intra-operative scans. A novel automatic 
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surface-based method using a neural network is then used to perform intra-operative 

registration. We use the NN to construct an invariant descriptor for human bone to 

speed up the registration process. Significantly improved computational efficiency is 

apparent with the NN-based approach.  

 

Figure 4.7. Registration error map of one slice from SB in registering SB to SA 

using V1. 
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Table 4.2. Calcaneus comparison results with frame-based registration (reference 

dataset is CA). 

Dataset R
  

 
T

  

 

Maximum VOI Error 

(mm) 

CA- CB 0.0033 0.2301 0.3806 

CA- CC 0.0040 0.2437 0.4270 

CA- CD 0.0019 0.1193 0.2045 

CA- CE 0.0032 0.3434 0.4898 

 

 

 

 

Table 4.3. Full surface registration accuracy results and execution time of spine 

datasets (reference dataset is SA, V1 is the first vertebra and V2 the second 

vertebra). 

 

Datasets 

Neural network based  ICP 

Accuracy  

Time 

 

(s) 

 Accuracy  

Time 

 

(s) 

R
  

(radian) 

T
  

(mm) 

Max VOI 

Error 

(mm) 

 R
  

(radian) 

T
  

(mm) 

Max VOI 

Error 

(mm) 

SA- SB, V1 0.0034 0.0956 0.2542 47.17  0.0041 0.0550 0.2438 856.45 

SA- SB, V2 0.0031 0.0816 0.2376 36.66  0.0029 0.1446 0.2923 745.13 

SA- SC, V1 0.0062 0.1413 0.4320 61.20  0.0031 0.2195 0.3648 814.70 

SA- SC, V2 0.0017 0.5231 0.6113 56.26  0.0043 0.3215 0.5390 987.32 

SB- SC, V1 0.0012 0.3666 0.4247 54.48  0.0028 0.2177 0.3497 830.02 

SB-SC, V2 0.0013 0.2776 0.3451 59.53  0.0033 0.2682 0.4371 845.13 

 

 

 

(mm) (radian) 
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We applied the methods to perform several registrations on CT/CT calcaneus and 

spine images. We have shown that our registration algorithm is as accurate as the 

commonly used ICP technique. Both are able to achieve sub-pixel registration 

accuracy. However, our registration process is about 15 times faster than the ICP 

technique. The execution time for our registration process is about 1min, which is 

much shorter than those using standard techniques. A partial volume registration 

method [89] could be used to further shorten execution time of the whole 

registration procedure. Also, the methods presented are well placed to be 

implemented in hardware (FPGA). These may provide a good solution for 

intra-operative rigid registration in image-guided surgery systems.  
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5 Iterative Weighted CT/MR Image 

Registration  

5.1 Introduction 

X-ray and CT provide well-contrasted images of high-density biological objects 

such as bones and tumors but are usually not preferred for detailed soft tissue 

examination. MR imaging, with its moderate resolution and good signal-to-noise 

ratio is the modality of choice for soft tissues. Fusing CT and MR images will help 

overcome the limitation of relying on a single modality for image guided surgery. A 

typical fusion procedure comprises segmentation of the CT and MR images, 

followed by registration and spatial alignment/fusion. The region of interest in CT 

images (e.g., bone) or MR images (e.g., kidney and liver) of a patient is first 

segmented. After spatial registration, the segmented CT and MR images are aligned 

to give a model comprising well-contrasted bone structure and the surrounding soft 

tissues. Such a composite model is important for surgical planning and education. 

For example, a vertebra, which is a hard tissue, may have to be examined with the 

intervertebral disc, a soft tissue, for effective spinal surgery planning. An important 

motivation of this work was the development of a patient-specific hybrid model of 

the spine for image guided spinal surgery although the techniques described here 

may also be employed for different anatomies, e.g., the ankle.   

Prevailing methods to perform registration/fusion of different modalities incur heavy 

computational cost in searching for optimal transformation parameters (mutual 

information (MI) method) or require the input of extracted object surface (surface 
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based registration). Further details of surface-based registration can be found in [88]. 

However, it is not easy to extract object surface from MR images. 

It is good to solve the CT/MR registration problem and MR image segmentation 

problem simultaneously. This Chapter describes our approach for simultaneously 

solving the problems of CT/MR registration and MR image segmentation. The 

algorithm can perform fast and accurate CT/MR feature-based registration, accurate 

extraction of the bone surface from MR images, and fast fusion of the two 

modalities. Since the bone surface in CT images can be extracted accurately [88], 

the segmented CT image is used as the reference for MR image segmentation. Our 

novel segmentation approach employs a shape-based adaptive level set to handle the 

fuzzy boundaries of the MR images. The iterative process starts with a coarse 

extraction of the bone surface from MR images, which is then registered to the 

accurate bone surface extracted from CT images. The CT bone surface, after spatial 

transformation and re-sampling, is used as the initial estimate for MR image 

segmentation. The new segmented MR image is subsequently registered to the CT 

bone surface. MR image segmentation is improved after each iterative step using the 

results of the registered CT segmentation. This iterative process converges when the 

MR and CT image segmentation results agree within a specified tolerance. In this 

iterative registration/segmentation process, only fine adjustments are needed since 

the target boundaries in MR images is close to the initial estimate, thus reducing 

computational time. Inaccurate segmentation due to poor scans or complex 

anatomies such as the vertebrae can be prevented.  
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5.2 Methods 

5.2.1 Iterative Segmentation/Registration System  

Figure 5.1 shows the flowchart of the proposed CT/MR registration system. It 

comprises the following components: initial segmentation of CT and MR images, 

iterative CT/MR registration and refinement of MR image segmentation. Initial 

segmentation is first performed on CT images to separate the region of interest (bone) 

from its surroundings [90]. The bone surface is then identified and used in 

registration. It is clear that MR images, with their inherent low signal-to-noise ratio, 

poor contrast and fuzzy boundaries are unlikely to be segmented accurately in a 

single step. The first segmentation step captures the general shape of the target 

object (the vertebrae). A coarse registration result is obtained by registering the MR 

and CT surfaces with a weighted surface-based registration algorithm. With the 

registered CT surface model as the reference, we use the intermediate results of MR 

image segmentation and registration to iteratively refine the suboptimal MR image 

segmentation. This iterative process is carried out until the segmented CT and MR 

surfaces match within a specified tolerance.  

5.2.2 MR Image Segmentation 

We propose the double-front level set for fast segmentation of MR datasets. The 

level set is a time evolving function, and is the so-called “zero level curve” 

corresponding to a propagating front. It is a simple and versatile method of 

computing and analyzing the motion of an interface  in two or three dimensions. 
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Figure 5.1. Flowchart of feedback segmentation-registration. 
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This method can deal with convoluted shapes and sharp corners but is not capable of 

bi-directional growing, i.e., when the expanding front exits the target boundary, it 

may not be able to “shrink back”. The single-front level set is thus prone to leak into 

the background at a fuzzy boundary [23]. The idea of gradient vector flow was 

proposed to help overcome the problem [91] but it does not always lead to a 

satisfactory solution.  

In our method, the level sets are bi-directional since they can either expand or shrink. 

In bi-directional propagation, a “balloon” force, together with the velocity field 

derived from image intensity, prevents the front from being trapped in local minima. 

The vertebral boundaries in MR images are often fuzzy. With single-direction 

propagation, the front is likely to leak beyond the target boundary. It is difficult to 

determine the correct magnitude of the balloon force for the bi-directional level set; 

a small force may lead to trapping in local minima, while a large force could give 

rise to leakage. Our proposed solution is to extend the single-front level set to a 

double-front level set (DFLS), which comprises a pair of one-directional 

propagating single-front level sets with one shrinking and the other expanding. The 

two fronts prevent each other from intersecting, hence minimizing the leakage. 

DFLS can be regarded as a pair of level sets, one propagating forwards and the other 

backwards. Ideally, the final boundary will be the inter section of both level sets. 

Leakages are prevented since the back-propagating level set 
B

  and the 

forward-propagating level set 
F

  only meet at the final boundary. In other words, 

when the single-front level set cannot find the boundary position at a fuzzy edge, the 

boundary position defined by DFLS is the location where the back-propagating front 

meets the forward-propagating front.  
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With a velocity field v , the level set will vary with time as [23]  

 0







v

t

. (5.1) 

For the double-front level set, we have 

 0|| 




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F
v

t




 (5.2) 

and 

 0|| 





BN

B
v

t




, (5.3) 

where the level set functions
B

 and
F

 are time-variant N dimensional hyper surfaces 

and
|| 






 v

N
v is a function of the direction of the unit normal. The two level sets 

share the same velocity field with opposite signs. The solution to MR image 

segmentation is the cross section of the two hyper surfaces.  

In our MR image segmentation method, the stopping criterion is determined via the 

estimation of the distribution of the gradient values at edge points between hard and 

soft tissues. A small number of regions are first selected at the bone/tissue interface. 

The gradient at an edge point depends on the type of tissues on either side of the 

interface. For example, the gradient between bone and muscle is different from that 

between bone and ligament. We would like the level set function to stop propagating 

once it reaches the edge of the bone; thus, it is important that we capture the 

statistics of the edge gradient at various different bone/tissue interfaces. We observe 

that there are four main types of interfaces. We compute the gradient values in four 

representative regions and use K-means clustering to classify the points into two 

groups, edge points and non-edge points, according to these values. From the mean 
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e
  and standard deviation 

e
  of the edge points, we compute the threshold 

ee
  . The level set stops growing at a point whose gradient value exceeds . 

Assume that we have an initial estimated surface. Several subsequent iterations of 

dilation and erosion will result in the creation of a pair of distance iso-surfaces. The 

number of dilation and erosion iterations is determined by the average distance 

between the segmented contours from CT images and the desired boundary of the 

MR scan. To ensure a reasonable estimation of the boundary in fuzzy areas, the 

initial contours need to be approximately the same distance to the goal boundary. 

Dilation and erosion of the binary CT contours can yield the initial fronts. The same 

number of iterations of dilation and erosion are typically performed. By adjusting 

the velocity field, the back-propagating level set 
B

  and the forward-propagating 

level set 
F

  will meet at the original CT surface. 

The numerical approximation of the level set equation with curvature dependant 

velocity is 

2
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From the numerical approximations derived in [92], our iterative solution for the 

forward-propagating and back-propagating double-front level sets are 
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and 
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75 

where 

 xD
jiji

x

ij






/)(
,,1

 ,  

 xD
jiji

x

ij






/)(
,1,

 ,  

 yD
jiji

y

ij






/)(
,1,

 ,  

 yD
jiji

y

ij






/)(
1,,

 . (5.6) 

In the equations 5.4 and 5.5, 
ij

v is velocity derived from the two-space dimension 

discrete approximation to the Hamilton-Jacobi equations and x and y  

respectively are the changes over x and y axis [91]. Only those image points 

between the two initial contours are processed. The computing cost is significantly 

reduced. Since clinical MR images have large inter-slice distances, 3D MR image 

segmentation [93] has the drawback of heavy computational cost and produces 

similar results as 2D segmentation. Thus, MR image segmentation is performed in 

2D in our implementation. 

5.2.3 Weighted Surface Registration  

In the initial MR image segmentation with the single level set, some edge points are 

more reliable than others. The registration process can be guided by assigning more 

priority to the reliable edges and less to unreliable ones. DFLS yields a weighted 

segmentation result in which weights are derived from both intensity gradient and 

position. 

Maurer et al. [94] used weighted geometrical features to register CT images of the 

head to physical spaces. In our method, the weight of each edge point is determined 
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according to its gradient value and spatial location. We assign discrete weights of 1, 

2 or 3 to edge points according to their gradient values. The weights of the inner 

front points are given greater importance relative to the outer front points by an 

additional increment of 3. This helps to ensure accurate registration since the outer 

front may stop incorrectly at the soft tissue around the bone instead of at the bone 

surface. 

The purpose of CT/MR registration is to align the vertebral bodies in MR and CT 

images. Letting D  denote the distance of a point in MR images to the reference 

surface in CT images, 
c

w  the weight of 
c

p  the point of the current vertebral edge 

in MR images, and 
d

p  the closest corresponding points in CT images, the cost 

function can be represented as  

 

c

dccc
Dwf

p

ppp ),()( . (5.7) 

We implemented a neural network based approach [88] to solve this surface-based 

registration problem. A downhill simplex optimization technique is used to locate 

the minimum of this derived cost function:  

 

c

ccc
Dwf

p

pp )()( . (5.8) 

5.2.4 Iterative Segmentation/Registration 

The iterative process is shown in Figure 5.2. Two initial fronts or contours of MR 

image segmentation are obtained from the dilation and erosion of the binary image 

obtained after CT segmentation. With the weighted surface obtained from the DFLS 

segmentation, a weighted surface-based registration is performed with the CT 

surface model. The CT segmentation result is then transformed and re-sampled to fit 
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the MR image specification. The contours of the re-sampled CT segmentation are 

used as the initial reference to redo the segmentation of the original MR image. This 

iterative process of segmentation and registration is repeated until the registration 

the cost function converges to less than a predefined small value  , i.e., 

)(
c

f p .  

The registered CT/MR images are used to construct the CT/MR hybrid model. 

Knowing the correspondence between CT and MR images obtained by image 

registration, the CT segmentation result can be transformed to the MR image. The 

vertebral volume delineated in the above process is replaced by the transformed CT 

segmentation result. This model comprises the bone structure from CT images and 

soft tissues from MR images. The fused images provide detailed information of both 

soft and hard tissues, unlike the image from a single modality. 

5.3 Experiments 

In this section, we describe the datasets and experiments for evaluating the 

registration/segmentation system.  

5.3.1 Dataset 

Six pairs of MR/CT images are used in the experiments: three human spines, one 

human ankle and two pig spines. The details of the datasets are shown in Tables 5.1 

and 5.2. The MR datasets were imaged with the T2 sequence. 
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Figure 5.2. Flowchart of iterative segmentation/registration. 
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Two human spine MR images are shown in Figures 5.3(a) and 5.3(b). They 

comprise three lumbar vertebrae, L2, L3 and L4, from mid-L2 to mid-L4. The first 

human specimen is an 80 year old man with damaged vertebrae. There are 90 CT 

images and 12 MR images with slice gaps of 1mm and 7mm, respectively. The 

second patient has a curved spine. The three human spine MR datasets are of low 

contrast. In general, there is an intensity difference between the bone and 

surrounding tissues, but the boundaries are very fuzzy and poorly defined.  

Table 5.1. Datasets used in the experiments. 

Dataset CT MR 

Human spine 1 HS1_CT HS1_MR 

Human spine 2 HS2_CT HS2_MR 

Human spine 3 HS3_CT HS3_MR 

Human ankle  HA_CT HA_MR 

Pig spine 1 PS1_CT PS1_MR 

Pig spine 2 PS2_CT PS2_MR 

The MR dataset HA_MR is a scan of a human ankle Figure 5.3(c). This dataset is of 

much better visual quality than the previous two, but there is a very large rotation 

between the CT and MR images. 

5.3.2 Experimental Design 

1) Segmentation and modeling: In this experiment, we use the segmentation 

algorithm described in Chapter 3 to first extract the surface of the ankle bone in 

HA_CT and the surfaces of the vertebrae from the CT images of the three human 

spine and two pig spines. The extracted surfaces from these datasets are modeled 
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using neural networks. Since two spine images cannot be matched by rigid 

registration, one vertebra is chosen from each of the CT and MR datasets for 

segmentation, registration and fusion. For example, L3 of the third patient is used in 

the experiment.  

2) Weighted registration and resampling: MR images are segmented using 

DFLS. The extracted surfaces from HS1_MR, HS2_MR, HS1_MR, PS1_MR, 

PS2_MR and HA_MR are registered to HS1_CT, HS2_CT, HS1_CT, PS1_CT, 

PS2_CT and HA_CT, respectively, using the weighted registration method 

described in Section 3. After registration, the CT contour is used to generate the 

initial contours for MR image segmentation with DFLS. This process is iterated 

until convergence. The stopping criteria are: translation in each direction is less than 

0.01mm, and rotation of the x, y, and z axes is less than 01.0 . 

3) Segmentation and registration accuracy: We assess the accuracy of the 

segmentation in two ways. First, we compare the segmentation result with the 

manual segmentation performed by an experienced radiologist. Second, the 

normalized error for the converged segmentation result registered to the CT model is 

evaluated. The cost of registering the CT surface to the CT model is used as the 

reference, where cost is defined as the output of the NN from the input transformed 

point coordinates. This error is intrinsic. 
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Table 5.2. Dataset specifications. 

 

 

 

 

 

 

 

 

 

Dataset Object Slices 
X-resolution 

(mm) 

Y-resolution 

(mm) 

Z-resolution 

(mm) 

HS1_CT 
Human 

spine 
90 0.313 0.313 1 

HS1_MR 
Human 

spine 
12 0.39 0.39 7 

HS2_CT 
Human 

spine 
96 0.652 0.652 1 

HS2_MR 
Human 

spine 
20 0.39 0.39 5 

HS3_CT 
Human 

spine 
57 0.273 0.273 4 

HS3_MR 
Human 

spine 
16 0.39 0.39 5 

HA_CT 
Human 

ankle 
100 0.41 0.41 0.5 

HA_MR 
Human 

ankle 
76 0.703 0.703 0.8 

PS1_CT Pig spine 100 0.293 0.293 1 

PS1_MR Pig spine 30 0.547 0.547 3 

PS2_CT Pig spine 100 0.391 0.391 0.8 

PS2_MR Pig spine 50 0.391 0.391 0.7 
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(a)  

 

(b) 

 

(c) 

Figure 5.3. Experimental datasets: (a) HS1_MR, (b) HS2_MR, (c) HA_MR.  
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Execution time and registration accuracy are two important performance indicators 

for a registration system. We compare our results with those of the commonly used 

ICP surface registration technique [44] and normalized MI (NMI) [95]. With the 

manual segmentation performed by an experienced radiologist, we obtain the 

segmented MR image and registered it with pre-segmented CT image using ICP. The 

NMI method implemented in our previous work [94] is used for CT/MR registration. 

The volumetric overlap of these three registrations are measured by three metrics, the 

HD, mean distance between surfaces and DICE similarity coefficient [96]. The DICE 

similarity coefficient, S , is given by  

 
)()(

)()(2

BHAH

BHAH

S





 , (5.9)

where )( AH represents the entropy of the CT image dataset and )( BH represents the 

entropy of the MR image dataset. 

5.4 Results and Discussion  

In this section, we present and discuss the segmentation and registration results. The 

algorithm was implemented using Microsoft Visual C++ on a Pentium 4 (3.2 GHz) 

workstation with 2GB memory. Table 5.3 shows the computational time for CT/MR 

registration and the MR image segmentation of each dataset. Since HA_MR has a 

larger rotation angle than that of the other datasets, more iterations are required for 

convergence.  
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Dataset HA_MR – In this experiment, there are eight iterations of segmentation and 

registration prior to convergence. This is because a large rotation (nearly 90 ) is 

required to align the MR and CT images. We observed from Figures 5.4(a)-(f) that the 

segmentation result helps the registration process to match the two datasets in the first 

three iterations. When the MR and CT images are nearly matched, the registration 

step helps to improve the MR image segmentation.    

Dataset HS1_MR – In this experiment, there are four iterations of segmentation and 

registration prior to convergence. The final result is shown in Figure 5.5(a). The CT 

contour matches the resampled MR image perfectly.  

Dataset PS1_MR – Only two iterations of segmentation and registration are required 

before convergence. The result is shown in Figure 5.5(b). Smoother boundaries are 

obtained after the second iteration. 

From our experiments with the MR datasets, segmentation accuracy clearly depends 

on the quality of the original images. When we compare automated segmentation and 

the manual segmentation performed by an experienced radiologist, automated 

segmentation of HA_MR gives the best result with a highly creditable maximum error 

of only 1 voxel (0.7 mm). The other five pairs of datasets have maximum error of 2 

voxels (0.8 mm). The segmented MR datasets of HS1_MR, HS2_MR and HS3_MR 

were resampled and fused with the original CT dataset with an error below 1 mm. 

Figure 5.6(a) shows the axial, sagittal and coronal views of the fused CT/MR hybrid 

model of HS1_CT and HS1_MR and Figure 5.6(b) the axial view of the hybrid model 
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of HS2_CT and HS2_MR. The segmentation result of dataset PS1_MR is better than 

that of dataset PS2_MR since the boundaries in the former dataset are smoother.  

 

Table 5.3. Registration/Segmentation time. 

 

 

 

 

 

 

 

 

 

 

Dataset 
Number 

of slices 

Total 

time 

(s) 

MR 

segmentation 

time (s) 

CT/MR 

registration 

time (s) 

Number 

of 

iterations 

HS1_MR  12 116 98 18 6 

HS1_MR 20 124 104 20 4 

HS1_MR 16 119 100 19 5 

HA_MR 76 364 253 110 8 

PS1_MR 30 42 33 9 2 

PS2_MR 50 225 190 35 3 
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(a) (b)    

  

 (c) (d) 

  

               (e) (f) 

Figure 5.4. Experiment segmentation/registration results of dataset HA_MR: 

(a) 1st segmentation (b) 1st registration, (c) 3rd segmentation, (d) 3rd registration,  

(e) 8th segmentation, (f) 8th registration - converged. 
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(a) 

  

(b)                                                                         

Figure 5.5. Converged registration results: (a) dataset HS1_MR, (b) dataset PS1_MR. 
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(a) 

 

(b) 

Figure 5.6. (a) Axial, sagittal and coronal views of the fused CT/MR hybrid model of 

a patient with cracked vertebrae. (b) Axial view of the fused CT/MR hybrid model of 

a patient with curved spine. 
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The normalized error for a converged segmentation result registered to the CT model 

is presented in Table 5.4. We note that the normalized error of the MR surface 

registered to the CT model ranges from 0.871 to 1.617 times the intrinsic error of the 

registration model. The NN model has an average error of 0.5 voxel, i.e., less than 1 

voxel. 

Table 5.4. Average cost after converging. 

 PS1_CT PS1_MR PS2_CT PS2_MR HA_CT HA_MR 

Number of points 40834 25139 53676 44875 61465 14121 

Total cost 2461.7 1319.9 2013.3 2997.1 933.4 347.1 

Average cost 0.0603 0.0525 0.0375 0.0668 0.0152 0.0246 

Normalized error 1 0.871 1 1.781 1 1.617 

Table 5.5 compares the results obtained with the ICP registration method and NMI 

with our weighted registration method. The results are similar, with HD values within 

0.2mm. The worst case of matching is 92%. We also note that the execution time of 

our method ( min6 ) is much shorter than that of traditional ICP (12 min) and NMI 

(1 hour). This would be mainly due to the fact that the former does not require any 

searching of point-pair correspondences. Since traditional ICP and NMI are popular 

registration methods that have been proven to be very accurate, we conclude that our 

weighted registration approach is not only accurate but also extremely fast. 
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Table 5.5. Execution time and volumetric overlap results. 

Dataset 

Weighted Registration ICP NMI 

Total 

time 

(s) 

Hausdorff 

distance 

(mm) 

Mean 

distance 

(mm) 

DICE  

Total 

time 

(s) 

Hausdorff 

distance 

(mm) 

Mean 

distance 

(mm) 

DICE 

Total 

time 

(s) 

Hausdorff 

distance 

(mm) 

Mean 

distance 

(mm) 

DICE 

HS1_MR 116 0.25 0.07 97.7% 809 0.29 0.09 96.7% 3728 0.23 0.07 97.3% 

HS1_MR 124 0.49 0.14 98.9% 864 0.41 0.13 99.0% 4205 0.45 0.13 98.6% 

HS1_MR 119 0.33 0.11 95.8% 821 0.36 0.12 95.3% 3985 0.39 0.12 95.5% 

HA_MR 364 0.70 0.21 97.3% 1445 0.75 0.23 96.6% 6524 0.77 0.23 96.8% 

PS1_MR 42 0.51 0.16 94.5% 882 0.62 0.17 94.7% 4353 0.48 0.15 94.2% 

PS2_MR 225 0.78 0.22 93.6% 979 0.83 0.23 93.2% 5744 0.91 0.24 93.0% 
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DFLS requires the input of two initial contours, the locations and positions of which 

will significantly influence the segmentation results. Our algorithm has error 

correction ability in the zyx and, directions. If there is some translation and rotation 

of the CT initialization from the MR dataset, the segmentation method will still work 

if the user sets a larger error tolerance but this will be at the expense of increased 

computing time. Due to the vertebral shape, it would be easier for the algorithm to 

correct the initialization error horizontally (in the yx and  directions) than vertically 

(in the z  direction), especially in the segmentation of the spinal processes. 

5.5 Conclusion 

In this Chapter, we have described a new iterative methodology for fast and accurate 

multimodal CT/MR registration and segmentation of MR dataset executed in a 

concurrent manner. In MR image segmentation, we extend the ordinary single-front 

level set to the double-front level set. This effectively reduces computational time by 

limiting the search area around the target and enhances segmentation accuracy by 

avoiding leakage and distraction by other objects. The iterative 

segmentation/registration method helps to refine the segmentation of MR images and 

the registration of MR to CT. We have tested the algorithm on six pairs of image 

datasets. The technique is fully automatic but is still able to give results that are 

comparable to manual segmentation. The proposed segmentation/registration 

approach will aid the development of image based pre-surgery planning, image 

guided surgery and post-surgery examination. 
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We have demonstrated our method in the creation of a hybrid model – a fused CT/MR 

image dataset – with patient data. The hybrid model of a patient with damaged 

vertebrae is particularly useful for surgical planning of procedures such as 

vertebroplasty [97]. With both the spinal cord and damaged vertebrae displayed, the 

surgeon could plan a needle trajectory that could reach the center of the collapse 

vertebra without inflicting damages to the spinal cord.    

The iterative registration/segmentation process is currently applicable to the CT and 

MR scans of the same subject [98]. In future, we can set up a standard spine model, 

which can be used as a standard initial template or reference model for the 

segmentation of MR images of different patients. We could extract prominent features 

of the MR image segmentation (e.g., the spinal cord axis and positions of 

inter-vertebral discs) and re-shape the reference model according to these features by 

registering the segmented MR images to the standard model.
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6 Statistical Modeling of Vertebrae 

6.1 Introduction 

Medical images such as CT images can be used to analyze the mechanical properties 

of vertebrae [99]. The vertebrae in different sections of the spine have distinctively 

different geometrical shapes and hence biomechanical behaviors. The lumbar section 

of the human spine, shown in Figure 6.1, have been under the focus of intensive 

research because it is the main load-bearing region of the entire vertebral column and 

its abnormality contributes to the development of an array of the pathological 

symptoms, such as low back pain.  

 

 

Figure 6.1. A segment of lumbar spine revealing the internal structure of an 

intervertebral disc and spinal nerve system (adapted from [100]). 

FE models of human vertebrae can be used to assess strain and stress fields. The 

interpretation of medical images is a very challenging task considering the significant 

inter-subject variability of anatomy and function. Atlas-based approaches address this 

problem by defining a common reference space. Mapping data sets into this common 

reference space not only accounts for anatomical and functional variations of 
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individual subjects, it also offers a powerful tool which facilitates comparison of 

anatomy and function over time, between subjects, between groups of subjects. 

Different elastic [101] and fluid [102] warping techniques have been developed for 

this purpose.  

We propose a statistical model-based framework to rapidly create FE meshes with 

patient-specific geometry. A center firing searching method was implemented to find 

the corresponding control points for training statistical shape model. The proposed 

framework may be used to generate FE models of complex geometrical structure such 

as human vertebrae from medical images.  

6.2 Methods 

Traditionally, landmarks are anatomically characteristic points which can be uniquely 

identified across a set of individuals. When constructing a statistical model, it is 

necessary to choose control points properly. The control points should represent the 

vertebral shape well and has small number at the same time. Given a set of such dense 

correspondences, one can build a statistical model of the deformation field [103]. 

In our proposed method, we first construct a statistical shape model database by 

extracting surface points from existing FE models. Taking into consideration the 

tubular vertebral body shape, a center firing method with rays directed outwards from 

the center is used to determine the control points to construct the statistical shape 

model. Shape parameters derived from the statistical variation among the surface 
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points are used to represent the reference object model. A Bayesian formulation, 

based on this prior knowledge and surface information of the input image set, is used 

to find the most suitable reference model from the database for mapping. The selected 

model, which acts as a template, is then deformed elastically to match the input image 

geometry. Figure 6.2 shows the structure of the proposed system.  

 

Figure 6.2. System structure. 

After processing N  sets of sample vertebrae images, we now have a full set of N  

surface meshes. The next step is to align these surfaces into a common reference 

frame for analysis. The meshes are processed to remove view and size dependent 
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considerations to isolate variations in shape alone, which is the goal of our analysis. 

We align the samples with the following steps: 

 Translate centroids of samples to the same point 

 Scale the samples to the same size 

 Rotate the samples to the same orientation 

To train a statistical shape model, we need to use the locations of the corresponding 

control points in the training dataset. Instead of the manual selection or fixed distance 

interpolation from surface points, we use a center firing searching technique to 

automatically locate the corresponding points for each surface nodes of the template 

model.  

From the center of gravity of a 3D model, we fire out rays at different directions. We 

record the position of the intersections of the rays and the model surface. The 2D 

illustration is shown in Figure 6.3. Under the assumption that the training data sets 

have similar shape, these corresponding points are used to train the vertebrae 

statistical shape model. 
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Figure 6.3. CG firing searching. 

With the preprocessed data, we are ready to perform the statistical analysis as in [104]. 

Vertex locations are represented as a vector );;:::;;;;;;;(
222111 nnni

zyxzyxzyxm . 

The training vectors create a cloud of points in 3n dimensions, which are modeled as a 

multivariate Gaussian distribution. We can therefore compute the mean of the 

distribution (centroid of the point cloud) 
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Our goal at this point is to construct a method for approximating each instance of this 

shape using only a small number of parameters. In order to accomplish this, we 

determine the principal components of the Gaussian distribution, which represent the 

axes that contain the most variation in the set. This principal component analysis 
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(PCA) produces modes of variation given by the eigenvectors of the covariance 

matrix. These are eigenvectors 
k

u  such that for some eigenvalue
k

 , we have 

 
kkk

uωu  . ( 6.3 ) 

By creating a matrix U  with the n  eigenvectors corresponding to the largest 

eigenvalues as the matrix columns, we can now compactly approximate each training 

instance using the mean of these n  modes of variation as: 

 ,U αmm   ( 6.4 ) 

for some set of mode coefficients α .  

In the prediction process, the target image surface points will be aligned as described 

above. With the statistical shape model, the similarity between the target image set 

and training dataset can be computed. Then the most similar mesh model is chosen for 

elastic deformation. 

While elastic models are useful in non-rigid registration, they are limited by 

themselves because they are too generic [102]. Considering the statistical information, 

the elastic model has stronger constrain to deform. Statistical models can be powerful 

tools to directly capture the character of the variability of the individuals being 

modeled. Instead of only relying on an elastic model to guide the deformation in a 

roughly plausible way, the statistics of a sample of images can be used to guide the 

deformation in a way governed by the measured variation of individuals.  
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6.3 Statistical Model Based Deformation Results 

The dataset shown in Figure 4.4 is used in this experiment. This dataset includes four 

set of CT images of different vertebrae. After performing random deformation to 

these four set of images, we obtain a total of 32 vertebral images, which are used as 

the training dataset. 

We first extracted the surfaces of the vertebrae, and then used the resultant surface 

points to align the vertebral body with the template. The center firing method was 

used to determine the initial set of control points. These control points were marked 

on the original slices, as shown in Figure 6.4. 

With these control points from 32 datasets, we constructed a statistical shape model. 

Statistical models of shape variation [105] have been shown to be powerful tools for 

image interpretation. By changing the shape parameter α , different deformed shapes 

can be created. This is shown in Figure 6.5. The shape parameter is able to represent 

the various deformed shapes. In this example, the appropriate values are 1, 5 and 10 

for
1

α , 
2

α , and
3

α , respectively.  

Shape parameters derived from the statistical variation among the surface points have 

been used to represent the reference object model. A Bayesian formulation based on 

this prior knowledge and surface information of the target image set is used to select 

the most suitable reference model from the database for mapping. From the literature, 

the elastic modulus of cortical bone is between 10 GPa and 30 GPa. Thus, an analysis 
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on the target bone material provides an estimated elastic modulus within this range. 

The selected model, which acts as a template, was deformed elastically using FE 

method to match the target image geometry with the given elastic modulus. When the 

resultant model of deformation did not match the targeted image dataset well, elastic 

modulus was adjusted to achieve a better matching. The resulted model was then 

compared with the target dataset. This iteration ended when an optimal matching was 

found. Figure 6.6 illustrates the effect of different elastic modulus on deformation. A 

material with large elastic modulus is difficult to deform, while one with small elastic 

modulus is easier to deform.  

Figure 6.7 shows a generated finite element model of a patient specific vertebra. The 

resultant finite element model and reconstructed patient vertebral model using volume 

rendering are visually similar. The elastic modulus used in the deformation range 

from 10 to 30 GPa assuming a fixed Poisson’s ratio of 0.3. This is consistent with the 

estimation of bone mechanical properties reported in the literature. The final 

estimated value depends on the tolerance and numerical convergence of the finite 

element methods in the deformation loop. Nevertheless, the iterations have served 

well in fine tuning the estimation based on our experience to-date. A match 

quantitatively defined by average Euclidean distance may not represent a good visual 

geometrical match. 
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Figure 6.4. Control points marked by center firing method. 

 

(a) 

 

(b) 

 

(c) 

Figure 6.5. Deformed shape by changing the shape parameter. Varying (a) first shape 

parameter
1

α , (b) second shape parameter
2

α , (c) third shape parameter
3

α . 
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(a)     (b)     (c)         (d) 

Figure 6.6. Deformation results of different elastic modulus. (a) Target image. Results 

of (b) small elastic modulus, (c) large elastic modulus, (d) optimal elastic modulus. 

       

  

Figure 6.7. Patient specific finite element model. Left, central and right column are 

the top, side and perspective view of the target vertebrae geometry, template mesh 

and the transformed mesh, respectively. 
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6.4 Conclusion 

Our method has the following advantages over conventional template-based 

mesh-generation methods. First, high mapping quality is ensured. We select proper 

vertebral templates using statistical analysis of a pre-trained database instead of using 

a single template, which reduces the possibility of mapping error for a complex 

structure such as vertebra. Secondly, minimum preprocessing, e.g., pre-adjustment, is 

required. Hence, we can generate the FE mesh faster and more accurately than those 

methods with no or minimal manual intervention. The method also has the benefits of 

conventional template-based mesh-generation methods. The generated mesh model 

has a relatively small number of elements that are shaped and organized efficiently to 

represent the essential geometrical features of the structures.  

In preliminary experiments, we applied the proposed method to model human lumbar 

spine with an initial database comprising six datasets. Preliminary results show that 

the statistical shape information has significantly augmented and improved 

template-based mesh generation. 
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7 Conclusion and Future Work 

7.1 Conclusion 

Registration helps the surgeon to match the information from preoperative scan 

images with that of the intra-operative patient data during image guided surgery. 

There is a need for an accurate registration system that improves surgical outcomes 

and patient comfort via elimination of invasive implants. The work described has 

involved the research and development of a new registration system based on 

computational model. Preoperative images of patient are segmented using an adaptive 

thresholding method. The adaptive thresholding method takes into consideration the 

inhomogeneity of bone structure. A patient-specific surface model is then constructed 

and used in the registration process.  

We proposed and developed a new automatic surface-based rigid registration system 

using the NN techniques for CT/CT registration. We use a MLP NN to construct the 

bone surface model. A surface representation function is derived from the resultant 

NN model and is adopted in intra-operative registration. An optimization process is 

used to search for optimal transformation parameters together with the NN model. 

Since no point correspondence is required in our NN based model, the intra-operative 

registration process becomes significantly faster compared to standard techniques. 

These advantages are demonstrated in our applications to several medical datasets. 
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We achieve sub-voxel accuracy using our registration method which is comparable to 

that of conventional approaches.  

In order to produce a complete image volume with clearly visible hard and soft tissues 

in high resolution from both CT and MR modalities, we propose a weighted method 

for CT/MRI registration. This is an iterative methodology that can achieve accurate 

MRI segmentation and CT/MRI registration simultaneously. A semi-automatic 

segmentation is performed for CT dataset. After a suboptimal MRI segmentation, the 

segmented MRI dataset is registered with the segmented CT dataset. The registered 

CT contour is then used as prior knowledge (or initial condition) for the MRI 

segmentation. This iterative process is carried out until the segmented CT surface 

matches the segmented MRI perfectly. The experimental results of six pair of images 

showed the feasibility of this system and the advantages compared to other 

conventional methods. We have also investigated a statistical model-based framework 

to rapidly create FE meshes with patient-specific geometry. 

The above CT/CT and CT/MRI registration methods were integrated into a generic 

software toolkit. The software toolkit has already been used in segmentation of 

various human and animal images. It has also been applied to register human bone 

structures for image-guided surgery. The successful completion of the weighted 

registration method greatly enhances the state-of-art for CT/MRI registration.  
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7.2 Image-based Bone Material Estimation 

Newer techniques such as quantitative ultrasound (QUS) have been introduced 

recently for measuring bone density. QUS sends non-ionizing sound waves to detect 

mineral density. Piezoelectric transducers transmit ultrasound energy that travels 

through the bone to the receiving transducer.  Reductions in ultrasound signal are 

attributed to attenuation by bone and tissue.  QUS is also an averaged area method 

and cannot distinguish cortical from trabecular bone. It is therefore used mainly in 

thin cortex regions and is not able to measure sites at risk of osteoporotic fracture 

such as the hip or spine [106]. Studies have shown that adding an ultrasound 

measurement to a Dual-Energy X-Ray Absorptiometry (DXA) does not improve the 

prediction of fractures [107, 108]. Although some have said that ultrasound measures 

the “quality” of bone, more careful studies suggest that it mainly measures the bone 

mass. Newer systems incorporate imaging techniques to aid in positioning and 

improve precision [109, 110]. The advantages of QUS include no radiation exposure, 

low cost, portability and rapidity of scanning. Assessment of fracture risk in elderly 

women by QUS has been proven [107, 111, 112], and studies indicate that in the 

elderly, QUS is as good a predictor of hip fracture as DXA [110]. However, QUS is 

not suitable for assessing the spine. A primary disadvantage of QUS is the lack of 

sensitivity, making it inappropriate for long term monitoring of osteoporosis or 

response to drug therapy. Significant false negative rate has been detected in 

discriminating healthy from osteoporotic groups [98]. 



107 

Since the mechanical properties of the bone depend largely on both the density and 

structure of the trabecular bone, imaging techniques with direct measures of 

trabecular bone structure may improve the analysis of bone biomechanical properties 

[113] compared to those that only measure the average area Bone Mineral Density 

(BMD). The biomechanical properties of bone can be integrated to our hybrid model 

for further study.  

7.3 Clinical Applications 

There is a recent study showing that in spinal surgery, robotically assisted needle 

insertion is feasible and enhances placement accuracy, especially in complicated cases 

[8, 9]. This application performed pre-operation planning with three projections of 

vertebrae reconstructed from CT images. During operation, a geometric relation 

between the coordinate systems of the patient’s anatomy and the preoperative plan is 

established automatically by matching the preoperative reconstructed CT images to 

intra-operative fluoroscopic images of the patient and targeting device in place. 

The ability to support minimally invasive procedures is one of the most attractive 

features of this technology. Deformity and revision cases are also compelling 

indications of this system. Surgeons can find the correct entry point and trajectory by 

using unusual or absent anatomical landmarks. Clinically acceptable placement 

reached high accuracy rate as 99% in all the cases. It verifies the system’s accuracy 

and supports its use in minimally invasive and open spine surgery for pedicle screws, 

as well as for translaminar facet screw techniques. 
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Appendix A 
 

Bayes Decision Theory 

Let i  be a gray level whose distribution depends on the corresponding material 

(bone or non-bone). Let )|( Bip  be the conditional probability density function for 

i  given that the corresponding material is bone related. Similarly )|( Bip  

represents the conditional probability density function for i  given that the 

corresponding material is non-bone. Then the difference between )|( Bip  and 

)|( Bip  describes the difference in attenuation between bone region and non-bone 

region, see Figure 1. Suppose that the priori probabilities, )( BP  and )( BP , are 

known, the posteriori probability for each material given a gray level i  can be 

computed using the Bayes Rule: 
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where 

 )()|()()|()( BPBipBPBipip   (A.2)  

 

For classification of the underlying material based on the observed gray level, the 

Bayes decision rule minimizes the probability of classification error:

                            
.d e c i d eo t h e r w i s e);|()|(  ifDecide BiBPiBpB 

 

This rule can be re-written as  

.decideotherwise);()|()()|(  ifDecide BBPBipBPBipB   (A.3) 
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Figure A.1. Class conditional probability density function. 

 

Consider in a neighborhood )( xN  of a pixel x  and we assume that the gray level 

from this region come from a mixture of two Gaussian distributions ( B  and B ) 

having respective means, variances and priori probability ( )(,,
2

BP
bb

 ) and 

( )(,
2

, BP
nbnb  ).  Based on the current segmentation of the image ( B  and B ), 

these parameters can be estimated by the following equations: 
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Thus Bayes Decision Rule can be re-formulated as 
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