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Abstract

Objectives The aim was to index natural products for less

expensive preventive or curative anti-inflammatory thera-

peutic drugs.

Materials A set of 441 anti-inflammatory drugs repre-

senting the active domain and 2892 natural products

representing the inactive domain was used to construct a

predictive model for bioactivity-indexing purposes.

Method The model for indexing the natural products for

potential anti-inflammatory activity was constructed using

the iterative stochastic elimination algorithm (ISE). ISE is

capable of differentiating between active and inactive anti-

inflammatory molecules.

Results By applying the prediction model to a mix set of

(active/inactive) substances, we managed to capture 38%

of the anti-inflammatory drugs in the top 1% of the

screened set of chemicals, yielding enrichment factor of 38.

Ten natural products that scored highly as potential anti-

inflammatory drug candidates are disclosed. Searching the

PubMed revealed that only three molecules (Moupinamide,

Capsaicin, and Hypaphorine) out of the ten were tested and

reported as anti-inflammatory. The other seven phyto-

chemicals await evaluation for their anti-inflammatory

activity in wet lab.

Conclusion The proposed anti-inflammatory model can be

utilized for the virtual screening of large chemical data-

bases and for indexing natural products for potential anti-

inflammatory activity.

Keywords Anti-inflammatory � Chemoinformatics �
Ligand-based modeling � Bioactivity index

Introduction

Inflammation is critical for the development of many

complex diseases and disorders including autoimmune

diseases, metabolic syndrome, neurodegenerative diseases,

cancers, and cardiovascular diseases [1]. This warrants the

increasing interest in looking after anti-inflammatory

agents. Many original and review papers have reported the

inhibitory effect of plants and isolated natural products on

inflammation processes, at least in low-grade inflamma-

tion. These included natural polyphenols [2], resveratrol

[3], quercetin [4], lycopene [5], aspirin [6], edible plants

such as tomato [5], cactus [7], Citrus grandis [8], and

herbal medicine [9, 10]. In general, there is a strong public

need for natural [10, 11] and less expensive preventive and

curative anti-inflammatory therapeutics [12].
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Extended knowledge regarding inflammation will opti-

mize and hasten the development of innovative therapeutic

targets from natural sources, which can be used to manage

various chronic inflammation-related diseases. Computer

methodologies are utilized here, either to discover new hits

or to virtually screen large chemical databases [13–16].

There are two crucial components for constructing pre-

dictive models: an optimization method and databases of

active and inactive chemicals. Such models employ opti-

mization algorithms—for example, simulated annealing

[17], genetic algorithms [18, 19], neural networks [20, 21],

support vector machines [22, 23], the k-nearest neighbors

algorithm [24, 25], and combinations thereof [25–29].

These computerized techniques assume that the set of

active chemicals shares common features that are not easily

defined if only a narrow space from the active space is

utilized. Thus, using a large number of diverse active

molecules helps us draw significant and robust conclusions

concerning the properties of the active space. The inactive

chemicals should cover the property space of the virtually

screened database.

Over the last decade, we have developed a novel algo-

rithm, termed the iterative stochastic elimination (ISE)

algorithm, which is designed to scan a multi-dimensional

space and identify the best solutions (termed global and local

minima). It has been applied to solve bioinformatics prob-

lems—for example, positioning protons [30], predicting side

chains conformations [31], scanning the conformational

space of loops [32], and searching the conformational space

of cyclic peptides [33] and loops [34]. Later, it was tailored to

solve ligand-based problems, such as picking up discrimi-

native descriptors and optimizing the ranges of descriptors to

produce the best solutions for differentiating between active/

inactive objects. Models that can index chemicals for their

molecular bioactivity [25, 35, 36] and prioritize molecules in

large databases [36, 37] have also been constructed. It is

worth to assign that the anti-inflammatory drugs may act on

different biological targets via various mechanisms of action

[38, 39]. However, based on our previous experience [35],

the proposed filter-based indexing approach is a useful

technique capable to deal well with such complex problems.

Materials and methods

To construct a predictive model, we used a set of 441 anti-

inflammatory drugs [presented in SMILES format in the

supporting information (SI-Table 1)] to represent the active

domain and 2892 natural products to represent the inactive

domain. This natural product database was prepared by

collecting phytochemicals isolated from more than 800

different plants distributed worldwide and is available for

purchase from AnalytiCon Discovery (http://www.ac-

discovery.com). The diversity within the set of anti-in-

flammatory drugs is presented in Fig. 1a, and the diversity

within the set of natural products in Fig. 1b. The decision

to use a natural product database for the inactive domain is

justified, since prediction models utilized for virtual

screening should possess the same properties’ range as the

chemicals in the screened database, and this database was

prepared from phytochemicals isolated from plants.

The physico-chemical properties of all of the molecules

in both databases were identified with molecular operating

environment (MOE) software, version 2009.10. The one-

dimensional and two-dimensional descriptors were based

on calculated physico-chemical properties, such as

molecular weight, log P, H-bond donors, H-bond accep-

tors, solubility, total charge, charge distribution, type and

number of atoms, and so forth (http://www.chemcomp.

com/journal/descr.htm). For the validation and assessment

of the constructed model, the data sets of the active/inac-

tive chemicals were split into two-thirds for the training set

and one-third for the test set. The whole set was partitioned

into training and test sets with the use of a randomly

picking in-house module.

The model for indexing the natural products for poten-

tial anti-inflammatory activity was constructed with the

iterative stochastic elimination algorithm (ISE). With the

use of the ISE algorithm [35, 40] an optimal model capable

of differentiating between active and inactive molecules

could be attained with filters. The filters were constructed

by scanning the multivariable space to search for the best

sets of descriptors (‘‘variables’’) and the best range for each

descriptor that could differentiate between active and

inactive chemicals. Since descriptors typically interact with

each other, changes in the range of one descriptor can

affect the best range of another descriptor; therefore, to

detect the best set of filters, an optimization process should

take into consideration all descriptors of a certain set at the

same time. The main steps of the ISE-based modeling

process are shown schematically in Fig. 2. For further

details regarding ISE and its application for obtaining the

best ranges from a set of descriptors, and for the opti-

mization process, see our previous publications

[25, 36, 41]. The quality of the prediction model is eval-

uated by measuring various parameters such as enrichment

factor, Matthews correlation coefficient (MCC), ROC

curve and the area under ROC curve (AUC).

Results

The iterative stochastic elimination approach was

employed to commence an in silico prediction system

capable of indexing natural products for their anti-inflam-

matory bioactivity. This study is based on a set of 441 anti-
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inflammatory drugs, labeled as the active set, and 2892

natural products, labeled as the inactive set. It is worth

noting that a very small fraction of the natural products

labeled inactive could, in fact, be active, and the effect of

such an assumption on the quality of the prediction model

would be insignificant. For highly efficient virtual screen-

ing, we had to construct the prediction model using a set of

inactive chemicals that possess the same properties’ space

as those of the items in the screened database. As well,

aiming to assure that our active class was not biased by

similarities among structures, we checked for diversity

among the 441 anti-inflammatory drugs and the 2892 nat-

ural products and determined that they were very diverse.

More than 87% of the anti-inflammatory drugs had an

intermolecular Tanimoto index of similarity \ 0.7. As

shown in Fig. 3, more than 95% of the anti-inflammatory

drugs fall under Lipinski’s rule of 5 (ROF) [42], and 88%

fall under the Oprea rule for lead-likeness [43]. Figure 4

describes the distribution plots of a few of the physico-

chemical properties in the anti-inflammatory drugs’

database.

Discussion

Fifty-two unique filters (composed of different sets and

ranges of descriptors) were produced by applying the ISE

algorithm and then utilized to construct the anti-

Fig. 1 Diversity within anti-inflammatory drugs (a, left side) and natural products database (b, right side)

Fig. 2 Flowcharts of the modeling process (left side) and ISE engine (right side)
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inflammatory indexing model. Three of these efficient fil-

ters are described in Table 1. Filter number 1 in Table 1

has an MCC of 0.60, and it identified successfully nearly

92.95% of the anti-inflammatory drugs (true positives),

while only 35.34% of the natural product database was

misclassified (proposed as negatives but indexed by the

model as positives).

Analysis of the 52 filters in terms of their descriptors

revealed their discriminative physico-chemical properties/

descriptors. As shown in Table 2, the most dominant

descriptors in the best filters used to produce the anti-in-

flammatory indexing model include, among others, the

number of hydrogen bond donors, number of nitrogen

atoms, Lipinski druglike, log P [GCUT (0/3)], and frac-

tional positive VDW surface area. The number of

appearances of the descriptors shown in Table 2 was

4.5–25.9 times higher than expected in case of random

selection. Using the WORDLE module, we constructed

Fig. 5, which shows the redundancy of the descriptors in a

graphical manner. A full list of all the descriptors and their

Fig. 3 Physico-chemical properties’ distribution of the anti-inflam-

matory drugs: a molecular weight distribution, b log P values,

c number of H-bond acceptors [lip_acc], d number of H-bond donors

[lip_don], e number of rigid bonds, f number of rotatable bonds,

g number of aromatic atoms

Fig. 4 Violation distribution of anti-inflammatory drugs concerning Lipinski’s rules for drug-likeness and Oprea rules for lead-likeness
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redundancy is given in the supplemental information (SI-

Table 2).

The quality of the anti-inflammatory activity-indexing

model is described in Figs. 6, 7 and 8. The MBI thresholds

(x-axis) are plotted against the percentage of true/false

positives (left y-axis) and against the MCCs (right y-axis).

Figures 6 and 7 present the enrichment plot and the

receiver operating characteristic (ROC) plot of the pro-

posed anti-inflammatory activity-indexing model,

respectively. The enrichment plot (Fig. 7) demonstrates

how anti-inflammatory drug candidates can be identified if

natural products are ranked according to the model’s pre-

dictions, as opposed to random selection. Note that the

enrichment plot of the ISE-based model yields results very

close to those of the perfect model in the top fraction. This

indicates that the proposed model has a high prioritization

power. Using a mix ratio of 1:100 for active:inactive

compounds, the proposed model managed to capture 34.5%

of the anti-inflammatory drugs in the top 1% of the

screened compounds, compared to 100% in the perfect

model and 1% in the random model. This means that the

enrichment factor in the top percentile was greater than

34-fold.

In the region of MBI C 9.0, the ISE-based model and

the perfect model somehow overlap. This means that the

proposed model is highly efficient at classifying and

picking anti-inflammatory drug candidates from a large

pool of inactive natural products. The achieved area under

the curve (AUC) was 0.94, indicating a very good pre-

diction model. The database of natural products composed

of 2892 phytochemicals was virtually screened using the

proposed anti-inflammatory indexing model. We assume

Table 1 Ranges of descriptors and efficiency ratings for three of the 52 filters used to produce the anti-inflammatory indexing model

Filter 1a Filter 2 Filter 3

MCC = 0.601 MCC = 0.599 MCC = 0.596

TP = 92.95% TP = 62.27% TP = 60.68%

TN = 64.66% TN = 94.43% TN = 95.26%

chi0v_C (0. to 0.80) GCUT_PEOE_1 (-2.28 to -0.94) a_heavy (0. to 4.0)

PEOE_VSA ? 2 (0. to 1.0) GCUT_SLOGP_0 (0. to 2.97) GCUT_PEOE_0 (0. to 2.96)

PEOE_VSA_POS (0. to 30.95) PEOE_VSA_POS (0. to 41.27) GCUT_PEOE_1 (-2.28 to -0.94)

PC? (0. to 33.80) Diameter (0. to 78.12) PEOE_RPC (0. to 6.13)

The definition of the physico-chemical properties of the descriptors’ codes and the method, which was utilized by MOE software for their

calculation, could be found in http://www.cadaster.eu/sites/cadaster.eu/files/challenge/descr.htm
aThe filters could be composed of different sets of descriptors and/or ranges (potential lower limit/upper limit) for each descriptor

Table 2 Partial list of the redundancy of descriptors within the set of

52 filters that were used to construct the anti-inflammatory indexing

model

Descriptor name Number of

appearances

Dominant more

times than random

GCUT_SLOGP_0 29 25.9

a_don 17 15.2

a_nN 13 11.6

PEOE_VSA ? 4 13 11.6

PEOE_VSA_FPOS 9 8

BCUT_PEOE_3 8 7.2

SMR_VSA3 8 7.2

GCUT_PEOE_3 7 6.3

GCUT_SMR_3 6 5.4

GCUT_SLOGP_3 5 4.5

Lip_druglike 5 4.5

PEOE_VSA_FNEG 5 4.5

PEOE_VSA_FPPOS 5 4.5

Q_VSA_FPOS 5 4.5

SMR_VSA1 5 4.5

The full list of descriptors is given in the supplemental information

(SI-Table 2)

Fig. 5 Number of appearances

of descriptors in the 52 filters

used to produce the anti-

inflammatory indexing model.

The picture was constructed

using the WORDLE module
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that few chemicals in the database are anti-inflammatory

chemicals and will get high MBI score. The MBI score, as

shown in Fig. 6, ranges between -2.75 (lowest score) and

10.25 (highest score).

In Fig. 9, we disclose some of the natural products that

were highly indexed (MBI score above 8.0) as potential

anti-inflammatory drug candidates. Using threshold of MBI

8.0, the ratio of TP:FP is equal to 35:1. Searching the

PubMed revealed that only three molecules (Moupinamide,

Capsaicin, and Hypaphorine) out of the ten were tested and

reported as anti-inflammatory. Moupinamide (termed also

N-trans-feruloyltyramine) possesses anti-inflammatory

activity via suppression of mRNA expression of inducible

nitric oxide synthase [44] and inhibition of COX-I and

COX-II enzymes [45]. Capsaicin has shown efficacy in

treatment of pruritus [46], nonallergic rhinitis [47] (in-

flammation of the inner part of the nose) and H. pylori-

induced gastritis [48]. Few months ago, Sun et al. [49]

reported that hypaphorine counteracts inflammation via

inhibition of ERK or/and NFkB signaling pathways and

can be served as an anti-inflammatory candidate. The other

seven phytochemicals await evaluation for their anti-in-

flammatory activity in wet lab. One molecule

(Piperolactam A) from the untested set was reported as a

constituent [50] of Piper betle Linn that demonstrated anti-

inflammatory activity [51].

Conclusions

Using the iterative stochastic elimination algorithm, we

have built a highly discriminative and robust model cap-

able of indexing natural products for anti-inflammatory

bioactivity. We used a set of 441 anti-inflammatory drugs

to represent the active domain and 2892 natural products to

represent the inactive domain. The achieved area under the

curve (AUC) was 0.94, indicating a highly discriminative

and robust model. Some natural products that were scored

highly by our ISE-based anti-inflammatory indexing model

as anti-inflammatory drug candidates are disclosed. The

proposed anti-inflammatory model can be utilized for the
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virtual screening of large chemical databases and for

indexing natural products for potential anti-inflammatory

activity.
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