12 research outputs found

    Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity

    Get PDF
    Objectives The aim was to index natural products for less expensive preventive or curative anti-inflammatory therapeutic drugs. Materials A set of 441 anti-inflammatory drugs representing the active domain and 2892 natural products representing the inactive domain was used to construct a predictive model for bioactivity-indexing purposes. Method The model for indexing the natural products for potential anti-inflammatory activity was constructed using the iterative stochastic elimination algorithm (ISE). ISE is capable of differentiating between active and inactive antiinflammatory molecules. Results By applying the prediction model to a mix set of (active/inactive) substances, we managed to capture 38% of the anti-inflammatory drugs in the top 1% of the screened set of chemicals, yielding enrichment factor of 38. Ten natural products that scored highly as potential antiinflammatory drug candidates are disclosed. Searching the PubMed revealed that only three molecules (Moupinamide, Capsaicin, and Hypaphorine) out of the ten were tested and reported as anti-inflammatory. The other seven phytochemicals await evaluation for their anti-inflammatory activity in wet lab. Conclusion The proposed anti-inflammatory model can be utilized for the virtual screening of large chemical databases and for indexing natural products for potential antiinflammatory activity.This work was partially supported by the Al- Qasemi Research Foundation (Grant no. 954000) and the Ministry of Science, Space and Technology, Israel. We declare that the funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Quantitative structure - property relationship modeling of remote liposome loading of drugs

    Get PDF
    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a dataset including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and five-fold external validation. The external prediction accuracy for binary models was as high as 91–96%; for continuous models the mean coefficient R2 for regression between predicted versus observed values was 0.76–0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments

    Correlation between Antibacterial Activity and Free-Radical Scavenging: In-Vitro Evaluation of Polar/Non-Polar Extracts from 25 Plants

    Get PDF
    Objectives: The current study aimed to measure the antioxidant and antibacterial activities of 25 wild Palestinian edible plants, which were subjected to extraction by polar and non-polar solvents. Correlations between free radical scavenging activity and antibacterial activity of the extracts were assessed for both polar and non-polar fractions. Materials: Twenty-five wild edible plant species that are frequently consumed by people in Palestine (mainly in a rural area) were examined. Among them, 10 plant species were among those with the highest mean cultural importance values, according to an ethnobotanical survey that was conducted in the West Bank, Palestine, a few years ago. Method: The protocol of the DPPH assay for testing free-radical scavenging was utilized for determining EC50 values, while microdilution tests were conducted to determine the 50% inhibitory concentration (IC50) of the extracts for the microorganism Staphylococcus mutans. Results and Discussion: Eight extracts (non-polar fractions) were found to possess an antibacterial IC50 of less than 20 ppm, such as Foeniculum vulgare, Salvia palaestinafruticose, Micromeria fruticose, Trigonella foenum-graecum, Cichorium pumilum jacq, Salvia hierosolymitana boiss, Ruta chalepensis, and Chrysanthemum coronarium. The polar fractions possess higher antioxidant activity, while non-polar fraction possess higher antibacterial activity. Looking at all the results together can deceive and lead to the conclusion that there is no correlation between antibacterial activity against S. mutans and free radical scavenging (R2 equals 0.0538). However, in-depth analysis revealed that non-polar plant extracts with an EC50 of free radical scavenging 100 ppm have a four-fold order of enrichment toward more activity against S. mutans. These findings are of high importance for screening projects. A four-fold order of enrichment could save plenty of time and many in screening projects. The antibacterial active extracts marked by low-medium free radical scavenging might act through a mechanism of action other than that of highly active, free radical scavenging extracts. Conclusion: The screening of antioxidant and antimicrobial activity performed on 25 selected wild plant extracts revealed a satisfactory free radical scavenging and antimicrobial potential that could be of value in the management of oxidative stress. Further studies are recommended to explore novel and highly active natural antibacterial products.The Al-Qasemi Research Authority, and the Faculty of Medicine of Al Najah University, supported this work. We declare that the funders had no role in the study design, data collection, analysis, decision to publish, or preparation of the manuscript

    Synthesis and charaterization of primaquine bis-ureas with aminoalcohols

    Get PDF
    Malarija je smrtonosna parazitska bolest tropskih i subtropskih krajeva koja se prenosi ubodom komarca roda Anopheles, a uzrokovana je vrstama roda Plasmodium. Primakin je antimalarik koji djeluje na tkivne shizonte te je jedini dostupni hipnozoitocid, a djeluje i na gametocite svih vrsta plazmodija koji uzrokuju malariju kod čovjeka. S druge strane, istraživanja pokazuju da poznati antimalarici, uključujući primakin, imaju i citostatsko djelovanje na maligne stanične linije. Stoga primakin predstavlja vrlo zanimljivu molekulu pogodnu za derivatizaciju u potrazi za novim citostaticima. Ovaj rad je nastavak dugogodišnjih istraživanja derivata primakina u Zavodu za farmaceutsku kemiju Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta. Rezultati prethodnih istraživanja temelj su dizajniranja novih bis-urea primakina kao potencijalnih citostatika i/ili antimalarika koje u svojoj strukturi sadrže alifatski ciklički ili aromatski aminoalkohol. Sintetizirane su dvije bis-uree 5a-b koje su karakterizirane uobičajenim analitičkim i spektroskopskim metodama (IR, MS, 1H i 13C NMR). Oba spoja zadovoljavaju gotovo sve kriterije dane Lipinskijevim i Gelovanijevim pravilima, odnosno kriterijima Bioavailability radara (SwissADME) za male molekule. Trenutno su u tijeku ispitivanja citostatskog, antimalarijskog i antituberkuloznog djelovanja sintetiziranih spojeva koja prelaze okvire ovog rada.Malaria is a life-threatening parasitic disease of tropic and sub-tropic areas transmitted through the bite of infected Anopheles mosquito, caused by protozoa Plasmodium. Primaquine is an antimalarial drug effective on tissue schizonts and only hypnozoitocide available, also effective against gametocytes all plasmodiums that cause disease in humans. Furthermore, researches indicate that well-known antimalarials, including primaquine, have anticancer activity on malignant cell lines. Therefore, primaquine presents a fascinating molecule suitable for further derivatization in search for new anticancer drugs. This paper is a continuum of longtime research on new primaquine derivatives as potential anticancer agents at University of Zagreb Department of Medicinal Chemistry. Results of past research represent a base for the design of novel primaquine bis-ureas as potential antimalarial or anticancer agents with aliphatic cyclic or aromatic aminoalcohol moieties in their structure. Newly synthesized primaquine bis-ureas 5a-b are characterized using classical analytical and spectroscopic methods (IR, MS, 1H and 13C NMR). Both novel compounds have a good drug-likeness score, with most of them meeting all of the Lipinski’s and/or Gelovani’s rules, as well as criteria given by the Bioavailability radar (SwissADME) for small molecules. Evaluation of their anticancer, antimalarial and antitubercular activity is in progress

    Computational studies of biomolecules

    Get PDF
    In modern drug discovery, lead discovery is a term used to describe the overall process from hit discovery to lead optimisation, with the goal being to identify drug candidates. This can be greatly facilitated by the use of computer-aided (or in silico) techniques, which can reduce experimentation costs along the drug discovery pipeline. The range of relevant techniques include: molecular modelling to obtain structural information, molecular dynamics (which will be covered in Chapter 2), activity or property prediction by means of quantitative structure activity/property models (QSAR/QSPR), where machine learning techniques are introduced (to be covered in Chapter 1) and quantum chemistry, used to explain chemical structure, properties and reactivity. This thesis is divided into five parts. Chapter 1 starts with an outline of the early stages of drug discovery; introducing the use of virtual screening for hit and lead identification. Such approaches may roughly be divided into structure-based (docking, by far the most often referred to) and ligand-based, leading to a set of promising compounds for further evaluation. Then, the use of machine learning techniques, the issue of which will be frequently encountered, followed by a brief review of the "no free lunch" theorem, that describes how no learning algorithm can perform optimally on all problems. This implies that validation of predictive accuracy in multiple models is required for optimal model selection. As the dimensionality of the feature space increases, the issue referred to as "the curse of dimensionality" becomes a challenge. In closing, the last sections focus on supervised classification Random Forests. Computer-based analyses are an integral part of drug discovery. Chapter 2 begins with discussions of molecular docking; including strategies incorporating protein flexibility at global and local levels, then a specific focus on an automated docking program – AutoDock, which uses a Lamarckian genetic algorithm and empirical binding free energy function. In the second part of the chapter, a brief introduction of molecular dynamics will be given. Chapter 3 describes how we constructed a dataset of known binding sites with co-crystallised ligands, used to extract features characterising the structural and chemical properties of the binding pocket. A machine learning algorithm was adopted to create a three-way predictive model, capable of assigning each case to one of the classes (regular, orthosteric and allosteric) for in silico selection of allosteric sites, and by a feature selection algorithm (Gini) to rationalize the selection of important descriptors, most influential in classifying the binding pockets. In Chapter 4, we made use of structure-based virtual screening, and we focused on docking a fluorescent sensor to a non-canonical DNA quadruplex structure. The preferred binding poses, binding site, and the interactions are scored, followed by application of an ONIOM model to re-score the binding poses of some DNA-ligand complexes, focusing on only the best pose (with the lowest binding energy) from AutoDock. The use of a pre-generated conformational ensemble using MD to account for the receptors' flexibility followed by docking methods are termed “relaxed complex” schemes. Chapter 5 concerns the BLUF domain photocycle. We will be focused on conformational preference of some critical residues in the flavin binding site after a charge redistribution has been introduced. This work provides another activation model to address controversial features of the BLUF domain

    Investigation of cytotoxic properties of some heterocyclic derivatives by molecular modeling

    Get PDF
    Currently, many technologies have been adopted to boost the efficiency of drugdevelopment and overcome obstacles in the drug discovery pipeline. The application of these approaches spans a wide range, from bioactivity predictions, de novo compound synthesis, target identification to hit discovery, and lead optimization. This dissertation comprises two studies. First, we proposed an original approach based on statistical consideration dedicated to k-means clustering analysis in order to define a set of rules for structural features that would help in designing novel anti-cancer drug candidates. It has been applied successfully to classify 500 cytotoxic compounds with 21 molecular descriptors into distinct clusters. The percentage of molecules in each cluster is 50%, 24.88%, and 25.12% for cluster 1, cluster 2, and cluster 3, respectively. Each cluster groups a homogeneous class of molecules with respect to their molecular descriptors. Silhouette analysis, used as a cluster validation approach proves that the molecules are very well clustered, and there are no molecules placed in the wrong cluster. In silico screening of pharmacological properties ADME and evaluation of drug-likeness were performed for all molecules. The quantitative analysis of molecular electrostatic potential was performed to identify the nucleophilic and electrophilic sites in the representative molecule of each cluster. In addition, a molecular docking study was carried out to investigate the interactions of the paragon molecules with the active binding sites of six different targets. Our findings provide a guide to assist the chemist in selecting and testing only the potential molecules with good pharmacokinetic profiles to improve the clinical outcomes of drug therapies. Second, a simulation-based investigation was conducted to examine the CHK1 inhibitory activity of cytotoxic xanthone derivatives using a hierarchical workflow for molecular docking, MD simulation, ADME-TOX prediction, and MEP analysis. A molecular docking study was conducted for the forty-three xanthone derivatives along with standard Prexasertib into the selected CHK1 protein structures 7AKM and 7AKO. Furthermore, MD studies support molecular docking results and validate the stability of studied complexes in physiological conditions. Moreover, in silico ADME-TOX studies are used to predict the pharmacokinetic, pharmacodynamic, and toxicological properties of the selected eight xanthones and the standard Prexasertib. The quantitative analysis of electrostatic potential was performed for the lead compound L36 to identify the reactive sites and possible noncovalent interactions. Our study provides new unexplored insights into xanthones as CHK1 inhibitors and identified L36 as a potential drug candidate that could undergo further in vivo assays and optimization, laying a solid foundation for the development of CHK1 inhibitors and cancer drug discovery. To the best of our knowledge, this is the first time such a study was conducted for the xanthones with CHK1 by using a computational based approach

    Investigation of cytotoxic properties of some heterocyclic derivatives by molecular modeling approaches

    Get PDF
    Currently, many technologies have been adopted to boost the efficiency of drug development and overcome obstacles in the drug discovery pipeline. The application of these approaches spans a wide range, from bioactivity predictions, de novo compound synthesis, target identification to hit discovery, and lead optimization. This dissertation comprises two studies. First, we proposed an original approach based on statistical consideration dedicated to k-means clustering analysis in order to define a set of rules for structural features that would help in designing novel anti-cancer drug candidates. It has been applied successfully to classify 500 cytotoxic compounds with 21 molecular descriptors into distinct clusters. The percentage of molecules in each cluster is 50%, 24.88%, and 25.12% for cluster 1, cluster 2, and cluster 3, respectively. Each cluster groups a homogeneous class of molecules with respect to their molecular descriptors. Silhouette analysis, used as a cluster validation approch proves that the molecules are very well clustered, and there are no molecules placed in the wrong cluster. In silico screening of pharmacological properties ADME and evaluation of drug-likeness were performed for all molecules. The quantitative analysis of molecular electrostatic potential was performed to identify the nucleophilic and electrophilic sites in the representative molecule of each cluster. In addition, a molecular docking study was carried out to investigate the interactions of the paragon molecules with the active binding sites of six different targets. Our findings provide a guide to assist the chemist in selecting and testing only the potential molecules with good pharmacokinetic profiles to improve the clinical outcomes of drug therapies. Second, a simulation-based investigation was conducted to examine the CHK1 inhibitory activity of cytotoxic xanthone derivatives using a hierarchical workflow for molecular docking, MD simulation, ADME-TOX prediction, and MEP analysis. A molecular docking study was conducted for the forty-three xanthone derivatives along with standard Prexasertib into the selected CHK1 protein structures 7AKM and 7AKO. Furthermore, MD studies support molecular docking results and validate the stability of studied complexes in physiological conditions. Moreover, in silico ADME-TOX studies are used to predict the pharmacokinetic, pharmacodynamic, and toxicological properties of the selected eight xanthones and the standard Prexasertib. The quantitative analysis of electrostatic potential was performed for the lead compound L36 to identify the reactive sites and possible non- covalent interactions. Our study provides new unexplored insights into xanthones as CHK1 inhibitors and identified L36 as a potential drug candidate that could undergo further in vivo assays and optimization, laying a solid foundation for the development of CHK1 inhibitors and cancer drug discovery. To the best of our knowledge, this is the first time such a study was conducted for the xanthones with CHK1 by using a computational based approach

    IN SILICO METHODS FOR DRUG DESIGN AND DISCOVERY

    Get PDF
    Computer-aided drug design (CADD) methodologies are playing an ever-increasing role in drug discovery that are critical in the cost-effective identification of promising drug candidates. These computational methods are relevant in limiting the use of animal models in pharmacological research, for aiding the rational design of novel and safe drug candidates, and for repositioning marketed drugs, supporting medicinal chemists and pharmacologists during the drug discovery trajectory.Within this field of research, we launched a Research Topic in Frontiers in Chemistry in March 2019 entitled “In silico Methods for Drug Design and Discovery,” which involved two sections of the journal: Medicinal and Pharmaceutical Chemistry and Theoretical and Computational Chemistry. For the reasons mentioned, this Research Topic attracted the attention of scientists and received a large number of submitted manuscripts. Among them 27 Original Research articles, five Review articles, and two Perspective articles have been published within the Research Topic. The Original Research articles cover most of the topics in CADD, reporting advanced in silico methods in drug discovery, while the Review articles offer a point of view of some computer-driven techniques applied to drug research. Finally, the Perspective articles provide a vision of specific computational approaches with an outlook in the modern era of CADD

    Ultrasensitive detection of toxocara canis excretory-secretory antigens by a nanobody electrochemical magnetosensor assay.

    Full text link
    peer reviewedHuman Toxocariasis (HT) is a zoonotic disease caused by the migration of the larval stage of the roundworm Toxocara canis in the human host. Despite of being the most cosmopolitan helminthiasis worldwide, its diagnosis is elusive. Currently, the detection of specific immunoglobulins IgG against the Toxocara Excretory-Secretory Antigens (TES), combined with clinical and epidemiological criteria is the only strategy to diagnose HT. Cross-reactivity with other parasites and the inability to distinguish between past and active infections are the main limitations of this approach. Here, we present a sensitive and specific novel strategy to detect and quantify TES, aiming to identify active cases of HT. High specificity is achieved by making use of nanobodies (Nbs), recombinant single variable domain antibodies obtained from camelids, that due to their small molecular size (15kDa) can recognize hidden epitopes not accessible to conventional antibodies. High sensitivity is attained by the design of an electrochemical magnetosensor with an amperometric readout with all components of the assay mixed in one single step. Through this strategy, 10-fold higher sensitivity than a conventional sandwich ELISA was achieved. The assay reached a limit of detection of 2 and15 pg/ml in PBST20 0.05% or serum, spiked with TES, respectively. These limits of detection are sufficient to detect clinically relevant toxocaral infections. Furthermore, our nanobodies showed no cross-reactivity with antigens from Ascaris lumbricoides or Ascaris suum. This is to our knowledge, the most sensitive method to detect and quantify TES so far, and has great potential to significantly improve diagnosis of HT. Moreover, the characteristics of our electrochemical assay are promising for the development of point of care diagnostic systems using nanobodies as a versatile and innovative alternative to antibodies. The next step will be the validation of the assay in clinical and epidemiological contexts
    corecore