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Abstract
Scoliosis is a 3D-torsional rotation of the spine, but risk factors for initiation and progression are little understood. Research 
is hampered by lack of population-based research since radiographs cannot be performed on entire populations due to the 
relatively high levels of ionising radiation. Hence we have developed and validated a manual method for identifying scoliosis 
from total body dual energy X-ray absorptiometry (DXA) scans for research purposes. However, to allow full utilisation 
of population-based research cohorts, this needs to be automated. The purpose of this study was therefore to automate the 
identification of spinal curvature from total body DXA scans using machine learning techniques. To validate the automation, 
we assessed: (1) sensitivity, specificity and area under the receiver operator curve value (AUC) by comparison with 12,000 
manually annotated images; (2) reliability by rerunning the automation on a subset of DXA scans repeated 2–6 weeks apart 
and calculating the kappa statistic; (3) validity by applying the automation to 5000 non-annotated images to assess associa-
tions with epidemiological variables. The final automated model had a sensitivity of 86.5%, specificity of 96.9% and an 
AUC of 0.80 (95%CI 0.74–0.87). There was almost perfect agreement of identification of those with scoliosis (kappa 0.90). 
Those with scoliosis identified by the automated model showed similar associations with gender, ethnicity, socioeconomic 
status, BMI and lean mass to previous literature. In conclusion, we have developed an accurate and valid automated method 
for identifying and quantifying spinal curvature from total body DXA scans.
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Introduction

Scoliosis is defined as lateral curvature of the spine ≥ 10°, 
as measured using the Cobb method on a standing spinal 
radiograph [1]. The most common form is adolescent-onset 

idiopathic scoliosis (AIS), defined as occurring between 
age 10 years and skeletal maturity [2]. It is not always a 
benign structural abnormality, although the mortality rate 
for individuals with AIS is comparable to that of the general 
population [3]. Severe AIS may result in early degenerative 
joint disease [4], negative body image [5] and psychosocial 
disturbances [6]. Even small spinal curves in adolescents, 
which may not have presented to spinal units, are associ-
ated with an increased risk of future back pain and time off 
school [7].

However, our understanding of the causes of curve ini-
tiation and progression is hampered by lack of prospective 
population-based studies, driven mainly by the serious ethi-
cal concerns over performing spinal radiographs in healthy 
populations because of the radiation exposure, equivalent to 
an entire year’s background radiation [8].

To address this, we have validated a manual method for 
measuring spinal curvature using total body dual energy 
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X-ray absorptiometry (DXA) scans for research purposes 
[9]: the DXA Scoliosis Method (DSM). As previously 
published [9], the manual DSM is reliable (substantial 
agreement was seen with a kappa of 0.75), repeatable 
(95% of repeat measures were within 5°, and there was no 
change in interobserver variability as curve size increased) 
and accurate (comparison with the gold standard of using 
the Cobb method on standing spinal radiographs was as 
expected). The manual DSM also produced valid estimates 
of prevalence of scoliosis, with expected gender ratio [9].

This has allowed us to start to identify predictors of 
AIS onset utilising population-based cohorts that have 
already performed DXA scans for previous research into 
determinants of bone density. The DSM has been applied 
to participants in the Avon Longitudinal Study of Parents 
and Children (ALSPAC) at age 9 years (n = 7000) and age 
15 years (n = 5000) and results have shown we can identify 
altered body composition [10] and reduced physical activ-
ity [11] in children, prior to onset of their spinal curve. 
Interestingly, reduced physical ability is seen as early as 
age 18 months in those who go on to develop AIS between 
ages 9 and 15 [11]. This suggests that clinical features 
other than characteristics of the spinal deformity itself may 
indeed be useful prognostic indicators.

The main goal of further epidemiological analysis of 
scoliosis is to identify predictors of spinal curve progres-
sion. This would allow generation of a clinical prediction 
tool to identify people at low risk of curve progression, 
for example, who would then require less rigorous moni-
toring. However, even though the prevalence of AIS is 
relatively common (5.9% at age 15 [9]), ALSPAC is not 
large enough on its own, and to carry out appropriately 
powered epidemiological studies we need to combine data 
from multiple research cohorts. We have identified addi-
tional research cohorts that already have total body DXA 
scans already performed (approximately 84,000 scans). 
However, application of our manual DSM on all relevant 
DXA images is unfeasible in terms of time and cost. For 
example, the original annotation 12,000 ALSPAC images 
required 200 staff days of analysis time.

Therefore the aim of this work was to develop and 
validate a fully automated version of the manual DSM 
method using a machine learning approach. The intended 
purpose of this automated method is to exploit population-
based cohorts for research purposes. The availability of 
large datasets and increasingly powerful computational 
resources has made the development of such techniques 
feasible with applications ranging from fibrotic lung dis-
ease [12] to ophthalmology [13]. The scoliosis automa-
tion proposed here is based on the ideas developed in the 
SpineNet software [14], a deep-learning based automated 
tool for quantitative assessment of spinal degeneration on 
lumbar MRI imaging studies.

Methods

Study Population

ALSPAC is a geographically-based UK cohort that recruited 
pregnant women residing in Avon (South-west England), 
with an expected date of delivery between 1 April 1991 and 
31 December 1992 [15, 16]. A total of 14541 pregnancies 
were enrolled, with 14062 children born; see www.alspa​
c.bris.ac.uk for more information. The study website con-
tains details of all the data that are available through a fully 
searchable data dictionary and variable search tool available 
at https​://www.bris.ac.uk/alspa​c/resea​rcher​s/our-data/. This 
study is based on 7298 children who had DXA scans at the 
aged 9 research clinic, 5122 who had DXA scans at the aged 
15 research clinic, and 4969 who had DXA scans at the aged 
17 research clinic.

Overall Study Design

The DXA images were performed by trained technicians 
using a Lunar Prodigy (GE Healthcare, Madison, WI) and 
were obtained in a standard supine manner. The scans from 
age 9 and age 15 were combined, then randomly split into 
a training, a validation and a test set. A similar automated 
system for three-dimension images of the spine based on 
magnetic resonance imaging (MRI) scans has already been 
developed [17]. We planned to modify this system to allow 
automatic collection of data on spinal scoliosis from total 
body DXA scans for future research purposes. This modifi-
cation process was planned to have two stages: (1) develop-
ment of a new software algorithm to extract the required 
features and classify spinal images based on a subset of 
anonymised DXA images from ALSPAC; and (2) validation 
of the software on a further dataset of anonymised images 
from ALSPAC.

Development of the New Software Algorithm

As previously reported from the computer science perspec-
tive [18], using the training set, all images were standardised 
to the same height without modifying the aspect ratio (iso-
tropic scaling using the SpineNet software). Segmentations 
of specific body parts were obtained via simple heuristics 
by expecting the participants to have two legs, a pelvis, a 
spine and a head, which are then used to help train the model 
understand spinal anatomy. Using these segmentations, the 
first stage of the model was then trained to produce the mid-
spine maps—that is a heatmap of which pixels are the most 
likely to be the middle of the spine. Then, the second stage 
of the model was trained against the manual classifier of 

http://www.alspac.bris.ac.uk
http://www.alspac.bris.ac.uk
https://www.bris.ac.uk/alspac/researchers/our-data/
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scoliosis/no scoliosis based on the previously validated man-
ual cut-off [9]. The input of the first stage was a DXA image 
while the input to the second stage was the DXA image and 
its corresponding mid-spine map. Accuracy of the model 
was then improved through modifications to labels, maps, 
and by training against different manual classifications of 
scoliosis (none, scoliosis with a curve sized 6° to 10°, and 
scoliosis with a curve sized > 10°) followed by summing 
these scoliotic classes into one. Each classification produced 
by the automated model comes with a score—the so-called 
‘suspiciousness score’. This score ranges from 0 (normal) to 
1 (scoliosis)—see Fig. 1.

Validation of the Automated Model

As before, using the test set, the images were standardised 
to the same height without modifying the aspect ratio. The 
trained model was then used to produce a single scoliosis 
score per test image. To interrogate the model to identify 
‘how’ it was making the decisions, heatmaps were pro-
duced—see Fig. 2. The brighter pixels in the heatmap are 
the pixels that contribute the most to the scoliosis prediction.

Identification of Cut‑Off Point for Binary 
Classification

Scans with evidence of body positioning error based on 
a score of > 0.5 were excluded. The scoliosis suspicious-
ness score was reduced to a binary output of scoliosis 
(yes/no). Different cut-offs of the suspiciousness score 

were assessed for validity by comparison with the manual 
DSM annotation on the age 9 and age 15 data using val-
ues for sensitivity, specificity and area under the receiver 
operator curve (AUC). In addition, to estimate the posi-
tive predictive value (PPV) and negative predictive value 
(NPV) of a specific cut-off, the relevant sensitivity and 

0.01 0.25 0.49 0.53 0.72 0.99

Normal Scolio�c

Fig. 1   Scoliosis ‘suspiciousness’ scores produced by the automated method. A score of 0 indicates low suspiciousness of scoliosis, and a score 
of 1 high suspiciousness

Fig. 2   Heatmaps produced by the automation indicating the site of 
the total body DXA scan that contributed to the decision that scolio-
sis was present
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specificity were projected onto a hypothetical population 
of 10,000 using the known prevalence of 5.9% [9]. The 
hypothetical population was also used to calculate the 
percentage of individuals who would be identified (that 
is, predicted) as having scoliosis according to a given 
cut-off. A final cut-off (the final model) was chosen by 
consensus of the study authors based on a high AUC, and 
optimisation of the sensitivity and PPV.

Reliability of Final Automated Model

Since identification of spinal curves is influenced by 
positioning of people on the DXA scanner bed, evaluation 
of reliability requires assessment of repeat scans in the 
same individual, with repositioning in-between. There-
fore, the automation was also run on a subset of repeat 
DXA scans carried out 2–6 weeks later in 284 participants 
from the aged 15 research clinic. To assess reliability, an 
unweighted Cohen’s kappa statistic was calculated, with 
standard definitions of categories of agreement [19].

Assessment of Discrepancies

Using the final cut-off model, where discrepancies 
between the automated model and manual annotations 
(DSM) occurred, a random selection of images were 
reviewed by clinicians (JF and IH who had not previ-
ously reviewed these images, and EC who developed the 
original manual DSM) to identify if the manual anno-
tations were correct or incorrect. All were unaware of 
the automated prediction, and all read the scans without 
knowledge of each other’s interpretation. In addition, the 

automated model was run on the age 17 scans for the dis-
crepancies to identify if the images were still classified as 
scoliosis by the model, and these age 17 scans were also 
reviewed by the clinicians.

Validity of Final Automated Model

The final model was then run on the non-annotated age 17 
scans. Percentages were calculated for prevalence of scolio-
sis. χ2 tests were used to assess associations between gender 
and the presence of scoliosis identified by the automated 
model. Previously, independent associations were identified 
in ALSPAC between body composition [10] and scoliosis 
identified by the manual DSM. To assess clinical validity of 
the automated model, χ2 tests were used to assess if similar 
associations were seen between potential predictors (body 
composition and physical activity) and scoliosis identified 
by the automated method. For continuous variables such as 
lean mass unpaired t-tests were used to assess associations 
with scoliosis.

Results

The heatmaps of those images with high suspiciousness 
score for scoliosis consistently highlight specific regions of 
the spine, indicating these regions contribute the most to the 
suspiciousness score.

Identification of the Final Cut‑Off Model

After excluding those with body positioning error, differ-
ent cut-offs of the suspiciousness score were studied: 0.95, 
0.98, 0.99, 0.995 and 0.9995—see Table 1. Using a cut-off 

Table 1   Identification of 
the final cut-off point of the 
continuous suspiciousness score 
for scoliosis based on the age 
15 data after exclusion of those 
scans with evidence of body 
positioning error

Table shows sensitivity, specificity and AUC calculated from the validation set. The calculated sensitivity 
and specificity were then applied to a hypothetical population assuming a prevalence of 5.9% to allow cal-
culation of the positive predictive value (PPV), negative predictive value (NPV) and proportion identified 
with scoliosis by the automated model

Various cut-off levels of the scoliosis suspiciousness score for scoliosis 
produced by the automation

0.95 0.98 0.99 0.995 0.999 0.9995

Using the validation set from ALSPAC
 Sensitivity (%) 94.6 94.6 89.2 89.2 86.5 78.4
 Specificity (%) 93.9 94.9 95.2 95.5 96.9 97.8
 AUC, 95%CI 0.738 

(0.680–
0.796)

0.760 
0.699–
0.820)

0.759 
(0.696–
0.821)

0.767 
(0.704–
0.803)

0.804 
(0.737–
0.871)

0.831 
(0.760–
0.902)

Applied to a hypothetical population of 10,000
 PPV (%) 49.3 53.8 53.8 55.4 63.6 69.1
 NPV (%) 99.6 99.6 99.2 99.3 99.1 98.6
 Calculated prevalence (%) 11.3 10.4 9.8 9.5 8.0 6.7
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of suspiciousness score of 0.999, compared with the manual 
DSM, the automated model has a sensitivity of 86.5%, a 
specificity of 96.9% and an area under the receiver opera-
tor curve value (AUC) of 0.80 (95%CI 0.74 to 0.87)—see 
Table 2A. This cut-off was then applied to a hypothetical 
population of 10,000 and has a PPV of 63.6% and an NPV 
of 99.1%—see Table 2B.

Reliability of Final Automated Model

There was almost perfect agreement of identification of 
those with scoliosis on repeated DXA scans taken 2–6 weeks 
apart (kappa of 0.90, 95%CI 0.72–1.00).

Assessment of Discrepancies: Re‑assessment 
of Images by Clinicians

A random sample of 20 of the scans where the manual 
method and the automated method did not agree were 
reviewed by three clinicians. Of the scans where the manual 
method identified no scoliosis, but the automated method did 
identify scoliosis, 55.6% were re-classified as having sco-
liosis (in agreement with the automated model) by all three 
clinicians, suggesting the manual annotation was incorrect in 
these cases. Similarly, of the scans where the manual method 
identified scoliosis, but the automated method did not, 60.0% 
were re-classified as not having scoliosis (in agreement with 
the automated model) by all three clinicians, suggesting the 
manual annotation was incorrect in these cases. There was 
therefore no clear pattern or direction of judgement by the 
automation. There was no agreement for the remaining dis-
crepant scans as to whether scoliosis was present or not due 
to the small size of spinal abnormality.

Assessment of Discrepancies: Comparison 
with Automated Model Prediction on Age 17 Data

The automated model was run on the age 17 images for 
those randomly selected discrepant scans described above. 
For 82.0% of participants, the automated model classified 
their spines the same at age 15 and age 17, thereby increas-
ing the confidence that the model output is valid.

Description of Scoliosis Identified by the Automated 
Model in ALSPAC at Age 17

The descriptive statistics of those with and without scoliosis 
at age 17 identified by the final automated model is shown 
in Table 3. As expected, scoliosis was more common in 
females, but no association was seen with socio-economic 
status or ethnicity. Similar to previous literature, those with 
scoliosis at age 17 had lower BMI at age 15. As in previous 
work by our group [10], those with scoliosis at age 17 had 
lower total body lean mass.

Discussion

We have developed a fully automated method of identifica-
tion of scoliosis from total body DXA scans for research 
purposes. The final model has good reliability, accuracy, 
sensitivity, specificity and AUC. Those identified with scoli-
osis using this method have similar associations with gender, 
socio-economic status, ethnicity, BMI and lean mass as the 
known epidemiology of this condition [9, 10]. Disagreement 
between the automated model and the manual annotation 
is likely to be explained by errors with the original manual 
annotation in at least half the cases. Now we are confident 
the automated model is valid, we are working on training 
the model to measure size of spinal curve, to allow future 
research into the predictors of curve size progression.

The benefits of our fully automated model compared to 
manual annotation of DXA scans is the vast reduction in 
time required to look at each spinal image, with the conse-
quent large reduction in financial costs. To run the automa-
tion on all 12,000 DXA scans from ALSPAC took approx-
imately 5 min. This has resulted in the first feasible and 
low-radiation process for identification of spinal curves in 
large populations for research purposes. Other no-radiation 
techniques are available such as EOS machines, but their use 
is limited by lack of availability. It is increasingly difficult 
to justify regular conventional spinal radiography because 
of the radiation risks, especially to adolescent females who 
may have an increased risk of breast and uterine carcinoma 
with increased radiation exposure [20].

Table 2   Final model: Automated prediction of scoliosis (suspicious-
ness score cut off of 0.999) excluding those with body positioning 
error (suspiciousness score cut-off of 0.5) (A) compared to manual 
prediction (DSM) based on a test set from within ALSPAC age 9 and 
age 15 total body DXA scans; and (B) applying the 5.9% prevalence 
[9], the identified specificity of 96.9% and the identified sensitivity of 
86.5% to a hypothetical population of 10,000

Automation Manual method

No scoliosis Scoliosis

(A) Compared to manual prediction in test set
No scoliosis 606 5 611
Scoliosis 20 32 52
Total 626 37 663
(B) Applied to a hypothetical population of 10,000
No scoliosis 9118 80 9198
Scoliosis 292 510 802
Total 9410 590 10,000
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The model is not perfect. The sensitivity, specificity and 
NPV are high, but PPV is low. This, combined with the 
estimated percentage with scoliosis identified by the model 
of 8.0%, suggests the model identifies more spinal curves 
than traditional manual methods. However, it is increasingly 
recognised that spinal curvature in humans is a continuum, 
and it is possible our automated method identified more of 
the small curves than manual methods. Most previous pop-
ulation-based studies of prevalence of scoliosis are based 
on the Adams forward bending test, and it is recognised that 
this clinical assessment will miss small curves. It is therefore 
possible our automated method is correctly identifying a 
higher prevalence of spinal curves. This could be important, 
as the current paradigm of using a cut-off of spinal curvature 
of ≥ 10 ° on standing radiographs [21] carries the implica-
tion that lesser curves are not pathological and are ‘normal 
variants’ [22]. However, previous work by our group has 
shown that small curves are associated with future back pain 
and time off school/work [7].

Alternatively, our automated method may be identify-
ing false-positives, but we think this is less likely given 
that our results are similar to the known epidemiology of 
scoliosis. The intended purpose of this automated method 
of scoliosis identification from total body DXA scans is 
for exploitation of large research datasets. In UK Biobank 

for example, there will be 100,000 total body DXA scans 
which will not be able to be analysed for spinal curvature 
manually because of the enormous time commitment. Our 
automated method, despite the potential for a proportion 
of false positives, will allow exploitation of this unique 
resource, sacrificing some precision for a vast reduction in 
time required for analysis. Another limitation of this study 
is that we were unable to confirm that those identified 
with scoliosis by the automated method were true cases, 
due to ethical issues regarding over-exposing otherwise 
normal individuals from ALSPAC to substantial levels of 
ionising radiation. As previously discussed in the paper 
describing the validation of the manual method [9], DXA 
scans are performed in the supine position, which unsur-
prisingly results in an under-estimation of curve size by 
approximately 10° in the ALSPAC cohort, similar to other 
authors [23]. Also as previously published [9], analysis of 
the supine DXA imaging identifies a higher prevalence of 
double or triple curves, perhaps explained that without 
clinical examination we are unable to distinguish compen-
satory curves that are correctable. However, using a binary 
cut-off to categorise scans into scoliosis or no scoliosis 
reduced the impact of this potential limitation.

A final limitation is that both the manual method 
and the automation described in this paper have been 

Table 3   Descriptive statistics of those participants from ALSPAC identified by the final automated model with and without scoliosis at age 17, 
with comparisons by Chi-squared statistics or unpaired t-tests as appropriate

BMI body mass index

No scoliosis
N = 3235

Scoliosis
N = 449

P value for difference

N (%) N (%)

Gender  < 0.001
Male 1526 (91.8) 136 (8.2)
Female 1709 (84.5) 313 (15.5)
Ethnicity 0.939
White 2783 (87.9) 382 (12.1)
Non-white 119 (88.2) 16 (11.9)
Maternal education 0.343
Level 1 (none or CSE only) 322 (85.2) 56 (14.8)
Level 2 (vocational) 219 (90.5) 23 (9.5)
Level 3 (O levels) 1002 (88.1) 136 (12.0)
Level 4 (A levels) 824 (87.9) 113 (12.1)
Level 5 (°) 576 (88.6) 74 (11.4)
BMI categories at age 17  < 0.001
 < 18.5 246 (78.6) 67 (21.4)
18.5–24.9 2193 (86.9) 331 (13.1)
25.0–29.9 536 (93.1) 40 (6.9)
 ≥ 30 244 (95.7) 11 (4.3)

Mean (SD) Mean (SD) P value for difference

Total body lean mass at age 15 (kg) 43.5 (8.4) 39.9 (7.1)  < 0.001
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developed on DXA scans performed on a Lunar Prodigy 
machine produced by GE Healthcare. Other DXA manu-
facturers are available, (machines produced by GE Health-
care and Hologic comprise the majority), and it is cur-
rently unknown how our automation will perform on such 
images, although we are currently in the process of testing 
it on Hologic images and outputs are encouraging [un-pub-
lished data]. However, the intended use of our automation 
is for research purposes in population-based cohort studies 
where the serial images are taken on the same machines. 
We do not intend to use our automation on repeat scans in 
individuals taken on machines by different manufacturers.

We are now in a position to use this fully automated 
method to insert the scoliosis phenotype into population-
based research cohorts with total body DXA scans around 
the globe. This will facilitate well-powered studies of the 
risk factors for initiation of spinal curves, and is likely to 
produce a step-change in our understanding of this little-
researched disease. With future automation development 
we will also be in the position to study the risk factors for 
curve progression.
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permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.
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